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Abstract - This paper examines two varieties of super-sample anti-aliasing: Rotated Grid Super-
Sampling (RGSS) and Ordered Grid Super-Sampling (OGSS). RGSS employs a sub-sampling grid 
that is rotated around the standard horizontal and vertical offset axes used in OGSS by (typically) 20 
to 30°. RGSS is seen to have one basic advantage over OGSS: More effective anti-aliasing near the 
horizontal and vertical axes, where the human eye can most easily detect screen aliasing (jaggies). 
This advantage also permits the use of fewer sub-samples to achieve approximately the same visual 
effect as OGSS. 
In addition, this paper examines the fill-rate, memory, and bandwidth usage of both anti-aliasing 
techniques. Super-sampling anti-aliasing is found to be a costly process that inevitably reduces 
graphics processing performance, typically by a substantial margin. However, anti-aliasing’s posi-
tive impact on image quality is significant and is seen to be very important to an improved gaming 
experience and worth the performance cost.

What is Aliasing?

Computers have always strived to achieve a higher-level 
of quality in graphics, with the goal in mind of eventu-
ally being able to create an accurate representation of 
reality. Of course, to achieve reality itself is impossible, 
as reality is infinitely detailed.  People deal with compu-
ter systems that have a finite, or set amount of memory, 
bandwidth and processing ability.  Because of this, it is 
impossible to deal with infinite detail. The closer you 
look at something, the more you see and this remains 
true down to the sub-atomic level. So, computers (at least 
for the foreseeable future) must work around the prob-
lem of infinite detail by taking shortcuts. For instance, 
they can use sampling to approximate the character of 
extremely complex source data.

A sample is a measurement of a very specific point in 
time and/or a location in space. To understand this, con-
sider sound waves.  Sound is nothing more than a pres-
sure wave: air compressing and decompressing. This 
physical event is infinite in detail and it moves through 
space, evolving with time. A CD is a digital medium 
of storing sound; it stores numbers equivalent to the 
amount of sound for specific points in time. This transla-
tion from a pressure wave to a number is done through a 
microphone and AD-converter. A microphone can trans-
late the infinitely detailed pressure wave into an infi-
nitely detailed electrical signal. The AD-converter then 
measures this electrical signal at specific points in time. 
Each such measurement is a sample. So an infinitely 
detailed event is translated into a discrete sample ver-
sion that can be processed by a CPU, or stored on a 

digital medium like a CD. This translates to graphics in 
that a sample represents a specific moment as well as a 
specific area. A pixel represents each area and a frame 
represents each moment.

At our current level of consumer technology, it simply 
is not possible to render enough samples for anything 
close to an acceptable representation of reality.  Because 
of this lack of samples, artifacts are introduced, arti-
facts known as “aliasing.” Aliasing brings to the table a 
number of rendering problems that can seriously detract 
from the quality of an image. These problems are there 
every day in current 3D accelerators, taking away that 
immersiveness that computer games and 3D applica-
tions strive to deliver. Jagged, crawling edges and flick-
ering objects are all symptoms of aliasing. Look at the 
edges of an object on a PC 3D accelerator and there you 
will find jagged edges. Now start moving away from the 
object and you’ll see a “crawling” effect.  These alias-
ing artifacts substantially reduce the overall quality of 
the rendered display.

To better understand aliasing, shown on the next page 
are two sample images.  In Part A of the Figure 1, we see 
what would potentially be the edge of a rendered image, 
mountains if you will. Now we see that this surface is on 
a grid, with each section of the grid representing a pixel.  
Because we generally render on a per-polygon and per-
pixel basis, we either color the pixel or we don’t. It 
becomes like binary, either 1 (on) or 0 (off).  There can 
be no partially filled pixels. On or off is decided based 
on the sampling of the center of the pixel zone (repre-
sented by a small circle in the image). So looking to Part 
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(a) (b)

Figure 1: Illustration of jaggies caused by sampling

(a) Infinitely detailed curve 
(b) Jagged sampled representation

B we see the result, a group of pixels that try and rep-
resent the surface we wanted to render.  Unfortunately, 
this can result in something of a mess. These staircase-
edges are often referred to as “jaggies”.

Another example of aliasing in computer graphics is 
polygon “popping” (also referred to as pixel popping). 
This problem presents itself when dealing with thin pol-
ygons less than a pixel wide or tall.  Sometimes, a thin 
polygon can be positioned in a spot where it cannot 
be sampled at all. From there, either all or part of the 
polygon disappears. Figure 2 (top right) illustrates var-
ious polygon popping effects. On the left we see the 
desired result, and on the right the rendered and sam-
pled result, the latter suffering from polygon popping 
artifacts. Notice, for example, the green bar in (a).  This 
bar covers the pixel centers in (a) and is thus visible, but 
now imagine a downward animation where the green 
bar ends up in position (b).  In position (b) no pixel 
centers are covered by the green bar so nothing actually 
is rendered. Notice how the green bar went from full 
visibility to being completely invisible, all because of 
slight downward animation.  If the animation continued 
downward, the bar would again cover pixel centers and 
become fully visible.  Thus, as the bar moves down, the 
rendering would “flash” off and on - this is a perfect 
example of  polygon popping aliasing. Furthermore, 
notice how the yellow shapes change between frame (a) 
and (b) of the animation.  The yellow shapes are ren-
dered differently from (a) to (b) due to the lack of suffi-
cient rendering samples. The red, elongated triangles are 
exactly the same size but transposed, yet in both frames 
(a) and (b) they are shown covering a different amount 
of pixels. The blue square in frame (a) illustrates how a 
single equal polygon can end up looking very different 
when rendered just by changing its position or orienta-
tion. [1] All of these artifacts, characterized by different 
rendering of the same object as a function of different 
location or orientation, are symptoms of polygon pop-
ping aliasing.

To reduce the artifacts associated with aliasing, both 
jagged triangle edges and polygon popping, we utilize 
anti-aliasing algorithms. Anti-aliasing is basically the 
process of removing the unwanted artifacts. The prob-
lem with anti-aliasing algorithms and techniques has 
long been the required high bandwidth and fill-rates.  
This has caused AA to long be stuck in the CAD and 
high-end computer imagery markets. However, con-
sumer level products are now reaching a point where 
real-time anti-aliasing is possible. In the next section 
we’ll describe the working of several anti-aliasing meth-
ods.
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Figure 2: Illustration of Polygon Popping
(a) Finely detailed representation on the left, sampled version 

with missing polygons and details on the right.
(b)  Animation frame after (a) different polygons are visible 

creating a flickering effect.
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Practical Implementations 
of Anti-aliasing

Although several hardware and software implementa-
tions of anti-aliasing have been developed, they have 
not been successful in the mainstream consumer market 
to date. High CPU processing overhead, memory band-
width constraints, and memory costs have made imple-
menting anti-aliasing capability impractical for the 
consumer market. Even the less demanding “edge” anti-
aliasing (which attempts to address the jagged edges 
artifacts, but not improving the polygon popping arti-
facts) has not been successful due to its relatively poor 
quality and negative performance impact. Anti-aliasing 
until very recently has remained exclusive to the high-
end CAD-CAM and off-line rendering markets.

With the recent generation of CPUs and graphics proc-
essors, however, consumer systems finally have the 
processing power, memory bandwidth, and memory 
capacity to make anti-aliasing practical. This article 
explains the basic types of super-sample anti-aliasing 
and examines two specific implementations.

