
RadiSys Corporation
5445 NE Dawson Creek Drive
Hillsboro, OR 97124
(503) 615-1100
FAX: (503) 615-1150
www.radisys.com

November 2000

RadiSys ARTIC960
Programmer’s
Reference

EPC, iRMX, INtime, Inside Advantage, and RadiSys are registered trademarks of RadiSys Corporation.
Spirit, DAI, DAQ, ASM, Brahma, and SAIB are trademarks of RadiSys Corporation.

† All other trademarks, registered trademarks, service marks, and trade names are the property of their
respective owners.

November 2000

Copyright 2000 by RadiSys Corporation

All rights reserved

References in this publication to RadiSys Corporation products, programs, or services do not
imply that RadiSys intends to make these available in all countries in which RadiSys operates.

Any reference to a RadiSys licensed program or other RadiSys product in this publication
is not intended to state or imply that only RadiSys Corporation’s program or other product
can be used. Any functionally equivalent product, program, or service that does not
infringe on any of RadiSys Corporation’s intellectual property rights or other legally
protectible rights can be used instead of the RadiSys product, program, or service.
Evaluation and verification of operation in conjunction with other products, programs, or
services, except those expressly designated by RadiSys, are the user’s responsibility.

RadiSys may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquires, in writing, to:

RadiSys Corporation
5445 NE Dawson Creek Drive
Hillsboro, OR 97124

Contents
About This Book... xiii
Guide Contents ... xiii

Notational Conventions ... xiv
Where to Get More Information ... xv

Reference Publications .. xv
Developer’s Assistance Program... xvi

Chapter 1: Loading and Configuring .. 1
Supported Adapters... 1
Kernel and Subsystems ... 1

Kernel Performance Considerations .. 2
Configuration Parameters .. 4

ARTIC960 Support for OS/2.. 7
Supported ARTIC960 Configurations... 7
Device Driver Installation.. 7
Mailbox Process (RICMBX32.EXE) .. 8

ARTIC960 Support for AIX ... 10
Supported ARTIC960 Configurations... 10
Device Driver Installation.. 11
Mailbox Process (ricmbx).. 11
Error Logging .. 13
Trace Facility ... 13

ARTIC960 Support for Windows NT .. 14
Supported ARTIC960 Configurations... 14
Device Driver Installation.. 14
Mailbox Process... 14
Event Logging ... 14

Chapter 2: ARTIC960 Kernel Services .. 15
Summary of Services .. 15
Parameter Types ... 18

Chapter 3: Base Kernel Services ... 21
Process Management Services.. 22

CompleteInit—Mark Process as Completely Initialized ... 23
QueryProcessStatus—Get the Process Status.. 25
QueryCardInfo—Get the Card Configuration Information... 28
QueryConfigParams—Get the Configuration Parameters... 31
CreateProcess—Create a Process .. 34
StartProcess—Start a Process .. 36
StopProcess—Stop a Process .. 37
UnloadProcess—Unload a Process.. 38
Contents iii

SuspendProcess—Suspend a Process .. 39
ResumeProcess—Resume a Process ... 40
SetExitRoutine—Set the Exit Routine for the Process.. 41
SetPriority—Set the Priority of the Process .. 42
QueryPriority—Query the Priority of the Process... 43
QueryProcessInExec—Get ID of Process in Execution.. 44
SetProcessData—Set Process Data.. 45
GetProcessData—Get Process Data .. 46
EnterCritSec—Enter Critical Section .. 47
ExitCritSec—Exit Critical Section .. 48
Dispatch—Cause a Dispatch Cycle ... 49

Process Synchronization Services .. 50
CreateSem—Create a Semaphore.. 51
OpenSem—Open a Semaphore ... 52
CloseSem—Close a Semaphore .. 53
ReleaseSem—Release a Semaphore.. 54
RequestSem—Request a Semaphore... 55
QuerySemCount—Get a Semaphore Count .. 56
SetSemCount—Set a Semaphore Count.. 57
CreateEvent—Create an Event Word.. 58
OpenEvent—Open Access to an Event Word ... 59
CloseEvent—Release Access to an Event Word... 60
WaitEvent—Wait on an Event .. 61

Memory Management Services .. 63
CreateMem—Allocate Memory .. 64
OpenMem—Get Addressability to Allocated Memory... 67
CloseMem—Remove Addressability to Memory ... 68
ResizeMem—Reallocate Memory... 69
SetMemProt—Change Memory Protection... 70
SetProcMemProt—Change a Process’ Memory Protection .. 71
QueryMemProt—Query Memory Protection .. 72
QueryProcMemProt—Query a Process’ Memory Protection ... 73
QueryFreeMem—Query Free Memory... 74
InitSuballoc—Prepare a Block of Memory for Suballocation .. 75
GetSuballoc—Suballocate Memory .. 77
FreeSuballoc—Free Suballocated Memory... 78
GetSuballocSize—Return Size of Suballocation Pool .. 79
MallocMem—Allocate Memory ... 80
FreeMem—Free Memory.. 81
CollectMem—Collect Memory ... 82

Timer Services .. 83
CreateSwTimer—Allocate a Software Timer ... 84
CloseSwTimer—Return a Software Timer ... 85
StartSwTimer—Start a Software Timer .. 86
StopSwTimer—Stop a Software Timer... 88
SetSystemTime—Set the Time-of-Day Clock .. 89
QuerySystemTime—Get the Time of Day .. 90
StartPerfTimer—Start the Performance Timer.. 91
StopPerfTimer—Stop the Performance Timer .. 92
ReadPerfTimer—Read Current Time of the Performance Timer ... 93
iv ARTIC960 Programmer’s Reference

Process Communication Services ... 94
CreateQueue—Create a Queue.. 95
OpenQueue—Open a Queue ... 96
CloseQueue—Close a Queue .. 97
PutQueue—Put an Element into a Queue.. 98
GetQueue—Get or Peek at an Element on a Queue .. 100
SearchQueue—Search a Queue for an Element .. 102
CreateMbx—Create a Mailbox.. 104
OpenMbx—Open a Mailbox ... 106
GetMbxBuffer—Get a Free Mailbox Buffer... 108
FreeMbxBuffer—Free Mailbox Buffer ... 109
SendMbx—Send a Message .. 110
ReceiveMbx—Receive a Message .. 112
CloseMbx—Close a Mailbox .. 114
CreateSig—Create a Signal ... 115
OpenSig—Open a Signal... 117
CloseSig—Close a Signal.. 119
InvokeSig—Call a Signal .. 120

Device Driver/Subsystem Services... 121
CreateDev—Register a Subsystem or Device Driver.. 122
OpenDev—Open a Subsystem or Device Driver .. 125
CloseDev—Close a Subsystem or Device Driver ... 126
InvokeDev—Call a Subsystem or Device Driver.. 127
AllocVector—Allocate an Interrupt Vector .. 128
AllocVectorMux—Allocate an Interrupt Vector... 129
SetVector—Set a New Interrupt Vector Entry Point... 131
SetVectorMux—Set an Interrupt Vector ... 132
ReturnVector—Return an Interrupt Vector ... 133
AllocHW—Allocate a Hardware Device .. 134
ReturnHW—Return a Hardware Device ... 136
QueryHW—Query Status of Hardware Device .. 137

Asynchronous Event Notification Services .. 138
RegisterAsyncHandler—Register an Async Handler.. 139
DeregisterAsyncHandler—Deregister an Async Handler ... 145

Hook Services ... 146
RegisterHook—Register an Entry Point for a Hook ... 147
DeregisterHook—Deregister an Entry Point for a Hook... 148

Kernel Trace Services ... 149
InitTrace—Initialize a Trace Buffer .. 150
EnableTrace—Enable Tracing of Service Classes .. 151
DisableTrace—Disable Tracing of Service Classes .. 152
LogTrace—Log Trace Information ... 153
Kernel Trace Information .. 155

Chapter 4: Kernel Commands ... 163
Common Headers for Commands and Responses .. 164

RegisterResponseMbx—Register a Command Response Mailbox .. 166
DeRegisterResponseMbx—Deregister a Command Response Mailbox .. 167
QueryProcessStatus—Get the Process Status.. 168
UnloadProcess—Unload a Process.. 169
Contents v

StopProcess—Stop a Process .. 170
StartProcess—Start a Process .. 171

Chapter 5: Adapter Library Routines .. 173
ANSI C Functions... 173
Miscellaneous Service .. 175

ProcessSleep—Sleep a Process ... 175
System Bus Interface Services.. 176

MoveMCData—Move System Bus Data .. 177
ConvertMCToCard—Convert System Bus Address to Card Address .. 181
ConvertCardToMC—Convert Card Address to System Bus Address .. 182

PCI Local Bus Configuration Device Driver Services ... 183
pciBiosPresent—Query PCI Driver Presence ... 184
pciFindDevice—Find a PCI Device by Vendor and Device ID.. 186
pciFindClassCode—Find a PCI Device by PCI Class Code ... 187
pciReadConfigByte—Read a Byte from PCI Configuration Space .. 188
pciReadConfigWord—Read a Word from PCI Configuration Space... 189
pciReadConfigDWord—Read a Doubleword from PCI Configuration Space 190
pciWriteConfigByte—Write a Byte to PCI Configuration Space... 191
pciWriteConfigWord—Write a Word to PCI Configuration Space.. 192
pciWriteConfigDWord—Write a Doubleword to PCI Configuration Space 193

Chapter 6: System Unit Utilities .. 195
Application Loader (ricload) Utility .. 196

Application Loader Syntax ... 196
Application Loader Messages and Exit Codes .. 199
Examples of Application Loader Calls.. 200

Dump Utility ... 202
Dump Syntax .. 202
Dump Messages and Exit Codes ... 206

Configuration Utility... 207
Configuration Syntax .. 208
Configuration Messages and Exit Codes... 209

Reset Utility .. 210
Reset Syntax .. 210
Reset Messages and Exit Codes .. 211

Trace Utilities ... 212
Set Trace Utility... 213
Get Trace Utility .. 215
Format Trace Utility .. 217

Status Utility ... 223
Status Syntax .. 224
Status Messages and Exit Codes.. 225
Status Dump Format .. 225
Status Interactive Messages... 227
Examples of Interactive Messages... 253

Chapter 7: System Unit APIs .. 263
Base API ... 264

RICOpen—Open an ARTIC960 Adapter.. 265
RICClose—Close an ARTIC960 Adapter... 266
vi ARTIC960 Programmer’s Reference

RICRead—Read from ARTIC960 Memory.. 267
RICWrite—Write to ARTIC960 Memory... 269
RICReset—Reset an ARTIC960 Adapter ... 271
RICGetConfig—Get Configuration Information .. 272
RICGetVersion—Get Version Number... 273
RICGetException—Get Exception Status... 274

Mailbox API ... 276
CreateMbx—Create a Mailbox.. 277
OpenMbx—Open a Mailbox ... 280
GetMbxBuffer—Get a Free Mailbox Buffer... 282
FreeMbxBuffer—Free Mailbox Buffer ... 283
SendMbx—Send a Message .. 284
ReceiveMbx—Receive a Message .. 286
CloseMbx—Close a Mailbox .. 288

Appendix A: Structure Definition... 289
RIC_CONFIG Structure ... 290
RIC_VERDATA Structure ... 292
RIC_EXCEPT Structure ... 293

Appendix B: Message File .. 295
Driver, Mailbox Process, and Utility Messages ... 295

Appendix C: Return, Error, and Exit Codes.. 311
Return Codes (Listed Alphabetically) .. 312
Return Codes (Listed Numerically) .. 316
Kernel Terminal Error Codes ... 325
Exit Codes for System Unit Utilities .. 327

Glossary.. 331

Index .. 333
Contents vii

viii ARTIC960 Programmer’s Reference

Figures
1-1 OS/2 Device Driver Syntax .. 7
1-2 OS/2 Mailbox Process Syntax .. 8
1-3 AIX Mailbox Process Syntax ... 12
6-1 Application Loader Syntax ... 196
6-2 Dump Utility Syntax ... 202
6-3 Configuration Utility Syntax .. 208
6-4 Configuration Utility File Entry Format ... 208
6-5 Reset Utility Syntax .. 210
6-6 Set Trace Utility Syntax ... 213
6-7 Get Trace Utility Syntax ... 215
6-8 Format Trace Utility Syntax ... 217
6-9 Trace Control Block ... 219

6-10 Record Description for a Service Class (Data in Bytes) .. 220
6-11 Record Description for a Service Class (Data in Words) ... 221
6-12 Trace Control Block Example .. 222
6-13 Record Description Example (Data in Bytes) Trace Record: 0x002E 222
6-14 Record Description Example (Data in Words) Trace Record: 0x0033 222
6-15 Status Utility Syntax ... 224
6-16 Sample Formatted Dump .. 226
6-17 Status Utility Main Menu ... 228
6-18 Status Utility Configuration Display .. 229
6-19 Status Utility Process Summary Display .. 230
6-20 Status Utility Resource Summary Display ... 231
6-21 Status Utility Memory Display ... 232
6-22 Status Utility Process Details Display .. 233
6-23 Process Details Display—Process Terminated by Software Event .. 234
6-24 Process Details Display—Process Terminated by Processor Event ... 235
6-25 Process Details Display—Process Terminated by Adapter Event ... 236
6-26 Status Utility Process Resources Display ... 237
6-27 Status Utility Process Parameters Display ... 238
6-28 Resource Details Submenu ... 239
6-29 Device Driver Detail Display ... 240
6-30 Event Detail Display ... 241
6-31 Mailbox Detail Display .. 242
6-32 Memory Detail Display .. 243
6-33 Queue Detail Display ... 244
6-34 Semaphore Detail Display .. 245
6-35 Signal Detail Display .. 246
6-36 Timer Detail Display .. 247
6-37 Hardware Device Detail Display .. 248
6-38 Vector Detail Display ... 249
6-39 Status Utility Exception Conditions Display .. 250
6-40 Status Utility VPD Information Display .. 251
6-41 Displayed VPD Information for Intel-based Systems .. 251
6-42 Displayed VPD Information for RISC System/6000 ... 251
Figures ix

6-43 Status Utility 80960 Registers Display ... 252
6-44 Example Screen—Configuration .. 253
6-45 Example Screen—Process Summary ... 253
6-46 Example Screen—Resource Summary ... 254
6-47 Example Screen—Memory .. 254
6-48 Example Screen—Process Details ... 254
6-49 Example Screen—Process Terminated by Software Event .. 255
6-50 Example Screen—Process Terminated by Processor Event .. 255
6-51 Example Screen—Process Terminated by Adapter Event ... 256
6-52 Sample Screen—Process Resources ... 256
6-53 Example Screen—Process Parameters ... 257
6-54 Example Screen—Device Driver Detail .. 257
6-55 Example Screen—Event Detail .. 257
6-56 Example Screen—Mailbox Detail .. 258
6-57 Example Screen—Memory Detail ... 258
6-58 Example Screen—Queue Detail ... 259
6-59 Example Screen—Semaphore Detail ... 259
6-60 Example Screen—Signal Detail ... 259
6-61 Example Screen—Timer Detail ... 260
6-62 Example Screen—Hardware Device Detail ... 260
6-63 Example Screen—Vector Detail .. 260
6-64 Example Screen—Exception Conditions ... 261
6-65 Example Screen—VPD Information for PS/2 Systems ... 261
6-66 Example Screen—VPD Information for RISC System/6000 .. 261
6-67 Example Screen—80960 Registers .. 262
x ARTIC960 Programmer’s Reference

Tables
1-1 Adapters Supported by Each Operating System ... 1
1-2 Kernel Parameters ... 4
1-3 OS/2 Driver Messages ... 8
1-4 OS/2 Mailbox Process Messages ... 9
1-5 AIX Mailbox Process Messages .. 13
2-1 ARTIC960 Kernel Services ... 15
2-2 Parameter Types .. 18
3-1 Service Class: C_ASYNC_EVENT_SERVICE ... 156
3-2 Service Class: C_DEVICE_DRIVER_SERVICE .. 156
3-3 Service Class: C_EVENT_SERVICE ... 157
3-4 Service Class: C_HOOK_SERVICE .. 157
3-5 Service Class: C_INTERRUPT_SERVICE .. 157
3-6 Service Class: C_KERN_COMMANDS_SERVICE .. 157
3-7 Service Class: C_MAILBOX_SERVICE ... 158
3-8 Service Class: C_MEMORY_SERVICE .. 158
3-9 Service Class: C_PROCESS_SERVICE ... 159

3-10 Service Class: C_MEMPROT_SERVICE .. 160
3-11 Service Class: C_QUEUE_SERVICE .. 160
3-12 Service Class: C_SEMAPHORE_SERVICE .. 160
3-13 Service Class: C_SIGNAL_SERVICE ... 161
3-14 Service Class: C_SUBALLOC_SERVICE ... 161
3-15 Service Class: C_SWTIMER SERVICE ... 161
3-16 Service Class: C_TIMER_SERVICE .. 162
3-17 Service Class: C_CLIB .. 162

6-1 Application Loader Messages and Return Codes .. 199
6-2 Dump Utility Messages and Exit Codes .. 206
6-3 Configuration Utility Messages and Exit codes .. 209
6-4 Reset Utility Messages and Exit Codes ... 211
6-5 Set Trace Utility Messages and Exit Codes .. 214
6-6 Get Trace Utility Messages and Exit Codes .. 216
6-7 Format Trace Utility Messages and Exit Codes .. 218
6-8 Status Utility Options .. 223
6-9 Status Utility Messages and Exit Codes .. 225

6-10 Source of Request .. 234
6-11 Termination Status Fault Types and Subtypes for a Processor Event 235
6-12 Recognized Exception Conditions .. 250
Tables xi

xii ARTIC960 Programmer’s Reference

About This Book
This book describes specific aspects of programming in the RadiSys ARTIC960
coprocessor environments.

This book contains information about the ARTIC960 services available for writing
adapter-resident programs. It also contains a brief description of the system unit utility
programs and the steps required to compile and link both system unit and
adapter programs.

This book does not include sample code.

Guide Contents
The following lists the contents of this Guide.

The appendices provide additional information about ARTIC960.

Chapter Description
1 Loading and Configuring Explains how to load and configure the kernel and

related subsystems and RadiSys ARTIC960 Support
for OS/2, AIX, and Windows NT.

2 ARTIC960 Kernel Services Provides a summary of RadiSys ARTIC960 kernel
services and ARTIC960 parameter types.

3 Base Kernel Services Describes the base kernel services
4 Kernel Commands Lists and describes the kernel commands.
5 Adapter Library Routines Lists ANSI C library calls and describes the

Miscellaneous Service, the System Bus Interface
Services, and the PCI Services

6 System Unit Utilities Describes the available system unit utilities.
7 System Unit APIs Describes the system unit APIs.

Appendix Description
A Structure Definition Lists the RIC_CONFIG, RIC_VERDATA, and

RIC_EXCEPT structures.
B Message File Explains the error messages and the actions to

be taken
C Return, Error, and Exit Codes Lists and explains the return codes.
About This Book xiii

Notational Conventions

This manual uses the following conventions:

• The term ARTIC960 always refers to the RadiSys ARTIC960 products.

• The term ARTIC960 can refer to programs that run on the ARTIC960, ARTIC960
PCI, ARTIC960Rx PCI, or ARTIC960Hx PCI adapters, or the adapters themselves.

• The term ARTIC960 PCI refers to functions supported only on the ARTIC960 PCI
adapter; ARTIC960 MCA refers to functions supported only on the ARTIC960 Micro
Channel adapter.

• The term ARTIC960Rx PCI refers to functions supported by the ARTIC960Rx PCI
adapter; ARTIC960Hx PCI refers to functions supported by the ARTIC960Hx PCI
adapter.

• The term ARTIC960RxD PCI refers to functions supported by the ARTIC960RxD PCI
adapter.

• The term OS/2 always refers to the IBM OS/2 operating system.

• The term AIX always refers to the IBM AIX operating system.

• The term system bus can refer to either the Micro Channel or PCI bus.

• All counts in this book are assumed to start at zero.

• All numeric parameters and command line options are assumed to be decimal values,
unless stated otherwise.

• To pass a hexadecimal value for any numeric parameter, the parameter should be
prefixed by 0x or 0X. Thus, the numeric parameters 16, 0x10, and 0X10 are all
equivalent.

• Utilities all accept the ? switch as a request for help with command syntax.

• All representations of bytes, words, and double words are in the little endian format.

• All bit numbering conforms to the industry standard of the most significant bit having
the highest bit number. Bit 0 is the low-order bit.

• If a bit is set to 1, the associated description is true unless stated otherwise.

• Screen text and syntax strings appear in this font.

Notes indicate important information
about the product.

Cautions indicate situations that may
result in damage to data or the hardware.

Tips indicate alternate techniques or
procedures that you can use to save
time or better understand the product.

ESD cautions indicate situations that
may cause damage to hardware via
electrostatic discharge.

The globe indicates a World Wide
Web address.

Warnings indicate situations that may
result in physical harm to you or
the hardware.
xiv ARTIC960 Programmer’s Reference

Where to Get More Information
You can find out more about RadiSys ARTIC960 from these sources:

• World Wide Web: RadiSys maintains an active site on the World Wide Web. The site
contains current information about the company and locations of sales offices, new
and existing products, contacts for sales, service, and technical support information.
You can also send E-mail to RadiSys using the web site.

Requests for sales, service, and technical support information receive
prompt response.

• Other: If you purchased your RadiSys product from a third-party vendor, you can
contact that vendor for service and support.

Reference Publications

You may need to use one or more of the following publications for reference:

• RadiSys ARTIC960 Programmer’s Guide

• RadiSys ARTIC960 STREAMS Environment Reference

• Operating and Installation documentation provided with your computer system

• Guide to Operations books for one of the following coprocessor adapters:

RadiSys ARTIC960 PCI adapter
RadiSys ARTIC960Rx PCI adapter
RadiSys ARTIC960Hx PCI adapter
RadiSys ARTIC960RxD PCI adapter

Each book contains a description of the coprocessor adapter, instructions for
physically installing the adapter, parts listings, and warranty information.

When sending E-mail for technical support, please include information about
both the hardware and software, plus a detailed description of the problem,
including how to reproduce it.

To access the RadiSys web site, enter this URL in your web browser:

http://www.radisys.com
About This Book xv

• IBM Publications:

– IBM Operating System/2 (OS/2) Version 3.0, Advanced Interactive Executive
(AIX) Version 4.1 and 4.2

– IBM AIX Version 4.x Kernel Extensions and Device Support, Programming
Concepts, (SC23-2207)

For information about writing a STREAMS module or driver, refer to the AIX
Web site:

AIX supports a subset of SVR4.2 STREAMS calls, and the on-card STREAMS
subsystem supports a subset of AIX STREAMS.

– IBM Personal System/2 Hardware Reference, S85F-1678)

– IBM XL C Language Reference, (SC09-1260)

• Intel Publications:

– i960 RP Microprocessor User’s Manual

– i960 Rx I/O Microprocessor Developer’s Manual

– i960 Hx Microprocessor User’s Manual

– i960 Cx Microprocessor User’s Manual

– 80960CA User’s Manual

Developer’s Assistance Program

Programming and hardware development assistance is provided by the RadiSys ARTIC
Developer’s Assistance Program (DAP). The DAP provides, via phone and electronic
communications, on-going technical support—such as sample programs, debug
assistance, and access to the latest microcode upgrades.

You can get more information or activate your free membership in the RadiSys ARTIC
DAP by contacting us.

By telephone, call (561) 981-3200.

By E-mail, send to artic@radisys.com.

http://www.rs6000.ibm.com/doc_link/en_US/a_doc.lib/
aixprogd/progcomc/str_prgref.htm
xvi ARTIC960 Programmer’s Reference

1
 Loading and Configuring Chapter 1
This chapter contains information about loading and configuring:

• The kernel and related subsystems

• The ARTIC960 Support for OS/2

• The ARTIC960 Support for AIX

• The ARTIC960 Support for Windows NT

Supported Adapters
Table 1-1 shows which adapters are supported by each operating system.

Kernel and Subsystems
The kernel and related subsystems (collectively called system executables) must be loaded
onto the adapter before any application processes are loaded. The list of system
executables and associated file names are:

ric_kern.rel Runtime kernel. This module provides all of the services described in
Chapter 3: Base Kernel Services on page 21.

ric_kdev.rel This module can be used instead of ric_kern.rel during the debug phase of
application development.

ric_base.rel Base device driver. This module provides memory protection services.

If ric_base.rel is loaded when memory protection is not active, it is unloaded
automatically by the kernel.

ric_mcio.rel System Bus I/O subsystem. This module provides basic support for moving
data between adapters and the system unit.

Table 1-1. Adapters Supported by Each Operating System

Adapter
OS/2
Version 1.2.2

AIX
Version 1.4.1

Windows NT
Version 1.2.0

ARTIC960 Micro Channel √ √
ARTIC960 PCI √ √ √
ARTIC960Rx PCI √ √ √
ARTIC960Hx PCI √ √ √
ARTIC960RxD PCI √
ARTIC960Rx Frame Relay PCI √ √
Chapter 1: Loading and Configuring 1

ric_scb.rel This module provides peer-to-peer transport services using the Subsystem
Control Block (SCB) architecture.

 ric_oss.rel On-card STREAMS subsystem (OSS). This module provides a STREAMS
environment on the adapter.

ric_ess.rel On-card STREAMS Cross Bus Subsystem. This module transmits
STREAMS data across the system unit bus between STREAMS Access
Library (SAL) and the On-card STREAMS Subsystem (OSS).

ric_pci.rel PCI bus configuration driver. This module provides basic services for
configuring devices attached to the adapter’s local PCI bus.

Specific applications may not require all modules.

The system executables must be loaded in the preceding order using the Application
Loader utility. For information, see Application Loader (ricload) Utility on page 196.

Kernel Performance Considerations

Kernel performance can be affected by the way the adapter is loaded and configured.

Instruction Cache

The following support provides options that enable the kernel to pin critical kernel code in
instruction cache:

• ARTIC960 Support for IBM OS/2, Version 1.2.1

• ARTIC960 Support for IBM AIX, Version 1.2 or higher

• ARTIC960 Support for Microsoft Windows NT, Version 1.0

There are two types of critical kernel code.

• Code critical for process-intensive applications (dispatcher, request/release
semaphore, and so forth)

• Code critical for interrupt intensive applications (such as, first level interrupt handlers
and enter/exit critical section)

The amount of kernel code that can be pinned depends on the size of the instruction cache
which varies by processor type:

• The Cx processor is used on ARTIC960 and ARTIC960 PCI cards. On a Cx or Rx
processor, the kernel pins 2 KB of the 4 KB instruction cache. On a Cx or Rx
processor, only one type of critical code can be pinned.

• On an Hx processor, the kernel pins up to 8 KB of the 16 KB instruction cache. On an
Hx processor, the cache is big enough to allow both process-intensive and
interrupt-intensive critical code to be pinned.

The type of critical code to be pinned is controlled by the PIN_KERN_PROC_CODE and
PIN_KERN_INT_CODE kernel configuration parameters. See page 5 for information about
these parameters.
2 ARTIC960 Programmer’s Reference

Internal Data RAM

The following provide for use of i960 internal data RAM.

• ARTIC960 Support for OS/2 (Version 1.2.1)

• ARTIC960 Support for AIX (Version 1.2)

• ARTIC960 Support for Windows NT (Version 1.0)

Internal data RAM is used for key kernel data and is also available for application use. The
size of the internal data RAM is 1 KB for a Cx/Rx processor and 2 KB for an Hx
processor.

Internal data RAM is used in the following manner:

The value of n is determined by the number of cached register sets. This is controlled by
the REG_CACHE kernel parameter. The default for this parameter is 7. Values of 5 or less
require no additional internal data RAM (n = 0). Values from 6 to 15 for REG_CACHE
cause 64 bytes of internal data RAM to be used for each stack frame
(n=(REG_CACHE–5)*64). On the ARTIC960Rx PCI card, internal data RAM is not used
for register cache growth (n = 0).

