

Microsoft Office®

White Paper
Microsoft Word
Published: February 13, 1997
For the latest information, see http://www.microsoft.com/officedev/

Converting WordPerfect Macros to

Microsoft Word, Visual Basic for

Applications
Table of Contents

Preface 2

Resources 2

Supported Versions 3

Introduction 3

The Conversion Process 4

Step 1: Examining the Purpose of the Macro 4

Step 2: Determine if a Macro Is Needed 4

Step 3: Chart the Flow of the Macro 4

Step 4: Record Duplicate Macros in Word 4

Step 5: Modify the Recorded Macros 5

Step 6: Test the Finished Product 5

How Macros Differ Between WordPerfect and Word 5

Deciding When a Macro Isn’t Needed 6

Understanding Where Macros Are Stored In Word 7

The Visual Basic Editor: A Basic Roadmap 7

Understanding the Terminology of Visual Basic 8

Comparing Syntax 9

General 10

Recording Macros to Learn Syntax 13

Converting Programming Commands 14

WordPerfect for DOS to Visual Basic Command Cross-Reference 14

WordPerfect for Windows to Visual Basic Command Cross-Reference
 16

Converting Variable Assignments 18

Converting Expressions 19

Converting Macros that Insert and Format Text 19

Converting Macros that Use Documents 20

Converting User Input 22

Converting Macros that Pause 23

Converting Alerts 23

Everything for Building

and Distributing

Solutions with Microsoft

Office 97

White Paper 2 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

Converting Dialog Boxes and Menu Lists 23

Converting Yes/No Messages 25

Converting DLL Calls 25

Converting Arrays 26

Improving upon WordPerfect Macros 27

Additional String Functions in Visual Basic 27

Additional Math Functions in Visual Basic 28

Registry Statements 28

File Functions 29

Obtaining and Setting Current Values from Word 29

Communication with Other Applications 29

Preface
This document describes the methodology, approach, and requirements for

converting macros developed for various versions of WordPerfect to Visual

Basic® for Applications in Microsoft® Word. Because of the complexity of

macros, there's no automatic conversion utility available for converting macros

from WordPerfect to Visual Basic for Applications. This document will help you

understand the differences between the programming languages used by

WordPerfect and Word, and how to successfully re-record or rewrite your

WordPerfect macros for use with Word.

Some basic familiarity with both WordPerfect and Word is assumed. This

document doesn’t describe the principles of programming for either

WordPerfect or Word. If you aren't familiar with the Word or WordPerfect

programming languages, you should first learn basic concepts of each

language before attempting to convert your WordPerfect macros.

This document provides only a rudimentary discussion of programming using

Visual Basic. You may want to augment your study of Visual Basic using

Microsoft Office 97 Help, as well as the suggested resources listed under

―Resources‖ later in this paper.

Resources
A valuable resource for general information about switching from WordPerfect

to Word 97 is the Microsoft Office 97 Resource Kit

(http://www.microsoft.com/office/ork/). The Office Resource Kit is available in

print wherever computer books are sold or from the Microsoft Press® Web site

(http://www.microsoft.com/mspress/). The Office Resource Kit is also available

in online form on the World Wide Web at http://www.microsoft.com/office/ork/.

Also refer to the Microsoft Office 97/Visual Basic Programmer's Guide, a

comprehensive guide and reference to programming Word and other Microsoft

Office applications. The Microsoft Office 97/Visual Basic Programmer's Guide

(ISBN 1-57231-340-4) is available wherever computer books are sold or from

the Microsoft Press® Web site (http://www.microsoft.com/mspress/). It is also

available in online form on the World Wide Web at

http://www.microsoft.com/officedev/docs/opg/.

For additional resources, visit the Office Developer Forum Web Site

(http://www.microsoft.com/officedev/). This site has technical information, code

samples, and pointers to additional resources including many books on

developing with Microsoft Office 97 and Visual Basic.

White Paper 3 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

Supported Versions
WordPerfect’s macro language differs from version to version of WordPerfect.

This document describes converting macros from two WordPerfect versions:

WordPerfect 5.1 for DOS, and WordPerfect 6.1 for Windows®. If your

WordPerfect macros are from a different version of WordPerfect, you may still

be able to convert them, but there may be some issues to consider.

 The macro language in WordPerfect 5.0 for DOS is identical to that in

WordPerfect 5.1 for DOS, except it contains fewer commands. For all

practical purposes, a WordPerfect 5.0 for DOS macro can be considered the

same as a WordPerfect 5.1 for DOS macro.

 Versions prior to WordPerfect 5.0 for DOS lacked a programming language,

and are therefore not a topic of interest in this document.

 WordPerfect versions 6.0 and 6.1 for DOS use a different macro language

than WordPerfect 5.1 for DOS and WordPerfect for Windows. Conversion

from WordPerfect 6.0 and 6.1 for DOS are not detailed in this document.

 WordPerfect versions 6.0, 6.1, and 7.0 for Windows are identical except for

slight variations in syntax and command availability. For the purposes of this

document, they are considered to be the same version.

 WordPerfect 5.1 and 5.2 for Windows uses a now-abandoned macro

programming dialect. While the language is similar in some respects to the

macro language of WordPerfect 6.1 for Windows, there are substantial

differences in the command syntax. For this reason, and since these

versions haven't been commercially sold for several years, converting

macros from WordPerfect 5.x for Windows is not detailed in this document.

Introduction
Macros are commonly used for automating office tasks – using desktop

applications to do more in less time. Typical automated office tasks are

inserting common blocks of text into documents, formatting documents in a

specific style, and automatically assembling larger documents from smaller

documents.

Unlike documents, which can often be converted between different word

processors using a conversion ―filter,‖ macros are really miniature programs

and cannot be readily converted. If you have macros that you’ve recorded or

written for WordPerfect, they'll need to be re-recorded or rewritten for use with

Word. The difficulty in re-creating automated WordPerfect office tasks in Word

depends on the complexity of the original macros. Simple macros are easy to

re-create in Word.

Word 97 includes Visual Basic 5.0, a sophisticated development environment

that is shared across Office applications: Word, Microsoft Excel, Microsoft

PowerPoint®, and Microsoft Access. Visual Basic is also part of the Microsoft

Visual Basic product and Microsoft Project. Visual Basic is also licensed to

other software companies. Over 40 companies, including Adobe, Autodesk,

SAP, and Visio, have announced that they will include Visual Basic in their

applications. Visual Basic goes beyond being merely a macro language – it is a

full-featured programming development environment. Throughout this

document, we’ll refer to ―macros‖ in Word as Visual Basic code.

Documentation support for Visual Basic is enormous, with over 50 books

printed by Microsoft Press and other publishers. These books run the gamut

from tutorial guides for beginners to advanced references for programming

White Paper 4 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

professionals. For information about Microsoft Press titles, see the Microsoft

Press Web site at http://www.microsoft.com/mspress/.

The Conversion Process
Converting macros from WordPerfect to Visual Basic is a six step process.

1. Examine the purpose of the WordPerfect macro.

2. Determine if a macro is needed, or if Word can handle the job using

another built-in feature, such as AutoText or forms.

3. Chart the flow of the macro to define its important routines.

4. In Word, record one or more macros that duplicate the functionality of the

original macro.

