
Super-sampling
Anti-aliasing Analyzed

Kristof Beets Dave Barron
Beyond3D

whitepaper@Beyond3D.com

Reprinted with permission 1

Abstract - This paper examines two varieties of super-sample anti-aliasing: Rotated Grid Super-
Sampling (RGSS) and Ordered Grid Super-Sampling (OGSS). RGSS employs a sub-sampling grid
that is rotated around the standard horizontal and vertical offset axes used in OGSS by (typically) 20
to 30°. RGSS is seen to have one basic advantage over OGSS: More effective anti-aliasing near the
horizontal and vertical axes, where the human eye can most easily detect screen aliasing (jaggies).
This advantage also permits the use of fewer sub-samples to achieve approximately the same visual
effect as OGSS.
In addition, this paper examines the fill-rate, memory, and bandwidth usage of both anti-aliasing
techniques. Super-sampling anti-aliasing is found to be a costly process that inevitably reduces
graphics processing performance, typically by a substantial margin. However, anti-aliasing’s posi-
tive impact on image quality is significant and is seen to be very important to an improved gaming
experience and worth the performance cost.

What is Aliasing?

Computers have always strived to achieve a higher-level
of quality in graphics, with the goal in mind of eventu-
ally being able to create an accurate representation of
reality. Of course, to achieve reality itself is impossible,
as reality is infinitely detailed. People deal with compu-
ter systems that have a finite, or set amount of memory,
bandwidth and processing ability. Because of this, it is
impossible to deal with infinite detail. The closer you
look at something, the more you see and this remains
true down to the sub-atomic level. So, computers (at least
for the foreseeable future) must work around the prob-
lem of infinite detail by taking shortcuts. For instance,
they can use sampling to approximate the character of
extremely complex source data.

A sample is a measurement of a very specific point in
time and/or a location in space. To understand this, con-
sider sound waves. Sound is nothing more than a pres-
sure wave: air compressing and decompressing. This
physical event is infinite in detail and it moves through
space, evolving with time. A CD is a digital medium
of storing sound; it stores numbers equivalent to the
amount of sound for specific points in time. This transla-
tion from a pressure wave to a number is done through a
microphone and AD-converter. A microphone can trans-
late the infinitely detailed pressure wave into an infi-
nitely detailed electrical signal. The AD-converter then
measures this electrical signal at specific points in time.
Each such measurement is a sample. So an infinitely
detailed event is translated into a discrete sample ver-
sion that can be processed by a CPU, or stored on a

digital medium like a CD. This translates to graphics in
that a sample represents a specific moment as well as a
specific area. A pixel represents each area and a frame
represents each moment.

At our current level of consumer technology, it simply
is not possible to render enough samples for anything
close to an acceptable representation of reality. Because
of this lack of samples, artifacts are introduced, arti-
facts known as “aliasing.” Aliasing brings to the table a
number of rendering problems that can seriously detract
from the quality of an image. These problems are there
every day in current 3D accelerators, taking away that
immersiveness that computer games and 3D applica-
tions strive to deliver. Jagged, crawling edges and flick-
ering objects are all symptoms of aliasing. Look at the
edges of an object on a PC 3D accelerator and there you
will find jagged edges. Now start moving away from the
object and you’ll see a “crawling” effect. These alias-
ing artifacts substantially reduce the overall quality of
the rendered display.

To better understand aliasing, shown on the next page
are two sample images. In Part A of the Figure 1, we see
what would potentially be the edge of a rendered image,
mountains if you will. Now we see that this surface is on
a grid, with each section of the grid representing a pixel.
Because we generally render on a per-polygon and per-
pixel basis, we either color the pixel or we don’t. It
becomes like binary, either 1 (on) or 0 (off). There can
be no partially filled pixels. On or off is decided based
on the sampling of the center of the pixel zone (repre-
sented by a small circle in the image). So looking to Part

Super-sampling Anti-aliasing Analyzed

Reprinted with permission 2

(a) (b)

Figure 1: Illustration of jaggies caused by sampling

(a) Infinitely detailed curve
(b) Jagged sampled representation

B we see the result, a group of pixels that try and rep-
resent the surface we wanted to render. Unfortunately,
this can result in something of a mess. These staircase-
edges are often referred to as “jaggies”.

Another example of aliasing in computer graphics is
polygon “popping” (also referred to as pixel popping).
This problem presents itself when dealing with thin pol-
ygons less than a pixel wide or tall. Sometimes, a thin
polygon can be positioned in a spot where it cannot
be sampled at all. From there, either all or part of the
polygon disappears. Figure 2 (top right) illustrates var-
ious polygon popping effects. On the left we see the
desired result, and on the right the rendered and sam-
pled result, the latter suffering from polygon popping
artifacts. Notice, for example, the green bar in (a). This
bar covers the pixel centers in (a) and is thus visible, but
now imagine a downward animation where the green
bar ends up in position (b). In position (b) no pixel
centers are covered by the green bar so nothing actually
is rendered. Notice how the green bar went from full
visibility to being completely invisible, all because of
slight downward animation. If the animation continued
downward, the bar would again cover pixel centers and
become fully visible. Thus, as the bar moves down, the
rendering would “flash” off and on - this is a perfect
example of polygon popping aliasing. Furthermore,
notice how the yellow shapes change between frame (a)
and (b) of the animation. The yellow shapes are ren-
dered differently from (a) to (b) due to the lack of suffi-
cient rendering samples. The red, elongated triangles are
exactly the same size but transposed, yet in both frames
(a) and (b) they are shown covering a different amount
of pixels. The blue square in frame (a) illustrates how a
single equal polygon can end up looking very different
when rendered just by changing its position or orienta-
tion. [1] All of these artifacts, characterized by different
rendering of the same object as a function of different
location or orientation, are symptoms of polygon pop-
ping aliasing.

To reduce the artifacts associated with aliasing, both
jagged triangle edges and polygon popping, we utilize
anti-aliasing algorithms. Anti-aliasing is basically the
process of removing the unwanted artifacts. The prob-
lem with anti-aliasing algorithms and techniques has
long been the required high bandwidth and fill-rates.
This has caused AA to long be stuck in the CAD and
high-end computer imagery markets. However, con-
sumer level products are now reaching a point where
real-time anti-aliasing is possible. In the next section
we’ll describe the working of several anti-aliasing meth-
ods.

A
ni

m
at

io
n (a)

(b)

Figure 2: Illustration of Polygon Popping
(a) Finely detailed representation on the left, sampled version

with missing polygons and details on the right.
(b) Animation frame after (a) different polygons are visible

creating a flickering effect.

Super-sampling Anti-aliasing Analyzed

Reprinted with permission 3

Practical Implementations
of Anti-aliasing

Although several hardware and software implementa-
tions of anti-aliasing have been developed, they have
not been successful in the mainstream consumer market
to date. High CPU processing overhead, memory band-
width constraints, and memory costs have made imple-
menting anti-aliasing capability impractical for the
consumer market. Even the less demanding “edge” anti-
aliasing (which attempts to address the jagged edges
artifacts, but not improving the polygon popping arti-
facts) has not been successful due to its relatively poor
quality and negative performance impact. Anti-aliasing
until very recently has remained exclusive to the high-
end CAD-CAM and off-line rendering markets.

With the recent generation of CPUs and graphics proc-
essors, however, consumer systems finally have the
processing power, memory bandwidth, and memory
capacity to make anti-aliasing practical. This article
explains the basic types of super-sample anti-aliasing
and examines two specific implementations.

Super-Sampling Techniques

As explained earlier, aliasing is a result of sampling, or
more specifically, the lack of a sufficient sampling rate.
Super-sampling, as the name suggests, solves the alias-
ing problem by taking more samples than would nor-
mally be the case. By taking more samples, we are able
to more accurately capture the visual quality of the infi-
nitely detailed natural world. So the first essential ele-
ment of super-sampling is that extra samples are used
to increase the density of image information. You can
see this as taking sub-samples at the pixel level. Thus,
instead of one single central sample per-pixel, super-
sampling techniques utilize several samples per pixel.
It is the location of these sub-samples within a pixel
that defines two different types of super-sampling anti-
aliasing.