Applications can use the range of internal data RAM from 200 to the top–n. However, the
kernel does not manage this data area. To avoid potential conflicts, only applications that
take over the card (that is, do not share the card with other applications) can make use of
the application internal data RAM area.

It is not guaranteed that the compatibility of this function will be maintained across
future releases.

Register Cache
Growth

Available for
Applications

Reserved for
Kernel Usage

Vectors

Top

Top - n

0x200

0x040

0x000

(0x400 on Cx/Rx, 0x800 on Hx)
Chapter 1: Loading and Configuring 3

Run Time Versus Development Kernel

There are two versions of the kernel:

• ric_kern.rel (runtime)

• ric_kdev.rel (development)

These versions are supported by the following ARTIC960 programs.

• ARTIC960 Support for OS/2, Version 1.2.1

• ARTIC960 Support for AIX, Version 1.2 or higher

• ARTIC960 Support for Windows NT, Version 1.0

Either version of the kernel can be loaded onto the adapter by way of the ricload utility.

The runtime version has limited error checking and no memory protection support.
Validity checking of most input parameters has been eliminated from kernel service calls.
Once an application has been debugged, this version can be used to give better
performance.

The development version contains full support. The additional functions it provides are
normally needed only during application debug.

Configuration Parameters

Configuration for the kernel and related subsystems is done through load-time parameters
that can be passed on the command line or through a configuration file when using
RICLOAD. These parameters take the form of keywords (representing specific
parameters) followed by an equal sign (=) and their value. The individual parameters are
separated by spaces, tabs, or new lines. Parameters not specified at load time take on
default values. The configuration parameters for the kernel, the SCB subsystem, and the
System Bus I/O subsystem follow. There are no parameters for the base device driver.

Kernel Parameters

The following are the kernel parameters that can be set. The default value for the
parameter is underlined.

Table 1-2 (Sheet 1 of 2). Kernel Parameters

Parameter Description
MEMORY_PROTECTION=YES|NO Global memory protection enable. When YES, all

normal processes run with memory protection on.
This parameter is ignored when an application is
running on an adapter that does not support
memory protection.

DEFAULT_PRIORITY=40 Default process priority. Unless otherwise
specified, when a process is loaded its priority is
this value. It must be at least 32.

MAX_DD_SS=16 Maximum number of device drivers and
subsystems.

MAX_REMOTE_MAILBOX=16 Maximum number of remote mailboxes.
MAX_PEER_ADAPTERS=0 Maximum number of peer units, not including this

adapter or the system unit.
4 ARTIC960 Programmer’s Reference

Timer Notes

For ARTIC960 and ARTIC960 PCI adapters, you can request the kernel to leave the
timeslice timer, watchdog timer, time-of-day timer, or performance timer available for a
user process. If TIME_SLICE_INTERVAL=0, WATCHDOG_INTERVAL=0,
TIME_OF_DAY=NO, or PERFORMANCE_TIMER=NO, the kernel does not allocate the
indicated timer. The timer can be allocated by a user process.

For ARTIC960Rx PCI and ARTIC960Hx PCI adapters, you can request the kernel to
leave TIMER0 available for a user process. If TIME_SLICE_INTERVAL=0 and
PERFORMANCE_TIMER=NO, the kernel will not allocate TIMER0. The timer can be
allocated by a user process.

MAX_SYSTEM_MC_REQ=8 Maximum number of system bus read/write
requests from the system unit outstanding.

DEFAULT_STACK_SIZE=4096 Default process stack size.
TIME_SLICE_INTERVAL=10 Time slice interval/disable. 0 means disable.

Interval value is in milliseconds.
WATCHDOG_INTERVAL=2000 Watchdog interval/disable. 0 means disable.

Interval value is in milliseconds. The watchdog
timer is not supported on ARTIC960Rx PCI and
ARTIC960Hx PCI cards. It will be ignored.

TIME_OF_DAY=YES|NO Time-of-day clock enable.
PERFORMANCE_TIMER=YES|NO Performance timer enable. If the performance timer

is not enabled, the StartPerfTimer, StopPerfTimer,
and ReadPerfTimer services return
RC_PERF_TIMER_NOT_ENABLED.

You can request the kernel to leave the time slice
timer, watchdog timer, time-of-day timer, or
performance timer available for a user process.
See Timer Notes on page 5 for more information.

DATA_CACHE=YES|NO Data cache enable. This parameter is ignored if
data cache hardware is not present on the adapter
or if MEMORY_PROTECTION=YES.

REG_CACHE=7 Number of register sets that are cached. Valid
values depend on the type of processor in use.

INST_CACHE=YES|NO Instruction cache enable.
PIN_KERN_PROC_CODE=YES|NO When YES, kernel code that is critical for

process-intensive applications is pinned in
instruction cache, if instruction cache is enabled.

PIN_KERN_INT_CODE=YES|NO When YES, kernel code that is critical for
interrupt-intensive applications is pinned in
instruction cache if instruction cache is enabled.

PEER_TIMEOUT=5 Timeout value used by the kernel mailbox
subsystem when communicating with peer
processes. Valid values are 0 to 60 seconds. A
value of 0 means that the timeout will be disabled.

Table 1-2 (Sheet 2 of 2). Kernel Parameters

Parameter Description
Chapter 1: Loading and Configuring 5

Subsystems Configuration

• Base Device Driver—There are no configuration parameters defined for the base
subsystem.

• SCB Subsystem—The SCB Subsystem parameters that can be set are as follows. The
default parameters are underlined.

• System Bus I/O Subsystem—The System Bus I/O Subsystem parameters that can be
set are as follows. The default parameters are underlined:

Parameter Description
MEMPROT = YES|NO Subsystem memory protection enable. Protection is

enabled only if kernel memory protection has been
enabled.

SIGHANDPROT = YES|NO Signal interrupt handler memory protection enable.
Protection is enabled only if kernel memory protection
and subsystem memory protection have been enabled.

Parameter Description
THRESHOLD = 128 Maximum number of bytes to be transferred using

channel 1. Requests above this threshold value are sent
on channel 2.

MEMPROT = YES|NO Subsystem memory protection enable. Protection is
enabled only if kernel memory protection has been
enabled.

If you are running the ARTIC960 Support for OS/2,
Version 1.1.0 or higher, or the ARTIC960 Support for AIX,
Version 1.1.3.0 or higher, this parameter is ignored. The
System Bus I/O Subsystem always runs with its memory
protection disabled.

TCINTPROT = YES|NO Terminal count interrupt handler memory protection
enable. Protection is enabled only if kernel memory
protection and subsystem memory protection have been
enabled.

If you are running the ARTIC960 Support for OS/2,
Version 1.1.0 or higher, or the ARTIC960 Support for AIX,
Version 1.1.3.0 or higher, this parameter is ignored. The
System Bus I/O Subsystem always runs with its memory
protection disabled.

USERCHANNUM = 1|2 Channel number of the channel to be reserved for the
user. It can be set to 1 or 2. The default is no channel is
reserved for the user.
6 ARTIC960 Programmer’s Reference

ARTIC960 Support for OS/2
The following sections describe the ARTIC960 Support for OS/2.

Supported ARTIC960 Configurations

The ARTIC960 adapter supports a wide variety of configurations such as interrupt levels,
I/O addresses, and system bus memory configurations.

ARTIC960 32-bit Support for OS/2 supports all configurable adapter options with the
following restrictions:

Interrupt level
All configurable interrupt levels are supported.

I/O address
All configurable base I/O addresses are supported.

8/16 KB memory window (ARTIC960 Micro Channel only)
This memory window is not used by the 32-bit OS/2 support. Its presence and
location do not affect operation.

8 KB memory mapped (ARTIC960 PCI and ARTIC960Hx)
This memory window is not used by the 32-bit OS/2 support. Its presence and
location do not affect operation.

Full memory window
Under OS/2, the system unit driver does not require or use direct access to the
full memory window to communicate with an ARTIC960 adapter (except for
ARTIC960Rx). However, the full memory window must be mapped onto the
system bus to support peer-to-peer adapter operations. If the window is not
visible on the system bus (either not physically mapped or not addressable
due to slot constraints), peer-to-peer adapter operations are not supported.

Device Driver Installation

Two pieces of code provide OS/2 device driver support: the device driver and a
detached process.

The ARTIC960 OS/2 device driver (RICIO16.SYS) is installed through CONFIG.SYS. It is
a symmetric multiprocessing safe (SMP safe) device driver.

This entry must be placed in the CONFIG.SYS file to call the ARTIC960 OS/2 device
driver.

-N Disable interrupt nesting

Multiple Virtual DOS Machines (MVDM) DOS applications
are not supported in ARTIC960 OS/2 Support.

Figure 1-1. OS/2 Device Driver Syntax

pathdrive
RICIO16.SYSDEVICE=

-N
Chapter 1: Loading and Configuring 7

Driver Messages

The content of the message file is listed in Appendix B: Message File on page 295. The
following are the messages in that file used by the OS/2 driver.

Mailbox Process (RICMBX32.EXE)

The mailbox process, RICMBX32.EXE, is a detached process that works with the
physical device driver to handle remote mailbox processing.

Mailbox Process Call

The mailbox process is called using the following syntax. It expects configuration
parameters to be supplied to it through the command line or through a configuration file.
The mailbox process must be loaded prior to any application process calls to mailbox.

-C config_filename
Specifies that the contents of the file config_filename should be used as input
to the mailbox process for configuration parameters.

-K Specifies to stop the active mailbox process.

The mailbox process requires certain initialization parameters. If you do not specify these
parameters, they are assigned default values. The parameters take the form of keywords
followed by an “=” sign and the value. Spaces, tabs, or new lines should separate
individual parameters.

Table 1-3. OS/2 Driver Messages

Message Number Notes
RIC0001 (Invalid option)
RIC0002 (Invalid parameter)
RIC0009 Warning message (POST error)
RIC0010 Warning message (adapter failure)
RIC0016 (System error)
RIC0020 Information-only message (installing)
RIC0021 (Installed)
RIC0039 (No adapters)
RIC0049 (Unable to install interrupt handler)
RIC0064 Card ROM error (warning)
RIC0066 Interrupt nesting disabled (information)
RIC0071 Card ROM downlevel (warning)
RIC0081 Calibrating ARTIC960Rx timers (information)

If the mailbox process is stopped, it may not be restarted without
resetting and reloading the adapters.

Figure 1-2. OS/2 Mailbox Process Syntax

path
path

drive
RICMBX32

-C

-K

config_filename
8 ARTIC960 Programmer’s Reference

The following parameters can be set:

MAX_GLOBAL_MAILBOX
The maximum number of global mailboxes created in the system unit. The
default is 16.

MAX_REMOTE_MAILBOX
The maximum number of remote mailboxes opened from the system unit.
The default is 16.

MAX_REMOTE_MAILBOX_OPEN
The maximum number of remote mailbox open requests outstanding at any
one time. The default is 16.

MAX_REMOTE_MAILBOX_SEND
The maximum number of remote mailbox send requests outstanding at any
one time. The default is 32.

MAX_REMOTE_MAILBOX_RCV
The maximum number of remote mailbox receive requests outstanding at any
one time. The default is 64.

MAX_NUM_OF_UNITS
The maximum number of SCB units. The default is 16.

MBX_PROCESS_PRI_CLASS
The priority class of the mailbox process, as listed below. The default is 4.

MBX_PROCESS_PRI_DELTA
The priority delta of the mailbox process. The priority delta parameter is a
decimal value in the range –31 to +31. The default is 0.

PEER_TIMEOUT
Timeout value in seconds when communicating with peer processes. Valid
values are 1 to 60. The default is 5.

For remote mailbox processing to occur, the Configuration utility must be used to establish
communication between the system unit and adapters. For information on this utility, see
Configuration Utility on page 207.

Mailbox Process Messages and Return Codes

The content of the message file is listed in Appendix B: Message File on page 295. The
following table correlates the return code of the driver with the driver messages used by
the OS/2 mailbox process.

1 Idle
2 Regular
3 Time critical
4 Fixed-high

Table 1-4. OS/2 Mailbox Process Messages

Message
Number Return Code Notes
RIC0001 RC_UTIL_INVALID_CMDLINE_OPTION

RIC0002 RC_UTIL_INVALID_CMDLINE_PARM
Chapter 1: Loading and Configuring 9

ARTIC960 Support for AIX
The following sections describe the ARTIC960 Support for AIX.

Supported ARTIC960 Configurations

The ARTIC960 adapter supports a wide variety of configurations, such as interrupt levels,
I/O addresses, and system bus memory configurations. ARTIC960 Support for AIX
Version 1.3 added support for 14 ARTIC960 adapters (0 through 13).

The ARTIC960 Support for AIX supports all configurable hardware options with the
following restrictions.

Interrupt Level
All configurable interrupt levels are supported.

I/O Address
All configurable base I/O addresses are supported. For the RadiSys
ARTIC960 PCI and ARTIC960Hx, this window is used for peer-to-peer I/O
memory operations only.

8/16-KB Memory Window (ARTIC960 Micro Channel only)
This window is used only during device driver configuration, and then it
is disabled.

8-KB Memory Mapped I/O (ARTIC960 PCI and ARTIC960Hx only)
This window is used for system-unit-to-card I/O memory operations.

Full Memory Window
Under AIX, the system unit driver uses this window for small accesses to
ARTIC960 memory.

DMA (Direct Memory Access) Peer-to-Peer Support
ARTIC960 Support for AIX Version 1.1.6 supports DMA between two peer
adapters. In versions after 1.1.6, DMA between two peer adapters is
supported only for Micro Channel adapters.

RIC0003 RC_UTIL_FILE_NOT_FOUND

RIC0004 RC_UTIL_FILE_ACCESS

RIC0006 RC_UTIL_NO_MORE_MEM

RIC0016 RC_UTIL_SYSTEM_ERROR

RIC0019 RC_UTIL_NOT_INSTALLED

RIC0021 RC_UTIL_SUCCESS Process successfully started
RIC0048 RC_UTIL_WRNHELP_GIVEN

RIC0050 RC_UTIL_RESOURCE_BUSY

RIC0051 RC_UTIL_ALREADY_STARTED

RIC0062 RC_UTIL_SUCCESS Process terminated successfully
RIC0063 RC_UTIL_NOT_RUNNING Not found

Table 1-4. OS/2 Mailbox Process Messages

Message
Number Return Code Notes
10 ARTIC960 Programmer’s Reference

Micro Channel Only

Arbitration Levels
All configurable arbitration levels are supported.

The ARTIC960 adapters can have two arbitration levels defined. The
ARTIC960 AIX support uses the first arbitration level for system-unit-
to-adapter DMA transfers and the second arbitration level for peer-to-peer
DMA transfers. The adapter attribute that controls the second arbitration level
is DMA2Enable, and it can be changed using SMIT. When DMA2Enable is
set to YES, a second arbitration level is reserved for peer-to-peer transfers.

Streaming Data Enable
Use SMIT to change this attribute.

Selected Feedback Return Enable
Use SMIT to change this attribute.

Parity Enable
Use SMIT to change this attribute.

Channel Check Enable
Use SMIT to change this attribute.

Device Driver Installation

Two pieces of code provide the AIX support: the device driver and a daemon process.

The ARTIC960 AIX device driver (ricio) is installed through the AIX Configuration
Manager at system boot time. It is a multiprocessing safe (MP Safe) device driver.

Mailbox Process (ricmbx)

The mailbox process, ricmbx, is a daemon process that works in conjunction with the
device driver to handle remote mailbox processing.

Version 1.3 of ricmbx added the support for the first ten ARTIC960 adapters, numbers 0
through 9. Mailboxes can be used locally on the adapters 10 and above, but the system unit
mailboxes will not be able to communicate remotely.

Mailbox Process Call

Configuration parameters must be supplied on the command line or through a
configuration file. The mailbox process must be loaded prior to any application process
calls to mailbox services.

You can start the mailbox process at system boot time by adding a line to the
⁄etc⁄inittab file.
Chapter 1: Loading and Configuring 11

The mailbox process is called using the following syntax. The superuser authority is
required to start the mailbox process.

-C config_filename
Specifies that the contents of the file config_filename should be used as input
to the mailbox process for configuration parameters.

-K Kill the active mailbox process (superuser authority required).

The mailbox process requires certain initialization parameters. If you do not specify these
parameters, they take default values. The parameters take the form of keywords followed
by an = sign and their value. Spaces, tabs, or new lines should separate individual
parameters.

The following parameters can be set.

MAX_GLOBAL_MAILBOX
The maximum number of global mailboxes created in the system unit. The
default is 16.

MAX_REMOTE_MAILBOX
The maximum number of remote mailboxes opened from system unit. The
default is 16.

MAX_REMOTE_MAILBOX_OPEN
The maximum number of remote mailbox open requests outstanding at any
one time. The default is 16.

MAX_REMOTE_MAILBOX_SEND
The maximum number of remote mailbox send requests outstanding at any
one time. The default is 32.

MAX_REMOTE_MAILBOX_RCV
The maximum number of remote mailbox receive requests outstanding at any
one time. The default is 64.

MAX_NUM_OF_UNITS
The maximum number of SCB units. The default is 16.

AIX_MBX_PROCESS_PRIORITY
The mailbox process priority for the mailbox. Application processes wanting
to use the mailbox services need to have their process priority a lesser priority
than the mailbox process (1 is the highest priority level within AIX). The
default is 16.

For remote mailbox processing to occur, the Configuration utility must be used to establish
communication between the system unit and adapters. For information on this utility, see
Configuration Utility on page 207.

Figure 1-3. AIX Mailbox Process Syntax

path
ricmbx

path
-C

-K

config_filename
12 ARTIC960 Programmer’s Reference

Mailbox Process Messages and Return Codes

The content of the message file is listed in Appendix B: Message File on page 295. The
following table correlates the return code of the driver with the driver messages used by
the AIX mailbox process.

Error Logging

The error log is a tool designed to help isolate hardware problems. The AIX Support
Device Driver provides error logging.

The following ARTIC errors are logged to the system error log:

I/O Error
Problems reading or writing to the system bus address space.

ROM Error
The read only memory (ROM) boot strap microcode not responding in
reasonable time during initialization or ROM finds a hardware error during
its boot strap initialize or reset.

Watchdog Timer Interrupt
Hard exceptions reported by the ARTIC960 kernel or the adapter (ARTIC960
Watchdog Timeouts).

Adapter Kernel Exception
Software exceptions by the ROM or the kernel.

Trace Facility

The AIX Support device driver provides trace hooks to monitor the entry and exit of the
driver routines and the interrupt routine. The trace event is 29F.

Table 1-5. AIX Mailbox Process Messages

Message
Number Return Code Notes
RIC0001 RC_UTIL_INVALID_CMDLINE_OPTION Invalid configuration file, invalid

parameter names or values
RIC0002 RC_UTIL_INVALID_CMDLINE_PARM

RIC0003 RC_UTIL_FILE_NOT_FOUND Configuration file not found
RIC0004 RC_UTIL_FILE_ACCESS Cannot access configuration file
RIC0006 RC_UTIL_NO_MORE_MEM Parameter value exceeds

system memory limit
RIC0016 RC_UTIL_SYSTEM_ERROR OS or device driver error
RIC0019 RC_UTIL_NOT_INSTALLED Device driver not installed
RIC0021 RC_UTIL_SUCCESS Process successfully started
RIC0048 RC_UTIL_WRNHELP_GIVEN

RIC0050 RC_UTIL_RESOURCE_BUSY shmid,semid, used by mailbox
has been allocated in the
system

RIC0051 RC_UTIL_ALREADY_STARTED

RIC0076 RC_UTIL_FILE_ACCESS No root authority
Chapter 1: Loading and Configuring 13

ARTIC960 Support for Windows NT
The following sections describe the ARTIC960 Support for Windows NT.

Supported ARTIC960 Configurations

The ARTIC960 Support for Windows NT uses the hardware-abstraction layer (HAL) to
configure the configurable hardware options such as interrupt level, I/O addresses, and
system bus memory configurations.

Device Driver Installation

The Windows NT Version 4.0 device driver is installed when the ARTIC960 Support for
Windows NT is installed. The driver is started at boot time. It is a symmetric
multiprocessing (SMP) safe device driver.

Mailbox Process

The ARTIC960 Support for Windows NT supports card-to-card mailbox activity.
However, the System Unit mailbox process is not supported.

Event Logging

Four types of events are logged to the Windows NT Event Log for any particular
ARTIC960 device.

Configuration Errors
These errors are issued when the device driver has encountered errors with
interfacing to the hardware-abstraction layer (HAL).

ROM Errors
The read only memory (ROM) bootstrap microcode is not responding in
reasonable time during initialization, or ROM finds a hardware error during
its bootstrap initialize or reset.

Watchdog Timer Interrupt
Hard exceptions reported by the ARTIC960 kernel or adapter.

Informational
Various messages indicating starting and stopping of a device or ARTIC960
kernel exceptions.
14 ARTIC960 Programmer’s Reference

2
 ARTIC960 Kernel Services Chapter 2
This chapter summarizes the ARTIC960 kernel services and parameter types.

Summary of Services
Table 2-1 lists the modes in which each kernel service can be called. The first column lists
all the services in the same sequence as they appear in this book. The remaining columns
define whether the service can be called from an interrupt handler, a signal handler, an
asynchronous event notification handler, a process exit routine, and a critical section.
Normal process time is one of the modes that is not in the table because all services can be
called at normal process time. The other mode that is not in the table is device driver or
subsystem call handlers. The rules that determine which services can be called are the
same as the mode from which the device driver or subsystem was called. Each service is
described in Chapter 3: Base Kernel Services on page 21.)

Table 2-1 (Sheet 1 of 4). ARTIC960 Kernel Services

Function
Interrupt
Handler

Signal
Handler

Async
Handler

Process
Exit

Critical
Section

Process Management Services

CompleteInit No No No No No

QueryProcessStatus Yes Yes Yes Yes Yes

QueryCardInfo Yes Yes Yes Yes Yes

QueryConfigParams Yes Yes Yes Yes Yes

CreateProcess No No No Yes Yes

StartProcess No No No Yes3 Yes

StopProcess No No No Yes3 Yes

UnloadProcess No No No Yes3 Yes

SuspendProcess Yes6 Yes6 Yes6 Yes Yes1

ResumeProcess Yes Yes Yes Yes Yes

SetExitRoutine No No No No Yes

SetPriority Yes7 Yes7 Yes7 Yes Yes

QueryPriority Yes7 Yes7 Yes7 Yes Yes

QueryProcessInExec Yes Yes Yes Yes Yes

SetProcessData No Yes7 Yes7 Yes Yes

GetProcessData Yes Yes Yes Yes Yes

EnterCritSec Yes5 Yes Yes Yes Yes

ExitCritSec Yes5 Yes Yes Yes Yes

Dispatch No No No Yes Yes1
Chapter 2: ARTIC960 Kernel Services 15

Process Synchronization Services

CreateSem No No No Yes Yes

OpenSem No No No Yes Yes

CloseSem No No No Yes Yes

ReleaseSem Yes Yes Yes Yes Yes

RequestSem No No No Yes Yes1

QuerySemCount Yes Yes Yes Yes Yes

SetSemCount Yes Yes Yes Yes Yes

CreateEvent No No No Yes Yes

OpenEvent No No No Yes Yes

CloseEvent No No No Yes Yes

WaitEvent No No No Yes Yes1

Memory Management Services

CreateMem No No No Yes Yes

OpenMem No No No Yes Yes

CloseMem No No No Yes Yes

ResizeMem No No No Yes Yes

SetMemProt No No No Yes Yes

SetProcMemProt Yes Yes Yes Yes Yes

QueryMemProt No No No Yes Yes

QueryProcMemProt Yes Yes Yes Yes Yes

QueryFreeMem Yes Yes Yes Yes Yes

InitSuballoc No No No Yes Yes

GetSuballoc Yes Yes Yes Yes Yes1

FreeSuballoc Yes Yes Yes Yes Yes

GetSuballocSize Yes Yes Yes Yes Yes

MallocMem Yes Yes Yes Yes Yes

FreeMem Yes Yes Yes Yes Yes

CollectMem No Yes Yes Yes Yes

Timer Services

CreateSwTimer No No No Yes Yes

CloseSwTimer No No No Yes Yes

StartSwTimer Yes Yes Yes Yes Yes

StopSwTimer Yes Yes Yes Yes Yes

SetSystemTime Yes Yes Yes Yes Yes

QuerySystemTime Yes Yes Yes Yes Yes

StartPerfTimer Yes Yes Yes Yes Yes

StopPerfTimer Yes Yes Yes Yes Yes

ReadPerfTimer Yes Yes Yes Yes Yes

Table 2-1 (Sheet 2 of 4). ARTIC960 Kernel Services

Function
Interrupt
Handler

Signal
Handler

Async
Handler

Process
Exit

Critical
Section
16 ARTIC960 Programmer’s Reference

Process Communication Services

CreateQueue No No No Yes Yes

OpenQueue No No No Yes Yes

CloseQueue No No No Yes Yes

PutQueue Yes Yes Yes Yes Yes

GetQueue Yes2 Yes2 Yes2 Yes Yes1

SearchQueue Yes Yes Yes Yes Yes

CreateMbx No No No Yes Yes

OpenMbx No No No Yes Yes4

GetMbxBuffer Yes Yes Yes Yes Yes

FreeMbxBuffer Yes Yes Yes Yes Yes

SendMbx Yes8 Yes8 Yes8 Yes Yes4

ReceiveMbx Yes2 Yes2 Yes2 Yes Yes1

CloseMbx No No No Yes Yes

CreateSig No No No Yes Yes

OpenSig No No No Yes Yes

CloseSig No No No Yes Yes

InvokeSig Yes Yes Yes Yes Yes

Device Driver/Subsystem Services

CreateDev No No No Yes Yes

OpenDev No No No Yes Yes

CloseDev No No No Yes Yes

InvokeDev Yes Yes Yes Yes Yes

AllocVector No No No Yes Yes

ReturnVector No No No Yes Yes

SetVector No No No Yes Yes

AllocHW No No No Yes Yes

ReturnHW No No No Yes Yes

QueryHW No No No Yes Yes

AllocVectorMux No No No Yes Yes

SetVectorMux No No No Yes Yes

Asynchronous Event Notification Services

RegisterAsyncHandler No No No Yes Yes

DeregisterAsyncHandler No No No Yes Yes

Hooks

RegisterHook No No No Yes Yes

DeregisterHook No No No Yes Yes

Table 2-1 (Sheet 3 of 4). ARTIC960 Kernel Services

Function
Interrupt
Handler

Signal
Handler

Async
Handler

Process
Exit

Critical
Section
Chapter 2: ARTIC960 Kernel Services 17

1 When the service is called with Preemption or Interrupts disabled, if the process blocks, interrupts and
preemption are enabled.