5. If necessary, modify the recorded macros and manually add additional

programming instructions where necessary.

6. Test the finished Visual Basic code.

Step 1: Examining the Purpose of the Macro

You must fully understand the purpose of the WordPerfect macro before it can

be successfully converted. If possible, run the macro on a copy of WordPerfect

or view the macro in WordPerfect’s macro editor. This will give you a better

understanding of what the macro does.

Take note of any documents that the macro uses or produces. Word versions of

these documents maybe needed when the macro is converted to Visual Basic.

Step 2: Determine if a Macro Is Needed

Sometime it's not necessary to replicate a WordPerfect macro in Word,

especially if the macro performs a rudimentary formatting function, such as

applying bold and underlining to text (this task can be easily handled using

Word styles). The Word interface, as well as other features, make many of

these simple macros unnecessary.

See the ―Deciding When a Macro Isn’t Needed‖ section later in this document

for more information.

Step 3: Chart the Flow of the Macro

Simple macros do a specific job and nothing more. Complex macros may

perform several tasks in a particular order depending on external conditions. If

a macro performs a number of steps during its execution, create a simple

flowchart that outlines each step. Be sure to include any pauses in the macro

for user input, such as answering Yes/No questions or typing text. The

instructions that create these pauses need to be manually added to the

recorded Word macro.

Step 4: Record Duplicate Macros in Word

There are hundreds of properties, methods and objects available in Visual

Basic. Learning them all is a daunting task. The most time efficient approach to

macro conversion is to record duplicates of your WordPerfect macros using

Word’s macro recorder. You can then view the resulting Visual Basic

instructions which can then be assembled into larger macros using copy and

paste.

White Paper 5 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

Step 5: Modify the Recorded Macros

You can use your recorded Word macro as-is or use the code to build larger

macros. You may need to record short segments that duplicate the original

functionality of the WordPerfect macro, and then combine these instructions

with additional instructions you manually add to build the finished macro. For

example, you may add instructions that prompt a user for input, such as asking

if the user wishes to perform a certain task.

For more information on recording macros in Word, see ―Revising recorded

Visual Basic macros‖ in Word Visual Basic Help (use the Find tab to locate the

topic).

Step 6: Test the Finished Product

Test your new Visual Basic code to make sure it duplicates the functionality of

the original WordPerfect macro. If the WordPerfect macro created a document

or some other output, compare the output generated by Word with the output

generated by WordPerfect.

Note While you're converting macros to Visual Basic, look for ways to make
them better. This is especially valuable when converting WordPerfect for DOS
macros. WordPerfect for DOS imposed a number of restrictions on macro
programmers, such as limited access to disk and file services, only two
documents open at once, and no built-in user interface tools like message
boxes. Visual Basic doesn't have the same limitations. Before converting your
WordPerfect macros, consider adopting the new features and functionality
available in Visual Basic.

See the ―Improving upon WordPerfect Macros‖ section later in this document,
for more information.

How Macros Differ Between WordPerfect and

Word
Beyond the differences in the programming languages used by WordPerfect

and Word, the approach to writing and developing macros varies considerably

between the two products.

In WordPerfect 5.1 for DOS, macros are written using a small and somewhat

limited macro editor. Commands are inserted by choosing them from a master

―command list,‖ or by pressing the keys associated with each command. For

example, to insert the command for applying bold to text, you press the F6 key.

In WordPerfect 6.1 for Windows, macros are stored in standard WordPerfect

documents, and no special editor is needed to view and modify them.

WordPerfect executes the commands contained in the document as a series of

macro instructions.

Both approaches differ considerably from the technique used in Word 97. Word

macros are written and developed using the integrated development

environment of Visual Basic. This integrated programming environment runs in

its own window, and it includes advanced debugging features, property-editing

and code-editing features (including compile-time syntax checking and tools for

constructing statements), an Object Browser, and code organization and

tracking features.

Visual Basic is also shared by the other programs in the Microsoft Office 97,

Professional and Developer Edition suites, including Microsoft Excel,

White Paper 6 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

PowerPoint, and Microsoft Access. A single Visual Basic program can control

any and all of these programs.

In this paper, the discussion is confined to converting WordPerfect macros to

Word-only macros. However, you're not limited to using Word as the only

element of automating your office solutions. You can write Word macros that

control other Office 97 programs, as well as products from the over 40

companies that have currently licensed Visual Basic technology.

Deciding When a Macro Isn’t Needed
Not all automated tasks require a macro in Word. Some of the macros created

in WordPerfect may not need to be replicated in Word, because Word may

offer a built-in feature that can do the same job. Instead of reconstructing

macros, consider using the follow Word features:

 Templates – Standard document formats can be stored in template files.

Whenever a new document is created based on a template, it inherits the

formatting of the template. Templates are used to store Word macros

projects, styles, AutoText entries, and command bar, menu and shortcut key

customizations. To base a new document on a template, click New on the

File menu.

 Forms – Word documents can include form elements such as text boxes,

command buttons, and check boxes to create an online form. The forms

feature of Word simplifies the task of filling out forms so a macro isn’t

needed. An added benefit of the form feature in Word is that the rest of the

document (including text, images, and formatting) can be protected against

editing. Form elements can be added using the Control Toolbox toolbar or

the Forms toolbar.

 AutoText – The AutoText feature allows you to store and retrieve text,

graphics, tables, and formatting. To use AutoText, click AutoText on the

Insert menu.

 AutoCorrect – The AutoCorrect feature is used to automatically correct

common misspellings, such as ―teh‖ with ―the.‖ You can also use the feature

to insert long-form text. As an example, type sy, and the AutoCorrect feature

can ―expand‖ it to Sincerely Yours. To use AutoCorrect, click AutoCorrect on

the Tools menu.

 Insert Symbol – Use symbols with the powerful AutoCorrect feature in Word.

AutoCorrect allows you to associate two or more characters with a given

symbol. For example, typing the characters (r) inserts ® . To insert a symbol,

click Symbol on the Insert menu.

 Styles – Repetitive formatting is efficiently handled by the style feature in

Word and not a macro (a common technique with WordPerfect for DOS).

With styles, you can easily redefine the formatting of a style and the text is

automatically updated. To use styles, click Style on the Format menu.

 Letter Wizard – Business letter formatting can be applied using the Letter

Wizard in Word. The Letter Wizard formats a letter based on your stylistic

choices. If you need to create many letters using the same basic formatting,

you can easily record a macro or create a letter template using the Letter

Wizard. Whenever the macro runs, the formatting you chose is automatically

applied. To use the Letter Wizard, click Letter Wizard on the Tools menu.

 Customized Menus, Toolbars and Shortcut Keys – Word lets you change

toolbars and create shortcut keys for any command so that frequently-used

features are just a mouse click or a keystroke away.

White Paper 7 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

Understanding Where Macros Are Stored In Word
The standard WordPerfect storage method for macros is a file. Each macro is

stored as a separate file on a disk, and is given a unique name. To run a macro,

specify the name and WordPerfect reads the macro file.