Ordered Grid Super-Sampling is the first and most
common type of super-sampling anti-aliasing. The name
“Ordered Grid” is descriptive of the sub-sample posi-
tions within a given pixel. The extra samples are posi-
tioned in an ordered grid shape. The sub-samples are
aligned horizontally and vertically, creating a matrix of
points. These sub-samples are thus located inside the

Rot. Angle

(a) (b)

Figure 3: Illustration of different sampling grids
(a) Ordered Grid as used by the OGSS method.

(b) Rotated Grid as used by RGSS method.

original pixel in a regular pattern as shown in Figure
3a.

The second type of super-sampling anti-aliasing is
known as Jittered Grid Super-Sampling (JGSS). JGSS
is similar to Ordered Grid Super-Sampling in that extra
samples are stored per pixel, but the difference between
the two is the position of the sub-samples. With OGSS,
the sub-sample grid is parallel and aligned to the hori-
zontal and vertical axis. However with JGSS, the sub-
sample grid is “jittered,” or shifted, off of the axis. An
example of a sub-sample pattern used with JGSS is
shown in Figure 3b. There are a variety of different ways
of “jittering” the sub-sample positions, and we will now
investigate the two most common implementations.

The first implementation, Fully Random Jittered Super-
Sampling, is better known as Stochastic Sampling.
Essentially this means that within a pixel, the sub-sam-
ples are positioned in random locations. The key here
is that the sub-sample pattern is random for every pixel
on screen. The basic idea behind this technique is that
the randomized locations of the sub-samples is actually
seen as “white noise” by the human eye. This technique
hides the aliasing effect in noise, which is based on
the known fact that the human eye is less sensitive to
random noise than regular patterns. Our eyes are very
good at recognizing patterns, but the introduction of
random noise makes the recognition of patterns - in
this case aliasing artifacts- significantly more difficult.
While the quality of this technique is excellent, it is very
expensive to implement. Approximately 16 (or more)
randomly distributed sub-samples per-pixel are needed
to attain the necessary level of white noise. Lower
sample counts also work, but these are more susceptible
to artifacts. Fully random positions also tend to be dif-
ficult to generate. Improvements in this technique exist
to avoid accidental patterns, or samples being taken too

Super-sampling Anti-aliasing Analyzed

Reprinted with permission 4

closely to each other. One example is the use of a Pois-
son Distribution of sample points [5], but these tech-
niques are extremely complex and not yet available in
consumer level hardware.

A second implementation of sample positions of JGSS is
a simplified form of the first. Instead of using completely
random patterns, a predefined pattern that approximates
the effect of random sampling is re-used for every pixel
of the screen. So we again get a grid (as in a repeating
pattern), but the repeated pattern is more random and
less uniform. Again, various random patterns exist. A
pattern suggested by the OpenGL documentation is a
“shear” transformed grid [2]. The ordered grid is thus
shifted sideways. This shift removes some of the regu-
larities that exist in the OGSS pattern. However, this
pattern removes only the vertical regularity. The hor-
izontal regularity is maintained, so the column struc-
ture of OGSS is destroyed but the row-like structure
remains. Also, quite often used is a rotated ordered grid.
We’ll call this technique Rotated Grid Super-Sampling,
or RGSS for short. With RGSS, the sub-sample loca-
tions are the same as those used in OGSS, but they are
rotated by a certain angle. The sub-sample positions for
an RGSS implementation are illustrated in Figure 3b on
the previous page. Note that both the horizontal and ver-
tical regularities are destroyed, so there are no definite
columns or rows.

With the theory and definitions of OGSS and RGSS
behind us, we will now focus on practical implementa-
tions using today’s hardware for both techniques. We
examine one hardware implementation for each super-
sampling technique, but keep in mind that there are
numerous ways for implementing the super-sampling
anti-aliasing techniques described.

An OGSS Implementation

Ordered Grid Super-sampling (OGSS) is a technique
that can be implemented on almost all 3D accelerators,
given that they support rendering to an off-screen buffer.
An off-screen buffer has room to store the frame’s pixel
colors, as well as the Z and Stencil values. However, it
differs from a conventional front- or back-buffer in that
it is never displayed directly on screen.

As was explained before, the OGSS method uses a reg-
ularly-patterned ordered grid of sub-samples for each
pixel. Below we detail a step-by-step description of how
OGSS anti-aliasing can be performed on today’s 3D
hardware.

1. The game engine creates the 3D environment
using a 3D API like Direct3D or OpenGL. Both of these
APIs use triangles as their basic building block to create
3D objects. Each triangle has coordinates in 3D space.
These coordinates are transmitted, transformed and lit ,
through the API via the 3D card’s specific driver. We’ll
assume in this simple example that our screen has a
resolution of 10-by-10 pixels, and that we have a trian-
gle with vertices at positions (5,5), (10,10) and (10,0) -
forming a triangle on the right hand side of the screen.

2. The coordinates supplied by the API target a
specific screen resolution. When the vertices are trans-
formed and lit, they are provided screen-space coor-
dinates (unlike the world-coordinates used by the 3D
application). These coordinates are thus linked to the
final screen resolution. To reach our anti-aliasing goal,
we need to up-sample these coordinates by at least a
factor of two in both the horizontal and vertical direction
to create a sufficient number of sub-samples for effec-
tive anti-aliasing. This up-sampling is a simple multi-
plication by two of all screen coordinates. Up-sampling
by a factor of two increases the screen resolution of our
example to 20-by-20 (10 multiplied by 2). Our vertex
positions will be up-sampled to (10,10), (20,20) and
(20,0). Notice that the vertices and thus the triangle
remain at the same relative position in screen-space.

3. The result of the previous operation is that all
geometry is zoomed by a factor of two in both the hori-
zontal and vertical directions. Simply put, everything is
twice as big. We thus have four times the number of
pixels drawn as compared to no up-sampling being per-
formed. Our original screen of 10-by-10 pixels is now
20-by-20 pixels.

4. We render all the up-sampled geometry of this
frame as we normally would, but to an off-screen (invis-
ible) buffer. The reason for using an off-screen buffer is
that our goal is to have a 10-by-10 anti-aliased image,
not a 20-by-20 up-sampled one. Note that our example
assumes only one triangle. A real world application, of
course, has many more.

Super-sampling Anti-aliasing Analyzed

Reprinted with permission 5

5. When the whole scene of this frame is rendered,
we have a high-resolution picture of the 3D world.
We now need to down-sample this high-resolution pic-
ture into an anti-aliased lower resolution version. We
thus need to go from 20-by-20 “super-sampled” (double
resolution) image to a 10-by-10 anti-aliased image.
This down-sampling is achieved by mixing pixel colors
together in groups of two-by-two. Essentially, we take
the color values of four neighboring pixels (square
shaped), add them together and then divide by a factor
of four. This means that the resulting color is an equal
mix of the colors of the four high-resolution pixels.
These four pixels in the high-resolution image are really
the sub-samples of the anti-aliased pixels. Combined
together, these sub-samples form a final anti-aliased
pixel for the rendered image. By sampling at a higher
resolution and then filtering down using an averaging
filter, the high frequency components are smoothed out,
which reduces the aliasing considerably. For a simple
example, assume our scene contains dark bars (0%) on
a bright background (100%), arranged in the vertical
direction (striped effect) with a height of one sub-sam-
ple. The sub-sample would contain two dark and two
bright sub-samples. The filtered down result of this is a
half bright, half dark pixel. So the high frequency effect
(0% and 100% alternating) causing aliasing is reduced
to a continuous 50% blend.

6. The end result is of this process is again a
10-by-10 image, but anti-aliased via an OGSS super-
sampling technique. We will discuss another important
aspect of this process - the quality of anti-aliasing - later
in the article.

A schematic overview of this OGSS technique can be
seen in Figure 4 on the right.