2 May be called with timeout equal to 0.

3 When in an exit handler, a process cannot start, stop, or unload itself.

4 If the service is called for a remote mailbox, interrupts and preemption are enabled.

5 Preemption cannot be enabled/disabled.

6 A process may not suspend itself from an interrupt handler, a signal handler, or an asynchronous
handler.

7 When in a handler, a process ID must be provided, that is, not the process currently in execution.

8 May be called to send a message to a local mailbox only.

Parameter Types
The description of each service includes the type of each parameter. The following types
are defined:

Kernel Trace Services

InitTrace No No No Yes Yes

EnableTrace Yes Yes Yes Yes Yes

DisableTrace Yes Yes Yes Yes Yes

LogTrace Yes Yes Yes Yes Yes

Table 2-2 (Sheet 1 of 2). Parameter Types

Service Description
RIC_DEVHANDLE Device driver or subsystem resource handle
RIC_PROCESSID Process ID
RIC_EVNHANDLE Event resource handle
RIC_MBXHANDLE Mailbox resource handle
RIC_QUEHANDLE Queue resource handle
RIC_SEMHANDLE Semaphore resource handle
RIC_SIGHANDLE Signal resource handle
RIC_TMRHANDLE Software timer resource handle
RIC_ASYNCHANDLER Entry point code address for an asynchronous event handler
RIC_SIGHANDLER Entry point code address for a signal
RIC_VECTOR Code address
RIC_SLONG Signed number
RIC_TIMEOUT Signed number
RIC_ULONG Unsigned number
RIC_USHORT Unsigned number
RIC_RESPMBX Unsigned number
RIC_INVOKENUM Subsystem call function number
RIC_CARDNUM Logical card number

Table 2-1 (Sheet 4 of 4). ARTIC960 Kernel Services

Function
Interrupt
Handler

Signal
Handler

Async
Handler

Process
Exit

Critical
Section
18 ARTIC960 Programmer’s Reference

RIC_DOHANDLER Entry point of code address for an OpenDev entry point
RIC_DCHANDLER Entry point of code address for a CloseDev entry point
RIC_DIHANDLER Entry point of code address for an InvokeDev entry point
RIC_VECTOR_MUX Code address

Table 2-2 (Sheet 2 of 2). Parameter Types

Service Description
Chapter 2: ARTIC960 Kernel Services 19

20 ARTIC960 Programmer’s Reference

3
 Base Kernel Services Chapter 3
The realtime multi-tasking kernel (which is downloaded to the adapter) provides the
following base services.

Service Group Page

Process management 22

Process synchronization 50

Memory management 63

Timer 83

Process communication 94

Device driver/subsystem 121

Asynchronous event notification 138

Hooks 146

Kernel trace 149
Chapter 3: Base Kernel Services 21

Process Management Services
Process Management Services
The following are the process management services.

Refer to the ARTIC960 Programmer’s Guide for additional information.

Service Name Page

CompleteInit 23

QueryProcessStatus 25

QueryCardInfo 28

QueryConfigParams 31

CreateProcess 34

StartProcess 36

StopProcess 37

UnloadProcess 38

SuspendProcess 39

ResumeProcess 40

SetExitRoutine 41

SetPriority 42

QueryPriority 43

QueryProcessInExec 44

SetProcessData 45

GetProcessData 46

EnterCritSec 47

ExitCritSec 48

Dispatch 49
22 ARTIC960 Programmer’s Reference

CompleteInit—Mark Process as Completely Initialized
CompleteInit—Mark Process as Completely Initialized

This service notifies the kernel that the calling process has completed initialization. This
service can also indicate initialization errors.

Functional Prototype

RIC_ULONG CompleteInit (RIC_ULONG ErrorCode,
 RIC_ULONG ProcessRev,
 RIC_ULONG OptionWord,
 RIC_ULONG Reserved);

Parameters

ErrorCode Input. Contains process-specific information stored in the process control
block. If this field is 0, the process initialized successfully. If this field is
greater than 0, the process found an error during initialization.

ProcessRev Input. Contains process-specific information stored in the process control
block. Although no specific format is defined, the following format is
recommended: ProcessRev is a 32-bit application-version number:

• 8-bit major version number (most significant byte)

• 8-bit minor version number

• 16-bit revision number (least significant two bytes)

OptionWord
Input. A bit field specifying options for the CompleteInit service.

PERMANENT_PROCESS
The process is defined as permanent and cannot be stopped or unloaded.

TRANSIENT_PROCESS
Specifies that the process can be stopped or unloaded.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_INVALID_CALL
RC_INVALID_RESERVED_PARM RC_INVALID_OPTION
RC_ALREADY_INITIALIZED

Remarks

This service is used by all processes, device drivers, and subsystems. Device drivers and
subsystems will not receive OPEN requests until this service has been called for
successful initialization. This service is optional for normal processes. However, to use the
–W option of the Application Loader utility, the process must use this service.
Chapter 3: Base Kernel Services 23

CompleteInit—Mark Process as Completely Initialized
If the caller passes a non-zero value in ErrorCode, the process is stopped and does not
regain control after the call. The ErrorCode is intended as a safety net for reporting status
when no other method is available (for example, the process was not able to open a
mailbox). If a process wants to report non-error initialization status, another
communications mechanism should be used.

Although the ProcessRev format is not required, it is recommended that application
programmers implement it because the diagnostic utility (RICSTAT) uses this field.
24 ARTIC960 Programmer’s Reference

QueryProcessStatus—Get the Process Status
QueryProcessStatus—Get the Process Status

This service gets the status and other process-related information, accepting either a
process name or process ID for input. When a process name is specified, this service
resolves it to a process ID.

Functional Prototype

RIC_ULONG QueryProcessStatus (char *ProcessName,
 RIC_PROCESSID ProcessID,
 RIC_ULONG OptionWord,
 struct RIC_ProcessStatusBlock *PSBBufferPtr,
 RIC_ULONG BufferSize,
 RIC_ULONG Reserved);

Parameters

ProcessName
Input. Process name whose status is required.

ProcessID Input. Process ID whose status is required.

OptionWord
Input. Possible values are:

PROCESS_NAME_OPTION
Specifies the ProcessName parameter is used.

PROCESS_ID_OPTION
Specifies the ProcessID parameter is used.

PSBBufferPtr
Input. Process status and other process-related information is returned to the
requesting process in this buffer.

BufferSize Input. Size of buffer pointed to by PSBBufferPtr. If the buffer is not large
enough, the service copies BufferSize bytes into the user’s buffer and returns
an error code.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_INVALID_MEM_ACCESS
RC_INVALID_NAME RC_INVALID_OPTION
RC_INVALID_RESERVED_PARM RC_INVALID_PROCESSID
RC_NAME_NOT_FOUND RC_BUFFER_TOO_SMALL
Chapter 3: Base Kernel Services 25

QueryProcessStatus—Get the Process Status
Remarks

The kernel returns the information to the calling process using the following structure.

struct RIC_ProcessStatusBlock
{
 RIC_PROCESSID ProcessID;
 RIC_ULONG ProcessState;
 RIC_ULONG ProcessInfo;
 RIC_ULONG ProcessType;
 RIC_ULONG Priority;
 RIC_ULONG MemProtState;
};

ProcessID The process ID.

ProcessState
Defines the current state of the process, using two sets of bits (see Primary
Process State Bits and Secondary Process State Bits on page 27).

ProcessInfo Process-related information, which is passed to the kernel in the ProcessRev
field on the CompleteInit system call.

ProcessType Returned by the kernel. It can be one of the following types:
PROCESS_TYPE_NORMAL
PROCESS_TYPE_DEVDRV
PROCESS_TYPE_SUBSYS

Priority Indicates the current execution priority for this process.

MemProtState
Defines the state of memory protection.

MEMPROT_ENABLE Memory protection enabled
MEMPROT_DISABLE Memory protection disabled
26 ARTIC960 Programmer’s Reference

QueryProcessStatus—Get the Process Status
Primary Process State Bits

The primary process state bits are shown in the following table.

Secondary Process State Bits

Processes that are in the started or stopping states have a valid secondary state, as defined
in the following table.

Process Information Bits

Active processes may have valid information bits:

State bit Description
LOADED The LOADED bit is set while a process is being loaded and

is reset when the loading operation is complete.
PROC_STOPPED The PROC_STOPPED bit is set when a process has been

loaded and is reset when it is unloaded by the system unit
or another process.

STARTED The STARTED bit is set when a process is started and is
reset when it is stopped by the system unit or
another process.

STOPPING The STOPPING bit is set when the exit handler of a
process is running.

State Description
SUSPENDED The SUSPENDED bit is set when the process has been

suspended. The process is taken off the dispatch queue.
BLOCKED The BLOCKED bit is set when the process has been

blocked using a RequestSem, WaitEvent, GetQueue, or
ReceiveMbx call. The process is taken off the dispatch
queue.

DEVICE_DRIVER The DEVICE_DRIVER bit is set if a process declares itself
as a device driver.

QUEUED The QUEUED bit is set when a process is ready to run.
WAITING_ON_PMREQ The WAITING_ON_PMREQ bit is set when a process is

blocked because it has issued a StopProcess or
UnloadProcess call that is being serviced.

INITIALIZED The INITIALIZED bit is set when the process issues the
CompleteInit system call.

PERMANENT The PERMANENT bit is set when a process, subsystem, or
device driver sets this field with the CompleteInit system
call. The process, subsystem, or device driver cannot be
unloaded by the UnloadProcess call when this bit is set. It
may be unloaded from the system unit at any time.
Chapter 3: Base Kernel Services 27

QueryCardInfo—Get the Card Configuration Information
QueryCardInfo—Get the Card Configuration Information

This service gets information from the read-only memory (ROM) data structure.

Functional Prototype

RIC_ULONG QueryCardInfo (struct RIC_CardInfo *ParmPtr,
 RIC_ULONG BufferSize,
 RIC_ULONG Reserved);

Parameters

ParmPtr Input. Pointer to the user’s buffer. The card information is copied into this
memory.

BufferSize Input. Size of the buffer is pointed to by ParmPtr. If the buffer is not large
enough, the service copies BufferSize bytes into the user’s buffer and returns
an error code.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_MEM_ACCESS
RC_BUFFER_TOO_SMALL
RC_INVALID_RESERVED_PARM

Remarks

This is the card information structure. These values are taken from the ROS structure:

struct RIC_CardInfo
{
 RIC_ULONG PageSize;
 RIC_ULONG KernelVersion;
 RIC_ULONG BaseSubVersion;
 RIC_ULONG MCIOSubVersion;
 RIC_ULONG SCBSubVersion;
 RIC_CARDNUM CardNum;
 RIC_ULONG NumCards;
 RIC_ULONG CardType;
 RIC_ULONG Master1Version;
 RIC_ULONG Master2Version;
 RIC_ULONG Master3Version;
 RIC_ULONG Reserved;
 RIC_ULONG BaseCardVersion;
 RIC_ULONG ROSVersion;
 RIC_ULONG MemRegions
struct RIC_MemRegion MemInfo[MAX_MEM_REGIONS];
}

28 ARTIC960 Programmer’s Reference

QueryCardInfo—Get the Card Configuration Information
struct RIC_MemRegion
{
 RIC_ULONG MemBase;
 RIC_ULONG MemTotal;
 RIC_ULONG MemType;
}

Parameters

PageSize Size of memory protection page

KernelVersion
Kernel version number

BaseSubVersion
Base subsystem version

MCIOVersion
System Bus I/O subsystem version

SCBVersion SCB subsystem version

CardNum Card number

NumCards Number of ARTIC960 cards in the configuration

CardType Type of adapter card. Provides information about the type of bus, the
presence of data cache, and the type of interface chip. The following masks
can be used to determine CardType information.

RIC_CARD_TYPE
Indicates the type of bus. Possible values are:

RIC_MCA Micro Channel
RIC_PCI PCI (Peripheral Component Interconnect)

RIC_DCACHE
Indicates the presence of a data cache. Possible values are:

0 Data cache hardware is not present.
1 Data cache hardware is present.

RIC_IF_CHIP
Indicates the type of interface chip. Possible values are:

RIC_MIAMI Miami
RIC_MP2P Miami PCI to PCI
RIC_RP i960RP
RIC_RXD i960RxD

Master1Version
Version of ARTIC 32-bit Memory Controller Chip

Master2Version
Version of system bus Interface Chip

Master3Version
Version of CFE Local Bus/AIB Interface Chip

Reserved Reserved field
Chapter 3: Base Kernel Services 29

QueryCardInfo—Get the Card Configuration Information
BaseCardVersion
Base card version

ROSVersion
ROS version

MemRegions
Number of memory regions

MemBase Base address of memory region

MemTotal Size, in bytes, of memory region

MemType Type of memory region. Possible values are:

MEM_TYPE_INSTRUCTION
MEM_TYPE_PACKET
30 ARTIC960 Programmer’s Reference

QueryConfigParams—Get the Configuration Parameters
QueryConfigParams—Get the Configuration Parameters

This service gets the kernel parameters.

Functional Prototype

RIC_ULONG QueryConfigParams (struct RIC_ConfigParms *ParmPtr,
 RIC_ULONG BufferSize,
 RIC_ULONG Reserved);

Parameters

ParmPtr Input. Pointer to user’s structure. The kernel parameters are copied into
this memory.

BufferSize Input. Number of bytes to copy to the user’s buffer.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_BUFFER_TOO_SMALL
RC_INVALID_MEM_ACCESS
RC_INVALID_RESERVED_PARM

Remarks

This is the configuration parameter structure. These values are set at load time. The user
can set these with a configuration file. A default value is used for each parameter not set by
the user.

struct RIC_ConfigParms
{
 RIC_ULONG MemoryProtection;
 RIC_ULONG DefaultPriority;
 RIC_ULONG MaxProcess;
 RIC_ULONG MaxTimer;
 RIC_ULONG MaxSemaphore;
 RIC_ULONG MaxMemAlloc;
 RIC_ULONG MaxQueue;
 RIC_ULONG MaxEvent;
 RIC_ULONG MaxDDSS;
 RIC_ULONG MaxSignal;
 RIC_ULONG MaxLocalMailbox;
 RIC_ULONG MaxGlobalMailbox;
 RIC_ULONG MaxRemoteMailbox;
 RIC_ULONG MaxRemoteMailboxOpen;
 RIC_ULONG MaxRemoteMailboxSend;
 RIC_ULONG MaxRemoteMailboxRcv;
 RIC_ULONG MaxPeerAdapters;
 RIC_ULONG MaxSystemMCReq;
 RIC_ULONG MaxAdapterMCReq;
 RIC_ULONG DefaultStackSize;
 RIC_ULONG TimeSlice;
 RIC_ULONG WatchDog;
Chapter 3: Base Kernel Services 31

QueryConfigParams—Get the Configuration Parameters
 RIC_ULONG TimeOfDay;
 RIC_ULONG PerfTimer;
 RIC_ULONG DataCache;
 RIC_ULONG InstCache;
 RIC_ULONG RegCache;
 RIC_ULONG PinKernProcCode;
 RIC_ULONG PinKernIntcode;
 RIC_ULONG PeerTimeout;
}

Parameter

MemoryProtection
Memory protection enable flag
0 Disabled
1 Enabled)

DefaultPriority
Default process priority

MaxProcess Maximum number of processes; includes device drivers and subsystems

MaxTimer Maximum number of timers

MaxSemaphore
Maximum number of semaphores

MaxMemAlloc
Maximum number of memory allocations

MaxQueue Maximum number of queues

MaxEvent Maximum number of events

MaxDDSS Maximum number of device drivers and subsystems; does not include kernel
device drivers and kernel subsystems

MaxSignal Maximum number of signals

MaxLocalMailbox
Maximum number of local mailboxes

MaxGlobalMailbox
Maximum number of global mailboxes

MaxRemoteMailbox
Maximum number of remote mailboxes

MaxRemoteMailboxOpen
Maximum number of remote mailboxes open

MaxRemoteMailboxSend
Maximum number of remote mailbox sends outstanding

MaxRemoteMailboxRcv
Maximum number of remote mailbox receives outstanding

MaxPeerAdapters
Maximum number of peer adapters
32 ARTIC960 Programmer’s Reference

QueryConfigParams—Get the Configuration Parameters
MaxSystemMCReq
Maximum number of system bus read/write requests from the system
unit outstanding.

MaxAdapterMCReq
Maximum number of system bus move requests outstanding

DefaultStackSize
Default process stack size

TimeSlice Time slice interval/disable (interval value in milliseconds; 0 means disabled)

Watchdog Watchdog interval/disable (interval value in milliseconds; 0 means disabled)

TimeOfDay Time of day enable flag
0 Disabled
1 Enabled

PerfTimer Performance timer enable flag
0 Disabled
1 Enabled

DataCache Data cache enable flag
0 Disabled
1 Enabled

InstCache Instruction cache enable flag
0 Disabled
1 Enabled

RegCache Number of register sets that are cached. Valid values are 5 through 15.

PinKernProcCode
Option to pin kernel code critical for process intensive applications
0 Disabled
1 Enabled

PinKernIntCode
Option to pin kernel code critical for interrupt intensive applications
0 Disabled
1 Enabled

PeerTimeout
Timeout value used by kernel mailbox subsystem when communicating with
peer processes.
Chapter 3: Base Kernel Services 33

CreateProcess—Create a Process
CreateProcess—Create a Process

This service creates a peer process.

Functional Prototype

RIC_ULONG CreateProcess (char *ProcessName,
 RIC_USERENTRY EntryPoint,
 RIC_ULONG StackSize,
 void *ParamPtr,
 RIC_ULONG ParamSize,
 RIC_ULONG Priority,
 RIC_ULONG OptionWord,
 RIC_PROCESSID *ProcessID,
 RIC_ULONG Reserved);

Parameters

ProcessName
Input. A process name to assign to the created process. The kernel’s
subsystems have process names beginning with “RIC_”. User process names
should not begin with this prefix.

EntryPoint Input. Address of the entry point of the created process.

StackSize Input. Size of stack to be allocated for the created process. If this parameter
is 0, the kernel allocates the default size stack.

ParamPtr Input. Pointer to a parameter area passed to created process.

ParamSize Input. Size of parameter area.

Priority Input. The priority of the created process set by creating process. A 0 means
use the default priority as specified in the kernel configuration parameter
DEFAULT_PRIORITY.

OptionWord Input. A bit field of options for creating a process. The constants for the
following options should be ORed together to build the appropriate set of
options.

• Process start option

CREATE_AND_NO_START

Creates a peer process without issuing a start.

CREATE_AND_START

Starts the process after it is created. This is the default.

• Stack cache option

CREATE_CACHE_STACK

By default, the stack is not cached. To designate the stack as cacheable,
can be ORed into the option word. This option is ignored if a data cache
is not present on the adapter, or if a data cache has not been enabled
through the kernel configuration DATA_CACHE parameter.
34 ARTIC960 Programmer’s Reference

CreateProcess—Create a Process
• Data cache option

CREATE_CACHE_DATA

By default, the data section is not cached. To designate the data section
cacheable, can be ORed into the option word. This option is ignored if
data cache hardware is not present on the adapter, or if data cache has
not been enabled through the kernel configuration DATA_CACHE
parameter.

ProcessID Output. Process ID of the created process.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_DUP_RES_NAME
RC_INVALID_RESERVED_PARM RC_INVALID_MEM_ACCESS
RC_INVALID_NAME RC_INVALID_CALL
RC_NO_MORE_PROC RC_INVALID_PRIORITY
RC_NO_MORE_MEM RC_INVALID_OPTION
RC_NO_MORE_RES

Remarks

The kernel allocates the stack for the newly created process. The size of stack depends on
the StackSize parameter passed to the service. The newly created process shares the code
and data area of the calling process. It runs at the priority level set by the creator. The
newly created process does not inherit the creator’s resources, exit routine, or floating
point usage. Even if the creator is a subsystem, the new process starts as a normal process
if the start option is used. The kernel gives control to the newly created process at its entry
point, with ParamPtr and ParamSize as parameters.

The new process gets control at main() with the arguments parsed into argc and argv if:

• The passed parameters are built up in the creator’s data area

• The passed parameters are in the format of null-terminated strings with the last string
double-null terminated

• The label ricstart is passed for the entry point

CreateProcess ignores the CREATE_CACHE_DATA option if the
load module that contains the process issuing the CreateProcess
was not itself loaded with the data section cacheable. This is
because the spawned process shares the data section of the load
module.
Chapter 3: Base Kernel Services 35

StartProcess—Start a Process
StartProcess—Start a Process

This service starts a stopped process.

Functional Prototype

RIC_ULONG StartProcess (RIC_PROCESSID ProcessID,
 RIC_ULONG Reserved);

Parameters

ProcessID Input. Process ID of the process that is to be started.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_INVALID_PROCESSID
RC_PROCESS_ALREADY_STARTED
RC_INVALID_CALL

Remarks

The kernel starts a previously loaded process. The entry point of the process is defined
when the process is loaded from the system unit or by the CreateProcess service of
the kernel.
36 ARTIC960 Programmer’s Reference

StopProcess—Stop a Process
StopProcess—Stop a Process

This service stops a previously started process.

Functional Prototype

RIC_ULONG StopProcess (RIC_PROCESSID ProcessID,
 RIC_ULONG Reserved);

Parameters

ProcessID Input. Process ID of the process that is to be stopped. A value of 0 means that
the calling process is stopping itself.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_INVALID_CALL
RC_INVALID_RESERVED_PARM RC_PERMANENT_PROCESS
RC_PROCESS_NOT_STARTED RC_DEVICE_DRIVER
RC_INVALID_PROCESSID

Remarks

The kernel calls the exit routine of the process before stopping the process. All the
resources acquired by the process are released. This process can be restarted at a
later time.

When a process is stopping another process, the requesting process will not run until the
stopping process has completely stopped (including execution of its exit handler).

Locally, only a device driver/subsystem can stop a device driver/subsystem. The system
unit can stop and unload a device driver/subsystem through the -U parameter of the
Application Loader utility (see Application Loader (ricload) Utility on page 196 for
information on this utility). The system unit can stop a device driver/subsystem through a
global mailbox command to a kernel mailbox from any unit (see Chapter 4: Kernel
Commands on page 163 for details on the mailbox commands).
Chapter 3: Base Kernel Services 37

UnloadProcess—Unload a Process
UnloadProcess—Unload a Process

This service unloads a previously loaded process.

Functional Prototype

RIC_ULONG UnloadProcess (RIC_PROCESSID ProcessID,
 RIC_ULONG Reserved);

Parameters

ProcessID Input. Process ID of the process that is to be unloaded. A value of 0 means
that the calling process is unloading itself.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_INVALID_PROCESSID
RC_INVALID_CALL
RC_PERMANENT_PROCESS
RC_DEVICE_DRIVER

Remarks

The kernel calls the exit routine of the process before unloading the process, if the process
had been started. All the resources acquired by the process are released. The kernel
releases the code, data, parameter, and stack memory areas of the process. The process
cannot be restarted without being reloaded.

When a process is stopping another process, the requesting process will not run until the
stopping process has completely stopped—including execution of its exit handler.

Locally, only a device driver/subsystem can unload a device driver/subsystem. The system
unit can unload a device driver/subsystem through the –U parameter of the Application
Loader utility (see Application Loader (ricload) Utility on page 196 for details about the
utility) or through a global mailbox command to a kernel mailbox from any unit (see
Chapter 4: Kernel Commands on page 163 for details about mailbox commands).
38 ARTIC960 Programmer’s Reference

SuspendProcess—Suspend a Process
SuspendProcess—Suspend a Process

This service suspends a process. It is taken off the dispatch queue and its process state is
set to SUSPENDED.

Functional Prototype

RIC_ULONG SuspendProcess (RIC_PROCESSID ProcessID,
 RIC_ULONG Reserved);

Parameters

ProcessID Input. Process ID of the process that is to be suspended. A value of 0 means
the calling process is suspending itself.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_PROCESS_NOT_STARTED
RC_INVALID_PROCESSID
RC_DEVICE_DRIVER
RC_INVALID_CALL

Remarks

None
Chapter 3: Base Kernel Services 39

ResumeProcess—Resume a Process
ResumeProcess—Resume a Process

This service resumes a process.

Functional Prototype

RIC_ULONG ResumeProcess (RIC_PROCESSID ProcessID,
 RIC_ULONG Reserved);

Parameters

ProcessID Input. Process ID of the process that is to be resumed.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_PROCESS_NOT_STARTED
RC_INVALID_PROCESSID

Remarks

When the process is resumed, it is put back on the dispatch queue. If the process is already
on the dispatch queue, no action is taken.

If the process was suspended by another process, after it blocked for a semaphore or an
event, ResumeProcess will not make it ready to run immediately unless the semaphore or
event is also available at the time.
40 ARTIC960 Programmer’s Reference

SetExitRoutine—Set the Exit Routine for the Process
SetExitRoutine—Set the Exit Routine for the Process

This service sets the exit routine for the process.

Functional Prototype

RIC_ULONG SetExitRoutine (RIC_VECTOR ExitRoutine,
 RIC_ULONG Reserved);

Parameters

ExitRoutine Input. Address of the routine the kernel calls when this process is stopped
normally or abnormally.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_INVALID_CALL
RC_INVALID_MEM_ACCESS

Remarks

The kernel calls the ExitRoutine of the process when the process is stopped, whether it
was normal or abnormal because of asynchronous errors.

This service is mapped to the C function atexit, which allows the registration of multiple
exit handlers. No kernel trace information is provided for this service.
Chapter 3: Base Kernel Services 41

SetPriority—Set the Priority of the Process
SetPriority—Set the Priority of the Process

This service changes the priority of the current process.

Functional Prototype

RIC_ULONG SetPriority (RIC_PROCESSID ProcessID,
 RIC_ULONG Priority,
 RIC_ULONG Reserved);

Parameters

ProcessID Input. Sets this process ID to the new priority. A value of 0 means the
calling process.

Priority Input. New priority of the process. A value of 0 means the default priority.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_INVALID_CALL
RC_INVALID_PROCESSID
RC_INVALID_PRIORITY

Remarks

The kernel changes the priority of the process to Priority. If the priority of the currently
executing process is lowered, a dispatch cycle may occur.

Refer to the ARTIC960 Programmer’s Guide for the priority recommendations.
42 ARTIC960 Programmer’s Reference

QueryPriority—Query the Priority of the Process
QueryPriority—Query the Priority of the Process

This service queries the priority of the process.

Functional Prototype

RIC_ULONG QueryPriority (RIC_PROCESSID ProcessID,
 RIC_ULONG *Priority,
 RIC_ULONG Reserved);

Parameters

ProcessID Input. Queries the priority of this process. A value of 0 means the
calling process.

Priority Output. Priority of the process.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_INVALID_PROCESSID
RC_INVALID_MEM_ACCESS

Remarks

None
Chapter 3: Base Kernel Services 43

QueryProcessInExec—Get ID of Process in Execution
QueryProcessInExec—Get ID of Process in Execution

This service returns the process ID of the process that currently is executing.

Functional Prototype

RIC_ULONG QueryProcessInExec (RIC_PROCESSID *ProcessID,
 RIC_ULONG Reserved);

Parameters

ProcessID Output. The process ID of the currently executing process.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_INVALID_MEM_ACCESS

Remarks

At process time, this call returns the caller’s process ID. When called in interrupt handlers,
this call returns the process that was executing at the time of the interrupt. If no process
was executing at the time of the interrupt, ProcessID is set to INVALID_PROCESSID.
44 ARTIC960 Programmer’s Reference

SetProcessData—Set Process Data
SetProcessData—Set Process Data

This service sets process instance data for the indicated application environment and
process.

Functional Prototype

RIC_ULONG SetProcessData (void *ProcessDataPtr,
 unsigned char ApplID,
 RIC_PROCESSID ProcessID);

Parameters

ProcessDataPtr
Input. Pointer to process instance data.

ApplID Input. Unique ID to indicate which application environment the process
instance data is associated with. IDs 0 through 63 are reserved for ARTIC960
use.

ProcessID Input. Indicates which process the instance data is for. A value of 0 indicates
the process in execution.

Returns

RC_SUCCESS
RC_NO_MORE_RES
RC_INVALID_PROCESSID
RC_INVALID_CALL

Remarks

This service maintains process instance data pointers for up to 15 application IDs. If more
than 15 application IDs are specified, RC_NO_MORE_RES is returned.

This service cannot be called from an interrupt handler. It can be called from a call
handler. However, doing so with a ProcessID value of 0 can give unexpected results and
should be used with caution. While in a call handler, the process in execution is considered
to be the process that called the handler. If call processes are nested, it is the process that
called the first handler.

To set process data for a process that is started by CreateProcess, services
should be called in the following order:

1. CreateProcess

2. EnterCritSec to disable preemption

3. StartProcess

4. SetProcessData

5. ExitCritSec to enable preemption
Chapter 3: Base Kernel Services 45

GetProcessData—Get Process Data
GetProcessData—Get Process Data

This service returns the process instance data associated with the indicated application
environment and process.

