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PREFACE

In re-writing the Solid Geometry the authors have consistently car-
ried out the distinctive features described in the preface of the Plane
Geometry. Mention is here made only of certain matters which are
particularly emphasized in the Solid Geometry.

Owing to the greater maturity of the pupils it has been possible
to make the logical structure of the Solid Geometry more prominent
than in the Plane Geometry. The axioms are stated and applied at
the precise points where they are to be used. Theorems are no longer
quoted in the proofs but are only referred to by paragraph numbers;
while with increasing frequency the student is left to his own devices
in supplying the reasons and even in filling in the logical steps of the
argument. For convenience of reference the axioms and theorems of
plane geometry which are used in the Solid Geometry are collected in
the Introduction.

In order to put the essential principles of solid geometry, together
with a reasonable number of applications, within limited bounds (156
pages), certain topics have been placed in an Appendix. This was
done in order to provide a minimum course in convenient form for class
use and not because these topics, Similarity of Solids and Applications
of Projection, are regarded as of minor importance. In fact, some of
the examples under these topics are among the most interesting and
concrete in the text. For example, see pages 180–183, 187–188, 194–
195.

The exercises in the main body of the text are carefully graded as
to difficulty and are not too numerous to be easily performed. The
concepts of three-dimensional space are made clear and vivid by many
simple illustrations and questions under the suggestive headings “Sight
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Work.” This plan of giving many and varied simple exercises, so effec-
tive in the Plane Geometry, is still more valuable in the Solid Geometry
where the visualizing of space relations is difficult for many pupils.

The treatment of incommensurables throughout the body of this
text, both Plane and Solid, is believed to be sane and sensible. In each
case, a frank assumption is made as to the existence of the concept in
question (length of a curve, area of a surface, volume of a solid) and of
its realization for all practical purposes by the approximation process.
Then, for theoretical completeness, rigorous proofs of these theorems
are given in Appendix III, where the theory of limits is presented in
far simpler terminology than is found in current text-books and in such
a way as to leave nothing to be unlearned or compromised in later
mathematical work.

Acknowledgment is due to Professor David Eugene Smith for the use
of portraits from his collection of portraits of famous mathematicians.

H. E. SLAUGHT
N. J. LENNES

Chicago and Missoula,
May, 1919.
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SOLID GEOMETRY
INTRODUCTION

1. Two-Dimensional Figures. In plane geometry each figure is
restricted so that all of its parts lie in the same plane. Such figures are
called two-dimensional figures.

A figure, all parts of which lie in one straight line, is a one-dimensional
figure, while a point is of zero dimensions.

2. Three-Dimensional Figures. A figure, not all parts of which
lie in the same plane, is a three-dimensional figure.

Thus, a figure consisting of a plane and a line not in the plane is a
three-dimensional figure because the whole figure does not lie in one plane.

3. Solid Geometry treats of the properties of three-dimensional
figures.

4. Representation of a Plane. While a plane is endless in extent
in all its directions, it is represented by a parallelogram, or some other
limited plane figure.

A plane is designated by a single letter in it, by two letters at
opposite corners of the parallelogram representing it, or by any three
letters in it but not in the same straight line.

Thus, we say the plane M , the plane PQ, or the plane ABC.
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5. Figures in Plane and Solid Geometry. In describing a figure
in plane geometry, it is assumed, usually without special mention, that
all parts of the figure lie in the same plane, while in solid geometry it
is assumed that the whole figure need not lie in any one plane.

Thus, in plane geometry we have the theorem:

“Through a fixed point on a line one and only one perpendicular can be
drawn to the line.”

If all parts of the figure are not required
to lie in one plane, the theorem just quoted is
far from true. As can be seen from the figure,
an unlimited number of lines can be drawn
perpendicular to a line at a point in it.

Thus, all the spokes of a wheel may be perpendicular to the axle.

6. Loci in Plane and Solid Geometry. In plane geometry, “the
locus of all points at a given distance from a given point” is a circle,
while in solid geometry this locus is a sphere.

In plane geometry, “the locus of all points at a given distance from
a given line” consists of two lines, each parallel to the given line and
at the given distance from it, while in solid geometry this locus is a
cylindrical surface whose radius is the given distance.
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7. Parallel Lines. Skew Lines. In plane
geometry, two lines which do not meet are parallel,
while in solid geometry, two lines which do not
meet need not be parallel. That is, they may not
be in the same plane. Lines which are not parallel
and do not meet are called skew lines.

In solid geometry, as in plane geometry, the definition of parallel lines
implies that the lines lie in the same plane. That is, if two lines are parallel,
there is always some plane in which both lie. Thus, in the figure, l1 and l2
are parallel, as are also l1 and l3, while l3 and l4 are skew.

sight work

Note. In exercises 1–4 give the required loci for both plane and solid
geometry. No proofs are required.

1. The locus of all points six inches distant from a given point.

2. The locus of all points ten inches distant from a given point.

3. The locus of all points at a perpendicular distance of four inches from
a given straight line.

4. The locus of all points at a perpendicular distance of nine inches from
a given straight line.

5. Find the locus of all points one foot from a given plane. Is this a
problem in plane or in solid geometry?

6. Find the locus of all points equidistant from two parallel lines and in
the same plane with them. Is this a problem in plane or in solid geometry?

7. Find the locus of all points equidistant from two given parallel planes.
Is this a problem in plane or in solid geometry?

8. The side walls of your schoolroom meet each other in four vertical
lines. Are any two of these parallel? Are any three of them parallel? Do any
three of them lie in the same plane?

9. The side walls of your schoolroom meet the floor and the ceiling in
straight lines. Which of these lines are parallel to each other? Do any of
these lines lie in the same plane?
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8. Representation of Solid Figures on a Plane Surface. To
represent a figure on a plane surface when at least part of the figure
does not lie in that surface requires special devices.

Thus, in the parallelogram ABCD used
to represent a plane, the edges AB and
BC are made heavier than the other two.
This indicates that the lower and right-hand
sides are nearer the observer than the other
edges. Hence, the plane represented does
not lie in the plane of the paper, but the lower part of it stands out toward
the observer.

The figure ABCD represents a
triangular pyramid. The corner
marked B is nearest the observer
and this is indicated by the heavy
lines. The triangle ACD lies behind
the pyramid and is thus farther from
the observer. The line AC is dotted
to indicate that it is seen through the figure.

In the closed box AG, the lines AD, DC, and DH lie behind the figure
and are dotted, while the others are in full view and are solid. If the box
were open at the top, part of the line DH would be in full view and would
be represented by a solid line.

9. Representation of Lines. The following plan for representing
lines is generally adhered to in this book:

(1) A line of the main figure which is not ob-
scured by any other part of the figure is represented
by a solid line.

(2) An auxiliary line, which is drawn inciden-
tally in making a proof or constructing a figure, is
marked in long dashes if it is in full view.

(3) Any line whatever which is behind a part of the figure is marked in
short dashes or dots, or sometimes is not shown at all.

(4) Where a figure is shaded it is usually regarded as opaque and the
lines behind it cannot be seen at all.

(5) In some cases a shaded surface is regarded as translucent and the
lines behind it are seen dimly. Such lines are marked in short dashes.
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The following Axioms and Theorems from plane geometry are re-
ferred to in the solid geometry. The special axioms of solid geometry
will be given as they arise in the text.

axioms

10. Things equal to the same things are equal to each other.

11. If equals are added to equals, the sums are equal.

12. If equals are subtracted from equals, the remainders are equal.

13. If equals are multiplied by equals, the products are equal.

14. If equals are divided by equals, the quotients are equal.

15. If equals are added to unequals, the sums are unequal and in the
same order.

16. If unequals are added to unequals, in the same order, then the
sums are unequal and in that order.

17. If equals are subtracted from unequals, the remainders are un-
equal and in the same order.

18. If unequals are subtracted from equals, the remainders are un-
equal and in the opposite order.

19. If a is less than b and b less than c, then a is less than c.

20. If a and b are quantities of the same kind, then either a > b, or
a = b, or a < b.

21. Through a point not on a given line only one straight line can be
drawn parallel to that line.

22. A straight line-segment is the shortest distance between two points.

23. Corresponding parts of equal figures are equal.
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theorems

24. If two lines intersect, the vertical angles are equal.

25. Two triangles are equal if two sides and the included angle of one
are equal respectively to two sides and the included angle of the other.

26. Two triangles are equal if two angles and the included side of one
are equal respectively to two angles and the included side of the other.

27. Two triangles are equal if three sides of one are equal respectively
to three sides of the other.

28. Two points each equidistant from the extremities of a line-segment
determine the perpendicular bisector of the segment.

29. One and only one perpendicular can be drawn to a line through
a point whether that point is on the line or not.

30. The sum of all consecutive angles about a point in a plane is four
right angles.

31. The sum of all consecutive angles about a point and on one side
of a straight line is two right angles.

32. If two adjacent angles are supplementary, their exterior sides lie
in the same straight line.

33. If in two triangles two sides of one are equal respectively to two
sides of the other, but the third side of the first is greater than the third
side of the second, then the included angle of the first is greater than
the included angle of the second.

34. Two lines which are perpendicular to the same line are parallel.

35. If a line is perpendicular to one of two parallel lines, it is per-
pendicular to the other also.

36. If two given lines are perpendicular respectively to each of two
intersecting lines, then the given lines are not parallel.

37. In a right triangle there are two acute angles.
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38. From a point in a perpendicular to a straight line, oblique seg-
ments are drawn to the line. Then,

(1) If the distances cut off from the foot of the perpendic-
ular are unequal, the oblique segments are unequal, that one
being the greater which cuts off the greater distance; and

(2) Conversely, if the oblique segments are unequal, the
distances cut off are unequal, the greater segment cutting off
the greater distance.

39. Two angles whose sides are perpendicular, each to each, are equal
or supplementary.

40. Two right triangles are equal if the hypotenuse and a side of one
are equal respectively to the hypotenuse and a side of the other.

41. Two right triangles are equal if a side and an acute angle of one
are equal respectively to the corresponding side and acute angle of the
other.

42. Two right triangles are equal if the hypotenuse and an acute
angle of one are equal respectively to the hypotenuse and an acute angle
of the other.

43. A quadrilateral is a parallelogram

(1) if both pairs of opposite sides are equal; or

(2) if two opposite sides are equal and parallel.

44. Opposite sides of a parallelogram are equal.

45. Two parallelograms are equal if an angle and the two adjacent
sides of one are equal respectively to an angle and the two adjacent sides
of the other.

46. The segment connecting the middle points of the two non-parallel
sides of a trapezoid is parallel to the bases and equal to one half their
sum.

47. The locus of all points equidistant from the extremities of a line-
segment is the perpendicular bisector of the segment.
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48. In the same circle or in equal circles equal chords subtend equal
arcs.

49. A line perpendicular to a radius at its extremity is tangent to the
circle.

50. If a line is tangent to a circle, it is perpendicular to the radius
drawn to the point of contact.

51. If in a proportion the antecedents are equal, then the consequents
are equal and conversely.

52. In a series of equal ratios the sum of any two or more antecedents
is to the sum of the corresponding consequents as any antecedent is to
its consequent.

53. If a line cuts two sides of a triangle and is parallel to the third
side, then any two pairs of corresponding segments form a proportion.

54. If two sides of a triangle are cut by a line parallel to the third
side, a triangle is formed which is similar to the given triangle.

55. In two similar triangles corresponding altitudes are proportional
to any two corresponding sides.

56. Two triangles are similar if an angle of one is equal to an angle
of the other and the pairs of adjacent sides are proportional.

57. Two triangles are similar if their pairs of corresponding sides are
proportional.

58. The area of a parallelogram is equal to the product of its base
and altitude.

59. Two parallelograms have equal areas if they have equal bases and
equal altitudes.

60. The area of a triangle is equal to one half the product of its base
and altitude.

61. If a is a side of a triangle and h the altitude on it and b another
side and k the altitude on it, then ah = bk.

62. The area of a trapezoid is equal to one half the product of its
altitude and the sum of its bases.
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63. The area of a circle is one half the circumference times the ra-
dius, or in symbols:

a = 1
2
· 2πr · r = πr2.



BOOK I
PROPERTIES OF THE PLANE

64. Relations of Points, Lines, and Planes. If a line or a plane
contains a point, the point is said to be on the line or in the plane and
the line or plane is said to pass through the point. If a plane contains
a line, the line is said to be in the plane and the plane is said to pass
through the line.

65. Axiom 1. If two points of a straight line lie in a plane then
the whole line lies in the plane.

Since a line is endless, it follows from this axiom that a plane is endless
in all its directions.

66. Axiom 2. Through three non-collinear points one and only
one plane can be passed.

67. Axiom 3. Two distinct planes cannot
meet in one point only.

68. Determination of a Plane. A plane is said to be determined
by certain elements (lines or points) if this plane contains these elements
while no other plane does contain them.

While two points determine a straight line it is
obvious that two points do not determine a plane.
The figure shows three planes, L,M , N , all passing
through the two points A and B. But only a certain
one of these planes contains a given point C which
is not in the line AB.

We, therefore, say that three non-collinear points determine a plane,
while any number of collinear points fail to determine a plane.
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line common to two planes

69. Theorem I. Two intersecting planes meet in a
straight line.

Given two intersecting planes M and N .

To prove that they meet in a straight line AB.

Proof : If two planes intersect they meet in at least two points, as
A and B. Ax. 3, § 67

But A and B determine a line which lies wholly in M and also
wholly in N . Ax. 1, § 65

Hence the planes have the straight line AB in common.

A point C not in AB cannot lie in both M and N , for in that case
the planes would have three non-collinear points in common and hence
would coincide. Ax. 2, § 66

Hence the planes M and N meet in the straight line AB. Q. E. D.

70. Foot of a Line Meeting a Plane. The point in which a
straight line meets a plane is called the foot of the line.

71. Line and Plane Perpendicular to Each Other. A line is
said to be perpendicular to a plane if it is perpendicular to every line
in the plane passing through its foot. In this case the plane is also said
to be perpendicular to the line.

72. Line and Plane Oblique to Each Other.
A line which meets a plane and is not perpendicular
to it is said to be oblique to the plane. The plane is
also said to be oblique to the line.

In the figure, PA is perpendicular to the plane M and QA is oblique to it.
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elements which determine a plane

73. Theorem II. A plane is determined by (1) a line
and a point not on it, (2) two intersecting lines, and (3)
two parallel lines.

Given (1) a line l and a point P not on it; (2) two inter-
secting lines l1 and l2; (3) two parallel lines l1 and l2.

To prove that in each case a plane is determined.

Proof : (1) Let A and B be two points on l. Then
one and only one plane M can be passed through
l and P because one and only one plane can be
passed through A, B, and P . Ax. 2, § 66

(2) Let A be the intersection point of l1 and
l2, and B and C any other points, one on l1 and
the other on l2. Then A, B, and C determine the
plane N in which lie l1 and l2. Axs. 2, 1. §§ 66, 65

(3) By definition l1 and l2 lie in a plane R. They
lie in only one such plane since the points A and B
on l1 and C on l2 lie in only one plane.a Q. E. D.

74. Corollary 1. Through a line there is more than one plane.

Suggestion. Let M be a plane through the given

line l, and C a point not in M . Then l and C deter-
mine a plane N through l different from M .

75. Corollary 2. At a point on a line there is
more than one perpendicular to the line.

aSee Transcriber’s Notes.
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Suggestion. LetM and N be planes each passing through the given line l.
Then in each plane there is a line ⊥ l at any point A on it.

line perpendicular to the plane of two given lines

76. Theorem III. If a line is perpendicular to each of
two lines at their point of intersection, it is perpendicular
to the plane of these lines.

Given a line l perpendicular to each of the lines l1 and l2 at
the point P .

To prove that l is perpendicular to the plane of l1 and l2.

Proof : Let M be the plane of l1 and l2, and let l3 be any line in M
through P . Draw a line meeting l1, l2, and l3 in the points B, C, and D
respectively. Let E and F be points on l, on opposite sides of P , and
such that EP = FP . Draw EB, ED, EC, FB, FD, FC.

Then prove:

(1)4 EBP = 4FBP ; (2)4 ECP = 4FCP ;

(3)4 EBC = 4FBC; (4)4 EBD = 4FBD;

(5)4 EPD = 4FPD; (6)∠EPD = ∠FPD.

∴ EP is perpendicular to l3. Why?

But l3 is any line in M through P .
∴ line l ⊥ plane M . § 71

Q. E. D.
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77. Corollary. If each of two lines is perpendicular to a third
line at the same point, then the plane of the two lines is perpendicular
to the third line.

sight work

The diagram on this page represents a three-dimensional figure in the
shape of an ordinary rectangular box. In this figure the points A, K, and B,
for instance, do not determine a plane, since they all lie on the same straight
line, while A, B, and C do not lie in a straight line, and hence determine a
plane.

1. In this figure pick out several lines which lie in one of the surfaces and
are not obscured by the figure.

2. Pick out several lines which are obscured by the figure; also some
which lie within the figure.

3. Pick out four sets of three points each which do not determine planes,
and also four sets which do determine planes.

4. Is the line AB perpendicular to the plane BCG? Why? Is AB per-
pendicular to the plane AEH?

5. Pick out six planes in the figure, each determined by parallel lines.

6. Do the points C, Z, E determine a plane? the points C, Z, G? the
points B, F , Z?

7. Using the schoolroom, or a room at home, locate planes corresponding
to the planes AEG, KLM , NOP , and EFG, in the above figure.



PROPERTIES OF THE PLANE 15

8. Point out in some room planes determined by points corresponding to
D, E, B; D, F , B; D, C, F ; A, B, H in the above figure.

plane perpendicular to a line

78. Theorem IV. Through a point there is one and
only one plane perpendicular to a line.

Given a line l and a point P .
To prove that through P there is one and only one plane ⊥ l.

Proof : (1) When the point P is on the line l. Fig. 1.
Through P draw lines PQ and PQ′ both ⊥ l. Then the plane M ,

determined by PQ and PQ′, is ⊥ l. § 77
To prove that M is the only plane through P which is ⊥ l, suppose

that a plane M ′ through P is also ⊥ l. Let R be a plane through l
meeting M and M ′ in two lines. Then these lines would both lie in R
and be ⊥ l, which is impossible. § 29

(2) When the point P is not on the line l. Fig. 2.
Let PQ be a line ⊥ l and let N be a plane ⊥ l at Q.
Then the plane N passes through P and is the plane required.
For if P does not lie in N , then a plane R′ determined by l and PQ

cuts N in a line l′ which is ⊥ l (§ 71), and PQ and l′ are each ⊥ l at
the point Q in plane R′, which is impossible. § 29

Suppose, now, that there are two planes
through P each ⊥ l. These planes cannot
meet l in the same point (Case 1). Let them
meet l in Q and Q′. Then PQ and PQ′ are
each ⊥ l, which is impossible. Q. E. D.

79. Corollary. All lines perpendicular to a line at the same
point lie in the plane perpendicular to the line at this point.
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line perpendicular to a plane

80. Theorem V. Through a point there is one and only
one line perpendicular to a plane.

Given a plane M and a point P .
To prove that through P there is one and only one line ⊥M .

Proof : (1) When P is in the plane M (first figure). Let l1 be any
line in M through P , and let N be a plane ⊥ l1 at P and meeting M
in the line l2. Let PA be a line in N and ⊥ l2. Then PA is also ⊥ l1.
§ 71

∴ PA ⊥M. § 76.

(2) When P is not in the plane M (second figure). Let l be any line
in the plane M . Through P pass a plane N ′ ⊥ l at A and meeting M
in the line AK. From P in plane N ′ draw a line PO ⊥ AK and extend
it to P ′ so that OP ′ = PO. Let B be any point in l different from A.
Draw PB, PA, P ′B, P ′A, and OB.

Then prove (1) 4POA = 4P ′OA; (2) 4PAB = 4P ′AB;
(3) 4POB = 4P ′OB; (4) ∠POB = ∠P ′OB; (5) PO ⊥ OB.

∴ PO ⊥M. § 76

If in either case (1) or
case (2) there were two
lines PA and PB each ⊥
M , then the plane R of
these lines would cutM in
a line l. Hence PA and
PB would both lie in R
and be ⊥ l, which also lies in R. But this is impossible by § 29.

Hence PA is the only line through P which is ⊥M . Q. E. D.
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sight work

1. Does a stool with three legs always stand firmly on a flat floor? Why?

2. Does a table with four legs always stand firmly on a flat floor? Why?
On what conditions will such a table stand firmly on a flat floor?

3. If the point C does not lie in the plane
ABD, how many different planes are deter-
mined by the points A, B, C, D?

4. How many planes are determined by
any four points which do not all lie in one
plane?

5. How many planes are determined by the points A, B, C, D, E, if A,
B, C lie in a straight line and C, D, E lie in another straight line?

6. How many planes are determined by five points, no four of which lie
in the same plane?
7. How many planes are determined by three lines l1,

l2, l3 all passing through the same point but not all lying
in the same plane?

8. How many planes are determined by four lines
which all meet in a point, but no three of which lie in
the same plane?

9. How many planes are determined by three lines all
parallel to each other, and not all lying in the same plane?

l1

l2

l3

10. How many planes are determined by four lines all parallel to each
other, and no three lying in the same plane?

11. A line cannot be perpendicular to each of two intersecting planes.
Why?

Suggestions. (1) If a line l is per-

pendicular to the planes M and N at
the points A and B, and C is a point in
their intersection, then 4ABC would
contain two right angles.

(2) If l is perpendicular to M and N at a point P in their intersection,
pass a plane through l, meeting M and N in l1 and l2. Then in this plane
l1 and l2 are both ⊥ l.
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oblique lines from a point to a plane

81. Theorem VI. Oblique lines
from a point to a plane meeting the
plane at equal distances from the
foot of the perpendicular are equal;
and

conversely, two equal oblique
lines from a point to a plane meet
the plane at equal distances from the
foot of the perpendicular.

(1) Given PC ⊥M , and AC = BC.
To prove that PA = PB.

Suggestion. Suggestion. Prove 4PCA = 4PCB.

(2) Given PC ⊥M , and PA = PB.
To prove that AC = BC.

Suggestion. Suggestion. Prove 4PCA = 4PCB.

82. Corollary. The perpendicular is the shortest distance from
a point to a plane.

Hence the distance from a point to a plane means the perpendicular
distance.

sight work

Without giving proofs describe the following loci:

1. All points equidistant from the points on a circle.

2. All points equidistant from the vertices of a triangle.

3. All points in a plane which are at a given distance from a given point
outside the plane. If a perpendicular be drawn to the plane from this outside
point, how is its foot related to this locus?
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exercises

1. Show how a carpenter could use the theorem of § 76 to stand a
post perpendicular to the floor, if he has at hand two ordinary steel
squares.

2. Show how a back-stop on a
ball field can be made perpendicu-
lar to the line through second base
and the home plate. What theo-
rems of solid geometry are used?

3. If a plane is perpendicular to a line-segment PP ′ at its middle
point, prove: (1) Every point in the plane is equally distant from P
and P ′; (2) every point equally distant from P and P ′ lies in this plane.
What is the locus of all points in space equidistant from P and P ′?
Compare § 47.

4. Given the points A and B not in a plane M . Find the locus of
all points in M equidistant from A and B.

Suggestion. All such points must lie in the plane M and also in the plane
which is the perpendicular bisector of the segment AB.

5. Find the locus of all points equidistant from two given points A
and B, and also equidistant from two points C and D. Discuss.

6. State and prove a theorem of solid geometry
corresponding to the theorem of plane geometry
given in § 38.

7. If in the figure PD ⊥ plane M , and DC ⊥
AB, a line of the plane M , prove that PC ⊥ AB.

Suggestion. Lay off CA = CB, and compare tri-

angles.

8. If in the same figure PD ⊥ M , and PC ⊥
AB, a line of the plane, prove that DC ⊥ AB.
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parallel lines perpendicular to the same plane

83. Theorem VII. Two lines perpendicular to the same
plane are parallel; and

Conversely, if one of two parallel lines is perpendicular
to a plane, the other is also.

Given (1) AB and CD each ⊥ the plane M . Fig. 1.
To prove that AB ‖ CD.

Proof : Draw BD and make DE ⊥ DB.
Take points A and E so that BA = DE, and draw AD, AE, and

BE.
Now prove: (1) 4ABD = 4BDE and ∴ AD = BE;
(2) 4ADE = 4ABE and ∴ ∠ADE = ∠ABE = Rt. ∠.
∴ DC, DA, DB, and BA all lie in the same plane. § 79

AB ‖ CD. § 34
Given (2) AB ‖ CD and AB ⊥M . Fig. 2.
To prove that CD ⊥M .

Proof : If CD is not ⊥M let C ′D be ⊥M .
Then C ′D ‖ AB by case (1), and C ′D coincides with CD § 21 and

∴ CD ⊥M .

84. Corollary 1. If each of two lines is parallel
to a third line they are parallel to each other.

85. Corollary 2. If a plane is perpendicular
to one of two parallel lines, it is perpendicular to
the other.
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parallel planes and lines

86. Parallel Planes. Two planes which do not meet are said to
be parallel.

87. Line Parallel to a Plane. A straight line and a plane which
do not meet are said to be parallel.

88. Intercepted Segments. If a
straight line l2 meets two planes in A and
B, then the segment AB is said to be in-
tercepted by the planes.

Any line, as l1, in either of two paral-

lel planes, M and N , is parallel to the other
plane. The segment AB on the line l2 is in-
tercepted by the planes.

line parallel to a plane

89. Theorem VIII. If a straight line is parallel to a
given plane, it is parallel to the intersection of any plane
through it with the given plane.

Suggestion for proof. If l1 is the given line, M the given plane, and l2
the intersection of a plane N through l1 with M , show that l1 and l2 lie in
plane N and cannot meet.

90. Corollary 1. If a line outside a plane is parallel to some
line in the plane, then the first line is parallel to the plane.
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91. Corollary 2. If a line is parallel to a plane,
then through any point in the plane there is a line
in the plane parallel to the given line.

92. Corollary 3. The intersections of a plane
with two parallel planes are parallel lines.

planes perpendicular to a line are parallel

93. Theorem IX. If each of two planes is perpendicular
to the same line, they are parallel; and

Conversely, if one of two parallel planes is perpendicular
to a line, the other is also.

Given (1) plane M ⊥ AB and plane N ⊥ AB. Fig. 1.
To prove that M ‖ N .

Proof : Suppose M and N to meet in some point P . Draw AP in
M and BP in N . Then AB ⊥ AP and AB ⊥ BP (§ 71), which is
impossible. § 29

Given (2) M ‖ N and M ‖ AB. Fig. 2.
To prove that N ‖ AB.

Proof : Through AB pass a plane cutting M and N in AC and
BD, and a second plane cutting M and N in AE and BF .

Then, AC ‖ BD and AB ‖ BF . § 92
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Now prove (1) AB ⊥ BD, (2) AB ⊥ BF . § 35

AB ⊥ N . § 76

94. Corollary 1. Parallel line-segments included between parallel
planes are equal.

95. Corollary 2. If a line is perpendicular to one of two parallel
planes, it is perpendicular to the other also.

96. Corollary 3. Two planes each parallel to a third plane are
parallel to each other.

parallel planes

97. Theorem X. If a plane is parallel to each of two
intersecting lines, it is parallel to the plane of these lines.

Given a plane M parallel to the intersecting lines l1 and l2.

To prove that the plane M is ‖ the plane N of l1 and l2.

Proof : If M is not ‖ N , these planes meet in a line l3. § 69

Then neither l1 nor l2 can meet l3, since they are ‖M .

Hence l1 ‖ l3, and l2 ‖ l3, which is impossible. § 21

∴ M and N cannot meet and are parallel. Q. E. D.

98. Theorem XI. Through a point not in a plane there
is one and only one plane parallel to this plane.
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Given a plane M and a point P not
in M .

To prove that through P there is one and
only one plane ‖M .

Proof : Let l be a line through P and ⊥M .
Through P draw l1 and l2 each ⊥ l. § 75
The plane N of l1 and l2 is ⊥ l, and hence N ‖M . §§ 76, 93
If through P there were another plane R ‖M , then R would be ⊥ l

at P . § 93
But N and R cannot both be ⊥ l at P . § 78
Hence N is the only plane through P ‖M . Q. E. D.

planes parallel to given lines

99. Theorem XII. Through one of two skew lines there
is one and only one plane parallel to the other line.

Given two skew lines l1 and l2. See § 7.
To prove that through l1 there is one and only one plane ‖ l2.

Proof : Through P , a point in l1, draw a line l3 ‖ l2.
Then l1 and l3 determine a plane M ‖ l2. § 90
Any other plane N through l1 would meet the plane of l3 and l2 in

a line through P not ‖ l2 and hence N would meet l2. Q. E. D.

100. Theorem XIII. Through a point outside of each
of two non-parallel lines there is one and only one plane
parallel to both of these lines.
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Given a point P outside of the non-parallel lines l1 and l2.

To prove that there is one and only one plane M through P parallel
to l1 and l2.

Proof : Through P pass l3 ‖ l1 and l4 ‖ l2.

Then the plane M of l3 and l4 is parallel to l1 and l2. § 90

In any other plane N through P ‖ l1 and l2, there are lines l′3 and
l′4 through P such that l′3 ‖ l1 and l′4 ‖ l2. § 91

In that case l′3 is identical with l3 and l′4 with l4. § 21

Hence any such plane N is identical with M . Q. E. D.

exercises

1. Given a plane M and a point P not in M . Find the locus of the
middle points of all segments connecting P with points in M .

Suggestion. Use the fact that a line parallel to the base of a triangle and
bisecting one side bisects the other side also.

2. Show that a plane containing one only of two parallel lines is
parallel to the other.

3. If in two intersecting planes a line of one is parallel to a line of
the other, then each of these lines is parallel to the line of intersection
of the planes.

4. Show that three lines which do not meet in one point must all lie
in the same plane if each intersects the other two.
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5. Show that three planes, each of which intersects the other two,
have a point in common unless their three lines of intersection are
parallel.

Suggestion. Suppose two of the intersection lines are not parallel, but meet in
some point O. Then show that the other line of intersection passes through
O, and hence that O is the point common to all three planes.

6. Given two intersecting planes M and N . Find the locus of all
points in M at a given perpendicular distance from N .

7. Given two non-intersecting lines l1 and l2. Find the locus of all
lines meeting l1 and parallel to l2.

8. Prove that the middle points of the sides of any quadrilateral in
space are the vertices of a parallelogram.

Suggestion. Use the fact that a line bisecting two sides of a triangle is parallel
to the third side. Note that the four vertices of a quadrilateral in space do
not necessarily all lie in the same plane.

State the corresponding theorem in plane geometry.

9. In erecting a flagpole on a level space, show how it can be made
perpendicular by means of three ropes of equal length. See § 81.

angles whose sides are parallel

101. Theorem XIV. If two intersecting lines in one
plane are parallel, respectively, to two intersecting lines in
another plane, then the two planes are parallel, and the cor-
responding angles formed by the lines are equal.
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Given the planes M and N in which AB ‖ A′B′, and AC ‖
A′C ′.

To prove that M ‖ N and ∠1 = ∠2.

Proof : (1) If M is not ‖ N , then these planes meet in a line l.
Why?

Then neither AB nor AC can meet l since each is ‖ N .

∴ AB ‖ l and AC ‖ l which is impossible. Why?

(2) To prove ∠1 = ∠2, lay off AB = A′B′, AC = A′C ′, and draw
BC, B′C ′, AA′, BB′, and CC ′.

Analysis : ∠1 = ∠2 if 4ABC = 4A′B′C ′, which is true if BC =
B′C ′.

But BC = B′C ′ if BB′C ′C is a , which is so if BB′ = CC ′ and
BB′ ‖ CC ′. This last is true if AA′C ′C and AA′B′B are S , for then
BB′ = AA′ = CC ′ and BB′ ‖ AA′ ‖ CC ′.

Hence we need to prove in order (1) AA′C ′C and AA′B′B are S ,
(2) BB′C ′C is a , (3) 4ABC = 4A′B′C ′, and (4) ∠BAC =
∠B′A′C ′.

Hence it is proved that the planes are parallel and the angles are
equal. Q. E. D.

102. Corollary. Two angles in space whose sides are parallel
each to each are either equal or supplementary.

parallel planes intercept proportional segments

103. Theorem XV. If two straight lines are cut by
three parallel planes, the intercepted segments on one line
are proportional to the corresponding segments on the other.
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Given the lines AB and CD cut by the planes M , N , and P .

To prove that
AE

EB
=
CG

GD
.

Outline of Proof : Draw AD and let the plane determined by AD
and CD cut the planes M and N in AC and FG respectively; and let
the plane of AB and AD cut N and P in EF and BD respectively.

Then prove (1) FG ‖ AC and EF ‖ BD,

(2)
AE

EB
=
AF

FD
and

CG

GD
=
AF

FD
, (3)

AE

EB
=
CG

GD
.

104. Corollary. Parallel planes which intercept equal segments
on any transversal line intercept equal segments on every transversal
line.

sight work

Review the theorems of solid geometry up to this point by stating the
corresponding theorems of plane geometry, in case such theorems exist.

exercises

1. If the spaces between four parallel shelves are 5, 8, and 10 inches
respectively, and a slanting rod intersecting them has a 7-inch segment
between the first two shelves, find the other two segments of the rod.

2. If a line cuts three parallel planes, M , N , R, so that the segment
intercepted between M and N is 7 and that between N and R is 21,
and if another line cuts the same planes so that the segment between
M and N is 11, find the segment on the second line between N and R.
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3. Show that line-segments included between parallel planes and per-
pendicular to them are equal, and hence that parallel planes are every-
where equally distant. How can a carpenter make use of this principle
in placing two parallel shelves? How many distances must he measure?
Why?

4. Show that through a point outside a plane any number of lines
can be drawn parallel to the plane. How are all these parallels related?