In Word, macros are stored in documents and templates as Visual Basic

modules. Macros are ordinarily stored in the user’s default template,

Normal.dot. However, Word allows you to store and use macros in any

document or template. Additional templates can be loaded using the Templates

& Add-ins dialog box (Tools menu).To run a macro from the Macros dialog

box, you can choose to display all the available macros, or only those in a

specific template or document.

Note WordPerfect 6.0 and later for Windows also supports macros in
templates.

To share a macros with another user can pose a quandary if you're used to the

WordPerfect approach to macros. Sharing Visual Basic macros is

accomplished in a number of different ways.

 Give your Normal.dot file to the user.

Note This is not recommended because this will overwrite the user's
existing Normal.dot file.

 Copy the Word macros to a separate template and give the template to the

user (place the template in the user's \Program Files\Microsoft

Office\Office\Startup folder; this makes all macros within the template

automatically available whenever Word is used).

 Copy the macro to a document and distribute the document. The user can

then use the Organizer to copy the macro to another template or document.

The user can also copy and paste code between modules in the Visual Basic

development environment.

 Export the Visual Basic module and distribute the file (*.bas). The file can be

imported into another user's project using the Import File command (File

menu).

 Place the template on a server and set the server path as the Workgroup

Templates location (File Locations tab, Options dialog box, Tools menu).

The Visual Basic Editor: A Basic Roadmap
The heart of the macro feature in Word is the Visual Basic Editor. Before

undertaking any conversion project, be sure to become well acquainted with the

editor. The more you know about the editor, the faster and more successful you

will be in converting WordPerfect macros.

Open the Visual Basic Editor by pointing to Macro on the Tools menu, and

clicking Visual Basic Editor (or press ALT+F11). The editor, shown below,

consists of a menu bar, a toolbar, and several windows.

White Paper 8 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

 The Project Explorer window displays all of the projects available for

editing. (A project is analogous to macros stored in a WordPerfect template.)

 The Properties window displays all of the properties of the selected item.

For example, when a command button on a form is selected, the Properties

window shows options for the command button.

 The Code window displays the content of the current macro.

Other windows may appear depending on the options you've selected. For

example, click Object Browser on the View menu to display a list of objects,

properties, and methods you can use. Objects, properties, and methods can be

combined to create Visual Basic instructions which are akin to programming

commands in WordPerfect.

Understanding the Terminology of Visual Basic
Visual Basic uses a different set of programming terms than those used in

WordPerfect. In Visual Basic, tasks are performed by applying properties and

methods to objects. Objects are the fundamental building blocks of Visual

Basic; almost everything you do in Visual Basic involves modifying objects.

Every element of Word — documents, paragraphs, fields, bookmarks, and so

on — is represented by an object in Visual Basic. To view a graphical

representation of the object model for Word 97, see ―Microsoft Word Objects‖

in Word Visual Basic Help. If you're not familiar with the terms object,

properties, and methods, refer to the "Understanding objects, properties, and

methods" topic in Word Visual Basic Help.

You can view the available objects, properties, and methods in the Visual Basic

Object Browser. To see the Object Browser, display the Visual Basic Editor, and

click Object Browser on the View menu. Select a library in the Project/Library

box. The Word object library contains all the objects, properties, and methods

(analogous to ―commands‖ in WordPerfect) you need to write code using Visual

Basic.

White Paper 9 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

Comparing Syntax
Visual Basic and the WordPerfect macro language are very different. The

differences of syntax between the two languages encompass the actual

programming commands, and the way the commands are formatted to

construct a working application.

Differences in syntax is the major stumbling block in converting WordPerfect

macros to Visual Basic. The following table lists the major differences you will

encounter when converting WordPerfect macros to Visual Basic.

White Paper 10 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

Syntax Element WordPerfect Word

General

Case sensitivity WordPerfect commands and variables are not

case sensitive. That is, the If command can be

spelled if, If, or IF.

Statements, objects, variables, and other components in

Visual Basic are not case sensitive. However, the Visual

Basic Editor automatically converts capitalization to

conform to its standards.

Comments WordPerfect for Windows:

// Commented line

WordPerfect for DOS:

{;}Commented line~

Apostrophe (') or REM character comments to end of

line.

Common Programming Statements

If statements If always used with EndIf; If expression

enclosed in parenthesis

WordPerfect for Windows:

If (expression)

 <statements if true>

Else

 <statements if false>

EndIf

WordPerfect for DOS:

{IF}expression~

 <statements if true>

{ELSE}

 <statements if false>

{END IF}

If doesn’t always need End If; If expression not

enclosed in parenthesis; If always used with Then

If expression Then

 <statements if true>

Else

 <statements if false>

End If

– or –

If expression Then <statements if true>

– or –

If(expression, truepart, falsepart)

For/Next loops For or ForNext always used with EndFor

WordPerfect for Windows:

ForNext (count; start; stop; step)

 <repeating statements>

EndFor

WordPerfect for DOS:

{FOR}count~start~stop~step~~

 <repeating statements>

{END FOR}

For used with Next statement

For (counter = start to stop stepval)

 <repeating statements>

Next counter

While loops While used with EndWhile

WordPerfect for Windows:

While (condition)

 <repeating statements>

EndWhile

WordPerfect for DOS:

{WHILE}condition~

 <repeating statements>

{END WHILE}

While condition

 <statements>

Wend

Repeat loops Repeat used with Until.

WordPerfect for Windows:

Repeat

 <repeating statements>

Until (condition)

Not directly supported. Do/Loop used instead:

Do Until condition

 <repeating statements>

Loop

White Paper 11 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

Switch/Case WordPerfect for Windows: Switch statement

block used with EndSwitch; CaseOf

statements define multiple tests for Switch

expression.

WordPerfect for Windows:

Switch (expression)

 CaseOf x: <statements>

 CaseOf y: <statements>

 CaseOf z: <statements>

EndSwitch

Note: WordPerfect for Windows also suppose a

Case statement, but is rarely used.

WordPerfect for DOS:

{CASE}expression~

 case1~label1~

 case2~label2~

 casen~label~~

Select Case statement block used End Select; Case

statements define multiple tests for Select Case

expression.

Select Case expression

 Case x

 <statements>

 Case y

 <statements>

 Case z

 <statements>

End Select

Return statements Returns from macro, subroutine, function, or

procedure

Branches to and returns from a subroutine within a

procedure. Not used to return from a Sub or Function

Procedures and Functions

Procedures Block of self-contained code that does not

return a value. Provided in WordPerfect for

Windows only:

Procedure Name (argument_list)

 <statements>

EndProc

In Visual Basic, procedure are blocks of code separated

by name. Procedures can be subroutines or functions. A

subroutine procedure does not return a value.

Sub Name (argument_list)

 <statements>

End Sub

Functions Block of self-contained code that returns a

value. Provided in WordPerfect for Windows

only:

Function Name (argument_list)

 <statements>

 Return (expression)

EndFunc

Block of self-contained code that returns a value.

Function Name (argument_list)

 <statements>

 Name=expression

End Function

Calling routines Routines are called using the Call statement (or

in WordPerfect for Windows, implicitly by

specifying the name of the routine.

WordPerfect for Windows:

Call (Routine_Name)

– or –

Routine_Name(argument_list)

WordPerfect For DOS:

{CALL}Routine_Name~

Routines are called using the Call statement (or

implicitly by specifying the name of the routine.