Super-Sampling Techniques

As explained earlier, aliasing is a result of sampling, or 
more specifically, the lack of a sufficient sampling rate. 
Super-sampling, as the name suggests, solves the alias-
ing problem by taking more samples than would nor-
mally be the case. By taking more samples, we are able 
to more accurately capture the visual quality of the infi-
nitely detailed natural world. So the first essential ele-
ment of super-sampling is that extra samples are used 
to increase the density of image information. You can 
see this as taking sub-samples at the pixel level. Thus, 
instead of one single central sample per-pixel, super-
sampling techniques utilize several samples per pixel.  
It is the location of these sub-samples within a pixel 
that defines two different types of super-sampling anti-
aliasing.

Ordered Grid Super-Sampling is the first and most 
common type of super-sampling anti-aliasing. The name 
“Ordered Grid” is descriptive of the sub-sample posi-
tions within a given pixel. The extra samples are posi-
tioned in an ordered grid shape. The sub-samples are 
aligned horizontally and vertically, creating a matrix of 
points. These sub-samples are thus located inside the 

Rot. Angle

(a) (b)

Figure 3: Illustration of different sampling grids
(a) Ordered Grid as used by the OGSS method.

(b) Rotated Grid as used by RGSS method.

original pixel in a regular pattern as shown in Figure 
3a.

The second type of super-sampling anti-aliasing is 
known as Jittered Grid Super-Sampling (JGSS).  JGSS 
is similar to Ordered Grid Super-Sampling in that extra 
samples are stored per pixel, but the difference between 
the two is the position of the sub-samples.  With OGSS, 
the sub-sample grid is parallel and aligned to the hori-
zontal and vertical axis.  However with JGSS, the sub-
sample grid is “jittered,” or shifted, off of the axis.  An 
example of a sub-sample pattern used with JGSS is 
shown in Figure 3b. There are a variety of different ways 
of “jittering” the sub-sample positions, and we will now 
investigate the two most common implementations.

The first implementation, Fully Random Jittered Super-
Sampling, is better known as Stochastic Sampling. 
Essentially this means that within a pixel, the sub-sam-
ples are positioned in random locations. The key here 
is that the sub-sample pattern is random for every pixel 
on screen. The basic idea behind this technique is that 
the randomized locations of the sub-samples is actually 
seen as “white noise” by the human eye. This technique 
hides the aliasing effect in noise, which is based on 
the known fact that the human eye is less sensitive to 
random noise than regular patterns. Our eyes are very 
good at recognizing patterns, but the introduction of 
random noise makes the recognition of patterns - in 
this case aliasing artifacts- significantly more difficult.  
While the quality of this technique is excellent, it is very 
expensive to implement. Approximately 16 (or more) 
randomly distributed sub-samples per-pixel are needed 
to attain the necessary level of white noise. Lower 
sample counts also work, but these are more susceptible 
to artifacts. Fully random positions also tend to be dif-
ficult to generate. Improvements in this technique exist 
to avoid accidental patterns, or samples being taken too 
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closely to each other. One example is the use of a Pois-
son Distribution of sample points [5], but these tech-
niques are extremely complex and not yet available in 
consumer level hardware.

A second implementation of sample positions of JGSS is 
a simplified form of the first. Instead of using completely 
random patterns, a predefined pattern that approximates 
the effect of random sampling is re-used for every pixel 
of the screen. So we again get a grid (as in a repeating 
pattern), but the repeated pattern is more random and 
less uniform. Again, various random patterns exist. A 
pattern suggested by the OpenGL documentation is a  
“shear” transformed grid [2]. The ordered grid is thus 
shifted sideways. This shift removes some of the regu-
larities that exist in the OGSS pattern. However, this 
pattern removes only the vertical regularity. The hor-
izontal regularity is maintained, so the column struc-
ture of OGSS is destroyed but the row-like structure 
remains. Also, quite often used is a rotated ordered grid. 
We’ll call this technique Rotated Grid Super-Sampling, 
or RGSS for short. With RGSS, the sub-sample loca-
tions are the same as those used in OGSS, but they are 
rotated by a certain angle.  The sub-sample positions for 
an RGSS implementation are illustrated in Figure 3b on 
the previous page. Note that both the horizontal and ver-
tical regularities are destroyed, so there are no definite 
columns or rows.

With the theory and definitions of OGSS and RGSS 
behind us, we will now focus on practical implementa-
tions using today’s hardware for both techniques.  We 
examine one hardware implementation for each super-
sampling technique, but keep in mind that there are 
numerous ways for implementing the super-sampling 
anti-aliasing techniques described. 

An OGSS Implementation

Ordered Grid Super-sampling (OGSS) is a technique 
that can be implemented on almost all 3D accelerators, 
given that they support rendering to an off-screen buffer. 
An off-screen buffer has room to store the frame’s pixel 
colors, as well as the Z and Stencil values. However, it 
differs from a conventional front- or back-buffer in that 
it is never displayed directly on screen. 

As was explained before, the OGSS method uses a reg-
ularly-patterned ordered grid of sub-samples for each 
pixel. Below we detail a step-by-step description of how 
OGSS anti-aliasing can be performed on today’s 3D 
hardware. 

1. The game engine creates the 3D environment 
using a 3D API like Direct3D or OpenGL. Both of these 
APIs use triangles as their basic building block to create 
3D objects. Each triangle has coordinates in 3D space. 
These coordinates are transmitted, transformed and lit , 
through the API via the 3D card’s specific driver. We’ll 
assume in this simple example that our screen has a 
resolution of 10-by-10 pixels, and that we have a trian-
gle with vertices at positions (5,5), (10,10) and (10,0) - 
forming a triangle on the right hand side of the screen.

2. The coordinates supplied by the API target a 
specific screen resolution. When the vertices are trans-
formed and lit, they are provided screen-space coor-
dinates (unlike the world-coordinates used by the 3D 
application). These coordinates are thus linked to the 
final screen resolution. To reach our anti-aliasing goal, 
we need to up-sample these coordinates by at least a 
factor of two in both the horizontal and vertical direction 
to create a sufficient number of sub-samples for effec-
tive anti-aliasing. This up-sampling is a simple multi-
plication by two of all screen coordinates. Up-sampling 
by a factor of two increases the screen resolution of our 
example to 20-by-20 (10 multiplied by 2). Our vertex 
positions will be up-sampled to (10,10), (20,20) and 
(20,0). Notice that the vertices and thus the triangle 
remain at the same relative position in screen-space.

3. The result of the previous operation is that all 
geometry is zoomed by a factor of two in both the hori-
zontal and vertical directions. Simply put, everything is 
twice as big. We thus have four times the number of 
pixels drawn as compared to no up-sampling being per-
formed. Our original screen of 10-by-10 pixels is now 
20-by-20 pixels.

4. We render all the up-sampled geometry of this 
frame as we normally would, but to an off-screen (invis-
ible) buffer. The reason for using an off-screen buffer is 
that our goal is to have a 10-by-10 anti-aliased image, 
not a 20-by-20 up-sampled one. Note that our example 
assumes only one triangle. A real world application, of 
course, has many more.
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5. When the whole scene of this frame is rendered, 
we have a high-resolution picture of the 3D world. 
We now need to down-sample this high-resolution pic-
ture into an anti-aliased lower resolution version. We 
thus need to go from 20-by-20 “super-sampled” (double 
resolution) image to a 10-by-10 anti-aliased image. 
This down-sampling is achieved by mixing pixel colors 
together in groups of two-by-two. Essentially, we take 
the color values of four neighboring pixels (square 
shaped), add them together and then divide by a factor 
of four. This means that the resulting color is an equal 
mix of the colors of the four high-resolution pixels. 
These four pixels in the high-resolution image are really 
the sub-samples of the anti-aliased pixels. Combined 
together, these sub-samples form a final anti-aliased 
pixel for the rendered image. By sampling at a higher 
resolution and then filtering down using an averaging 
filter, the high frequency components are smoothed out, 
which reduces the aliasing considerably. For a simple 
example, assume our scene contains dark bars (0%) on 
a bright background (100%), arranged in the vertical 
direction (striped effect) with a height of one sub-sam-
ple.  The sub-sample would contain two dark and two 
bright sub-samples. The filtered down result of this is a 
half bright, half dark pixel. So the high frequency effect 
(0% and 100% alternating) causing aliasing is reduced 
to a continuous 50% blend.