This practical implementation achieves Ordered Grid
Super-Sampling by up-sampling the scene by a factor
of 2, both horizontally and vertically. By increasing
the horizontal and vertical resolution during the up-
sampling, extra sample positions are introduced in an
ordered grid shape. These sub-samples are located inside
the original pixel, as illustrated by Figure 3a.

In our example, we used an up-sampling rate of two
in both the horizontal and the vertical direction. Noth-
ing prevents an implementation where other up-sam-
pling ratios are used, such as four or even more. Usually
this factor is used to identify the type of OGSS. Thus,

the terms 2X OGSS and 4X OGSS are often used to
describe the number of sub-samples used in an OGSS
implementation. Sometimes the number of sub-samples
is identified by the word “tap”, thus leading to the names
4-tap or 16-tap OGSS. So with a 16-tap OGSS, we
have 4 sub-samples in the vertical and 4 in the horizon-
tal. A point worth mentioning is that the names Full-
Scene Anti-aliasing and Full-Screen Anti-Aliasing are
often used out of place. Generally, this term is used to
represent OGSS, but what it truly means is that an entire
image undergoes an anti-aliasing process (whether it be
OGSS or RGSS or some other technique for anti-alias-
ing). However, it is important that we note what type of
anti-aliasing is implemented in hardware because it has
an impact on quality, as will shortly be investigated.

Finally, it should be noted that this implementation of
OGSS using existing 3D hardware suffers from poten-
tial incompatibility with applications that use Linear
Frame Buffer access. Linear Frame Buffer access is a
technique where an application writes values directly
into the buffers (Frame and/or Z/Stencil). The problem
with this is that internally the render target is up-sam-
pled to a higher resolution. The application is not aware
of this and, as a result, the Linear Frame Buffer access
goes wrong. A simple example will illustrate the point.
Assume a game wants to use Linear Frame Buffering

Front Buffer Back Buffer

Offscreen Buffer

Z / Stencil Buffer

3D Game World

x

y

2x

2y

x

y

Game Engine
API (D3D / OpenGL)

 Upsampling
of the coordinates

 Render
 to
Offscreen Buffer

 Downsampling
 using
Anti-Aliasing Filter

Flip Front and Back
 Buffer to get new
frame on the screen

Figure 4: Overview of the Ordered Grid Super-sampling
Method (OGSS).

Super-sampling Anti-aliasing Analyzed

Reprinted with permission 6

to overlay the screen with a cockpit image. This over-
lay image has the resolution of the final image, not of
the up-sampled, internal, higher-resolution off-screen
buffer. As a result, an overlay with the size of the final
image is written to the up-sampled buffer (so 1/4th the
correct size), which of course results in an incorrect
result. The overlay would end up occupying only 1⁄4th
of the proper dimensions in the final anti-aliased screen
image. Applications that use Linear Frame Buffer access,
therefore, must be handled with special care. The prob-
lem must be managed with special tricks at the driver
level, as solutions are rarely supported in hardware.
Needless to say, this has a nasty performance impact but
without this special handling, vulnerable applications
will show an incorrect end result.

A RGSS Implementation

Rotated Grid Super-sampling (RGSS) can be imple-
mented using an Accumulation Buffer technique and
also by the 3dfx T-Buffer technology. We will detail
step-by-step the implementation of RGSS utilizing the
VSA-100 T-Buffer capability found in 3dfx’s recent
Voodoo5 product offering:

1. The game engine creates the 3D environment
using a 3D API such as Direct3D or OpenGL. Both
these APIs use triangles as their basic building block to
create 3D objects. Each triangle has coordinates in 3D
space. These coordinates are transmitted, transformed
and lit. If hardware T&L is supported, of course, the
data is sent directly to the video card’s T&L unit for
transformation and lighting.

2. The 3dfx VSA-100 T-Buffer implementation
uses a multi-chip solution where each chip calculates
2 sub-samples (it is safe to assume that in the future
chips will allow for more sub-samples per chip). We
thus need at least 2 VSA-100 chips to implement 4 sub-
sample anti-aliasing. We’ll assume a 2-chip configura-
tion, such as the Voodoo5 family, in our explanation.
As said before, the sub-samples are jittered or, more
specifically, rotated. These jittered sample positions are
obtained by shifting the geometry’s vertices. So for each
sub-sample, the vertices receive a precise sub-pixel level
perturbation that matches the targeted sub-sample posi-
tions. Figure 5, right top of this page, illustrates this.

The sample position and resolution stays equal, but by
moving the geometry at the sub-pixel level we get dif-
ferent equivalent sub-samples. These geometry shifts
are handled in hardware in the VSA-100 chip, so there is
no software overhead required for RGSS anti-aliasing.

3. Now all the shifted geometry is rendered. Each
shifted version is sent to its own T-Buffer. Each T-Buffer
has the same resolution as the final anti-aliased image.
The number of buffers is equal to the number of sub-
samples taken. Each VSA-100 chip manages 2 sub-sam-
ples and thus writes to two T-Buffers. The writing is
done to the invisible “back” T-Buffer, which is similar
to the front- and back-buffers normally found on 3D
accelerators. The front buffer is written to the monitor
while rendering is done in the invisible back buffer. This
avoids artifacts like tearing.

4. Once all the geometry for this frame is jittered
and rendered to the T-Buffers, we end up with each
T-Buffer containing the pixel-colors for each jittered
scene. Each buffer contains a sub-sample of the final
image, as illustrated in Figure 5. We now flip back and
front T-Buffers.

5. The front T-Buffers now contains the sub-sam-
ples of the scene we just rendered. The sub-samples now
need to be combined to form the final anti-aliased image.
This combining is done just before the RAMDAC by
special video circuitry that mixes the various buffers
together at the pixel level. The RAMDAC is a special
component of a 2D/3D chip that translates the contents

(a) (b) (c)

Figure 5: Illustration linking jittered geometry to different
sample positions.

(a) The normal non-AAed grid with sample point.
(b) 4 Jittered versions of the scene geometry. Note that the
triangle with the dashed line is the original triangle while the
triangle with the solid edge is the jittered position. Sample

point remains at the same spot inside the pixel.
(c) Equivalent Sub-sample positions. Compare the resulting
sample points shown in (b) with these equivalent Sub-sample

positions indicated by small circles.

Super-sampling Anti-aliasing Analyzed

Reprinted with permission 7

of the buffers into a signal that can be displayed by your
monitor. Most monitors take analog signals as input,
which explains the DAC part of the name: Digital to
Analogue Converter. The RAM refers to the fact that
the AD conversion is done using a table contained in
RAM (this has to do with Gamma Correction). The
main advantage of this approach is that no down-sam-
pled version of the image has to be stored and the color
depth at the output level is higher than the color depth of
an individual buffer. The sub-sample T-Buffers can con-
tain, for example, 16-bit color, but the combining opera-
tion (mixing of the colors) is done at a higher accuracy
by the video circuitry which leads to a final anti-aliased
image with a color depth higher than the color depth of
the individual buffers. This principle is similar to that of
the post-filter technology found in the Voodoo2 and 3
designs [3].

A schematic overview of this technique can be seen in
Figure 6, below.

This same technique can also be implemented in hard-
ware that supports an Accumulation Buffer [2] [4]. How-
ever, the traditional Accumulation Buffer technique has
some disadvantages in implementing RGSS. The jitter-
ing has to be done using software and the geometry
thus has to be sent several times to the hardware. The
T-Buffer capability of the VSA-100 does this jittering
at the hardware level, internally saving valuable band-
width (the geometry data only needs to be sent once to
the VSA-100, as the chip itself automatically jitters the
geometry and renders into the T-Buffers). Traditional
hardware T&L accelerators can calculate and apply
the shift in hardware, but the geometry still has to be
sent to the rendering core several times. Another disad-
vantage of the Accumulation Buffer lies in the recom-
bining of the samples. T-Buffer does this just before
the RAMDAC level while traditional systems require
a costly copy and combine operation that merges the
Accumulation Buffer contents with the frame-buffer
contents after every sub-sample is calculated. More
details about the Accumulation Buffer technique can be
found in [2] and [7].