Call Routine_Name (argument_list)

– or –

Routine_Name (agument_list)

Control Flow

Using line labels Labels are referenced elsewhere in the macro

by name. The macro can be directed to the

label with a Go or Call statement.

WordPerfect for Windows:

Label (Label_name)

WordPerfect for DOS:

{LABEL}Label_name~

Labels are referenced elsewhere in the Visual Basic

code by name or number. Execution can be directed to

the label using a GoTo statement.

GoTo Label_name

Labels are created by typing an identifier at the

beginning of the line, followed by a colon:

EndOfLoop:

White Paper 12 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

Calling other

macros

The Chain, Run, or Nest command executes

other macros. With Run/Nest, execution returns

to the calling macro when the called macro

finishes.

WordPerfect for Windows:

Nest (macro_name)

WordPerfect for DOS:

{NEST}macro_name~

Routines in other modules can be called using the Call

statement. Execution returns to the calling routine when

the called routine is finished.

Call Module_Name.Routine_Name (argument_list)

Error trapping General error trapping with Error and

OnCancel commands. No support for trapping

specific kinds of errors.

WordPerfect for Windows

OnError (Label) // branch on error

Error (Off!) //turn off error trapping

WordPerfect for DOS

{ON ERROR}Label~ // branch on error

{ON ERROR}~ //turn off error trapping

General error trapping with On Error statement. Able to

test for and trap specific errors by numeric value.

On Error GoTo Label 'branch on error

On Error GoTo 0 ' turn off error

Error routine code must be within the same subroutine

or function. You may also issue the code

 On Error Resume Next

 //continue to next statement if there's an

error

You can find out what error occurred by looking at the

Err object. See Visual Basic Help for details.

Variables

Variable scope WordPerfect for Windows: By default, variables

are visible only within the macro or procedure

where they were defined. Global variables can

be created using the Global command.

WordPerfect for DOS: All variables are global,

and remain in memory until specifically deleted,

or when WordPerfect ends.

By default, variables are visible only within the

procedure where they were defined. Global variables

can be created using the Public statement.

Variables can be visible within the current subroutine or

function, the current module, or the current project

depending on declaration.

See Visual Basic Help on the Dim statement for specific

possibilities.

Data typing WordPerfect for Windows: all variables are

variant type, able to contain any type of data.

Supported data types include: 16-bit integers,

32-bit integers, 64-bit floating point, Boolean,

and strings.

WordPerfect for DOS: all variables are variant

type. Supported data types include 16-bit

integers and strings (under 128 characters)

only.

Variables can be variant type (any data type) or

declared. Supported data types include: 2 and 4 byte

integers, 64-bit float, Boolean, strings, decimal, dates,

objects, and user-defined.

Persistent variables WordPerfect for Windows:

Persistent variables remain in memory after the

macro ends. They are created with the Persist

or PersistAll command.

Persist (VarName)

– or –

PersistAll

WordPerfect for DOS:

All variables are persistent.

Persistent variables can be created with Document

Variables feature in Word. For more information, see

‖Document Variables‖ in Visual Basic Help. Information

stored in Document Variables is saved inside the

document file and is available any time the document is

open. Settings files are another way to store variable

data that must remain during a Word session (see the

PrivateProfileString property topic in Word Visual

Basic Help). Global variables are persistent while the

project is open.

White Paper 13 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

Recording Macros to Learn Syntax
As mentioned earlier in this white paper, if you are fairly new to Visual Basic, a

good way to learn Visual Basic syntax is to record a simple macro in Word. You

can then examine the resulting Visual Basic code in the Visual Basic Editor.

1. In a blank Word document, start recording a macro by pointing to Macro on

the Tools menu, and then clicking Record New Macro.

2. In the Record New Macro dialog box, type testing as the name of the

macro, and click Record.

3. In the Word document type This is a test, press ENTER, and then click OK.

4. Stop recording by pointing to Macro on the Tools menu, and then clicking

Stop Recording.

The macro is now recorded, and can be viewed in the Visual Basic Editor. To

view the macro:

1. Point to Macro on the Tools menu and then click Macros (or press ALT+F8).

2. Select testing under Macro name.

3. Click Edit.

For more information on recording a macro, see ―Recording a macro to

generate code‖ in Word Visual Basic Help (use the Find tab to locate the topic).

The recorded macro appears in the code window as:

Sub testing()

'

' testing Macro

' Macro recorded 03/26/97 by Steve Masters

'

Selection.TypeText Text:="This is a test"

Selection.TypeParagraph

End Sub

The macro begins with a subroutine name, which by default is the same as the

macro name. Comments (indicated by an apostrophe (')) provide a short

description of the name of the macro, when it was recorded, and by whom. The

actual recorded contents of the macro follow, and, in this case, consists of two

commands:

Selection.TypeText Text:="This is a test"

Selection.TypeParagraph

The Selection.TypeText command specifies that text is to be inserted into the

document. The Selection.TypeParagraph command specifies that a hard

return is to be inserted in the document.

For comparison purposes, the same macro recorded in WordPerfect 5.1 for

DOS appears in its macro editor as:

{DISPLAY OFF}

This is a test{Enter}

And in WordPerfect 6.1 for Windows:

Type (Text:"This is a test")

HardReturn()

As you can see, the syntax between these three word processors is vastly

different, with thousands of possible permutations. Since it is impossible to

enumerate all the differences between the macro languages, it’s generally

easier to record new macros in Visual Basic, and use the new recordings as a

basis for your new Word macros.

White Paper 14 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

Converting Programming Commands
The following two tables summarize the programming keywords used with

WordPerfect for DOS and WordPerfect for Windows, and compares them with

their direct replacements in Visual Basic. Following these tables are several

sections that detail specific conversion tasks, such as converting menus and

dialog boxes, and converting macros that format and insert text.

WordPerfect for DOS to Visual Basic Command Cross-

Reference

WordPerfect for DOS commands Visual Basic commands

White Paper 15 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

{;} ' or REM

{ASSIGN} = assignment (ex: var = 1)

{BELL} Beep

{BREAK} None (Visual Basic Break command is used for debugging)

{CALL} Call

{CANCEL OFF} / {CANCEL ON} On Error

{CASE} / {CASE CALL} Select Case

{CHAIN} None

{CHAR} None (use MsgBox instead)

{DISPLAY OFF} / {DISPLAY ON} Application.ScreenRefresh

{ELSE} Else

{END FOR} Next

{END IF} End If

{END WHILE} Wend

{FOR} For

{GO} GoTo

{IF} If

{IF EXISTS} IsNull

{KTON} Asc (Or AscW for Unicode characters)

{LABEL} LabelName:

{LEN} Len

{LOOK} KeyDown or KeyPress

{MID} Mid

{NEST} None (referencing the macro by name runs it)

{NEXT} Next

{NTOK} Chr (or ChrW for Unicode characters)

{ON CANCEL} On Error

{ON ERROR} On Error

{PAUSE} None

{QUIT} Stop

{RETURN} Return

{RETURN ERROR} On Error

{STATE} Various properties of Word objects

{STEP ON}/ {STEP OFF} Break

{SYSTEM} Various properties of Word objects

{TEXT} InputBox

{WAIT} Declare Sub Win_Sleep Lib ―Kernel32‖ Alias ―Sleep‖ _

 (ByVal dwMilliseconds As Long

(then use Sleep in the code when WAIT was needed)