Functional Prototype

RIC_ULONG GetProcessData (void *ProcessDataPtr,
 unsigned char ApplID,
 RIC_PROCESSID ProcessID);

Parameters

ProcessDataPtr
Input. Pointer to location where the kernel returns the pointer to the process
instance data. If no process instance data is found, a NULL pointer is
returned.

ApplID Input. Unique ID to indicate with which application environment the process
instance data is associated.

ProcessID Input. Process ID of the instance data to be retrieved. A value of 0 indicates
the process in execution.

Returns

RC_SUCCESS
RC_INVALID_PROCESSID

Remarks

This service can be called from an interrupt handler or a call handler. However, doing so
with a ProcessID value of 0 may give unexpected results and should be used with caution.
While in an interrupt handler, the process in execution is considered to be the kernel.
While in a call handler, the process in execution is considered to be the process that called
the handler. If call processes are nested, it is the process that called the first handler.
46 ARTIC960 Programmer’s Reference

EnterCritSec—Enter Critical Section
EnterCritSec—Enter Critical Section

This service disables interrupts and/or preemptions.

Functional Prototype

RIC_ULONG EnterCritSec (RIC_ULONG OptionWord,
 RIC_ULONG Reserved);

Parameters

OptionWord
Input.

DISABLE_INTERRUPTS
If ORed into the option word, interrupts are disabled; the default is not
to change the interrupt state.

DISABLE_PREEMPTION
If ORed into the option word, preemption is disabled; the default is not
to change the preemption state.

Failure to select either option causes an RC_INVALID_OPTION to be
returned.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_INVALID_CALL
RC_INVALID_OPTION

Remarks

The number of calls to enable interrupts must match the number of calls to disable
interrupts, similar to pushes and pops of a stack. The same is true for preemption.

An interrupt handler cannot disable preemption.

The following situation forces a critical section to end. If (1) interrupts or
preemption is disabled and (2) a process calls a kernel service that causes
the process to block, interrupts and preemption are automatically enabled.
This allows the block to proceed. In other words, a blocking call ends a critical
section.
Chapter 3: Base Kernel Services 47

ExitCritSec—Exit Critical Section
ExitCritSec—Exit Critical Section

This service enables interrupts and/or preemption.

Functional Prototype

RIC_ULONG ExitCritSec (RIC_ULONG OptionWord,
 RIC_ULONG Reserved);

Parameters

OptionWord
Input.

ENABLE_INTERRUPTS
If ORed into the OptionWord, interrupts are enabled; the default is not
to change the interrupt state.

ENABLE_PREEMPTION
If ORed into the OptionWord, preemption is enabled; the default is not
to change the preemption state.

Failure to select either option causes an RC_INVALID_OPTION to
be returned.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_INVALID_CALL
RC_INVALID_OPTION

Remarks

The number of calls to enable interrupts must match the number of calls to disable
interrupts, similar to pushes and pops of a stack. The same is true of preemption.

An interrupt handler cannot enable preemption.
48 ARTIC960 Programmer’s Reference

Dispatch—Cause a Dispatch Cycle
Dispatch—Cause a Dispatch Cycle

This service causes a dispatch cycle.

Functional Prototype

RIC_ULONG Dispatch (void);

Returns

RC_SUCCESS
RC_INVALID_CALL

Remarks

This service cannot be called from an interrupt handler.
Chapter 3: Base Kernel Services 49

Process Synchronization Services
Process Synchronization Services
Process synchronization is accomplished through semaphores and events.

Semaphores are the post/wait mechanism for all processes and come in two types: mutual
exclusion and counting semaphores.

• Mutual exclusion (mutex) semaphores are used for serializing access to code or data
structures.

• Counting semaphores are used for synchronizing processes, such as synchronizing a
producer-consumer pair of processes.

Semaphores can be explicit or implicit.

• Explicit semaphores are decremented before control returns to the process.

• Implicit semaphores are decremented when the process calls the appropriate resource
services, such as removing a queue element or mailbox message.

Processes can allocate and manipulate semaphores using the following services.

Refer to the ARTIC960 Programmer’s Guide for additional information.

Service Name Page

CreateSem 51

OpenSem 52

CloseSem 53

ReleaseSem 54

RequestSem 55

QuerySemCount 56

SetSemCount 57

CreateEvent 58

OpenEvent 59

CloseEvent 60

WaitEvent 61
50 ARTIC960 Programmer’s Reference

CreateSem—Create a Semaphore
CreateSem—Create a Semaphore

This service creates a semaphore and gives access to the requesting process.

Functional Prototype

RIC_ULONG CreateSem (char *SemName,
 RIC_ULONG SemCount,
 RIC_ULONG OptionWord,
 RIC_SEMHANDLE *SemHandle,
 RIC_ULONG Reserved);

Parameters

SemName Input. A name to assign to the semaphore so other processes can get access to
the same semaphore by name. This name can be NULL; however, the
semaphore cannot be shared when SemName is NULL. The kernel’s
subsystems allocate all resources, with the first four characters as “RIC_” for
the resource name. User semaphore names should not start with this prefix.

SemCount Input. New count of semaphore. Values greater than 0x80000000 are not
permitted. In addition, mutual exclusion semaphores cannot be assigned a
count greater than one.

OptionWord Input.

SEMTYPE_COUNTING Specifies the semaphore as a counting type
SEMTYPE_MUTEX Indicates a mutual exclusion type semaphore

SemHandle Output. Semaphore handle returned to requesting process. This handle is
passed to all other semaphore services when referring to this semaphore.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_INVALID_MEM_ACCESS
RC_NO_MORE_RES RC_INVALID_CALL
RC_INVALID_RESERVED_PARM RC_INVALID_OPTION
RC_INVALID_NAME RC_INVALID_SEM_COUNT
RC_DUP_RES_NAME

Remarks

This service creates a new semaphore and assigns to it the specified name. The usual
initial count for counting semaphores is 0; the initial count for mutual exclusion
semaphores is 1. To use another starting semaphore count, see SetSemCount—Set a
Semaphore Count on page 57. Other processes can get access to the same semaphore
using the OpenSem service (see OpenSem—Open a Semaphore on page 52). If a mutex
semaphore is created with a count of 0, the creator owns it also, Otherwise, the first
requester owns it.
Chapter 3: Base Kernel Services 51

OpenSem—Open a Semaphore
OpenSem—Open a Semaphore

This service opens a semaphore previously created by another process.

Functional Prototype

RIC_ULONG OpenSem (char *SemName,
 RIC_SEMHANDLE *SemHandle,
 RIC_ULONG Reserved);

Parameters

SemName Input. The semaphore name used to create the semaphore.

SemHandle Output. Semaphore handle returned to requesting process. This handle is
passed to all other semaphore services when referring to this semaphore.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_NAME_NOT_FOUND
RC_NO_MORE_RES
RC_INVALID_RESERVED_PARM
RC_INVALID_NAME
RC_INVALID_MEM_ACCESS
RC_INVALID_CALL

Remarks

This service gets access to a semaphore already created by another process with the
CreateSem service.
52 ARTIC960 Programmer’s Reference

CloseSem—Close a Semaphore
CloseSem—Close a Semaphore

This service releases access to a semaphore and deletes the semaphore if no other
processes have access.

Functional Prototype

RIC_ULONG CloseSem (RIC_SEMHANDLE SemHandle,
 RIC_ULONG Reserved);

Parameters

SemHandle Input. Handle of semaphore to release.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_HANDLE
RC_INVALID_RESERVED_PARM
RC_DEPENDENT_EVENTS
RC_INVALID_CALL

Remarks

If the close is issued by a process while other processes still have access to the semaphore,
the service removes access rights for the issuing process. When the last process with
access rights calls this service, the semaphore ceases to exist. See CreateSem—Create a
Semaphore on page 51 and OpenSem—Open a Semaphore on page 52 for more
information.

If a process is stopped or unloaded, the kernel closes all of its resources. It notifies,
through asynchronous notification, all other processes that shared those resources that the
process has gone away. If a process closes a mutual exclusion semaphore that it owns (that
is, it requested the semaphore last but has not released it), all processes waiting for the
semaphore are awakened with an error of RC_OWNER_CLOSED_SEM. This is done because
the code and data protected by the mutual exclusion semaphore may have been left in an
indeterminable state. When this happens, the semaphore count is reset to one, so the
semaphore can be re-requested if the application process knows that the protected code
and data is in a valid state.
Chapter 3: Base Kernel Services 53

ReleaseSem—Release a Semaphore
ReleaseSem—Release a Semaphore

This service makes a semaphore available to the next process waiting for it.

Functional Prototype

RIC_ULONG ReleaseSem (RIC_SEMHANDLE SemHandle,
 RIC_ULONG Reserved);

Parameters

SemHandle Input. Handle of semaphore to increment.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_HANDLE
RC_INVALID_RESERVED_PARM
RC_SEM_NOT_OWNED

Remarks

The next process waiting for the semaphore is posted if this is the only semaphore for
which it is waiting. If no processes are waiting, the semaphore count is incremented.

A mutual exclusion semaphore cannot be released with this service twice by the same
process, unless it does a RequestSem in between. In addition, a mutual exclusion
semaphore cannot be released by a process other than the one that last requested it.
54 ARTIC960 Programmer’s Reference

RequestSem—Request a Semaphore
RequestSem—Request a Semaphore

This service waits for a semaphore.

Functional Prototype

RIC_ULONG RequestSem (RIC_SEMHANDLE SemHandle,
 RIC_TIMEOUT Timeout,
 RIC_ULONG Reserved);

Parameters

SemHandle Input. Handle of semaphore to decrement.

Timeout Input. Optional timeout for waiting for a semaphore.

–1 Wait indefinitely
0 Return immediately if the semaphores are unavailable.
Any other value from 1 to 65535

Wait time in milliseconds. The granularity of the timer is five
milliseconds. The timeout value is rounded up to the next multiple of
five, if it is not already a multiple of five.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_OWNER_CLOSED_SEM
RC_INVALID_HANDLE RC_SEM_ALREADY_OWNED
RC_TIMEOUT RC_INVALID_CALL
RC_INVALID_RESERVED_PARM RC_INVALID_TIMEOUT
RC_NEW_SEM_COUNT

Remarks

If the semaphore count is positive, control returns immediately to the caller and the count
is decremented. If the count is zero, the calling process is made to wait. Only processes
that have created or opened the semaphore can wait for the semaphore.

Processes are made to wait in a first-in, first-out (FIFO) order, rather than by priority.

If a mutual exclusion semaphore is owned by a process that is stopped, all waiting
processes are awakened with an RC_OWNER_CLOSED_SEM, indicating the owner was
stopped. The error is returned because the code and data protected by the mutual exclusion
semaphore may have been left in an indeterminable state. If the semaphore’s count is
modified using SetSemCount, any process waiting for the semaphore is awakened with
RC_NEW_SEM_COUNT.

Processes cannot wait for implicit semaphores with this service. Instead, processes should
use the services related to the semaphore, such as GetQueue or ReceiveMbx. In addition,
implicit semaphores can be part of an event wait.
Chapter 3: Base Kernel Services 55

QuerySemCount—Get a Semaphore Count
QuerySemCount—Get a Semaphore Count

This service returns the count of a semaphore.

Functional Prototype

RIC_ULONG QuerySemCount (RIC_SEMHANDLE SemHandle,
 RIC_ULONG *SemCount,
 RIC_ULONG Reserved);

Parameters

SemHandle Input. Handle of semaphore.

SemCount Output. Count of semaphore.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_INVALID_MEM_ACCESS
RC_INVALID_HANDLE

Remarks

If the count is zero, the semaphore is not available. Other processes may be waiting for the
semaphore. A positive count indicates the number of times that processes can request the
semaphore before they are blocked.

This is the only semaphore service that can be used on implicit semaphores.
56 ARTIC960 Programmer’s Reference

SetSemCount—Set a Semaphore Count
SetSemCount—Set a Semaphore Count

This service sets the count of a semaphore.

Functional Prototype

RIC_ULONG SetSemCount (RIC_SEMHANDLE SemHandle,
 RIC_ULONG SemCount,
 RIC_ULONG Reserved);

Parameters

SemHandle Input. Semaphore handle.

SemCount Input. New count of semaphore. Values less than zero are not permitted. In
addition, mutual exclusion semaphores cannot be assigned a count greater
than 1.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_INVALID_SEM_COUNT
RC_INVALID_HANDLE RC_PROCESSES_WAITING_ON_SEM
RC_INVALID_RESERVED_PARM RC_NEW_SEM_COUNT

Remarks

This service should be used immediately after the semaphore is created to configure the
semaphore to the desired type. If any processes are waiting for the semaphore when the
count is set, they are released and returned with RC_NEW_SEM_COUNT. This includes
processes waiting for events that include the semaphore.
Chapter 3: Base Kernel Services 57

CreateEvent—Create an Event Word
CreateEvent—Create an Event Word

This service creates an event word based on a semaphore list and mask.

Functional Prototype

RIC_ULONG CreateEvent (char *EvnName,
 RIC_SEMHANDLE *SemHandles,
 RIC_ULONG SemCount,
 RIC_EVNHANDLE *EvnHandle,
 RIC_ULONG Reserved);

Parameters

EvnName Input. A name to assign to the event word so that other processes can get
access to it.

SemHandles Input. Pointer to an array of up to 32 semaphore handles to associate with the
event word. These semaphore handles can be implicit or explicit.

SemCount Input. Number of semaphores in semaphore handle array (no more than 32
semaphores).

EvnHandle Output. Event handle to be used with other event services when referring to
this event.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_NO_MORE_EVNS
RC_NO_MORE_RES RC_INVALID_HANDLE
RC_INVALID_RESERVED_PARM RC_INVALID_MEM_ACCESS
RC_INVALID_NAME RC_INVALID_CALL
RC_DUP_RES_NAME RC_INVALID_COUNT
RC_DUP_RES_HANDLES

Remarks

The semaphore handle list can be any combination of explicit (returned by CreateSem or
OpenSem) or implicit (returned by other services, such as queues and mailboxes)
semaphores. A process, therefore, can wait for synchronization with other processes as
well as resources at the same time. Explicit semaphores are decremented before control
returns to the process. Implicit semaphores are decremented when the process calls the
appropriate resource services, such as removing a queue element or mailbox message.
58 ARTIC960 Programmer’s Reference

OpenEvent—Open Access to an Event Word
OpenEvent—Open Access to an Event Word

This service provides access to a previously created event word.

Functional Prototype

RIC_ULONG OpenEvent (char *EvnName,
 RIC_EVNHANDLE *EvnHandle,
 RIC_ULONG Reserved);

Parameters

EvnName Input. Event name to be accessed.

EvnHandle Output. Event handle to be used with other event services when referring to
this event.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_INVALID_NAME
RC_NAME_NOT_FOUND RC_INVALID_HANDLE
RC_NO_MORE_RES RC_INVALID_MEM_ACCESS
RC_INVALID_RESERVED_PARM RC_INVALID_CALL

Remarks

The calling process must have already opened the semaphores that make up the event.
Chapter 3: Base Kernel Services 59

CloseEvent—Release Access to an Event Word
CloseEvent—Release Access to an Event Word

This service releases access to an event word and deletes the event, if no other processes
have access.

Functional Prototype

RIC_ULONG CloseEvent (RIC_EVNHANDLE EvnHandle,
 RIC_ULONG Reserved);

Parameters

EvnHandle Input. Event handle returned by CreateEvent service.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_HANDLE
RC_INVALID_RESERVED_PARM
RC_INVALID_CALL

Remarks

If a process closes an event that is shared with other processes, this service removes access
rights for the caller only. Only when the last process closes the event does the event cease
to exist.
60 ARTIC960 Programmer’s Reference

WaitEvent—Wait on an Event
WaitEvent—Wait on an Event

This service waits for the requesting process until the event occurs.

Functional Prototype

RIC_ULONG WaitEvent (RIC_EVNHANDLE EvnHandle,
 RIC_ULONG Mask,
 RIC_ULONG OptionWord,
 RIC_TIMEOUT Timeout,
 RIC_ULONG *Status,
 RIC_ULONG Reserved);

Parameters

EvnHandle Input. Event handle returned by CreateEvent and OpenEvent services.

Mask Input. Mask telling which semaphores to include in the event wait. If bit n is
set in the mask, the nth semaphore in the semaphore handle array passed to
CreateEvent is included in the event wait.

OptionWord Input.

EVENT_WAIT_ALL
Indicates that the process is awakened only when all the semaphores are
available.

EVENT_WAIT_ANY
Indicates that the process is awakened when the first semaphore
becomes available.

Timeout Input. Optional timeout value for waits for events.

–1 Wait indefinitely
0 Return immediately if the semaphores are unavailable.
Any other value from 1 to 65535

Wait time in milliseconds. The granularity of the timer is five
milliseconds. The timeout value is rounded up to the next multiple of
five, if it is not already a multiple of five.

Status Output. Bit field that returns which semaphores (that were part of the event
wait) were positive/available.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_INVALID_MEM_ACCESS
RC_INVALID_HANDLE RC_INVALID_CALL
RC_INVALID_RESERVED_PARM RC_INVALID_OPTION
RC_TIMEOUT RC_INVALID_TIMEOUT
RC_NEW_SEM_COUNT RC_OWNER_CLOSED_SEM
RC_INVALID_EVN_MASK
Chapter 3: Base Kernel Services 61

WaitEvent—Wait on an Event
Remarks

If the OptionWord parameter is set to EVENT_WAIT_ALL, the service tests each semaphore
count for a positive value. If all are positive, the parameter decrements the explicit
semaphores that are positive and control returns to the caller. If all the semaphores do not
have a positive value, the requester is waited. When one or more semaphores in the list
become available, all other semaphores are tested to determine if they are positive values.
Any explicit semaphores that are positive are decremented and control returns to the caller.
The performance of this option can be optimized by specifying the semaphore handles
least likely to be available first in the list of semaphore handles supplied on the
CreateEvent service.

If the OptionWord parameter is set to EVENT_WAIT_ANY, the service tests to see if any one
of the semaphores is positive. If one is positive, the service decrements the explicit
semaphores that are positive and returns to the caller. If no semaphores are positive, the
caller is waited. When one or more semaphores in the list become available, the service
decrements the explicit semaphores that are positive and control returns to the caller.

If the timeout value is exceeded, the process is awakened, regardless of the state of the
event.

If a semaphore included in a wait event gets a new semaphore count, any processes
waiting for events that include that semaphore are awakened with the error code
RC_NEW_SEM_COUNT.

If a process closes a mutex semaphore while owning it, the WaitEvent is canceled with the
error code RC_OWNER_CLOSED_SEM.
62 ARTIC960 Programmer’s Reference

Memory Management Services
Memory Management Services
The following are the memory management services.

Refer to the ARTIC960 Programmer’s Guide for additional information.

Service Name Page

CreateMem 64

OpenMem 67

CloseMem 68

ResizeMem 69

SetMemProt 70

SetProcMemProt 71

QueryMemProt 72

QueryProcMemProt 73

QueryFreeMem 74

InitSuballoc 75

GetSuballoc 77

FreeSuballoc 78

GetSuballocSize 79

MallocMem 80

FreeMem 81

CollectMem 82
Chapter 3: Base Kernel Services 63

CreateMem—Allocate Memory
CreateMem—Allocate Memory

This service allocates memory from the free storage pool to a requesting process.

Functional Prototype

RIC_ULONG CreateMem (char *MemName,
 RIC_ULONG Size,
 RIC_ULONG Alignment,
 RIC_ULONG Access,
 RIC_ULONG MemType,
 void **Baseptr,
 RIC_ULONG Reserved);

Parameters

MemName Input. An optional storage area name to assign to the memory block so that
other processes can get access to the same block by name. This name also can
be NULL. Memory cannot be shared when MemName is NULL. The
kernel’s subsystems allocate all resources, with the first four characters as
“RIC_” for the resource name. User memory names should not start with this
prefix.

Size Input. Size of allocated block in bytes. If the size is 0, RC_INVALID_SIZE is
returned.

Alignment Input. Boundary alignment for the start of the allocated block. Alignment
values are the log of the boundary number. For example, a 4 KB boundary
translates to an Alignment value of log (4096) = 12. Alignment values less
than 4 KB are rounded up to 4 KB.

Access Input. Bit field specifying the access rights to the memory block. See
Remarks on page 65 for more information.

MemType Input. Flag indicating the type of memory to be allocated: MEM_TYPE_INSTR
or MEM_TYPE_PACKET. By hardware design, the processor is more efficient
using instruction memory. Packet memory is more efficient for access from
the daughter card or system bus. On adapters that have only packet memory,
packet memory is allocated even if instruction memory is requested.

MEM_TYPE_PACKET Allocate packet memory. Return with an error if no
packet memory is available.

MEM_TYPE_INSTR Allocate instruction memory. Return with an error if
no instruction memory is available.

Baseptr Output. Pointer to allocated memory block.

Reserved Input. Reserved parameter (must be 0).
64 ARTIC960 Programmer’s Reference

CreateMem—Allocate Memory
Returns

RC_SUCCESS RC_INVALID_MEM_ACCESS
RC_INVALID_RESERVED_PARM RC_INVALID_CALL
RC_NO_MORE_RES RC_INVALID_SIZE
RC_INVALID_NAME RC_INVALID_OPTION
RC_DUP_RES_NAME RC_INVALID_ALIGNMENT
RC_NO_MORE_MEM

Remarks

This service is intended for large memory allocations, such as buffer pools. For smaller,
more dynamic allocations, see GetSuballoc—Suballocate Memory on page 77. The
minimum amount of memory that can be allocated is one page (4 KB).

The following constants are defined and can be ORed to create the appropriate access
rights for the allocated memory.

MEM_SHARE
Memory can be shared with other processes. The default is memory that
cannot be shared.

MEM_READABLE
Memory can be read by the 80960. The default is memory cannot be read or
written by the 80960.

MEM_WRITABLE
Memory can be written by the 80960. The default is memory cannot be read
or written by the 80960.

MEM_OVERRIDE_MC_ACCESS
The current system bus access to the created memory is overridden. The
default is system bus access is not changed.

MEM_MC_READABLE
Memory can be read from the system bus. In addition, the on-card DMA
channel can read the memory. The default is memory cannot be read or
written from either.

MEM_MC_WRITABLE
Memory can be written from the system bus. In addition, the on-card DMA
channel can write to memory. The default is memory cannot be read or
written from either.

MEM_OVERRIDE_AIB_ACCESS
The current daughter board access to the created memory is overridden. The
default is daughter board access is not changed.

MEM_AIB_READABLE
The daughter board DMA can read from memory. The default is memory
cannot be read or written by the daughter board DMA.

MEM_AIB_WRITABLE
The daughter board DMA can write to memory. The default is memory
cannot be read or written by the daughter board DMA.
Chapter 3: Base Kernel Services 65

CreateMem—Allocate Memory
MEM_DCACHE
Memory is cachable. The default is that memory is not cachable. This option
should not be used for memory that is accessed by other masters. This option
is ignored if data cache hardware is not present on the adapter or if data cache
has not been enabled through the kernel configuration DATA_CACHE
parameter.

MEM_BIG_ENDIAN
The big-endian address of the allocated memory is returned. The byte order
of the allocated memory is big endian. By default, all memory is treated as
little endian.

If the kernel does not support big-endian memory regions,
RC_INVALID_OPTION is returned. The kernel supports only big-endian
memory regions on the ARTIC960Hx adapter.
66 ARTIC960 Programmer’s Reference

OpenMem—Get Addressability to Allocated Memory
OpenMem—Get Addressability to Allocated Memory

This service gets addressability to memory allocated by another process.

Functional Prototype

RIC_ULONG OpenMem (char *MemName,
 RIC_ULONG Access,
 void **Baseptr,
 RIC_ULONG Reserved);

Parameters

MemName Input. Name of allocated memory. This should be the same as the name used
to allocate the memory block.

Access Input. Bit field specifying the access rights to the memory block. These flags
are sharable, read/write, and read only. The MEM_DCACHE and
MEM_BIG_ENDIAN flags are ignored by this service. The access rights do not
have to be the same as the process that created the memory. The memory
must be sharable to be able to open it. See the Remarks section under
CreateMem—Allocate Memory on page 64 for more information.

Baseptr Output. Pointer to memory block.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_NAME_NOT_FOUND
RC_INVALID_RESERVED_PARM RC_MEM_SHARING_ERROR
RC_NO_MORE_RES RC_INVALID_MEM_ACCESS
RC_INVALID_NAME RC_INVALID_CALL
RC_INVALID_OPTION

Remarks

This service gets access to a memory block allocated with the CreateMem service,
provided that the memory was allocated as shareable.
Chapter 3: Base Kernel Services 67

CloseMem—Remove Addressability to Memory
CloseMem—Remove Addressability to Memory

This service releases access to previously allocated memory.

Functional Prototype

RIC_ULONG CloseMem (void *Baseptr,
 RIC_ULONG Reserved);

Parameters

Baseptr Input. Pointer to allocated memory block.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
C_INVALID_RESERVED_PARM
RC_INVALID_BASEPTR
RC_NO_RES_ACCESS
RC_INVALID_CALL

Remarks

This service complements the function of CreateMem and OpenMem. When the last
process releases access to a block of memory, the memory is returned to the free storage
pool and all access rights are revoked.
68 ARTIC960 Programmer’s Reference

ResizeMem—Reallocate Memory
ResizeMem—Reallocate Memory

This service resizes allocated memory.

Functional Prototype

RIC_ULONG ResizeMem (void *Baseptr,
 RIC_ULONG NewSize,
 RIC_ULONG Reserved);

Parameters

Baseptr Input. Pointer to allocated memory block.

NewSize Input. New size of the memory block in bytes. If the size is 0,
RC_INVALID_SIZE is returned.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_INVALID_BASEPTR
RC_INVALID_SIZE
RC_INVALID_CALL

Remarks

The size of the block can be increased only if it does not increase the number of memory
pages. The block can always be reduced in size.
Chapter 3: Base Kernel Services 69

SetMemProt—Change Memory Protection
SetMemProt—Change Memory Protection

This service changes the access of a process to a block of memory.

Functional Prototype

RIC_ULONG SetMemProt (void *BlockPtr,
 RIC_ULONG Size,
 RIC_ULONG Access,
 RIC_ULONG Reserved);

Parameters

BlockPtr Input. Pointer to block of memory. The calling process must have created or
opened the memory that contains this block.

Size Input. Size of block of memory in bytes.

Access Input. New access rights to memory. The MEM_DCACHE and
MEM_BIG_ENDIAN options are ignored by this service. See the Remarks
section under CreateMem—Allocate Memory on page 64 for more
information.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_INVALID_SIZE
RC_INVALID_RESERVED_PARM RC_CANT_STOP_SHARING
RC_INVALID_BASEPTR RC_INVALID_CALL

Remarks

If the kernel has been loaded with memory protection enabled, the access rights to the
referenced memory block change for the calling process. Only a single set of daughter
card and system bus access flags are kept. They are not stored on a per process basis.
Therefore, setting these two sets of access flags affects all processes.

To use this service, the process had to have created or opened the memory. This service
differs from SetProcMemProt, which does not verify that the caller created or opened the
memory. However, SetProcMemProt is available only to device drivers and subsystems.
70 ARTIC960 Programmer’s Reference

SetProcMemProt—Change a Process’ Memory Protection
SetProcMemProt—Change a Process’ Memory Protection

This service changes the access of a given process to a block of memory. It is available
only to device drivers and subsystems.

Functional Prototype

RIC_ULONG SetProcMemProt (RIC_PROCESSID ProcessID,
 void *BlockPtr,
 RIC_ULONG Size,
 RIC_ULONG Access,
 RIC_ULONG Reserved);

Parameters

ProcessID Input. Process ID of process whose access is to be set.