6. The end result is of this process is again a 
10-by-10 image, but anti-aliased via an OGSS super-
sampling technique. We will discuss another important 
aspect of this process - the quality of anti-aliasing - later 
in the article.
 
A schematic overview of this OGSS technique can be 
seen in Figure 4 on the right.

This practical implementation achieves Ordered Grid 
Super-Sampling by up-sampling the scene by a factor 
of 2, both horizontally and vertically. By increasing 
the horizontal and vertical resolution during the up-
sampling, extra sample positions are introduced in an 
ordered grid shape. These sub-samples are located inside 
the original pixel, as illustrated by Figure 3a. 

In our example, we used an up-sampling rate of two 
in both the horizontal and the vertical direction. Noth-
ing prevents an implementation where other up-sam-
pling ratios are used, such as four or even more. Usually 
this factor is used to identify the type of OGSS. Thus, 

the terms 2X OGSS and 4X OGSS are often used to 
describe the number of sub-samples  used in an OGSS 
implementation. Sometimes the number of sub-samples 
is identified by the word “tap”, thus leading to the names 
4-tap or 16-tap OGSS.  So with a 16-tap OGSS, we 
have 4 sub-samples in the vertical and 4 in the horizon-
tal. A point worth mentioning is that the names Full-
Scene Anti-aliasing and Full-Screen Anti-Aliasing are 
often used out of place. Generally, this term is used to 
represent OGSS, but what it truly means is that an entire 
image undergoes an anti-aliasing process (whether it be 
OGSS or RGSS or some other technique for anti-alias-
ing). However, it is important that we note what type of 
anti-aliasing is implemented in hardware because it has 
an impact on quality, as will shortly be investigated.
 
Finally, it should be noted that this implementation of 
OGSS using existing 3D hardware suffers from poten-
tial incompatibility with applications that use Linear 
Frame Buffer access. Linear Frame Buffer access is a 
technique where an application writes values directly 
into the buffers (Frame and/or Z/Stencil). The problem 
with this is that internally the render target is up-sam-
pled to a higher resolution. The application is not aware 
of this and, as a result, the Linear Frame Buffer access 
goes wrong. A simple example will illustrate the point. 
Assume a game wants to use Linear Frame Buffering 

Front Buffer Back Buffer

Offscreen Buffer

Z / Stencil Buffer

3D Game World

x

y

2x

2y

x

y

Game Engine
API  ( D3D / OpenGL)

     Upsampling 
of the coordinates

       Render 
           to 
Offscreen Buffer

  Downsampling 
         using
Anti-Aliasing Filter

Flip Front and Back
  Buffer to get new
frame on the screen

Figure 4: Overview of the Ordered Grid Super-sampling 
Method (OGSS).
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to overlay the screen with a cockpit image. This over-
lay image has the resolution of the final image, not of 
the up-sampled, internal, higher-resolution off-screen 
buffer. As a result, an overlay with the size of the final 
image is written to the up-sampled buffer (so 1/4th the 
correct size), which of course results in an incorrect 
result. The overlay would end up occupying only 1⁄4th 
of the proper dimensions in the final anti-aliased screen 
image. Applications that use Linear Frame Buffer access, 
therefore, must be handled with special care. The prob-
lem must be managed with special tricks at the driver 
level, as solutions are rarely supported in hardware. 
Needless to say, this has a nasty performance impact but 
without this special handling, vulnerable applications 
will show an incorrect end result. 

A RGSS Implementation

Rotated Grid Super-sampling (RGSS) can be imple-
mented using an Accumulation Buffer technique and 
also by the 3dfx T-Buffer technology.  We will detail 
step-by-step the implementation of RGSS utilizing the 
VSA-100 T-Buffer capability found in 3dfx’s recent 
Voodoo5 product offering:

1. The game engine creates the 3D environment 
using a 3D API such as Direct3D or OpenGL. Both 
these APIs use triangles as their basic building block to 
create 3D objects. Each triangle has coordinates in 3D 
space. These coordinates are transmitted, transformed 
and lit. If hardware T&L is supported, of course, the 
data is sent directly to the video card’s T&L unit for 
transformation and lighting. 

2. The 3dfx VSA-100 T-Buffer implementation 
uses a multi-chip solution where each chip calculates 
2 sub-samples (it is safe to assume that in the future 
chips will allow for more sub-samples per chip). We 
thus need at least 2 VSA-100 chips to implement 4 sub-
sample anti-aliasing. We’ll assume a 2-chip configura-
tion, such as the Voodoo5 family, in our explanation. 
As said before, the sub-samples are jittered or, more 
specifically, rotated. These jittered sample positions are 
obtained by shifting the geometry’s vertices. So for each 
sub-sample, the vertices receive a precise sub-pixel level 
perturbation that matches the targeted sub-sample posi-
tions. Figure 5, right top of this page, illustrates this. 

The sample position and resolution stays equal, but by 
moving the geometry at the sub-pixel level we get dif-
ferent equivalent sub-samples. These geometry shifts 
are handled in hardware in the VSA-100 chip, so there is 
no software overhead required for RGSS anti-aliasing.

3. Now all the shifted geometry is rendered. Each 
shifted version is sent to its own T-Buffer. Each T-Buffer 
has the same resolution as the final anti-aliased image. 
The number of buffers is equal to the number of sub-
samples taken. Each VSA-100 chip manages 2 sub-sam-
ples and thus writes to two T-Buffers. The writing is 
done to the invisible “back” T-Buffer, which is similar 
to the front- and back-buffers normally found on 3D 
accelerators. The front buffer is written to the monitor 
while rendering is done in the invisible back buffer. This 
avoids artifacts like tearing.

4. Once all the geometry for this frame is jittered 
and rendered to the T-Buffers, we end up with each 
T-Buffer containing the pixel-colors for each jittered 
scene. Each buffer contains a sub-sample of the final 
image, as illustrated in Figure 5. We now flip back and 
front T-Buffers.

5. The front T-Buffers now contains the sub-sam-
ples of the scene we just rendered. The sub-samples now 
need to be combined to form the final anti-aliased image. 
This combining is done just before the RAMDAC by 
special video circuitry that mixes the various buffers 
together at the pixel level. The RAMDAC is a special 
component of a 2D/3D chip that translates the contents 

(a) (b) (c)

Figure 5: Illustration linking jittered geometry to different 
sample positions.

(a) The normal non-AAed grid with sample point.
(b) 4 Jittered versions of the scene geometry. Note that the 
triangle with the dashed line is the original triangle while the 
triangle with the solid edge is the jittered position. Sample 

point remains at the same spot inside the pixel.
(c) Equivalent Sub-sample positions. Compare the resulting 
sample points shown in (b) with these equivalent Sub-sample 

positions indicated by small circles.
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of the buffers into a signal that can be displayed by your 
monitor. Most monitors take analog signals as input, 
which explains the DAC part of the name: Digital to 
Analogue Converter. The RAM refers to the fact that 
the AD conversion is done using a table contained in 
RAM (this has to do with Gamma Correction). The 
main advantage of this approach is that no down-sam-
pled version of the image has to be stored and the color 
depth at the output level is higher than the color depth of 
an individual buffer. The sub-sample T-Buffers can con-
tain, for example, 16-bit color, but the combining opera-
tion (mixing of the colors) is done at a higher accuracy 
by the video circuitry which leads to a final anti-aliased 
image with a color depth higher than the color depth of 
the individual buffers. This principle is similar to that of 
the post-filter technology found in the Voodoo2 and 3 
designs [3].
 