5. Prove that if a plane bisects two sides of a triangle it is parallel
to the third side.

6. The perpendicular distance from a point P to a plane is 12 in.
Find the radius of the circle which is the locus of all points in the plane
at a distance of 20 in. from P .

7. Show that, if three line-segments not in the same plane are equal
and parallel, the triangles formed by joining their extremities, as in the
figure of § 101, are equal and their planes are parallel.

8. What is the relation of two lines if they are (a) parallel to a given
line, (b) perpendicular to a given line, (c) parallel to a given plane,
(d) perpendicular to a given plane?

9. What is the relation of two planes if they are both (a) parallel to
a given plane, (b) parallel to a given line, (c) perpendicular to a given
line?

dihedral angles

105. Dihedral Angle. The part of a plane on one side of a line
in it is called a half-plane. The line is called the edge of the half-plane.
Two half-planes meeting in a common edge form a dihedral angle. The
common edge is the edge of the angle and the half-planes are its faces.

106. Plane Angle of a Dihedral Angle. Two lines in the
respective faces of a dihedral angle and perpendicular to its edge at a
common point form a plane angle, which is called the plane angle of
the dihedral angle.
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In the figure, the half-planes M and N form the

dihedral angle M -AB-N , read by naming the two faces
and the edge. If CD in N is ⊥ AB and ED in M is
⊥ AB, then ∠CDE is the plane angle of the dihedral
angle M -AB-N .

By § 101 all plane angles of a dihedral angle are equal
to each other.

107. Generation of a Dihedral Angle. A
dihedral angle may be thought of as generated by the
rotation of a half-plane about its edge. The magni-
tude of the angle depends solely upon the amount of
rotation.

108. Equal Dihedral Angles. Two dihedral angles are equal
when they can be so placed that they coincide.

109. Right Dihedral Angle. A right
dihedral angle is one whose plane angle is
a right angle.

110. Perpendicular Planes. Two
planes are said to be mutually perpendicu-
lar if their dihedral angle is a right angle.

Dihedral angles are acute or obtuse according as their plane angles are
acute or obtuse.

Two dihedral angles are adjacent, vertical, supplementary, or complemen-
tary according as their plane angles possess these properties.

dihedral angles and their plane angles

111. Theorem XVI. Two dihedral angles are equal if
their plane angles are equal; and

Conversely, if two dihedral angles are equal, their plane
angles are equal.
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Given (1) the dihedral angles M−AB−N and M ′−A′B′−N ′
in which the plane ∠sCDE and C ′D′E ′ are equal.

To prove that ∠M − AB −N = ∠M ′ − A′B′ −N ′.

Proof : Place the equal ∠sCDE and C ′D′E ′ in coincidence.

Then AB coincides with A′B′ since these lines are perpendicular to
the plane CDE at the point D. § 80

Then M and M ′ coincide as do also N and N ′ since they are deter-
mined by coincident lines. § 73

∴ ∠M − AB −N = ∠M ′ − A′B′ −N ′. § 108

Given (2) ∠M − AB −N = ∠M ′ − A′B′ −N ′.

To prove that the plane ∠sCDE and C ′D′E ′ are equal.

Proof : Place the equal dihedral ∠sM−AB−N andM ′−A′B′−N
in coincidence so that the points D and D′ coincide.

Then CD and C ′D′ coincide as do also ED and E ′D′. § 29

∴ ∠CDE = ∠C ′D′E ′. Q. E. D.

112. Corollary. All right dihedral angles are equal.

113. Measure of a Dihedral Angle. It follows from § 111 that
the plane angle of a dihedral angle may be regarded as its measure.
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mutually perpendicular planes

114.Theorem XVII. If two planes are mutually perpen-
dicular, and if a line is drawn from a point in one perpen-
dicular to their intersection, then this line is perpendicular
to the second plane.

Given plane M ⊥ plane N and a point P in M . Let l1 be
the intersection of M and N and l a line in M through P ⊥ l1.

To prove that l ⊥ N .

Proof : Let l meet l1 in O. Through O draw l2 in N and perpen-
dicular to l1.

Then the angle formed by the lines l and l2 is the plane angle of the
dihedral angle between the planes M and N . § 106

∴ l ⊥ l2 § 109
∴ l ⊥ N. Why?

Q. E. D.

115. Corollary. If two planes are mutually perpendicular and if
a line is drawn from a point in one and perpendicular to the other, then
this line lies in the first plane and is perpendicular to the intersection
of the two planes.

Proof : By the theorem there is a line through P which lies in the
plane M and is ⊥ N . But through P there is only one line ⊥ N . § 80
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plane perpendicular to each of two planes

116. Theorem XVIII. If a plane is perpendicular to
each of two planes, it is perpendicular to their line of inter-
section.

Given Q ⊥M and Q ⊥ N and l the intersection of M and N .
To prove that Q ⊥ l.

Proof : From a point P common to M and N draw a line l′ ⊥ Q.
Then l′ lies in both M and N . § 115
Hence, l′ and l are the same line. Why?
That is, l ⊥ Q, or Q ⊥ l. Q. E. D.

sight work

1. State theorems on dihedral angles corresponding to those in §§ 24, 30,
31, 32, on plane angles.

2. Name all dihedral angles in the accompanying fig-
ure.

3. Any plane ⊥ the edge of a dihedral angle is ⊥ each
of its faces. Why?

4. If each of three lines is ⊥ the other two at the same
point, then each is ⊥ the plane of the other two. Why?

5. Find the locus of all points at a given distance from a given plane
and also at a given distance from a second plane. Discuss this locus for the
various cases possible.
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perpendicular lines and planes

117. Theorem XIX. If a line is perpendicular to a
plane, every plane containing this line is perpendicular to
that plane.

Given a line l ⊥ plane N at P .
To prove that a plane M containing l is ⊥ N .

Proof : Let l1 be the intersection of M and N . In N draw l2 ⊥ l1
at P .

Then l ⊥ l1, l2 ⊥ l1, and l ⊥ l2. Why?
∴ M ⊥ N . Why?

Q. E. D.

118. Projection of a Figure on a Plane.
The projection of a point on a plane is the foot of
the perpendicular from the point to the plane.
The projection of any figure on a plane is the
locus of the projections of all points of the figure
on the plane.

Thus, B is the projection of the point A on M , and l2 is the projection
of the line l1 on M .

119. Angle Between Line and Plane. The angle between a
plane and a line oblique to it is understood to be the acute angle formed
by the line and its projection upon the plane.

120. Bisector of a Dihedral Angle. A half-plane bisects a
dihedral angle if it passes through the edge of the dihedral angle and
bisects its plane angle.
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projection of a straight line on a plane

121. Theorem XX. The projection of a straight line
on a plane is a straight line in that plane.

Given a plane M and a line AB projected upon it.
To prove that the projection is a straight line.

Proof : Project any three points A, E, B of the line AB into the
points C, F , D in the plane M .

Then AC and BD determine a plane ⊥M . §§ 83, 117
Hence, by §§ 115, 69, any three points, C, F , D, of the projection

lie in a straight line, that is, the projection is a straight line. Q. E. D.

122. Theorem XXI. The acute angle formed by a
straight line with its own projection on a plane is the least
angle which it makes with any line in that plane.

Given CB the projection of AB on the plane M , and any
other line BD in M through B.

To prove that ∠ABD > ∠ABC.

Proof : Draw AC ⊥ M , make BD = BC, and draw AD. Then
prove AD > AC and ∴ ∠ABD > ∠ABC. § 33
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plane bisecting a dihedral angle

123. Theorem XXII. The locus of all points equally
distant from the faces of a dihedral angle is the half-plane
bisecting the angle.

Given the half-plane P bisecting the dihedral ∠M−AB−N .

To prove (1) that any point E in P is equally distant fromM and N ,
and (2) that any point which is equally distant from M and N lies in P .

Proof : (1) Draw EC ⊥M and ED ⊥ N .
Then (a) Plane CED ⊥M and also ⊥ N . Why?

(b) Plane CED ⊥ AB. Why?
Now ∠COE is the plane ∠ of M − AB − P ,

and ∠DOE is the plane ∠ of N − AB − P . Why?
∴ ∠COE = ∠DOE by the hypothesis.

Hence EC = ED. §§ 42, 23
(2) Let E be any point such that EC = ED, these being perpen-

dicular respectively to M and N .
Then ∠COE = ∠DOE. §§ 40, 23
Hence, the plane P determined by ABE is the bisector of the given

dihedral angle, that is, the point E lies in P . Q. E. D.

sight work

Define a locus. Why are two conditions necessary in determining a
locus? Are these conditions fulfilled in the above theorem?
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problems in construction

In making constructions in solid geometry, it is assumed that
124. A line can be passed through any two points.
125. A plane can be passed through three non-collinear points.
126. Through a point not on a given line there can be drawn a line

parallel to this line.
127. Through a point a line perpendicular to a given line can be

drawn.

128. Corollary. A plane can be passed through (1) a line and a
point not on it, (2) two intersecting lines, (3) two parallel lines. § 73

Q. E. F.

constructing a plane perpendicular to a line

129. Problem Through a given point to construct a
plane perpendicular to a given line.

(1) Given a line l and a point P on it. Fig. 1.

To construct a plane M ⊥ l at P .

Construction: Through P draw two lines PA and PB each
perpendicular to l. §§ 127, 75

Then the plane M determined by PA and PB is ⊥ l. § 76

(2) Given a line l and a point P not on it. Fig. 2.

To construct a plane N through P and ⊥ l.

Construction: From P draw a line PQ ⊥ l. § 127
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At Q construct a plane N ⊥ l, as in (1).

Then, by § 79, PQ lies in N , and hence N is the plane required.
Q. E. F.

constructing a line perpendicular to a plane

130. Problem Through a given point to construct a line
perpendicular to a given plane.

(1) Given a plane M and a point P in it.

To construct a line through P and ⊥M .

Construction: Let l be any line in M not passing through P .

Draw PB ⊥ l. Through B draw BK ⊥ l but not in M .

In the plane PBK draw PC ⊥ PB and meeting BK in C.

Prove PC ⊥M . §§ 76, 117, 114

(2) Given a plane N and a point P not in it.

To construct a line through P and ⊥ N .

Construction: Let l be any line in N . Draw PB ⊥ l and in N
draw BK ⊥ l. In the plane PBK draw PC ⊥ BK.

Prove, as in (1), PC ⊥ N . (See also § 80.)
Q. E. F.
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constructing a plane parallel to a line

131. Problem Through one of two skew lines to pass a
plane parallel to the other.

Given two skew lines l1 and l2.
To construct a plane through l1 ‖ l2.

Construction: Through a point P in l1 pass a line l3 ‖ l2.(§ 126.)

The plane determined by l1 and l3 is ‖ l2. § 90
Q. E. F.

constructing a plane perpendicular to a plane

132. Problem Through a given
line to pass a plane perpendicular
to a given plane.

Given a line l and a plane M .
To pass a plane through l and ⊥M .

Construction: Through a point P in l pass a line l1 ⊥M . § 130

The plane N determined by l and l1 passes through l and is ⊥M .
§ 117

Q. E. F.

constructing a plane parallel to each of two lines

133. Problem Through a point to pass a plane parallel
to each of two given lines.

Given a point P and two lines l1 and l2.

To construct a plane through P parallel to l1 and l2.

Construction: Through P pass lines l′1 and l′2 such that l′1 ‖ l1
and l′2 ‖ l2. § 126
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Then the plane determined by l′1 and l′2 is parallel to both l1 and l2.
§ 90

Q. E. F.

sight work

1. Study the special case of § 132 in which the given line is perpendicular
to the given plane.

2. Is it possible that the plane constructed by the method of § 133 may
contain one or both of the given lines? Study all possible cases.

3. Through a given point pass a plane ⊥ each of two given planes. How
many such can be constructed? Study the case in which the two given planes
are parallel to each other.

Suggestion. Consider the relation of the required plane to the intersection
of the two given planes.

common perpendicular to two skew lines

134. Problem To construct a common perpendicular
to two skew lines.

Given two skew lines l1 and l2.

To construct a line BC perpendicular to each of them.

Construction: Through A, any point in l2, draw l3 ‖ l1.
Let M be the plane determined by l2 and l3.
Through l1 pass a plane N ⊥M and meeting M in l4.
At B the intersection of l2 and l4 erect BC ⊥M .
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Then BC is the required line perpendicular to l1 and l2.

Outline of Proof : Show each of the following:
(1) BC lies in the plane N , and ∴ meets l1.
(2) l1 ‖ l4, (3) BC ‖ l4, and ∴ BC ⊥ l1.

135. Corollary. There cannot be more than one common per-
pendicular to two skew lines.

Suggestion. Suppose a second common perpendicular drawn from a point
P1 in l1 to a point P2 in l2. Then show that from P1 it would be possible to
have two lines ⊥ plane M .

sight work

1. If a line is ⊥ a plane, show that its projection is a point.

2. If a line-segment is ‖ a plane, show that its projection is a segment
equal to the given segment.

3. If a line-segment is oblique to a plane, show that its projection is less
than the given segment.

exercises

1. Show that the projections of two parallel lines on a plane are
parallel. Is the converse true? Illustrate with pieces of cardboard.

2. If two parallel lines meet a plane, they make equal angles with
it. Why? Is the converse true? What is the corresponding theorem in
plane geometry? Is its converse true?

3. If a line cuts two parallel planes, it makes equal angles with them.
Why? Is the converse true? Discuss the corresponding theorems in
plane geometry.

4. If two parallel line-segments are oblique to a plane, their projec-
tions on the plane are in the same ratio as the given segments.

5. A line and its projection on a plane determine a plane perpendic-
ular to the given plane.
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6. If a line is parallel to one of two given planes and perpendicular
to the other, then the two planes are perpendicular to each other.

7. Find the locus of all points equidistant from two points A and B
and also at a given distance from a plane M . Discuss.

8. Find the locus of all points equidistant from two given planes and
also equidistant from two given points. Discuss.

9. Find the locus of all points equidistant from two given planes M
and N , and also equidistant from two other given planes Q and R.
Discuss. Compare with the corresponding loci in plane geometry.

10. Prove that there is a line in space every point of which is equidis-
tant from three points A, B, C, provided these points do not lie on one
line.

polyhedral angles

136. Polyhedral Angle. Given a convex polygon and a point P
not in its plane. If a half-line l with its end point fixed at P moves so
that it always touches the polygon and is made to traverse it completely,
it is said to generate a convex polyhedral angle.

137. Vertex. Edges. The fixed point is
the vertex of the polyhedral angle, and the rays
through the vertices of the polygon are the edges
of the polyhedral angle.

Any two consecutive edges determine a
plane, and the portion of such a plane included
between these edges is called a face of the poly-
hedral angle.

138. Face Angles. The plane angles at the vertex are called the
face angles of the polyhedral angle. A polyhedral angle having three
faces is called a trihedral angle.

Thus in the figure, P is the vertex, PA, PB, etc., are the edges, and
∠APB, ∠BPC, etc., are the face angles.

139. Equal Polyhedral Angles. Two polyhedral angles are equal
if they can be made to coincide.
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A polyhedral angle is read by naming the vertex and one letter in each
edge, as P − ABCDE, or by naming the vertex alone where no ambiguity
would arise.

140. Order of Parts in Triangles. In the triangles ABC,
and A′B′C ′, AB = A′B′,
BC = B′C ′, CA = C ′A′.
However, the sides AB,
BC, CA, are arranged
in counter-clockwise order,
and the sides A′B′, B′C ′, C ′A′, are arranged in clockwise order. That
is, the parts of the two triangles are arranged in opposite orders.

141. Order of Parts in Polyhedral
Angles. In the trihedral angles O and O′
the face angles AOB, BOC, COA are ar-
ranged in counter-clockwise order as viewed
from the vertex, while A′O′B′, B′O′C ′,
C ′O′A′ are arranged in clockwise order.

The trihedral angles O and O′ cannot be made to coincide, even though
their corresponding parts are equal. This can be illustrated by attempting
to put a left glove on the right hand.

conditions which make trihedral angles equal

142. Theorem XXIII. Two trihedral angles are equal
if two face angles and the included dihedral angle of one
are equal respectively to two face angles and the included
dihedral angle of the other and arranged in the same order.
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Suggestion for Proof : This and the following theorem may be
proved by superposition in the same manner as the corresponding the-
orems on the equality of triangles in plane geometry.

143. Theorem XXIV. Two trihedral angles are equal if
a face angle and the two adjacent dihedral angles of one are
equal respectively to a face angle and the adjacent dihedral
angles of the other and arranged in the same order.

equal dihedral angles opposite equal face angles

144. Theorem XXV. If two trihedral angles have the
three face angles of the one equal respectively to the three
face angles of the other, the dihedral angles opposite the
equal face angles are equal.

Given the trihedral angles P and P ′, in which ∠a = ∠a′,
∠b = ∠b′, ∠c = ∠c′.

To prove that the corresponding dihedral angles are equal.

Outline of Proof : Let P and P ′ be cut by the planes ABC and
A′B′C ′, making PA = PB = PC = P ′A′ = P ′B′ = P ′C ′.

On the edges PA and P ′A′ lay off AF = A′F ′, and through F and
F ′ pass planes ⊥ to PA and P ′A′ respectively.

AF and A′F ′ are to be taken short enough so that these planes shall cut
the segments AB, AC and A′B′, A′C ′ respectively.
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In order to prove that ∠B − AP − C = ∠B′ − A′P ′ − C ′, i.e. that
∠DFE = ∠D′F ′E ′, use the pairs of 4s APB, A′P ′B′; BPC, B′P ′C ′;
CPA, C ′P ′A′; ABC, A′B′C ′. Then prove in order:

(1) 4ADF = 4A′D′F ′; (2) 4AEF = 4A′E ′F ′;
(3) 4ADE = 4A′D′E ′; (4) 4DEF = 4D′E ′F ′.

∴ ∠DFE = ∠D′F ′E ′.

145. Corollary. Two trihedral angles are equal if the face angles
of one are equal respectively to the face angles of the other and arranged
in the same order.

symmetrical trihedral angles

146. Symmetrical Trihedral Angles. Two tri-
hedral angles are symmetrical, one to the other, if the
face angles and the dihedral angles of one are equal
respectively to the face angles and the dihedral angles
of the other, but arranged in the opposite order.

147. Vertical Trihedral Angles. Two trihe-
dral angles are vertical if the edges of one are the
prolongations of the edges of the other.

148. Corollary 1. Two vertical trihedral angles are symmetrical.

The proof is evident from the figure above.

149. Corollary 2. Two trihedral angles are symmetrical if the
face angles of one are equal to the face angles of the other and arranged
in the opposite order.

sight work

1. Is it possible that all three face angles of a trihedral angle shall be right
angles? Is it possible that all three dihedral angles shall be right angles?

Suggestion. Consider a corner of a rectangular box.
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2. If three planes meet in a point how many trihedral angles are formed?
If all face angles of one of these trihedral angles are right angles, what about
the face angles of the other trihedral angles?

3. If in the figure of § 144 the ∠a = ∠b = ∠c = 60◦, what can be said
about the triangles PAB, PBC, PCA, and ABC?

4. Show how to locate a point which is at a distance of 2 feet from each
of the three planes determined by the faces of a trihedral angle. How many
such points are there?

Suggestion. Pass planes parallel to each face of the trihedral angle, one on
each side of it, and at a distance of 2 feet from it.

conditions which make trihedral angles symmetrical

150. Theorem XXVI. Two trihedral angles are sym-
metrical

(1) if two face angles and the included dihedral angle of one are
equal respectively to two face angles and the included dihedral angle of
the other, but arranged in the opposite order; or

(2) if a face angle and the adjacent dihedral angles of one are equal
respectively to a face angle and the adjacent dihedral angles of the
other, but arranged in the opposite order.

Proof : Let t1 and t2 be two trihedral angles having the properties
specified under (1). Let t3 be a trihedral angle symmetrical to t1. Then
t2 = t3. § 142

∴ t1 and t2 are symmetrical.
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The proof of the second part is left to the student.

151. Theorem XXVII. The sum of two face angles of
a trihedral angle is greater than the third face angle.

Outline of Proof : Connect points A and C
on two sides. Suppose ∠ADC > ∠ADB. Con-
struct DE making ∠ADE = ∠ADB. Suppose
that point B is taken so that DB = DE, and
that AB and BC are drawn. Then prove

(1) AB = AE, (2) AC < AB +BC,
(3) EC < BC, (4) ∠EDC < ∠BDC,
(5) ∠ADC < ∠ADB + ∠BDC.

sum of the face angles of a polyhedral angle

152. Theorem XXVIII. The sum of the face angles of
any convex polyhedral angle is less than four right angles.

Proof : Let ABCDE be a plane section of the given polyhedral
angle. The number of triangles thus formed having P for a vertex is
equal to the number of face angles of the polyhedral angle.

Let O be any point in the base, and draw OA, OB, OC, etc.

Then ∠PBA+ ∠PBC > ∠ABC, ∠PCB + ∠PCD > ∠BCD, and
so on. § 151
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Now the sum of the ∠s of the 4s OAB, OBC, etc., is equal to the
sum of the ∠s of the 4s PAB, PBC, etc.

Hence, ∠APB + ∠BPC + · · · < ∠AOB + ∠BOC + · · · .
But the sum of the ∠s about O is four right angles.
Therefore, the sum of the face angles of the polyhedral angle is less

than four right angles. Q. E. D.

Note. If as in § 144 the three edges of a trihedral angle are cut by a
plane, the intersection is a triangle. Then the sides and angles of such a
triangle correspond to the face angles and dihedral angles respectively
of the trihedral angle.

sight work

1. What theorem in plane geometry corresponds to the theorem of § 151
in the sense of the above note?

2. Discuss propositions of plane geometry corresponding to those of § 150.

summary of book i

1. State the axioms used in this Book.

2. Describe the various ways of determining a plane.

3. State the definitions on perpendicular lines and planes.

4. State a theorem on a line through a point perpendicular to a
plane.

5. State a theorem on a plane through a point perpendicular to a
line.

6. State the definitions on parallel lines and planes.

7. State propositions on (1) a plane through a point parallel to a
given plane; (2) a plane through a line parallel to a given line; (3) a
plane through a point parallel to two given lines.

8. State some facts about perpendiculars in the plane which do not
hold in space.
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9. Define a dihedral angle and the plane angle of a dihedral angle.

10. What theorems on perpendicular planes are proved in connection
with dihedral angles? Notice that these theorems include all those on
one plane perpendicular to another. Why should this be the case?

11. State the definitions and theorems on projections given in this
Book.

12. State the definitions and theorems on polyhedral angles thus far
given.

13. Define symmetrical polyhedral angles. Are symmetrical trihedral
angles equal?

14. State theorems on equal and symmetrical trihedral angles.

15. Give examples of loci in plane geometry which differ from cor-
responding loci in solid geometry. See, for instance, § 6.

miscellaneous exercises on book i

1. A Christmas tree is made to stand on a cross-shaped base. What
must be the relation of the tree to each piece of the cross in order that
it may be perpendicular to the floor?

2. If A, B, and C do not lie in the same line, and if their projections
on a plane M do lie in a straight line, what is the relation of the planes
M and ABC?

3. Is it possible to project a circle upon a plane so that the projection
shall be a straight line-segment? If so, how must the circle and the plane
be related?

4. If the projections of a set of points on each of two planes not par-
allel to each other lie in straight lines, show that the points themselves
lie in a straight line.

5. Find the locus of points 3 feet from one of two intersecting planes
and 6 feet from the other.

6. It is required that a series of electric lights shall be 7 feet above
the floor of a room and 3 feet from the walls. Find the locus of all
points at which such lights may be placed.
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7. Find the locus of a point in space such that the difference of the
squares of its distances from two fixed points, A and B, is constant.

Suggestion. Through either A or B construct a plane ⊥ AB.

8. Given two points A and B on the same side of a plane M . De-
termine a point P in M such that AP + PB shall be a minimum.

Suggestion. Pass a plane through A and B perpendicular to M , and proceed
as in Ex. 10, page 280, Plane Geometry.

9. Show that if the edge of a dihedral angle is cut by two parallel
planes, the sections which they make with the faces form equal angles.
Is the converse proposition true?

10. Show that if all edges of a trihedral angle are cut by a series of
parallel planes, the intersections form a series of similar triangles. Is
the converse proposition true?

11. Find the locus of the intersection points of the medians of the
triangles obtained in Ex. 10. Also of the altitudes.

12. How many planes may be made to pass through a given point
parallel to a given line? Discuss the mutual relation of all such planes.

13. Through a point P construct a line meeting each of two lines l1
and l2.

Suggestion. Let M and N be the planes determined by P and l1, P and l2.
Consider their intersection. Is this construction always possible?

14. A line l is parallel to a plane M , and lines l1 and l2 in M are not
parallel to l. Show that the shortest distance between l and l1 is equal
to the shortest distance between l and l2.

15. Find the locus of all points equidistant from the planes deter-
mined by the faces of a trihedral angle.
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16. Find the locus of all points equidistant
from the edges of a trihedral angle.
Suggestion. On the edges lay off PA = PB = PC.
Let O be equidistant from A, B, and C. Then any
point Q in PO is equidistant from the edges.

17. Planes determined by the edges of a tri-
hedral angle and the bisectors of the opposite
face angles meet in a line.

18. If three planes are so related that the
segments intercepted on any transversal line
are in the same ratio as the segments in-
tercepted on any other transversal then the
planes are parallel.

Suggestion. Let M , N , Q be the three planes. From A any point in M draw
three lines, not in the same plane, meeting N in A′, B′, C ′, and Q in A′′,
B′′, C ′′. Use the hypothesis to show that A′B′ ‖ A′′B′′ and C ′B′ ‖ C ′′B′′.
Hence Q ‖ N . Similarly show that M ‖ N .
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Thales of Miletus (640–542 B.C.) was one of the Seven Wise Men of
Greece. He learned astronomy and geometry in Egypt and was the first
to introduce the scientific study of geometry in Greece. He measured
the height of the Pyramids in Egypt by similar triangles and found a
method of computing the distance of a ship at sea. He predicted the
solar eclipse of 585 B.C.



BOOK II
REGULAR POLYHEDRONS

153. Polyhedron. A polyhedron is a geometric solid whose bound-
ary consists of plane polygons.

154. Convex Polyhedron. A polyhedron is convex if every
section of it made by a plane is a convex polygon.

155. Faces, Vertices, Edges. The polygons
which bound the polyhedron are its faces ; the sides
of these faces are the edges and their vertices are the
vertices of the polyhedron.

156. Surface of Polyhedron. The faces, edges, and vertices
taken together form the surface of the polyhedron.

157. Polyhedrons Classified According to the Number of
Faces. A polyhedron of four faces is a tetrahedron, one of six faces
is a hexahedron, one of eight faces an octahedron, one of twelve faces a
dodecahedron, and one of twenty faces an icosahedron.

These names are all derived from the Greek and refer to the number
of faces. Compare other words derived from the same Greek roots such as
hexagon, octagon, dodecagon, etc.

sight work

1. What is the smallest number of polygons which maybe used to inclose
a portion of space?

Suggestion. Remembering that a triangle is regarded as a polygon, con-
sider a triangular pyramid.

2. How many edges and how many vertices has a
tetrahedron?

3. How many faces, edges, and vertices has a hexahe-
dron?

Suggestion. Consider a cube.b

bSee Transcriber’s Notes.
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models of the regular polyhedrons

158. Regular Polyhedrons. A polyhedron whose polyhedral
angles are equal and whose faces are equal regular polygons is a regular
polyhedron. The following are regular polyhedrons:

159. Models of the Regular Polyhedrons. Models of the regu-
lar polyhedrons may be made with cardboard by cutting out patterns,
as shown in the figures below, folding along the dotted lines, and fasten-
ing the edges together by means of gummed paper strips corresponding
to the dotted margins.
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sight work

1. What is the smallest possible number of face angles in a polyhedral
angle?

2. How many faces meet in a vertex of a regular tetrahedron? What is
the sum of the face angles forming one of its polyhedral angles?

3. How many faces meet in a vertex of a regular octahedron? in a regular
icosahedron?

4. What is the sum of the face angles forming a polyhedral angle in a
regular octahedron? in a regular icosahedron?

5. Why may not six or more equilateral triangles be used to form a
polyhedral angle?

6. What is the sum of the face angles forming a poly-
hedral angle of a cube (hexahedron)?

7. Why may not four or more squares be used to form
a polyhedral angle?

8. How many faces meet in a vertex of a regular do-
decahedron? What is the sum of the face angles forming
one of its polyhedral angles?

9. Why may not more than three regular pentagons
be used to form a polyhedral angle?

10. May regular hexagons be used to form a polyhedral angle? Why?
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11. May any regular polygons of more than six sides be used to form
polyhedral angles? Why?

12. Can we show that not more than three different regular polyhedrons
may be formed having triangles as their faces?

13. How many regular polyhedrons may be formed having squares as
their faces? How many having pentagons as their faces?

the number of regular polyhedrons

160. Theorem I. There are exactly five regular polyhe-
drons.

Proof : On page 54 it was shown how models of five different regular
polyhedrons may be made.

Hence there are at least five such polyhedrons.
That there cannot be more than five regular polyhedrons follows

from the two propositions:
(a) Every polyhedral angle has at least three face angles.
(b) The sum of the face angles of a polyhedral angle is less than 360◦.

From these propositions it follows that each of the polyhedral angles
of a regular polyhedron may be formed by three, four, or five (but not
six) equilateral triangles; by three (but not four) squares; or by three (but
not four) regular pentagons. Regular polygons having more than five sides
cannot form a polyhedral angle.

The details of the proof are left to the student. The sight work on
page 55 will furnish suggestions.

161. Construction of Regular Polyhedrons. The regular
polyhedrons may be constructed by use of § 130. The construction for
the tetrahedron and octahedron are given below.

(1) The regular tetrahedron. At the center E
of an equilateral triangle ABC erect a perpendicular
to the plane of the triangle. On this take a point D
so that AD = AC.
Then the four triangles, ABC, ACD, ABD, BCD,
are regular and equal, and the four trihedral angles
are equal. Why?
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(2) The regular octahedron. Through the
center O of a square ABCD draw a perpendicular
to the plane of the square and on it take points E
and F such that AF = AE = AB. Join E and F
to each of the four vertices, A, B, C, D.
Then the eight faces are equal regular triangles,
and the six polyhedral angles are equal. Why?



BOOK III
PRISMS AND CYLINDERS

162. Closed Prismatic Surface. Given a
convex polygon and a straight line not in its plane.
If the line moves so as to remain parallel to itself
while it touches the boundary of the polygon and
is made to traverse it completely, the line is said
to generate a closed prismatic surface.

163. Generator. Element. The moving line
is the generator of the surface, and the generator
in any one of its positions is an element of the
surface.

164. Prism. A polyhedron bounded by a prismatic surface and
two parallel plane sections cutting all its elements is called a prism.

165. Bases. Lateral Surface. Edges. The
two parallel cross-sections which bound a prism are
its bases and the other faces form its lateral surface.
The edges are the lines in which its lateral faces meet.

166. Right Section. Right Prism. A right
section of a prism cuts all its edges at right angles. A
right prism is one whose bases are right sections.

167. Corollary 1. The lateral faces of a prism are
parallelograms.

168. Corollary 2. The lateral edges of a prism are
equal and parallel.

169. Corollary 3. The lateral faces of a right prism
are rectangles.
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classification of prisms

170. Kinds of Prisms. Prisms are classified according to the
form of their right sections, as triangular, quadrangular, pentagonal,
hexagonal, etc. A regular prism is one whose right section is a regular
polygon.

171. Altitude. Area.
The altitude of a prism is the
perpendicular distance be-
tween the planes of its bases.
The altitude of a right prism
is equal to its edge.

The lateral area of a
prism is the sum of the ar-
eas of its lateral faces.

The total area is the sum of its lateral area and
the areas of its bases.

172. Truncated Prism. A polyhedron which
is a part of a prism cut off by a plane meeting all the
lateral edges, but not parallel to the base, is called a
truncated prism.

Two polyhedrons are said to be added
when they are placed so that a face of one
coincides wholly or in part with a face of
the other, but otherwise each lies outside
the other.

173. Parallelopiped. A parallelop-
iped is a prism whose bases, as well as lat-
eral faces, are parallelograms.

A rectangular parallelopiped has its bases and
all its faces rectangles.

A cube is a parallelopiped whose bases and
faces are all squares.

parallel cross-sections of a prism are equal

174. Theorem I. The cross-sections of a prism made
by parallel planes are equal polygons.
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Given a prism cut by two parallel planes forming the poly-
gons ABCDE and A′B′C ′D′E ′.

To prove that ABCDE = A′B′C ′D′E ′.

Outline of Proof : (1) Show that AB = A′B′, BC = B′C ′, etc.,
by proving that ABB′A′, BCC ′B′, etc., are S .

(2) Show that ∠ABC = ∠A′B′C ′, ∠BCD = ∠B′C ′D′, etc.

(3) Hence show that ABCDE and A′B′C ′D′E ′ can be made to
coincide.

175. Corollary. Every cross-section of a prism parallel to the
base is equal to the base.

sight work

1. Can a parallelopiped be a right prism without being a rectangular
parallelopiped? Illustrate.

2. Show that in a rectangular parallelopiped each edge is perpendicular
to the other edges which meet it.

3. Show that any section of a prism made by a plane parallel to an edge
is a parallelogram.

Suggestion. Use in order §§ 89, 84, and 92.

4. Is it possible to construct a prism such that there is no plane per-
pendicular to its edges and cutting all of them unless some of them are
extended?



PRISMS AND CYLINDERS 61

the lateral area of a prism

176. Theorem II. The lateral area of a prism is equal
to the product of a lateral edge and the perimeter of a right
section.

Suggestion. Show that the lateral edges are mutually equal and that
the area of each face is the product of a lateral edge and one side of the
right-section polygon.

Complete the proof.