{WHILE} While

{Enter} (to insert new line) Selection.TypeParagraph

White Paper 16 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

{Tab} (to insert a tab) Selection.TypeText Text:=vbTab

―Text here‖ (to insert text) Selection.TypeText Text:="Text"

WordPerfect for Windows to Visual Basic Command Cross-

Reference

WordPerfect for Windows commands Visual Basic commands

White Paper 17 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

// Comment ' or REM

AppActivate AppActivate

AppExecute Shell

AppLocate None (not needed)

Assign = assignment (ex: var = 1)

Beep Beep

Break None (Visual Basic Break command is used for debugging)

Call Call

Cancel On Error

Case / Case Call Select Case

Chain None

CTON Asc (or AscW for Unicode characters)

DDE commands None (superceeded by Visual Basic and OLE functionality)

Dimensions UBound (also LBound to get lower bounds)

Discard Erase (used for for arrays)

DLL commands Declare Sub or Declare Function

Else Else

EndFor Next

EndFunc End Function

EndIf End If

EndProc End Sub

EndSwitch End Select

EndWhile Wend

Error On Error

Exists IsNull

For For

ForEach For Each

ForNext For

Function Function

GetNumber InputBox

GetString InputBox

GetUnits InputBox

Global Public

Go GoTo

If If

Include None

Indirect None

Label LabelName:

Local Private

MenuList None

White Paper 18 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

MessageBox MsgBox

Nest None (referencing the macro by name makes it runs)

Next Next

NotFound On Error

Ntoc Chr (or ChrW for Unicode characters)

NumStr Str

OnCancel On Error

OnError On Error

OnNotFound On Error

Pause None

Persist None

Procedure Sub

Prompt None

Quit Stop

Repeat None (use Do/Loop)

Return Return

Run None (referencing the macro by name makes it run)

SendKeys SendKeys

Speed None (use step through with debugger)

StrLen Len

StrNum Val

StrPos InStr

StrUnit None

SubStr Mid

Switch Select Case

ToLower LCase

ToUpper UCase

Until None (use Do/Loop)

Use None

VarErrChk IsNull

Wait None

While While

HardReturn() (to insert new line) Selection.TypeParagraph

Tab() (to insert a tab) Selection.TypeText Text:=vbTab

Type (―Text here‖) (to insert text) Selection.TypeText Text:="Text"

Converting Variable Assignments

There is a great deal of similarity in assigning variables with WordPerfect

macros and Visual Basic. Both use this common construction:

VarName = value

where value can be a number, a string, another variable, or a unique variable

type, such as a Boolean True/False.

White Paper 19 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

Where Visual Basic differs from WordPerfect is in global declarations of

variables, and in the scope of variables.

 In WordPerfect for DOS, variable assignments use the {ASSIGN} command:

{ASSIGN}var~value~

These must be converted to the VarName = value syntax.

 In WordPerfect for Windows, the Assign command can be used as an

optional method for variable assignment. As with WordPerfect for DOS,

these assignments must be rewritten using the VarName = value syntax.

 In WordPerfect for DOS, variables remain in memory until they are

specifically deleted, or when WordPerfect ends. In Visual Basic, variables

are retained only as long as the macro runs.

 In WordPerfect for Windows, you define a Global variable (a variable that

can be shared between macros and procedures) using the Global

command. In Visual Basic, you use the Public keyword to define a global

variable. In Visual Basic, variables are global only within the macro that

created them.

For more information on defining global variables in Visual Basic, see the

Public keyword topic in Visual Basic Help.

Converting Expressions

Expressions are used with programming statements such as If and While to

evaluate some condition. Expression syntax is almost identical between

WordPerfect for Windows and Visual Basic, except that in Visual Basic,

parentheses are not required for use with most statements that use

expressions.

For example, in WordPerfect a typical If expression may appear as:

If (MyVar = "1")

In Visual Basic, the same expression appears as:

If MyVar = 1 Then

Note that the parentheses are dropped, and that the If statement is used with

the Then keyword.

Expressions appear differently in WordPerfect for DOS. The typical If statement

may look like this:

{IF}"{VARIABLE}MyVar~"="1"~

See above for an example of how this expression must be rewritten for Visual

Basic. In particular, there is no need to use the {VARIABLE} command (Visual

Basic understands MyVar is a variable), nor is there a need to surround the

variable and tested value with quotes.

Converting Macros that Insert and Format Text

Inserting and formatting text is a common task for many WordPerfect macros.

In WordPerfect for DOS, inserting text in a document requires only that the text

be entered in the macro. No special commands are needed to insert text. For

example, the following WordPerfect for DOS macro inserts the name ―Benjamin

Franklin‖ at the current insertion point:

{DISPLAY OFF}

Benjamin Franklin

In WordPerfect for Windows, text is inserted using the Type command.

White Paper 20 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

Type ("Benjamin Franklin")

In Visual Basic, the statement to insert text at the current insertion point is:

Selection.TypeText Text:="Benjamin Franklin"

 Selection is the Word object that refers to the selection in a document

window pane.

 TypeText is the method of the Selection object for inserting text

 Text:= is the required parameter for the TypeText method.

 Benjamin Franklin is the text to insert.

The Selection object can be used to insert text, move the selection, and edit

text around the selection (the selection can refer to the insertion point or the

selected text).

Command WordPerfect for DOS WordPerfect for

Windows

Word/Visual Basic

Text Text Type ("Text") Selection.TypeText Text:="Text"

Tab {Tab} Tab() Selection.TypeText Text:=vbTab

Indent {Indent} Indent() Selection.ParagraphFormat.FirstLineIndent

= InchesToPoints(0.5)

New line {Enter} HardReturn() Selection.TypeParagraph

Page break None. HardPageBreak() Selection.InsertBreak Type:=wdPageBreak

Bold on/off {Bold} AttributeAppearanceTogg

le (Bold!)

Selection.Font.Bold = wdToggle

Underline on/off {Underline} AttributeAppearanceTogg

le (Underline!)

Selection.Font.Underline = wdToggle

Go to start of document {Home}{Home}{Up} PosDocTop() Selection.HomeKey Unit:=wdStory

Go to end of document {Home}{Home}{Down} PosDocBottom() Selection.EndKey Unit:=wdStory

Go to start of line {Home}{Left} PosLineBegin() Selection.HomeKey Unit:=wdLine

Go to end of line {End} PosLineEnd() Selection.EndKey Unit:=wdLine

Delete next character {Delete} DeleteCharNext() Selection.Delete Unit:=wdCharacter,

Count:=1

Backspace {Backspace} DeleteCharPrev() Selection.TypeBackspace

Delete next word {Block Move} DeleteWord() Selection.Delete Unit:=wdWord, Count:=1

Delete previous word {Del Word} DeleteWord() Selection.Delete Unit:=wdWord, Count:=-1

Insert date as text {Date/Outline}1{Enter} DateText() Selection.InsertDateTime

DateTimeFormat:="M/d/yy",

InsertAsField:=False

Insert date as updatable

code

{Date/Outline}2{Enter} DateCode() Selection.InsertDateTime

DateTimeFormat:="M/d/yy",

InsertAsField:=True

Converting Macros that Use Documents

Many macro tasks entail opening, closing, and saving documents. These tasks

are readily duplicated in Visual Basic.