A schematic overview of this technique can be seen in 
Figure 6, below.

This same technique can also be implemented in hard-
ware that supports an Accumulation Buffer [2] [4]. How-
ever, the traditional Accumulation Buffer technique has 
some disadvantages in implementing RGSS. The jitter-
ing has to be done using software and the geometry 
thus has to be sent several times to the hardware. The 
T-Buffer capability of the VSA-100 does this jittering 
at the hardware level, internally saving valuable band-
width (the geometry data only needs to be sent once to 
the VSA-100, as the chip itself automatically jitters the 
geometry and renders into the T-Buffers). Traditional 
hardware T&L accelerators can calculate and apply 
the shift in hardware, but the geometry still has to be 
sent to the rendering core several times. Another disad-
vantage of the Accumulation Buffer lies in the recom-
bining of the samples. T-Buffer does this just before 
the RAMDAC level while traditional systems require 
a costly copy and combine operation that merges the 
Accumulation Buffer contents with the frame-buffer 
contents after every sub-sample is calculated. More 
details about the Accumulation Buffer technique can be 
found in [2] and [7].

Figure 6: Overview of the Rotated Grid Super-sampling Method.
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Note that the Linear Frame Buffer issue raised in the 
above section describing the OGSS implementation is 
not a problem for the VSA-100.  This is because all of 
the T-Buffers have the same resolution as the final image. 
Instead of writing to just one buffer, the VSA-100 hard-
ware writes the data to all T-Buffers automatically.  Fur-
thermore, for Linear Frame Buffer reads, the VSA-100 
architecture merges the sub-samples together to form 
the anti-aliased pixel result before the data is returned to 
the CPU.  This allows screen captures done by the host 
CPU to look identical to what the user sees on his moni-
tor.  These techniques allow the VSA-100 to implement 
RGSS anti-aliasing in a manner completely compatible 
with all 3D APIs.

Also note that OGSS can also be implemented on the 
VSA-100 architecture as the sub-sample position off-
sets are actually completely programmable by software.  
Implementing OGSS on the VSA-100 would simply 
entail using different sub-sample positions (in the case 
of OGSS, a regular ordered grid).

Summary

We’ve thus discussed the different implementations of 
super-sampling, focusing on Ordered Grid Super-Sam-
pling and Rotated Grid Super-Sampling.  The primary 
difference identified between the two methods is the 
location of the sub-samples within the anti-aliased pixel.  
We also discussed the implementations of these meth-
ods using PC 3D accelerators.  The next part of this 
white paper will discuss the difference in image quality 
between the two super-sampling two methods, as well 
as several other key points.

Theoretical Image Quality

In the previous section we introduced two practical 
ways to do anti-aliasing. The first was Ordered Grid 
Super-Sampling (OGSS) and the second was Rotated 
Grid Super-Sampling (RGSS). We found that the big 
difference between these methods is the location of the 
sub-sample positions. Figure 3 on page 3 showed the 
different sub-sample patterns of the two techniques. 

We will concentrate on comparing 4 sub-sample OGSS 
with 4 sub-sample RGSS. In particular, we will concen-
trate on what happens at the edges of polygons.  The 
aliasing inside polygons is mainly solved by texture fil-
tering, but that goes beyond the scope of this paper.  
Super-sample anti-aliasing methods help out by provid-
ing a higher sample resolution, but this is not enough 
to solve severe texture mapping aliasing. Both methods 
use 4 sub-samples and at an edge, this results in five 
possible cases depending on the number of sub-samples 
that fall inside and outside the polygon. For simplicity, 
we’ll assume a uniformly black colored polygon on a 
white background. The various possible situations per-
pixel are as follows: 

Case 1: All sub-samples fall outside the polygon.  This 
means the outcome is 0%. Zero of the 4 sub-samples are 
inside the polygon and the resulting color of this case is 
pure white. 

Case 2: A single sub-sample falls inside the polygon. 
We thus have one black and three white sub-samples. 
The mixed down result of this is a 25% gray colored 
pixel. This is the 25% case. 

Case 3: Two sub-samples fall inside the polygon. We 
thus have two black and two white sub-samples. The 
mixed down result of this is a 50% gray colored pixel, 
and this is called the 50% case. 

Case 4: Three sub-samples fall inside the polygon, so we 
have three black sub-samples and one white sub-sam-
ple. The mixed down result is thus a 75% gray colored 
pixel. This case is the 75% case. 

Case 5: All samples fall inside the polygon. The mixed-
down result is thus a completely black colored pixel, 
and this is known as the 100% case.
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In summary, 4 sub-sample anti-aliasing can have one 
of five different edge effects: 0%, 25%, 50%, 75% and 
100%, depending on the number of sub-samples that are 
inside the polygon. These different values have varying 
impact on the contrast between the pixel(s) inside the 
polygon and the pixel(s) outside the polygon. Reduced 
contrast results in less obvious jagged edges.

Knowing that theoretically there are five different 
outcomes per-pixel and knowing that we have two 
techniques with different sub-sample positions, it is rea-
sonable to conclude that edges will be anti-aliased differ-
ently when using the different anti-aliasing algorithms. 
Here is where the concept of Critical Edge Angles comes 
into play. A Critical Edge Angle is a special case where 
the edge passes though or nearly through 2 sub-samples 
at the same time. The easiest way to understand this is 
as follows. Take the sub-sample positions of the OGSS 
technique (see figure 3a) and imagine a horizontal edge 
moving though a single pixel with sub-samples from 
below to above the pixel. Notice that the sub-samples 
are aligned in the horizontal direction. This means that 
the bottom two samples will be passed by the edge at 
the same time.  The same is true for the two samples at 
the top, which are also aligned in the horizontal direc-
tion. Essentially, this means that the moving horizontal 
edge moves from the 0% case, to the 50% case and then 
to the 100% case. Notice that the 25% and 75% cases 
are lost due to the fact that 2 sub-samples are passed by 
the edge at the same time twice! Losing 2 shade levels 
from the 5 is an example of a “Bad Angle Case” for 
OGSS. 

When we look at the same sub-sample pattern we notice 
that exactly the same effect pops up when the edge is at 
a 90° (or vertical) angle. So essentially the OGSS algo-
rithm has 2 Bad Angle Cases: horizontal edges (0°), and 
vertical edges (90°).

The same effect, but to a lesser degree, also occurs with 
45° and 135° angle edges. When you imagine an edge 
moving though the sub-sample pattern at 45° from left 
to right, you’ll notice one sub-sample enters the polygon 
and then the next 2 sub-samples, which are aligned in 
the diagonal direction, pass the edge at the same time. 

The final sub-sample is passed later by the edge.  Again 
we lose a sub-sample value, the 50% case. Since we 
only lose one shade level, this is a “Mediocre Angle 
Case.”  There are no other special cases.

The RGSS method has its sub-sample points aligned in 
special directions, too (see Figure 3b). Essentially, the 
sub-sample positions are equal to those of the OGSS 
method, but rotated around an angle. This means that 
the RGSS method also has Critical Edge Angles. Just 
as with OGSS approach, there are two Bad Angle Cases 
and two Mediocre Angle Cases. Essentially, the bad 
cases are the same as with the OGSS method, but per-
turbed by the Grid Rotation Angle. So if this angle is 20°, 
for instance, then the Bad Angle Cases are 0°+20°=20° 
and 20°+90°=110° and the Mediocre Angle Cases are 
20°+45°=65° and 20°+135°=155°.

Based on this information you might get the incorrect 
impression that both techniques are equally good and 
bad. After all, the not-so-ideal anti-aliasing cases (where 
you lose shade levels) are just shifted to different edge 
angles. We’ll soon discover that some angles require 
better anti-aliasing than others. We will begin by look-
ing at theoretical examples of all the essential Critical 
Edge Angles.