Note. The form of statement in this theorem is the usual
abbreviation for the more precise form:

The lateral area of a prism is equal to the product of the
numerical measures of a lateral edge and the perimeter of a
right section.

Similar abbreviations are used throughout this text.

177. Corollary. The lateral area of a right prism is
equal to the product of its altitude and the perimeter of
its base.

sight work

1. If the lateral edge of a prism is 8 inches and the perimeter of its right
section 30 inches, what is the lateral area?
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2. Of all prisms having an altitude 6 inches and the perimeter of a right
section 24 inches, which one has the smallest lateral area?

Suggestion. Which one has the shortest lateral edge?

3. Why is not the lateral area of an oblique prism determined by the
perimeter of the base and a lateral edge?

conditions making prisms equal

178. Theorem III. Two prisms are equal if three faces
having a common vertex in the one are equal respectively
to three faces having a common vertex in the other, and
similarly placed.

Given the three faces meeting at B in prism P equal re-
spectively to the three faces meeting at B′ in prism P ′, and
similarly placed.

To prove that P can be made to coincide with P ′.
Outline of Proof : Trihedral ∠sB and B′ are equal. Why?
Now apply the two prisms, making B coincide with B′, and then

show in detail that:
(1) The lower bases coincide.
(2) The lateral faces at B and B′ coincide.
(3) The upper bases coincide.
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(4) All the lateral faces coincide.

179. Corollary 1. Two truncated
prisms are equal under the conditions
of § 178.

180. Corollary 2. Two right prisms are equal if they have equal
bases and equal altitudes.

opposite faces of a parallelopiped

181. Theorem IV. Opposite faces of a parallelopiped
are equal and parallel.

Suggestions. Consider the opposite faces ABFE and DCGH.

(1) Show that the sides of the angles ABF and DCG are parallel, and
hence that the planes determined by them are parallel.

(2) Show that these faces are equal.

In like manner argue about any other pair of opposite faces.

182.Corollary. Any section of a parallelopiped
made by a plane cutting four parallel edges is a
parallelogram.

Suggestion. In the figure show that RQ ‖ ST and
QT ‖ RS.
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sight work

1. A section made by a plane passed through two diagonally opposite
edges of a parallelopiped is a parallelogram, for example, the section through
DH and BF in the figure of § 181.

2. Show that any two of the four diagonals of a parallelopiped bisect each
other.

Suggestion. Make use of example 1.

3. If the parallelopiped in § 182 is rectangular, is the section necessarily
a rectangle? May it be so?

4. Show that the section of a cube made by a plane through two diago-
nally opposite edges is a rectangle. Why can it not be a square? Can you
construct a parallelopiped in which such a section would be a square?

plane through opposite edges of a parallelopiped

183. Theorem V. A plane through diagonally oppo-
site edges of a parallelopiped divides it into two triangular
prisms having equal right sections and equal lateral edges.

Given the parallelopiped ABCD − F with opposite edges
AE and CG.

To prove that the plane through AE and CG divides it into two
triangular prisms having equal lateral edges and equal right sections.



PRISMS AND CYLINDERS 65

Proof : By § 182 the right section KLMO of the given prism is a
parallelogram. Hence KM divides it into two equal triangles. Hence
the right sections of the prisms ABC − F and ACD −H are equal.

The lateral edges BF and DH are equal by § 168.

sight work

1. If a right section of a prismatic space is a parallelogram, what kind of
prism will be cut out by two right sections?

2. If a right section of a prismatic space is a rectangle, what kind of prism
will be cut out by two right sections?

3. If a right section of a prismatic space is a regular hexagon, what kind
of prism will be cut out by two right sections?

4. What kind of prism will be cut out by two right sections of any closed
prismatic surface?

exercises

1. The face angles of one trihedral angle of a parallelopiped are 65◦,
70◦, and 75◦ respectively. What are the face angles of the other trihedral
angles?

2. Show that two prisms cut from the same prismatic space and
having equal lateral edges have equal lateral areas.

3. Show that the diagonals of a rectangular parallelopiped are all
equal to each other.

4. Show that the square on the diagonal of a
rectangular parallelopiped is equal to the sum of
the squares on the sides meeting at a vertex from
which it is drawn.

E.g. in the figure AG2 = AC
2 + CG

2 = AB
2 +BC

2 + CG
2.

5. Find the ratio of the diagonal to one edge of a cube.

6. Find the edge of a cube whose diagonal is 14 inches. Find the
diagonal of a cube whose edge is 16 inches.
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7. Find a diagonal of a rectangular parallelopiped whose edges are
6, 8, and 10 inches respectively.

8. Are the diagonals of a cube perpendicular to each other?

9. In a rectangular parallelopiped the diagonal of the base is 12 in.
and the altitude is 5 in. Find the diagonal of the parallelopiped.

10. If two equal right prisms whose bases are equilateral triangles are
placed together so as to form one prism whose base is a parallelogram,
compare the lateral area of the prism so formed with the sum of the
lateral areas of the original prisms.

11. A right prism whose bases are regular hexagons is divided into six
prisms whose bases are equilateral triangles. Compare the lateral area
of the original prism with the sum of the lateral areas of the resulting
prisms.

volume of a rectangular parallelopiped

184. Thus far certain properties of prisms have been studied, but
no attempt has been made to measure the space occupied by such a
solid. For this purpose we consider first a rectangular parallelopiped.

185. Numerical Measure. In case each edge of a rectangular
parallelopiped is commensurable with a unit segment, the number of
times which a unit cube is contained in it is the numerical measure or
the volume of the parallelopiped.

186. The Commensurable Case. In the commensurable case
just described, the volume is easily computed.

E.g. if in the figure one edge AC is 4 units, and

an adjoining edge AB is 3 units, then a cube as AK,
whose edge is one unit, may be laid off 4 times along
AC and a tier of 3 · 4 = 12 such cubes will adjoin the
face AD. Since the edge BE is 5 units long, 5 such
tiers will exactly fill the space within the solid. That is,
5 · 3 · 4 = 60 is the number of cubic units in the solid.

Hence in this case

Volume = Length×Width× Height.
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Again, if the given dimensions are 3.4, 2.6, 4.5 decimeters respectively,
then unit cubes, with edge one decimeter, cannot be made to fill exactly the
space inclosed by the figure, but cubes with edge each one centimeter will
do so, giving 34, 26, and 45 respectively along the three edges of the figure.

Therefore, the volume is

34 · 26 · 45 = 39, 780 cubic centimeters, or 39.78 cubic decimeters.

Hence in this case also

Volume = Length×Width× Height.

187. Formula for Volume of a Rectangular Solid. We there-
fore conclude that the volume of a rectangular parallelopiped with com-
mensurable dimensions is given by the formula

Volume = Length×Width×Height.

volume of a rectangular solid

188. The Incommensurable Case. If a rectangular parallelop-
iped is such that any two of its dimensions are incommensurable with
each other, then there is no unit cube, however small, in terms of which
the volume can be exactly expressed.

But by choosing a unit cube sufficiently small we may determine
the volume of a rectangular solid which differs from the given one by
as little as we please.

E.g., if the length is 5 inches and the width is
√

3 inches, then the base
cannot be exactly covered with equal cubes, however small.

But since
√

3 = 1.732 . . . , if we take as a unit of volume a cube one one-
hundredth of an inch on a side, then the base of a rectangular solid whose
length is 5 inches and whose width is 1.73 inches can be exactly covered with
a layer of these cubes and the number of cubes in such a layer is

500× 173 = 86, 500.

If the height is 2 inches, then 200 layers will just reach the top, making

500× 173× 200 = 17, 300, 000 cubes.

And since 1, 000, 000 such small cubes make a cubic inch, the volume of
this solid is 17.3 cubic inches.
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The portion of the given solid not thus filled is 5 inches long, 2 inches
high and less than .003 of an inch in thickness.

Hence, its volume is less than 5× 2× .003 = .03 of a cubic inch.

By expressing
√

3 to further places of decimals and then using smaller
and smaller units of volume, successive rectangular solids may be found
which differ less and less from the given solid.

The foregoing considerations constitute an informal proof of the
following theorem:

189. Theorem VI. The volume of a
rectangular parallelopiped is equal to the
product of its length, width, and height.

In symbols, V = l · w · h.

The above argument shows that this theorem holds for all rectangular
parallelopipeds used in the process of approximation, and hence it applies
to all practical measurements of the volumes of such solids.

190. Corollary 1. The volume of a rectangular parallelopiped is
equal to the product of the numerical measures of its base and altitude.

191. Corollary 2. If two rectangular parallelopipeds have two
dimensions respectively equal to each other, their volumes are in the
same ratio as their third dimensions; and if they have one dimension
the same in each, their volumes are in the same ratio as the products
of their other two dimensions.

For if V and V ′ are the volumes, and a, b, c, and a′, b′, c′ the dimensions,

then
V

V ′
=

a · b · c
a′ · b′ · c′

=
a

a′
if b = b′ and c = c′; or

V

V ′
=

a · b
a′ · b′

if c = c′.

192. Volumes of Prisms in General. From the formula for
volumes of rectangular solids, V = l · w · h, we deduce the volumes of
prisms in general by means of the principle:

Two polyhedrons have the same volume if they can be made to coin-
cide, or if they can be divided into parts which can be made to coincide
in pairs.
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The sign = between two polyhedrons means that they are equal in all
respects; that is, can be made to coincide. The word equivalent is used to
mean equal in volume.

exercises

1. The dimensions in inches of a rectangular parallelopiped are 5,
10, and 2

√
2. Taking the approximate value of

√
2 as 1.4142, find the

approximate volume. Show that this differs from the exact volume
by less than .001 of a cubic inch, it being given that

√
2 lies between

1.41421 and 1.41422.

2. If the dimensions in inches of a rectangular parallelopiped are
5, 4
√

2, and 5
√

3, find how near an approximation to the volume is
possible by taking

√
2 between 1.414 and 1.4143 and

√
3 between 1.732

and 1.7321.

3. If the dimensions in inches of a rectangular parallelopiped are
3
√

2, 3
√

3, 2
√

5, find the values to be used for
√

2,
√

3,
√

5, to obtain
the volume within .001 of a cubic inch.

volume of an oblique prism

193. Theorem VII. The volume of an oblique prism
is equal to that of a right prism having for its base a right
section of the oblique prism and for its altitude a lateral
edge of the oblique prism.
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Given the oblique prism AD′ with FGHJK a right section
and F ′G′H ′J ′K ′ a right section of the prism extended so that
AA′ = KK ′.

To prove that the oblique prism AD′ has the same volume as the
right prism KH ′.

Proof : In the truncated prisms AH and A′H ′, base ABCDE =
base A′B′C ′D′E ′. § 175

In faces ABFK and A′B′F ′K ′, we have

AB = A′B′, ∠1 = ∠3, ∠2 = ∠4, Why?
and AK = A′K ′ and BF = B′F ′. Why?

∴ ABFK and A′B′F ′K ′ will coincide and are equal.

Likewise, AKJE = A′K ′J ′E ′.

∴ AH = A′H ′. § 179
But the given prism AD′ = AH +KD′,

and the right prism KH ′ = A′H ′ +KD′.

∴ AD′ = KH ′. Q. E. D.

194. Corollary. Two prisms having equal lateral edges and equal
right sections are equal in volume.

volume of any parallelopiped

195. Theorem VIII. The volume of any parallelopiped
is equal to the product of its base and altitude.
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Given any parallelopiped P with area of base b and alti-
tude h.

To prove that its volume is equal to b× h.

Proof : Considering face AK as the base of prism P , produce the
four edges parallel to AB, and lay off A′B′ = AB.

Through A′ and B′ erect planes ⊥ A′B′, thus cutting off the right
prism Q with A′L as one base.

Now considering CL as the base of prism Q, produce the four edges
‖ CB′ and lay off C ′D = CB′.

At C ′ and D erect planes ⊥ C ′D, cutting off the right prism R,
which is a rectangular parallelopiped with base b′′.

Now prove in detail: (1) h = h′ = h′′, (2) b = b′ = b′′,

(3) Vol. P = Vol. Q = Vol. R, § 193
(4) Vol. R = b′′h′′, (5) Vol. P = bh.

196. Corollary. Two parallelopipeds are equal in volume if they
have equal altitudes and bases of equal areas.
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volume of a triangular prism

197. Theorem IX. The volume of a triangular prism
is equal to the product of its base and altitude.

Given the triangular prism whose base is ABC.
To prove that the volume is equal to the area of 4ABC multiplied

by the altitude h.

Proof : Complete the S ABCD and EFGH and draw DH. Now
show that CDHG and ADHE are S , and hence that BH is a paral-
lelopiped. Use § 43 (2)

Let KLMO be a right section of BH, and let KM be the line in
which the plane ACGE cuts the plane KLMO.

Then (1) prism ABC − F = 1
2
prism BH, §§ 183, 194

(2) But prism BH = h× area of ABCD, § 196
(3) Hence, prism ABC−F = h× 1

2
area of ABCD, that is, prism

ABC − F = h× area of ABC.
Therefore the volume of prism ABC − F is equal to the area of its

base times its altitude. Q. E. D.

sight work

1. Find the volume of a prism whose altitude is 8 in. and whose base is
a right triangle with legs 5 in. and 6 in. respectively.

2. Find the volume of a right prism whose altitude is 6 in. and whose
base is a rectangle with sides 3 in. and 5 in.
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volume of any prism

198. Theorem X. The volume of any prism is equal to
the product of its base and altitude.

Outline of Proof : Any prism, can be divided into triangular
prisms by planes passing through one edge and each of the other non-
adjacent edges.

The altitudes of the triangular prisms are the same as that of the
given prism, and the sum of their bases is equal to the base of the given
prism.

Now use § 197 and complete the proof.

199. Corollary 1. The product of the base and altitude of any
prism is equal to the product of a lateral edge and the area of a right
section.

For each equals the volume of the prism. See §§ 198, 193.

200. Corollary 2. If two prisms have equivalent bases, their
volumes are in the same ratio as their altitudes; and if they have equal
altitudes, their volumes are in the same ratio as the areas of their bases.

sight work

1. Find the volume of a prism whose altitude is 8 in. and the area of
whose base is 42 sq. in.

2. The volume of a prism is 264 cu. in. and its altitude is 8 in. Find the
area of its base.
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exercises

1. The theorem that the volume of any prism is equal to the product
of its base and altitude is of great importance. What theorems of
Book III have been used directly or indirectly in proving it?

2. What dimensions of a prism must be known in order to determine
its lateral area by means of the preceding theorems of Book III? What
dimensions must be known to determine its volume?

3. The edge of a cube is e. Find the total surface and the volume in
terms of e.

4. Find the edge of a cube if its total area is equal numerically to
its volume, an inch being used as the unit.

5. Find the volume of a regular right triangular prism whose edges
are all equal to 6 inches.

6. Find the volume of a regular right hexagonal prism whose edges
are all equal to 10 inches.

7. A side of the base of a regular right hexagonal prism is 3 inches.
Find its altitude if its volume is 54

√
3 cubic inches. What is the total

area of this prism?

8. The volume of a triangular prism is equal to the area of one lateral
face multiplied by half the perpendicular distance of this face from the
remaining edge. Prove.

9. The volume of a regular right prism is equal to the lateral area
multiplied by half the apothem of the base. Prove.

10. Prove that the sum of the squares of the four diagonals of a
rectangular parallelopiped is equal to the sum of the squares of the
twelve edges of the parallelopiped.

11. A prismatic space is cut by two pairs of parallel planes which are
the same distance apart. Does it follow that the volumes of the prisms
thus formed are equal? The lateral areas?
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cylinders

201. Curved Surface. A surface no part of which is plane is
called a curved surface.

E.g. the surface of an eggshell or of a stovepipe is a curved surface.

202. A Closed Plane Curve. A
curve which can be traced continuously by
a point moving in a plane so as to return
to its original position without crossing its
path is a closed plane curve.

A closed plane curve is convex if it can be cut by a straight line in
not more than two points.c

203. A Cylindrical Surface. If a straight line
moves so as to remain parallel to itself, while it always
touches a closed convex plane curve and is made to
traverse it completely, the line is said to generate a
closed convex cylindrical surface. The moving line is
the generator, and the generator in any one of its
positions is an element of the surface.

204. Cylinder. A solid bounded by a cylindrical
surface and two parallel plane sections cutting all its
elements is called a cylinder.

205. Bases. Lateral Surface. The two parallel
cross-sections which bound a cylinder are its bases,
and the curved surface is its lateral surface.

206. Element. Altitude. That part of the generator of a cylindri-
cal surface which is included between the bases of a cylinder is called an
element of the cylinder. The altitude of a cylinder is the perpendicular
distance between its bases.

circular cylinders

207. Right Section. A right section of a
cylinder is made by a plane cutting each of its
elements at right angles.

208. Circular Cylinders. A circular cylin-
der is one whose right section is a circle.

cSee Transcriber’s Notes.
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The radius of a circular cylinder is the radius of its right section.

A cylinder whose elements are at right angles to its bases is called
a right cylinder. Otherwise it is an oblique cylinder. A right cylinder
whose bases are circles is a right circular cylinder.

209. Axis of a Cylinder. The line passing
through the centers of two right sections of a circular
cylinder is the axis of the cylinder.

A right circular cylinder may be generated by revolv-

ing a rectangle about one of its sides as an axis. The side
opposite the axis generates the lateral surface, and the
sides adjacent to the axis generate the bases.

sight work

1. What is the locus of all points in space which are at a perpendicular
distance of 6 in. from a straight line 10 in. long?

2. Show that any two elements of a cylinder determine a plane section of
the cylinder which cuts the two bases in parallel lines.

3. If every plane determined by two elements of a cylinder is perpendic-
ular to its bases, what kind of cylinder is it?

4. If one right section of a cylinder is a circle, what would appear to be
true of all its right sections? For proof see § 213.

5. If a circular cylinder is oblique, are its bases circles?

6. If an oblique cylinder has a circular base, is its right section a circle?

longitudinal sections of a cylinder

210. Theorem XI. If a plane contains an element of
a cylinder and meets it in any other point, then it contains
another element also, and the section is a parallelogram.
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Given the cylinder AC and a plane M containing the ele-
ment AD and another point as P or P ′.

To prove that it contains another element and that the section con-
taining these two elements is a parallelogram.

Proof : (1) When the point P is in the lateral surface.

Let BC be the element through P .

Then BC ‖ AD and they determine a plane M . §§ 203, 73

Also AB ‖ DC and ABCD is a parallelogram. § 92

(2) When the point P ′ is in one of the bases.

Draw AB through P ′. Then by (1) the plane M contains the ele-
ment BC and the section is a parallelogram. Q. E. D.

211. Plane Tangent to a Cylinder. If
a plane contains an element of a cylinder and no
other point in it, the plane is said to be tangent
to the cylinder, and the element is called the line
of contact.

It may be noted that a cross-section of a cylin-
der and its tangent plane consists of a plane curve
and a line tangent to it.

the bases of a cylinder are equal

212. Theorem XII. The bases of a cylinder are equal
plane figures.



78 SOLID GEOMETRY: BOOK III

Given a cylinder with the bases b and b′.

To prove that b = b′.

Proof : Take any three points A, B, C in the rim of the base b and
draw elements through these points, meeting the base b′ in D, E, F .

Show that 4ABC = 4DEF . Use §§ 210, 27

Now, while the elements AD and BE remain fixed, conceive CF to
generate the surface of the cylinder.

Evidently 4ABC = 4DEF in every position of CF .

Hence, if base b′ is applied to base b with these triangles coinciding
in one position, they will coincide in every position corresponding to
the moving generator.

That is, b′ coincides with b. Q. E. D.

The proposition of § 212 may also be stated in the form of the following
corollary:

213. Corollary 1. Parallel plane sections of a cylinder are equal,
if they cut all the elements.

214. Corollary 2. The axis of a circular cylinder passes through
the center of all its right sections.
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measuring the surface and volume of a cylinder

215. Area of a Curved Surface. Thus far in geometry the word
area has been used in connection with plane figures only. In some cases
the computation of an area has been made by an approximation process
only, as in the case of some rectangles and of the circle. Indeed, in these
cases approximate measurement only is possible, since no square unit
exists in terms of which such areas can be exactly measured.

In the case of any curved surface it is evident that approximate
measurement is the only kind possible in terms of a plane area unit,
since no such unit, however small, can be made to coincide with a part
of such a surface.d

216. Volume of a Solid Having a Curved Surface. Since the
unit of measure for solids is the cube, it is evident that a solid having a
curved surface cannot contain such a unit an integral number of times.
Hence approximate measurement only of the volumes of such solids is
possible.

To measure approximately the area and volume of a cylinder use is made
of inscribed and circumscribed prisms.

217. Inscribed Prisms. A prism is said to be
inscribed in a cylinder if its lateral edges are elements
of the cylinder, and their bases lie in the same planes.

218. Circumscribed Prisms. A prism is said
to be circumscribed about a cylinder if its lateral faces
are all tangent to the cylinder, and their bases lie in
the same planes.

It is evident that by increasing the number of lateral faces of the inscribed
or circumscribed prisms the surface of the latter may be made to lie as near
the surface of the cylinder as we please. The lateral edges of the prisms will
remain equal to an element of the cylinder, while the right sections of the
prisms can be made to differ as little as we please from the right section of
the cylinder.

dSee Transcriber’s Notes.
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lateral area of a cylinder

219. Fundamental Assumption on the Area and Volume of
a Cylinder. We now assume that

A cylinder has a definite lateral area and a definite volume which
may be approximated as nearly as we please by taking the lateral areas
and the volumes of successive inscribed or circumscribed prisms.

220. Lateral Area of a Cylinder. Since the lateral area of
a prism is equal to the product of a lateral edge and the perimeter of
a right section (§ 176), it follows that this theorem holds for every
inscribed or circumscribed prism used in approximating the lateral area
of a cylinder.

The foregoing considerations constitute an informal proof of the
following theorem:

221. Theorem XIII. The lateral area
of a cylinder is equal to the product of an
element of the cylinder and the perimeter
of a right section.

222. Corollary 1. If r is the radius of a right
section of a circular cylinder, and e is an element,
the lateral surface is S = 2πre (§ 176).

223. Corollary 2. If r is the radius and h is the
altitude of a right circular cylinder, then the lateral
surface is S = 2πrh (§ 177).
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volume of a cylinder

224. Since the volume of a prism is equal to the product of its
altitude and the area of its base, it follows that this theorem holds
for every inscribed or circumscribed prism used in approximating the
volume of a cylinder.

All practical computations of the surfaces and the volumes of cylinders
are approximations based upon the propositions stated in §§ 220, 224.

The foregoing constitutes an informal proof of the following theo-
rem:

225. Theorem XIV. The volume of a cylinder is equal
to the product of its altitude and the area of its base.

226. Corollary 1. If r1 is the radius of the right
section of a circular cylinder and e is an element, then
the volume is (§ 199) V = πr2

1e.

227. Corollary 2. If a cylinder of altitude h
has a circular base whose radius is r2, then the
volume is

V = πr2
2h.

228. Corollary 3. If h is the altitude and r the radius
of the base of a right circular cylinder, then the volume
is V = πr2h.

In this case r = r1 = r2, and e = h, and the formulas of
corollaries 1 and 2 become identical.

Note. The theorems of §§ 221, 225 were stated (and are true) for any
cylinders whatever. However, the theorem of § 225 is available for the com-
putation of the volume of a cylinder only in case the area of the base or
of the right section can be computed. And this is possible by elementary
methods only in case these are circles.

The lateral area of a cylinder can be computed only in case the perimeter
of a right section can be found, and this is possible by elementary methods
only in case the right section is a circle.
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sight work

1. If a prism is inscribed in a cylinder, is its lateral area greater or less
than that of the cylinder? Is its volume greater or less than that of the
cylinder?

2. If a prism of say 1000 faces is inscribed in a cylinder, would the the-
orems of § 221 and § 225 apply directly to this prism? Would it be easy to
detect experimentally the difference between this prism and the cylinder?

3. How would the right section of the prism and the cylinder of example 2
be related?

4. Discuss the questions in examples 1, 2, 3 as related to prisms circum-
scribed about a cylinder.

5. What is the lateral area of a cylinder whose element is 8 inches and
the perimeter of whose right section is 24 inches?

6. What is the volume of a cylinder whose altitude is 10 inches and the
area of whose base is 50 square inches?

7. What is the volume of a cylinder whose edge is 4 inches, and the area
of whose right section is 24 square inches?

exercises

1. Find the volume of a right circular cylinder with radius 5 and
altitude 8.

2. Find the volume of a circular cylinder if the radius of a right
section is 6 and the length of an element is 10.

3. Find the lateral area of a cylinder if the perimeter of a right
section is 39 and the length of an element is 8.

4. Find the lateral area of a right cylinder if the perimeter of the
base is 30 and the altitude is 5.

5. Find the total surface area of a right circular cylinder of radius 3
and altitude 5.

6. Find the volume of an oblique cylinder whose base is a circle of
radius 4 and whose altitude is 8.
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summary of book iii

1. Define prismatic surface and prismatic space.

2. Define prism, base of prism, lateral surface, right section, right
prism, parallelopiped, truncated prism.

3. Give the rule for finding the lateral area of an oblique prism. How
may this rule be modified in the case of a right prism?

4. What can be said about opposite faces of a parallelopiped as to
shape and size?

5. Give two rules for finding the volume of an oblique prism. See
§§ 193, 198.

6. In proving the theorem on the volume of a prism, we considered
triangular prisms, general parallelopipeds, rectangular parallelopipeds,
and general prisms. In what order were these taken? Why?

7. Show how you would find the approximate volume of a rectangu-
lar parallelopiped whose dimensions are

√
2,
√

3,
√

5. Find this volume
accurately to two places of decimals. Discuss the problem of finding
this volume correct to four places of decimals. See exercises on page 69.

8. Define closed plane curve, convex plane curve, cylindrical sur-
face, cylindrical space, cylinder, right cylinder, circular cylinder, tan-
gent plane to a cylinder.

9. Give the rule for finding the lateral surface of any cylinder, of a
right circular cylinder.

10. Give two rules for finding the volume of an oblique cylinder.
Show that these both hold true for a right circular cylinder.

11. Describe what is meant by the statement “the area and the vol-
ume of a cylinder may be approximated by taking the area and the
volume of inscribed or circumscribed prisms.”
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miscellaneous exercises on book iii

1. If the lateral surface of a cylinder and the length of an element
are known, can the perimeter of a right section be found? If the lateral
area is 400π, and an element 15, find the perimeter of a right section.

2. The diameter of a right circular cylinder is 8, and the diagonal of
the largest rectangle made by a vertical section is 16. Find its altitude.

3. The volume of a right circular cylinder is 128π cubic inches and
its altitude is equal to its diameter. Find the altitude and the diameter.

4. A rectangle whose sides are a and b is turned about the side a as
an axis and then about the side b. Find the ratio of the volumes of the
two cylinders thus developed. Also find the ratio of the total surfaces
of these cylinders.

5. Find the diameter of a right circular cylinder if its lateral area
is equal numerically to its volume. Does the result depend upon the
altitude of the cylinder?

6. If the altitude of a right circular cylinder is equal to its diameter,
find the ratio of the numerical values of its total area and its volume.
Does this depend on the radius?

7. A regular hexagonal prism is inscribed in a right circular cylinder
whose altitude is equal to the diameter. Find the difference between
the volumes of the cylinder and the prism, if a side of the hexagon is
4 inches.

8. A cylindrical tank 8 feet in diameter, partly filled with water, is
lying on its side. If the greatest depth of the water is 6 feet, what
fraction of the volume of the tank is filled with water?

9. In the preceding problem find the
fraction of the volume occupied by water
if the width of the top of the water along
a right cross-section of the tank is 4 feet.



BOOK IV
PYRAMIDS AND CONES

229. Pyramidal Surface. Given a
convex polygon and a fixed point P not
in its plane. If a line through the fixed
point moves so as to touch the boundary
of the polygon and is made to traverse it
completely, the line is said to generate a
convex pyramidal surface.

The moving line is the generator of the
surface, and in any of its positions it is an
element of the surface. The fixed point is
the vertex of the pyramidal surface.

230. Nappes. A pyramidal surface has two
parts, one on each side of the vertex, which are
called nappes.

231. Pyramid. The solid bounded by a
pyramidal surface and a plane section cutting all
the elements, and not passing through the vertex,
is called a pyramid.

sight work

If a plane cuts both nappes of a pyramidal surface, is it possible that
it should cut every element of the surface?

Suggestion. If a plane M cuts both nappes, then a plane through the vertex
‖M meets the surface in two elements which are ‖M and hence are not cut
by M .
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classification of pyramids

232. Faces. Edges. The lateral surface of
a pyramid is composed of triangular faces having a
common vertex at the vertex of the pyramid, and
having as bases the sides of the polygon forming the
base. The sides common to two such triangles are the
edges of the pyramid.

Pyramids are classified, according to the shape of the base, as
triangular, quadrangular, pentagonal, etc.

233. Tetrahedron. A pyramid having a triangular base has in
all four faces, and is called a tetrahedron. In this case every face is a
triangle, and any one of them may be taken as the base.

The altitude of a pyramid is the perpendicular distance from the
vertex to the plane of the base.

234. Regular Pyramid. A regular pyramid is one whose base is
a regular polygon such that the perpendicular from the vertex upon it
meets it at the center.

235. Properties of a Regular Pyramid.

(1) The edges are equal to each other.

For they cut off equal distances from the foot of the perpendicular.

(2) The faces are equal isosceles triangles.

(3) The altitudes of the triangular faces are equal to each other.

236. Slant Height. The altitude of any one of the triangular
faces of a regular pyramid is called its slant height.

sight work

1. If the slant height of a regular pyramid and the apothem of its base
are given, how may its altitude be computed? If the altitude and apothem
are given, how may the slant height be found?

2. Can the expression “slant height” be applied to a pyramid if the alti-
tudes of its faces are not all equal? Discuss fully.
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lateral area of a regular pyramid

237. Theorem I. The lateral area of a regular pyramid
is equal to one half the product of its slant height and the
perimeter of the base.

Suggestion for Proof : Let l = PK represent the slant height,
S the lateral area, and p the perimeter of the base. We are to show
that

S = 1
2
l · p.

Give all the steps.
238. Pyramids Cut by a Plane. The part

of a pyramid between its base and a plane cutting all
its edges is called a frustum if the cutting plane is
parallel to the base, and a truncated pyramid if the
cutting plane is not parallel to the base.
239. The Parts of a Frustum. The two parallel
faces of a frustum are its upper and lower bases, the
perpendicular distance between the bases is its alti-
tude, the trapezoidal faces are its lateral surface, and
the common altitude of these faces is the slant height
of the frustum.

240. Corollary. The lateral area of the frustum of a regular
pyramid is equal to half the sum of the perimeters of the bases multiplied
by the slant height.

Suggestion. Use § 62 and the figure in § 238.
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section parallel to the base of a pyramid

241. Theorem II. If a pyramid is cut by a plane parallel
to the base, then

(1) the edges and altitude are divided proportionally;

(2) the polygonal section is similar to the base;

(3) the areas of this section and of the base are in the
same ratio as the squares of their perpendicular distances
from the vertex.

Outline of Proof : Let A′B′C ′D′E ′ be a section ‖ ABCDE.

(1) To prove that
PK ′

PK
=

PA′

PA
=

PB′

PB
, etc., pass another plane

through P parallel to the base and then use § 103.
(2) To prove that ABCDE ∼ A′B′C ′D′E ′, we show that ∠A = ∠A′,

∠B = ∠B′, etc., and also
A′B′

AB
=
B′C ′

BC
, etc.

(3) Calling the area of the section b′ and that of the base b, we are

to prove that
b′

b
=
PK ′

2

PK
2 , and for this we need to show that

A′B′

AB
=
PA′

PA
=
PK ′

PK
.

Give all the steps in detail.
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242. Corollary. If two pyramids have equal altitudes and bases
of equal areas lying in the same plane, the sections made by a plane
parallel to the plane of the bases have equal areas.

Suggestion. If t and t′ are the areas of the sections and b and b′ those of

the bases, show that
t

b
=
QL′

2

QL
2 ,

t′

b′
=
PK ′

2

PK
2 , and hence

t

b
=
t′

b′
, from which

it follows that t = t′ if b = b′.

sight work

1. Find the lateral area of a regular pyramid if its slant height is 10 in.
and the perimeter of its base is 25 in.

2. What is the perimeter of the base of a regular pyramid if its lateral
area is 72 sq. in. and its slant height is 8 in.?

3. What is the slant height of a regular pyramid if its lateral area is
160 sq. in. and the perimeter of its base is 20 in.?

4. What is the perimeter of the base of a regular pyramid if its lateral
area is 250 sq. in. and its slant height is 20 in.?

5. The area of the base of a pyramid is 36 sq. in. and its altitude is 8 in.
What is the area of a section of this pyramid made by a plane parallel to
the base and 4 in. from the vertex?

6. The area of the base of a pyramid is 64 sq. in. and its altitude is 8 in.
Find the distance from the vertex to a plane parallel to the base if the area
of its section is 16 sq. in.
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7. If the area of one section of a pyramid is double that of another, both
sections being parallel to the base, find the ratio of their distances from the
vertex. Find this ratio if the area of one section is three times that of the
other; also if it is four times.

inscribed and circumscribed prisms

243. Construction. A triangular pyramid is cut by a series
of planes parallel to the base, in-
cluding one through the vertex
and also the one in which the base
lies.

Through the lines of intersec-
tion of these planes with one of
the faces, planes are constructed
parallel to the opposite edge, thus
forming a set of prisms all lying
within the pyramid, as a′, b′, c′ in
pyramid P ′, or a set lying partly outside the pyramid, as a, b, c, d in
pyramid P .

The inner prisms thus constructed are called a set of inscribed
prisms, and the outer prisms are called a set of circumscribed prisms.
For our purpose equidistant planes are used.