Opening a file is one of the most common tasks performed by a macro. In

WordPerfect for DOS, documents are opened with a macro by duplicating the

White Paper 21 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

keystrokes for retrieve: press SHIFT+F10, type the file name, and press ENTER.

In a macro, the commands may appear as:

{DISPLAY OFF}

{Retrieve}myfile.txt{Enter}

In WordPerfect for Windows, the FileOpen command is used to open a file. In

a macro the command appears as:

FileOpen ("filename.wpd")

where filename.wpd is the name (and optionally, the path) of the document to

open.

In the Word implementation of Visual Basic, the Open method is used to open

an existing document. This method has many variations and uses, but the most

common is

Documents.Open FileName:="filename.doc"

where filename.doc is the name (and optionally, the path) of the document to

open.

Macros are also typically used to save a document once it has been edited,

either by macro or by a user. In WordPerfect for DOS, a macro that saves a file

contains the commands:

{Save}filename.ext{Enter}

(Note: WordPerfect warns you if the file already exists. If it does, the macro

needs to supply the Y keystroke to answer Yes.)

In WordPerfect for Windows, the FileSave command is used for the same

purpose:

FileSave () // Save an already named file

– or –

FileSave ("filename.wpd") // Name and save a file

The Word implementation of Visual Basic uses the SaveAs or Save method for

saving a file, depending on whether the file has already been previously saved,

and so already has a name. For example, to save the current document, giving

it the name "Mydoc.doc," use:

ActiveDocument.SaveAs Filename:="Mydoc.doc"

If the document already exists, you can the Save method instead. Assuming

Mydoc.doc has already been saved at least once:

Documents("Mydoc.doc").Save

Both the DOS and Windows versions of WordPerfect automatically open a

blank window for creating new documents. Word does not open a blank window

in preparation for a new document; you must explicitly tell it to do so. Therefore,

if you wish to create a document in a new blank window, you should always

precede any document creation activity with an Add method. The following

creates a new document, which can then be edited and saved, the same as any

other Word document:

Documents.Add

Finally, in WordPerfect for DOS, a document is closed in a macro by replicating

the Exit document keystrokes, which is F7, n, n. (The two n's answer No; you

don't wish to save the document -- assuming you've previously saved it -- and

you don't wish to exit the WordPerfect program.) In a macro, the keystrokes

appear as:

White Paper 22 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

{Exit}nn

In WordPerfect for Windows, the Close command is used in a macro to close a

document. As with the WordPerfect for DOS example above, it is assumed the

document has already been saved. In a macro the command appears as:

Close ()

The Close method is used in the Word implementation of Visual Basic to close

a document. To close a document with Visual Basic, you provide a statement

such as:

Documents("myfile.doc").Close

where myfile.doc is the file name. If the document has not yet been saved,

Word reminds the user to save the file. To avoid this prompt, you can first save

the document using the Save method, detailed above, or by adding the

SaveChanges argument to the Close method, as shown here.

Documents("myfile.doc").Close SaveChanges:=wdSaveChanges

Converting User Input

A common requirement of most macros is to display a message to the user and

wait for a response. Sometimes the response is a single mouse-click or

keystroke denoting ―OK‖; other times it’s a Yes/No response, or perhaps a full

text answer.

WordPerfect for Windows offers a number of built-in commands for displaying a

message and waiting for user feedback. These are:

 MessageBox – Displays a message, with an optional assortment of buttons

(OK, OK/Cancel, Yes/No, and so forth). The MessageBox command

returns the value of the button pressed as a numeric value.

 GetString – Displays a message and waits for the user to type a response.

 Prompt – Displays a message box that does not wait for a user’s response

(either OK or Cancel). Most often used in conjunction with the Pause

command, which temporarily pauses the macro.

WordPerfect for DOS offers more rudimentary user interaction -- three

commands that normally display text only in the status line at the bottom of the

screen.

 {CHAR} – Display a text message and wait for the user to press a key (most

often used for Yes/No responses).

 {TEXT} – Display a text message and wait for the user to type a response.

 {PROMPT} – Display a message that does not wait for a user response.

Most often used in conjunction with the Pause command.

Visual Basic offers similar functionality as the above WordPerfect commands,

but as statements.

 MsgBox – Functionally equivalent to MessageBox in WordPerfect for

Windows.

 InputBox – Functionally equivalent to GetString in WordPerfect for

Windows.

White Paper 23 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

Converting Macros that Pause

Unlike WordPerfect, Visual Basic lacks a means to pause execution in the

middle of a process. This is not a serious shortcoming; it merely requires that

the macro behave in a different manner than it did in WordPerfect.

As an example, a common WordPerfect macro that used pauses is the "memo

fill-in helper." This macro paused for user entry for each line of the memo.

There is no need to replicate this behavior in Word, and in fact, it is undesirable

to do so. It is far better to write a macro that collects all of the pieces of

information for the memo, then inserts all the text at one time.

For example, here is a short macro that asks for the To:, From:, and Subject:

fields of a memo, then inserts the information after all three prompts have been

answered.

ToField = InputBox("Send memo to")

FromField = InputBox("Memo from")

SubjectField = InputBox("Memo about")

With Selection

 .TypeText Text:="To: " & ToField

 .TypeParagraph

 .TypeText Text:="From: " & FromField

 .TypeParagraph

 .TypeText Text:="Subject: " & SubjectField

 .TypeParagraph

End With

Converting Alerts

Alerts are commonly used to communicate important information to the user,

such as an error or a reminder. In WordPerfect for DOS, alerts were typically

created using the {CHAR} command, which allows the macro to pause

temporarily and display a message in the status prompt (or elsewhere on the

screen, using additional screen-placement characters). Pressing a single key

releases the pause, and the macro continues.

In WordPerfect for Windows, both the MessageBox command the Prompt

command typically used to display an alert to the user. The message box

temporarily pauses the macro; pressing OK or the ENTER key closes the box,

and restarts the macro. A MessageBox alert may look like the following:

MessageBox (; "Title"; "This is an alert!")

Similarly, the MsgBox statement in Visual Basic can be used to display an

important message to the user. As with the MessageBox command in

WordPerfect for Windows, MsgBox temporarily pauses the macro. Pressing

OK or the ENTER key closes the box, and restarts the macro.

MsgBox "This is an alert!"

Converting Dialog Boxes and Menu Lists

Visual Basic fully supports Windows, including the ability to create custom

dialog boxes. Dialog boxes are most often used to collect information from the

user; for example, their name, address, and phone number. Click the OK

button, and the Visual Basic code reads the values provided in the dialog box,

and uses them accordingly. The code may use the name, address, and phone

number to create a custom letter, or to fill out a simple database stored in Word

document format.

WordPerfect for DOS lacks a means to create dialog boxes. Rather, complex

menus and other elements of user interface must be created ―from scratch‖ in

White Paper 24 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

WordPerfect for DOS. One common method to create a screen menu in

WordPerfect for DOS is with the {PROMPT} command, positioning characters

(including line-draw characters) to produce the image of a pop-up box or menu.