Theoretical images analyzed

The first example edge is close to a Critical Edge Angle 
of the OGSS method. More specifically, we’ll look at a 
Near Horizontal Edge, thus close to the 0° Bad Angle 
Case. Figure 7a and 7b (on the next page) show the same 
Near Horizontal Edge overlaid on the OGSS and RGSS 
sub-sample patterns. Beneath each grid example is the 
resulting anti-aliased edge created by the sub-sampling 
and blending processes. 

The first thing to notice is that the OGSS method clearly 
has encountered a bad case. Only 0%, 50% and 100% 
shades are available to smooth the edge and decrease 
the contrast. On the other hand, the RGSS method has 
access to all shades to smooth the edge. Better still, they 
are nicely and evenly spaced. The rotation angle of the 
RGSS method in all these examples is 27°. Note that 
specific implementations such as 3dfx’s T-Buffer might 
use a different rotation angle. The angle and possibly 
even the sub-sample positions might also be program-
mable. This example teaches us that not just the exact 
Critical Edge Angles are problematic. The edge angles 
near them can experience the loss of shade levels as 
well. Of course, it would be helpful to actually define 
what “near” is. Unfortunately, that is much more diffi-
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(a)

(b)

Figure 7: Near Horizontal Edge Case Comparison
(a) OGSS (b) RGSS

cult than it seems at first glance. However, we can iden-
tify the factor that determines when an angle is near 
a Bad Edge Case. The main influencing factor is the 
screen resolution. The higher it is, the closer together 
the sample and sub-sample points are. When they are 
closer together, the risk of jumping directly over more 
than one sub-sample becomes smaller. Essentially, the  
“near-factor” will change depending on the screen reso-
lution used. The basic rule here is this: The higher the 
resolution, the better the anti-aliasing results. In this spe-
cific example it is very obvious that the RGSS method is 
superior to the OGSS method. So for now we can con-
clude that for near-horizontal and near-vertical edges 
(just rotate your page 90° and look at the same exam-
ples), the RGSS method is superior.

It really isn’t surprising in the example above that the 
RGSS method is superior. After all, we selected an angle 
that was near critical for the OGSS method while it 
was nowhere near a critical angle for the RGSS method. 
Now, let’s examine a Bad Angle Case for the RGSS 
method. More specifically, lets look at the case of an 
edge with the same angle as the rotation angle. This 
is similar to the horizontal edge case using the OGSS 
method. In Figures 8  and 9 (next page) we have a pol-
ygon that slowly moves along a line perpendicular to 
the bad angle, so the edge will pass though all possible 
shading levels. 

When we compare the Bad Angle Cases of these two 
methods, we notice that both suffer from the same thing: 
lost shading levels. But when looking more closely, we 
notice that in the Near Horizontal Case the end result of 
the OGSS method comes nowhere near the end result of 
the RGSS method. Moving the edge up and down leaves 
the situation just as bad as it was. However, when we 
look at the Bad Case Angle for RGSS, we notice that 
some of the final results of both techniques look very 
similar. Indeed, they are close to identical. Notice that 
result (b) from the OGSS method is virtually equal to 
(d) from the RGSS method.  The same is true for (a) and  
(b). They are not equal, they just look much more simi-
lar than the near horizontal example. The reason for this 
reduced difference is that under the near horizontal edge 
the staircase effect of the edge is very wide. The steps 
are elongated and with only one shade level it is nearly 
impossible to approach that smoothness. However, in 
the critical angle for the RGSS case, the staircase is very 
narrow and jaggy. As a result, there isn’t much room to 
place different shade values along the edge. Actually, 
in a static case you only notice one major shade-level 
being used. Because of this, the RGSS method can come 
close to mimicking the results of the OGSS method. 
A cautious conclusion is suggested by these examples. 
It would appear that the near horizontal edge benefits 
more from multiple shade levels than does the edge par-
alleling the RGSS method’s rotation angle. Although 
each edge represents the worst case for one of the anti-
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Figure 8: Bad Angle case for RGSS
Results with OGSS shown.

(a),(b),(c) and (d) show the sampled result of the animation 

(a) (b)

M
ot
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Figure 9: Bad Angle Case for RGSS
Results with RGSS shown.

(a), and (b) show the sampled result of the animation 

aliasing methods, the worst case of the OGSS method 
(Near-Horizontal and Near-Vertical) is visibly worse 
than the worst case of the RGSS method (an edge par-
allel to the rotation angle). The impact of fewer shade 
levels is far greater on the horizontal edge, as anti-ali-
ased by the OGSS method. The results of the two meth-
ods in their handling of the RGSS Bad Case Angle are 
really only distinguishable when the edge is moving 
around. Even then, the two look very similar. If you 
know that contrast has a major influence on the visibility 
of edges, it might very well be that if the contrast isn’t 
too high you won’t even notice the difference between 
the two methods.

Now that we have had a look at the Bad Edge Angle 
Cases, let us look at the Mediocre Edge Angle Cases 
(45° for OGSS and 45°+27° for RGSS). These are illus-
trated in Figures 10 and 11 (next page).

The 45° case is influenced by an effect very similar to 
that seen in the 27° case discussed before. Simply said, 
the edge has a very small stair size that makes it impos-
sible to place multiple shade levels. Again, it becomes 
very difficult to see the difference between both meth-
ods and it is only during motion of the edges that you 

notice that a shade level is lost. The final results look 
very similar. A cautious conclusion based on this exam-
ple is that in a game situation it will be very difficult 
to even notice this lost shade level. Theoretically, the 
RGSS method is slightly better and will create smoother 
looking animation, but the difference is minimal, espe-
cially when reduced contrast comes into play (white/
black is the worst contrast case you can have and is not 
very realistic in games).

The 45°+27° mediocre case for RGSS is very similar to 
the previous one and is illustrated in Figures 12 and 13 
(next page). Again, the staircase itself is relatively small 
which leaves little room to use different shades. You 
lose only one shade level and it’s probably not notice-
able under more realistic contrast levels. One thing to 
notice in this angle case is that animation speed also 
has an impact on the final result. In this OGSS example, 
you’ll see that not every pixel is updated during each 
animation step. Some pixels keep the same color value. 
This reveals another factor that can influence quality: 
frame rate. The higher the frame rate is, the smaller the 
animation steps are, and the risk is smaller that you will 
jump over a smoothing level. Simply said, while OGSS 
might have an extra shading level available it might very 
well end up looking worse than RGSS when the frame 

(a) (b) (c) (d)
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M
otion

(a) (b) (c)

Figure 10: Mediocre Angle Case for OGSS (45°)
Results with OGSS shown.

(a), (b), and (c) show the sampled result of the animation 

(a) (b) (c)

M
otion

(d)

Figure 11: Mediocre Angle Case for OGSS (45°)
Results with RGSS shown.

(a), (b), (c) and (d) show the sampled result of 
the animation.

(a) (b) (d)(c) (e)

Motion

Figure 12: Mediocre Angle Case for RGSS (45°+angle)
Results with OGSS shown.

(a), (b), (c), (d) and (e) show the sampled result of 
the animation.

(a) (b) (c)

Motion

Figure 13: Mediocre Angle Case for RGSS (45°+angle)
Results with RGSS shown.

(a), (b), and (c) show the sampled result of 
the animation.
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rate is lower. What would happen is that the low frame 
rate makes you lose in-between shade positions. Based 
on this, we can say that a high enough frame-rate com-
bined with as many shade levels as possible is essential 
for image quality.