Figure 6: Overview of the Rotated Grid Super-sampling Method.

Game Engine
API (D3D / OpenGL)

3D Game World

x

y

Jitter Jitter

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

Combine

 Video
 Circuitry

 RAMDAC

Monitor

Jitter Geometry
at subpixel level

 Render jittered
scenes to back buffers

Flip Buffers

 Combine the pixels
 of the buffers to form
the final Anti-aliased image

Master Chip Slave Chip

Super-sampling Anti-aliasing Analyzed

Reprinted with permission 8

Note that the Linear Frame Buffer issue raised in the
above section describing the OGSS implementation is
not a problem for the VSA-100. This is because all of
the T-Buffers have the same resolution as the final image.
Instead of writing to just one buffer, the VSA-100 hard-
ware writes the data to all T-Buffers automatically. Fur-
thermore, for Linear Frame Buffer reads, the VSA-100
architecture merges the sub-samples together to form
the anti-aliased pixel result before the data is returned to
the CPU. This allows screen captures done by the host
CPU to look identical to what the user sees on his moni-
tor. These techniques allow the VSA-100 to implement
RGSS anti-aliasing in a manner completely compatible
with all 3D APIs.

Also note that OGSS can also be implemented on the
VSA-100 architecture as the sub-sample position off-
sets are actually completely programmable by software.
Implementing OGSS on the VSA-100 would simply
entail using different sub-sample positions (in the case
of OGSS, a regular ordered grid).

Summary

We’ve thus discussed the different implementations of
super-sampling, focusing on Ordered Grid Super-Sam-
pling and Rotated Grid Super-Sampling. The primary
difference identified between the two methods is the
location of the sub-samples within the anti-aliased pixel.
We also discussed the implementations of these meth-
ods using PC 3D accelerators. The next part of this
white paper will discuss the difference in image quality
between the two super-sampling two methods, as well
as several other key points.

Theoretical Image Quality

In the previous section we introduced two practical
ways to do anti-aliasing. The first was Ordered Grid
Super-Sampling (OGSS) and the second was Rotated
Grid Super-Sampling (RGSS). We found that the big
difference between these methods is the location of the
sub-sample positions. Figure 3 on page 3 showed the
different sub-sample patterns of the two techniques.

We will concentrate on comparing 4 sub-sample OGSS
with 4 sub-sample RGSS. In particular, we will concen-
trate on what happens at the edges of polygons. The
aliasing inside polygons is mainly solved by texture fil-
tering, but that goes beyond the scope of this paper.
Super-sample anti-aliasing methods help out by provid-
ing a higher sample resolution, but this is not enough
to solve severe texture mapping aliasing. Both methods
use 4 sub-samples and at an edge, this results in five
possible cases depending on the number of sub-samples
that fall inside and outside the polygon. For simplicity,
we’ll assume a uniformly black colored polygon on a
white background. The various possible situations per-
pixel are as follows:

Case 1: All sub-samples fall outside the polygon. This
means the outcome is 0%. Zero of the 4 sub-samples are
inside the polygon and the resulting color of this case is
pure white.

Case 2: A single sub-sample falls inside the polygon.
We thus have one black and three white sub-samples.
The mixed down result of this is a 25% gray colored
pixel. This is the 25% case.

Case 3: Two sub-samples fall inside the polygon. We
thus have two black and two white sub-samples. The
mixed down result of this is a 50% gray colored pixel,
and this is called the 50% case.

Case 4: Three sub-samples fall inside the polygon, so we
have three black sub-samples and one white sub-sam-
ple. The mixed down result is thus a 75% gray colored
pixel. This case is the 75% case.

Case 5: All samples fall inside the polygon. The mixed-
down result is thus a completely black colored pixel,
and this is known as the 100% case.

Super-sampling Anti-aliasing Analyzed

Reprinted with permission 9

In summary, 4 sub-sample anti-aliasing can have one
of five different edge effects: 0%, 25%, 50%, 75% and
100%, depending on the number of sub-samples that are
inside the polygon. These different values have varying
impact on the contrast between the pixel(s) inside the
polygon and the pixel(s) outside the polygon. Reduced
contrast results in less obvious jagged edges.

Knowing that theoretically there are five different
outcomes per-pixel and knowing that we have two
techniques with different sub-sample positions, it is rea-
sonable to conclude that edges will be anti-aliased differ-
ently when using the different anti-aliasing algorithms.
Here is where the concept of Critical Edge Angles comes
into play. A Critical Edge Angle is a special case where
the edge passes though or nearly through 2 sub-samples
at the same time. The easiest way to understand this is
as follows. Take the sub-sample positions of the OGSS
technique (see figure 3a) and imagine a horizontal edge
moving though a single pixel with sub-samples from
below to above the pixel. Notice that the sub-samples
are aligned in the horizontal direction. This means that
the bottom two samples will be passed by the edge at
the same time. The same is true for the two samples at
the top, which are also aligned in the horizontal direc-
tion. Essentially, this means that the moving horizontal
edge moves from the 0% case, to the 50% case and then
to the 100% case. Notice that the 25% and 75% cases
are lost due to the fact that 2 sub-samples are passed by
the edge at the same time twice! Losing 2 shade levels
from the 5 is an example of a “Bad Angle Case” for
OGSS.

When we look at the same sub-sample pattern we notice
that exactly the same effect pops up when the edge is at
a 90° (or vertical) angle. So essentially the OGSS algo-
rithm has 2 Bad Angle Cases: horizontal edges (0°), and
vertical edges (90°).

The same effect, but to a lesser degree, also occurs with
45° and 135° angle edges. When you imagine an edge
moving though the sub-sample pattern at 45° from left
to right, you’ll notice one sub-sample enters the polygon
and then the next 2 sub-samples, which are aligned in
the diagonal direction, pass the edge at the same time.

The final sub-sample is passed later by the edge. Again
we lose a sub-sample value, the 50% case. Since we
only lose one shade level, this is a “Mediocre Angle
Case.” There are no other special cases.

The RGSS method has its sub-sample points aligned in
special directions, too (see Figure 3b). Essentially, the
sub-sample positions are equal to those of the OGSS
method, but rotated around an angle. This means that
the RGSS method also has Critical Edge Angles. Just
as with OGSS approach, there are two Bad Angle Cases
and two Mediocre Angle Cases. Essentially, the bad
cases are the same as with the OGSS method, but per-
turbed by the Grid Rotation Angle. So if this angle is 20°,
for instance, then the Bad Angle Cases are 0°+20°=20°
and 20°+90°=110° and the Mediocre Angle Cases are
20°+45°=65° and 20°+135°=155°.

Based on this information you might get the incorrect
impression that both techniques are equally good and
bad. After all, the not-so-ideal anti-aliasing cases (where
you lose shade levels) are just shifted to different edge
angles. We’ll soon discover that some angles require
better anti-aliasing than others. We will begin by look-
ing at theoretical examples of all the essential Critical
Edge Angles.

Theoretical images analyzed

The first example edge is close to a Critical Edge Angle
of the OGSS method. More specifically, we’ll look at a
Near Horizontal Edge, thus close to the 0° Bad Angle
Case. Figure 7a and 7b (on the next page) show the same
Near Horizontal Edge overlaid on the OGSS and RGSS
sub-sample patterns. Beneath each grid example is the
resulting anti-aliased edge created by the sub-sampling
and blending processes.