Any WordPerfect macro programmer who has taken the time to construct such

a menu knows the amount of time and effort required.

The WordPerfect for Windows macro system supports dialog boxes. A simple

dialog box editor comes with the program (version 6.1 and later). With this

editor, you can construct a dialog box by dragging controls (text boxes, push

buttons, and so forth) onto a blank dialog box template. The definition for the

dialog box is contained in a separate portion of the macro file, and is not

readable, except by WordPerfect.

Visual Basic provides a fully functional and sophisticated dialog box editor. This

editor allows you to build almost any dialog box (known as a UserForm in Visual

Basic Editor) by selecting controls from a palette, and placing them on the

dialog box.

Each UserForm control supports a series of ―events,‖ such as clicking or

double-clicking (the events are different for each type of control). Using event

routines, you can perform a specific action when the user chooses a control on

the user form. To create a UserForm, click UserForm on the Insert menu in the

Visual Basic Editor. This action creates a blank UserForm and displays a

ToolBox window with a number of UserForm controls.

These controls include:

 ComboBox – In its typical form, combination text box and list box.

 CheckBox – Non-exclusive option selection; click to turn the option on or off.

 CommandButton – A push button used to initiate an event.

 Frame – Creates a functional and visual grouping of controls.

 Label – Static text that doesn’t change. Use labels for explanatory text.

 OptionButton – Shows the selection status of an item. Note that each

OptionButton in a Frame control is mutually exclusive.

 SpinButton – Entry box for specifying values; up/down push buttons lets you

select a value with the mouse.

 TabStrip – Collection of tabs for selecting different sets of options in a dialog

box.

 Image – Displays a picture.

 TextBox – Entry blank for writing text. You can make the box almost any size

you want.

For more information on a particular type of control, add one to a form, select it,

and press F1.

For information on adding controls and otherwise customizing the ToolBox,

press F1 with a form selected, click Help Topics, switch to the Contents tab,

and expand Microsoft Forms Design Reference.

Once you have added a control to a UserForm, you can write code that will run

when one of its events is triggered. For example, you can write an event

procedure that will run every time a button is clicked, as shown below.

Private Sub CommandButton1_Click()

 MsgBox "The button was clicked"

End Sub

To write an event procedure for a control, double-click the control to display the

code associated with the contrel in the Code window. In the Procedure drop-

White Paper 25 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

down list, click the event you want to write a procedure for. The code you write

in this procedure will automatically run when the specified event occurs on the

specified control.

For more information on creating dialog boxes, see the UserForm topics in

Visual Basic Help or refer to Chapter 12, "ActiveX Controls and Dialog Boxes",

of the Microsoft Office 97/Visual Basic Programmer's Guide.

Converting Yes/No Messages

A common requirement in a WordPerfect macro is to display a message and

ask for a Yes/No response. In WordPerfect for DOS, this is often accomplished

with the {CHAR} command, followed by an {IF} test. Example:

{CHAR}key~Do you want to continue (Y/N)?~

{IF}"{VARIABLE}key~"="y"~

 {;} Yes~

{ELSE}

 {;} No~

{END IF}

In WordPerfect for Windows, asking for a Yes/No response is often

accomplished using the MessageBox command. This command displays a

message box with Yes and No buttons. An If test determines which button was

clicked (the value ―6‖ means the Yes button was clicked):

MessageBox (Ret; "Continue"; "Do you want to continue?")

If (Ret=6)

 // Yes

Else

 // No

EndIf

Use the MsgBox function to ask Yes/No questions in Visual Basic. Follow with

an If test to determine which button – Yes or No – was clicked by the user.

Remember that the MsgBox function can display other button sets, depending

on the options used. The following example shows how to use the MsgBox

function to display a message box with Yes and No buttons. Alternative options

display the OK button only, Yes/No/Cancel, and other button variations.

Ret = MsgBox (Prompt:="Do you want to continue?", Buttons:=vbYesNo)

If Ret = vbYes Then

 ' Yes

Else

 ' No

End If

Converting DLL Calls

The macro language in WordPerfect for Windows provides access to Windows

API (application programming interface) routines. These routines are typically

contained in one or more dynamic-link libraries (DLLs). Windows itself is

composed of numerous DLLs; most Windows applications have or support

additional DLLs of their own.

In WordPerfect for Windows, many functions contained in DLLs can be used by

a macro. The DLL was first ―registered‖ by WordPerfect, and the desired

function within the DLL was called. A typical DLL call may look like the following:

DLLLoad (User; "USER") // Load Windows USER.EXE DLL

DLLCall (User; "MessageBeep"; ret:WORD; {}) // Call MessageBeep function

DLLFree (User) // Release DLL registration

This example calls the Message function, which is contained in the User.exe

file, one of three primary DLLs used in Windows 3.1. (The purpose of the

White Paper 26 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

MessageBeep function is irrelevant for this discussion, but for the curious, the

function sounds the computer’s warning chime.)

In Visual Basic, DLLs are registered using a Declare Sub or Declare Function

statement.

 Use Declare Sub when the DLL function does not return a value, or you

don’t care what value is returned.

 Use Declare Function when the DLL function returns a value that you want

to get.

To use Declare Sub or Declare Function, you must also provide the name of

the routine you want, the name of the DLL that contains the routine, and the list

of arguments, if any, for the routine. Using MessageBeep as an example, the

API reference for Visual Basic appears as:

Declare Sub MessageBeep Lib "User" (ByVal N As Integer)

Declare Sub and Declare Function statements are placed in the Declaration

portion of the code for the module. This locates the statement before any other

Subs or Functions in the module, and makes it globally available within any Sub

or Function.

Note The User DLL referenced above is a 16-bit file. Word 97 and all other
programs in the Microsoft Office 97 suite are 32-bit applications, and therefore
require the use of 32-bit routines. For the Visual Basic, use the User32 DLL file
instead.

Once the API function has been declared, it can be called from anywhere in the

module. The function is called by name; any parameters needed by the API

function are provided. For example, to call the MessageBeep function, you

provide the following somewhere in module code:

MessageBeep (1)

For more information on Windows API and using DLLs, see the Declare

statement in the Visual Basic Help, and consult books on Windows

programming. Visual Basic Programmers Guide to the Windows API, published

by Microsoft Press, is an excellent resource for learning more about the

Windows API. Additional information on porting 16-bit DLL/API calls to

corresponding 32-bit calls can be found on the Office Developer Forum

(http://www.microsoft.com/officedev/TechInfo/techinfo.htm)

Converting Arrays

WordPerfect for Windows supports variable arrays (arrays are not supported in

WordPerfect for DOS). Arrays can be created in WordPerfect for Windows two

ways:

Method 1:

Declare (ArrayName[size]) // size is number of elements in array

ArrayName[1]="value 1"

ArrayName[2]="value 2"

…

ArrayName[n]="value n"

Method 2:

ArrayName[]={"value 1"; "value 2"; … ; "value n"}

Arrays are created by first declaring them, and then filling each element with

values, similar to Method 1, above. Instead of using brackets around the index

values for the array, Visual Basic uses parentheses. And, by default, arrays in

Visual Basic are zero-based; they are 1-based in WordPerfect for Windows.