Up until now we have concentrated on 4 sub-sample 
super-sampling. As mentioned before nothing stops us 
from using more, or even fewer, sub-samples. Using 
a regular ordered grid with only 2 sub-samples would 
result in aliasing in a single direction only. Simply said, 
if you up-sample the image in the vertical direction, so 
that a 10-by-10 image turns into a 10-by-20 image, you 
end up with 2 sub-samples vertically aligned. This situ-
ation would give you 3 shade levels: 0 , 50 and 100% 
in the vertical direction only. The anti-aliasing quality 
of this setup is very poor. Rotating this grid solves the 
alignment problem and 3 levels become available in both 
the horizontal and vertical direction. Figure 14 below 
illustrates that 2 sub-sample RGSS for near horizontal 
(and automatically also for near vertical) edges results 
in an output close to that of 4 sub-sample OGSS.

(sometimes many fewer). In short, 2 sub-sample RGSS 
is equivalent to 4 sub-sample OGSS and 4 sub-sample 
RGSS is equivalent to 16 sub-sample OGSS, but only 
for near-horizontal and near-vertical edges. Over all 
angles the quality levels are somewhere in-between. 
From lowest quality to highest quality (based on the 
theoretical analysis) we get: 2 sub-sample OGSS, 2 
sub-sample RGSS, 4 sub-sample OGSS, 4 sub-sample 
RGSS, and 16 sub-sample OGSS.

Based on these theoretical images, we can come to the 
following conclusions. Near-horizontal and near-verti-
cal edges show an elongated, staircase jaggie that leaves 
a lot of room to place shade-levels to make the edge 
look smooth. The OGSS technique fails to deliver many 
shade levels for those angles, losing both the 25% and 
75% smoothing level. RGSS, on the other hand, sup-
plies the full range of smoothing levels for the near-
horizontal and near-vertical edges. The other potentially 
problematic angles turned out to be not so problematic 
due to very small staircase effects. The real difference 
only shows up during animation and even then the dif-
ferences between the two techniques are minimal. Based 
on this we can conclude that the difference between 
OGSS and RGSS is mainly concentrated around the 
near horizontal and vertical lines.

Which edge angles most need Anti-aliasing?

In the previous part we discovered that the main differ-
ence between the two competing techniques lie around 
the near-horizontal and near-vertical edges, while the 
difference for other edge angles is close to minimal. 
Now, it is important to ask whether near horizontal and 
near vertical edges matter.  

There are several arguments to support the idea that the 
effective anti-aliasing of near-horizontal and near-verti-
cal edges is critical. The first argument is gravity and the 
second argument has to do with the way our eyes work.

Now you’re probably wondering what gravity has to do 
with anti-aliasing. The key to understanding its impact 
lies in understanding its nature. When you look around 
you’ll notice that most objects have a lot of near vertical 
and horizontal edges. Sitting at a desk, you find that it 
stands horizontally over the floor, the edges of the com-
puter screen and computer are perpendicular to the floor 
and thus pretty much vertical. A simple look around 

Figure 14: Quality of 2 Sub-sample Super-sampling
From top to bottom we have 2 Sub-sample OGSS, 2 Sub-

sample RGSS and 4 Sub-sample OGSS.

A similar result can be found when we compare 16 sub-
sample OGSS with 4 sub-sample RGSS for near hori-
zontal and vertical edges. We’ll leave the drawing of 
those images to the reader. Based on these images we 
can conclude that for near horizontal and near vertical 
edges the RGSS method delivers quality that is equiva-
lent to the OGSS method, but with fewer sub-samples 
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should convince you that a lot of things are oriented 
nearly horizontally and nearly vertically. The reason for 
this is gravity. If your desk isn’t horizontal, then every-
thing will come crashing down due to that little thing 
called gravity. Of course, there is no rule that says that 
there will be more horizontal and vertical edges, its per-
fectly possible to create a game that avoids them, but 
overall games try to approach reality and that’s where 
gravity comes in. Just think about it. When you play 
some first person shooter game or simulation, you run or 
drive or fly around and you act just as you would in the 
real world. Many of the features in the simulated world 
are horizontal or vertical. The most striking example is 
of course a flight simulator. Most of time, you fly in 
a straight line and the horizon appears as a horizontal 
line in the distance. The same thing is seen in racing 
games. In a first-person shooter, you walk around build-
ings and they typically have numerous horizontal and 
vertical surfaces.  Yes, you can hold your head at an 
angle to the side but do you really do that while play-
ing?

The point is this: near-horizontal and near-vertical edges, 
especially as border edges with a high contrast level, 
appear a lot in reality and in games. While there is no 
rule that guarantees this, it does seem to be true in most 
cases.

Our second argument involves the operation of the 
human eye. Instead of going into an in-depth discussion 

of how neurons work, we decided to just let you expe-
rience the effect. At the top of this page, you can find 
two images (Figure 15) that show edges under varying 
angles. The object is the same in both images. The only 
difference is that they are rotated relative to each other. 
The image on the left shows you near-horizontal, near-
vertical lines and near-diagonal lines. The image on the 
right shows the same, but shifted with an angle of more-
or-less 27°.

You will probably remember from the previous text that 
those are the Critical Edge Angles of the OGSS method 
(left) and the RGSS method (right). Hold the image in 
front of you and keep looking at the edges. Now slowly 
start to move the paper further away from your eyes, but 
keep checking out the relative smoothness of the various 
edges. If you are looking at the image on a computer 
monitor, position your chair so that you can slowly move 
back while closely watching the edges of the image. Just 
keep moving further away until all lines look smooth. 
Do this before continuing to read this text.

OK, what you should have seen in action is an effect 
called Vernier Acuity [6]. Vernier Acuity refers to the 
minimum resolution at which the eye can detect dis-
continuities. People involved with vision research have 
been measuring the Vernier Acuity for a long time and 
they have found that somehow our eyes are very sen-
sitive to discontinuities. In other words, they are very 
sensitive to the “jaggies.” This sensitivity is obviously 

Figure 15: Illustration to show varying eye sensitivity for different angles
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influenced by contrast and the test images you have 
seen have a very high contrast. Now what you should 
have noticed is that the edges in the right image look 
smoother and un-jagged much sooner than the near hor-
izontal and near vertical edges in the left image. The 
edges around 45° also should have appeared smooth 
sooner. Now what this teaches us is that the human eye 
is sensitive to discontinuities, especially in the horizon-
tal and vertical directions. Discontinuities at angles in 
between do not seem to register as sharply.  From this 
we can conclude that special care is needed when doing 
anti-aliasing for edges near the horizontal and vertical 
angles since they are the most noticeable and disturbing 
for our eye.

Real World Image Quality

Image quality within computer games has always been 
a very touchy subject in that it is such a personal thing. 
Each person has their own opinion on what looks the 
best. Many debates have even taken place on the sub-
ject. With anti-aliasing, however, there is little room 
for disputing image quality. Whatever removes the un-
wanted artifacts brings with it the higher quality. Theo-
retical image quality is very important because it shows 
us what should be able to deliver the best quality in a 
given situation.  However, it is also important to look at 
what real world quality looks like.

Understanding the theory of image quality can mean 
a lot, but it never compares to real world results.  We 
understand how an image should look, where it should 
look best and where it should look the worst.  However, 
to really grasp this, we need to see it. To do this, we 
need to use some very obvious examples of aliasing.  
For this, we’ll use Relic’s Homeworld. 

Why Homeworld? Homeworld shows off anti-aliasing 
very well because it is an extremely high contrast game.  
Like most any game taking place in outer space, Home-
world has dark backgrounds (space) and the light sur-
faces (ships). Besides that, because the game allows for 
free rotation, so we get to view nearly every possible 
angle. Of course all games do not have aliasing nearly as 
badly as Homeworld, but Homeworld provides a good 
reference point and allows us to easily distinguish the 
quality of different anti-aliasing types.