This process may be repeated by doubling the number of planes drawn
parallel to the base and thus doubling the number of inscribed or circum-
scribed prisms. By continuing in this way either set of prisms may be made
to coincide as nearly as we please with the pyramid.

244. Fundamental Assumption on the Volume of a Pyra-
mid. We now assume that

A pyramid has a definite volume which is less than the combined
volume of any set of circumscribed prisms and greater than that of any
set of inscribed prisms.
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sight work

1. Show that in the above figure prisms b and a′ are equal in volume if
PM = P ′M ′ and 4s ABC and A′B′C ′ have equal areas. See §§ 188, 242.
Also prove that volume c = volume b′, etc.

2. Show that the sum of the volumes of the circumscribed prisms exceeds
the sum of the volumes of the inscribed prisms by the volume of a.

pyramids having equal volumes

245. Theorem III. If two triangular pyramids have
equal altitudes and bases of equal areas, their volumes are
equal.

Given the pyramids P and P ′ in which altitudes PM and
P ′M ′ are equal, and the bases ABC and A′B′C ′ have equal
areas.

To prove that P and P ′ have equal volumes.

Proof : If P differs at all in volume from P ′, let P be the greater,
and let the difference be some fixed number K, so that Vol. P −
Vol. P ′ = K. (1)

Construct a set of inscribed and circumscribed prisms as in § 243.
Then a′ = b, b′ = c, c′ = d. Why?
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Denote a+ b+ c+ d by V and a′ + b′ + c′ by V ′.

Then V − V ′ = a. (2)

We have Vol. P < V , and Vol. P ′ > V . § 244

∴ Vol. P − Vol. P ′ < V − V ′. Why?

Hence from (2) Vol. P − Vol. P ′ < a.

Now take the divisions on PM small enough to make a < K. § 243

Hence, Vol. P − Vol. P ′ < K. (3)

Thus (3) contradicts (1), and hence the supposition that P and P ′
differ in volume is impossible. Q. E. D.

volume of a triangular pyramid

246. Theorem IV. The volume of a triangular pyramid
is one third of the product of its base and altitude.

Given the triangular pyramid E −ABC. Let h, b, and V be
the numerical measures respectively of the altitude EM , the
area of the base ABC, and the volume of the pyramid.

To prove that V = 1
3
bh.

Proof : On the base ABC construct a triangular prism with alti-
tude h and lateral edge EB.

This prism may be cut into three pyramids by the plane sections
through DEC and AEC, as shown in the figure on the right.
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The pyramids E−ABC and C−DEF have equal volumes since they
have equal bases, ABC and DEF (§ 175), and the same altitude, EM .

Likewise volume E − ACD = volume E − CFD.
But C −DEF and E − CFD are the same pyramid.
Hence, Vol. E − ABC = Vol. C −DEF = Vol. E − ACD.
That is, Vol. E − ABC is one third of the volume of the prism.

But volume of prism = bh. § 198
Hence, V = volume of pyramid = 1

3
bh. Q. E. D.

volume of any pyramid

247. Theorem V. The volume of any pyramid is one
third of the product of its base and altitude.

Given the pyramid P − ABCDE. Let V , b, and h be the
numerical measures respectively of the volume, base, and al-
titude.

To prove that V = 1
3
bh.

Proof : By means of diagonal planes such as PAC and PAD, di-
vide the given pyramid into triangular pyramids. Call the bases of the
triangular pyramids b1, b2, b3, etc., and their common altitude h. Then
by § 246, the volumes of the triangular pyramids are 1

3
b1h, 1

3
b2h, 1

3
b3h.

Hence the total volume is 1
3
(b1 + b2 + b3)h = 1

3
bh. Q. E. D.

248. Corollary 1. The volumes of any two pyramids having
equal altitudes are proportional to the areas of their bases.
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249. Corollary 2. The volumes of any two pyramids having
bases of equal areas are proportional to their altitudes.

volume of a frustum of a pyramid

250. Theorem VI. The volume of a frustum of a pyra-
mid is equal to the combined volumes of three pyramids
whose common altitude is the same as that of the frustum,
and the areas of whose bases are those of the upper and
lower bases of the frustum and the mean proportional be-
tween these areas.

Given the frustum AC ′ with area of lower base b, area of up-
per base b′, and altitude h. Then

√
bb′ is the mean proportional

between b and b′.

To prove that the volume of AC ′ is

V = 1
3
hb+ 1

3
hb′ + 1

3
h
√
bb′ = 1

3
h[b+ b′ +

√
bb′].
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Proof : Let h′ be the altitude PK of the complete pyramid P −
ABCDE. Then the altitude of the pyramid P −A′B′C ′D′E ′ is h′− h.

Hence,
b

b′
=

h′2

(h′ − h)2
§ 241 (3)

from which
√
b√
b′

=
h′

h′ − h
.

Clearing of fractions and solving for h′,

h′ =
h
√
b√

b−
√
b′
. (1)

Now V is the difference between the pyramids whose altitudes are
h′ and h′ − h.

Hence, V = 1
3
bh′ − 1

3
b′(h′ − h), § 247

or, rearranging, V = 1
3
b′h+ 1

3
h′(b− b′). (2)

Substituting the value of h′ from (1) in (2) we have

V =
1

3
b′h+

1

3

h
√
b√

b−
√
b′

(b− b′)

=
1

3
b′h+

1

3

h
√
b√

b−
√
b′

(
√
b−
√
b′)(
√
b+
√
b′)

= 1
3
b′h+ 1

3
hb+ 1

3
h
√
bb′

= 1
3
h[b′ + b+

√
bb′]. Q. E. D.

sight work

1. A flower bed is in the form of a regular right pyramid, with a square
base 5 ft. on a side. The altitude is 3 ft. Find the number of cubic feet of
soil used in its construction.

2. The altitude of a certain pyramid is 15 in. and its volume is 380 cu. in.
Find the area of its base.

3. The area of the base of a pyramid is 48 sq. ft. and its volume 160 cu. ft.
Find its altitude.
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4. Find the locus of the vertices of pyramids having the same base and
equal volumes.

5. Two monuments having bases of equal areas are pyramidal in shape,
one being 15 ft. high and the other 18 ft. Find the ratio of their volumes.

6. Two pyramids with equal altitudes have bases whose areas are 7 sq. ft.
and 13 sq. ft. Find the ratio of the volumes of the pyramids.

7. Find the volume of a frustum of a pyramid the areas of whose bases
are 36 sq. in. and 144 sq. in., and whose altitude is 10 in.

8. The volume of a frustum of a pyramid is 332 cu. in. and the areas of
its bases are 9 sq. in. and 36 sq. in. Find its altitude.

exercises involving numerical computation

1. The base of a regular pyramid is a square whose sides are 16 ft.
Find the slant height of the pyramid if its altitude is 6 ft. Also find the
lateral area.

2. The lateral area of a regular hexagonal pyramid is 72 sq. ft. and
the slant height is 12 ft. Find the perimeter of the base, the apothem
of the base, and the altitude of the pyramid.

3. Find the lateral area of the frustum of a pyramid if the perimeters
of its bases are 27 and 54 in. respectively and its slant height is 12 in.
Does the result depend upon the number of sides of the frustum?

4. The bases of a frustum of a pyramid are squares whose sides are
8 in. and 2 in. respectively. Find the volume of the frustum if its altitude
is 6 in.

5. Find the volume of a regular triangular pyramid the sides of whose
base are 5 in. and whose altitude is 6 in.

Suggestion. The area of a regular triangle with side a is
a2

4
√

3.

6. Find the volume of a regular hexagonal pyramid the sides of whose
base are 8 in. and whose altitude is 10 in.

Suggestion. The area of a regular hexagon with side a is
3a2

2
√

3.
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7. Two marble ornaments of equal altitudes are pyramidal in form.
One has a square base 2 in. on a side and the other a regular hexagonal
base 1 in. on a side. Find the ratio of their volumes.

8. A pyramid has for its base a right triangle with hypotenuse 10
and shortest side 6. Find the volume of the pyramid if its altitude is 9.

9. The slant height of a frustum of a regular pyramid is 10 in. and
the apothems of its bases are 8 in. and 6 in. respectively. Find its
altitude.

exercises involving algebraic computation

1. A tent is to be made in the form of a right pyramid with a regular
hexagonal base. If the altitude is fixed at 12 ft., what must be the side
of the base in order that the tent may inclose 400 cu. ft. of space?

2. A pyramid with altitude 8 in. and a base whose area is 36 sq. in.
is cut by a plane parallel to the base so that the area of the section is
18 sq. in. Find the distance from the base to the cutting plane.

3. A frustum of a pyramid is cut from a pyramid the perimeter of
whose base is 60 in. and whose altitude is 15 in. What is the altitude
of the frustum if the perimeter of its upper base is 20 in.? Does the
result depend upon the number of sides of the pyramid?

4. Solve the preceding problem if the perimeter of the upper base of
the frustum is one nth that of the lower base.

5. The area of the base of a pyramid is 180 sq. in. and its altitude is
20 in. Cut from it a frustum the area of whose upper base is 45 sq. in.;
also one the area of whose upper base is one nth of 180 sq. in. Do these
results depend upon the number of sides of the pyramid?

6. If the altitude of a pyramid is h, how far from the base must a
plane parallel to it be drawn so that the area of its cross-section shall
be half that of the base of the pyramid?

7. In a regular right pyramid a plane parallel to the base cuts it
so as to make a section whose area is one half that of the base. Find
the ratio between the lateral area of the pyramid and that of the small
pyramid cut off by the plane.
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8. Find the volume and the total surface of a regular tetrahedron
whose edges are 9 in.

9. Find the total surface and the volume of a regular hexagonal
pyramid the sides of whose base are each a and whose altitude is a.

cones

251. Conical Surface. Given a closed convex
plane curve and a fixed point P not in its plane.
If a line through P moves so as always to touch
the curve and is made to traverse it completely, it
is said to generate a convex conical surface.

The moving line is the generator of the surface,
and in any of its positions it is an element of the
surface. The fixed point is the vertex.

252. Nappes. A conical surface has two
parts, one on each side of the vertex, which are
called nappes.

253. Cone. The solid bounded by a conical
surface and a plane section cutting all its elements,
and not passing through the vertex, is called a
cone.

254. Base. Lateral Surface. Altitude.
The plane part of the surface of a cone is its base
and the curved part is the lateral surface. The
altitude of a cone is the perpendicular distance
from the vertex to the plane of the base.

255. Circular Cone. A cone which has a circular cross-section
such that the perpendicular upon it from the vertex meets it at the
center is called a circular cone. If the base is such a circle, the cone is
then a right circular cone. Otherwise, it is an oblique circular cone.

The axis of a circular cone is the line from the vertex through the
center of a circular section.

sight work

If a plane cuts both nappes of a conical surface, show that it cannot
cut all the elements of the surface. See suggestion on page 85.
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256. Generating a Right Circular Cone. A right circular cone
may be generated by rotating a right triangle PMB about one of its
legs, PM , as an axis. The hypotenuse PB generates the lateral surface,
and the other leg, MB, generates the base.

257. Slant Height. The generator of
the convex surface of a right circular cone
in any of its positions is called the slant
height of the cone.

258. Frustum of a Cone. The part
of a cone included between the base and a
plane section parallel to the base is called
a frustum of a cone.

The base of the cone and the parallel section are the bases of the
frustum.

259. Slant Height of a Frustum.
A frustum cut from a right circular
cone has two circular bases. The seg-
ments of all the elements of the cone in-
tercepted between these bases are equal
and their common length is the slant
height of the frustum.

sight work

1. Compare the definitions of pyramidal and conical surfaces.

2. Compare the definitions of a pyramid and a cone, and of a frustum of
each.

3. What kind of cone corresponds to a regular pyramid?

4. Can the expression “slant height” be applied to any other cone than a
right circular cone? Discuss this question for the frustum of a cone.

5. In a right circular cone, if any two of the three quantities, altitude,
slant height, radius of the base, are given, show that the third may be found.
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section of a cone through an element

260. Theorem VII. If a plane contains an element
of a cone and meets its surface in any other point, then it
contains another element also, and the section is a triangle.

Let a plane contain the element PB of the cone P − ABC,
and also one other point K or K ′.

To prove that this plane contains another element PD, and that the
section is a triangle PBD.

Outline of Proof : (1) When the point K is in the lateral surface.

Draw the element PD through K, and let the plane determined by
PB and PD meet the base in BD.

Then 4PBD is the section made by the plane containing PB and
the point K.

(2) When the point K ′ is in the base.

Draw BD through K ′ and also the element PD.

Then the plane determined by BD and PD con-
tains PB and K ′ and cuts the cone in the 4PBD.

261. Plane Tangent to a Cone. If a plane
contains an element of a cone and no other point of
the cone, the plane is tangent to the cone, and the
element is called the element of contact.
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section of a cone parallel to the base

262. Theorem VIII. If the base of a cone is circular,
every plane section parallel to the base is also circular.

Given a cone with a circular base AD.

To prove that the ‖ section EH is also circular.

Proof : Draw the straight line from P to the center M of the base,
and let it meet the section EH in the point O. Let F and G be any
two points on the perimeter of the section EH.

Pass planes containing PM through the points F and G, and let
them cut the base in MB and MC respectively.

Now in 4s PMB and PMC, OF ‖MB and OG ‖MC. § 92

∴
OF

MB
=

OP

MP
=

OG

MC
.

But MB = MC. ∴ OF = OG. Why?

Hence, since F and G, any two points on the perimeter of this
section, are equally distant from O, this shows that EH is a circle
whose center is O. Q. E. D.

263. Corollary. If a cone has a circular base, the areas of two
cross-sections parallel to it are in the same ratio as the squares of their
perpendicular distances from the vertex and also as the squares of the
distances of their centers from the vertex.
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inscribed and circumscribed pyramids

264. The lateral surface of a regular pyramid inscribed in a right
circular cone may be computed and is equal to one half the product of
the slant height and the perimeter of the base (§ 237).

If the number of faces of the inscribed pyramid is
doubled, the lateral surface of the resulting pyramid may
again be computed in terms of its slant height and the
perimeter of its base.

In a similar manner, the lateral surface of a
regular pyramid circumscribed about a right cir-
cular cone may be computed in terms of the slant
height of the cone and the perimeter of the poly-
gon circumscribed about the base. The number
of faces may be doubled and the lateral surface
again computed, and so on.

Evidently either of these processes may be repeated indefinitely and
the surfaces of the inscribed or circumscribed pyramids may be made
to lie as close to the surface of the cone as we please.

The circumscribed pyramids all have the same slant height as that of the
cone, and in case of the inscribed pyramids, the slant height may be made to
differ by as little as we please from that of the cone by making the number
of faces great enough.

265. Fundamental Assumption on the Lateral Area of a
Right Circular Cone. We now assume that

A right circular cone has a definite lateral area which can be approx-
imated as nearly as we please by taking the lateral area of the successive
inscribed or circumscribed pyramids.

Since, by the theorem of § 237, the lateral area of any regular pyramid is
half the product of the perimeter of its base and its slant height, it follows
that this theorem holds for all pyramids used in approximating the lateral
area of a right circular cone and that all practical measurements of such
lateral areas are based on this theorem.
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lateral area of a right circular cone

The foregoing considerations constitute an informal proof of the
following theorem:

266. Theorem IX. The area of the lateral surface of
a right circular cone is equal to one half the product of its
slant height and the circumference of its base.

The argument used on page 102 shows that a theorem of this kind
holds for every inscribed or circumscribed pyramid used in the approx-
imation process, and hence this theorem for the cone is established for
all purposes of practical measurement.

267. Corollary. If l is the slant height
of a right circular cone and r is the radius
of its base, the area of the lateral surface is

S = 1
2
· 2πr · l = πrl.

Note. In the case of a cone which is not a right circular cone the
slant height varies from point to point and the process of computation
of § 266 fails. Finding the lateral surface of such a cone depends on
methods first introduced in the calculus and is a much more difficult
problem than those solved in elementary plane and solid geometry.

sight work

1. If a pyramid is inscribed in a cone, is its lateral area greater or less
than that of the cone?

2. Does the theorem of § 237 apply to an irregular pyramid or to an
oblique pyramid? Discuss fully.

3. If a regular pyramid of 1000 faces is inscribed in a right circular cone,
would the theorem of § 237 apply to this pyramid? Would it be easy to detect
experimentally the difference between this pyramid and the cone? Would the
size of the cone affect the answer to this question? Discuss similar questions
about a circumscribed pyramid of 1000 faces.
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4. Find the lateral surface of a right circular cone whose altitude is 7 in.
and the radius of whose base is 2 in.

lateral area of a frustum

268. Theorem X. The lateral area of a frustum of
a right circular cone is equal to one half the sum of the
circumferences of the bases multiplied by the slant height.

Given the frustum ABCD, with slant height l and radii of
bases r and r′.

Let S represent its lateral area.
To prove that S = 1

2
(2πr + 2πr′)l = πl(r + r′).

Proof : Complete the cone, and let PC = l′.

Then S = 1
2

î
2πr(l + l′)− 2πr′l′

ó
§ 267

= πrl + πl′(r − r′). (1)

But
r

r′
=
l + l′

l′
, from which l′ =

r′l

r − r′
. (2)

Substituting l′ from (2) in (1),

S = πrl + πr′l = πl(r + r′). Q. E. D.
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269. Corollary. The lateral area of a frustum of a right circular
cone is equal to the circumference of a section midway between the bases
multiplied by the slant height.

Suggestion. In the formula of the theorem we have

S = πl(r + r′) = 2π
(r + r′)

2
l.

Now show that
r + r′

2
is the radius of the section midway between the

two bases. § 46

sight work

1. If a triangle which is not a right triangle revolves about one of its sides,
does it generate a cone?

Show that the figure generated by revolving any triangle about its longest
side may be divided into two cones.

2. Find the lateral area of a right circular cone with radius of base 6 in.
and slant height 10 in. In this and the succeeding exercises, express the
results in terms of π, e.g., 60π sq. in.

3. Find the lateral area of a right circular cone with radius of base 8 in.
and altitude 6 in.

4. Find the lateral area of a frustum of a right circular cone, the radii of
whose bases are 8 in. and 4 in. and whose slant height is 6 in.

5. A right circular cone having a base with radius 6 ft. and altitude 8 ft.
is cut by a plane parallel to its base and at a distance of 4 ft. from the vertex.
Find the radius of this section. Also find its area.

exercises

1. The lateral area of the surface of a right circular cone is 120π sq. in.,
and its radius is 4 in. Find its slant height.

2. A circular chimney 100 ft. high is in the form of a frustum of a
right circular cone whose lower base is 10 ft. in diameter and upper
base 8 ft. Find the lateral surface.
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3. The lateral area of a frustum of a right circular cone is 60π sq. in.;
the radii of the two bases are 6 in. and 4 in. Find the slant height of
the frustum.

4. The lateral area of a right circular cone is S, and the slant height
is l. Express the radius of the base and also the altitude in terms of S
and l.

5. If the radius of the base of a right circular cone is r, and the
lateral area is S, express the slant height in terms of r and S.

6. If the slant height of a right circular cone is l, and the lateral area
is S, express the circumference of the base in terms of l and S.

volume of a cone

270. Consider inscribed and circumscribed pyramids similar to
those used in § 264, except that they need not be regular since the cone
is not now required to be a right circular cone.

By repeatedly increasing the number of faces of either the inscribed
or circumscribed pyramids, they may be made to approach coincidence
with the cone as nearly as we please.

271. Fundamental Assumption on the Volume of a Cone.
We now assume that a cone has a definite volume which can be ap-
proximated as nearly as we please by taking the volume of successive
inscribed or circumscribed prisms.

Recalling that the volume of a pyramid is equal to one third of the
product of its base and altitude, we see that the above considerations
constitute an informal proof of the following theorem:
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272. Theorem XI. The volume of a cone
is equal to one third of the product of its
base and altitude.

273. Corollary. If the base of a cone is a
circle with radius r and if the altitude is h, then
the volume of the cone is

V = 1
3
· πr2 · h = 1

3
πr2h.

sight work

1. Find the volume of an oblique cone with altitude 8 in. and a circular
base whose radius is 6 in.

2. Find the volume of a right circular cone with slant height 10 in. and
radius of base 6 in.

3. The area of the base of a cone is 50 sq. in. and its volume is 600 cu. in.
Is the altitude the same whether the cone is right or oblique?

4. Show that if two cones have bases of equal areas their volumes are
proportional to their altitudes.

volume of a frustum of a cone

274. Theorem XII. The volume of the frustum of a
cone is equal to the combined volumes of three cones whose
common altitude is the altitude of the frustum and whose
bases are the upper and lower bases of the frustum and a
mean proportional between these bases.
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Suggestion. The proof is exactly like that of § 250, making use of § 272,
instead of § 247. The result in symbols is V = 1

3h(b+ b′ +
√
bb′).

275. Corollary. The volume of a frustum of a right circular
cone is V = 1

3
πh(r2 + r′2 + rr′), where h is the altitude and r and r′

are the radii of the bases.

For b = πr2, b′ = πr′
2
. ∴ V = 1

3
h(πr2 + πr′

2
+
√
πr2 · πr′2)

= 1
3
πh(r2 + r′

2
+ rr′).

Note. The theorem of § 272 holds for any cone whatever, whether
right or oblique. However, when the base is not a circle we have no
means in elementary mathematics for computing its area. Hence the
volume of such a cone cannot be found at this stage even though § 272
does apply.

Similarly § 274 applies to a frustum of any cone whatever, but we
are able to compute its volume by elementary methods only in case the
bases are circles.

sight work

The radius of the base of a cone is 5 in. and its altitude is 10 in. Find
the volume of a frustum formed by a plane parallel to the base and 6 in.
from it. Find the total surface of this frustum in case the cone is a right
circular cone.
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summary of book iv

1. Define pyramidal surface and conical surface. In what respects
do they differ?

2. Define pyramid, cone, regular pyramid, circular cone, and right
circular cone.

3. For what kind of cones may the lateral area be found by means
given in this Book? What is the corresponding kind of pyramid?

4. For what kind of frustum of a cone may the lateral area be found
by means given in this Book? What is the corresponding kind of frus-
tum of a pyramid?

5. What assumption about the volume of a pyramid is made in
Book IV? In the proof of what theorems is this assumption used?

6. Beginning with the theorem of § 245 state in order the theorems
which lead to the rule for finding the volume of any pyramid.

7. What assumption about the lateral area of a cone is made in this
Book? Compare this assumption with the one in § 219.

8. What assumption is made about the volume of a cone? Compare
this with the assumption in § 219.

9. What theorems on cylinders have no corresponding theorems for
cones?

10. Show that a frustum of a cone becomes more and more nearly
identical with a cylinder if the vertex of the cone is removed farther
and farther from the base.

11. If a cone were regarded as a pyramid with a very large num-
ber of very narrow lateral faces, what pages in this Book would be
superfluous?

12. Describe the difficulty in finding the lateral area of an oblique
cone or of a cone whose base is not circular. Does the same difficulty
exist in finding the volume of such a cone?
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exercises on book iv

1. If several planes are tangent to the same cone, find one point
common to them all.

2. Find the locus of all lines which make a given angle with a given
line at a given point in it.

3. Find the locus of all lines which make a given
angle with a given plane at a given point.

4. If the middle points of four edges of a tetra-
hedron, no three of which meet at the same vertex,
are joined, prove that a parallelogram is formed.

5. Show how to pass a plane through a tetrahe-
dron so that the section shall be a parallelogram.

Suggestion. Pass a plane parallel to each of two

opposite edges. See § 133.

6. A mound of earth of the shape
shown in the figure has a rectangular base
16 yards long and 8 yards wide. Its perpen-
dicular height is 5 yards, and the length on
top is 8 yards. Find the number of cubic
yards of earth in the mound.

Suggestion. If from each end a pyramid with a base 8 yd. by 4 yd. is removed,
the remaining part is a triangular prism.

7. Given a figure in general shape the same as the preceding, with
a rectangular base of length 24 ft. and width 6 ft. Find its volume and
lateral area if the dihedral angles around the base are each 45◦.

8. Find the area and volume of the figure developed by an equilateral
triangle with sides a if it is revolved about one of its sides.

Suggestion. The figure may be divided into two cones.
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9. Find the volume and area of the figure formed by revolving an
equilateral triangle with sides s about an altitude.

10. Find the area and volume of the figure devel-
oped by revolving a square whose side is a about one
of its diagonals.

11. Through one vertex of an equilateral triangle
with sides a draw a line l perpendicular to the altitude
upon the opposite side. Find the volume and area of
the figure developed by revolving the triangle about
the line l.

Suggestion. The volume may be obtained by subtracting the volumes of two
cones from the volume of a cylinder.

12. Through a vertex of a square with sides a draw
a line l perpendicular to the diagonal at that point.
Find the area and volume of the figure developed by
turning the square around l.

Suggestion. Notice that two frustums and two cones are developed.

13. In a regular hexagon with sides a draw a line l
bisecting two opposite sides. Find the area and volume
of the figure developed by turning the hexagon about l
as an axis.

14. One angle of a right triangle is 30◦. Find the
ratios of the surfaces and also of the volumes of the
solids developed by revolving this triangle around each
of its three sides in succession.

Suggestion. The sides of the 4 are a, 2a, a
√

3.

15. If through any point P in a diag-
onal of a parallelopiped planesKN and
RM are drawn parallel to two faces,
show that the parallelopipeds DQ and
LN thus formed have equal volumes.
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Archimedes (287–212 B.C.) was without doubt the greatest mathe-
matician of his time. He is known not through any extended treatise,
like that of Euclid, but through a series of monographs on practically
every mathematical subject then known, including physics, mechan-
ics, astronomy, and many phases of geometry. His work on the circle,
cone, cylinder, and sphere is reflected in our treatment of surfaces and
volumes at the present day.



BOOK V
THE SPHERE

276. Sphere. Center. A sphere is a solid bounded by a surface
all points of which are equally distant from a point within called the
center.

277. Diameter. Radius. A line-segment connecting two points
on the surface of a sphere and passing through its center is a diameter.
A segment joining the center to a point on the surface is a radius.

278. Notation for a Sphere. A
sphere may be designated by a single let-
ter at the center or by two letters giving a
radius.

Thus the sphere C means one whose cen-

ter is C, and the sphere CA is one whose cen-
ter is C and whose radius is CA.

279. Generating a Sphere. The
surface of a sphere may be generated by
revolving a semicircle about its diameter
as an axis.

Thus the surface of the sphere CAmay be

generated by revolving the semicircle MNA

about the diameter MN .

280. Corollary 1. If two spheres have equal radii they may be
made to coincide and hence are equal.

281. Corollary 2. All radii of the same sphere or of equal
spheres are equal.

282. Corollary 3. All diameters of the same sphere or of equal
spheres are equal.
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plane section of a sphere

283. Theorem I. A section of a spherical surface made
by a plane is a circle.

Given a sphere with center C cut by a plane M .

To prove that the points common to the surface of the sphere and
the plane form a circle.

Proof : From the center C draw CA perpendicular to the plane M .

Let B andD be any two points common to the plane and the surface
of the sphere. Complete the figure and prove AB = AD.

Hence any two points common to the surface of the sphere and the
plane M are equidistant from the point A. That is, these points lie on
a circle.

How must this proof be modified in case the planeM passes through
the center of the sphere?

284. Corollary 1. Through three points on a spherical surface
there is one and only one circle.

Suggestion. How many planes pass through these points?

285. Corollary 2. A radius of a sphere through the center of
a circle on its surface is perpendicular to the plane of the circle; and
conversely, a radius of a sphere perpendicular to the plane of a circle
on its surface passes through the center of the circle.
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properties of circles on a sphere

286. Figures on a Sphere. Any figure drawn on the surface of
a sphere is said to lie on the sphere.

287. Axis and Poles. The line per-
pendicular to the plane of a circle at its
center is called the axis of the circle.

The points in which the axis of a circle
on a sphere meets the surface of the sphere
are called the poles of the circle.

288. Great and Small Circles on a Sphere. If the plane of a
circle on a sphere passes through the center of the sphere, it is called a
great circle of the sphere, and if not, it is called a small circle.

Thus, in the figure, AB is a small circle, PP ′ is its axis, and P and P ′

are its poles.

The circle passing through P and P ′ and containing the center C is a
great circle.

289. Inside and Outside of a Sphere. A point is inside, outside,
or on a sphere according as its distance from the center is less than,
greater than, or equal to the radius of the sphere.

290. Corollary 1. The center of a great circle on a sphere is
the center of the sphere.

291. Corollary 2. All great circles on a sphere are equal and
any two such circles bisect each other.

292. Corollary 3. The axis of any circle on a sphere passes
through the center of the sphere.

293. Corollary 4. Through two given points on a sphere there
is one and only one great circle unless these points are at opposite ends
of a diameter.

294. Corollary 5. Circles on a sphere formed by parallel planes
have the same axis and the same poles.
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distances from points on a circle to its pole

295. Distance on a Sphere. The spherical distance, or simply
the distance between two points on a sphere is the distance measured
between these points along the minor arc of the great circle through
them.

296. Theorem II. All points of a circle on a sphere are
equidistant from either pole of the circle.

Given P a pole of the circle whose center is A, with B, C,
and D any points on this circle.

To prove that the great circle arcs PB, PC, and PD are equal.

Suggestion. Prove chord PB = chord PC = chord PD, and hence arc
PB = arc PC = arc PD. § 48

297. Polar Distance of a Circle. The spherical distance from
the points of a circle on a sphere to its nearest pole is called the polar
distance of the circle.

298. A Quadrant. One fourth of a great circle is a quadrant.

299. Corollary 1. The polar distance
of a great circle is a quadrant.

300. Corollary 2. If a point on a sphere
is at a quadrant’s distance from each of two
points not at the extremities of the same
diameter, it is the pole of the great circle
through these points.
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use of a spherical blackboard

301. Corollary 3. Polar distances of equal circles on a sphere
are equal.

302. Corollary 4. Straight line-
segments joining points of a circle on a
sphere, to one of its poles are equal.

It follows from the preceding theorem and

corollaries that, if a spherical blackboard is
at hand, circles may be constructed on it by
means of crayon and string the same as on
a plane blackboard. Likewise, curve-legged
compasses may be used.

sight work

1. If two points are at the extremities of the same diameter of a sphere,
how many great circles can be passed through these points?

2. What great circles on the earth’s surface pass through both poles?
Where are the poles of these circles located?

3. If A and B are at opposite ends of a diameter, can a small circle be
passed through them?

4. If two circles on a sphere have the same poles, prove that their planes
are parallel. See § 294.

5. What is the locus of all points on a sphere at a quadrant’s distance
from a given point?

6. What is the locus of all points on a sphere at any fixed distance from
a given point on the sphere? What is the greatest such distance possible?
Discuss fully.

7. If two planes cutting a sphere are parallel, what can be said of the
centers of the circles thus formed? What can be said of the poles of these
circles? Are these statements true of three or more such circles?

8. Find the locus of the centers of a set of circles on a sphere formed by
a set of parallel planes cutting it.
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9. AB is a fixed diameter of a sphere. A plane containing AB is made to
revolve about it as an axis. Find the locus of the poles of the great circles
on the sphere made by this revolving plane. How are the points A and B
related to this locus?

circles equidistant from the center

303. Theorem III. If the planes of two circles on a
sphere are equidistant from the center, the circles are equal;
and conversely, if two circles on a sphere are equal, their
planes are equidistant from the center.

Suggestion. In the first figure show that (1) if CA = CA′, then AB =
A′B′, and (2) if AB = A′B′, then CA = CA′.

circles unequally distant from the center

304. Theorem IV. If the planes of two circles on a
sphere are unequally distant from the center, the circles are
unequal, the one nearer the center being the greater; and
conversely, if two circles on a sphere are unequal, the plane
of the greater circle is nearer the center.
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Suggestion. In Fig. 2 above, show (1) that if CA < CA′ then AB > A′B′;
and (2) if AB > A′B′ then CA < CA′.

305. Plane Tangent to a Sphere. A plane
which meets a sphere in only one point is tangent
to the sphere.

Two spheres are tangent to each other if they
are both tangent to the same plane at the same
point.

A line is tangent to a sphere if it contains one and only one point
of the sphere.

plane tangent to a sphere

306. Theorem V. A plane tangent to a sphere is per-
pendicular to the radius from the point of tangency; and
conversely, a plane perpendicular to a radius at its extrem-
ity is tangent to the sphere.

Given a sphere C with plane M tangent to it at A.

To prove that the radius CA is perpendicular to the plane M .

Proof : (1) It is necessary to prove that CA is perpendicular to
every line in M through A. (Why?)

Draw any such line as AB.
The plane BAC cuts the sphere in a circle. Then AB is tangent to

this circle, and hence perpendicular to AC.
Since CA is ⊥ to every line in M through A, it is ⊥ to M .
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(2) To prove the converse, note that CA is the shortest distance
from C to the plane M . § 82

Hence, every point of M except A is exterior to the sphere.
That is, M is a tangent plane. (§ 305.) Q. E. D.

307. Sphere Inscribed in a Polyhedron. A sphere is said to
be inscribed in a polyhedron if every face of the polyhedron is tangent
to the sphere. The polyhedron is then said to be circumscribed about
the sphere.

308. Polyhedron Inscribed in a Sphere. A polyhedron is
inscribed in a sphere if all its vertices lie in the surface of the sphere.
The sphere is then circumscribed about the polyhedron.

sphere inscribed in a tetrahedron

309. Problem To inscribe a sphere in a given tetrahe-
dron.

Given a tetrahedron D − ABC.
To construct a sphere tangent to each of its four faces.

Construction: Construct planes bisecting the dihedral angles
whose edges are AB, BC, and CA. These three planes meet in a
point P , which is equally distant from the four faces of the tetrahedron.
With the point P as a center and a radius PE equal to the distance
from P to one of the faces construct a sphere. This sphere is inscribed
in the tetrahedron.