White Paper 27 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

That is, in WordPerfect for Windows the first array element starts at 1. In Visual

Basic, the first array index is 0 (unless you use the Option Base 1 statement to

specify that the first array index is 1). Here is an example:

Dim MyArray(10) 'creates array with 11 elements (0-10)

MyArray(0) = "value 1"

MyArray(1) = "value 2"

… and so forth.

Unlike WordPerfect for Windows, Visual Basic supports dynamic resizing of

arrays after they have been defined. This allows you to make an array larger

(add more elements) while the code is running. You may resize the array with

the ReDim statement, or by defining a dynamic array.

In WordPerfect for Windows, each element of an array can store different kinds

of data. You can mix elements with integers with elements with strings, for

example. Data typing is stricter in Visual Basic, as this lowers the memory

overhead required to store the array. To specify an array that can contain any

mix of data types, declare the array without a data type definition, as in:

Dim MyAnythingArray(10)

This defines an array with variant elements; that is, each element can accept

any data type.

However, if you know that an array contains only a certain type of data, it is

usually better to define its data type. This saves memory and makes the array

more efficient. The following creates an array that can contain only integers in

each element.

Dim MyIntegerArray(10) As Integer

Improving upon WordPerfect Macros
There is no reason to precisely duplicate a WordPerfect macro for use with

Visual Basic. You can enhance the features, functionality, and performance of

the original macro by taking advantage of the extra features available in Visual

Basic. These include enhanced string functions, enhanced math functions, file

and directory functions, registry statements, and properties for obtaining current

values from Word.

Additional String Functions in Visual Basic

Visual Basic supports a rich variety of string functions that in WordPerfect

requires sophisticated macro coding. These functions including trimming extra

spaces from the beginning or ending of a string, returning just a certain number

of characters from the beginning or ending, and many more.

Of the following additional string functions, Format, Like, and StrComp offer

extraordinary functionality, and can often be used to reduce pages of

WordPerfect macro code to a simple one-line statement.

String Function What it does

White Paper 28 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

Format Format a string with user-defined formatting rules

Left Returns specified number of characters from beginning of string

Like Compare a string to a pattern.

LSet Justifies a string with left alignment.

LTrim Trims spaces off beginning of string

Right Returns specified number of characters from end of string

RSet Justifies a string with right alignment

RTrim Trims spaces off end of string

Space Create a string variable with x spaces

StrComp Compare two strings (greater than, less than, equal to)

StrConv Converts strings to other formats (including other character sets)

String Create a string variable with x characters

Trim Trims spaces off beginning and end of string

Additional Math Functions in Visual Basic

These built-in functions allow you to perform complex math equations, not

possible (or readily possible) with the standard +. -. *, and / arithmetic

operators.

Math Function What it Does

Abs Returns absolute value of a number

Atn Returns the arctangent of an angle

Cos Returns the cosine of an angle

Exp Returns value of e (the base of natural logarithms) raised to a power

Fix Returns integer portion of a number

Int Returns integer portion of a number

Log Returns the natural logarithm of a number

Rnd Returns a random number

Sng Returns the sign (+ or -) of a number

Sin Returns the sine of an angle

Sqr Returns the square root of a number

Tan Returns the tangent of an angle

Registry Statements

Windows 95, and Windows NT 4.0 use the Windows registry to store

information about applications. This registry is accessible through Visual Basic.

You can read and set values for other programs, as well as read and set values

for your own Visual Basic code.

Registry Function What it Does

GetSetting Returns a key setting value from an application's entry

GetAllSettings Returns a list of key settings and their respective values

DeleteSetting Deletes a section or key setting from an application's entry

SaveSetting Saves or creates an application entry

White Paper 29 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

File Functions

Visual Basic supports a number of highly useful functions for working with files.

You can obtain file names, file size, file attributes, file creation dates and times,

and other information directly in Visual Basic.

File Function What it Does

Dir Returns name of a file, directory, or folder that matches a specified pattern or file

attribute, or the volume label of a drive

FileAttr Returns value representing the file mode for files opened using the Open

statement

FileCopy Copies a file

FileDateTime Returns the date and time when a file was created or last modified

FileLen Returns value specifying the length of a file in bytes

GetAttr Returns a value representing the attributes of a file, directory, or folder

Input Returns a string of characters from a file

Kill Deletes files from a disk

Open Enables input/output (I/O) to a file

Print Writes display-formatted data to a sequential file

SetAttr Sets attribute information for a file

Obtaining and Setting Current Values from Word
One of the limitations of WordPerfect macros is that the language lacks

extensive commands for retrieving the current value from WordPerfect itself.

For example, there is no direct way in WordPerfect to determine the value of

most user settings that may affect the way a macro operates.

With Visual Basic, it’s possible to query the state of Word to determine a

current setting. The AllowFastSave property of the Options object, for

example, contains the current setting for the Allow Fast Saves setting in the

Options dialog box. To obtain this value in Visual Basic, use the Options

property (which returns the Options object), a period, and the AllowFastSave

property:

Ret = Options.AllowFastSave

The value (true or false) is stored in the Ret variable.

Similarly, the Word environment can be changed by setting a property value,

assuming the property is not read-only. Therefore, to change the Allow Fast

Save option, specify True or False, depending on whether you want the option

turned on or off. In the following example, the Allow Fast Save option is turned

off.

Options.AllowFastSave = False

Communication with Other Applications
Visual Basic Applications supports Automation (formerly known as OLE

Automation). Automation is a feature of the Component Object Model (COM),

an industry-standard technology that applications use to allow other applications

to control them. For example, a word processor may control a spreadsheet

program in order to pull out values from a worksheet, chart, cell, or range of

cells, and place those values in a document.

White Paper 30 Converting WordPerfect Macros to Microsoft Word, Visual Basic for Applications

When an application supports Automation, the objects the application exposes

can be accessed by Visual Basic. Visual Basic manipulates these objects using

methods of the objects supported by the program, or by getting and setting the

properties of an object. For example, you can create a Word Automation object

named MyObj and access the properties and methods of the Automation object

(the Application object in Word) as shown below.

With MyObj

 .Selection.InsertAfter Text:="Hello, world." ' Insert text

 .Selection.Font.Bold = True ' Format text

 .ActiveDocument.SaveAs "C:\WORDPROC\DOCS\TESTOBJ.DOC" 'Save document

End With

Use the following Visual Basic functions to access an Automation object:

Function Description

CreateObject Creates and returns a reference to an

Automation object.

GetObject Returns a reference to an existing

Automation object.

Each program that supports Automation provides documentation on the objects,

properties, and methods that can be accessed. The objects, functions,

properties, and methods supported by an application are usually defined in the

application's object library.

Note that programming inside of Word is the same as programming outside of

Word (from Microsoft Excel or Visio for example). In both cases you use Visual

Basic and work with the Word object model. For more information on

automating Word objects from other applications, see the "Communicating with

other applications" topic in Word Visual Basic Help or Chapter 7, "Microsoft

Word Objects", of the Microsoft Office 97/Visual Basic Programmer's Guide.