In Figure 16 (next page) we see an image of Homeworld 
using 4X OGSS. Looking at image 16-A, we see a less 
than optimal condition for ordered grids.  The problem 
here, as discussed in the theoretical image quality, is 
there is a lack of additional color samples.  However, 
looking at figure 16-B, we see a considerably more opti-
mal situation for ordered grids bring very good quality, 
looking near perfect in this particular case.  

Figure 17 (next page) shows us a Homeworld image 
using 2 sub-sample RGSS. Looking closely at Figure 
17-A, we see anti-aliased image quality that is very sim-
ilar to that produced by 4 sub-sample OGSS. This is 
because the edges in the image are at a near-optimal 
angle for RGSS. Now, switching to Figure 17-B, we see 
a near-worst-case for RGSS anti-aliasing. Even so, the 
anti-aliased image quality is not too bad because the 
steps are very small.  Still, it is not perfect

Figure 18 (page 17) is anti-aliased using a 4 sub-sample 
RGSS technique. Figure 18-A highlights a near-optimal 
edge angle situation. The anti-aliased image quality is 
considerably better compared against both 2 sub-sam-
ple RGSS and 4 sub-sample OGSS, coming very close 
to looking perfect. Figure 18-B illustrates a near-worst-
case for RGSS anti-aliasing.

What can we conclude having examined these screen-
shots illustrating OGSS and RGSS anti-aliasing? On 
average, it appears that 4 sub-sample OGSS is not 
noticeably better than 2 sub-sample RGSS, in all but the 
worst RGSS cases. Four sub-sample RGSS produces 
superior anti-aliasing image quality during optimal con-
ditions, clearing up almost all traces of aliasing. When it 
encounters worst-case edge angles, 4 Sub-sample RGSS 
still manages to hold its own, closely matching the anti-
aliasing image quality of 4 Sub-sample OGSS under 
what are, for it, optimal edge angle conditions.

The theoretical discussion earlier and now these screen-
shots illustrate the advantages of RGSS anti-aliasing. In 
all but the worst-case situation, 2 sub-sample RGSS pro-
duces image quality that is similar to that produced by 
4 sub-sample OGSS. Switching to 4 sub-sample RGSS, 
the anti-aliasing image quality becomes superior to both 
and, in the worst-case situation for RGSS, can still be 
considered nearly identical to the results of best-case 4 
sub-sample OGSS.



Super-sampling Anti-aliasing Analyzed

Reprinted with permission 16

Figure 16: Real World Example of 4 sub-sample OGSS
(a) shows a Bad Case Angle resulting in poor quality

(b) shows a normal Edge Angle resulting in acceptable quality

Figure 17: Real World Example of 2 sub-sample RGSS
(a) shows a shows a near vertical edge.

(b) shows a near 45° edge.
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Figure 18: Real World Example of 4 sub-sample RGSS
(a) shows a near vertical edge.

(b) shows a near 45° edge.

Theoretical costs of Anti-aliasing

While anti-aliasing is a great feature to have, it is also 
one of the most expensive features to activate. In this 
part of the paper, a brief look will be taken at the vari-
ous performance penalties incurred when anti-aliasing is 
enabled using the aforementioned super-sampling meth-
ods.

The first factor influencing performance is fill-rate. 
Super-sampling, as was explained previously, takes sub-
samples to execute its anti-aliasing job. These extra sam-
ples eat up fill-rate (fill-rate is the peak number of pixels 
you can determine the final color of). More specifically, 
a super-sampling method that uses 4 sub-samples has a 
total fill-rate need that is four times higher than when 
not doing FSAA. Now what this means for perform-
ance is that if fill-rate is the limit, then you will see 
the frame-rate drop by a factor of four when turning 
on super-sampling. This fact holds up for all hardware 
doing true super-sampling no matter how the sub-sam-
ples are positioned. Note that multi-sampling is differ-
ent in this respect and does not impose the same fill-rate 
penalty. Multi-sampling, however, is beyond the scope 
of this paper so we will not explore its potential virtues 

any further. It is important to remember that super-sam-
pling and multi-sampling aren’t the same thing.

The second factor influencing performance is memory 
bandwidth. Bandwidth is very often confused with fill-
rate. Actually, the reason for this is that bandwidth and 
fill-rate are very closely related and linked. In 99% of 
the cases you’ll never reach your fill-rate limit because 
you’ll hit the memory bandwidth wall first.  Determin-
ing a pixel’s color requires information. You need to 
know what textures are used, you need to know where 
the polygons are, etc. This information stream is limited 
by memory bandwidth. When we compare the T-Buffer 
method of RGSS with OGSS performed using an accu-
mulation buffer, we notice several important differences. 
The first difference is that the T-Buffer uses a segmented 
memory pool. Each chip has its own memory pool to 
store and access textures and buffers. Traditional ren-
derers that implement the OGSS method usually have 
a single unified memory pool (although there are some 
exceptions). The impact of this difference is simple. 
Segmented memory allows more flexibility. Each chip 
can access the data it needs independently; so one chip 
can be fetching texture data while the other chip is writ-
ing out a final pixel. On top of that, the bandwidth 
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is effectively doubled since in the case of a two-chip 
set-up you have two independent memory interfaces 
(though this memory advanced does come at a cost in 
the VSA-100 implementation, in that texture data must 
be repeated in each chip’s local memory). Even if a tra-
ditional accelerator has memory running at twice the 
clock speed, it cannot keep up with the VSA-100 since 
the flexibility is not present in other designs. 

The third factor is effectively available clock cycles. 
The OGSS method implemented on traditional accel-
erators has to execute a copy and down-sample phase in 
which the high-resolution image is read, down-sampled 
and written to the back buffer. This operation stalls the 
whole 3D pipeline since the 3D part has to wait until this 
phase is finished before it can continue. The main reason 
for this is memory bandwidth use. The copy operation 
takes priority and leaves the 3D core with no memory 
access. Furthermore, there is no buffer to render to.

The fourth and final factor is memory use. The T-Buffer 
implementation of RGSS uses four T-Buffers when 
doing 4 sub-sample super-sampling. These T-Buffers 
have the same size as the final finished anti-aliased 
image. To maintain full speed, the system also uses front 
and back versions of the T-Buffers. This means the total 
buffer use of the T-Buffer implementation equals: Final 
Horizontal Screen Resolution x Final Vertical Screen 
Resolution x 4 Buffers x 3 (one front/back buffer and 
one Z/Stencil buffer) x bit depth (16- or 32-bit color 

and Z/Stencil). The traditional OGSS method requires 
a high-resolution off-screen buffer with four times the 
resolution of the final image containing a color buffer 
and a Z/Stencil buffer. This method also requires final 
back and front buffers to down-sample too (with or 
without Z/Stencil buffer depending on the implementa-
tion). So the total memory use equals: Final Horizontal 
Screen Resolution x Final Vertical Screen Resolution 
x 4 (up-sampled resolution) x 2 (color and Z-Stencil 
Buffer) x bit depth (16 or 32 color and Z/Stencil Depth) 
+ Final Horizontal Screen Resolution x Final Vertical 
Screen Resolution x 2 (front and back buffers) x bit 
depth (16 or 32) x (1 or 2) (depending on whether or not 
a Z/Stencil Buffer is needed at this level - we’ll assume 
that this is not needed). Based on these formula we can 
calculate how much memory is left for storing textures.  
It is important to note that due to the segmented memory 
structure of the VSA-100 T-Buffer implementation, you 
don’t have access to the full texture memory. The left-
over texture memory has to be divided equally over 
the number of chips since each chip has its own bank 
for textures. All these banks contain the same textures, 
as these banks are unshared. The buffers (frame and 
Z/Stencil) are shared. So to obtain the final memory 
amount  available for textures on a T-buffer board, one 
needs to divide the left over memory (after subtracting 
the memory needed for the buffers) by the number of 
VSA-100 chips (memory banks), which is a factor 2 for 
the Voodoo5 5000 64 MB boards and a factor 4 for the 
Voodoo5 6000 128 MB boards.