BlockPtr Input. Pointer to a block of memory.

Size Input. Size of block of memory in bytes.

Access Input. New access rights to memory. The MEM_DCACHE and
MEM_BIG_ENDIAN options are ignored by this service. See the Remarks
section of CreateMem—Allocate Memory on page 64 for more information.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_INVALID_ADDRESS
RC_INVALID_RESERVED_PARM RC_NOT_DD_OR_SS
RC_INVALID_PROCESSID RC_INVALID_OPTION

Remarks

If the kernel has been loaded with memory protection enabled, the access rights to the
referenced memory block change for the given process. Only a single set of daughter card
and system bus access flags are kept. They are not stored on a per process basis. Therefore,
setting these two sets of access flags affect all processes.

This service is available only to device drivers and subsystems so they can gain access to
client memory areas.
Chapter 3: Base Kernel Services 71

QueryMemProt—Query Memory Protection
QueryMemProt—Query Memory Protection

This service queries the memory protection of a block of memory.

Functional Prototype

RIC_ULONG QueryMemProt (void *BlockPtr,
 RIC_ULONG Size,
 RIC_ULONG *Access,
 RIC_ULONG Reserved);

Parameters

BlockPtr Input. Pointer to block of memory. The caller must have created or opened
the memory that contains this block.

Size Input. Size of block to query.

Access Output. Access rights to memory. This can include the MEM_DCACHE and
MEM_BIG_ENDIAN options. See the Remarks section under CreateMem—
Allocate Memory on page 64 for more information.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_BASEPTR
RC_INVALID_RESERVED_PARM
RC_INVALID_CALL
RC_INVALID_MEM_ACCESS
RC_INVALID_SIZE

Remarks

This service returns the access rights to the memory block for the calling process. Only a
single set of daughter card and system bus access flags are saved by the memory
protection services. Therefore, this service returns the same value for these two sets of
flags, regardless of the caller’s process ID.
72 ARTIC960 Programmer’s Reference

QueryProcMemProt—Query a Process’ Memory Protection
QueryProcMemProt—Query a Process’ Memory Protection

This service queries the memory protection of a block of memory for a given process. It is
available only to device drivers and subsystems.

Functional Prototype

RIC_ULONG QueryProcMemProt (RIC_PROCESSID ProcessID,
 void *BlockPtr,
 RIC_ULONG Size,
 RIC_ULONG *Access,
 RIC_ULONG Reserved);

Parameters

ProcessID Input. Process ID of process whose memory protection is to be queried.

BlockPtr Input. Pointer to a block of memory.

Size Input. Size of block to query.

Access Output. Access rights to memory. This can include the MEM_DCACHE and
MEM_BIG_ENDIAN options. See the Remarks section under CreateMem—
Allocate Memory on page 64 for more information.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_PROCESSID
RC_INVALID_ADDRESS
RC_INVALID_MEM_ACCESS
RC_NOT_DD_OR_SS

Remarks

This service returns the access rights to the memory block for the given process. This
service is made available for device drivers and subsystems so that they can check memory
access for their clients.
Chapter 3: Base Kernel Services 73

QueryFreeMem—Query Free Memory
QueryFreeMem—Query Free Memory

This service returns the total amount of free memory and the size of the largest unallocated
block of memory.

Functional Prototype

RIC_ULONG QueryFreeMem (RIC_ULONG OptionWord,
 RIC_ULONG *Largest,
 RIC_ULONG *Total,
 RIC_ULONG Reserved);

Parameters

OptionWord
Input.

MEM_TYPE_PACKET Free packet memory
MEM_TYPE_INSTR Free instruction memory

Largest Output. Size of largest block of free memory in bytes.

Total Output. Total amount of free memory in bytes.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_INVALID_MEM_ACCESS
RC_INVALID_OPTION

Remarks

None
74 ARTIC960 Programmer’s Reference

InitSuballoc—Prepare a Block of Memory for Suballocation
InitSuballoc—Prepare a Block of Memory for Suballocation

This service prepares a block of allocated memory area for suballocation.

Functional Prototype

RIC_ULONG InitSuballoc (void *BlockPtr,
 RIC_ULONG Size,
 RIC_ULONG Alignment,
 RIC_ULONG SuballocUnit,
 RIC_ULONG Reserved);

Parameters

BlockPtr Input. Pointer to block of memory. On cards that support big-endian memory
regions, the memory must have been created as little endian. If a big-endian
pointer is given, RC_INVALID_BASEPTR is returned.

Size Input. Size of block in bytes.

Alignment Input. Boundary alignment of suballocated memory. Alignment values are
the log of the boundary number. For example:

• An 8-byte boundary would translate to an Alignment value of log2(8)=3.

• A 4 KB boundary would translate to an Alignment value of
log2(4096)=12.

Alignment defaults to 1 byte if a value of 0 is passed.

SuballocUnit
Input. Size of smallest block of memory that can be suballocated. Larger
suballocated memory blocks are suballocated as multiples of this unit. The
unit size is rounded up to the next power of 2.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_SUBALLOCATED_MEM
RC_INVALID_RESERVED_PARM RC_INVALID_CALL
RC_INVALID_BASEPTR RC_INVALID_ALIGNMENT
RC_INVALID_SIZE

Remarks

The block must be contained within memory that is accessible to the calling process. The
suballocation unit size helps tune the suballocation services for higher-performance and
lower-memory utilization. The suballocation unit size should be as large as possible, while
still mapping well to the size of the expected suballocations. Bit map allocation is used to
implement suballocation—the larger the unit size, the fewer the bits required to represent
the pool. This results in smaller bit map size and quicker searches of the bit map.
Chapter 3: Base Kernel Services 75

InitSuballoc—Prepare a Block of Memory for Suballocation
When calculating the alignment of suballocation chunks, this service rounds the unit size
up to the next power of two. The actual alignment is the larger of this rounded value and
the alignment represented by the Alignment parameter. For example:

• A unit size of 4 bytes and Alignment value of 0 (1-byte boundary) result in
suballocation on 4-byte boundaries.

• A unit size of 4 bytes and an Alignment value of 4 (16-byte boundary) result in
suballocation on 16-byte boundaries.

• A unit size of 3 and an Alignment value of 1 (2-byte boundaries) result in
suballocation on 4-byte boundaries.

Use GetSuballocSize to determine the proper size of the block to accommodate the
requested number of suballocation units and the bit map.
76 ARTIC960 Programmer’s Reference

GetSuballoc—Suballocate Memory
GetSuballoc—Suballocate Memory

This service suballocates memory from previously allocated memory.

Functional Prototype

RIC_ULONG GetSuballoc (void *Blockptr,
 RIC_ULONG Size,
 void **Suballocptr,
 RIC_ULONG Reserved);

Parameters

Blockptr Input. Pointer to beginning of suballocation pool. On cards that support
big-endian memory regions, the memory must have been created as little
endian. If a big-endian pointer is given, RC_INVALID_BASEPTR is returned.

Size Input. Amount of memory in bytes to suballocate. The size is rounded up to
a multiple of the suballocation unit size set with InitSuballoc. If the size is 0,
RC_INVALID_SIZE is returned.

Suballocptr Output. Pointer to suballocated memory.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_NO_MORE_MEM
RC_INVALID_RESERVED_PARM RC_INVALID_MEM_ACCESS
RC_INVALID_BASEPTR RC_INVALID_SIZE

Remarks

No more than 65535 (64K–1) times the suballocation unit size in bytes can be
suballocated with a single call to GetSuballoc. This restriction lowers the memory
overhead of the suballocation services.

Application writers should be aware that the kernel’s suballocation control information is
stored in the user’s memory, unlike all the other kernel services whose control information
is in protected memory. This decision was made to improve suballocation performance,
but it potentially allows corruption of kernel suballocation data structures.
Chapter 3: Base Kernel Services 77

FreeSuballoc—Free Suballocated Memory
FreeSuballoc—Free Suballocated Memory

This service frees suballocated memory.

Functional Prototype

RIC_ULONG FreeSuballoc (void *Blockptr,
 void *Suballocptr,
 RIC_ULONG Reserved);

Parameters

Blockptr Input. Pointer to beginning of suballocation pool.

Suballocptr Input. Pointer to suballocated memory.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_INVALID_BASEPTR
RC_INVALID_SUBALLOC_ADDR

Remarks

None
78 ARTIC960 Programmer’s Reference

GetSuballocSize—Return Size of Suballocation Pool
GetSuballocSize—Return Size of Suballocation Pool

This service returns the amount of memory required for a suballocation pool.

Functional Prototype

RIC_ULONG GetSuballocSize (RIC_ULONG UnitCount,
 RIC_ULONG UnitSize,
 RIC_ULONG Alignment,
 RIC_ULONG *SuballocSize,
 RIC_ULONG Reserved);

Parameters

UnitCount Input. Number of suballocation blocks in the pool.

UnitSize Input. Size of the smallest block of memory that can be suballocated. Larger
suballocated memory blocks are suballocated as multiples of this unit. The
unit size is rounded up to the next power of 2. If the size is 0,
RC_INVALID_SIZE is returned.

Alignment Input. Boundary alignment of suballocated memory. Alignment values are
the log of the boundary number. For example, a 16-byte boundary would
translate to an Alignment value of log2(16)=4.

SuballocSize
Output. Number of bytes of memory required to make a suballocation pool
with the given suballocation unit size and number of units. This size can then
be used to calculate the amount of memory to allocate with CreateMem.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_INVALID_COUNT
RC_INVALID_RESERVED_PARM RC_INVALID_SIZE
RC_INVALID_MEM_ACCESS RC_INVALID_ALIGNMENT

Remarks

This service should be used by applications using the suballocation services so that they
know how much memory to allocate for a suballocation pool. This service returns only a
byte count. It does not actually allocate or initialize any memory.

When calculating the alignment of suballocation chunks, this service rounds the unit size
up to the next power of two. The actual alignment is the larger of this rounded value and
the alignment represented by the Alignment parameter. For example:

• A unit size of 4 bytes and Alignment value of 0 (1-byte boundary) results in
suballocation on 4-byte boundaries.

• A unit size of 4 bytes and an Alignment value of 4 (16-byte boundary) results in
suballocation on 16-byte boundaries.

• A unit size of 3 and an Alignment value of 1 (2-byte boundaries) results in
suballocation on 4-byte boundaries.
Chapter 3: Base Kernel Services 79

MallocMem—Allocate Memory
MallocMem—Allocate Memory

This service allocates a block of memory from the dynamic memory pool.

Functional Prototype

void * MallocMem (RIC_ULONG Size,
 RIC_ULONG OptionWord);

Parameters

Size Input. Size in bytes of memory block to be allocated.

OptionWord
Input. Bit field to describe the options to be used to allocate the memory. The
following constants should be ORed together to build the appropriate set of
options.

• Type of memory to create

By default, memory is allocated without regard to memory type. If the
option word is set to OPTION_PACKET_MEMORY, memory is allocated
from packet memory. If memory protection is active, the packet memory
is given system bus read/write access. The default option is
OPTION_ANY_MEMORY.

• Data cache option for created memory

By default, memory is not created as cachable. To create cachable
memory, MEM_DCACHE can be ORed into the option word. This option
should not be used for memory that is accessed by other masters. This
option is ignored if data cache hardware is not present on the adapter or if
data cache has not been enabled through the kernel configuration
DATA_CACHE parameter.

• Big-endian option for created memory

By default, memory is created little endian. To create memory for
big-endian access, MEM_BIG_ENDIAN can be ORed into the option word.
This option is valid only on the ARTIC960Hx PCI adapter. An invalid
option causes a value of NULL to be returned.

Returns

Pointer to the allocated memory. A NULL pointer means that no memory is available or
that an invalid size or option was specified.

Remarks

This service can be called from an interrupt handler.

The C library malloc function is mapped into this service using the default option.
80 ARTIC960 Programmer’s Reference

FreeMem—Free Memory
FreeMem—Free Memory

This service returns a block of memory that was allocated using the service MallocMem to
the dynamic memory pool.

Functional Prototype

RIC_ULONG FreeMem (void *Blockptr);

Parameters

Blockptr Input. Pointer to the memory block to be freed.

Returns

RC_SUCCESS
RC_INVALID_BASEPTR

Remarks

This service can be called from an interrupt handler.

The C library free function is mapped into this service.
Chapter 3: Base Kernel Services 81

CollectMem—Collect Memory
CollectMem—Collect Memory

This service returns pages of memory that are in dynamic memory pools and are not being
used. The pages are returned to the memory page pool. It also provides information about
the amount of memory available in dynamic memory pools after collection is done.

Functional Prototype

RIC_ULONG CollectMem (RIC_ULONG OptionWord,
 RIC_ULONG *FreeUnits,
 RIC_ULONG *FreedPages);

Parameters

OptionWord
Input. A bit field specifying options for the CollectMem service.

OPTION_COLLECT_PROCESS
Unused pages belonging to the dynamic memory pool of the process in
execution are returned. OPTION_COLLECT_PROCESS is meaningful
only if memory protection is active.

OPTION_COLLECT_ALL
All unused pages in both the general and the process-specific dynamic
memory pools are returned. This is the default.

FreeUnits Output. The number of free units that exist in the dynamic memory pools after
the collection is done. If OPTION_COLLECT_PROCESS was used, it reflects
the number of free units in the dynamic memory pools of the process. A unit
is 32 bytes.

FreedPages
Output. The number of pages in dynamic memory pools that were returned to
the Memory Page Pool after the collection is done.

Returns

RC_SUCCESS
RC_INVALID_OPTION
RC_INVALID_CALL

Remarks

This service cannot be called from an interrupt handler.

If RC_NO_MORE_XXX is returned by a service, CollectMem can be issued to make unused
pages available. Then the service can be retried to determine if enough memory is
available.
82 ARTIC960 Programmer’s Reference

Timer Services
Timer Services
The following are the timer services.

Refer to the ARTIC960 Programmer’s Guide for additional information.

Service Name Page

CreateSwTimer 84

CloseSwTimer 85

StartSwTimer 86

StopSwTimer 88

SetSystemTime 89

QuerySystemTime 90

StartPerfTimer 91

StopPerfTimer 92

ReadPerfTimer 93
Chapter 3: Base Kernel Services 83

CreateSwTimer—Allocate a Software Timer
CreateSwTimer—Allocate a Software Timer

This service creates a software timer and gives access to the requesting process.

Functional Prototype

RIC_ULONG CreateSwTimer (char *TimerName,
 RIC_TMRHANDLE *TimerHandle,
 RIC_ULONG Reserved);

Parameters

TimerName Input. A name to assign to the timer. This parameter also can be NULL. The
kernel subsystems allocate all resources, with the first four characters as
“RIC_” for the resource name. User timer names should not start with this
prefix.

TimerHandle
Input. Timer handle returned to requesting process. This handle is passed to
all other timer services when this timer is referenced.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_DUP_RES_NAME
RC_NO_MORE_RES
RC_INVALID_NAME
RC_INVALID_MEM_ACCESS
RC_INVALID_CALL

Remarks

This service creates a new software timer and assigns it the specified name. Because
software timers cannot be shared, there is not an equivalent open service.

The granularity of the software timer is five milliseconds. The TimeCount value is
rounded up to the next multiple of five, if it is not already a multiple of five.
84 ARTIC960 Programmer’s Reference

CloseSwTimer—Return a Software Timer
CloseSwTimer—Return a Software Timer

This service returns a previously created software timer.

Functional Prototype

RIC_ULONG CloseSwTimer (RIC_TMRHANDLE TimerHandle,
 RIC_ULONG Reserved);

Parameters

TimerHandle
Input. Timer handle of the timer to be returned. This handle is passed to the
process by the service CreateSwTimer.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_INVALID_HANDLE
RC_INVALID_CALL

Remarks

This service returns a previously-created software timer. The process cannot access this
software timer any more. This call stops a timer that is started.
Chapter 3: Base Kernel Services 85

StartSwTimer—Start a Software Timer
StartSwTimer—Start a Software Timer

This service starts a software timer.

Functional Prototype

RIC_ULONG StartSwTimer (RIC_TMRHANDLE TimerHandle,
 RIC_ULONG TimeCount,
 RIC_TMRHANDLER TimerHandler,
 RIC_ULONG OptionWord,
 RIC_ULONG TimerMemo,
 RIC_ULONG Reserved);

Parameters

TimerHandle
Input. Timer handle of the timer to be started. This handle is passed to the
process by the service CreateSwTimer.

TimeCount Input. Timeout count. This parameter is specified in terms of milliseconds
and can range from 1 to 65535. The granularity of the timer is five
milliseconds. The timeout value is rounded up to the next multiple of five, if
it is not already a multiple of five. A value of 0 is not valid.

TimerHandler
Input. Address of timer handler.

OptionWord
Input. A set of options for starting the software timer.

TIMER_REPEAT
If the constant is ORed with OptionWord, the timer is restarted after
expiration. This occurs until the user stops the timer using
StopSwTimer, or restarts it with another StartSwTimer.

TIMER_ONE_SHOT
The timer is not restarted.

OPTION_PROT_ON
If the constant is ORed with OptionWord and global protection is on,
memory protection is enabled for the timer handler.

OPTION_PROT_OFF
The timer handler runs without memory protection.

TimerMemo Input. Optional user-defined input.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_INVALID_HANDLE
RC_INVALID_MEM_ACCESS
RC_INVALID_OPTION
RC_INVALID_TIMEOUT
RC_NO_BASE_DEVICE_DRIVER
86 ARTIC960 Programmer’s Reference

StartSwTimer—Start a Software Timer
Remarks

This service starts a software timer for the requested timer interval unconditionally. When
the timer expires, the kernel gives control to the timer handler TimerMemo as the
parameter. The timer handler runs as an extension of the kernel interrupt handler.

Because a timer handler is an interrupt routine, care should be taken not to remain in the
timer handler for very long.

If TIMER_REPEAT is ORed with OptionWord, the timer is restarted when the kernel gets
control back from the timer handler of the process.

The process can stop the timer at any time with the StopSwTimer service.
Chapter 3: Base Kernel Services 87

StopSwTimer—Stop a Software Timer
StopSwTimer—Stop a Software Timer

This service stops a previously started software timer.

Functional Prototype

RIC_ULONG StopSwTimer(RIC_TMRHANDLE TimerHandle,
 RIC_ULONG Reserved);

Parameters

TimerHandle
Input. Handle of the timer to be stopped. This handle is passed to the process
by the service CreateSwTimer.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_INVALID_HANDLE

Remarks

This service stops a previously started software timer. When called from an interrupt
handler, this service can potentially stop a recently expired software timer (that is, the
software timer expired but the timer handler of the process was not called yet).
88 ARTIC960 Programmer’s Reference

SetSystemTime—Set the Time-of-Day Clock
SetSystemTime—Set the Time-of-Day Clock

This service sets the time-of-day clock.

Functional Prototype

RIC_ULONG SetSystemTime (struct TimeInfo *SysTimeInfo,
 RIC_ULONG Reserved);

Parameters

SysTimeInfo
Input. Pointer to a user’s structure that contains time information (see the
Remarks section for this service).

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_NO_BASE_DEVICE_DRIVER

Remarks

The TimeInfo is defined as follows:

struct TimeInfo
{
 RIC_ULONG Time;
 RIC_SLONG TimeZone;
 RIC_LONG DayLight;
 char TimeZoneStr[4];
 char DayLightStr[4];
}

Time Is the time in seconds in GMT since 1970.

TimeZone Is the difference in hours between the local time zone and GMT.

DayLight Is true if daylight savings time is to be applied.

TimeZoneStr
Is a time zone character string, for example, EST and CST.

DayLightStr
Is a daylight savings time zone, for example, EDT and PDT.
Chapter 3: Base Kernel Services 89

QuerySystemTime—Get the Time of Day
QuerySystemTime—Get the Time of Day

This service gets the time of day.

Functional Prototype

RIC_ULONG QuerySystemTime (struct TimeInfo *Time,
 RIC_ULONG Reserved);

Parameters

Time Output. Pointer to a user’s structure that contains time information (see the
Remarks section for this service).

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_MEM_ACCESS
RC_INVALID_RESERVED_PARM
RC_NO_BASE_DEVICE_DRIVER
RC_TOD_NOT_ENABLED

Remarks

Users typically use the standard C calls for getting and setting the time. The underlying
services call this kernel service.
90 ARTIC960 Programmer’s Reference

StartPerfTimer—Start the Performance Timer
StartPerfTimer—Start the Performance Timer

This service starts the performance timer.

Functional Prototype

RIC_ULONG StartPerfTimer (RIC_ULONG Reserved);

Parameters

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_TIMER_IS_ACTIVE
RC_INVALID_RESERVED_PARM
RC_NO_BASE_DEVICE_DRIVER
RC_PERF_TIMER_NOT_ENABLED

Remarks

The range of the performance timer is from 1 microsecond to 6 seconds.

The performance timer cannot be restarted once it is active. To restart the performance
timer, it must first be stopped with StopPerfTimer. As long as users check the return code
from this service, it effectively serializes use of the performance timer.
Chapter 3: Base Kernel Services 91

StopPerfTimer—Stop the Performance Timer
StopPerfTimer—Stop the Performance Timer

This service stops the performance timer and returns the final time.

Functional Prototype

RIC_ULONG StopPerfTimer (RIC_ULONG *TimeCount,
 RIC_ULONG Reserved);

Parameters

TimeCount Output. Final count of performance timer in microseconds.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_MEM_ACCESS
RC_INVALID_RESERVED_PARM
RC_TIMER_OVERFLOWED
RC_PERF_TIMER_NOT_ENABLED

Remarks

None
92 ARTIC960 Programmer’s Reference

ReadPerfTimer—Read Current Time of the Performance Timer
ReadPerfTimer—Read Current Time of the Performance Timer

This service reads the performance timer count without stopping it.

Functional Prototype

RIC_ULONG ReadPerfTimer (RIC_ULONG *TimeCount,
 RIC_ULONG Reserved);

Parameters

TimeCount Output. Current count of performance timer in microseconds.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_TIMER_IS_INACTIVE
RC_INVALID_MEM_ACCESS
RC_INVALID_RESERVED_PARM
RC_TIMER_OVERFLOWED
RC_PERF_TIMER_NOT_ENABLED

Remarks

None
Chapter 3: Base Kernel Services 93

Process Communication Services
Process Communication Services
Using the following services, process communication can be accomplished through
queues, mailboxes, and signals.

Refer to the ARTIC960 Programmer’s Guide for additional information.

Service Page

CreateQueue 95

OpenQueue 96

CloseQueue 97

PutQueue 98

GetQueue 100

SearchQueue 102

CreateMbx 104

OpenMbx 106

GetMbxBuffer 108

FreeMbxBuffer 109

SendMbx 110

ReceiveMbx 112

CloseMbx 114

CreateSig 115

OpenSig 117

CloseSig 119

InvokeSig 120
94 ARTIC960 Programmer’s Reference

CreateQueue—Create a Queue
CreateQueue—Create a Queue

This service creates a queue and gives access to the requesting process.

Functional Prototype

RIC_ULONG CreateQueue (char *QueueName,
 RIC_QUEHANDLE *QueueHandle,
 RIC_SEMHANDLE *SemHandle,
 RIC_ULONG Reserved);

Parameters

QueueName
Input. A queue name to assign to the queue so that other processes can access
the same queue by name. This name also can be NULL. The queue cannot be
shared when QueueName is NULL. The kernel’s subsystems allocate all
resources with the first four characters being “RIC_” for the resource name.
User queue names should not start with this prefix.

QueueHandle
Output. Queue handle returned to requesting process. This handle is passed
to all other queue services when this queue is referenced.

SemHandle Output. Handle of the semaphore used to wait on queue elements. The handle
is returned so that it can be part of a multiple event wait.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_NO_MORE_RES
RC_INVALID_RESERVED_PARM
RC_INVALID_NAME
RC_DUP_RES_NAME
RC_INVALID_MEM_ACCESS
RC_INVALID_CALL

Remarks

This service creates a new queue and assigns it the specified name. Other processes can
access the same queue with the OpenQueue service. The initial semaphore count is set
to 0. It is up to the process to ensure that it has read/write memory access to all queue
elements.

Multiple processes can read and receive from a single queue.
Chapter 3: Base Kernel Services 95

OpenQueue—Open a Queue
OpenQueue—Open a Queue

This service opens a queue previously created by another process.

Functional Prototype

RIC_ULONG OpenQueue (char *QueueName,
 RIC_QUEHANDLE *QueueHandle,
 RIC_SEMHANDLE *SemHandle,
 RIC_ULONG Reserved);

Parameters

QueueName
Input. The queue name used to create the queue.

QueueHandle
Output. Queue handle returned to the requesting process. This handle is
passed to all other queue services when this queue is referenced.

SemHandle Output. Handle of the semaphore used to wait on queue elements. This is
returned so it can be part of a multiple event wait.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_INVALID_NAME
RC_NAME_NOT_FOUND RC_NO_MORE_TIMERS
RC_NO_MORE_RES RC_INVALID_CALL
RC_INVALID_RESERVED_PARM RC_INVALID_MEM_ACCESS

Remarks

This service gets access to a queue already created by another process with the
CreateQueue service. It is up to the process to ensure that it has read/write memory access
to the queue elements.

Multiple processes can read and receive from a single queue.
96 ARTIC960 Programmer’s Reference

CloseQueue—Close a Queue
CloseQueue—Close a Queue

This service releases access to a queue and deletes the queue if no other processes have
access to it.

Functional Prototype

RIC_ULONG CloseQueue (RIC_QUEHANDLE QueueHandle,
 RIC_ULONG Reserved);

Parameters

QueueHandle
Input. Queue handle of queue to release.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_HANDLE
RC_INVALID_RESERVED_PARM
RC_DEPENDENT_EVENTS
RC_INVALID_CALL

Remarks

If the close is issued by a process while other processes still have access to the queue, the
service removes access rights for the issuing process. When the last process with access
rights calls this service, the queue ceases to exist. See the services CreateQueue—Create a
Queue on page 95 and OpenQueue—Open a Queue on page 96 for more information.

If the close is issued by the kernel on behalf of the process, such as when the kernel cleans
up resources for a process that is stopped or unloaded, all other processes are notified
through their asynchronous handlers that the process has gone away.
Chapter 3: Base Kernel Services 97

PutQueue—Put an Element into a Queue
PutQueue—Put an Element into a Queue

This service puts a queue element on a queue and increments the semaphore associated
with the queue.

Functional Prototype

RIC_ULONG PutQueue (RIC_QUEHANDLE QueueHandle,
 void *Element,
 RIC_ULONG OptionWord,
 RIC_ULONG *QueueStatus,
 RIC_ULONG Reserved);

Parameters

QueueHandle
Input. Handle of queue to add element to.

Element Input. Pointer to element to add to queue.

OptionWord
Input.

QUE_PUT_LIFO The queue element is added to the head of the queue.
QUE_PUT_FIFO A queue element is added to the end of the queue.

QueueStatus
Output. Returns the status of the queue.

QUE_EMPTY The queue went from empty to not-empty.
QUE_NOT_EMPTY The queue already had at least one element on the

queue.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_HANDLE
RC_INVALID_RESERVED_PARM
RC_INVALID_MEM_ACCESS
RC_INVALID_OPTION

Remarks

Eight bytes must be reserved at the top of the queue element for queueing service pointers.

• If all elements are queued with the QUE_PUT_LIFO flag on, the queue becomes a
virtual stack.

• If all elements are queued with the QUE_PUT_LIFO flag off, the queue manages the
elements in FIFO order as expected.
98 ARTIC960 Programmer’s Reference

PutQueue—Put an Element into a Queue
• If the elements are queued alternating between QUE_PUT_LIFO on and off, a
two-priority queue is built.

– Elements added with the QUE_PUT_LIFO flag on have a higher priority because
they are put at the front of the queue.