The first thing to notice is that the OGSS method clearly
has encountered a bad case. Only 0%, 50% and 100%
shades are available to smooth the edge and decrease
the contrast. On the other hand, the RGSS method has
access to all shades to smooth the edge. Better still, they
are nicely and evenly spaced. The rotation angle of the
RGSS method in all these examples is 27°. Note that
specific implementations such as 3dfx’s T-Buffer might
use a different rotation angle. The angle and possibly
even the sub-sample positions might also be program-
mable. This example teaches us that not just the exact
Critical Edge Angles are problematic. The edge angles
near them can experience the loss of shade levels as
well. Of course, it would be helpful to actually define
what “near” is. Unfortunately, that is much more diffi-

Super-sampling Anti-aliasing Analyzed

Reprinted with permission 10

(a)

(b)

Figure 7: Near Horizontal Edge Case Comparison
(a) OGSS (b) RGSS

cult than it seems at first glance. However, we can iden-
tify the factor that determines when an angle is near
a Bad Edge Case. The main influencing factor is the
screen resolution. The higher it is, the closer together
the sample and sub-sample points are. When they are
closer together, the risk of jumping directly over more
than one sub-sample becomes smaller. Essentially, the
“near-factor” will change depending on the screen reso-
lution used. The basic rule here is this: The higher the
resolution, the better the anti-aliasing results. In this spe-
cific example it is very obvious that the RGSS method is
superior to the OGSS method. So for now we can con-
clude that for near-horizontal and near-vertical edges
(just rotate your page 90° and look at the same exam-
ples), the RGSS method is superior.

It really isn’t surprising in the example above that the
RGSS method is superior. After all, we selected an angle
that was near critical for the OGSS method while it
was nowhere near a critical angle for the RGSS method.
Now, let’s examine a Bad Angle Case for the RGSS
method. More specifically, lets look at the case of an
edge with the same angle as the rotation angle. This
is similar to the horizontal edge case using the OGSS
method. In Figures 8 and 9 (next page) we have a pol-
ygon that slowly moves along a line perpendicular to
the bad angle, so the edge will pass though all possible
shading levels.

When we compare the Bad Angle Cases of these two
methods, we notice that both suffer from the same thing:
lost shading levels. But when looking more closely, we
notice that in the Near Horizontal Case the end result of
the OGSS method comes nowhere near the end result of
the RGSS method. Moving the edge up and down leaves
the situation just as bad as it was. However, when we
look at the Bad Case Angle for RGSS, we notice that
some of the final results of both techniques look very
similar. Indeed, they are close to identical. Notice that
result (b) from the OGSS method is virtually equal to
(d) from the RGSS method. The same is true for (a) and
(b). They are not equal, they just look much more simi-
lar than the near horizontal example. The reason for this
reduced difference is that under the near horizontal edge
the staircase effect of the edge is very wide. The steps
are elongated and with only one shade level it is nearly
impossible to approach that smoothness. However, in
the critical angle for the RGSS case, the staircase is very
narrow and jaggy. As a result, there isn’t much room to
place different shade values along the edge. Actually,
in a static case you only notice one major shade-level
being used. Because of this, the RGSS method can come
close to mimicking the results of the OGSS method.
A cautious conclusion is suggested by these examples.
It would appear that the near horizontal edge benefits
more from multiple shade levels than does the edge par-
alleling the RGSS method’s rotation angle. Although
each edge represents the worst case for one of the anti-

Super-sampling Anti-aliasing Analyzed

Reprinted with permission 11

Figure 8: Bad Angle case for RGSS
Results with OGSS shown.

(a),(b),(c) and (d) show the sampled result of the animation

(a) (b)

M
ot

io
n

Figure 9: Bad Angle Case for RGSS
Results with RGSS shown.

(a), and (b) show the sampled result of the animation

aliasing methods, the worst case of the OGSS method
(Near-Horizontal and Near-Vertical) is visibly worse
than the worst case of the RGSS method (an edge par-
allel to the rotation angle). The impact of fewer shade
levels is far greater on the horizontal edge, as anti-ali-
ased by the OGSS method. The results of the two meth-
ods in their handling of the RGSS Bad Case Angle are
really only distinguishable when the edge is moving
around. Even then, the two look very similar. If you
know that contrast has a major influence on the visibility
of edges, it might very well be that if the contrast isn’t
too high you won’t even notice the difference between
the two methods.

Now that we have had a look at the Bad Edge Angle
Cases, let us look at the Mediocre Edge Angle Cases
(45° for OGSS and 45°+27° for RGSS). These are illus-
trated in Figures 10 and 11 (next page).

The 45° case is influenced by an effect very similar to
that seen in the 27° case discussed before. Simply said,
the edge has a very small stair size that makes it impos-
sible to place multiple shade levels. Again, it becomes
very difficult to see the difference between both meth-
ods and it is only during motion of the edges that you

notice that a shade level is lost. The final results look
very similar. A cautious conclusion based on this exam-
ple is that in a game situation it will be very difficult
to even notice this lost shade level. Theoretically, the
RGSS method is slightly better and will create smoother
looking animation, but the difference is minimal, espe-
cially when reduced contrast comes into play (white/
black is the worst contrast case you can have and is not
very realistic in games).

The 45°+27° mediocre case for RGSS is very similar to
the previous one and is illustrated in Figures 12 and 13
(next page). Again, the staircase itself is relatively small
which leaves little room to use different shades. You
lose only one shade level and it’s probably not notice-
able under more realistic contrast levels. One thing to
notice in this angle case is that animation speed also
has an impact on the final result. In this OGSS example,
you’ll see that not every pixel is updated during each
animation step. Some pixels keep the same color value.
This reveals another factor that can influence quality:
frame rate. The higher the frame rate is, the smaller the
animation steps are, and the risk is smaller that you will
jump over a smoothing level. Simply said, while OGSS
might have an extra shading level available it might very
well end up looking worse than RGSS when the frame

(a) (b) (c) (d)

M
ot

io
n

Super-sampling Anti-aliasing Analyzed

Reprinted with permission 12

M
otion

(a) (b) (c)

Figure 10: Mediocre Angle Case for OGSS (45°)
Results with OGSS shown.

(a), (b), and (c) show the sampled result of the animation

(a) (b) (c)

M
otion

(d)

Figure 11: Mediocre Angle Case for OGSS (45°)
Results with RGSS shown.

(a), (b), (c) and (d) show the sampled result of
the animation.

(a) (b) (d)(c) (e)

Motion

Figure 12: Mediocre Angle Case for RGSS (45°+angle)
Results with OGSS shown.

(a), (b), (c), (d) and (e) show the sampled result of
the animation.

(a) (b) (c)

Motion

Figure 13: Mediocre Angle Case for RGSS (45°+angle)
Results with RGSS shown.

(a), (b), and (c) show the sampled result of
the animation.

Super-sampling Anti-aliasing Analyzed

Reprinted with permission 13

rate is lower. What would happen is that the low frame
rate makes you lose in-between shade positions. Based
on this, we can say that a high enough frame-rate com-
bined with as many shade levels as possible is essential
for image quality.

Up until now we have concentrated on 4 sub-sample
super-sampling. As mentioned before nothing stops us
from using more, or even fewer, sub-samples. Using
a regular ordered grid with only 2 sub-samples would
result in aliasing in a single direction only. Simply said,
if you up-sample the image in the vertical direction, so
that a 10-by-10 image turns into a 10-by-20 image, you
end up with 2 sub-samples vertically aligned. This situ-
ation would give you 3 shade levels: 0 , 50 and 100%
in the vertical direction only. The anti-aliasing quality
of this setup is very poor. Rotating this grid solves the
alignment problem and 3 levels become available in both
the horizontal and vertical direction. Figure 14 below
illustrates that 2 sub-sample RGSS for near horizontal
(and automatically also for near vertical) edges results
in an output close to that of 4 sub-sample OGSS.

(sometimes many fewer). In short, 2 sub-sample RGSS
is equivalent to 4 sub-sample OGSS and 4 sub-sample
RGSS is equivalent to 16 sub-sample OGSS, but only
for near-horizontal and near-vertical edges. Over all
angles the quality levels are somewhere in-between.
From lowest quality to highest quality (based on the
theoretical analysis) we get: 2 sub-sample OGSS, 2
sub-sample RGSS, 4 sub-sample OGSS, 4 sub-sample
RGSS, and 16 sub-sample OGSS.