Proof : Every point in the plane PAB is equidistant from the faces
ABD and ABC. § 123
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Similarly every point in the plane PBC is equidistant from the
planes ABC andDBC, and every point in the plane PAC is equidistant
from the planes ABC and DAC.

Hence, the point P , common to all three planes, is equidistant from
each of the four faces of the tetrahedron.

∴ each plane is tangent to the sphere, and the sphere is inscribed
in the tetrahedron. (§ 307.) Q. E. F.

sight work

Discuss the problem of finding a point equally distant from three
planes two of which are parallel. How many such points are there?

sphere circumscribed about a tetrahedron

310. Problem To find a point equally distant from the
four vertices of a tetrahedron.

Given the tetrahedron P − ABC.
To find a point O equidistant from P , A, B, C.

Construction: At D, the middle point of BC, construct a plane
perpendicular to BC.

This plane contains E, the center of the circle circumscribed about
4PBC and also F , the center of the circle circumscribed about4ABC.
Why?
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In the plane FDE draw EG ⊥ ED and FH ⊥ FD.
Then EG and FH cannot be parallel and hence meet in some

point O. Then O is the point required.

Proof : Since BC is ⊥ to the plane FDE, it follows that each of
the planes PBC and ABC is ⊥ to plane FDE. § 117

Hence OE is ⊥ plane PBC and OF is ⊥ plane ABC. § 114
Then O is equidistant from P , B, and C, and also from A, B, and C.

§ 81
Hence OA = OB = OC = OP . Q. E. F.

311. Corollary 1. A sphere may be passed through any four
points, not all of which lie in the same plane.

312. Corollary 2. A sphere may be circumscribed about any
tetrahedron.

to find the diameter of a sphere

313. Problem To find the diameter of a given material
sphere.

With any point P of the sphere as a pole, construct a circle, and on
this circle select any three points A, B, C.

Using a pair of compasses, measure the straight line-segments AB,
BC, CA, and construct the triangle A′B′C ′ equal to ABC.

Let B′D′ be the radius of the circle circumscribed about A′B′C ′.
If PP ′ is the axis of the circle ABC on the sphere and BD the

radius of this circle, then BD = B′D′.
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Measure PB by means of the compasses.

Then PBP ′ is a right triangle, with BD perpendicular to its hy-
potenuse PP ′.

PB and BD being known, we may now compute PD from the right
triangle PBD, and then compute PP ′ from the similar triangles PBD
and PP ′B, for the latter using the relation PD : PB = PB : PP ′ or
PD × PP ′ = PB

2.

The segment PP ′ may also be found by geometric construction;
namely, by drawing a triangle equal to P ′BP .

Show how to do this when BP and BD are known.

intersecting spherical surfaces

314. Theorem VI. The intersection of two spherical
surfaces is a circle.

Proof : Two intersecting spherical surfaces may be developed by
two intersecting circles rotating about the line connecting their centers
C and C ′. Let A and B be the two points common to the two circles.

Then BA is ⊥ CC ′.
(CC ′ is the ⊥ bisector of BA.) § 28

As the figure rotates about the line CC ′, AB remains ⊥ CC ′ and
therefore all its positions lie in a plane. § 79

Also DB and DA remain fixed in length.

Therefore the points A and B trace out a circle. Q. E. D.
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sight work

1. Find the locus of the centers of all spheres tangent to a given plane at
a given point.

2. Find the locus of the centers of all spheres of given radius tangent to
a given line at a given point.

3. Find the locus of the centers of all spheres of given radius tangent to
a fixed plane.

4. Find the locus of the centers of all spheres of given radius tangent to
a fixed line.

5. Find the locus of the centers of all spheres tangent to two given inter-
secting planes.

exercises

1. The four lines perpendicular to the faces of a tetrahedron at their
circumcenters meet in a point.

2. The six planes perpendicular to the edges of a tetrahedron at
their middle points all meet in a point.

3. The planes bisecting the six dihedral angles of a tetrahedron all
meet in a point.

4. Show that a sphere may be inscribed in a cube.

5. Show that a sphere may be circumscribed about a cube.

6. Can a sphere be circumscribed about a rectangular parallelopiped
which is not a cube? Can a sphere be inscribed in it? Prove.

7. If a plane M is tangent to a sphere at a point A, show that the
plane of every great circle of the sphere through A is perpendicular to
M .

8. Show that the line of centers of two intersecting spheres meets
the spherical surfaces in the poles of their common circle.
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9. Show that two spheres are tangent if they meet on their line of
centers. Distinguish two cases. State and prove the converse of this
proposition.

10. If a sphere is tangent to a given planeM at a given point A, how
many additional points on the sphere are required to determine it?

Suggestion. Suppose one point P given. Pass a plane through P ⊥ to plane
M at A. Is there only one such plane? Discuss fully.

11. Describe the set of all lines in space whose distances from the
center of a sphere are all equal to the radius of the sphere.

12. Describe the set of all planes whose distances from the center of
a sphere are all equal to the radius of the sphere.

13. Describe the set of all spheres of given radius which are tangent
to a given sphere of greater radius.

spherical angles

315. Spherical Angles. Two planes through
the center of a sphere cut the surface of the sphere
in two great circles which intersect in two points
and form four spherical angles about each of these
points. Any two of these angles are adjacent or
vertical as in the case of angles formed by straight
lines.

A spherical angle is measured by the angle between the tangents to
its sides (arcs) at their common point.

Only angles formed by great circles are considered in this book.
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measuring a spherical angle

316.Theorem VII. A spherical angle is measured by an
arc of the great circle whose pole is the vertex of the angle
and which is intercepted by the sides of the angle.

Suggestion. Show that ĀB measures the dihedral angle formed by the
planes PAC and PBC and that ∠BCA = ∠TPR.

317. Corollary 1. The sum of the consecutive spherical angles
about a point is four right angles.

318. Corollary 2. A spherical angle is equal to the dihedral
angle formed by the planes of its arcs.

spherical polygons

319. Polygons and Triangles on a Sphere. The portion of a
spherical surface contained within a polyhedral
angle whose vertex is at the center of a sphere
is called a spherical polygon.

It follows that for every spherical polygon
there is a corresponding polyhedral angle at the
center of the sphere made by drawing radii to
the vertices of the polygon. The face angles of the polyhedral angle
correspond to the sides of the spherical polygon and the dihedral angles
of the polyhedral angle to the angles of the spherical polygon.

Since a plane through the center of a sphere intersects the surface
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in a great circle, it follows that the sides of a
spherical polygon are arcs of great circles.

Since a plane may be passed through the
vertex of a polyhedral angle such that the poly-
hedral angle lies entirely on one side of it, it
follows that a spherical polygon lies within one
hemisphere.

A spherical polygon of three sides is a spherical triangle.

320. Relation between the Parts of a Spherical Polygon and
the Corresponding Polyhedral Angle.

(1) The face angles of the polyhedral angle are measured by the arcs
forming the sides of the spherical polygon. Why?

(2) The dihedral angles of the polyhedral angle are equal in measure
to the angles of the spherical polygon. § 318

sight work

Why is the vertex of a polyhedral angle which is used in defining a
spherical polygon placed at the center of the sphere?

corollaries on spherical polygons

The following propositions are now obvious corollaries of the pre-
ceding definitions and discussions.

321. The sum of two sides of a spherical triangle is greater than
the third side.

This is a direct consequence of § 151.

322. The sum of the sides of a spherical polygon is less than 360◦.

This is a direct consequence of § 152.

323. Each side of a spherical polygon is less than 180◦.
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sight work

1. What is the angle between a meridian on the earth’s surface and the
equator?

2. If two meridians are drawn meeting the equator 10◦ apart, what is the
angle between these meridians?

3. If two meridians meet the equator 90◦ apart, what can be said of the
three angles of the spherical triangle thus formed?

4. If in two spherical triangles the three sides of one are equal respectively
to the three sides of the other, what can be said of the face angles of the
corresponding trihedral angles?

5. If in two spherical triangles the three angles of one are equal respec-
tively to the three angles of the other, what parts are equal in the corre-
sponding trihedral angles?

6. If in two spherical polygons the angles of one are equal respectively to
the angles of the other, what parts are equal in the corresponding polyhedral
angles?

7. If in two spherical polygons the sides of one are equal respectively to
the sides of the other, what parts of the corresponding polyhedral angles are
equal?

8. Prove that if the sides of two spherical triangles are equal, then the
angles of the triangles are equal.

Suggestion. Use § 144.

shortest spherical distance between two points

324. Theorem VIII. The shortest distance on a sphere
between two of its points is measured along the minor arc
of a great circle passing through these points.
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Proof : Let A and B be any two points on a
sphere, AB the minor arc of a great circle through
them, and ADCB any other curve on the sphere
connecting A and B. Let D and C be any two
points on the curve ADCB taken in order from A
to B.

Draw the great circle arcs AD, AC, DC, and CB. Then by § 321
ĀC + C̄B > ĀB and ĀD + D̄C > ĀC.

Hence, ĀD + D̄C + C̄B > ĀB.

If in like manner we subdivide AD, DC, CB, and continue this
process, we obtain a succession of paths, each longer than the preceding,
and thus we get closer and closer to the length of the curve ADCB.

Hence, the curve ADCB must be greater than ĀB. Q. E. D.

325. Symmetrical Spherical Triangles.
Two spherical triangles are symmetrical if the
sides and angles of one are equal respectively to
the sides and angles of the other, but arranged in
the opposite order. Compare § 146.

sight work

1. Is it possible to move the spherical triangle ABC in the above figure
so as to make it coincide with triangle A′B′C ′?

2. If in two plane triangles ABC and A′B′C ′ the corresponding parts are
equal, is it always possible to make the triangles coincide? Is this always
possible without inverting one of the triangles? Discuss the difference in this
respect between plane and spherical triangles.

trihedral angles and spherical triangles

326. Theorem IX. Two equal or symmetrical trihedral
angles with vertices at the center of a sphere intercept equal
or symmetrical triangles, respectively, on the sphere.
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Suggestions for Proof. In case the trihedral angles are equal they can
be made to coincide, whereby the spherical triangles will also be made to
coincide. The triangles are therefore equal. In case the trihedral angles are
symmetrical it follows directly from §§ 146, 325 that the spherical triangles
are symmetrical.

327. Theorem X. If the radii drawn from the vertices
of a spherical triangle are extended, they meet the sphere in
the vertices of a triangle symmetrical to the given triangle.

The proof is left for the student.

328. Theorem XI. Two triangles on
the same sphere, or on equal spheres, are
equal or symmetrical if three sides of one
are equal respectively to three sides of the
other.

This is a direct corollary of §§ 145, 149. See the figure under § 326.

triangles equal or symmetrical

329. Theorem XII. Two triangles on the same sphere,
or on equal spheres, are equal or symmetrical if two sides
and the included angle of one are equal respectively to two
sides and the included angle of the other.
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Proof : This is a direct corollary of the theorems §§ 142, 150.

330. Vertical Spherical Angles. Spherical angles are vertical if
they have the same vertex and if the sides of one are extensions of the
sides of the other.

331. Right Spherical Triangle. A right spherical triangle has
one of its angles a right angle.

332. Isosceles Spherical Triangle. An isosceles spherical tri-
angle has two equal sides.

sight work

1. Show that vertical spherical angles are equal.

2. What kind of spherical triangle is formed by two meridians on the
earth’s surface and the arc of the equator which they intercept?

3. Show that every spherical triangle formed as described in Example 2
contains more than two right angles.

4. Show how to form a spherical triangle as in Example 2 in which each
angle shall be a right angle.

5. Show how to form a spherical triangle as in Example 2 in which one
angle shall be 179◦ and each of the other two 90◦.
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equal angles opposite equal sides

333. Theorem XIII. The angles oppo-
site the equal sides of an isosceles spheri-
cal triangle are equal.

Suggestion. Let AC and BC be the equal sides.

Draw C̄D to the middle point of ĀB. Then use § 328.

334. Corollary. If two isosceles spherical triangles are symmet-
rical, they are equal, and conversely.

exercises

1. Compare fully the theorems on the equality of plane triangles and
of trihedral angles. Is there any theorem in either case for which there
is no corresponding theorem in the other?

2. Compare in the same manner the theorems on the equality of
plane triangles and of spherical triangles.

3. Compare in the same manner the theorems on the equality of
trihedral angles and of spherical triangles.

4. If two face angles of a trihedral angle are equal, the opposite
dihedral angles are equal.

5. If two face angles of a trihedral angle are equal, it is equal to its
symmetrical trihedral angle.

Suggestion. Compare the sides and then the angles of the corresponding
spherical triangles. Use §§ 333, 329.

6. Show how to find a pole of the circle through three given points
on a sphere.

Suggestion. Let the given points be A, B, C. By § 296 a pole of the circle is
equidistant from A, B, and C. Connect A and B by an arc of a great circle
and construct another arc of a great circle bisecting ĀB perpendicularly.
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Similarly construct a perpendicular bisector of B̄C. The points in which
these two arcs meet will be the poles of the circle through A, B, and C.

polar triangles

335. Definition. If with the vertices of a
given spherical triangle as poles arcs of great cir-
cles are constructed, another spherical triangle is
formed which is called the polar triangle of the
first.

Thus in the figure, A is a pole of the arcB′C ′, B is

a pole of the arc C ′A′, and C is a pole of the arc A′B′.
Hence A′B′C ′ is the polar triangle of triangle ABC.

336. Polar Triangle. How Selected. If with the vertices A,
B, C of a spherical triangle as poles three complete great circles are
constructed, each of these circles meets each of the others in two points,
thus forming eight spherical triangles,
as shown in the figure, namely, A′B′C ′,
A′B′F , B′C ′D, C ′A′E, A′EF , B′DF ,
C ′DE, and DEF .

There is one and only one of these,
namely, A′B′C ′, such that A and A′ are
on the same side of circle B′C ′, B and B′
on the same side of circle A′C ′, and C
and C ′ on the same side of circle A′B′.

The triangle A′B′C ′ as thus described
is the polar triangle of ABC.

sight work

In the above figure the parts of the great circles which are supposed
to be on the front side of the figure are given in solid lines while the parts
on the back side are dotted. Study the figure with care and state which
triangles are entirely on the front side, which are entirely on the back side
of the sphere, and which are partly on the front side and partly on the back
side of the sphere.
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triangles polar to each other

337. Theorem XIV. If A′B′C ′ is the polar triangle of
ABC, then ABC is the polar triangle of A′B′C ′.

Given 4A′B′C ′, the polar triangle of ABC.

To prove that ABC is the polar triangle of A′B′C ′.

Proof : (1) A′ is at a quadrant’s distance from B because B is the
pole of Ă′C ′. A′ is also at a quadrant’s distance from C because C is
the pole of Ă′B′.

Hence, A′ is the pole of B̄C. § 300

Similarly, B′ is the pole of ĀC and C ′ the pole of ĀB.

(2) To show that A and A′ lie on the same side of the circle BC, we
note that since A is the pole of the circle B′C ′ and A lies on the same
side of this circle with A′, then A and A′ are at less than a quadrant’s
distance. Hence, it follows that if A′ is at a quadrant’s distance from
BC, A and A′ must be on the same side of BC.

In like manner we show that B and B′ lie on the same side of AC,
and C and C ′ on the same side of AB.

338. Corresponding Parts of Polar Triangles. If ABC and
A′B′C ′ are polar triangles, and if A is a pole of B̆′C ′, then ∠A and
B̆′C ′ are said to be corresponding parts.
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measure of parts in polar triangles

339. Theorem XV. The sum of the measures of an
angle of a spherical triangle and the corresponding arc of
its polar triangle is 180◦.

Given the polar triangles ABC and A′B′C ′. Denote the
measures in degrees of the angles by A, B, C, A′, B′, C ′, and
of the corresponding sides by a′, b′, c′, a, b, c.

To prove that A+ a′ = 180◦ A′ + a = 180◦

B + b′ = 180◦ B′ + b = 180◦

C + c′ = 180◦ C ′ + c = 180◦

Suggestions for Proof : Extend (if necessary) arcs A′B′ and A′C ′
till they meet the great circle BC in pointsD and E, respectively. Then
arc DE is the measure of ∠A′.

Also B̄E = 90◦, and D̄C = 90◦. (Why?)
But B̄E + D̄C = B̄C + ĒD = a+ A′ = 180◦.

340. Corollary 1. If in two spherical triangles an angle of one
is equal to an angle of the other, then the corresponding sides of their
polar triangles are equal; and conversely, if in two spherical triangles a
side of one is equal to a side of the other, then the corresponding angles
of their polar triangles are equal.

341. Corollary 2. If two spherical triangles are equal or sym-
metrical, their polar triangles are equal or symmetrical.
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sum of angles of a spherical triangle

342. Theorem XVI. The sum of the angles of a spher-
ical triangle is less than six right angles and greater than
two right angles.

Given the spherical triangle ABC.
To prove that (1) ∠A+ ∠B + ∠C < 6 rt. angles.

(2) ∠A+ ∠B + ∠C > 2 rt. angles.

Proof : Construct the polar triangle A′B′C ′, with sides a′, b′, c′.
(1) By § 339 ∠A+ ∠B + ∠C + a′ + b′ + c′ = 6 rt. ∠s .
Since a′ + b′ + c′ > 0, ∴ ∠A+ ∠B + ∠C < 6 rt. ∠s .
(2) Using § 322, show that ∠A+ ∠B + ∠C > 2 rt. ∠s .

343. Corollary 1. State and prove the theorem on trihedral
angles which corresponds to Theorem XVI.

344. Corollary 2. The sum of the angles of a spherical polygon
of n sides is greater than 2(n − 2) right angles and less than 2n right
angles.

Proof : Divide the polygon into n− 2 triangles. Then by § 342 the
sum of the angles > 2(n− 2) rt. ∠s .

Since each angle is less than two right angles, it follows that the
sum is less than 2n right angles.

345. Corollary 3. State and prove the theorem on polyhedral
angles which corresponds to Corollary 2.
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equal and symmetrical spherical triangles

346.Theorem XVII. Two triangles on the same sphere,
or on equal spheres, are equal or symmetrical if two angles
and the included side of one are equal respectively to two
angles and the included side of the other.

Proof. By §§ 340 and 329 the polar triangles of the given trian-
gles are equal or symmetrical. Hence, by § 341, the given triangles
themselves are equal or symmetrical.

347. Corollary. State and prove the theorem on trihedral angles
which corresponds to Theorem XVII.

348. Theorem XVIII. Two triangles on the same
sphere, or on equal spheres, are equal or symmetrical if
the angles of one are equal respectively to the angles of the
other.

Proof : By §§ 340 and 328 the polar triangles of the given trian-
gles are equal or symmetrical. Hence, by § 341, the given triangles
themselves are equal or symmetrical.

349. Corollary. State and prove the theorem on trihedral angles
which corresponds to Theorem XVIII.

Is there a theorem on plane triangles corresponding to that of § 348?
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construction of spherical triangles

350.Problem On a given sphere to construct a spherical
triangle when its sides are given.

Solution. Let O be the given sphere, and a, b, c the sides of the
required triangle, and let AA′ be any diameter of the sphere. With
A as a pole, construct circles DBE and FCG, whose polar distances
from A are c and b respectively.

With B as a pole, construct a circle HCK, whose polar distance
from B is a. Then construct the three great circle arcs, AB, BC, CA.
ABC is the required triangle. Why?

sight work

1. What restrictions if any is it necessary to impose upon the three given
sides of the triangle in § 350? (See §§ 321, 322.)

2. In plane geometry two equal triangles may be constructed upon the
same base and on the same side of it. Is a corresponding construction possible
on the sphere?

3. If in the above construction each of two sides of the required triangle
is very great, that is, nearly a semicircle, show from the construction that
the third side must be very small.
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construction of spherical triangles

351. Problem To construct a spherical triangle when
its three angles are given.

Solution. Let the three given angles be A, B, C, and let a′, b′, c′
be arcs such that a′+∠A = 180◦, b′+∠B = 180◦, and c′+∠C = 180◦.
Then the triangle whose arcs are a′, b′, c′ will be the polar triangle of
the required triangle. This latter triangle A′B′C ′ may be constructed
by the method of § 350. Then construct the polar triangle of A′B′C ′,
which will be the required triangle.

Give reasons in full for each step.

352. Problem To construct a trihedral angle when its
face angles are given.

Solution. Construct the corresponding spherical triangle by the
method of § 350.

Give the construction in full and prove each step.

353. Problem To construct a trihedral angle when its
dihedral angles are given.

Solution. Construct the corresponding spherical triangle by the
method of § 351.

Give reasons in full for each step.

sight work

1. If two spherical triangles having angles respectively equal are con-
structed on the same sphere, how are these triangles related? Prove.

2. If two trihedral angles with face angles respectively equal are con-
structed as in § 352, how are they related? Prove.

3. If two trihedral angles with dihedral angles respectively equal are con-
structed as in § 353, how are the trihedral angles related? Prove.

4. What restrictions if any must be placed upon the given angles A, B,
C in § 351? Compare Example 1, page 138.
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5. What restrictions if any are needed in Examples 2 and 3?

exercises

1. If two angles of a spherical triangle are un-
equal, the sides opposite them are unequal, the
greater side being opposite the greater angle.

Suggestion. In the triangle ABC let ∠B be greater than ∠A. Draw B̄D,
making ∠ABD = ∠A.

Then, ĀD = B̄D, and B̄D + D̄C > B̄C.

Hence, show that ĀC > B̄C.

2. State and prove a theorem on trihedral angles corresponding to
the preceding.

3. If the sides of a spherical triangle are 60◦, 80◦, 120◦, find the
angles of its polar triangle.

4. If the angles of a spherical triangle are 72◦, 104◦, 88◦, find the
sides of the polar triangle.

5. If a triangle is isosceles, prove that its polar triangle is isosceles.

6. If each side of a spherical triangle is a quadrant, describe its polar
triangle.

7. Is it possible to construct a spherical triangle whose sides are 50◦,
60◦, 120◦?

8. Is it possible to construct a spherical triangle whose sides are
100◦, 120◦, 150◦?

Suggestion. Consider the polar triangle of such triangle.

9. Consider the questions on trihedral angles corresponding to the
two preceding.

10. If the sides of a spherical triangle are 75◦, 95◦, and 115◦ respec-
tively, find the angles of each triangle formed by the polar construction.



THE SPHERE 141

11. If it is given that a spherical triangle is equilateral, can we infer
from the theorems thus far proved that its polar triangle is equilateral?

symmetrical triangles are equal in area

354. Equal Areas Defined. Two spherical polygons are said
to have equal areas if they can be made to coincide, or if they can be
divided into parts which can be made to coincide in pairs.

Compare this with the definition of equal areas in Plane Geometry.

355. Theorem XIX. Two symmetrical spherical trian-
gles are equal in area.

Proof : Let ABC be one of the given triangles. Extend the radii
AO, BO, CO to meet the sphere in A1, B1, C1, thus forming a triangle
symmetrical to 4ABC. § 327

Let P be a pole of the circle through A, B, C. Extend PO to meet
the sphere in P1. Draw P̄A, P̄B, P̄C, and Ṗ1A1, Ṗ1B1, and P̆1C1.

Suppose that P lies within 4ABC.
The spherical triangles PAB, PBC, PCA, P1A1B1, P1B1C1, P1C1A1

are all isosceles. § 296
Now prove

(1)4PAB = 4P1A1B1; (2)4PBC = 4P1B1C1;

(3)4PCA = 4P1C1A1.

∴ area 4ABC = area 4A1B1C1.
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But 4A1B1C1 is equal to any other triangle which is symmetrical
to 4ABC.

∴ Two symmetrical spherical triangles are equal in area.

birectangular spherical triangles

356. A birectangular spherical triangle is one having two right
angles, as 4PAB in the figure.

If the third angle of a birectangular triangle is 1◦, the triangle con-
tains one of 720 equal parts of the surface of the sphere.

357. Spherical Degree. The area of a birect-
angular triangle having a vertex angle of one de-
gree is called a spherical degree and is used as a
unit of measure of areas of spherical polygons.

In a similar manner we define a spherical
minute and a spherical second.

358. The Lune. A lune is a figure formed by
two great semicircles having the same end-points.
The angle between these semicircles is the angle
of the lune.

359. Corollary 1. The area of a birectangular
spherical triangle in terms of spherical degrees is
equal to the number of degrees in the third angle
of the triangle.

360. Corollary 2. The area of a lune in terms of spherical
degrees is twice the number of degrees in the angle of the lune.

361. Spherical Excess. The number of degrees by which the sum
of the angles of a spherical triangle exceeds 180◦ is called the spherical
excess of the triangle.

The spherical excess of a spherical polygon is the sum of its angles
less (n− 2)180◦, where n is the number of sides of the polygon.
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exercise

Show that the spherical excess of a spherical polygon is less than
four right angles.

area of a spherical triangle

362. Theorem XX. The area of a spherical triangle in
terms of spherical degrees is equal to its spherical excess.1

Proof : We are to show that area 4ABC = ∠A+∠B+∠C−180◦.
By § 360, the areas of the lunes ACDB, CAEB, BCFA in spherical

degrees are as follows:

4ABC +4BCD = ACDB = 2∠A.

4ABC +4BAE = CAEB = 2∠C.

4ABC +4CFA = BCFA = 2∠B.

Hence, adding,
34ABC + 4s BCD, BAE, CFA = 2(∠A+ ∠B + ∠C).
Now 4s BCD and AEF are symmetrical and equal in area.
Hence,

24ABC + 4s ABC, AEF, BAE, CFA = 2(∠A+ ∠B + ∠C).
But 4s ABC, AEF, BAE, CFA together constitute a hemisphere

or 360 spherical degrees.
1This theorem was discovered by Cavalieri. See Frontispiece.
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Hence, 24ABC + 360◦ = 2(∠A+ ∠B + ∠C).

Solving, 4ABC = ∠A+ ∠B + ∠C − 180◦. Q. E. D.

Note.—The spherical degree differs fundamentally from the units
of measure hitherto used. This unit is a certain fraction of the surface
of the sphere and hence its actual size depends upon the size of the
sphere.

area of a spherical polygon

363. Theorem XXI. The area of a spherical polygon
in terms of spherical degrees is equal to its spherical excess.

Proof : Join one vertex of the polygon to each non-adjacent vertex,
thus forming n− 2 spherical triangles. Now since the sum of the spher-
ical excesses of these triangles is the spherical excess of the polygon,
the conclusion is evident.

sight work

1. What is the area in spherical degrees of a birectangular triangle if one
of its angles is 54◦? if one angle is 24◦? if one angle is 36◦?

2. What is the spherical excess of a triangle the sum of whose angles is
285◦?

3. What is the spherical excess of a triangle whose angles are 75◦, 110◦,
and 150◦?

4. What is the spherical excess of a spherical hexagon the sum of whose
angles is 1060◦?

5. What is the spherical excess of a spherical pentagon whose angles are
90◦, 120◦, 75◦, 108◦, and 165◦?

6. What is the angle of a lune whose area is 160 spherical degrees?

7. The spherical excess of a triangle is 120◦. Two of its angles are 110◦

and 108◦ respectively. Find the third angle.
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8. Between what limits is the sum of the angles of a spherical polygon of
eight sides?

9. If the sum of the angles of a spherical polygon is 11 right angles, what
is known about the number of its sides?

10. If the sum of the angles of a spherical polygon is 14 right angles, what
is known about the number of its sides?

11. The sides of a spherical triangle are 85◦, 95◦, 110◦. Find the area
of each of the eight triangles formed by the polar construction from this
triangle.

12. The area of a spherical triangle is 74 spherical degrees. One angle is
105◦. Of the other two angles one is twice the other. Find all the angles of
the triangle.

lateral area of a frustum of a cone

364. Theorem XXII. The lateral area of a frustum of
a right circular cone is equal to the altitude of the frustum
multiplied by the circumference of a circle whose radius is
the perpendicular distance from a point in the axis of the
frustum to the middle point of an element.
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Given a frustum with an element AA′ whose middle point
is B, CC ′ the axis of the frustum, BD ⊥ CC ′ and EB ⊥ AA′.

To prove that the lateral area is equal to 2π · EB · CC ′.

Proof : By § 269, the lateral area is 2π ·BD · AA′.
Hence, we must show that

EB · CC ′ = BD · AA′.

To do this, draw A′F ⊥ AC and show that
4AFA′ ∼ 4EDB.

365. Corollary. The lateral area of a right circular
cone is equal to its altitude times the length of a circle
whose radius is the perpendicular from a point in the
axis to the middle point of an element.

Note. The above theorem and corollary are needed in deducing the area
of the surface of a sphere. We have already computed the area of a spherical
triangle in terms of spherical degrees, but we now wish to derive the area of
the spherical surface in terms of plane units of measure.

circumscribed and inscribed cones and frustums

366. About a circle circumscribe a polygon as
follows: Construct two diameters AB and CD at
right angles to each other and divide each quad-
rant into an even number of parts by points, as E,
F , G. At each alternate division point, beginning
with the first point E, draw a tangent.

There results a regular polygon with two ver-
tices on each of the diameters AB and CD ex-
tended.

If now we construct another polygon in the same manner by dividing
each quadrant into twice as many arcs, it will likewise have two vertices
on each of the diameters AB and CD extended. The vertices on AB
will lie between M and N .

This construction may be repeated at pleasure, thus obtaining a
sequence of polygons each lying closer to the circle than the preceding.
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Now inscribe a polygon similar to the first one of the set just circum-
scribed, by joining the points C and F , F and A, and so on, repeating
this process to form a sequence of inscribed polygons.

If now the whole figure is made to revolve about AB as an axis, the
circle generates a sphere, and the circumscribed and inscribed poly-
gons generate sets of circumscribed and inscribed cones and frustums
of cones.

367. Fundamental Assumption on the Area of a Sphere. We
assume that

A sphere has a definite area which is less than the surface of any
circumscribed figure and greater than the surface of any inscribed convex
figure.

The student should note that while the statement just preceding is ob-
viously true, it is not capable of proof by pure deduction. It is therefore
necessarily in the nature of an assumption or axiom.

formula for the area of a sphere

368. Theorem XXIII. The area of a sphere whose
radius is r is 4πr2.

Proof : (a) Denote by r the radius of the circle
which generates the sphere. That is, in the
figure, r = OG = OE = OH.

By § 364 the lateral areas of the outside
frustums whose axes are OL and OK are 2πr ·
OL and 2πr·OK, and by § 365 the lateral areas
of the cones whose axes are LN and KM are
respectively 2πr · LN and 2πr ·KM .

Hence, the total surface of the whole circumscribed figure is

2πr ·MK + 2πr ·KO + 2πr ·OL+ 2πr · LN,
or 2πr(MK +KO +OL+ LN) = 2πr ·MN.

If now a polygon of twice the number of sides is constructed, as
described in § 366, we obtain another circumscribed figure whose area
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is 2πr ·M ′N ′ where M ′ and N ′ are the two vertices on the line AB
extended, but lying betweenM and N , so that 2πr ·M ′N ′ < 2πr ·MN .

As this process goes on, the total surface generated decreases and
may be made to approximate as nearly as we please to

2πr × AB = 2πr × 2r = 4πr2.

Therefore, the area of the sphere cannot be greater than 4πr2.
(b) Using the same figure, let OG′ be the apothem of the inscribed

polygon.
Then, as under (a), we find that the area of the figure developed by

revolving the inscribed polygon about AB is

2π · AB ·OG′ = 4πr ·OG′.

By continuing to double the number of sides, OG′ may be made to
approach as nearly as we please to OG = r, OG′ being always less than
OG.

Hence, the total surface developed increases and approaches as
nearly as we please to

4πr ×OG = 4πr2.

Therefore the area of the sphere cannot be less than 4πr2.
Since from (a) and (b) the area of the surface of the sphere can be

neither greater than 4πr2 nor less than 4πr2, it follows that it is exactly
equal to 4πr2. Q. E. D.

sight work

Use the value π = 3.1416.

1. Find the surface of a sphere whose radius is one inch.

2. Find the surface of a sphere whose radius is 10 inches.

3. What is the relation between the surface of a sphere and the area of
a circle of the same radius?

4. Find the area in square inches of a spherical degree on a sphere of
radius 15 inches.
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5. What fraction of the surface of a sphere is occupied by a birectangular
triangle having one angle of 65◦? by a lune with an angle of 84◦?

6. Find the area in square inches of a birectangular spherical triangle
with one angle equal to 35◦, if the triangle is on a sphere of radius 10 inches.

7. Find the area in square inches of a lune whose angle is 42◦, if the lune
is on a sphere of radius 20 inches.

exercises in arithmetic computation

Example. Find the area in square inches of a spherical triangle
whose angles are 80◦, 85◦, and 97◦ if the radius of the sphere is 6 inches.

Solution. The spherical excess of the triangle is

80◦ + 85◦ + 97◦ − 180◦ = 262◦ − 180◦ = 82◦.

The total area of the sphere is 4π × 62 = 452.3904 sq. in., and one
spherical degree is 1

720
of 452.3904 = .62832 sq. in.

Hence 82 spherical degrees is 82× .62832 = 51.52224 sq. in.

1. Find the area in square inches of a spherical triangle whose angles
are 70◦, 80◦, 90◦ if the radius of the sphere is 10 inches.

Suggestion. First find the spherical excess of the triangle.

2. Find the area in square inches of a spherical triangle whose angles
are 95◦, 110◦, 75◦ if the radius of the sphere is 15 inches.

3. Find the area of a spherical polygon whose angles are 110◦, 120◦,
130◦, and 95◦ if the radius of the sphere is 8 inches.

4. Find the area of a spherical polygon whose angles are 130◦, 140◦,
110◦, 100◦, 160◦, and 150◦ if the radius of the sphere is 20 inches.
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exercises in algebraic computation

1. The area of a sphere is s square inches. Find the radius of the
sphere in terms of s.

2. The spherical excess of a spherical triangle is e and the radius of
the sphere is r. Find the area of the triangle in terms of e and r.