– Elements added with the QUE_PUT_LIFO flag off have a lower priority because
they are put at the back of the queue.
Chapter 3: Base Kernel Services 99

GetQueue—Get or Peek at an Element on a Queue
GetQueue—Get or Peek at an Element on a Queue

This service gets or peeks at the top element of a queue. If the element is removed from the
queue, the semaphore associated with the queue is decremented.

Functional Prototype

RIC_ULONG GetQueue (RIC_QUEHANDLE QueueHandle,
 void **Element,
 RIC_TIMEOUT Timeout,
 RIC_ULONG OptionWord,
 RIC_ULONG *QueueStatus,
 RIC_ULONG Reserved);

Parameters

QueueHandle
Input. Handle of queue to get element from.

Element Output. Pointer to element removed from the queue.

Timeout Input. Size of time to wait for queue element.

–1 Wait indefinitely
0 Return immediately if there are no queue elements.
Any other value from 1 to 65535

Wait time in milliseconds. The granularity of the timer is five
milliseconds. The timeout value is rounded up to the next multiple of
five, if it is not already a multiple of five.

OptionWord
Input. Bit field that gives receive options.

QUE_READ
This bit should be set if the process wants only to peek at the top element
of the queue without removing it from the queue.

QUE_GET
The queue element is removed from the queue.

QueueStatus
Output. Returns the status of the queue.

QUE_EMPTY
If returned, the queue went from not-empty to empty.

QUE_NOT_EMPTY
If returned, the queue still has at least one element in the queue.

Reserved Input. Reserved parameter (must be 0).
100 ARTIC960 Programmer’s Reference

GetQueue—Get or Peek at an Element on a Queue
Returns

RC_SUCCESS RC_INVALID_MEM_ACCESS
RC_INVALID_HANDLE RC_INVALID_CALL
RC_INVALID_RESERVED_PARM RC_INVALID_OPTION
RC_QUEUE_EMPTY RC_INVALID_TIMEOUT

Remarks

If the QUE_READ bit of OptionWord is set, and if more than one process is reading the
queue, each may get a pointer to the same queue element.
Chapter 3: Base Kernel Services 101

SearchQueue—Search a Queue for an Element
SearchQueue—Search a Queue for an Element

This service searches a queue for a queue element and optionally removes it from
the queue.

Functional Prototype

RIC_ULONG SearchQueue (RIC_QUEHANDLE QueueHandle,
 void **Element,
 RIC_ULONG OptionWord,
 RIC_ULONG KeyValue,
 RIC_ULONG KeyOffset,
 RIC_ULONG KeyMask,
 RIC_ULONG Reserved);

Parameters

QueueHandle
Input. Handle of queue to search for element.

Element Output. Pointer to queue element.

OptionWord
Input. Option word indicating how to do search.

QUE_SEARCH_ADDRS
If ORed with OptionWord, the KeyValue parameter is an element
address to search for.

QUE_SEARCH_KEY
 If ORed with OptionWord, the KeyValue is a key value within the
queue elements to search for.

If the queue element is found:

QUE_GET
 If specified, the element is removed from the queue and the queue’s
semaphore is decremented.

QUE_READ
If specified, the pointer to the element is returned and the queue element
is not removed.

KeyValue Input. Either the address of the element to search for or the value with the
queue element to search for.

KeyOffset Input. If the QUE_SEARCH_KEY is set, this parameter indicates the offset
within the queue element where the key value is found. The key word must
be located on a word (4-byte) boundary.

KeyMask Input. If the QUE_SEARCH_KEY is set, this parameter indicates the mask to be
ANDed with the key word before comparing it with the KeyValue.

Reserved Input. Reserved parameter (must be 0).
102 ARTIC960 Programmer’s Reference

SearchQueue—Search a Queue for an Element
Returns

RC_SUCCESS RC_ELEMENT_NOT_FOUND
RC_INVALID_HANDLE RC_INVALID_MEM_ACCESS
RC_INVALID_RESERVED_PARM RC_INVALID_OPTION

Remarks

If the queue element is not found, control returns to the calling process. This service will
not wait until a queue element arrives that satisfies the search criteria.
Chapter 3: Base Kernel Services 103

CreateMbx—Create a Mailbox
CreateMbx—Create a Mailbox

This service creates a mailbox and gives access to the requesting process.

Functional Prototype

RIC_ULONG CreateMbx (char *MbxName,
 char *MbxRxMemName,
 RIC_ULONG MsgUnitSize,
 RIC_ULONG MsgUnitCount,
 RIC_ULONG OptionWord,
 RIC_MBXHANDLE *MbxHandle,
 RIC_SEMHANDLE *SemHandle,
 RIC_ULONG Reserved);

Parameters

MbxName Input. A mailbox name to assign to the mailbox so other processes can access
the same mailbox by name. This name also can be NULL. The mailbox
cannot be shared when MbxName is NULL.

The kernel’s subsystems allocate all resources, with the first four characters
as “RIC_” for the resource name. User mailbox names should not start with
this prefix.

MbxRxMemName
Input. Optional storage-area name associated with this mailbox for receiving
messages. A value of NULL means there is no name associated with the
memory and memory cannot be shared.

MsgUnitSize
Input. The smallest allocatable message size. All messages are allocated in
units of this size. If the size is 0, RC_INVALID_SIZE is returned.

MsgUnitCounpmt
Input. The maximum number of message units that can be allocated from this
mailbox.

OptionWord
Input. Bit field to describe the options to be used to create the mailbox. The
following constants should be ORed together to build the appropriate set of
options.

• Type of mailbox to create. The caller can create either type.

MBX_CREATE_GLOBAL

Mailbox accepts messages from other peer units

MBX_CREATE_LOCAL

Mailbox does not accept messages from other units
104 ARTIC960 Programmer’s Reference

CreateMbx—Create a Mailbox
• Type of memory access for storage area. The caller can OR the following
constants together to specify both types of access to the memory. The
default is that neither access type is given for a local mailbox and that
system bus access is given for a global mailbox.

MBX_MEM_MC_ACCESS

System-bus access rights to the memory

MBX_MEM_AIB_ACCESS

Daughter card access rights to the memory

MbxHandle
Output. Mailbox handle returned to requesting process. This handle is passed
to all other mailbox services when this mailbox is referred to.

SemHandle Output. Semaphore handle associated with the mailbox. This handle is passed
to event services when this mailbox-associated semaphore is referred to.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_INVALID_MEM_ACCESS
RC_INVALID_RESERVED_PARM RC_INVALID_CALL
RC_INVALID_NAME RC_NO_MORE_SEM
RC_DUP_RES_NAME RC_NO_MORE_TIMERS
RC_INVALID_OPTION RC_INVALID_COUNT
RC_NO_MORE_RES RC_INVALID_SIZE
RC_NO_MORE_MEM

Remarks

This service creates a semaphore associated with this mailbox. The initial semaphore
count is set to 0. Users can wait on this semaphore through WaitEvent to
receive messages.

This service also allocates the memory requested by the user. This memory is used to keep
the messages in the mailbox. Optionally, a name can be assigned to this memory and the
sending process can access this memory by passing the same name to OpenMbx. Sharing
the memory between sending and receiving processes avoids a copy operation by
SendMbx. Refer to the ARTIC960 Programmer’s Guide for more information about
mailbox memory options.

Optionally, mailboxes can accept messages from other peer units. The processes on other
units can access this mailbox using OpenMbx. Only the process that created the mailbox
with the CreateMbx service can receive messages from the mailbox.

If the process is sharing the receive memory of the mailbox with a previously created
mailbox, the MsgUnitSize and MsgUnitCount parameters must be the same value on both
create calls. If the mailbox receives messages from other units, the kernel ensures system
bus access has been enabled for the mailbox’s pool.

Mailbox memory areas are allocated from packet memory. If there is not enough packet
memory to allocate the buffer, the RC_NO_MORE_MEM error is returned.

If a mailbox is not going to be accessed from off-card, it should be created with the
MBX_CREATE_LOCAL option.
Chapter 3: Base Kernel Services 105

OpenMbx—Open a Mailbox
OpenMbx—Open a Mailbox

This service opens a mailbox previously created by another process.

Functional Prototype

RIC_ULONG OpenMbx (char *MbxName,
 char *SendMbxMemName,
 RIC_ULONG MsgUnitSize,
 RIC_ULONG MsgUnitCount,
 RIC_ULONG OptionWord,
 RIC_MBXHANDLE *MbxHandle,
 RIC_ULONG *MbxType,
 RIC_ULONG Reserved);

Parameters

MbxName Input. A mailbox name used to create the mailbox.

SendMbxMemName
Input. For local mailboxes, an optional storage-area name associated with the
mailbox for sending messages by this process. A value of NULL means that
there is no name associated with the memory and the memory cannot be
shared. Refer to the ARTIC960 Programmer’s Guide for more information
about mailbox memory options.

MsgUnitSize
Input. The smallest allocatable message size. All messages are allocated in
units of this size. If the size is 0, RC_INVALID_SIZE is returned.

MsgUnitCount
Input. The maximum number of messages that can be allocated from this
mailbox.

OptionWord
Input. A bit field to describe the options to be used to open the mailbox. The
following constants should be ORed together to build the appropriate set of
options:

• Search options for finding a mailbox

MBX_OPEN_SEARCH_GLOBAL

Other peer units are searched if the mailbox does not exist on this unit.

MBX_OPEN_SEARCH_LOCAL

Search only this unit.
106 ARTIC960 Programmer’s Reference

OpenMbx—Open a Mailbox
• Type of memory access for storage area. The caller can OR the following
constants together to specify both types of access to the memory. The
default is that neither access type is given for a local mailbox and that
system bus access is given for a global mailbox.

MBX_MEM_MC_ACCESS

For system bus access rights to the memory.

MBX_MEM_AIB_ACCESS

For daughter card access rights to the memory.

MbxHandle
Output. Mailbox handle returned to requesting process. This handle is passed
to all other mailbox services when this mailbox is referred to.

MbxType Output. Type of mailbox that was opened. The MbxStatus field can return the
following values:

MBX_TYPE_LOCAL
The mailbox is on this unit and does not accept messages from other
units.

MBX_TYPE_GLOBAL
The mailbox is on this unit and accepts messages from other units.

MBX_TYPE_REMOTE
The mailbox was created on another unit.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_NO_MORE_RES_ON_REMOTE
RC_INVALID_RESERVED_PARM RC_NO_MORE_REM_MBX
RC_INVALID_NAME RC_NO_MORE_QUEUES
RC_NAME_NOT_FOUND RC_REMOTE_CFG_NOT_EST
RC_INVALID_OPTION RC_INVALID_MEM_ACCESS
RC_NO_MORE_RES RC_INVALID_CALL
RC_DUP_RES_NAME RC_INVALID_SIZE
RC_NO_MORE_MEM RC_INVALID_COUNT

Remarks

If the memory name provided by the process is the same as that passed to CreateMbx, the
service does not create a new memory pool; it gives the process access to the memory pool
already created. If the memory name is not the same, this service allocates the memory
requested by the process. This memory is used to send messages by this process and a
copy operation is performed by SendMbx.

If the process is sharing the memory, the MsgUnitSize and MsgUnitCount parameters
must be less than or equal to the values specified when the memory was created.

If messages are being sent to other units, the kernel ensures that system bus access has
been enabled on the mailbox pool.

Mailbox memory areas are allocated from packet memory. If there is not enough packet
memory to allocate the buffer, the service returns a RC_NO_MORE_MEM error.
Chapter 3: Base Kernel Services 107

GetMbxBuffer—Get a Free Mailbox Buffer
GetMbxBuffer—Get a Free Mailbox Buffer

This service allocates a free mailbox buffer to the requesting process.

Functional Prototype

RIC_ULONG GetMbxBuffer (RIC_MBXHANDLE MbxHandle,
 RIC_ULONG Size,
 void **MsgPtr,
 RIC_ULONG Reserved);

Parameters

MbxHandle Input. Handle of mailbox from which the process wants to get a message
buffer.

Size Input. Message size specified in bytes. The size is rounded up to a multiple of
the message unit size set by CreateMbx or OpenMbx. A value of 0 is invalid.

The maximum size allowed with a single call is 65535 times the size of the
message unit.

MsgPtr Output. Pointer to allocated mailbox buffer.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_INVALID_HANDLE
RC_NO_MBX_BUFFER
RC_NO_MBX_RECEIVER
RC_INVALID_SIZE
RC_INVALID_MEM_ACCESS

Remarks

No more than 65535 times the message size in bytes can be allocated with a single call to
GetMbxBuffer.
108 ARTIC960 Programmer’s Reference

FreeMbxBuffer—Free Mailbox Buffer
FreeMbxBuffer—Free Mailbox Buffer

This service frees a previously allocated mailbox buffer.

Functional Prototype

RIC_ULONG FreeMbxBuffer (RIC_MBXHANDLE MbxHandle,
 void *MsgPtr,
 RIC_ULONG Reserved);

Parameters

MbxHandle Input. Handle of mailbox where the process wants to free a message buffer.

MsgPtr Input. Pointer to allocated mailbox buffer.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_INVALID_HANDLE
RC_INVALID_MBX_BUFFER_ADDR
RC_INVALID_MEM_ACCESS
RC_MBX_BUFFER_IN_QUEUE

Remarks

None
Chapter 3: Base Kernel Services 109

SendMbx—Send a Message
SendMbx—Send a Message

This service puts a message into a mailbox.

Functional Prototype

RIC_ULONG SendMbx (RIC_MBXHANDLE MbxHandle,
 void *MsgPtr,
 RIC_ULONG Size,
 RIC_ULONG OptionWord,
 RIC_ULONG Reserved);

Parameters

MbxHandle Input. Handle of the mailbox where the process sends the message.

MsgPtr Input. Pointer to the message to be sent. When the
MBX_SEND_FREE_BUFFER option is specified, MsgPtr must point to the start
of the message buffer. Otherwise, it may point to any location contained in
the message buffer.

Size Input. Size of the message buffer. A message size of 0 is invalid.

OptionWord
Input. Bit field to describe how to send the message. To build the appropriate
set of options, OR the following constants.

MBX_SEND_COPY
Forces a copy of the message in the mailbox memory. This option
applies only when sender and receiver are sharing memory. The default
is MBX_SEND_NO_COPY.

MBX_SEND_FREE_BUFFER
Returns the buffer to the free pool. The default is
MBX_SEND_KEEP_BUFFER, which means the buffer must be freed
explicitly with the FreeMbxBuffer service.

MBX_SEND_LIFO
Puts a message in the front of the message queue. The default is
MBX_SEND_FIFO, which means that the message is put at the end of the
message queue.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_NO_RCV_BUFFER
RC_INVALID_RESERVED_PARM RC_INVALID_CALL
RC_INVALID_HANDLE RC_INVALID_OPTION
RC_INVALID_SIZE RC_INVALID_MEM_ACCESS
RC_NO_MBX_RECEIVER RC_UNABLE_TO_ACCESS_UNIT
RC_MSG_BUFFER_NOT_FREED RC_PIPES_NOT_CONFIGURED
RC_INVALID_MBX_BUFFER_ADDR RC_MBX_BUFFER_IN_QUEUE
110 ARTIC960 Programmer’s Reference

SendMbx—Send a Message
Remarks

The semaphore associated with this mailbox is incremented by 1.

The MBX_SEND_COPY option is valid only if the sender and the receiver are sharing
memory. It can be used with shared memory to keep the message around for further
processing. If the sender and the receiver are not sharing memory, the value of the
MBX_SEND_COPY bit is ignored and the message is copied automatically to the
receive memory.

The MBX_SEND_FREE_BUFFER option is ignored if the sender and receiver are sharing
memory and the MBX_SEND_COPY option was not requested. The call returns the
RC_MSG_BUFFER_NOT_FREED return code after sending the message.

If MBX_SEND_FREE_BUFFER is specified and the SendMbx service fails, the buffer is not
freed. It must be explicitly freed by the sender using FreeMbxBuffer.

If messages are being sent to other units, the kernel ensures system bus access has been
enabled on the mailbox pool.
Chapter 3: Base Kernel Services 111

ReceiveMbx—Receive a Message
ReceiveMbx—Receive a Message

This service reads or receives a message from a mailbox.

Functional Prototype

RIC_ULONG ReceiveMbx (RIC_MBXHANDLE MbxHandle,
 RIC_ULONG OptionWord,
 RIC_TIMEOUT Timeout,
 void **MsgPtr,
 RIC_ULONG *Size,
 RIC_ULONG Reserved);

Parameters

MbxHandle Input. Handle of the mailbox from which the process wants to receive a
message.

OptionWord
Input. Option word for specifying receive options. The following constant
can be used:

MBX_RECEIVE_READ_MESSAGE
Return a pointer to the message but do not remove the message from the
mailbox.

MBX_RECEIVE_GET_MESSAGE
Returns a pointer to the message and removes the message from the
mailbox. This is the default.

Timeout Input. Optional timeout for waiting on semaphore associated with this
mailbox.

–1 There is no timeout.
0 Return immediately if there are no mailbox elements.
Any other value from 1 to 65535

Wait time in milliseconds. The granularity of the timer is five
milliseconds. The timeout value is rounded up to the next multiple of
five, if it is not already a multiple of five.

MsgPtr Output. Pointer to the received message buffer.

Size Output. Size of the received message buffer.

Reserved Input. Reserved parameter (must be 0).
112 ARTIC960 Programmer’s Reference

ReceiveMbx—Receive a Message
Returns

RC_SUCCESS RC_INVALID_OPTION
RC_INVALID_RESERVED_PARM RC_INVALID_MEM_ACCESS
RC_INVALID_HANDLE RC_INVALID_CALL
RC_INVALID_RECEIVER RC_INVALID_TIMEOUT
RC_MBX_EMPTY

Remarks

If the MBX_RECEIVE_READ_MESSAGE option is set in OptionWord, the message is not
dequeued from the message queue.

If the MBX_RECEIVE_READ_MESSAGE option is not set in OptionWord, this service
removes the first message from the queue, and the semaphore associated with the mailbox
is decremented.
Chapter 3: Base Kernel Services 113

CloseMbx—Close a Mailbox
CloseMbx—Close a Mailbox

This service releases the mailbox and deletes it if no other process has access to it.

Functional Prototype

RIC_ULONG CloseMbx (RIC_MBXHANDLE MbxHandle,
 RIC_ULONG Reserved);

Parameters

MbxHandle Input. Handle of mailbox to close.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_INVALID_HANDLE
RC_DEPENDENT_EVENTS
RC_INVALID_CALL

Remarks

If the close is issued by a process while other processes still have access to the mailbox,
the service removes access rights for the calling process.

Any memory pool associated with the mailbox for sending by this process is released.

When the last process closes the mailbox, the mailbox is deleted. When the creator closes
the mailbox, the semaphore associated with the mailbox is closed, and the memory used
by the mailbox for receiving data is closed.
114 ARTIC960 Programmer’s Reference

CreateSig—Create a Signal
CreateSig—Create a Signal

This service creates a signal and optionally registers a signal handler.

Functional Prototype

RIC_ULONG CreateSig (char *SigName,
 RIC_SIGHANDLER EntryPoint,
 RIC_ULONG OptionWord,
 RIC_ULONG SigHanID,
 RIC_SIGHANDLE *SigHandle,
 RIC_ULONG Reserved);

Parameters

SigName Input. Name to assign to signal so that other processes can access it. This
parameter also can be NULL. However, if it is NULL, only the creating
process can use the signal.

EntryPoint Input. Entry address on which user gets control on calling of the signal. If this
parameter is NULL, the calling process does not get control through this
signal. It gets only a handle back in SigHandle to use in calling the signal.

OptionWord
Input. Describes how to receive a signal. This parameter is valid only if the
EntryPoint parameter is not NULL.

SIG_CONTROL_ALWAYS
Calling process wants control any time the signal is called.

SIG_CONTROL_MATCH
Calling process wants control only when the signal is called with a
matching SigHanID.

SigHanID Input. This parameter is valid only if OptionWord is SIG_CONTROL_MATCH.
The caller gets control only when the signal is called with a matching
SigHanID.

SigHandle Output. Signal handle returned to requesting process. This handle is used to
call the signal.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_DUP_RES_NAME
RC_INVALID_RESERVED_PARM RC_INVALID_MEM_ACCESS
RC_NO_MORE_RES RC_INVALID_CALL
RC_INVALID_NAME RC_INVALID_OPTION
Chapter 3: Base Kernel Services 115

CreateSig—Create a Signal
Remarks

Processes that open a signal with a NULL EntryPoint are calling processes. Processes that
open a signal with a non-NULL EntryPoint are receiving processes.

The EntryPoint for a receiving process should be a handler that accepts three parameters:

• SigHanID

• A pointer to a parameter block

• A parameter block size

It should also return a flag as the function value indicating what the kernel should do next.

0 Indicates that the kernel should call the rest of the receiving processes in the chain.

1 Indicates that the kernel should give control back to the calling process
immediately.

For normal processes, when the handler is called, memory protection is turned on if global
memory protection is enabled. For device drivers and subsystems, the state of memory
protection depends on the OptionWord specified in CreateDev.

A signal can have multiple receiving processes. Each can be distinguished with the
SigHanID. Calling processes can also be receiving processes for the same signal.
116 ARTIC960 Programmer’s Reference

OpenSig—Open a Signal
OpenSig—Open a Signal

This service opens a signal and optionally registers a signal handler.

Functional Prototype

RIC_ULONG OpenSig (char *SigName,
 SIGHANLDER EntryPoint,
 RIC_ULONG OptionWord,
 RIC_ULONG SigHanID,
 RIC_SIGHANDLE *SigHandle,
 RIC_ULONG Reserved);

Parameters

SigName Input. Name of signal to access.

EntryPoint Input. Entry address on which user gets control on calling of the signal. If this
parameter is NULL, the calling process does not get control through this
signal. It gets only a handle back in SigHandle, which it can use in calling the
signal.

OptionWord
Input. Describes how to receive a signal. This parameter is valid only if the
EntryPoint parameter is not NULL.

SIG_CONTROL_ALWAYS
Calling process wants control any time the signal is called.

SIG_CONTROL_MATCH
Calling process wants control only when the signal is called with a
matching SigHanID.

SigHanID Input. This parameter is valid only if OptionWord is SIG_CONTROL_MATCH.
The caller gets control only when the signal is called with a matching
SigHanID. The SigHanID cannot have a value of 0 because it is used for
broadcasts.

SigHandle Output. Handle for the signal requested by the process. This handle is used to
call the signal.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_INVALID_NAME
RC_INVALID_RESERVED_PARM RC_INVALID_MEM_ACCESS
RC_NO_MORE_RES RC_INVALID_CALL
RC_NAME_NOT_FOUND RC_INVALID_OPTION
Chapter 3: Base Kernel Services 117

OpenSig—Open a Signal
Remarks

Processes that open a signal with a NULL EntryPoint are calling processes. Processes that
create a signal using a non-NULL EntryPoint are receiving processes.

The EntryPoint for a receiving process should be a handler that accepts three parameters:

• SigHanID

• A pointer to a parameter block

• A parameter block size

It should also return a flag as the function value indicating what the kernel should do next.

0 The kernel should call the rest of the receiving processes in the chain.

1 The kernel should give control back to the calling process immediately.

For normal processes, when the handler is called, memory protection is turned on if global
memory protection is enabled. For device drivers and subsystems, the state of memory
protection depends on the OptionWord specified in CreateDev.
118 ARTIC960 Programmer’s Reference

CloseSig—Close a Signal
CloseSig—Close a Signal

This service releases access to a signal and deletes the signal if no other processes
have access.

Functional Prototype

RIC_ULONG CloseSig (RIC_SIGHANDLE SigHandle,
 RIC_ULONG Reserved);

Parameters

SigHandle Input. Signal handle of signal to release.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_HANDLE
RC_INVALID_RESERVED_PARM
RC_INVALID_CALL

Remarks

If a process attempts to close a signal while other processes still have access to the signal,
the service removes access rights for the process issuing the call. When the last process
with access rights calls this service, the signal ceases to exist.
Chapter 3: Base Kernel Services 119

InvokeSig—Call a Signal
InvokeSig—Call a Signal

This service calls a signal.

Functional Prototype

RIC_ULONG InvokeSig (RIC_SIGHANDLE SigHandle,
 RIC_ULONG SigHanID,
 void *Parms,
 RIC_ULONG ParmLen,
 RIC_ULONG Reserved);

Parameters

SigHandle Input. Handle of signal returned from CreateSig or OpenSig.

SigHanID Input. A value of 0 is interpreted as a broadcast. Every receiving process gets
control unconditionally. Any other value is interpreted as a conditional call.
Only receiving processes that have a matching SigHanID or that set their
Always flag get control.

Parms Input. Pointer to parameters to pass to receiving processes.

ParmLen Input. Size of parameters to pass to receiving processes.

Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS
RC_CALL_TERMINATED
RC_INVALID_RESERVED_PARM
RC_INVALID_HANDLE
RC_NO_SUCH_SIG_ID
RC_INVALID_MEM_ACCESS

Remarks

Before passing control to a receiving process, the kernel changes the memory protection to
allow the receiving process to access the parameter block as well as its own memory, code,
data, and stack. This is also true for a subsystem or device driver with memory protection
turned on. The OPTION_PROT_OFF option in the OptionWord parameter of CreateDev is
used to determine if memory protection is enabled for signals received by a device driver
or subsystem.
120 ARTIC960 Programmer’s Reference

Device Driver/Subsystem Services
Device Driver/Subsystem Services
The following are the device driver/subsystem services.

Refer to the ARTIC960 Programmer’s Guide for additional information.

Service Name Page

CreateDev 122

OpenDev 125

CloseDev 126

InvokeDev 127

AllocVector 128

AllocVectorMux 129

SetVector 131

SetVectorMux 132

ReturnVector 133

AllocHW 134

ReturnHW 136

QueryHW 137

Chapter 3: Base Kernel Services 121

CreateDev—Register a Subsystem or Device Driver
CreateDev—Register a Subsystem or Device Driver

This service registers the process as a subsystem or device driver.

Functional Prototype

RIC_ULONG CreateDev (char *DDName,
 RIC_DOHANDLER OpenEntry,
 RIC_DCHANDLER CloseEntry,
 RIC_DIHANDLER InvokeEntry,
 RIC_ULONG OptionWord,
 RIC_DEVHANDLE *DDHandle,
 RIC_ULONG Reserved);

Parameters

DDName Input. A device name to assign to this subsystem or device driver so that other
processes can access this subsystem by name. The kernel’s subsystems
allocate all resources with the first four characters being “RIC_” for the
resource name. User device driver and subsystem names should not start with
this prefix.

OpenEntry Input. Address of open entry point of subsystem or device driver. It gets
control on this entry point when an application uses OpenDev. See
OpenEntry Prototype on page 123.

CloseEntry Input. Address of close entry point of subsystem or device driver. It gets
control on this entry point when an application uses CloseDev. See
CloseEntry Prototype on page 124.

InvokeEntry Input. Address of strategy entry point of subsystem or device driver. It gets
control on this entry point when an application uses InvokeDev. See
InvokeEntry Prototype on page 124.

OptionWord
Input. Bit field that gives various create options. These constants may be
ORed together to create the device driver options.

OPTION_DEV_DRV
Registers the process as a device driver

OPTION_SUB_SYS
Registers the process as a subsystem.

OPTION_PROT_ON
Turns on memory protection before the kernel gives control to the
process at one of its entry points. This constant does not apply to vectors
owned by the subsystem or device driver.

OPTION_PROT_OFF
Turns off memory protection. This constant does not apply to vectors
owned by the subsystem or device driver.
122 ARTIC960 Programmer’s Reference

CreateDev—Register a Subsystem or Device Driver
DDHandle Output. Device handle returned to the requesting process.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_NO_MORE_RES
RC_INVALID_RESERVED_PARM RC_INVALID_MEM_ACCESS
RC_INVALID_NAME RC_INVALID_CALL
RC_DUP_RES_NAME RC_INVALID_OPTION

Remarks

An application process communicates with a subsystem or device driver using OpenDev,
CloseDev, and InvokeDev.