Based on these theoretical images, we can come to the
following conclusions. Near-horizontal and near-verti-
cal edges show an elongated, staircase jaggie that leaves
a lot of room to place shade-levels to make the edge
look smooth. The OGSS technique fails to deliver many
shade levels for those angles, losing both the 25% and
75% smoothing level. RGSS, on the other hand, sup-
plies the full range of smoothing levels for the near-
horizontal and near-vertical edges. The other potentially
problematic angles turned out to be not so problematic
due to very small staircase effects. The real difference
only shows up during animation and even then the dif-
ferences between the two techniques are minimal. Based
on this we can conclude that the difference between
OGSS and RGSS is mainly concentrated around the
near horizontal and vertical lines.

Which edge angles most need Anti-aliasing?

In the previous part we discovered that the main differ-
ence between the two competing techniques lie around
the near-horizontal and near-vertical edges, while the
difference for other edge angles is close to minimal.
Now, it is important to ask whether near horizontal and
near vertical edges matter.

There are several arguments to support the idea that the
effective anti-aliasing of near-horizontal and near-verti-
cal edges is critical. The first argument is gravity and the
second argument has to do with the way our eyes work.

Now you’re probably wondering what gravity has to do
with anti-aliasing. The key to understanding its impact
lies in understanding its nature. When you look around
you’ll notice that most objects have a lot of near vertical
and horizontal edges. Sitting at a desk, you find that it
stands horizontally over the floor, the edges of the com-
puter screen and computer are perpendicular to the floor
and thus pretty much vertical. A simple look around

Figure 14: Quality of 2 Sub-sample Super-sampling
From top to bottom we have 2 Sub-sample OGSS, 2 Sub-

sample RGSS and 4 Sub-sample OGSS.

A similar result can be found when we compare 16 sub-
sample OGSS with 4 sub-sample RGSS for near hori-
zontal and vertical edges. We’ll leave the drawing of
those images to the reader. Based on these images we
can conclude that for near horizontal and near vertical
edges the RGSS method delivers quality that is equiva-
lent to the OGSS method, but with fewer sub-samples

Super-sampling Anti-aliasing Analyzed

Reprinted with permission 14

should convince you that a lot of things are oriented
nearly horizontally and nearly vertically. The reason for
this is gravity. If your desk isn’t horizontal, then every-
thing will come crashing down due to that little thing
called gravity. Of course, there is no rule that says that
there will be more horizontal and vertical edges, its per-
fectly possible to create a game that avoids them, but
overall games try to approach reality and that’s where
gravity comes in. Just think about it. When you play
some first person shooter game or simulation, you run or
drive or fly around and you act just as you would in the
real world. Many of the features in the simulated world
are horizontal or vertical. The most striking example is
of course a flight simulator. Most of time, you fly in
a straight line and the horizon appears as a horizontal
line in the distance. The same thing is seen in racing
games. In a first-person shooter, you walk around build-
ings and they typically have numerous horizontal and
vertical surfaces. Yes, you can hold your head at an
angle to the side but do you really do that while play-
ing?

The point is this: near-horizontal and near-vertical edges,
especially as border edges with a high contrast level,
appear a lot in reality and in games. While there is no
rule that guarantees this, it does seem to be true in most
cases.

Our second argument involves the operation of the
human eye. Instead of going into an in-depth discussion

of how neurons work, we decided to just let you expe-
rience the effect. At the top of this page, you can find
two images (Figure 15) that show edges under varying
angles. The object is the same in both images. The only
difference is that they are rotated relative to each other.
The image on the left shows you near-horizontal, near-
vertical lines and near-diagonal lines. The image on the
right shows the same, but shifted with an angle of more-
or-less 27°.

You will probably remember from the previous text that
those are the Critical Edge Angles of the OGSS method
(left) and the RGSS method (right). Hold the image in
front of you and keep looking at the edges. Now slowly
start to move the paper further away from your eyes, but
keep checking out the relative smoothness of the various
edges. If you are looking at the image on a computer
monitor, position your chair so that you can slowly move
back while closely watching the edges of the image. Just
keep moving further away until all lines look smooth.
Do this before continuing to read this text.

OK, what you should have seen in action is an effect
called Vernier Acuity [6]. Vernier Acuity refers to the
minimum resolution at which the eye can detect dis-
continuities. People involved with vision research have
been measuring the Vernier Acuity for a long time and
they have found that somehow our eyes are very sen-
sitive to discontinuities. In other words, they are very
sensitive to the “jaggies.” This sensitivity is obviously

Figure 15: Illustration to show varying eye sensitivity for different angles

Super-sampling Anti-aliasing Analyzed

Reprinted with permission 15

influenced by contrast and the test images you have
seen have a very high contrast. Now what you should
have noticed is that the edges in the right image look
smoother and un-jagged much sooner than the near hor-
izontal and near vertical edges in the left image. The
edges around 45° also should have appeared smooth
sooner. Now what this teaches us is that the human eye
is sensitive to discontinuities, especially in the horizon-
tal and vertical directions. Discontinuities at angles in
between do not seem to register as sharply. From this
we can conclude that special care is needed when doing
anti-aliasing for edges near the horizontal and vertical
angles since they are the most noticeable and disturbing
for our eye.

Real World Image Quality

Image quality within computer games has always been
a very touchy subject in that it is such a personal thing.
Each person has their own opinion on what looks the
best. Many debates have even taken place on the sub-
ject. With anti-aliasing, however, there is little room
for disputing image quality. Whatever removes the un-
wanted artifacts brings with it the higher quality. Theo-
retical image quality is very important because it shows
us what should be able to deliver the best quality in a
given situation. However, it is also important to look at
what real world quality looks like.

Understanding the theory of image quality can mean
a lot, but it never compares to real world results. We
understand how an image should look, where it should
look best and where it should look the worst. However,
to really grasp this, we need to see it. To do this, we
need to use some very obvious examples of aliasing.
For this, we’ll use Relic’s Homeworld.

Why Homeworld? Homeworld shows off anti-aliasing
very well because it is an extremely high contrast game.
Like most any game taking place in outer space, Home-
world has dark backgrounds (space) and the light sur-
faces (ships). Besides that, because the game allows for
free rotation, so we get to view nearly every possible
angle. Of course all games do not have aliasing nearly as
badly as Homeworld, but Homeworld provides a good
reference point and allows us to easily distinguish the
quality of different anti-aliasing types.

In Figure 16 (next page) we see an image of Homeworld
using 4X OGSS. Looking at image 16-A, we see a less
than optimal condition for ordered grids. The problem
here, as discussed in the theoretical image quality, is
there is a lack of additional color samples. However,
looking at figure 16-B, we see a considerably more opti-
mal situation for ordered grids bring very good quality,
looking near perfect in this particular case.

Figure 17 (next page) shows us a Homeworld image
using 2 sub-sample RGSS. Looking closely at Figure
17-A, we see anti-aliased image quality that is very sim-
ilar to that produced by 4 sub-sample OGSS. This is
because the edges in the image are at a near-optimal
angle for RGSS. Now, switching to Figure 17-B, we see
a near-worst-case for RGSS anti-aliasing. Even so, the
anti-aliased image quality is not too bad because the
steps are very small. Still, it is not perfect

Figure 18 (page 17) is anti-aliased using a 4 sub-sample
RGSS technique. Figure 18-A highlights a near-optimal
edge angle situation. The anti-aliased image quality is
considerably better compared against both 2 sub-sam-
ple RGSS and 4 sub-sample OGSS, coming very close
to looking perfect. Figure 18-B illustrates a near-worst-
case for RGSS anti-aliasing.

What can we conclude having examined these screen-
shots illustrating OGSS and RGSS anti-aliasing? On
average, it appears that 4 sub-sample OGSS is not
noticeably better than 2 sub-sample RGSS, in all but the
worst RGSS cases. Four sub-sample RGSS produces
superior anti-aliasing image quality during optimal con-
ditions, clearing up almost all traces of aliasing. When it
encounters worst-case edge angles, 4 Sub-sample RGSS
still manages to hold its own, closely matching the anti-
aliasing image quality of 4 Sub-sample OGSS under
what are, for it, optimal edge angle conditions.