Table 1: Overview of memory 
used for the buffers of the different techniques.
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Table 2: Overview of memory 
left for the textures of the different techniques.

The tables above (1 and 2) should make it obvious 
that super-sampling, no matter which implementation, 
is not a cheap feature to activate. The amount of tex-
ture memory remaining decreases enormously with 
increasing final image resolution. The VSA-100 T-Buffer 
method requires 12 samples (4 front, 4 back, 4 Z) to 
store in its buffers but due to the segmented nature of its 
memory, it needs even more due to the fact that it needs 
to store the same textures in all memory banks (the seg-
mented structure needed for bandwidth does not allow 
sharing). Because of these duplicated textures and the 
fact that only 10 samples are needed (1 front, 1 back, 
4 color and 4 Z) the traditional architecture has more 
memory left when using a 64MB board, and unfor-
tunately, at least in the case of 64 MB DDR boards, 
they are not mainstream yet due to high costs. The 
64MB T-buffer product always has more texture memory 
left than the similarly priced 32MB traditional boards. 
Notice that some resolutions and bit depths are not avail-
able due to memory under-flow. This is when absolutely 
no texture memory is left, or when part of the buffers 
ends up in AGP memory, which delivers unacceptable 
performance levels. Having enough texture memory left 
is essential for smooth performance. Otherwise, texture 
thrashing occurs and this seriously degrades perform-
ance. Solid texture compression support can help to 
reduce this problem.

In the final analysis, we can conclude that super-sam-
pling anti-aliasing methods are very expensive and use 
up lots of resources. It is close to impossible to predict 
real world performance based on the theoretical factors 
discussed here. Due to many complex factors, the differ-

ence between theory and reality tends to be great. The 
true efficiency of a 3D accelerator is influenced by a 
huge number of factors. This tends to make predictions 
based on theoretical considerations very hazardous, if 
not useless. The only conclusion we can safely draw is 
that turning on anti-aliasing will almost certainly result 
in a performance drop.

Frequent Misconceptions 
about Anti-aliasing

In this part of this paper we want to address two myths 
that are often used as an excuse for not supporting anti-
aliasing. The first argument heard quite frequently is 
this:

“When you run your game at 1024x768 or higher, you 
don’t see those jaggies and artifacts anymore, so why 

bother with anti-aliasing?”

While it is true that some aliasing artifacts are reduced, 
it does not mean that they are gone. Polygon popping 
is one of the artifacts that indeed gets reduced by run-
ning at a higher resolution, simply because the sample 
points are closer together due to the higher resolution. 
This reduces the risk of completely missing a polygon. 
What doesn’t disappear though is the presence of jag-
gies. Every edge under an angle will remain a staircase 
no matter how high the resolution of your monitor. 
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Again, refer to the Vernier Acuity, which refers to the 
smallest misalignment of two lines an observer can 
detect, or how easy it is to detect a jaggy.  Researchers 
have run tests where they discovered that the average 
Vernier Acuity is about 10 arc-seconds. At an 18 inch 
viewing distance, this is about 1/1200 inch and is barely 
detectable on a 600 dpi printer. On a typical video dis-
play, a one pixel offset is 10-12 times the acuity limit and 
always noticeable to viewers with normal vision. On the 
monitors of today, you always will see jaggies no matter 
how high your resolution gets. One scientific paper 
reports that a monitor with a resolution of 4000x4000 
pixels is required to reduce the jaggies. For people with 
better than average eyesight (young children for exam-
ple), you might even need an 18000x18000 display to 
hide the jaggies. So very simply said, our eyes are very 
sensitive to jaggies and today’s mainstream monitors do 
not have a high enough resolution to hide them. Do note 
that contrast has a large impact on the visibility of jag-
gies and since many games use very low contrast envi-
ronments (read dark and spooky) it might very well be 
that you have problems detecting the jaggies at higher 
resolutions. What is important to understand, however, 
is that a low-resolution anti-aliased image can look just 
as good or even better than a high-resolution aliased 
image. The reason: fewer distractions by un-natural arti-
facts. [6]

The second misconception is:

“Anti Aliasing is just blurring…”

To a certain extent, this is true. When you compare a 
high-resolution image with one having half the resolu-
tion but using anti-aliasing, the latter does indeed look 
more blurred. But the point is the reduction of artifacts. 
You should actually be comparing the overall quality 
and the feel of realism of the image. Actually, go a step 
further: Our eyes also do nothing but “blur” what we 
see. It’s true. The world around us has infinite detail, yet 
we do not see it due to the limited resolution of our eye. 
Nevertheless, the detail is out there. Just move closer 
to an object and you’ll discover small details you did 
not notice before. Now, would you say that the world 
around you looks blurry? I don’t think so. The basic 
principle behind anti-aliasing and the way our eyes work 
is blurring.  The things you cannot identify because they 
are too small are blurred together. So while anti-aliasing 
is based on blurring, you should not interpret it as some-
thing bad. It is blurring, but not over-blurring.  

Conclusion

Anti-aliasing is certainly an important factor in image 
quality and will continue to be important on into the 
future.  At least, until our monitors are capable of dis-
playing incredibly high resolutions, and that type of 
thing just isn’t anywhere in sight. It certainly offers a 
considerable image quality improvement in nearly every 
3D game or application.  Of course, it does come at a 
performance cost.  Anti-aliasing, especially when 4 sub-
samples come into play, requires approximately 4 times 
the fill-rate and memory bandwidth to deliver. 

It is a common misconception that anti-aliasing is no 
longer needed with high resolutions such as 1280x1024 
and 1600x1200. This is simply not the case. In many 
situations, a game will actually look better in a lower 
resolution with anti-aliasing when compared to a higher 
resolution image with no anti-aliasing. The reason 
behind this is visual realism, fewer un-natural artifacts.  
Of course, the eventual goal is to be able to use anti-
aliasing and high resolution.

When it comes down to implementation, using a rotated 
grid is without question better than an ordered grid. 
Both theoretical and real-world images demonstrate this.  
How much better depends on the situation.  It is clear 
that a rotated grid takes care of the worst aliasing con-
siderably better than ordered grids and, when using 4 
sub-samples, delivers similar results. More significantly, 
a two sub-sample rotated grid, in most situations, will 
produce anti-aliasing results similar to those produced 
by four sub-sample ordered grid anti-aliasing.

The main thing to remember, however, is that seeing is 
believing. The image quality improvement delivered by 
anti-aliasing must be seen in action to be fully appreci-
ated.
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About this White paper

This white paper was commissioned by 3dfx. The project 
was specifically and explicitly intended to produce an 
independent technical analysis of various super-sam-
pling implementations and algorithms. The editorial 
contents were not influenced or altered by 3dfx in any 
way.

The goal of this white paper is to provide an objective 
description and analysis of super-sampling techniques 
and to assess their relative quality.

Contacts

Questions, comments directly related to this white paper 
should be addressed to Beyond3D by email using the 
following email-address:

Whitepaper@Beyond3D.com

Questions regarding products from 3dfx should be 
addressed to 3dfx directly. Contact information can be 
found on their web site at the following URL: 

http://www.3dfx.com

Corrections and addenda to this white paper will be pub-
lished on the Beyond3D web site and, when necessary, 
the original paper will be updated. Discussions concern-
ing this white paper will be conducted in the Beyond3D 
Hardware Forum. The Beyond3D Web site and Forum 
can be found at the following URL: 

http://www.Beyond3D.com
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