If memory protection is enabled using the OPTION_PROT_ON in OptionWord, the kernel
keeps the memory protection enabled and maps the subsystem or device driver’s code,
data, and application-passed parameters before giving control to the subsystem or device
driver.

Memory protection for subsystem or device driver is expected only during early
development. Because subsystem or device driver code is more trusted and performance
will improve, it is expected that each subsystem or device driver will run with memory
protection disabled in production systems.

The following are examples of function prototypes for OpenEntry, CloseEntry, and
InvokeEntry that must be followed when writing a device driver or subsystem.

OpenEntry Prototype
The function prototype for OpenEntry must be:

RIC_ULONG Open_Name (void *DDParams,
 RIC_ULONG Size,
 RIC_PROCESSID ProcessID,
 RIC_ULONG *DevMemo);
 RIC_ULONG *DevMemo);

Parameters

DDParams Input. Address of subsystem or device driver defined parameters.

Size Input. Size of subsystem or device driver defined parameters. The size of the
buffer pointed to by DDParams.

ProcessID Input. The ProcessID of the process in execution.

DevMemo Output. Device memo returned to the kernel from the driver or subsystem.

Returns

Must return RC_SUCCESS if it is successful or a non-zero value (between 0XFFFF0000
and 0XFFFFFFFF) if it fails.
Chapter 3: Base Kernel Services 123

CreateDev—Register a Subsystem or Device Driver
CloseEntry Prototype

The function prototype for CloseEntry must be:

RIC_ULONG Close_Name (RIC_PROCESSID ProcessID,
 RIC_ULONG DevMemo);

Parameters

ProcessID Input. The ProcessID of the process in execution.

DevMemo Input. Device-memo value previously provided by the subsystem.

Returns

Must return RC_SUCCESS if it is successful or a non-zero value (between 0XFFFF0000
and 0XFFFFFFFF) if it fails.

InvokeEntry Prototype

The function prototype for InvokeEntry must be:

RIC_ULONG Invoke_Name (void *DDParams,
 RIC_ULONG Size,
 RIC_PROCESSID ProcessID,
 RIC_ULONG DevMemo);

Parameters

DDParams Input. Address of subsystem or device driver defined parameters.

Size Input. Size of subsystem or device driver defined parameters. The size of the
buffer pointed to by DDParams.

ProcessID Input. The ProcessID of the process in execution.

DevMemo Input. Device-memo value previously provided by the subsystem.

Returns

Must return RC_SUCCESS if it is successful or a non-zero value (between 0XFFFF0000
and 0XFFFFFFFF) if it fails.
124 ARTIC960 Programmer’s Reference

OpenDev—Open a Subsystem or Device Driver
OpenDev—Open a Subsystem or Device Driver

This service opens a previously registered subsystem or device driver.

Functional Prototype

RIC_ULONG OpenDev (char *DDName,
 void *DDParams,
 RIC_ULONG Size,
 RIC_DEVHANDLE *DDHandle,
 RIC_ULONG Reserved);

Parameters

DDName Input. A device name used to create the subsystem or device driver.

DDParams Input. Address of subsystem or device driver defined parameters.

Size Input. Size of subsystem or device driver defined parameters. The size of the
buffer pointed to by DDParams.

DDHandle Output. Device handle returned to the requesting process. This handle is
passed to all other services related to subsystem or device driver.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_CALL_TERMINATED
RC_INVALID_RESERVED_PARM
RC_INVALID_NAME
RC_NAME_NOT_FOUND
RC_NO_MORE_RES
RC_INVALID_MEM_ACCESS
RC_INVALID_CALL

Remarks

This service gets access to the already registered subsystem or device driver.

The kernel gives control to subsystem or device driver on its OpenEntry entry point with
the parameters specified on page 123. The subsystem or device driver can return a 32-bit
device memo to the kernel on the exit from its OpenEntry function. The kernel passes this
memo back to the subsystem or device driver on any call for this process.

Multiple opens of a device driver are allowed, but the number of closes by a single process
should match the number of opens by that process.

Return codes returned by the OpenEntry function of a subsystem or device driver are
passed back to the calling process as the return code of OpenDev. These return codes must
be either RC_SUCCESS or within the range 0XFFFF0000 to 0XFFFFFFFF. Return codes
outside this range are discarded. The return code from OpenEntry is used by the kernel to
remove access to the device driver if the return code is not RC_SUCCESS.
Chapter 3: Base Kernel Services 125

CloseDev—Close a Subsystem or Device Driver
CloseDev—Close a Subsystem or Device Driver

This service releases the access of this process to the subsystem or device driver. It also
deregisters a device driver or subsystem.

Functional Prototype

RIC_ULONG CloseDev (RIC_DEVHANDLE DDHandle,
 RIC_ULONG Reserved);

Parameters

DDHandle Input. Handle of subsystem or device driver to close.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_CALL_TERMINATED
RC_INVALID_RESERVED_PARM
RC_INVALID_HANDLE
RC_INVALID_MEM_ACCESS
RC_INVALID_CALL

Remarks

When this service is issued by a process that had previously issued an OpenDev for the
subsystem or device driver, the kernel gives control to the subsystem or device driver at the
CloseEntry entry point with the parameters specified on page 124.

If this service is called by the subsystem or device driver itself (using the handle received
from CreateDev), access to the subsystem or device driver is removed and all other
processes having access to this subsystem or device driver are notified through an
asynchronous-event notification. In this case, the CloseEntry function is not called.

Return codes returned by the CloseEntry point of a subsystem or device driver are passed
back to the calling process as the return code of CloseDev. These return codes must be
either RC_SUCCESS or in the range 0XFFFF0000 to 0XFFFFFFFF. Return codes outside
this range are discarded.

The kernel removes the access of the process to the subsystem or device driver, even if
CloseEntry failed.
126 ARTIC960 Programmer’s Reference

InvokeDev—Call a Subsystem or Device Driver
InvokeDev—Call a Subsystem or Device Driver

This service calls the subsystem or device driver on its strategy entry point.

Functional Prototype

RIC_ULONG InvokeDev (RIC_DEVHANDLE DDHandle,
 void *DDParams,
 RIC_ULONG Size,
 RIC_ULONG Reserved);

Parameters

DDHandle Input. Handle of subsystem or device driver to call.

DDParams Input. Address of subsystem or device driver defined parameters.

Size Input. Size of subsystem or device driver defined parameters. The size of the
buffer pointed to by DDParams.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_CALL_TERMINATED
RC_INVALID_RESERVED_PARM
RC_INVALID_HANDLE
RC_INVALID_MEM_ACCESS
RC_INVOKE_ENTRY_FAILURE
RC_DD_RC_OUT_OF_RANGE

Remarks

The kernel gives control to subsystem or device driver at the InvokeEntry entry point with
the parameters specified in the InvokeEntry Prototype on page 124 with driver memo
(returned by the subsystem or device driver on call of OpenEntry by kernel) as parameters.

If the device driver or subsystem has specified memory protection be disabled, it is
disabled when its call handler gets control. If the device driver or subsystem requested that
memory protection be enabled, the device driver or subsystem will have access to the call
parameter block, as well as its own code, data, stack, allocated memory, and so forth.

Return codes returned by the InvokeEntry function are passed back to the calling process
as the return code of InvokeDev . These return codes must be either RC_SUCCESS,
RC_INVOKE_ENTRY_FAILURE, or in the range 0XFFFF0000 to 0XFFFFFFFF. Return
codes not in this range are discarded and the RC_DD_RC_OUT_OF_RANGE error is
returned.
Chapter 3: Base Kernel Services 127

AllocVector—Allocate an Interrupt Vector
AllocVector—Allocate an Interrupt Vector

This service allocates an interrupt vector to the calling subsystem or device driver.

Functional Prototype

RIC_ULONG AllocVector (RIC_ULONG VectorNum,
 RIC_VECTOR EntryPoint,
 RIC_ULONG OptionWord,
 RIC_ULONG Reserved);

Parameters

VectorNum Input. The interrupt vector number to be allocated.

EntryPoint Input. Pointer to the interrupt-handling routine for the requested interrupt
vector.

OptionWord Input.

OPTION_PROT_ON
The kernel enables memory protection before passing control to the
EntryPoint.

OPTION_PROT_OFF
The kernel does not enable memory protection.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_INVALID_VECTOR
RC_INVALID_OPTION
RC_NO_MORE_RES
RC_VECTOR_NOT_AVAILABLE
RC_NOT_DD_OR_SS
RC_INVALID_MEM_ACCESS
RC_INVALID_CALL

Remarks

The kernel allocates the requested vector to the calling process as non-shared. If the vector
was previously allocated as non-shared, RC_VECTOR_NOT_AVAILABLE is returned. Refer
to the ARTIC960 Programmer’s Guide for information about vector sharing.

Memory protection for an interrupt handler is disabled when global memory protection is
disabled, regardless of the state of the OptionWord.

The calling process must be a device driver or subsystem.
128 ARTIC960 Programmer’s Reference

AllocVectorMux—Allocate an Interrupt Vector
AllocVectorMux—Allocate an Interrupt Vector

This service allocates an interrupt vector to the calling subsystem or device driver

Functional Prototype

RIC_ULONG AllocVectorMux (RIC_ULONG VectorNum,
 RIC_VECTOR_MUX EntryPoint,
 RIC_ULONG OptionWord,
 RIC_ULONG Reserved);

Parameters

VectorNum Input. The interrupt vector number to be allocated.

EntryPoint Input. Pointer to the interrupt-handling routine for the requested interrupt
vector. The interrupt-handling routine must return a value of 0 if the interrupt
was not claimed or a non-zero value if the interrupt was claimed.

OptionWord
Input. Bit field to describe options. Use the OR operation on the following
constants to build the appropriate set of options:

OPTION_PROT_ON
The kernel enables memory protection prior to passing control to the
EntryPoint.

OPTION_PROT_OFF
The kernel does not enable memory protection.

OPTION_VECTOR_SHARED
Allocates the vector as shared.

OPTION_VECTOR_NOT_SHARED
Allocates the vector as nonshared. This is the default.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_VECTOR_NOT_AVAILABLE
RC_INVALID_RESERVED_PARM RC_NOT_DD_OR_SS
RC_INVALID_VECTOR RC_INVALID_MEM_ACCESS
RC_INVALID_OPTION RC_INVALID_CALL
RC_NO_MORE_RES

Remarks

The kernel allocates the requested vector to the calling process. If
OPTION_VECTOR_NOT_SHARED is requested and the vector was previously allocated as
nonshared, RC_VECTOR_NOT_AVAILABLE is returned. Refer to the ARTIC960
Programmer’s Guide for information about vector sharing.

Memory protection for an interrupt handler is disabled when global memory protection is
disabled, regardless of the state of the OptionWord.

The calling process must be a device driver or subsystem.

A process may not allocate the same vector multiple times.
Chapter 3: Base Kernel Services 129

AllocVectorMux—Allocate an Interrupt Vector
TheSetInterruptPriority macro can be used from within an interrupt handler to set a new
interrupt priority level for the processor. This macro gives an interrupt handler the ability
to lower its priority and allow other interrupts at the same level or lower levels to be
serviced.

The macro is defined as follows:

#define SetInterruptPriority(priority, 0)

Valid priority values are 0 to 30. In addition, a priority value of 0XFFFFFFFF sets the new
priority level to the current priority level minus 1. A priority value of 0 can be used to get
off of interrupt priority, but remain within the interrupt context.

The caller must clear the interrupt source before lowering the interrupt priority.

EntryPoint Prototype

The function prototype for the EntryPoint must be:

 RIC_ULONG EntryPoint (RIC_ULONG VectorNum);

Returns

Must return 0 if the interrupt was not claimed or non-zero if the interrupt was claimed.
130 ARTIC960 Programmer’s Reference

SetVector—Set a New Interrupt Vector Entry Point
SetVector—Set a New Interrupt Vector Entry Point

This service sets a new entry point for a previously allocated interrupt vector.

Functional Prototype

RIC_ULONG SetVector (RIC_ULONG VectorNum,
 RIC_VECTOR EntryPoint,
 RIC_ULONG OptionWord,
 RIC_ULONG Reserved);

Parameters

VectorNum Input. The interrupt vector number whose entry address is to be changed.

EntryPoint Input. Pointer to the interrupt-handling routine for the interrupt vector.

OptionWord
Input.

OPTION_PROT_ON
Causes the kernel to enable memory protection prior to passing control
to the EntryPoint.

OPTION_PROT_OFF
Does not enable memory protection.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_INVALID_VECTOR
RC_INVALID_CALL
RC_INVALID_MEM_ACCESS
RC_INVALID_OPTION
RC_VECTOR_NOT_ALLOCATED

Remarks

The application must allocate the vector before calling this service.
Chapter 3: Base Kernel Services 131

SetVectorMux—Set an Interrupt Vector
SetVectorMux—Set an Interrupt Vector

This service sets a new entry point for a previously-allocated interrupt vector.

Functional Prototype

RIC_ULONG SetVectorMux (RIC_ULONG VectorNum,
 RIC_VECTOR_MUX EntryPoint,
 RIC_ULONG OptionWord,
 RIC_ULONG Reserved);

Parameters

VectorNum Input. The interrupt vector number whose entry address is to be changed.

EntryPoint Input. Pointer to the interrupt-handling routine for the shared interrupt vector.
The interrupt-handling routine must return a value of 0 if the interrupt was not
claimed or a non-zero value if the interrupt was claimed.

See EntryPoint Prototype on page 132.

OptionWord
Input.

OPTION_PROT_ON
The kernel enables memory protection prior to passing control to the
EntryPoint.

OPTION_PROT_OFF
The kernel does not enable memory protection.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_INVALID_VECTOR
RC_INVALID_CALL
RC_INVALID_MEM_ACCESS
RC_INVALID_OPTION
RC_VECTOR_NOT_ALLOCATED

Remarks

The calling process must have allocated the vector before calling this service.

EntryPoint Prototype

The function prototype for the EntryPoint must be:

RIC_ULONG EntryPoint (RIC_ULONG VectorNum);

Returns

Must return 0 if the interrupt was not claimed or non-zero if the interrupt was claimed.
132 ARTIC960 Programmer’s Reference

ReturnVector—Return an Interrupt Vector
ReturnVector—Return an Interrupt Vector

This service returns a previously allocated interrupt vector.

Functional Prototype

RIC_ULONG ReturnVector (RIC_ULONG VectorNum,
 RIC_ULONG Reserved);

Parameters

VectorNum Input. Vector number of vector returned by this service.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_VECTOR_NOT_ALLOCATED
RC_INVALID_VECTOR
RC_INVALID_CALL

Remarks

None
Chapter 3: Base Kernel Services 133

AllocHW—Allocate a Hardware Device
AllocHW—Allocate a Hardware Device

This service allocates a hardware device to the calling subsystem or device driver.

Functional Prototype

RIC_ULONG AllocHW (char *DeviceName,
 RIC_ULONG BufferSize,
 RIC_ULONG *POSTStatus,
 unsigned char *DeviceDataPtr,
 RIC_ULONG Reserved);

Parameters

DeviceName
Input. Name of the hardware device requested by this call. This name is
predefined for each type of device.

BufferSize Input. Size of the buffer pointed to by DeviceDataPtr. The kernel copies
device-related data to this buffer. If the buffer is too small, the kernel copies
BufferSize amount of data into the buffer and returns an error.

POSTStatus
Output. A zero in this field indicates power-on self test (POST) code for this
device completed successfully. A non-zero value is device specific but
indicates that some form of error occurred during POST.

DeviceDataPtr
Output. Pointer to a buffer to which the kernel copies device-dependent data
(see Device-Dependent Data on page 135 for more information).

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_BUFFER_TOO_SMALL
RC_INVALID_RESERVED_PARM RC_INVALID_NAME
RC_NO_MORE_RES RC_NOT_DD_OR_SS
RC_HW_ALREADY_ALLOCATED RC_INVALID_CALL
RC_NAME_NOT_FOUND RC_INVALID_MEM_ACCESS

Remarks

The kernel allocates the requested hardware device to the calling process, if available. For
device names, refer to the documents for the applicable daughter card. (For example, for
the 4-Port Multi-Interface Application Interface Board, see the related chapter in the
ARTIC960 Co-Processor Platforms: Hardware Technical Reference.)
134 ARTIC960 Programmer’s Reference

AllocHW—Allocate a Hardware Device
Device-Dependent Data

When the adapter is powered on or reset, POST code on the adapter or daughter card
updates the Resource Descriptor Table (RDT) with device information. The kernel returns
this device information on this call. The following is the structure of the Resource
Descriptor Table.

struct RIC_RDTEntry
{

char DeviceName[DEVICE_NAME_SIZE];
RIC_PROCESSID ProcessID;
RIC_ULONG PostStatus;
RIC_ULONG DataSize;
unsigned char DeviceData[MAX_DATA_SIZE];

}

Chapter 3: Base Kernel Services 135

ReturnHW—Return a Hardware Device
ReturnHW—Return a Hardware Device

This service returns a previously-allocated hardware device.

Functional Prototype

RIC_ULONG ReturnHW (char *DeviceName,
 RIC_ULONG Reserved);

Parameters

DeviceName
Input. Name of the hardware device to return.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_HW_NOT_FOUND
RC_HW_NOT_ALLOCATED
RC_INVALID_CALL
RC_INVALID_NAME
RC_INVALID_MEM_ACCESS

Remarks

None
136 ARTIC960 Programmer’s Reference

QueryHW—Query Status of Hardware Device
QueryHW—Query Status of Hardware Device

This service returns the status of a hardware device to the calling subsystem or device
driver.

Functional Prototype

RIC_ULONG QueryHW (char *DeviceName,
 RIC_ULONG BufferSize,
 RIC_ULONG *Status,
 RIC_ULONG *POSTStatus,
 unsigned char *DeviceDataPtr,
 RIC_ULONG Reserved);

Parameters

DeviceName Input. Name of the hardware device requested by this service. This name is
predefined for each type of device.

BufferSize Input. Size of the buffer pointed to by DeviceDataPtr. The kernel copies
device-related data to this buffer. If the buffer is too small, the kernel copies
BufferSize amounts of data into the buffer and returns an error.

Status Output. If the return code is RC_SUCCESS, this field is set to indicate the
allocation status of the hardware device.

HW_AVAILABLE Resource is available.
HW_NOT_AVAILABLE Resource is not available.

POSTStatus Output. A zero in this field indicates this device completed POST
successfully. A non-zero value is device specific but indicates that an error
occurred during POST.

DeviceDataPtr
Output. Pointer to a buffer to which the kernel copies device-dependent data
(see Device-Dependent Data on page 135 for more information).

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_NOT_DD_OR_SS
RC_NAME_NOT_FOUND
RC_INVALID_CALL
RC_INVALID_MEM_ACCESS
RC_INVALID_NAME
RC_BUFFER_TOO_SMALL

Remarks

None
Chapter 3: Base Kernel Services 137

Asynchronous Event Notification Services
Asynchronous Event Notification Services
The following are the asynchronous event notification services.

Refer to the ARTIC960 Programmer’s Guide for additional information.

Service Name Page

RegisterAsyncHandler 139

DeregisterAsyncHandler 145
138 ARTIC960 Programmer’s Reference

RegisterAsyncHandler—Register an Async Handler
RegisterAsyncHandler—Register an Async Handler

This service registers the asynchronous event notification handler of a process for
specified events.

Functional Prototype

RIC_ULONG RegisterAsyncHandler (RIC_ULONG SoftwareEvents,
 RIC_ULONG AdapterEvents,
 RIC_ULONG ProcessorEvents,
 RIC_ASYNCHANDLER AsyncHandler,
 RIC_ULONG Reserved);

Parameters

SoftwareEvents
Input. Mask specifying of which software events the process wants to
be notified. The software event mask is built by ORing the following event
flags together. The event flags can be used to build the software event mask.

AdapterEvents
Input. Mask specifying of which adapter events the process wants to be
notified. You can OR the following event flags together to form the adapter
event mask.

AEN_DEV_TERM Device driver or subsystem termination
AEN_PROCESS_START Process start
AEN_PROCESS_STOP Process stop
AEN_SHARED_RESOURCE Closing a shared resource

AEN_WATCHDOG Watchdog timer expiration
AEN_PARITY Parity error

• Multiple-bit ECC error
• AIB bus read parity error with 80960

master
• Local bus parity for:

– RadiSys ARTIC 32-bit Memory
Controller Chip

– System bus Interface Chip
– CFE Local Bus/AIB Interface Chip

AEN_MEM_PROCESSOR Memory-protection violation (80960
processor)

AEN_MEM_MICROCHANNEL Memory-protection violation (system bus
master)

AEN_MEM_AIB Memory-protection violation (AIB master)
AEN_MEM_VIOLATION Non-existent memory access by the 80960
AEN_PCI_ERROR PCI bus error
Chapter 3: Base Kernel Services 139

RegisterAsyncHandler—Register an Async Handler
ProcessorEvents
Input. Mask specifying of which processor events the process wants to be
notified. You can OR the following event flags together to form the processor
event mask.

AsyncHandler
Input. Address of user-defined asynchronous-event notification handler. This
handler is called when any of the events specified in the masks occur. (See
Asynchronous Event Notification Handler on page 141.)

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_NO_MORE_RES
RC_DUP_ASYNC_EVENT RC_INVALID_MEM_ACCESS
RC_INVALID_RESERVED_PARM RC_INVALID_CALL

Remarks

See the Intel 80960CA User’s Manual for more information on processor faults. Parallel
faults are not reported to users directly. Instead, the processes are notified separately of
each fault that is part of the parallel fault.

If a process calls this service more than once, the process is notified of all events requested
in all calls. However, the process cannot register for a particular event again unless it first
deregisters for that event. If the process issues a call to register for an event again, the
process is not registered for any of the events specified in the call.

If the calling process is a device driver or subsystem, the asynchronous event notification
handler is called with the memory protection specified when the calling process issued
CreateDev. Otherwise, the handler is called with the memory protection set in accordance
with global memory protection. Refer to the ARTIC960 Programmer’s Guide for
additional information on the use of memory protection.

AEN_80960_ARITHMETIC Arithmetic
AEN_80960_CONSTRAINT Constraint
AEN_80960_OPERATION Operation
AEN_80960_PROTECTION Protection
AEN_80960_TRACE Trace
AEN_80960_TYPE Type
140 ARTIC960 Programmer’s Reference

RegisterAsyncHandler—Register an Async Handler
Asynchronous Event Notification Handler

The AsyncHandler should be thought of as an interrupt handler. It has access to the same
subset of services as an interrupt handler. An AsyncHandler should accept one parameter
(a pointer to an asynchronous event notification record) and should not return a return
value. The record is defined as follows.

struct RIC_AsyncEvent
{

RIC_ULONG Class;
RIC_ULONG IntStat;
RIC_PROCESSID ProcessID;
RIC_ULONG Type;
union
{

struct RIC_ProcessorEvent Pr;
struct RIC_AdapterEvent Ad;
struct RIC_SoftwareEvent Sw;

}ClassInfo;
};

where:

Class Is the event class. Valid values are:

AEN_CLASS_SOFTWARE
AEN_CLASS_ADAPTER
AEN_CLASS_PROCESSOR

IntStat Set to 1 if fault occurred during an interrupt or a handler.

ProcessID ID of the process that caused the event.

Type Type of event within the Class. Refer to the event masks listed in sections
SoftwareEvents and AdapterEvents on page 139, and ProcessorEvents on
page 140.

Pr Information specific to processor events (see Pr Field on page 142).

Ad Information specific to adapter events (see Ad Field on page 143).

Sw Information specific to software events (see Sw Field on page 144).
Chapter 3: Base Kernel Services 141

RegisterAsyncHandler—Register an Async Handler
Pr Field

The Pr field in AsyncEvent has the following definition. For maximum portability,
applications should limit their accesses of this structure to the Type and CodeAddress
fields. The other fields are processor-specific. All fields except the StackFrame field are
defined in the Intel 80960CA User’s Manual.

struct RIC_ProcessorEvent
{

RIC_ULONG FaultType;
RIC_ULONG SubType;
RIC_ULONG CodeAddr;
RIC_ULONG StackFrame;
RIC_ULONG ProcessCtrl;
RIC_ULONG ArithCtrl;
RIC_ULONG Reserved1;
RIC_ULONG Reserved2;

};

where:

FaultType Fault type given by the processor

Subtype Fault subtype given by the processor

CodeAddr Code address of the fault (undefined for some faults)

StackFrame Pointer to the process’ registers on the stack. This field is valid only for Trace
faults.

ProcessCtrl Contents of the process-controls (PC) register.

ArithCtrl Contents of the arithmetic-controls (AC) register.

Reserved1, Reserved2
Reserved for future use.
142 ARTIC960 Programmer’s Reference

RegisterAsyncHandler—Register an Async Handler
Ad Field

The Ad field in AsyncEvent has the following definition.

struct RIC_AdapterEvent
{

void *CodeAddr;
void *MemAddr;
struct RIC_PCIError PCIError;

};

where:

CodeAddr Code address after and near the faulting instruction.

MemAddr Memory address that the code was attempting to access. If the value is
0xFFFFFFFF, the address is unknown.

PCIError Structure of information related to the PCI bus error. The PCIError field in
AsyncEvent has the following definition. For a definition of RPInfo and
HxInfo, refer to the ARTIC960 Programmer’s Guide. This information should
be checked to determine the specific cause of the interrupt.

struct RIC_PCIError
{

union
{

struct RIC_RPErrInfo RPInfo;
struct RIC_HxErrInfo HxInfo;

} TermErrInfo;
RIC_ULONG TermErrCode;
RIC_ULONG ReturnCode;
}

where:

TermErrInfo
A union containing the exception data that will be posted after
all asynchronous handlers have been called.

TermErrCode
The exception code to be posted (either
TERMERR_PLX_INTERRUPT or TERMERR_NMI_INTERRUPT).

ReturnCode
A field that the asynchronous handler may set to 1 to force the
kernel not to generate a terminal error. Otherwise, handlers
should not modify this field.

ARTIC960RxD information will be filled in the RPInfo
field.
Chapter 3: Base Kernel Services 143

RegisterAsyncHandler—Register an Async Handler
Sw Field

The SW field in AsyncEvent has the following definition.

struct RIC_SoftwareEvent
{

union
{

RIC_DEVHANDLE DevHandle;
struct RIC_SharedRsrcClose ShrRes;

 }SwInfo;
};

where:

DevHandle Device handle in the case of device driver termination.

ShrRes Structure of information related to the closing of shared resources. The
ShrRes field in SoftwareEvent has the following definition.

struct RIC_SharedRsrcClose
{

RIC_ULONG ResType;
RES_HANDLE ResHandle;
RIC_ULONG OpenCount;
RIC_ULONG Resinfo;

};

where:

ResType Number indicating the type of the resource being closed

ResHandle Resource handle

OpenCount Number of processes that have the resource open

Resinfo Resource specific information:

Memory Contains a base pointer

Mailbox TRUE if the creator is closing

Semaphore TRUE if the semaphore is MUTEX and the
owner is closing

Events FALSE, always

Signals The number of receivers remaining

Queues FALSE, always
144 ARTIC960 Programmer’s Reference

DeregisterAsyncHandler—Deregister an Async Handler
DeregisterAsyncHandler—Deregister an Async Handler

This service deregisters the asynchronous event notification handler of a process for
specified events.

Functional Prototype

RIC_ULONG DeregisterAsyncHandler (RIC_ULONG SwEvents,
 RIC_ULONG HwEvents,
 RIC_ULONG PrEvents,
 RIC_ULONG Reserved);

Parameters

SwEvents Input. Mask specifying of which software events the process should no longer
be notified.

HwEvents Input. Mask specifying of which adapter hardware events the process should
no longer be notified.