The theoretical discussion earlier and now these screen-
shots illustrate the advantages of RGSS anti-aliasing. In
all but the worst-case situation, 2 sub-sample RGSS pro-
duces image quality that is similar to that produced by
4 sub-sample OGSS. Switching to 4 sub-sample RGSS,
the anti-aliasing image quality becomes superior to both
and, in the worst-case situation for RGSS, can still be
considered nearly identical to the results of best-case 4
sub-sample OGSS.

Super-sampling Anti-aliasing Analyzed

Reprinted with permission 16

Figure 16: Real World Example of 4 sub-sample OGSS
(a) shows a Bad Case Angle resulting in poor quality

(b) shows a normal Edge Angle resulting in acceptable quality

Figure 17: Real World Example of 2 sub-sample RGSS
(a) shows a shows a near vertical edge.

(b) shows a near 45° edge.

Super-sampling Anti-aliasing Analyzed

Reprinted with permission 17

Figure 18: Real World Example of 4 sub-sample RGSS
(a) shows a near vertical edge.

(b) shows a near 45° edge.

Theoretical costs of Anti-aliasing

While anti-aliasing is a great feature to have, it is also
one of the most expensive features to activate. In this
part of the paper, a brief look will be taken at the vari-
ous performance penalties incurred when anti-aliasing is
enabled using the aforementioned super-sampling meth-
ods.

The first factor influencing performance is fill-rate.
Super-sampling, as was explained previously, takes sub-
samples to execute its anti-aliasing job. These extra sam-
ples eat up fill-rate (fill-rate is the peak number of pixels
you can determine the final color of). More specifically,
a super-sampling method that uses 4 sub-samples has a
total fill-rate need that is four times higher than when
not doing FSAA. Now what this means for perform-
ance is that if fill-rate is the limit, then you will see
the frame-rate drop by a factor of four when turning
on super-sampling. This fact holds up for all hardware
doing true super-sampling no matter how the sub-sam-
ples are positioned. Note that multi-sampling is differ-
ent in this respect and does not impose the same fill-rate
penalty. Multi-sampling, however, is beyond the scope
of this paper so we will not explore its potential virtues

any further. It is important to remember that super-sam-
pling and multi-sampling aren’t the same thing.

The second factor influencing performance is memory
bandwidth. Bandwidth is very often confused with fill-
rate. Actually, the reason for this is that bandwidth and
fill-rate are very closely related and linked. In 99% of
the cases you’ll never reach your fill-rate limit because
you’ll hit the memory bandwidth wall first. Determin-
ing a pixel’s color requires information. You need to
know what textures are used, you need to know where
the polygons are, etc. This information stream is limited
by memory bandwidth. When we compare the T-Buffer
method of RGSS with OGSS performed using an accu-
mulation buffer, we notice several important differences.
The first difference is that the T-Buffer uses a segmented
memory pool. Each chip has its own memory pool to
store and access textures and buffers. Traditional ren-
derers that implement the OGSS method usually have
a single unified memory pool (although there are some
exceptions). The impact of this difference is simple.
Segmented memory allows more flexibility. Each chip
can access the data it needs independently; so one chip
can be fetching texture data while the other chip is writ-
ing out a final pixel. On top of that, the bandwidth

Super-sampling Anti-aliasing Analyzed

Reprinted with permission 18

is effectively doubled since in the case of a two-chip
set-up you have two independent memory interfaces
(though this memory advanced does come at a cost in
the VSA-100 implementation, in that texture data must
be repeated in each chip’s local memory). Even if a tra-
ditional accelerator has memory running at twice the
clock speed, it cannot keep up with the VSA-100 since
the flexibility is not present in other designs.

The third factor is effectively available clock cycles.
The OGSS method implemented on traditional accel-
erators has to execute a copy and down-sample phase in
which the high-resolution image is read, down-sampled
and written to the back buffer. This operation stalls the
whole 3D pipeline since the 3D part has to wait until this
phase is finished before it can continue. The main reason
for this is memory bandwidth use. The copy operation
takes priority and leaves the 3D core with no memory
access. Furthermore, there is no buffer to render to.

The fourth and final factor is memory use. The T-Buffer
implementation of RGSS uses four T-Buffers when
doing 4 sub-sample super-sampling. These T-Buffers
have the same size as the final finished anti-aliased
image. To maintain full speed, the system also uses front
and back versions of the T-Buffers. This means the total
buffer use of the T-Buffer implementation equals: Final
Horizontal Screen Resolution x Final Vertical Screen
Resolution x 4 Buffers x 3 (one front/back buffer and
one Z/Stencil buffer) x bit depth (16- or 32-bit color

and Z/Stencil). The traditional OGSS method requires
a high-resolution off-screen buffer with four times the
resolution of the final image containing a color buffer
and a Z/Stencil buffer. This method also requires final
back and front buffers to down-sample too (with or
without Z/Stencil buffer depending on the implementa-
tion). So the total memory use equals: Final Horizontal
Screen Resolution x Final Vertical Screen Resolution
x 4 (up-sampled resolution) x 2 (color and Z-Stencil
Buffer) x bit depth (16 or 32 color and Z/Stencil Depth)
+ Final Horizontal Screen Resolution x Final Vertical
Screen Resolution x 2 (front and back buffers) x bit
depth (16 or 32) x (1 or 2) (depending on whether or not
a Z/Stencil Buffer is needed at this level - we’ll assume
that this is not needed). Based on these formula we can
calculate how much memory is left for storing textures.
It is important to note that due to the segmented memory
structure of the VSA-100 T-Buffer implementation, you
don’t have access to the full texture memory. The left-
over texture memory has to be divided equally over
the number of chips since each chip has its own bank
for textures. All these banks contain the same textures,
as these banks are unshared. The buffers (frame and
Z/Stencil) are shared. So to obtain the final memory
amount available for textures on a T-buffer board, one
needs to divide the left over memory (after subtracting
the memory needed for the buffers) by the number of
VSA-100 chips (memory banks), which is a factor 2 for
the Voodoo5 5000 64 MB boards and a factor 4 for the
Voodoo5 6000 128 MB boards.

Table 1: Overview of memory
used for the buffers of the different techniques.

Super-sampling Anti-aliasing Analyzed

Reprinted with permission 19

Table 2: Overview of memory
left for the textures of the different techniques.

The tables above (1 and 2) should make it obvious
that super-sampling, no matter which implementation,
is not a cheap feature to activate. The amount of tex-
ture memory remaining decreases enormously with
increasing final image resolution. The VSA-100 T-Buffer
method requires 12 samples (4 front, 4 back, 4 Z) to
store in its buffers but due to the segmented nature of its
memory, it needs even more due to the fact that it needs
to store the same textures in all memory banks (the seg-
mented structure needed for bandwidth does not allow
sharing). Because of these duplicated textures and the
fact that only 10 samples are needed (1 front, 1 back,
4 color and 4 Z) the traditional architecture has more
memory left when using a 64MB board, and unfor-
tunately, at least in the case of 64 MB DDR boards,
they are not mainstream yet due to high costs. The
64MB T-buffer product always has more texture memory
left than the similarly priced 32MB traditional boards.
Notice that some resolutions and bit depths are not avail-
able due to memory under-flow. This is when absolutely
no texture memory is left, or when part of the buffers
ends up in AGP memory, which delivers unacceptable
performance levels. Having enough texture memory left
is essential for smooth performance. Otherwise, texture
thrashing occurs and this seriously degrades perform-
ance. Solid texture compression support can help to
reduce this problem.

In the final analysis, we can conclude that super-sam-
pling anti-aliasing methods are very expensive and use
up lots of resources. It is close to impossible to predict
real world performance based on the theoretical factors
discussed here. Due to many complex factors, the differ-

ence between theory and reality tends to be great. The
true efficiency of a 3D accelerator is influenced by a
huge number of factors. This tends to make predictions
based on theoretical considerations very hazardous, if
not useless. The only conclusion we can safely draw is
that turning on anti-aliasing will almost certainly result
in a performance drop.