3. The spherical excess of a spherical polygon is e and its area is
a square inches. Find the radius of the sphere in terms of e and a.

4. The area in square inches of a spherical triangle is a and the radius
of the sphere is r. Find the spherical excess in terms of a and r.

the volume of a sphere by inspection

369. The formula for the volume of a sphere
may be inferred directly from the accompanying
figure.
The sphere is covered with a network of spherical
quadrilaterals. If these are taken small enough,
they may be regarded as approximately plane sur-
faces.

On this supposition we have a set of pyramids with a common al-
titude r and the sum of their bases approximately equal to the area of
the sphere.

Hence, their combined volume is 1
3
r × (area of sphere) or 1

3
r · 4πr2.

That is, the volume is 4
3
πr3.

It is clear that, by making these quadrilaterals sufficiently small each
one may be made to approach as nearly as we please to a plane surface.
Hence, each pyramidal figure with vertex at O is made to approach the
form of a true pyramid as nearly as we please.

370. Fundamental Assumption on the Volume and Surface
of a Sphere. In the formal proof on page 151, we use polyhedrons
circumscribed about the sphere and we assume that

The surface and the volume of a sphere may be approximated as
nearly as we please by taking the surfaces and the volumes of a series
of circumscribed polyhedrons all of whose faces are made to decrease
indefinitely.
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Note. This assumption, when taken together with § 367, implies that the
surface obtained by taking the surfaces of a series of polyhedrons is the same
as the surface obtained by taking the surfaces of the circumscribed figures
described in § 366. This is of course obvious at a glance, though a formal
deductive proof is very difficult.

exercise

Using § 369 find the volume of a sphere whose radius is 10 in.;
also one whose diameter is 6 ft.

formula for the volume of a sphere

371. Theorem XXIV. The volume of a sphere whose
radius is r is 4

3πr
3.

Proof : Consider a sphere of radius r with a cube circumscribed
about it. Connect its vertices with the center of the sphere. Then the
cube is divided into six pyramids, each having an altitude r. Since the
volume of each pyramid equals the area of its base times one third its
altitude, it follows that the sum of the volumes of these pyramids is
equal to the sum of their bases times one third their common altitude.

Consider now a polyhedron obtained from this cube by cutting off
its eight vertices by planes tangent to the sphere. This new polyhe-
dron is circumscribed about the sphere and approaches it more nearly
than the cube. Continuing in this mannere we may obtain a series

eSee Transcriber’s Notes.
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of circumscribed polyhedrons approaching the sphere as nearly as we
please.

By joining the vertices of each polyhedron to the center of the sphere
we obtain a set of pyramids, each with altitude r.

Suppose the total surfaces of these successive polyhedrons are s1,
s2, s3, s4, . . . . Then their volumes are r

3
s1, r

3
s2, r

3
s3, . . . . But, by § 370,

s1, s2, s3, . . . approach the surface of the sphere, or 4πr2, as nearly as
we please. Hence the successive volumes approach r

3
× 4πr2 = 4

3
πr3 as

nearly as we please. That is,
Surface of a sphere = 4πr2, and Volume of a sphere = 4

3
πr3.

sight work

1. Given a sphere of radius 6 inches, is there any upper limit to the volume
of its circumscribed polyhedrons? That is, can polyhedrons be circumscribed
having a volume as large as we please?

2. With the same sphere is there any lower limit to the volume of its
circumscribed polyhedrons?

3. Show that the areas of two spheres are in the same ratio as the squares
of their radii or of their diameters.

4. Show that the volumes of two spheres are in the same ratio as the
cubes of their radii or of their diameters.

5. Express the area of a sphere whose radius is 8 in. in terms of π.

6. Express the volume of a sphere whose radius is 10 ft. in terms of π.

7. The surface of a polyhedron circumscribed about a sphere of radius
4 in. is 420 sq. in. Find its volume.

exercises in arithmetic computation

1. The volume of a polyhedron circumscribed about a sphere of ra-
dius 3.5 in. is 450 cu. in. Find its surface.

2. If the area of a sphere is 227 sq. ft., find its radius.

3. If the volume of a sphere is 335 cu. in., find its radius.

4. If the volumes of two spheres are 27 cu. in. and 729 cu. in., find
the ratio of their radii.
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exercises in algebraic computation

1. The volume of a sphere is v cubic inches. Find its radius in terms
of v and π.

2. The area of the surface of a sphere is s square inches. Find its
volume in terms of s and π.

3. The area of the surface of a sphere is numerically equal to its
volume. Find the radius of the sphere if an inch is the unit of measure.

4. The difference between the volume of a cube and that of its in-
scribed sphere is v. Find the radius of the sphere in terms of v and π.

spherical segments, cones, sectors

372. Zone, Segment. That part of a spherical surface included
between two parallel planes cutting it is called a zone. The perpendic-
ular distance between the planes is the altitude of the zone and of the
corresponding segment.

The portion of a sphere included between two parallel planes cutting
it is called a spherical segment, and the two circular sections made by
the parallel planes are its bases.

If one of the cutting planes is tangent to the sphere, then the spher-
ical segment and the corresponding zone are said to have but one base.
The altitude in this case is the perpendicular distance from the base to
the tangent plane.

373. Spherical Cone, Sector. If one nappe of
a convex conical surface has its vertex at the center
of a sphere, the portion of the sphere cut out by this
surface is called a spherical cone.

If two spherical cones have the same axis, one
lying within the other, the figure formed by their
two lateral surfaces, together with the part of the
sphere intercepted between them, is called a spher-
ical sector.
If the two cones are right circular cones, they in-
tercept circles on the sphere, and the zone thus in-
cluded is called the base of the spherical sector.
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If the accompanying figure be revolved about LM as
an axis, then any arc, as GD or MD, generates a zone, the
former with two bases, the latter with one.
The figure MDF of FDGE generates a spherical segment,
the former with one base, the latter with two.
The figure CAL or CBL generates a spherical cone, CL
being the common axis.
The figure CBA generates a spherical sector and arc AB
generates the zone which is the base of the spherical sector.

area of a zone. volume of a spherical cone

374. Area of a Zone. An argument precisely like that of § 368
shows that the area of a zone is

s = 2πrh,

where h is the altitude of the zone.

That is, instead of AB, the diameter in case of the sphere, we should
have the sum of the altitudes of the frustums circumscribed about the
zone equal to h, the altitude of the zone.

375. Volume of a Spherical Cone and a Spherical Sector.
An argument precisely like that of § 371 shows that the volume of a
spherical cone is

v =
r

3
· s,

where s is the area of the zone of one base which is cut out of the sphere
by the cone. Hence, if h is the altitude of this zone, we have

v =
r

3
· 2πrh =

2π

3
r2h.

In like manner the volume of a spherical sector is

v =
2π

3
r2h,

where h is the altitude of the zone of two bases which is cut out by the
sector.



THE SPHERE 155

exercises

1. The radius of a sphere is 6 in. and the altitude of a zone is 5 in.
Find the area of the sphere and of the zone.

2. The area of a zone is 36π sq. ft. and its altitude 4 ft. Find the
radius of the sphere.

3. On a sphere of radius 8 in. a spherical cone cuts out a zone whose
altitude is 2 in. Find the volume of the cone.

4. Find the volume of the spherical sector cut out of a sphere of
radius 9 in., if the altitude of the zone is 2 in.

volume of a spherical segment

376. Problem To find the volume of a
spherical segment.

Solution. Let r be the radius of the sphere,
and r1 and r2 the radii of the bases of the segment,
h the altitude of the segment, and let the segment
be generated by revolving the figure ACDB about
AO as an axis.

We have Vol. generated by ODB =
2π

3
r2h. § 375

Vol. generated by OAB =
π

3
r2
1(h+ d). (Why?)

Vol. generated by OCD =
π

3
r2
2d. (Why?)

Hence, v =
2π

3
r2h+

π

3
r2
1(h+ d)− π

3
r2
2d

=
π

3

î
2r2h+ r2

1h+ d(r2
1 − r2

2)
ó
. (1)

From r2 = r2
2 + d2 and r2 = r2

1 + (h+ d)2

we obtain d =
r2
2 − r2

1 − h2

2h
. (2)
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Substituting this value of d in r2 = r2
2 + d2,

we get r2 =
r4
2 + r4

1 + h4 − 2r2
1r

2
2 + 2h2r2

2 + 2h2r2
1

4h2
. (3)

Substituting (2) and (3) in (1) and reducing, we have

v =
πh

2
(r2

1 + r2
2) +

π

6
h3. Q. E. F.

377. Corollary. The volume of a spherical segment of one base
is

v = πh2

Ç
r − h

3

å
.

Suggestion. In this case r21 = 0 and r22 = r2 − (r − h)2 = 2rh − h2.
Substituting in the formula above, we have the result.

summary of book v

1. Define sphere, diameter, radius.

2. Collect the theorems of Book V involving plane sections of the
sphere.

3. Define axis and pole of a circle, great circle, polar distance.

4. Define tangent plane to a sphere, inscribed and circumscribed
polyhedrons.

5. Arrange in parallel columns the corresponding theorems on tri-
hedral angles and spherical triangles which are proved without the use
of polar triangles.

6. Collect the definitions on polar triangles.

7. Collect the theorems on polar triangles.

8. Continue the lists begun in Example 5, adding the theorems
proved by means of polar triangles.

9. Make a list of the definitions involving polyhedral angles and
spherical polygons.
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10. Collect the theorems involving polyhedral angles and spherical
polygons.

11. Collect the theorems on the areas of spherical triangles and poly-
gons.

12. Give the definitions and assumptions pertaining to the area and
volume of the sphere.

13. State all the theorems pertaining to the area and volume of the
sphere.

14. Give the definitions and theorems pertaining to spherical figures,
such as zones, cones, sectors, segments.

15. Collect all the mensuration formulas in this Book.

16. Collect all the mensuration formulas of solid geometry.

17. Describe some of the most important applications in this Book.
Return to this question after studying the following sets of problems.

problems on book v

1. What part of the earth’s surface lies in the torrid zone? What
part in the temperate zones? What part in the frigid zones? The
parallels 231

2
◦ north and south of the equator are the boundaries of the

torrid zone, and the parallels 661
2
◦ north and south are the boundaries

of the frigid zones.

2. Find to four places of decimals the area of a sphere circumscribed
about a cube whose edge is 6. No square root is to be approximated in
the process, and the value of π is taken as 3.1416.

3. Can the volume of the sphere in the preceding exercise be ap-
proximated without finding a square root? Find the volume.

4. Find the area of a sphere circumscribed about a rectangular par-
allelopiped whose sides are a, b, and c.

5. Find the volume of the sphere in the preceding example.
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6. A fixed sphere with center O has its center on another sphere with
center O′. Show that the area of the part of O′ which lies within O is
equal to the area of a great circle of the sphere O, provided the radius
of the sphere O is not greater than the diameter of O′.

Suggestion. Let the figure represent a cross

section through the centers of the two spheres.
Connect O with A and B. Then OA

2 = OB ×
OD. But OD is the altitude of the zone of O′

which lies within O, and OB is the diameter of the
sphere O′. Hence, the area of the zone is πOB ×
OD = πOA

2.

7. Given a solid sphere of radius 12 inches. A cylindrical hole is
bored through it so that the axis of the cylinder passes through the
center of the sphere. What area of the sphere is removed if the diameter
of the hole is 4 inches?

8. Find the volume removed from the sphere by the process de-
scribed in the preceding exercise.

9. A cylindrical post 6 in. in diameter is surmounted by a part of a
sphere 10 in. in diameter, as shown in the figure. Find the surface and
the volume of the part of the sphere used.

10. A cylindrical post 5 ft. long and 4 in. in di-
ameter is surmounted by a part of a sphere 9 in. in
diameter as shown in the figure. Find the volume
of the whole post including the spherical part.

11. Find the volume of a spherical shell one
inch thick if its outer diameter is 8 inches.

12. Compare the volumes and areas of a sphere
and the circumscribed cylinder.

13. In a sphere of radius r a cylinder is inscribed whose altitude is
equal to its diameter. Compare its volume and area with those of the
sphere.

14. Find the diagonal of a cube in terms of its side, and also a side
in terms of half the diagonal.
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15. Express the volume of a cube inscribed in a sphere in terms of
the radius of the sphere.

16. Three spheres each of radius r are placed on a plane so that each
is tangent to the other two. A fourth sphere of radius r is placed on
top of them. Find the distance from the plane to the top of the upper
sphere.

17. Find the vertical distance from the
floor to the top of a triangular pile of spher-
ical cannon balls, each of radius 5 inches,
if there are 3 layers in the pile.

18. Solve a problem like the preceding
if there are 16 layers in the pile, each shot
of radius r.

formulas developed in books iii, iv, v

1. If V is the volume of a rectangular parallelopiped whose dimen-
sions are a, b, c, then

V = abc.

2. If V is the volume, b the area of the base, and h the altitude of a
prism or cylinder, then

V = hb.

3. If S is the lateral surface, p the perimeter of a right section of a
prism or cylinder, and e the lateral edge or element, then

S = pe.

4. If V is the volume, b the area of base, and h the altitude of a
pyramid or cone, then

V = 1
3
bh.

5. If S is the lateral area, p the perimeter of the base, and l the slant
height of a regular pyramid or cone, then

S = 1
2
pl.
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6. If V is the volume, b the lower base, b′ the upper base, and h the
altitude of a frustum of pyramid or cone, then

V = 1
3
h(b+ b′ +

√
bb′).

7. If S is the area of the surface, V the volume, and r the radius of
a sphere, then

S = 4πr2 and V = 4
3
πr3.

8. If a is the spherical excess in degrees of a spherical polygon, S
the area in square units, and r the radius of a sphere, then

S =
a

720
· 4πr2.

9. If S is the area, h the altitude, and r the radius of a lune, then

S = 2πrh.

10. If V is the volume of spherical cone, h the altitude, and r the
radius of the sphere, then

V =
2π

3
r2h.

11. If V is the volume of a spherical segment, r the radius of the
sphere, r1 and r2 the radii of the bases, and h the altitude of the
segment, then

V =
πh

2
(r2

1 + r2
2) +

π

6
h3.

supplementary exercises in computation

1. Find the volume of a rectangular parallelopiped if
(1) a = 6

b = 8
c = 72

3

(2) a = 7
8

b = 9
10

c = 3

(3) a =
√

3

b =
√

6
c = 4

(4) a = 3
√

5

b =
√

15
c = 3

2. Find volume of a prism, or cylinder, if
(1) b = 12

h = 16
(2) b =

√
3

h =
√

6

(3) b = 4
√

2

h =
√

10

(4) b = 31
4

h = 4
√

3
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3. Find volume of a pyramid or cone if
(1) b = 46

h = 12
(2) b = 471

2

h = 10
(3) b = 34π

h = 8
(4) b = 42π

h = 6
√

2

4. Find the lateral surface of a regular pyramid or cone if
(1) p = 8

l = 7
(2) p = 3

√
7

l =
√

21

(3) p =
√

7

l =
√

14

(4) p = 3
√

2

l = 4
√

6

5. Find the volume of a frustum of a pyramid or cone if
(1) b = 8

b′ = 6
h = 4

(2) b = 2
√

2

b′ =
√

3
h = 6

(3) b = 16π
b′ = 9π
h = 3

(4) b = 3
√

2

b′ = 6
√

3
h = 8

6. Find the volume or surface of a sphere if
r = 4, r = 8, r = 3

√
2, r = 7

√
3, r = 12

√
6

7. Find the area of a spherical polygon if
(1) a = 84◦

r = 12
(2) a = 112◦ 30′

r = 8
(3) a = 49◦ 25′ 17′′

r = 14

miscellaneous review exercises

A. LOCUS PROBLEMS

1. Find the locus of all points in space equally distant from two
parallel lines and also from two parallel planes. Discuss.

2. Find the locus of all points in space equally distant from each of
two intersecting straight lines and also from two intersecting planes.
Discuss.

3. What is the locus of all points at a perpendicular distance of 2 feet
from a given line and lying in a plane parallel to the line? Discuss.

4. Find the locus of all points equidistant from two given points A
and B, and also equidistant from two planes M and N . Discuss.

5. What is the locus of all points on the floor of a room which are
equally distant from two diagonally opposite corners of the room, one
in the floor and one in the ceiling?

6. Find the locus of all points on a sphere where it is met by line-
segments of equal length drawn from a fixed point P outside the sphere.
Discuss.
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7. Find the locus of all points which are at the same fixed distance
from each of two intersecting planes,M and N , and also equally distant
from two planes, P and Q.

8. Given a plane M and a point P not in M . Find the locus of a
point which divides in a given ratio each segment connecting P with a
point in M : (a) if the segments are divided internally; (b) if they are
divided externally.

9. A segment AB of fixed length is free to move so that its end-
points lie in two fixed parallel planes. Find the locus of a point C on
AB if AC is of fixed length.

10. Given two fixed points in space, through each of which passes a
system of straight lines. If each line of one system is perpendicular to
a line of the other system, find the locus of the intersection points.

B. PROBLEMS IN NUMERICAL COMPUTATION

1. A pedestal for a monument is in the shape of a frustum of a
regular hexagonal pyramid, the radius of the upper base being 4 ft.,
that of the lower base 6 ft., and the altitude of the frustum 8 ft. Find
its volume, slant height, and lateral surface.

2. The area of the lower base of a frustum of a pyramid is 42 sq. ft.,
its altitude 8 ft., and volume 200 cu. ft. Find the area of the upper
base.

3. The area of the base of a pyramid is 480 sq. ft. and its altitude
30 ft. Find the volume of the frustum remaining after a pyramid with
altitude 10 ft. has been cut off by a plane parallel to the base.

4. The area of the base of a pyramid is 250 sq. in. If a plane section
of the pyramid parallel to the base and at a distance of 5 in. from it
has an area of 175 sq. in., find the altitude of the pyramid.

5. The figure below represents a solid whose base is a rectangle 50 ft.
long and 40 ft. wide. Its height is 12 ft. and its top a rectangle 20 ft.
by 10 ft. Find its volume.
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6. A frustum of a right circular cone has an altitude one half that
of the cone. If its slant height is 8 ft. and lateral area 64π sq. ft., find
the diameters of its bases.

7. If the area of the base of a cone is 16π sq. in. and its altitude
6 in., find the distance from the vertex to a plane, parallel to the base,
which cuts out a section of area 9π sq. in.

C. PROBLEMS IN ALGEBRAIC COMPUTATION

1. Find the total area and the volume of a regular tetrahedron each
of whose edges is e.

2. If the numerical values of the volume and of the total area of a
regular tetrahedron are equal, what is the length of its edge?

3. Find the length of an edge of a regular tetrahedron if its volume
is numerically equal to the square of the edge.

4. Cut a pyramid of altitude h by means of a plane parallel to the
base so that the perimeter of the section shall be one third that of the
base.f

5. If the altitude of a pyramid is h, how far from the base must a
plane parallel to it be drawn so that the area of its cross section shall
be one third that of the base of the pyramid?

6. In a regular right pyramid a plane parallel to the base cuts it so
as to make a section whose area is one third that of the base. Find
the ratio between the lateral area of the pyramid and that of the small
pyramid cut off by the plane.

fThis is the declarative form of Question 5. —Trans.
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7. If the diameter of a right circular cylinder is equal to its altitude,
determine the diameter so that the total area of the cylinder shall be
equal numerically to its volume.

8. Cut a right circular cone of altitude h by a plane parallel to the
base so that the area of the section shall be one third that of the base.
Find the distance from the vertex to the plane.

9. Show that the lateral area of the small cone cut off in Example 8
is one third the lateral area of the original cone.

10. In a right circular cone, with altitude h,
and r the radius of its base, a cylinder is inscribed
as shown in the figure. Find the radius OF of the
cylinder if the area of the ring bounded by the
circles OF and OA is equal to the lateral area of
the small cone cut off at the top.

D. PROBLEMS IN CONSTRUCTION

1. Construct a plane tangent to a given sphere and parallel to a
given plane. How many such planes are there?

Suggestion. From the center of the sphere pass a line perpendicular to the
given plane and draw tangent planes at the points where this line meets the
surface of the sphere. See §§ 306, 129.

2. Construct a plane tangent to a given sphere and perpendicular to
a given line. How many such planes are there?

3. How many planes may be tangent to a sphere at a point on the
sphere? How many lines? Show how to construct them.

4. Through a given point exterior to a sphere construct a line tangent
to the sphere.

5. How many lines tangent to a sphere can be constructed from a
point outside the sphere?

6. Through a given point exterior to a sphere construct a plane
tangent to the sphere. How many planes can be passed through a
given exterior point tangent to the sphere?
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7. How many planes tangent to a sphere can be passed through two
given points A and B outside a sphere? Discuss fully if the line AB
(1) meets the sphere in two points; (2) is tangent to the sphere; (3) does
not meet the sphere. Show how to make the constructions.

8. Is it possible to construct a spherical triangle each of whose an-
gles is a right angle? Show how to construct one. In a trirectangular
spherical triangle what is the length of each side in terms of degrees?

9. Construct a spherical triangle such that its polar triangle is iden-
tical with the given triangle.

10. Construct a spherical triangle whose sides are 70◦, 80◦, and 110◦,
respectively, and find the sides of each of the eight triangles formed by
its polar construction.

E. THEOREMS TO BE PROVED

1. Prove that planes perpendicular to the faces of a trihedral angle
and bisecting its face angles meet in a line.

2. Prove that if in two tetrahedrons three faces of one are equal
respectively to three faces of the other and similarly placed about a
vertex, the tetrahedrons are equal.

3. Prove that two tetrahedrons are equal if two faces and the in-
cluded dihedral angle are equal and similarly placed.

4. In any regular tetrahedron, an altitude equals three times the
perpendicular from its foot to any face; or an altitude equals the sum of
the perpendiculars to the faces from any point within the tetrahedron.

5. In a cylinder of revolution the diameter of whose base equals the
altitude, the volume equals one third the product of the total surface
by the radius of the base.

6. If two intersecting planes are each tangent to a cylinder, show
that their line of intersection is parallel to an element of the cylinder
and also parallel to the plane containing the two elements of contact.

7. The volume of a frustum of a right circular cone equals the sum
of a cylinder and a cone of the same altitude as the frustum, and with



166 SOLID GEOMETRY: BOOK V

radii which are respectively the half sum and the half difference of the
radii of the frustum.

8. Of circles on a sphere whose planes pass through a given point
within the sphere, the smallest is that circle whose plane is perpendic-
ular to the diameter through the given point.

9. A right triangular prism is cut by a plane not
parallel to the base, but such that its intersection
DE is parallel to the base segment AB. Show that
the volume of the part thus cut off is one third the
product of the sum of the three vertical edges and
the area of the base.
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Adrien Marie Legendre (1752–1833) was a celebrated French math-
ematician. He was one of three commissioners who introduced the met-
ric system in France, having also been a member of the commission for
determining the length of the meter.

Besides many treatises on advanced subjects, he wrote a book on el-
ementary geometry which was the most successful of the many attempts
to supersede Euclid as a text-book. It went through many editions in
French and was translated into almost every other civilized language.
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appendix i: similar solids

378. Similar Cylinders. Two right circular cylinders are similar if
they are generated by similar rectangles revolving about corresponding
sides.

379. Theorem I. If in two similar cylinders s and s′

are the lateral areas, S and S ′ the total areas, V and V ′ the
volumes, h and h′ the altitudes, and r and r′ the radii, then

s

s′
=
S

S ′
=
r2

r′2
=
h2

h′2
and

V

V ′
=
r3

r′3
=
h3

h′3
.

Suggestions for Proof : To find the ratios
s

s′
and

S

S ′
, make use of

the following, giving reasons for each in detail.

(1) s = 2πrh, (2) S = 2πr(r + h),

(3)
r

r′
=
h

h′
, and (4)

r + h

r′ + h′
=
r

r′
=
h

h′
.

To find the ratio
V

V ′
make use of V = πr2h, and V = πr′2h′, and

r

r′
=
h

h′
.
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ratios relating to similar cones

380. Similar Cones. Two right circular cones are similar if they
are generated by two similar right triangles revolving about correspond-
ing sides.

381. Theorem II. If in two similar cones s and s′ are
the lateral areas, S and S ′ the total areas, V and V ′ the
volumes, h and h′ the altitudes, and r and r′ the radii, then

s

s′
=
S

S ′
=
r2

r′2
=
h2

h′2
and

V

V ′
=
r3

r′3
=
h3

h′3
.

Suggestions for Proof : See suggestions under § 379.

exercises

1. The lateral area of a cone is 36 square inches. What is the lateral
area of a similar cone whose altitude is 3

4
that of the given cone?

2. The total area of one of two similar cones is three times that of
the other. Compare their altitudes and also their radii.

3. The sum of the total areas of two similar cones is 144 square
inches. Find the area of each cone if one is 13

4
times as high as the

other.

4. The volume of one of two similar cones is 5 times that of the
other. Compare their altitudes.



170 SOLID GEOMETRY: APPENDIX I

conditions for similarity of tetrahedrons

382. Similar Polyhedrons. Two polyhedrons are similar if they
have the same number of faces similar each to each and similarly placed,
and have their corresponding polyhedral angles equal.

Any two parts which are similarly placed are called corresponding
parts, as corresponding faces, edges, vertices.

383. Theorem III. Two tetrahedrons are similar if
three faces of one are similar respectively to three faces of
the other, and are similarly placed.

Given the tetrahedrons P − ABC and P ′ − A′B′C ′ having
4APB ∼ 4A′P ′B′, 4APC ∼ 4A′P ′C ′, and 4BPC ∼ 4B′P ′C ′.

To prove P − ABC ∼ P ′ − A′B′C ′.

Proof : (1) Show that 4ABC ∼ 4A′B′C ′.
(2) Show that trihedral ∠s P and P ′ are equal.

Likewise ∠A = ∠A′, ∠B = ∠B′, ∠C = ∠C ′.

Hence, by definition, the polyhedrons are similar.

sight work

1. If the two prisms in the figure
are similar, name the pairs of corre-
sponding parts. Likewise for two sim-
ilar pyramids.
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tetrahedrons having two equal trihedral angles

384. Theorem IV. The volumes of two tetrahedrons,
having a trihedral angle of the one equal to a trihedral angle
of the other, are proportional to the products of the edges
which meet in the vertices of these angles.

Given the tetrahedrons P − ABC and P ′ − A′B′C ′ whose
volumes are V and V ′ and in which Tri. ∠P = Tri. ∠P ′.

To prove that
V

V ′
=

PA · PB · PC
P ′A′ · P ′B′ · P ′C ′

.

Proof : Place P ′−A′B′C ′ so that Tri. ∠P ′ coincides with Tri. ∠P .

Let CM and C ′M ′ be the altitudes of P − ABC and P − A′B′C ′
from the vertices C and C ′ upon the plane PAB.

Let AN and A′N ′ be the altitudes of the 4s PAB and PA′B′.

Then
V

V ′
=

1
3
CM · area PAB

1
3
C ′M ′ · area PA′B′

=
CM · PB · AN
C ′M ′ · PB′ · A′N ′

.

Now prove
CM

C ′M ′ =
PC

PC ′
and

AN

A′N ′
=
PA

PA′
.

Hence, we have
V

V ′
=

PC · PB · PA
P ′C ′ · P ′B′ · P ′A′

.

Give all the steps and reasons in detail.
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volumes of similar tetrahedrons

385. Theorem V. The volumes of two similar tetra-
hedrons are in the same ratio as the cubes of their corre-
sponding edges.

Given P − ABC ∼ P ′ − A′B′C ′, with volumes V and V ′.

To prove that
V

V ′
=

PA
3

P ′A′
3 .

Proof : We have
V

V ′
=

PA · PB · PC
P ′A′ · P ′B′ · P ′C ′

. § 384

Now use the properties of similar triangles to complete the proof.
Use the figure of § 384.

exercises

1. Show that two tetrahedrons are similar if they have a dihedral
angle of one equal to a dihedral angle of the other and the including
faces similar each to each and similarly placed.

2. Show that the total areas of two similar tetrahedrons are in the
same ratio as the squares of any two corresponding edges.

3. Show that if each of two polyhedrons is similar to a third they
are similar to each other.

4. Two similar tetrahedral mounds have a pair of corresponding di-
mensions 3 ft. and 4 ft. If one mound contains 40 cu. ft. of earth, how
much does the other contain?

5. The edges of a tetrahedron are 3, 4, 5, 6, 7, and 8. Find the edges
of a similar tetrahedron containing 64 times the volume.

6. Find what fraction of the altitude of a tetrahedron must be cut
off by a plane parallel to the base, measuring from the vertex, in order
that the new pyramid thus detached may have one fifth of the original
volume.
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figures having a center of similitude

386. Center of Similitude. Two figures are said to have a
center of similitude O, if for any two points, A and B, of the one figure
the lines AO and BO meet the other in two points, A′ and B′, called
corresponding points, such that

OA : OA′ = OB : OB′.

See figures under §§ 387–392.

387. Theorem VI. Any two figures which have a center
of similitude are similar.

Proof : (1) Two triangles.

Given
OA

OA′
=
OB

OB′
=
OC

OC ′
.

Let the student prove that 4ABC ∼ 4A′B′C ′.
In case the triangles do not lie in the same plane, use § 101 to show

that the corresponding ∠s are equal.
(2) Two polygons.

Given
OA

OA′
=
OB

OB′
=
OC

OC ′
, etc.
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Give the proof both for polygons in the same plane and not in the
same plane.

(3) Two tetrahedrons.

With the same hypothesis as before, we must prove 4PAB ∼
4P ′A′B′, 4PBC ∼ 4P ′B′C ′, 4PCA ∼ 4P ′C ′A′, and then use
§ 383.

(4) Any two polyhedrons.
(a) Prove corresponding polygonal faces similar.
(b) Prove corresponding polyhedral angles equal.
The last step requires not only equal face angles about the vertex,

as in the case of the tetrahedron, but also equal dihedral angles. Note
that two dihedral angles are equal if their faces are parallel right face
to right face and left face to left face. (Why?)

(5) Consider any two figures whatsoever having a center of simili-
tude.

(a) Take any three points A, B, C, in one figure and the three
corresponding points, A′, B′, C ′, in the other.

Then AB and A′B′, AC and A′C ′, etc., are called corresponding
linear dimensions, and the triangles ABC and A′B′C ′ are corresponding
triangles.

(b) It is clear that any two corresponding linear dimensions have the
same ratio as any other two, and that any two corresponding triangles
are similar.

In this sense any two figures having a center of similitude are thus
proved to be similar.
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similar triangles placed in similitude

388. Ratio of Similitude. The ratio of similitude of two similar
figures is the common ratio of their corresponding linear dimensions.
This ratio is the same as the distance ratio of corresponding points from
the center of similitude.

389. Theorem VII. Two similar triangles may be so
placed as to have a center of similitude.

Given the similar triangles T and T ′, in which
A′B′

AB
=
A′C ′

AC
=

B′C ′

BC
.

To prove that they may be placed with a center of similitude.

Proof : From any point O draw OA, OB, OC.

On these rays take A1, B1, C1 so that

OA1

OA
=
OB1

OB
=
OC1

OC
=
A′B′

AB
.

Now show the following:

(1) 4T1 ∼ 4T , and hence 4T1 ∼ 4T ′.
(2) 4T1 = 4T ′.
For this show that A1B1 = A′B′ by means of the equations

A1B1

AB
=
OA1

OA
and

A′B′

AB
=
OA1

OA
.
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Likewise A1C1 = A′C ′ and B1C1 = B′C ′.

(3) Finally,
OM1

OM
=

OA1

OA
, where M and M1 are any two corre-

sponding points.

Hence O is the required center of similitude.

similar tetrahedrons placed in similitude

390. Theorem VIII. Two similar tetrahedrons may be
so placed as to have a center of similitude.

Given the similar tetrahedrons T and T ′.

To prove that they can be placed so as to have a center of similitude.

Proof : With O as a center of similitude, construct T1, making

OA

OA1

=
OB

OB1

= etc. =
AB

A′B′
.

Now show as in § 389 that T1 = T ′, and hence that T ′ can be placed
in the position T1 so as to have with T the center of similitude O.

Give all the steps in detail.

391. Corollary. Any two similar polyhedrons may be placed so
as to have a center of similitude.

Suggestion. The argument is precisely similar to that in § 390.
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center of similitude within the figure

392. In the proofs for the two preceding theorems the center of
similitude was taken between the two figures or on the same side of
them. The center may be taken equally well within them, as in the
following illustrations:

In the case of similar convex polyhedrons with the center of simil-
itude thus placed, the faces are the bases of pyramids whose vertices
are all at the center of similitude.

If, further, the polygonal faces be divided into triangles by drawing
their diagonals, these triangles become the bases of tetrahedrons, all of
whose vertices are at the center of similitude.

Moreover, each inner tetrahedron is
similar to its corresponding outer tetra-
hedron. (Why?)
The volumes of the two similar polyhe-
drons are thus composed of the sums of
sets of similar tetrahedrons.

sight work

1. Give the proof of § 389, using Fig. 1 above, and extend the argument
to two similar polygons, using Fig. 2.

2. Draw two similar tetrahedrons with their center of similitude within
them, and give the proof of § 390 with the figure thus made.

3. Give the proof of § 390, using Fig. 3 above.
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ratio of volumes of similar polyhedrons

393.Theorem IX. The volumes of any two similar poly-
hedrons are proportional to the cubes of their corresponding
edges.

Proof : Place the polyhedrons whose volumes are V and V ′ so as
to have their center of similitude within them as in the third figure of
§ 392.

Call the volumes of the similar tetrahedrons T1, T2, T3, . . . , and T ′1,
T ′2, T ′3, . . . , and let AB and A′B′ be two corresponding edges.

Then we have

AB
3

A′B′
3 =

T1

T ′1
=
T2

T ′2
=
T3

T ′3
= · · · . (Why?)

And
T1 + T2 + T3 + · · ·
T ′1 + T ′2 + T ′3 + · · ·

=
T1

T ′1
=

AB
3

A′B′
3 . (Why?)