Frequent Misconceptions
about Anti-aliasing

In this part of this paper we want to address two myths
that are often used as an excuse for not supporting anti-
aliasing. The first argument heard quite frequently is
this:

“When you run your game at 1024x768 or higher, you
don’t see those jaggies and artifacts anymore, so why

bother with anti-aliasing?”

While it is true that some aliasing artifacts are reduced,
it does not mean that they are gone. Polygon popping
is one of the artifacts that indeed gets reduced by run-
ning at a higher resolution, simply because the sample
points are closer together due to the higher resolution.
This reduces the risk of completely missing a polygon.
What doesn’t disappear though is the presence of jag-
gies. Every edge under an angle will remain a staircase
no matter how high the resolution of your monitor.

Super-sampling Anti-aliasing Analyzed

Reprinted with permission 20

Again, refer to the Vernier Acuity, which refers to the
smallest misalignment of two lines an observer can
detect, or how easy it is to detect a jaggy. Researchers
have run tests where they discovered that the average
Vernier Acuity is about 10 arc-seconds. At an 18 inch
viewing distance, this is about 1/1200 inch and is barely
detectable on a 600 dpi printer. On a typical video dis-
play, a one pixel offset is 10-12 times the acuity limit and
always noticeable to viewers with normal vision. On the
monitors of today, you always will see jaggies no matter
how high your resolution gets. One scientific paper
reports that a monitor with a resolution of 4000x4000
pixels is required to reduce the jaggies. For people with
better than average eyesight (young children for exam-
ple), you might even need an 18000x18000 display to
hide the jaggies. So very simply said, our eyes are very
sensitive to jaggies and today’s mainstream monitors do
not have a high enough resolution to hide them. Do note
that contrast has a large impact on the visibility of jag-
gies and since many games use very low contrast envi-
ronments (read dark and spooky) it might very well be
that you have problems detecting the jaggies at higher
resolutions. What is important to understand, however,
is that a low-resolution anti-aliased image can look just
as good or even better than a high-resolution aliased
image. The reason: fewer distractions by un-natural arti-
facts. [6]

The second misconception is:

“Anti Aliasing is just blurring…”

To a certain extent, this is true. When you compare a
high-resolution image with one having half the resolu-
tion but using anti-aliasing, the latter does indeed look
more blurred. But the point is the reduction of artifacts.
You should actually be comparing the overall quality
and the feel of realism of the image. Actually, go a step
further: Our eyes also do nothing but “blur” what we
see. It’s true. The world around us has infinite detail, yet
we do not see it due to the limited resolution of our eye.
Nevertheless, the detail is out there. Just move closer
to an object and you’ll discover small details you did
not notice before. Now, would you say that the world
around you looks blurry? I don’t think so. The basic
principle behind anti-aliasing and the way our eyes work
is blurring. The things you cannot identify because they
are too small are blurred together. So while anti-aliasing
is based on blurring, you should not interpret it as some-
thing bad. It is blurring, but not over-blurring.

Conclusion

Anti-aliasing is certainly an important factor in image
quality and will continue to be important on into the
future. At least, until our monitors are capable of dis-
playing incredibly high resolutions, and that type of
thing just isn’t anywhere in sight. It certainly offers a
considerable image quality improvement in nearly every
3D game or application. Of course, it does come at a
performance cost. Anti-aliasing, especially when 4 sub-
samples come into play, requires approximately 4 times
the fill-rate and memory bandwidth to deliver.

It is a common misconception that anti-aliasing is no
longer needed with high resolutions such as 1280x1024
and 1600x1200. This is simply not the case. In many
situations, a game will actually look better in a lower
resolution with anti-aliasing when compared to a higher
resolution image with no anti-aliasing. The reason
behind this is visual realism, fewer un-natural artifacts.
Of course, the eventual goal is to be able to use anti-
aliasing and high resolution.

When it comes down to implementation, using a rotated
grid is without question better than an ordered grid.
Both theoretical and real-world images demonstrate this.
How much better depends on the situation. It is clear
that a rotated grid takes care of the worst aliasing con-
siderably better than ordered grids and, when using 4
sub-samples, delivers similar results. More significantly,
a two sub-sample rotated grid, in most situations, will
produce anti-aliasing results similar to those produced
by four sub-sample ordered grid anti-aliasing.

The main thing to remember, however, is that seeing is
believing. The image quality improvement delivered by
anti-aliasing must be seen in action to be fully appreci-
ated.

Super-sampling Anti-aliasing Analyzed

Reprinted with permission 21

About this White paper

This white paper was commissioned by 3dfx. The project
was specifically and explicitly intended to produce an
independent technical analysis of various super-sam-
pling implementations and algorithms. The editorial
contents were not influenced or altered by 3dfx in any
way.

The goal of this white paper is to provide an objective
description and analysis of super-sampling techniques
and to assess their relative quality.

Contacts

Questions, comments directly related to this white paper
should be addressed to Beyond3D by email using the
following email-address:

Whitepaper@Beyond3D.com

Questions regarding products from 3dfx should be
addressed to 3dfx directly. Contact information can be
found on their web site at the following URL:

http://www.3dfx.com

Corrections and addenda to this white paper will be pub-
lished on the Beyond3D web site and, when necessary,
the original paper will be updated. Discussions concern-
ing this white paper will be conducted in the Beyond3D
Hardware Forum. The Beyond3D Web site and Forum
can be found at the following URL:

http://www.Beyond3D.com

Acknowledgements

The authors would like to thank the following people (in
no specific order) for their assistance:

Brian Burke, Bubba Wolford, Marla Kertzman, Gary
Tarolli, Scott Sellers, Peter Wicher, Luc Van Gool, Simon
Fenney and Derek Perez

Special thanks also go to Tim Smith and Jim Macintosh
from the Beyond3D Team for proofreading, editing and
being critical.

Super-sampling Anti-aliasing Analyzed

Reprinted with permission 22

References

[1] Aliasing Problems and Anti-aliasing Techniques
http://www.education.siggraph.org/materials/HyperGraph/aliasing/alias0.htm

[2] Programming with OpenGL: Advanced Rendering (Anti-aliasing)
http://toolbox.sgi.com/TasteOfDT/documents/OpenGL/advanced97/node58.html#SECTION00090000000000000000

[3] 22 bit colour Analysed
http://www.beyond3d.com/articles/22bit/
http://www.beyond3d.com/articles/22bitfu/
http://www.beyond3d.com/articles/22bitfu2/

[4] 3dfx T-Buffer
http://www.3dfx.com/3dfxTechnology/tbuffer/tbuffer_whitepaper.pdf

[5] Sampling, Aliasing and Anti-aliasing
http://www-graphics.stanford.edu/courses/cs248-95/samp/samp3.html

[6] Human Vision, Anti-aliasing, and the cheap 4000 Line Display, by William J Leler, 1980 ACM

[7] The Accumulation Buffer: Hardware Support for High-Quality Rendering, Paul Haeberli and Kurt Akeley,
Computer Graphics, Vol 24, No. 4, Aug’90, Siggraph ‘90 Proceedings

©2000 3Dfx Interactive. The 3dfx logo, 3Dfx Interactive®, Voodoo2™, Voodoo3™, Voodoo4™, Voodoo5™, are trademarks
and/or registered trademarks of 3Dfx Interactive, Inc. in the USA and in other select countries. All rights reserved.

While every precaution has been taken in the preparation of this white paper, the authors assume no responsibility for errors or
omissions, or for damages resulting from the use of the information contained herein.

Copyright 2000 by Kristof Beets and Dave Barron (Beyond3D). All rights reserved. All editorial content and graphics contained
within this document are protected under international copyright treaties and may not be duplicated without the express written
permission of the authors. The material contained in this white paper may be used for information and non-commercial uses
providing that the content and its format as laid down by the authors is not modified in any way. All copyright notices must be

retained and a link to the authors website, www.Beyond3D.com must be provided.