But T1 + T2 + T3 · · · = V and T ′1 + T ′2 + T ′3 · · · = V ′.

Hence,
V

V ′
=

AB
3

A′B′
3 .

394. Corollary. The volumes of any two similar solids are
proportional to the cubes of any two corresponding linear dimensions.

This proposition may be rendered evident by noticing that any two
similar three-dimensional figures may be built up to any degree of ap-
proximation by means of pairs of similar tetrahedrons similarly placed.
The proposition then holds for any two corresponding figures used in
the process of approximation.

Note that the ratio of similitude of two similar figures may be ob-
tained from the ratio of any pair of their corresponding linear dimen-
sions.
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applications of similarity

395. The Pantograph. The theorem that any two figures which
have a center of similitude are similar is the geometric basis of many
mechanical contrivances for enlarging or reducing both plane and solid
figures; that is, for constructing figures similar to given figures and
having with them a given ratio of similitude.

The essential property of all
such contrivances is that one point
O is kept fixed, while two points A
and B are allowed to move so that
O, A, and B always remain in a
straight line, and so that the ratio
OA : OB remains the same. See
page 216 of Plane Geometry.

In the first figure on this page O is a fixed point. Segments OD,
CB, and the sides of the parallelogram ACED are of fixed length.

Prove that if B is once so taken on the line EC as to be in the
line OA, the points O, A, and B will always remain collinear, and that
OA : OB remains a fixed ratio.

In the second figure is shown an
ordinary pantograph used for copy-
ing and at the same time for reduc-
ing or enlarging maps, designs, etc.
The lengths of the various segments
are adjustable, as shown, thus ob-
taining any desired scale.

The same contrivance may be used for copying figures in space, such
as relief maps, and at the same time reducing or enlarging them.

ratios relating to any two similar solids

396. Corresponding Cross Sections. Now consider any two
similar figures whatever so placed as to have a center of similitude O.
We have seen that if points A, B and A′, B′ are corresponding points
of the two figures, then the ratio of the corresponding linear dimensions
AB and A′B′ is equal to the ratio of similitude m : n of the two figures.
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Also if A, B, C, D and A′, B′, C ′, D′ are corresponding points,
then 4s ABC and A′B′C ′, and the tetrahedrons ABCD and A′B′C ′D′
are similar, and we have

area ABC
area A′B′C ′

=
m2

n2
and

vol. ABCD
vol. A′B′C ′D′

=
m3

n3
.

The points A, B, C and A′, B′, C ′ determine two planes, each
of which intercepts a certain plane figure in the solid figure to which
the points belong. These two plane figures we call corresponding cross
sections.

We assume without full argument:

397. Theorem X. (1) The ratio of the areas of any pair
of corresponding cross sections or any pair of corresponding
surfaces of similar figures is equal to the square of their ratio
of similitude, and

(2) The ratio of the volumes of any two similar figures
is equal to the cube of their ratio of similitude.

The fact that the ratio of the areas of corresponding surfaces of
similar solids is equal to the square of their ratio of similitude, while
the ratio of their volumes equals the cube of this ratio is one of the
most important and far-reaching conclusions of geometry.

Thus the ratio of the weights of two similar shells used in gunnery,
or the ratio of the weights of two men of similar build, may be found
when their ratio of similitude is known.

problems and applications

1. If it is known that a steel wire of radius r will carry a certain
weight w, how great a weight will a wire of the same material carry if
its radius is 2r?

Suggestion. The tensile strengths of wires are in the same ratio as their
cross-section areas.

2. Find the ratio of the diameters of two wires of the same material
if one carries twice the load of the other; three times the load.
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3. In a laboratory experiment a heavy iron ball is suspended by a
steel wire. In suspending another ball of twice the diameter a wire of
twice the radius of the first one is used. Is this perfectly safe if it is
known that the first wire will just safely carry the ball suspended from
it? Discuss fully.

4. In two schoolrooms of the same shape (similar figures) but of
different size, the same proportion of the floor space is occupied by
desks. Which contains the larger amount of air for each pupil?

5. If the shells used in guns are similar in shape, find the ratio of
the total surface areas of an eight-inch and a twelve-inch shell.

6. Find the ratio of the weights of the shells in the preceding prob-
lem, weights being in the same ratio as the volumes.

7. If a man 5 ft. 9 in. tall weighs 165 lb., what should be the weight
of a man 6 ft. 1 in. tall, if they are similar in shape?

8. What is the diameter of a gun which fires a shell weighing twice
as much as a shell fired from an eight-inch gun, supposing the shells to
be similar bodies?

9. Supposing two trees to be similar in shape, what is the diameter
of a tree whose volume is three times that of one whose diameter is
2 feet? What is the diameter if the volume is five times that of the
given tree? What if it is n times that of the given tree?

10. Assuming that the weights of schoolboys vary as the cubes of
their heights, construct a graph representing the relation between their
heights and weights, if a boy 5 feet 9 inches tall weighs 130 pounds.

Suggestion. If w represents the number of pounds in weight and h the number
of feet in height, w = kh3. From w = 130, when h = 53

4 , we have k = .684.
For the purpose of the graph, k = .7 is accurate enough.

11. From the graph constructed in the preceding example find the
weight of a boy 5 feet tall; one 5 feet 4 inches; one 5 feet 6 inches.
Compare with the weights of boys in your class.

12. If a man 6 feet tall weighs 185 pounds, construct a graph repre-
senting the weights of men of similar build and of various heights.
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13. If steamships are of the same shape, their tonnages vary as the
cubes of their lengths. The Mauretania is 790 feet long, with a net
tonnage of 32, 500. Construct a graph representing the tonnage of
steamships of the same shape, and of various lengths.

Other ships which at one time or another have held ocean records are:
the (former) Deutschland, length 686 ft. and tonnage 16, 500; the (for-
mer) Kaiser Wilhelm der Grosse, length 648 ft. and tonnage 14, 300; the
Lucania, length 625 ft. and tonnage 13, 000 (nearly); and the Etruria,
length 520 ft. and tonnage 8000. By means of this graph decide whether
or not these boats have greater or less tonnage than the Mauretania as
compared with their lengths.

14. Raindrops as they start to fall are extremely small. In the course
of their descent a great many are united to form larger and larger drops.
If 1000 such drops unite into one, what is the ratio of the surface of the
large drop to the sum of the surfaces of the small drops?

15. The strength of a muscle varies as its cross-section area, which
in turn varies as the square of the height or length of an animal, while
the weight of the animal varies as the cube of its height or length. Use
these facts to explain the greater agility of small animals. For example,
compare the rabbit and the elephant.

16. Assuming the velocities the same, the amounts of water flowing
through pipes vary directly as their cross-section areas. How many
pipes, each 4 in. in diameter, will carry as much water as one pipe
12 in. in diameter?

17. What must be the diameter of a cylindrical conduit which will
carry enough water to supply ten circular intakes each 8 feet in diam-
eter?

18. A water reservoir, including its feed pipes, is replaced by another,
each of whose linear dimensions is twice the corresponding dimensions
of the first. If the velocity of the water in the feed pipes of the new
system is the same as that in the old, will it take more or less time to
fill the new reservoir than it did the old? What is the ratio of the new
time to the old?

19. If two engine plants are exactly similar in shape, but each linear
dimension in one is three times the corresponding dimension of the
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other, and if the steam in the feed pipes flows with the same velocity
in both, compare the speeds of the engines.

20. If two men, one 5 ft. 6 in. and the other 6 ft. 2 in. in height, are
similar in structure in every respect, how much faster must the blood
flow in the larger person in order that the body tissues of both shall be
supplied equally well?

Suggestion. Note that the amount of tissue to be supplied varies as the cube
of the height, while the cross-section area of the arteries varies as the square
of the height.

appendix ii: projection of line-segments

398. Length of Projection. The projection of a line-segment on
a plane was shown in § 121 to be another line-segment. The length of
this projection will now be computed in terms of the given line-segment.

399. Cosine of Projection Angle. The acute angle between
a line-segment and a given line on which it is projected is called the
projection angle.

If l is the length of a line-segment and p the length of its projection,
then the ratio p : l is called the cosine of the projection angle.

E.g., in Fig. 1,
p

l
= cosine∠BAE.

400. Sine, Cosine, Tangent. In any right triangle ABC (Fig. 2),
either acute angle, as ∠A, is the projection angle between the hy-
potenuse and the side adjacent to the angle.

Hence the cosine of an acute angle of a right triangle is the ratio of
the adjacent side to the hypotenuse.
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Likewise we define the sine of an acute angle of a right triangle as
the ratio of the opposite side to the hypotenuse, and the tangent of an
acute angle of a right triangle as the ratio of the opposite side to the
adjacent side.

Using the common abbreviations, sin, cos, and tan, we have in
Fig. 2,

sinA =
a

c
, cosA =

b

c
, tanA =

a

b
.

exercises on sines, cosines, tangents

The sine, cosine, and tangent are of great importance in many com-
putations. By careful measurement (and in other ways) their values
may be computed for any acute angle, and a table formed, like that on
page 186.

E.g., if ∠A = 35◦ (measured with a protrac-
tor), and if we measure AC, AB, and BC, and

then compute the ratios
a

c
,
b

c
, and

a

b
, we shall

find the values of sin 35◦, cos 35◦, tan 35◦.

With an ordinary ruler it will not usually be possible to make these
measurements with sufficient accuracy to obtain more than one decimal
place.

exercises

1. Using a protractor, construct angles of 10◦, 30◦, 50◦, 70◦, and by
measurement determine the sine, cosine, and tangent of each.

2. Prove that the cosine of any given angle
is the same, no matter what point is taken in
either side from which to let fall the perpen-
dicular to the other side. Prove the same for
the tangent.

3. Show that if the hypotenuse be taken one decimeter in length,
then the length of the side adjacent, measured in decimeters, is the
cosine of the angle, and the length of the side opposite is the sine of
the angle.
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4. Show that if the side adjacent be taken one decimeter in length,
the length of the side opposite, measured in decimeters, is the tangent
of the angle.

5. Without any direct measurement, show how to compute the three
ratios for each of the angles 30◦, 45◦, 60◦.

Suggestion. Make use of the fact that if one acute angle in a right triangle
is 30◦, the side opposite it is one half the hypotenuse.
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table of sines, cosines, and tangents

Angle Sin Cos Tan Angle Sin Cos Tan
0◦ 0 1.000 0 46◦ .719 .695 1.04
1◦ .017 1.000 .017 47◦ .731 .682 1.07
2◦ .035 .999 .035 48◦ .743 .669 1.11
3◦ .052 .999 .052 49◦ .755 .656 1.15
4◦ .070 .998 .070 50◦ .766 .643 1.19
5◦ .087 .996 .087 51◦ .777 .629 1.23
6◦ .105 .995 .105 52◦ .788 .616 1.28
7◦ .122 .993 .123 53◦ .799 .602 1.33
8◦ .139 .990 .141 54◦ .809 .588 1.38
9◦ .156 .988 .158 55◦ .819 .574 1.43

10◦ .174 .985 .176 56◦ .829 .559 1.48
11◦ .191 .982 .194 57◦ .839 .545 1.54
12◦ .208 .978 .213 58◦ .848 .530 1.60
13◦ .225 .974 .231 59◦ .857 .515 1.66
14◦ .242 .970 .249 60◦ .866 .500 1.73
15◦ .259 .966 .268 61◦ .875 .485 1.80
16◦ .276 .961 .287 62◦ .883 .469 1.88
17◦ .292 .956 .306 63◦ .891 .454 1.96
18◦ .309 .951 .325 64◦ .899 .438 2.05
19◦ .326 .946 .344 65◦ .906 .423 2.14
20◦ .342 .940 .364 66◦ .914 .407 2.25
21◦ .358 .934 .384 67◦ .921 .391 2.36
22◦ .375 .927 .404 68◦ .927 .375 2.48
23◦ .391 .921 .424 69◦ .934 .358 2.61
24◦ .407 .914 .445 70◦ .940 .342 2.75
25◦ .423 .906 .466 71◦ .946 .326 2.90
26◦ .438 .899 .488 72◦ .951 .309 3.08
27◦ .454 .891 .510 73◦ .956 .292 3.27
28◦ .469 .883 .532 74◦ .961 .276 3.49
29◦ .485 .875 .554 75◦ .966 .259 3.73
30◦ .500 .866 .577 76◦ .970 .242 4.01
31◦ .515 .857 .601 77◦ .974 .225 4.33
32◦ .530 .848 .625 78◦ .978 .208 4.70
33◦ .545 .839 .649 79◦ .982 .191 5.14
34◦ .559 .829 .675 80◦ .985 .174 5.67
35◦ .574 .819 .700 81◦ .988 .156 6.31
36◦ .588 .809 .727 82◦ .990 .139 7.12
37◦ .602 .799 .754 83◦ .993 .122 8.14
38◦ .616 .788 .781 84◦ .995 .105 9.51
39◦ .629 .777 .810 85◦ .996 .087 11.43
40◦ .643 .766 .839 86◦ .998 .070 14.30
41◦ .656 .755 .869 87◦ .999 .052 19.08
42◦ .669 .743 .900 88◦ .999 .035 28.64
43◦ .682 .731 .933 89◦ 1.000 .017 57.29
44◦ .695 .719 .966 90◦ 1.000 0
45◦ .707 .707 1.00
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length of projection of a line-segment

401. Theorem I. The length of the projection of a
line-segment upon a given line is equal to the length of the
line-segment multiplied by the cosine of the projection angle.

Given the projection p of the line-
segment l on the line CD, with the
projection angle A.
To prove that p = l cosA.

Proof : By definition we have
p

l
= cosA.

Hence, p = l cosA.

exercises

1. Find the cosines of the angles 35◦ 30′, 54◦ 15′, 15◦ 45′.

Suggestion. The cosine of 35◦ 30′ lies between cos 35◦ and cos 36◦. We assume
that it lies halfway between these numbers. This assumption, while not
quite correct, is very nearly so for small differences of angles, as in this case,
where the total difference is only one degree. From the table cos 35◦ = .819,
cos 36◦ = .809. The number midway between these is .814, which we take as
the cosine of 35◦ 30′.

This process is called interpolation. A similar process is used for sines and
tangents.

2. Find the tangents of the angles 25◦ 20′, 47◦ 45′, 63◦ 40′.

3. Find the angle whose tangent is 1.74.

Solution. From the table we have tan 60◦ = 1.73 and tan 61◦ = 1.80. Hence,
the required angle must lie between 60◦ and 61◦. Moreover, the number 1.74
is one seventh the way from 1.73 to 1.80. Hence, we assume the angle to lie
one seventh the way from 60◦ to 61◦, which gives 60◦ + 1

7 × 1◦ = 60◦ + 9′

nearly. The required angle is 60◦ 9′.

4. Find the angles whose sines are .276; .674; .437.

5. Find the angles whose cosines are .940; .094; .435.
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6. Find the angles whose tangents are .781; 1.41; 3.64.

7. At what angle with the horizontal must the
base of a right circular cylinder be tilted to make
it just topple over if its diameter is 6 ft. and its
altitude 8 ft.?
Suggestion. The center of gravity is at the middle
point C of the axis of the cylinder. The base must
be tilted so that the line AC becomes vertical. The
required angle is ∠ACB.

8. The Leaning Tower of Pisa is 179 feet high
and 31 feet in diameter. It now leans so that a
plumb line from the top on the lower side reaches
the ground 14 feet from the base. At what an-
gle is its side now inclined from the vertical? At
what angle would its side have to incline from the
vertical before it would topple over?

9. A four-inch hole is cut in a board, and
a ball 8 in. in diameter is made to rest on it.
At what angle must the board be held so that
the ball will just roll out of the hole?
Suggestion. The board must be held so that the
line OA becomes vertical.

10. Using a ball 8 inches in diameter, what
must be the radius of the hole in the board of
the preceding problem so that the ball shall just
roll out when the board is inclined at an angle of
45◦ to the horizontal?

11. If the figure ABCD−H is a cube, find each
of the following angles: ∠ECA, ∠AEC.
Check by using the fact that the sum of the angles
of a triangle is 180◦.
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altitude of oblique prism or cylinder

402. Theorem II. The altitude of an oblique prism or
cylinder is equal to an element multiplied by the cosine of
the angle between the plane of the base and that of a right
section.

Given an oblique prism or cylinder with base b and right
section c, and let BE be a perpendicular between the planes
of the bases.

Consider the plane determined by BE and the element AB.
This plane is ⊥ to the plane of b and also to the plane of c. (Why?)
Hence, it is ⊥ to the line of intersection of the planes of b and c.

(Why?)
Let this plane cut the planes of b and c in GD and FD respectively.
Then ∠D is the measure of the dihedral angle between the planes

of b and c. (Why?)

To prove that BE = AB · cosD.

Proof : We have BE = AB · cos ∠ABE. Why?
But ∠D = ∠ABE. Why?
Hence, BE = AB · cosD.

403. Corollary. The dihedral angle between the planes of the
base and a right section of an oblique cylinder or prism is equal to the
angle between an element and the altitude.
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exercises

1. Given a line-segment 10 inches long. Find the length of its pro-
jection on a plane if the projection angle is 20◦. If the angle is 30◦, 45◦,
60◦, 90◦, 0◦.

2. A kite string forms an angle of 40◦ with the ground. The distance
from the end of the string to a point directly beneath the kite is 200 ft.
Find the length of the string and the perpendicular height of the kite.

3. The altitude of an oblique prism is 15 inches. Find the length of
an element if it makes an angle of 45◦ with the perpendicular between
the bases.

4. A right section of a cylinder makes an angle of 20◦ with the plane
of the lower base. Find the ratio between the altitude and an element.

5. Prove that by joining the middle
points of six edges of a cube, as shown in
the figure, a regular hexagon is formed.

6. Prove that in the preceding exam-
ple the plane of the regular hexagon,
KLMNOP , is perpendicular to the diag-
onal DF of the cube.

7. How large a cube will be required from which to cut a stopper for
a hexagonal spout, each of whose sides is 4 inches?

8. In the figure find the angle KQH.

Suggestion. Let a be a side of the cube. Compute KH, KQ, and HQ in
terms a. Note that ∠QKH = rt. ∠.

9. Find the area of the projection of the hexagon KLMNOP on
the face BCGF . Note that this projection equals the whole square less
4NCO +4KEL. See § 404. Find the area of the hexagon in terms
of the side a of the cube.



PROJECTION OF LINE-SEGMENTS 191

area of the projection of a plane-segment

404. Projection of a Plane-Segment. If from each point in
the boundary of a plane-segment a perpendicular is drawn to a given
plane, the locus of the feet of these perpendiculars will bound a portion
of the plane, which is called the projection of the plane-segment on the
given plane.

E.g., the plane-segment A′B′C ′ in the plane

N is the projection of the plane-segment ABC
from the plane M upon N .

The angle of projection is the angle be-
tween the planes M and N .

405.Theorem III. The area of the projection of a plane-
segment on a plane is equal to the area of the plane-segment
multiplied by the cosine of the projection angle.

Proof : Let the boundary of the given plane-segment b be any con-
vex polygon or closed curve.

Using a line perpendicular to the given plane as a generator, develop
a prismatic or cylindrical surface of which b is a section. The given plane
will cut this surface in a right section whose area we denote by c.

Now cut the surface by a plane parallel to b, forming the upper base
b′ of a prism or cylinder whose altitude is h, edge e, and volume V .
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Then c is the projection of b upon the given plane, and ∠1 = ∠2 is
the projection angle.

We are to show that c = b cos ∠1.

We know that V = ce = bh. Why?
But h = e cos ∠2.

Hence, ce = be cos ∠2.

That is, c = b cos ∠2 = b cos ∠1.

Note. The foregoing theorem may be proved di-
rectly in case the plane-segment is a rectangle with
one side parallel to the line of intersection of the two
planes. In the figure let S be the given rectangle and
S′ its projection, with AB ‖ to the line of intersection
of the planes in which S and S′ lie, and ∠1 the angle
between them.

Then S = AB ·BC
and S′ = A′B′ ·B′C ′.

But AB = A′B′

and BE = B′C ′. Why?
But BE = BC · cos ∠1 Why?

and S′ = A′B′ ·B′C ′ = AB ·BC cos ∠1.
That is, S′ = S cos ∠1.

In the case of any plane-segment, rectangles may be inscribed in it in
this position and their number increased indefinitely, so that their sum will
approach more and more nearly to the area of the plane-segment, and in
this way it may be shown to any desired degree of approximation, that the
projection of a plane-segment equals the given plane-segment multiplied by
the cosine of the projection angle.

406. Ellipse. An important special case of the theorem of § 405 is
the area of the figure obtained by projecting a circle upon a plane not
parallel to its own plane, nor at right angles to it. This figure is called
an ellipse. On page 193 the principle developed above is used to find
the area of the ellipse.
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the area of an ellipse

407. Projection of a Circle. In the figure two planes, M and
M ′, meet in a line PQ. The circle O in M has a diameter AB ‖ PQ
and a diameter CD ⊥ PQ.

In projecting the whole figure upon the plane M ′ the diameter AB
projects into its equal A′B′, while CD projects into C ′D′ so that C ′D′ =
CD cos ∠1.

By theorem § 405 the area of the ellipse A′C ′B′D′ equals the area
of the circle ACBD multiplied by cos ∠1.

Hence, πr2 · cos ∠1 is the area of the ellipse.

But r cos ∠1 = O′C ′ and r = O′B′. (§ 401)

Hence, the area of the ellipse is π ·O′C ′ ×O′B′.

The segments A′B′ and C ′D′ are called respectively the major and
minor axes of the ellipse, and O′B′ and O′C ′ the semimajor and the
semiminor axes. These latter are usually denoted by a and b.

Hence, the area of the ellipse is πab.

Note that when a and b are equal, the ellipse becomes a circle, and this
formula reduces to πa2 as it should.
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problems and applications

1. Given a right circular cylinder the radius of whose base is 6 inches.
Find the area of an oblique cross section inclined at an angle of 45◦ to
the plane of the base.

2. Given an oblique circular cylinder the radius of whose right sec-
tion is 10 inches. Find the area of the base if it is inclined at an angle
of 60◦ to the right section.

3. If an oblique circular cylinder has an altitude h, an element e,
radius of right section r, and ∠A the inclination of the base to the
right section, express the volume in two ways and show that these are
equivalent.

4. A six-inch stovepipe has a 45◦ elbow angle,
that is, it turns at right angles. (The angle CAB
is called the elbow angle.) Find the area of the
cross section of AB. Likewise if it has a 60◦ elbow
angle.

5. At what angle must the damper in a circular
stovepipe be turned in order to obstruct just half
the right cross sectional area of the pipe?

Suggestion. The damper must be turned so that the projection of the damper
upon a right cross section is equal to half that cross section.

6. The comparatively low temperature of the earth’s surface near
the pole, even in summer, when the sun does not set for months, is due
partly to the obliqueness with which the sun’s rays strike the earth.
That is, a given amount of sunlight is spread over a larger area than in
lower latitudes.

Thus, if in the figure D′C is a horizontal line, and D′D the direction of the
sun’s rays, then a beam of light whose right cross section is ABCD is spread
over the rectangle A′BCD′. In other
words, a patch of ground A′BCD′ receives
only as much sunlight as a patch the size of
ABCD receives when the sun’s rays strike
it vertically. ABCD = A′BCD′ cos ∠1.
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Hence, each unit of area in A′BCD′ receives cos ∠1 times as much light
as a unit in ABCD.

Hence, to compare the heat-producing powers of sunlight in any latitude
with that at the place where the sun’s rays fall vertically, we need to know
how the projection angle, ∠1, is related to the difference in latitude of the
two places.

7. If ∠1 = 30◦, compare the amount of heat received by a unit of
area in ABCD and A′BCD′.

8. What must ∠1 be in order that a unit of area in A′BCD′ shall
receive only 1

5
as much light as a unit in ABCD?

9. The figure represents a cross section of the earth with an indica-
tion of the direction of the rays of light as they strike it at the summer
solstice when they are vertical at A, the tropic of Cancer. B represents
the latitude of Chicago, C the polar circle, and P the north pole. The
angles PDE, CGF , BKH represent the projection angle, ∠1, for the
various latitudes. Prove:

∠PDE = ∠POK,

∠CGF = ∠COK,

∠BKH = ∠BOK.

That is, ∠1 for each place is
the latitude of that place mi-
nus the latitude of the place
where the sun’s rays are ver-
tical.

10. Find the relative amount of sunlight received by a unit of area
at the tropic of Cancer and at the north pole at the time of the summer
solstice.

11. Find the ratio between the amount of light received by a unit of
the earth’s area at Chicago and at the tropic of Cancer at the time of
the summer solstice.

12. Find the same ratio for the equator and Chicago at the winter
solstice when the sun is vertical at latitude 231

2
◦ south.
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appendix iii: variables. limits

408. Variables and Functions. It is often useful to think of a
geometric figure as varying in size and shape.

E.g., if a rectangle has a fixed base, say 10 inches long, but an altitude
which varies from 3 inches to 5 inches, then the area varies from 3 · 10 = 30
to 5 · 10 = 50 square inches.

We may even think of the altitude as starting at zero inches and in-
creasing, in which case the area starts at zero and increases continuously.

The altitude which we think of as varying at our pleasure is called
the independent variable, while the area, being dependent upon the
altitude, is called the dependent variable.

The dependent variable is sometimes called a function of the in-
dependent variable, meaning that the two are connected by a definite
relation such that, for any definite value of the independent variable,
the dependent variable also has a definite value.

Thus, in the formula for the area of a rectangle, a = bh, if b is fixed
and h varies, then a is a function of h, since for every value of h there is
determined a definite value of a.

409. Illustrations of Limits. If a regular polygon is inscribed
in a circle of fixed radius, and if the number of sides of the polygon be
continually increased, for instance by repeatedly doubling the number,
then the apothem, perimeter, and area are all variables depending upon
the number of sides. That is, each of these is a function of the number
of sides.

Now the greater the number of sides the more nearly does the
apothem equal the radius in length. Indeed, it is evident that the
difference between the apothem and the radius will ultimately become
less than any fixed number, however small. Hence we say that the
apothem approaches the radius as a limit as the number of sides in-
creases indefinitely.

Similarly the perimeters of the polygons may be made as nearly
equal to the circumference as we please by making the number of sides
sufficiently great.
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Hence we may define the circumference of a circle as the limit of
the perimeter of a regular inscribed polygon as the number of sides
increases indefinitely.

The circumference of a circle may also be defined as the limit of the
perimeter of a circumscribed polygon as the number of sides is increased
indefinitely.

Likewise we may define the area of a circle as the limit of the area
of the inscribed or the circumscribed polygon as the number of sides is
increased indefinitely.

The notion of a limit may be used to define the length of a line-
segment which is incommensurable with a given unit segment.

Thus, the diagonal d of a square whose side is unity is d =
√

2. Hence
d may be defined as the limit of the variable line-segment whose successive
lengths are 1, 1.4, 1.41, 1.414, . . . .g

In like manner, the length of any line-segment, whether commen-
surable or incommensurable with the unit segment, may be defined in
terms of a limit.

Thus, if a variable segment is increased by successively adding to it one
half the length previously added, then the segment will approach a limit. If
the initial length is 1, and if the successive additions are 1

2 ,
1
4 ,

1
8 ,

1
16 ,

1
32 , etc.,

then the successive lengths are 1, 11
2 , 13

4 , 17
8 , 115

16 , 131
32 , etc. Evidently this

segment approaches the limit 2.

Hence 2 may be defined as the limit of the variable segment whose suc-
cessive lengths are 1, 11

2 , 13
4 , 17

8 , etc., as the number of successive additions
is increased indefinitely.

The idea of a functional relation between variables and the idea of
a limit, as illustrated above, are two of the most important concepts in
all mathematics.

definition of a limit

410. Constant. A quantity which remains fixed in value through-
out a discussion is called a constant.

E.g., the base of the rectangle mentioned in § 408 is a constant.

gSee Transcriber’s Notes.



198 SOLID GEOMETRY: APPENDIX III

411. Variable. A quantity which continuously changes in value,
or which takes on a succession of different values, is called a variable.

E.g., the altitude and the area mentioned in § 408 are variables.

412. Limit of a Variable. If a variable may be made to ap-
proach a certain constant quantity in such a way that the difference
between the constant and the variable becomes and remains less than
any assignable value, however small, then the constant is called the
limit of the variable.

E.g., the fixed circumference of the circle is the limit of the variable
perimeters of the polygons mentioned in § 409.

sight work

1. Find the limit of a variable line-segment whose initial length is 6 inches,
and which varies by successive increments each equal to one half the preced-
ing, the first increment being 2 inches.

2. Construct a right triangle whose sides are 1 and 2. By approximating
a square root, find five successive lengths of a segment which approaches the
length of the hypotenuse as a limit.

3. If one tangent to a circle is fixed and another is made to move so that
their intersection point approaches the circle, what is the limiting position
of the moving tangent? What is the limit of the measure of the angle formed
by these tangents?

4. The arc AB of 74◦ is the greater of the two arcs intercepted between
two secants meeting at C outside the circle. The points A and B remain
fixed while C moves up to the circle. What angle is the limit of the variable
angle formed by the varying secants? What is the limit of the measure of
this angle?

5. If in the preceding the secants meet within the circle, what is the limit
of their angle and also of the measure of this angle as the intersection point
moves up to the center of the circle?
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the incommensurable cases

413. The Incommensurable Cases. We have seen that there are
segments which are incommensurable; that is, which have no common
unit of measure,—for instance, the side and the diagonal of a square.

For practical purposes the lengths of such segments are approxi-
mated to any desired degree of accuracy, and their ratios are understood
to be the ratios of these approximate numerical measures.

But for theoretical purposes it is important to consider these incom-
mensurable cases further; just as in algebra we not only approximate
such roots as

√
2,
√

3,
√

5, etc., but we also deal with these surds as
exact numbers.

Instances of this kind occur in such operations as

(
√

3 +
√

2)(
√

3−
√

2) = 3− 2 = 1.

While the length of the diagonal of a unit square cannot be expressed
as an integer or as a rational fraction, that is, as the quotient of two
integers, we nevertheless think of such a segment as having a definite
length, or what is the same thing, a definite ratio with the unit segment
forming the side of the square.

We now fix our attention on the incommensurable ratios themselves,
and the method of determining them, rather than on the process of
approach and the practical computation based on it.

414. Representation by Irrational Numbers. In general, the
ratio between any two incommensurable geometric magnitudes of the
same kind may be represented by what is called an irrational number ;
that is, a number which is neither an integer nor a quotient of two
integers.

Examples of irrational numbers are the surds, such as
√

2, 3
√

5, etc.,
and the number π.

numbers defined by sequences

415. Numbers Defined by Sequences. The following is a
method for determining any number, whether rational or irrational.
For simplicity it is applied first to the integer 1.
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Throughout this discussion the expressions “point on a line” and
“number” will be used interchangeably.

1
2

3
4

7
8

0 1

On a straight line mark a certain
point 0 (zero), and one unit to the right
of it mark another point 1. Also lay off
points such that their distances from 0 are 1

2 ,
3
4 ,

7
8 ,

15
16 , . . . .

If this sequence of points is carried ever so far, it will never reach the
point 1. If, however, we select a point to the left of 1, no matter how near to
it, we may always go far enough along this sequence to reach points between
this point and 1. That is, 1 is the limit of the terms of this sequence. See
§ 412.

The point 1 has two definite relations to this sequence:
(a) Every point of the sequence is to the left of 1.
(b) For any fixed point to the left of 1 there are points of the sequence

between it and 1.
We see that 1 is the only point on the whole line such that both (a)

and (b) are true of it. For every point to the right of 1 (a) is true, but
(b) is not. For every point to the left of 1 (b) is true, but (a) is not.

It follows therefore that, while the points of the sequence merely
approach the point 1 as a limit, the sequence, taken as a whole, serves
to distinguish that point from all other points on the line.

In the above sequence, the terms continually increase. The number 1
may be determined equally well by a decreasing sequence. For instance, the
sequence 11

2 , 11
4 , 11

8 , 1 1
16 , . . . has the following properties which distinguish

the point 1 from all other points on the line.

(a) Every point of the sequence is to the right of 1.
(b) For any fixed point to the right of 1 there are points of the

sequence between it and 1.

limit of an infinite sequence

416. Infinite Sequences. An endless sequence of either kind just
described is called an infinite sequence.

Not every infinite sequence serves to single out a definite point in
the manner shown above. Thus the sequence 1, 2, 3, 4, . . . fails to do
so, because its terms grow large beyond all bound. Such sequences are
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said to be unbounded, while the sequences 1
2
, 3

4
, 7

8
, . . . and 11

2
, 11

4
, 11

8
,

. . . are bounded.
Again, the sequence 1, 2, 1, 2, 1, 2, . . . fails to single out a definite

point. This sequence is said to be oscillating, since its terms increase,
then decrease, then increase, etc., while 1

2
, 3

4
, 7

8
, . . . and 11

2
, 11

4
, 11

8
, . . .

are non-oscillating.
417. Limit of a Sequence. The number 1 is said to be the least

upper bound of the sequence 1
2
, 3

4
, 7

8
, . . . . That is, 1 is the smallest

number beyond which the sequence does not go. 1 is also said to be
the limit of the sequence. See § 412.

Similarly, 1 is the greatest lower bound or the limit of the sequence
11

2
, 11

4
, 11

8
, . . . ; that is, the greatest number such that the sequence

contains no number less than it.
In the manner described above any integer may be determined by

an increasing or a decreasing infinite sequence.

E.g., the number 2 is the limit of the increasing sequence 1, 11
2 , 13

4 , 17
8 ,

115
16 , . . . , or of the decreasing sequence 21

2 , 21
4 , 21

8 , 2 1
16 , . . . .

Two different sequences, both increasing or both decreasing, may
also define the same number.

E.g., each of the increasing sequences 1
2 ,

3
4 ,

7
8 ,

15
16 , . . . and

2
3 ,

4
5 ,

6
7 ,

8
9 , . . .

determines the number 1.

We notice, however, that no matter what definite number we select in
either of these sequences, there is a number in the other greater than it;
that is, neither sequence contains a number greater than every number in
the other. See § 420.

It is apparent that any number may be defined as the limit of a
sequence, and we shall assume the converse, namely, that any bounded
increasing or decreasing sequence has a limit.

fundamental principles of limits

418. Axiom We now assume that: Every bounded increasing se-
quence has a least upper bound, and every bounded decreasing sequence
has a greatest lower bound.

This axiom may also be stated:
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Every bounded increasing or decreasing sequence has a limit.
This axiom simply means that every such sequence singles out a defi-

nite number, rational or irrational, in the manner discussed on page 201.

Thus, if we attempt to approximate the square root of 2, we obtain
a sequence, 1, 1.4, 1.41, 1.414, 1.4142, . . . , having for its limit a definite
number represented by

√
2, which corresponds to the length of the diagonal

of a square whose side is unity.

Again, if we attempt to approximate the value of π, we obtain a sequence
3, 3.1, 3.14, 3.141, 3.1415, . . . , having for its limit the definite number rep-
resented by π, which is the ratio of the circumference to the diameter of a
circle.

419. Theorem I. Two bounded sequences have the same
limit if they are equal term by term.

Proof : If the sequences are a1, a2, a3, . . . and b1, b2, b3, . . . , and if
a1 = b1, a2 = b2, a3 = b3, . . . , then they are one and the same sequence
and hence have the same limit by § 418.

Historical Note. The rigorous treatment of limits has been developed
during the last fifty years. The foundation on which it rests is the theory
of irrational numbers, which itself was placed on a firm basis in the early
seventies.

The Greeks dealt with the incommensurable cases in an interesting man-
ner. Thus, to prove that two incommensurable ratios are equal they showed
that neither can be less than the other. However, they failed to make explicit
definitions of incommensurables and they did not explicitly state the funda-
mental axiom of § 418 or its equivalent. Their treatment would be complete
and rigorous if supplemented by the proper definitions and axioms.

fundamental principles of limits

420. Theorem II. Two increasing bounded sequences
have the same limit if neither sequence contains a number
greater than every number of the other.

Let a1, a2, a3, . . . and b1, b2, b3, . . . denote two infinite sequences
with limits a and b, such that no term of the first sequence is greater
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than every term of the second, and no term of the second is greater
than every term of the first.

To prove that a = b.

Proof : Suppose that a is not equal to b but is less than b. Then
there must be numbers of the sequence b1, b2, b3, . . . greater than a,
since by § 415 there are numbers b1, b2, b3, greater than any fixed
number whatever which is less than b. This contradicts the hypothesis
of the theorem, and hence a cannot be less than b. In like manner we
show that b is not less than a. Hence a = b. See § 20.

421. Theorem III. Two decreasing bounded sequences
have the same limit if neither sequence contains a number
less than every number of the other.

Proof : The proof is exactly similar to that of Theorem II.

exercises

1. Show that the sequences 1
2
, 3

4
, 7

8
, . . . and 2

3
, 4

5
, 6

7
, . . . have the

same limits.

2. Show that the sequences 1
2
, 1

4
, 1

8
, . . . and 1

3
, 1

5
, 1

7
, . . . have the

same limits.

The applications of the theory of limits to geometry consist chiefly
in showing that two numbers are equal because they are the limits of
the same sequence, or of sequences having the property stated in the
theorem of § 420 or of § 421.

application of limits to plane geometry

422. Problem On a given segment AB to lay off a
sequence of points B1, B2, B3, . . . , of which B is the limit,
such that each of the segments AB1, AB2, AB3, . . . is com-
mensurable with a given segment CD.
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Solution: Using m1, an exact divisor of CD, as a unit of measure, lay
off on AB a segment AB1, an exact multiple of m1, such that the remainder
B1B is less than m1. Then CD and AB1 are commensurable.

Using a unit m2, likewise a divisor of CD, and less than B1B, lay off
AB2 such that B2B is less than m2. Then AB2 > AB1, and CD and AB2

are commensurable.
Continuing in this manner, using as units of measure segments m3, m4,

. . . each an exact divisor of CD and each less than B2B, B3B, . . . respec-
tively, we obtain a sequence of segments AB1, AB2, AB3, . . . , each greater
than the preceding and each commensurable with CD.

If the units m1, m2, m3, . . . are so selected that they approach zero as
a limit, it follows that B is the limit point of the sequence B1, B2, B3, . . . .

If a different sequence of divisors of CD, as m′1, m′2, m′3, . . . , is used, we
obtain a sequence of points B′1, B′2, B′3, . . . , likewise satisfying the conditions
of the problem.

Any two such sequences of points B1, B2, B3, . . . and B′1, B′2, B′3, . . .
determined as above, are both increasing and each is such that no point of
it is to the right of every point of the other.

Hence, by § 420 any two such sequences have the same limit point B.

423. Limit of a Sequence of Segments. If B1, B2, B3, . . . is
a sequence of points on the segment AB having the limit B, then the
segment AB is said to be the limit of the sequence of segments AB1,
AB2, AB3, . . . .

incommensurable ratios

424. Ratio of Two Incommensurable Segments. The ratio
of two incommensurable segments has not been explicitly defined, but
this may now be done in terms of the limit of a sequence.

Consider two incommensurable segments AB and CD. Let a1, a2,
a3, . . . be the lengths of segments each commensurable with CD, form-
ing a sequence whose limit is the segment AB, and let b be the length
of the segment CD.
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Then
a1

b
,
a2

b
,
a3

b
, . . . is an increasing bounded sequence having a

limit which we call R.

If a′1, a′2, a′3, . . . are the lengths of segments forming any other

sequence whose limit is AB, the sequence
a′1
b
,
a′2
b
,
a′3
b
, . . . is another

increasing bounded sequence with limit R′.

By § 420 we now know that R = R′.

This number R is defined as the ratio of the incommensurable seg-
ments AB and CD.

425. Ratio of Two Incommensurable Arcs. The considerations
of §§ 422, 423, 424 apply to two arcs of equal circles.

Thus, in the figure, the ratio of the two incommensurable arcs AB and

CD is the limit of the sequence
AB1

CD
,
AB2

CD
,
AB3

CD
, . . . , and the ratio of

the incommensurable angles AOB and COD is the limit of the sequence
∠AOB1

∠COD
,

∠AOB2

∠COD
,

∠AOB3

∠COD
, . . . .

applications of limits to plane geometry

426. Theorem IV. A line parallel to the base of a
triangle, and meeting the other two sides, divides them in
the same ratio.
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Given the 4ABC with DE ‖ BC and cut-
ting AB and AC.

To prove that
AD

AB
=
AE

AC
.

Proof : Consider the case when AD and AB
are incommensurable.
Let D1, D2, D3, . . . be a sequence of points on
AB whose limit is D. Through these points
draw parallels to BC, meeting AC in E1, E2,
E3, . . . .

Then E is the limit of the sequence of points E1, E2, E3, . . . .

For suppose it is not, and that there is a point K on AE such that
there is no point of E1, E2, E3, . . . between K and E. Draw a line
parallel to BC through K, meeting AB in H.

But there are points of the sequence D1, D2, D3, between H and D,
and hence there must be points of the sequence E1, E2, E3, . . . between
K and E, which shows that E is the limit of the sequence E1, E2, E3,
. . . .

Then the sequence (1)
AD1

AB
,
AD2

AB
,
AD3

AB
, . . . has a limit R which,

by definition, is the ratio of the segments AD and AB. § 424

Similarly, the sequence (2)
AE1

AC
,
AE2

AC
,
AE3

AC
, . . . has a limit R′

which is the ratio of AE to AC.

Now
AD1

AB
=
AE1

AC
,
AD2

AB
=
AE2

AC
,
AD3

AB
=
AE3

AC
, . . . § 321, P. G.

Hence, the two sequences, (1) and (2), are identical and have the
same limit (§ 419). Hence R = R′. Q. E. D.

applications to plane geometry

427. Theorem V. In the same circle or in equal circles
the ratio of two central angles is the same as the ratio of
their intercepted arcs.
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Proof : In case the arcs are commensurable the proof is obvious.
For, in that case, the common measure of the arcs divides each into a
number of equal parts, saym and n respectively, and these arcs subtend
the same number of equal angles at the center (§ 244, Plane Geometry.)
Hence the ratio of the arcs is m : n and the ratio of the angles is also
m : n.

If the arcs AB and CD are not commensurable, let AB1, AB2,
AB3, . . . be a sequence of arcs whose limit is AB, each arc being
commensurable with the arc CD.

Then the sequence
AB1

CD
,
AB2

CD
,
AB3

CD
, . . . has a limit R =

AB

CD
.

Similarly the sequence
∠AOB1

∠COD
,

∠AOB2

∠COD
,

∠AOB3

∠COD
, . . . has a limit

R′ =
∠AOB
∠COD

.

But
AB1

CD
=

∠AOB1

∠COD
,
AB2

CD
=

∠AOB2

∠COD
, . . . , as shown above for the

commensurable case.

Hence, these two sequences are identical and have the same limit
(§ 419). Therefore it follows that R = R′. Q. E. D.

Note.—The student should note the successive steps in the proofs of
§§ 426, 427: (a) Definitions of the incommensurable ratios by means of infi-
nite sequences; (b) Proof that these sequences are identical; (c) Conclusion
that the limiting ratios are equal.

428. Products of Irrational Numbers. If a1, a2, a3, . . . is a
sequence with limit a, then ka1, ka2, ka3, . . . is a sequence whose limit
is defined as ka where k is any number.

If a1, a2, a3, . . . and b1, b2, b3, . . . are two sequences with limits a
and b respectively, then a1b1, a2b2, a3b3, . . . is a sequence whose limit
is defined as ab.
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Similarly if a1, a2, a3, . . . , b1, b2, b3, . . . and c1, c2, c3, . . . are
sequences with limits a, b, c, then abc is defined as the limit of the
sequence a1b1c1, a2b2c2, a3b3c3, . . . .

For a complete treatment it would be necessary to show that these
definitions of multiplication of irrational numbers are consistent with
the rest of arithmetic and also that these new sequences are such as to
determine definite limits. This is possible but is beyond the scope of
this book.

429. Area of a Rectangle. If the sides of a rectangle are in-
commensurable with the unit segment, we define its area as follows:

Let a1, a2, a3, . . . be a sequence of rational numbers whose limit is
the altitude a; and let b1, b2, b3, . . . be a sequence whose limit is the
base b.

Then the area of the rectangle is the limit of the sequence a1b1, a2b2,
a3b3, . . . .

But by definition the limit of a1b1, a2b2, a3b3, . . . is the product ab.
Hence we have the theorem:

430.Theorem VI. The area of a rectangle is the product
of its base and altitude.
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applications to plane geometry

431. Incommensurable Ratios Related to Two Circles. In
a circle inscribe a sequence P1, P2, P3, . . . of regular polygons, each
having twice the number of sides of the one preceding it.

Let the perimeters of these polygons be p1,
p2, p3, . . . and their areas A1, A2, A3, . . . .
Then the length c of the circle is defined to be
the limit of the sequence p1, p2, p3, . . . and its
area A is defined to be the limit of A1, A2, A3,
. . . .

The sequence of polygons thus inscribed is
called an approximating sequence of polygons.

That these sequences are increasing and bounded is obvious from
the figure.

432.Theorem VII. The lengths of two circles are in the
same ratio as their radii, and their areas are in the same
ratio as the squares of their radii.

Proof : Let the radii of the two circles be r and r′. Denote the ratio
r′ : r by k. Then r′ = kr.

Inscribe in one circle an approximating sequence of polygons with
perimeters p1, p2, p3, . . . and areas A1, A2, A3, . . . . In the other
circle inscribe a sequence of similar polygons. By §§ 476, 477 (Plane
Geometry), the perimeters of the latter are kp1, kp2, kp3, . . . and their
areas are k2A1, k2A2, k2A3, . . . .

By § 428, if the limit of p1, p2, p3, . . . is c and the limit of A1, A2,
A3, . . . is A, then the limits of kp1, kp2, kp3, . . . , and k2A1, k2A2, k2A3,
. . . are kc and k2A, respectively.

That is, the ratio of the lengths of the circles is
kc

c
= k =

r′

r
and

the ratio of their areas is
k2A

A
= k2 =

r′2

r2
.
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applications of limits to solid geometry

433. Incommensurable Solids. The areas of curved surfaces,
the volumes of cones, cylinders, and spheres, and even of rectangular
solids involve incommensurable quantities. We have already treated
these cases informally and have devised means for computing them
approximately.

We now give a formal treatment for logical completeness.

434. Rectangular Parallelopiped. If the three concurrent edges
a, b, c of a rectangular parallelopiped are incommensurable with the
unit segment, the volume inclosed is defined as follows:

Let a1, a2, a3, . . . be a sequence of rational numbers whose limit is
the side a. Let b1, b2, b3, . . . and c1, c2, c3, . . . be similar sequences
whose limits are respectively the dimensions b and c.

Then the volume is the limit of the se-
quence a1b1c1, a2b2c2, a3b3c3, . . . .
But the limit of this sequence is by definition
the product of the limits of the three sequences
a1, a2, a3, . . . , b1, b2, b3, . . . , c1, c2, c3, . . . , or
abc.

Hence, we have the theorem:

435. Theorem VIII. The volume of a rectangular par-
allelopiped is equal to the product of its three concurrent
edges.

exercises

1. Give in decimals four terms of a sequence which approximates the
volume of a rectangular parallelopiped whose dimensions are 2, 4,

√
5.

2. Give in decimals four terms of a sequence which approximates
the circumference of a circle whose radius is 10 in.; also of a sequence
which approximates the area.
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application of limits to the pyramid

436. Triangular Pyramid. In a triangular pyramid inscribe a
set of prisms in a manner similar to that shown in the figure of § 243.

Call V1 the sum of the volumes of these inscribed prisms.
Using as altitudes one half the altitudes of the first set of prisms,

inscribe a second set the sum of whose volumes is V2. Continuing in
this manner, we obtain a sequence of sets of prisms with volumes V1,
V2, V3, . . . . The limit V of this sequence we define as the volume of
the pyramid.

Circumscribed prisms may also be used for defining the volume of a
pyramid, in which, case we get a decreasing sequence of volumes U1, U2, U3,
. . . , with limit U . That U = V follows from the fact that the sum of the
volumes of the circumscribed prisms exceeds that of the inscribed prisms
by the volume of the lowest circumscribed prism, and this may be made as
small as we please.

437. Theorem IX. Two pyramids with the same alti-
tudes and equivalent bases have equal volumes.

Proof : Call a sequence of inscribed prisms in one pyramid V1, V2,
V3, . . . , and in the other V ′1 , V ′2 , V ′3 , . . . . Since corresponding sets of
these prisms have equal volumes (§ 200), that is, V1 = V ′1 , V2 = V ′2 ,
V3 = V ′3 , . . . , the theorem follows from § 419.

438. Convex Closed Curves. We assume that in a convex closed
curve (§ 202) it is possible to inscribe a sequence of polygons P1, P2,
P3, . . . , having perimeters p1, p2, p3, . . . and areas A1, A2, A3, . . . with
limits p and A respectively, and to circumscribe a sequence of polygons
P ′1, P ′2, P ′3, . . . , having perimeters p′1, p′2, p′3, . . . and areas A′1, A′2, A′34,
. . . with limits p′ and A′ respectively, such that p = p′ and A = A′.

These limits p and A we now define as the perimeter and the
area respectively of the curve.

application of limits to the cylinder

439. The Cylinder. Given any cylinder with a convex right cross-
section and an element e. In this cross-section inscribe a sequence P1,
P2, P3, . . . of polygons, as in § 438, with perimeters p1, p2, p3, . . . and
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areas A1, A2, A3, . . . , thus defining the perimeter p and the area A of
the cross-section.

Consider a set of prisms inscribed in this cylinder, of which P1, P2,
P3, . . . are right cross-sections.

Then the areas and the volumes of these prisms are respectively p1e,
p2e, p3e, . . . and A1e, A2e, A3e, . . . .

The lateral area and the volume of the cylinder are now
defined as the limits of these sequences. But by § 428 these
limits are equal respectively to pe and Ae.

Hence, we have the theorem:

440. Theorem X. The lateral area of a cylinder is the
product of an element, and the perimeter of a right section
and its volume is the product of an element and the area of
a right section.

exercises

1. Prove as above that the volume of any convex cylinder is equal
to the product of its altitude and the area of its base.

2. Prove that the lateral area of a right circular cone is equal to half
the product of the slant height and the perimeter of its base.

3. Prove that the volume of any convex cone is equal to one third
the product of its altitude and the area of its base.

Suggestion. The treatment required in these exercises is a very close para-
phrase of the definitions and proof given in § 439. Observe that we cannot
begin to make a proof until we have defined the subject matter of the the-
orem. That is, we must first define the areas and volumes in question.
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application of limits to the sphere

441. The Sphere. Through two points P and Q of a sphere pass
a great circle forming a hemisphere with center O.

Divide OA, the radius perpendicular to the plane of the great circle,
into the equal parts OC, CB, and BA. Through C and B pass planes
parallel to the plane of POQ, meeting the sphere in points D and E,
respectively.

Construct right circular cylinders with axes OC and CB and radii
CD and BE. Denote by V1 the sum of the volumes of these cylinders.

Now divide the radius OA into six equal parts and construct five
cylinders in the same manner as above. Let the sum of these volumes
be V2.

Continuing in this manner, each time dividing OA into twice as
many equal parts as in the preceding, we obtain a sequence of sets of
cylinders and a corresponding sequence V1, V2, V3, . . . of volumes.

We now define the volume of the hemisphere as the limit of the
sequence V1, V2, V3, . . . .

442. Construct a right circular cylinder with its base in the plane
of POQ and with radius and altitude both equal to OA.

Denote by F the figure formed by the lower base of the cylinder,
its lateral surface and the lateral surface of the cone whose base is the
upper base of the cylinder and whose vertex is at O′. (See the right-
hand figure.)

Draw segments O′M and O′N . Let the planes through C and B
cut O′A′ in C ′ and B′ and O′M in H and K.

Now form the cylinder O′C ′H whose axis is O′C ′ and whose radius
is C ′H. Likewise form the cylinder C ′B′K.
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Let V ′1 denote the sum of the volumes of O′C ′D′ and C ′B′E ′ minus
the sum of the volumes of O′C ′H and C ′B′K.

In a similar manner, using the planes which divide OA and hence
O′A′ into six equal parts, we form another set of five cylinders, the sum
of whose volumes minus that of the smaller inside cylinders we denote
by V ′2 .

Continuing in this manner, we obtain a sequence of volumes V ′1 ,
V ′2 , V ′3 , . . . whose limit V ′ we define as the volume of the given
figure F .

We now prove that V1 = V ′1 , V2 = V ′2 , . . . .
Denote OA by r, and note that O′B′ = B′K.

(1) Vol. C ′B′E ′ − Vol. C ′B′K = πC ′B′(B′E ′
2 −B′K2

)

= πC ′B′(r2 −O′B′2).
(2) Vol. CBE = πCB ·BE2

= πCB(r2 −OB2
), since

BE
2

= r2 −OB2. But OB = O′B′ and CB = C ′B′.
Hence, Vol. CBE = πC ′B′(r2 −O′B′2).
Hence, Vol. CBE = Vol. C ′B′E ′ − Vol. C ′B′K.
Similarly we show that

Vol. OCD = Vol. O′C ′D′ − Vol. O′C ′H.

Hence, V1 = V ′1 . In like manner V2 = V ′2 , V3 = V ′3 , . . . .
Hence, V = V ′, since they are the limits of the same sequences.
But the volume of the cylinder O′A′M is πr3 and of the cone whose

volume was subtracted, 1
3
πr3. That is, the volume of F is 2

3
πr3, and

hence that of the hemisphere is 2
3
πr3.

Hence, we have the theorem:

443. Theorem XI. The volume of the sphere is 4
3πr

3.

Note that the above proof consists essentially in showing that the
area of the circle BE is equal to that of the ring between the circles
B′E ′ and B′K, and that the area of the circle CD is equal to that of
the ring between C ′D′ and C ′H and so on.

Indeed, this theorem and also that of § 437 are special cases of what
is known as Cavalieri’s Theorem.
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444. Theorem XII. If two solid figures are regarded as
resting on the same plane b, and if in every plane parallel to
b the sections of the two figures have equal areas, the figures
have equal volumes.

The proof of this general theorem is more difficult than any thus far
given, inasmuch as it involves sequences which oscillate; that is, which
are neither constantly increasing nor constantly decreasing.

445. The Area of the Sphere. About a sphere of radius r
construct a sequence of circumscribed polyhedrons such that the largest
face in each polyhedron becomes as small as we please when we proceed
along the sequence. Let s1, s2, s3, . . . be the total surfaces of these
polyhedrons. This forms a decreasing sequence with limit S which we
define as the surface of the sphere.

The volumes of these polyhedrons will be 1
3
rs1, 1

3
rs2, 1

3
rs3, . . . .

Then the volume V of the sphere is defined2 as the limit of this
sequence of volumes.

Hence, by § 428, V = 1
3
rS. But by § 443, V = 4

3
πr3.

Then S = 3
r
· 4

3
πr3 = 4πr2.

Hence, we have the theorem:

446. Theorem XIII. The area of the sphere is 4πr2.

exercises on limits

1. In addition to those which are found in the text give other exam-
ples of infinite sequences which do not determine definite numbers.

2. Give two increasing sequences which determine the number 3.
Show that the theorem of § 420 applies and proves that these sequences
determine the same number.

3. Give two decreasing sequences each of which determines the num-
ber 5. Apply § 421 to show that these sequences determine the same
number.

2This definition can be shown to be consistent with that of § 441.
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4. State fully the relation between a bounded increasing sequence
and the number determined by it. State also the relations between a
bounded decreasing sequence and the number determined by it.

5. State fully what is meant by “a limit of a sequence” both for
increasing and decreasing sequences.

6. Given two incommensurable segments AB and CD. Lay off on
the line AB a decreasing sequence of segments, each of which is com-
mensurable with CD, such that the limit of the sequence is the seg-
ment AB.

7. If a1, a2, a3, . . . is an increasing sequence defining the number 4,
prove that 3a1, 3a2, 3a3, . . . defines the number 3× 4 = 12.

8. If a1, a2, a3, and b1, b2, b3, . . . are increasing sequences defining
the numbers 3 and 5, show that the sequence a1b1, a2b2, a3b3, . . . defines
the number 15.

9. Describe in more detail the meaning of the ratio of two incommen-
surable arcs as indicated in § 425. Show that this ratio is independent
of the sequence of units of measurement used, so long as the limit of
this sequence is zero.

10. Treat the ratio of two incommensurable angles in a manner sim-
ilar to the treatment of arcs in the preceding exercise.
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Altitude
of a cone, 98
of a cylinder, 75
of a frustum, 87
of a prism, 59
of a pyramid, 86
of a spherical segment, 153
of a zone, 153

Angle
between a line and a plane, 34
between two curves, 125
dihedral, 29
face, 42
of projection, 34, 183
polyhedral, 42
spherical, 125
trihedral, 42

Approach, 196, 199
Arc of a great circle, 116
Area

of a cone, 102
of a curved surface, 79
of a cylinder, 80
of a prism, 59
of a pyramid, 87
of a rectangle, 208
of a sphere, 147, 215
of a spherical polygon, 144
of a spherical triangle, 143
of a zone, 154

Axioms, 5, 10, 37, 80, 90, 102,
106, 147, 150, 201

Axis
of a circle on a sphere, 115
of a cone, 98
of a cylinder, 76

Base
of a cone, 98
of a cylinder, 75
of a prism, 58
of a pyramid, 86
of a spherical sector, 153
of a spherical segment, 153

Birectangular spherical trian-
gle, 142

Bound
greatest lower, 201
least upper, 201

Cavalieri’s theorem, 215
Center

of a sphere, 113
of similitude, 173

Circle
axis of, 115
great, 115
poles of, 115
small, 115

Circular
cone, 98
cylinder, 75

Circumscribed
cone, 102, 146
cylinder, 79
polyhedron, 120, 151
prism, 79, 90, 211
pyramid, 102
sphere, 122

Commensurable
angles, arcs, 206
segments, 203, 205

Cone
altitude of, 98
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base of, 98
circular, 98
element of, 98
lateral surface of, 98, 103
oblique, 98
right circular, 98, 99
spherical, 153
vertex of, 98
volume of, 106

Conical surface
element of, 98
generator of, 98
nappes of, 98
vertex of, 98

Constant, 197
Corresponding

cross-sections, 179
linear dimensions, 173, 179
parts of polar triangles, 134
parts of similar polyhedrons,
170

polyhedral angles, 127
Cosine of an angle, 183
Cube, 59
Curved surface, 75
Curves

angle between, 125
convex, closed, 75, 211

Cylinder
bases of, 75
circular, 75
circumscribed, 79
element of, 75
inscribed, 79
lateral surface of, 80
right, 75
volume of, 81

Cylindrical surface, 75
element of, 75
generator of, 75

Degree
spherical, 142

Dihedral angles, 29
bisector of, 34
equal, 30
generation of, 30
measure of, 31
plane angle of of, 29
right, 30

Distance
between two points on a
sphere, 116, 128

polar, 116
Dodecahedron, 53, 54

Edge
of a dihedral angle, 29
of a polyhedral angle, 42
of a polyhedron, 53

Element
of a cone, 98
of a cylinder, 75

Ellipse
area of, 192, 193

Equal
areas, 141
volumes, 68

Equivalent solids, 69

Faces
of a dihedral angle, 29
of a polyhedral angle, 42
of a polyhedron, 53
of a prism, 59
of a pyramid, 86

Figures
in space, 1, 2, 4
on a sphere, 115

Foot
of a line, 11
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of a perpendicular, 11, 34
Frustum

of a cone, 99
of a pyramid, 87

Function, 196

Generator
of a conical surface, 98
of a cylindrical surface, 75
of a prismatic surface, 58
of a pyramidal surface, 85
of a spherical surface, 146

Geometry, 1
Great circle

axis of, 115
on a sphere, 115
pole of, 115

Half-plane, 29

Icosahedron, 53
Incommensurables, 67, 199,

204, 209, 210
Inscribed

cone, 102, 146
cylinder, 79
polyhedron, 120
prism, 79, 90, 211
pyramid, 102
sphere, 120

Irrational
number, 199
ratio, 204

Isosceles spherical triangle,
131

Lateral
edges, 58, 86
faces, 58, 86
surfaces, 58, 86

Limit

of a sequence, 201
of a variable, 196, 198
of segments, 204

Loci problems, 3, 42, 49–51, 76,
96, 110, 117–118, 124, 161–
162

Lune
angle of, 142

Measurement
of surfaces, 79, 80, 87, 102,
143, 147, 154, 191, 193, 208,
211, 215

of volumes, 66–68, 79, 81, 90,
106, 150, 154, 210, 211, 214,
215

Nappes
of a conical surface, 98
of a pyramidal surface, 85

Octahedron, 53
Order of parts

in a polyhedral angle, 43
in a triangle, 43

Pantograph, 179
Parallel

line to a plane, 21
plane to a plane, 21

Parallelopiped
rectangular, 59
volume of, 66

Perpendicular
line to a plane, 11
plane to a line, 11
plane to a plane, 30

Plane
-segment, 191
determination of, 10
projections upon, 34, 183
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Plane Angle
of a dihedral angle, 29

Polar
distance, 116
triangles, 133, 134

Poles
of a circle, 115

Polygons
spherical, 126
symmetrical, 129

Polyhedral angles, 42
edges of, 42
equal, 42
faces of, 42
symmetrical, 45

Polyhedrons, 53
added, 59
circumscribed, 120, 151
classified, 53
convex, 53
edges of, 53
equal, equivalent, 68
faces of, 53
inscribed, 120
models of, 54
regular, 54
similar, 170
surface of, 53
vertices of, 53

Prism, 58
altitude of, 59
area of, 59, 61
bases of, 58
circumscribed, 79, 90
hexagonal, 59
inscribed, 79, 90, 211
lateral edges of, 58
lateral faces of, 59
quadrangular, 59
regular, 59

right, 58
triangular, 59
truncated, 59
volume of, 66, 67, 69, 73

Prismatic surface, 58
generator of, 58

Problems and Applications,
19, 25–26, 28–29, 41–42,
65–66, 69, 74, 82, 105–106,
124–125, 132–133, 140–141,
155, 169, 172, 184–185,
187–188, 190, 203, 210, 212

Problems and Applications,
84, 96–97, 143, 151

Projection
of a circle, 193
of a figure, 34
of a line-segment, 35, 183
of a plane-segment, 191

Projection angle, 34, 183
Pyramid, 85

altitude of, 86
base of, 86
frustum of, 87
lateral faces of, 86
regular, 86
triangular, 86
truncated, 87

Pyramidal surface, 85
element of, 85
nappes of, 85
vertex of, 85

Quadrant, 116

Radius
of a circular cylinder, 75
of a sphere, 113

Ratio
incommensurable, 204
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of similitude, 175
Regular

polyhedrons, 54, 56
prisms, 59
pyramids, 86
tetrahedrons, 56

Right
cone, 98
cylinder, 75
prism, 58
pyramid, 86
section, 58, 75

Section
of a cone, 98
of a cylinder, 75
of a prism, 58
of a pyramid, 85
of a sphere, 114

Sector
spherical, 153

Segment
intercepted by planes, 21
spherical, 153

Sequence
approximating, 203, 209
bounded, 201
decreasing, increasing, 201
infinite, 201
limit of, 201
numbers defined by, 199
oscillating, 201
unbounded, 201

Sight work, 3–4, 14–15, 17–18,
28, 33, 36, 40–41, 45–46,
48, 53, 55–56, 60–62, 64–65,
72–73, 76, 82, 85–86, 89–
91, 95–96, 98–99, 103–105,
107–108, 117–118, 121, 124,
127–129, 131, 133, 138–140,

144–145, 148–149, 152, 170,
177, 198

Similar
cones of revolution, 169
cylinders of revolution, 168
figures, 179
polyhedrons, 170

Similarity, 168–179
Similitude

center of, 173
ratio of, 175

Sine of an angle, 183
Slant height

of a frustum, 87, 99
of a pyramid, 86
of a right cone, 99

Small circle on a sphere, 115
Solids

equal, 68
equivalent, 68

Sphere, 113
area of, 147, 215
center of, 113
circumscribed, 122
great circle of, 115
inscribed, 120
points within, without, 115
radius of, 113
small circle of, 115
tangent to, 119
volume of, 150, 151, 214

Spherical
angle, 125
blackboard, 117
cone, 153
degree, minute, second, 142
excess, 142
polygon, 126
sector, 153
segment, 153
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surface, 113
Summaries, 48, 83, 109, 156
Surface

conical, 98
curved, 75
cylindrical, 75
of a polyhedron, 53
prismatic, 58
pyramidal, 85
spherical, 113

Symmetrical
spherical triangles, 129
trihedral angles, 45

Symmetry
with respect to a point, 173

Table of Sines, Cosines, and
Tangents, 186

Tangent
of an acute angle, 183
to a cone, 100
to a cylinder, 77
to a sphere, 119

Tetrahedron, 53, 86
circumscribed, 120
inscribed, 122
regular, 54

Theorems of Plane Geome-
try, 5–9

Theory of Limits, 196
Triangles

birectangular, 142
equal, 141

isosceles, 131
polar, 133
right, 131
symmetrical, 126
vertical, 131

Trihedral angles, 42
symmetrical, 45
vertical, 45

Truncated
prism, 59
pyramid, 87

Variables, 196, 198
Vertex

of a cone, 98
of a polyhedral angle, 42
of a pyramid, 85

Vertices
of a polyhedron, 53

Volume
as a limit of a sequence, 210,
211, 213

of a cone, 107
of a cylinder, 81
of a prism, 66, 68
of a sphere, 150, 214
of a spherical cone, 154
of a spherical sector, 154
of a spherical segment, 155

Zone
altitude of, 153
bases of, 153
of one base, 153



TRANSCRIBER’S NOTES

transcriber’s notes

The spellings inclose and parallelopiped have been retained. Mi-
nor typographical corrections and regularizations of spelling have been
made without comment.

Page 12 In the third (rightmost) figure after Theorem 73, the la-
bels `1 and `2 are exchanged relative to their use in the subsequent
exposition.

The book contains at least five potentially ambiguous assertions.
Some are complicated to resolve completely.

Page 53 (How many vertices and edges has a hexahedron?) Com-
binatorially there are multiple types of hexahedron, including but not
limited to (i) a parallelepiped (8 vertices and 12 edges), (ii) a square-
based pyramid with one base corner shaved off (7 vertices and 11 edges),
(iii) a pentagonal pyramid (6 vertices and 10 edges), and (iv) a com-
pound of two regular tetrahedra placed base-to-base (5 vertices and
9 edges).

Page 75 (A closed plane curve is convex if it can be cut by a straight
line in not more than two points.) Presumably this was to be inter-
preted as “. . . if it cannot be cut by a straight line in more than two
points.” However, even the latter is inconsistent with usage throughout
the book, since some polygons are convex while no polygon satisfies this
condition.

Page 79: Approximating a curved surface by planar patches is more
subtle than the analogous approximation of a curve by an inscribed
sequence of segments. For example, bounded polyhedra inscribed in a
right circular cylinder may have arbitrarily large area.

Page 151: The construction of a sequence of polyhedra circum-
scribed about a sphere depends on the points of tangency chosen at
each stage, and these points cannot be chosen arbitrarily.

Page 197: The “definition” of
√

2 as the limit of its sequence of
finite decimal truncations is circular since it requires the first n decimal
places to be known in order to generate n terms of the sequence.
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