PrEvents Input. Mask specifying of which processor events the process should no
longer be notified.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_NOT_REGISTERED
RC_INVALID_CALL

Remarks

The structure of the masks is defined under RegisterAsyncHandler—Register an Async
Handler on page 139. If the process is not registered for one of the events specified in the
masks, the process is not deregistered for any of the events.
Chapter 3: Base Kernel Services 145

Hook Services
Hook Services
The kernel provides hooks so processes can be notified of special actions. These hooks
have the option of preprocessing or post-processing notification. In other words, processes
can be notified either before the action occurs or after the action occurs. This notification
takes the form of calling a hook handler registered by the process. Within the hook
handler, the process can take whatever actions are required.

The following are the hook services.

Only one hook is initially provided and it is for the dispatcher. A dispatcher hook handler
might want to save and restore an environment for processes as they are dispatched.

Service Name Page

RegisterHook 147

DeregisterHook 148
146 ARTIC960 Programmer’s Reference

RegisterHook—Register an Entry Point for a Hook
RegisterHook—Register an Entry Point for a Hook

This service registers an entry point for a hook.

Functional Prototype

RIC_ULONG RegisterHook (RIC_HOOKHANDLER EntryPoint,
 RIC_ULONG HookNum,
 RIC_ULONG OptionWord,
 RIC_ULONG Reserved);

Parameters

EntryPoint
Input. The entry point where the process wants control when it is called from
the dispatcher.

HookNum Input. Number of the hook to register. Initially, only one hook is available:
HOOK_DISPATCH.

OptionWord
Input. If the OptionWord is ORed with HOOK_PREPROCESS, the entry point
of the process is called before the action. If the OptionWord is ORed with
HOOK_POSTPROCESS, the entry point is called after the action. A process can
register for preprocessing and post-processing in the same call.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_INVALID_OPTION
RC_HOOK_ALREADY_REGISTERED RC_INVALID_RESERVED_PARM
RC_INVALID_MEM_ACCESS RC_INVALID_HOOK
RC_INVALID_CALL

Remarks

The hook entry point should be defined in this way:

 void HookEntry (union HookDataStruc *HookData);

where:

HookDataStruc is defined as follows:

union HookDataStruc
{

RIC_PROCESSID ProcessInExec; /* for Dispatch hook */
}

Chapter 3: Base Kernel Services 147

DeregisterHook—Deregister an Entry Point for a Hook
DeregisterHook—Deregister an Entry Point for a Hook

This service deregisters an entry point for a hook.

Functional Prototype

RIC_ULONG DeregisterHook (RIC_ULONG HookNum,
 RIC_ULONG OptionWord,
 RIC_ULONG Reserved);

Parameters

HookNum Input. Number of the hook that was registered.

OptionWord
Input. If the OptionWord is ORed with HOOK_PREPROCESS, the
preprocessing entry point of the process should be deregistered. If the
OptionWord is ORed with HOOK_POSTPROCESS, the post-processing entry
point is deregistered.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_INVALID_RESERVED_PARM
RC_HOOK_NOT_REGISTERED RC_INVALID_OPTION
RC_INVALID_MEM_ACCESS RC_INVALID_HOOK
RC_INVALID_CALL

Remarks

None
148 ARTIC960 Programmer’s Reference

Kernel Trace Services
Kernel Trace Services
The following are the kernel trace services. These services let the user define a trace buffer
and to selectively enable and disable trace on different service classes.

Refer to the ARTIC960 Programmer’s Guide for additional information on trace services.

Service Name Page

InitTrace 150

EnableTrace 151

DisableTrace 152

LogTrace 153
Chapter 3: Base Kernel Services 149

InitTrace—Initialize a Trace Buffer
InitTrace—Initialize a Trace Buffer

This service sets up a trace buffer for logging information during execution.

Functional Prototype

RIC_ULONG InitTrace (RIC_ULONG BufferSize,
 RIC_SLONG WrapAroundCount);

Parameters

BufferSize Input. Size of the trace buffer in KB.

WrapAroundCount
Input. Number of times the trace buffer should do a wrap around before the
trace gets disabled. Use a value of –1 for infinite. A negative value not equal
to –1 is invalid.

Returns

RC_SUCCESS
RC_INVALID_CALL
RC_NO_MORE_MEM
RC_NO_MORE_RES
RC_INVALID_OPTION

Remarks

This service allocates memory for the trace buffer and must be called before any call to
EnableTrace or DisableTrace. If called twice, the previous trace buffer is purged and a
fresh buffer of size specified in the second call is allocated. In this case, all the previous
logs are lost. EnableTrace must be called to enable the logging of the trace data after each
call to InitTrace.
150 ARTIC960 Programmer’s Reference

EnableTrace—Enable Tracing of Service Classes
EnableTrace—Enable Tracing of Service Classes

This service enables the logging of the trace information for the given set of service
classes.

Functional Prototype

RIC_ULONG EnableTrace (RIC_ULONG ParamCount, ...);

Parameters

ParamCount
Input. Number of service classes being supplied as arguments to
EnableTrace.

 . . . Input. List of all the service classes, separated by commas, for which the trace
is to be enabled. See the Remarks section for details.

Returns

RC_SUCCESS
RC_TRACE_NOT_INITIALIZED
RC_INVALID_SERVICECLASS

Remarks

InitTrace must be called before any call to EnableTrace.

The EnableTrace service enables the logging of the trace for the service classes given as
argument. It does not report errors if the trace on a particular service was already enabled.
It enables the trace on the given services, in addition to those for which trace is already
enabled. The valid service classes for the kernel are:

ALL_SERVICES
C_ASYNC_EVENT_SERVICE
C_CLIB
C_DEVICE_DRIVER_SERVICE
C_EVENT_SERVICE
C_HOOK_SERVICE
C_INTERRUPT_SERVICE
C_KERN_COMMANDS_SERVICE
C_MAILBOX_SERVICE
C_MEMORY_SERVICE
C_MEMPROT_SERVICE
C_PROCESS_SERVICE
C_QUEUE_SERVICE
C_SEMAPHORE_SERVICE
C_SIGNAL_SERVICE
C_SUBALLOC_SERVICE
C_SWTIMER_SERVICE
C_TIMER_SERVICE
Chapter 3: Base Kernel Services 151

DisableTrace—Disable Tracing of Service Classes
DisableTrace—Disable Tracing of Service Classes

This service disables the logging of the trace information for the given set of service
classes.

Functional Prototype

RIC_ULONG DisableTrace (RIC_ULONG ParamCount, ...);

Parameters

ParamCount
Input. Number of service classes being supplied as arguments to
DisableTrace.

 . . . Input. List of all the service classes, separated by commas, for which the trace
is to be disabled. See the Remarks section for details.

Returns

RC_SUCCESS
RC_TRACE_NOT_INITIALIZED
RC_INVALID_SERVICECLASS

Remarks

This service disables the logging of the trace for the service classes given as argument. It
does not report errors if the trace on a particular service was already disabled. It disables
the trace on the given services, in addition to those for which trace is already disabled. The
valid service classes for the kernel are:

ALL_SERVICES
C_ASYNC_EVENT_SERVICE
C_CLIB
C_DEVICE_DRIVER_SERVICE
C_EVENT_SERVICE
C_HOOK_SERVICE
C_INTERRUPT_SERVICE
C_KERN_COMMANDS_SERVICE
C_MAILBOX_SERVICE
C_MEMORY_SERVICE
C_MEMPROT_SERVICE
C_PROCESS_SERVICE
C_QUEUE_SERVICE
C_SEMAPHORE_SERVICE
C_SIGNAL_SERVICE
C_SUBALLOC_SERVICE
C_SWTIMER_SERVICE
C_TIMER_SERVICE
152 ARTIC960 Programmer’s Reference

LogTrace—Log Trace Information
LogTrace—Log Trace Information

This service logs the trace information in the trace buffer.

Functional Prototype

RIC_ULONG LogTrace (RIC_ULONG ServiceClass,
 RIC_ULONG ProcedureID,
 RIC_ULONG CallerPosition,
 RIC_ULONG TraceOption,
 RIC_ULONG DataSize,
 void *Address);

Parameters

ServiceClass
Input. Identifies the class of the calling procedure and decides whether the
trace is to be logged as set by EnableTrace and DisableTrace calls. The range
is from 0 to 255. Range 0 to 127 is reserved for the kernel and its subsystems.
However, the kernel does not perform checking to enforce the reserved range.

ProcedureID
Input. Identifies the procedure in the given service class. The ServiceClass
and the ProcedureID together form a unique identification for any procedure.
Range is from 0 to 255.

CallerPosition
Input. Provides information regarding the position of the caller inside the
procedure. The following values are supported.

TRACE_ENTRY
To mark the entry into any procedure.

TRACE_EXIT
To mark the exit from any procedure.

Values 0X00000001 to 0XFE
To mark different positions inside any procedure.

TraceOption
Input. Decides what is to be logged and how it is displayed after formatting
by RICFMTTR.

You can OR more than one option together to form a TraceOption. If both
TRACE_INT and TRACE_CHAR are used, the data is displayed in both forms
in two consecutive trace records.

TRACE_INT
Take the data from Address and display as integers.

TRACE_CHAR
Take the data from Address and display in hexadecimal and ASCII.

TRACE_NOINFO
No data is associated with this trace record.
Chapter 3: Base Kernel Services 153

LogTrace—Log Trace Information
DataSize Input. Number of bytes of data to be logged from Address. The DataSize must
be 0 and the address must be NULL if TraceOption is TRACE_NOINFO.

Address Input. Pointer to the buffer containing the data to be logged.

Returns

RC_SUCCESS RC_INVALID_SERVICECLASS
RC_INVALID_MEM_ACCESS RC_INVALID_PROCEDURE_ID
RC_INVALID_OPTION RC_INVALID_CALLER_POSITION
RC_TRACE_NOT_INITIALIZED

Remarks

This service logs the trace information for the calling procedure, if the trace was enabled
for the service class of the calling procedure. The task calling This service must be
compiled with the –DTRACE option. The service classes defined for the kernel are:

C_ASYNC_EVENT_SERVICE
C_CLIB
C_DEVICE_DRIVER_SERVICE
C_EVENT_SERVICE
C_HOOK_SERVICE
C_INTERRUPT_SERVICE
C_KERN_COMMANDS_SERVICE
C_MAILBOX_SERVICE
C_MEMORY_SERVICE
C_MEMPROT_SERVICE
C_PROCESS_SERVICE
C_QUEUE_SERVICE
C_SEMAPHORE_SERVICE
C_SIGNAL_SERVICE
C_SUBALLOC_SERVICE
C_SWTIMER_SERVICE
C_TIMER_SERVICE
154 ARTIC960 Programmer’s Reference

Kernel Trace Information
Kernel Trace Information

The following tables indicate the procedures that are traced when a particular service class
is enabled. They also indicate the contents of the trace records associated with each
procedure.

.

Service Class Page

C_ASYNC_EVENT_SERVICE 156

C_DEVICE_DRIVER_SERVICE 156

C_HOOK_SERVICE 157

C_INTERRUPT_SERVICE 157

C_KERN_COMMANDS_SERVICE 157

C_MAILBOX_SERVICE 158

C_MEMORY_SERVICE 158

C_PROCESS_SERVICE 159

C_MEMPROT_SERVICE 160

C_QUEUE_SERVICE 160

C_SEMAPHORE_SERVICE 160

C_SIGNAL_SERVICE 161

C_SUBALLOC_SERVICE 161

C_SWTIMER_SERVICE 161

C_TIMER_SERVICE 162

C_CLIB 162
Chapter 3: Base Kernel Services 155

Kernel Trace Information
Table 3-1. Service Class: C_ASYNC_EVENT_SERVICE

Procedure ID Kernel Service
Trace
Position Trace Data

Format of
Data

P_REGISTER_ASYNC_HNDLER RegisterAsyncHandler Entry

Exit

SoftwareEvents
AdapterEvents
ProcessorEvents
AsyncHandler
rc

integer
integer
integer
integer
integer

P_DEREGISTER_ASYNCH_
HNDLER

DeregisterAsyncHandler Entry

Exit

SoftwareEvents
AdapterEvents
ProcessorEvents
rc

integer
integer

Table 3-2. Service Class: C_DEVICE_DRIVER_SERVICE

Procedure ID Kernel Service
Trace
Position Trace Data

Format of
Data

P_SETVECTOR SetVector/SetVectorMux Entry
Exit

VectorNum
rc

integer
integer

P_ALLOCVECTOR AllocVector/AllocVectorMux Entry
Exit

VectorNum
rc

integer
integer

P_RETURNVECTOR ReturnVector Entry
Exit

VectorNum
rc

integer
integer

P_ALLOCHW AllocHW Entry
Exit

DeviceName
rc

character
integer

P_RETURNHW ReturnHW Entry
Exit

DeviceName
rc

character
integer

P_QUERYHW QueryHW Entry
Exit

DeviceName
rc

character
integer

P_CREATEDEV CreateDev Entry
Exit

DDName
rc

character
integer

P_OPENDEV OpenDev Entry
Exit

DDName
rc

character
integer

P_INVOKEDEV InvokeDev Entry
Exit

DDHandle
rc

integer
integer

P_CLOSEDEV CloseDev Entry
Exit

DDHandle
rc

integer
integer
156 ARTIC960 Programmer’s Reference

Kernel Trace Information
Table 3-3. Service Class: C_EVENT_SERVICE

Procedure ID Kernel Service
Trace
Position Trace Data

Format of
Data

P_CREATEEVENT CreateEvent Entry
Exit

EvnName
rc

character
integer

P_OPENEVENT OpenEvent Entry
Exit

EvnName
rc

character
integer

P_CLOSEEVENT CloseEvent Entry
Exit

EvnHandle
rc

integer
integer

P_WAITEVENT WaitEvent Entry
Exit

EvnHandle
rc

integer
integer

Table 3-4. Service Class: C_HOOK_SERVICE

Procedure ID Kernel Service
Trace
Position Trace Data

Format of
Data

P_REGISTERHOOK RegisterHook Entry
Exit

HookNum
rc

integer
integer

P_DEREGISTERHOOK DeregisterHook Entry
Exit

HookNum
rc

integer
integer

Table 3-5. Service Class: C_INTERRUPT_SERVICE

Procedure ID Kernel Service
Trace
Position Trace Data

Format of
Data

P_FIRSTLEVELINT First level interrupt
handler

Entry Vector number integer

Table 3-6. Service Class: C_KERN_COMMANDS_SERVICE

Procedure ID Kernel Service
Trace
Position Trace Data

Format of
Data

P_PROCESSMBXCOMMAND Receiving a command
in the kernel mailbox

Entry
Exit

CommandNum
none

integer

A NULL resource name is displayed as the string “Null Pointer.” An invalid
resource name is displayed as the string “Invalid Pointer.”
Chapter 3: Base Kernel Services 157

Kernel Trace Information
Table 3-7. Service Class: C_MAILBOX_SERVICE

Procedure ID Kernel Service
Trace
Position Trace Data

Format of
Data

P_CREATEMBX CreateMbx Entry
Entry
Exit

MbxName
MbxRxMemName
rc

character
character
integer

P_OPENMBX OpenMbx Entry
Entry
Exit

MbxName
SendMemName
rc

character
character
integer

P_SENDMBX SendMbx Entry
Exit

MbxHandle
rc

integer
integer

P_GETMBXBUFFER GetMbxBuffer Entry
Exit

MbxHandle
rc

integer
integer

P_FREEMBXBUFFER FreeMbxBuffer Entry
Exit

MbxHandle
rc

integer
integer

P_RECEIVEMBX ReceiveMbx Entry
Exit

MbxHandle
rc

integer
integer

P_CLOSEMBX CloseMbx Entry
Exit

MbxHandle
rc

integer
integer

Table 3-8. Service Class: C_MEMORY_SERVICE

Procedure ID Kernel Service
Trace
Position Trace Data

Format of
Data

P_CREATEMEM CreateMem Entry
Exit

MemName
rc

character
integer

P_OPENMEM OpenMem Entry
Exit

MemName
rc

character
integer

P_CLOSEMEM CloseMem Entry
Exit

Baseptr
rc

integer
integer

P_RESIZEMEM ResizeMem Entry
Exit

Baseptr
rc

integer
integer

P_SETMEMPROT SetMemProt Entry
Exit

BlockPtr
rc

integer
integer

P_QUERYMEMPROT QueryMemProt Entry
Exit

BlockPtr
rc

integer
integer

P_QUERYFREEMEM QueryFreeMem Entry
Exit

OptionWord
rc

integer
integer

P_MALLOCMEM MallocMem Entry
Exit

Size
Baseptr

integer
integer

P_FREEMEM FreeMem Entry
Exit

Blockptr
rc

integer
integer

P_COLLECTMEM CollectMem Entry
Exit

Option
rc
*FreeUnits
*FreePages

integer
integer
integer
integer
158 ARTIC960 Programmer’s Reference

Kernel Trace Information
Table 3-9. Service Class: C_PROCESS_SERVICE

Procedure ID Kernel Service
Trace
Position Trace Data

Format of
Data

P_QUERYPROCESSSTATUS QueryProcessStatus Entry
Entry

Exit

OptionWord
ProcessName
or
ProcessID
rc

integer
character

integer
integer

P_SETPRIORITY SetPriority Entry
Entry
Exit

ProcessID
Priority
rc

integer
integer
integer

P_QUERYPRIORITY QueryPriority Entry
Exit
Exit

ProcessID
Priority
rc

integer
integer
integer

P_STOPPROCESS StopProcess Entry
Exit

ProcessID
rc

integer
integer

P_UNLOADPROCESS UnloadProcess Entry
Exit

ProcessID
rc

integer
integer

P_STARTPROCESS StartProcess Entry
Exit

ProcessID
rc

integer
integer

P_CREATEPROCESS CreateProcess Entry
Exit

ProcessName
rc

character
integer

P_COMPLETEINIT CompleteInit Entry
Exit

none
rc

integer

P_SUSPENDPROCESS SuspendProcess Entry
Exit

ProcessID
rc

integer
integer

P_RESUMEPROCESS ResumeProcess Entry
Exit

ProcessID
rc

integer
integer

P_QUERYPROCESSINEXEC QueryProcessInExec Entry
Exit
Exit

none
ProcessID
rc

integer
integer

P_QUERYCARDINFO QueryCardinfo Entry
Exit

none
rc integer

P_QUERYCONFIGPARAMS QueryConfigParams Entry
Exit

none
rc integer

P_SETPROCESSDATA SetProcessData Entry
Exit

AppIID
rc

character
integer

P_GETPROCESSDATA GetProcessData Entry
Exit

AppIID
*ProcessDataPtr

character
integer

P_ENTERCRITSEC EnterCritSec Entry
Exit

OptionWord
rc

integer
integer

P_EXITCRITSEC ExitCritSec Entry
Exit

OptionWord
rc

integer
integer
Chapter 3: Base Kernel Services 159

Kernel Trace Information
Table 3-10. Service Class: C_MEMPROT_SERVICE

Procedure ID Kernel Service
Trace
Position Trace Data

Format of
Data

P_SETPROCMEMPROT SetProcMemProt Entry
Exit

ProcessID
rc

integer
integer

P_QUERYPROCMEMPROT QueryProcMemProt Entry
Exit

ProcessID
rc

integer
integer

Table 3-11. Service Class: C_QUEUE_SERVICE

Procedure ID Kernel Service
Trace
Position Trace Data

Format of
Data

P_CREATEQUEUE CreateQueue Entry
Exit

QueueName
rc

character
integer

P_OPENQUEUE OpenQueue Entry
Exit

QueueName
rc

character
integer

P_CLOSEQUEUE CloseQueue Entry
Exit

QueueHandle
rc

integer
integer

P_PUTQUEUE PutQueue Entry
Exit

QueueHandle
rc

integer
integer

P_GETQUEUE GetQueue Entry
Exit

QueueHandle
rc

integer
integer

P_SEARCHQUEUE SearchQueue Entry
Exit

QueueHandle
rc

integer
integer

Table 3-12. Service Class: C_SEMAPHORE_SERVICE

Procedure ID Kernel Service
Trace
 Position Trace Data

Format of
Data

P_CREATESEM CreateSem Entry
Exit

SemName
rc

character
integer

P_OPENSEM OpenSem Entry
Exit

SemName
rc

character
integer

P_CLOSESEM CloseSem Entry
Exit

SemHandle
rc

integer
integer

P_RELEASESEM ReleaseSem Entry
Exit

SemHandle
rc

integer
integer

P_REQUESTSEM RequestSem Entry
Exit

SemHandle
rc

integer
integer

P_QUERYSEMCOUNT QuerySemCount Entry
Exit

SemHandle
rc

integer
integer

P_SETSEMCOUNT SetSemCount Entry
Exit

SemHandle
rc

integer
integer
160 ARTIC960 Programmer’s Reference

Kernel Trace Information
Table 3-13. Service Class: C_SIGNAL_SERVICE

Procedure ID Kernel Service
Trace
Position Trace Data

Format of
Data

P_CREATESIG CreateSig Entry
Exit

SigName
rc

character
integer

P_OPENSIG OpenSig Entry
Exit

SigName
rc

character
integer

P_INVOKESIG InvokeSig Entry
Exit

SigHandle
rc

integer
integer

P_CLOSESIG CloseSig Entry
Exit

SigHandle
rc

integer
integer

Table 3-14. Service Class: C_SUBALLOC_SERVICE

Procedure ID Kernel Service
Trace
Position Trace Data

Format of
Data

P_GETSUBALLOCSIZE GetSuballocSize Entry
Exit

UnitSize
rc

integer
integer

P_INITSUBALLOC InitSuballoc Entry
Exit

BlockPtr
rc

integer
integer

P_GETSUBALLOC GetSuballoc Entry
Exit

BlockPtr
rc

integer
integer

P_FREESUBALLOC FreeSuballoc Entry
Exit

BlockPtr
rc

integer
integer

Table 3-15. Service Class: C_SWTIMER SERVICE

Procedure ID Kernel Service
Trace
 Position Trace Data

Format of
Data

P_CREATESWTIMER CreateSwTimer Entry
Exit

TimerName
rc

character
integer

P_CLOSESWTIMER CloseSwTimer Entry
Exit

TimerHandle
rc

integer
integer

P_STARTSWTIMER StartSwTimer Entry
Exit

TimerHandle
rc

integer
integer

P_STOPSWTIMER StopSwTimer Entry
Exit

TimerHandle
rc

integer
integer
Chapter 3: Base Kernel Services 161

Kernel Trace Information

Table 3-16. Service Class: C_TIMER_SERVICE

Procedure ID Kernel Service
Trace
Position Trace Data

Format of
Data

P_SETSYSTIME SetSystemTime Entry
Exit

SysTimeInfo.Time
rc

integer
integer

P_QUERYSYSTIME QuerySystemTime Entry
Exit

none
rc integer

P_STARTPERFTIMER StartPerfTimer Entry
Exit

none
rc integer

P_STOPPERFTIMER StopPerfTimer Entry
Exit

none
rc integer

P_READPERFTIMER ReadPerfTimer Entry
Exit

none
rc integer

Table 3-17. Service Class: C_CLIB

Procedure ID Kernel Service
Trace
Position Trace Data

Format of
Data

P_FD_STDOUT printf – – character

P_FD_STDERR printf – – character
162 ARTIC960 Programmer’s Reference

4
 Kernel Commands Chapter 4
Processes located on a remote card or in the system unit can send command and status
requests to the kernel, using the kernel command facility. These requests are sent to the
kernel through its mailbox, named “RIC_KERNMBXn” (n is a logical card number). As
an example, commands destined for the kernel on logical card 0 would be sent to mailbox
“RIC_KERNMBX0”.

Command completion status is returned to the requester in a response mailbox specified
using the RegisterResponseMbx command. Requesters should check the status provided
in the response mailbox to verify successful command completion.

The following kernel commands have been defined. Refer to the ARTIC960
Programmer’s Guide for additional information.

Service Group Page

RegisterResponseMbx 166

DeRegisterResponseMbx 167

QueryProcessStatus 168

UnloadProcess 169

StopProcess 170

StartProcess 171
Chapter 4: Kernel Commands 163

Common Headers for Commands and Responses

Commands

All commands have a common header with a variant part unique for each command. The
format is:

struct RIC_KernCommand
{
struct RIC_KernMbxCmd Header;
 union
 {
struct RIC_RegisterResponseMbxCmd Cmd0;
struct RIC_DeregisterResponseMbxCmd Cmd1;
struct RIC_QueryProcessStatusCmd Cmd2;
struct RIC_StopProcessCmd Cmd3;
struct RIC_StartProcessCmd Cmd4;
struct RIC_UnloadProcessCmd Cmd5;
 }Cmds;
};

struct RIC_KernMbxCmd
 {
 RIC_ULONG CommandNum;
 RIC_RESPMBX RespMbxID;
 RIC_ULONG CorrelationID;
 RIC_ULONG ReturnCode;
 RIC_ULONG Reserved;
};

where:

CommandNum
Command number unique to each kernel command.

RespMbxID
ID returned on RegisterResponseMbx that indicates the mailbox where the
command response is to be sent.

CorrelationID
Value that is passed on with the command and is not interpreted by the kernel.
The requester can use the field to correlate command responses.

ReturnCode
Reserved field (must be 0)

Reserved Resereved field (must be 0)
164 ARTIC960 Programmer’s Reference

Responses

Like commands, responses have a common header with a variant part unique to each
response. Some responses have no variant part. The format is:

struct RIC_KernResponse
{
 RIC_ULONG CorrelationID;
 RIC_ULONG ReturnCode;
 RIC_ULONG Reserved;
 union
 {

struct RIC_RegisterResponseMbxResp Resp0;
struct RIC_QueryProcessStatusResp Resp1;

 }Resp;
};

where:

CorrelationID
Value passed in the command. The field can be used to correlate command
responses.

ReturnCode
Return code returned by the kernel to indicate the completion status of the
command.

Reserved Reserved field (must be 0)

If a bad RespMbxID is passed on a command, the kernel ignores the
command and a timeout on the reply occurs.
Chapter 4: Kernel Commands 165

RegisterResponseMbx—Register a Command Response Mailbox
RegisterResponseMbx—Register a Command Response Mailbox

This command returns the response mailbox ID associated with the specified response
mailbox name.

Command Parameters

CommandNum in the common header must be set to KERN_REG_RESP_MBX.

RespMbxId in the common header is not defined for this command.

Structures

struct RIC_RegisterResponseMbxCmd
{
 char MbxName[MAX_RES_USER];
 RIC_ULONG Reserved;
}

where:

MbxName Response mailbox name

Reserved Reserved field (must be 0)

Response Parameters

ReturnCode values in RIC_KernResponse are:

 RC_SUCCESS

The following shows the variant part of the response for this command.

struct RIC_RegisterResponseMbxResp
{
 RIC_RESPMBX RespMbxID;
 RIC_ULONG Reserved;
}

where:

RespMbxID
Identifier used on all subsequent kernel commands

Reserved Reserved field (must be 0)

Remarks

This command must be issued prior to any other commands being issued. It is the user’s
responsibility to issue a DeRegisterResponseMbx command when the application
terminates.
166 ARTIC960 Programmer’s Reference

DeRegisterResponseMbx—Deregister a Command Response Mailbox
DeRegisterResponseMbx—Deregister a Command Response Mailbox

This command removes a response mailbox when its ID is specified.

Command Parameters

CommandNum in the common header must be set to KERN_DEREG_RESP_MBX.

Structures

struct RIC_DeRegisterResponseMbxCmd
{
 RIC_RESPMBX RespMbxID;
 RIC_ULONG Reserved;
}

where:

RespMbxID
Response mailbox identifier

Reserved Reserved field (must be 0)

Response Parameters

ReturnCode values in RIC_KernResponse are:

RC_INVALID_RESERVED_PARM
RC_INVALID_HANDLE

There is no variant response part for this command.

Remarks

None
Chapter 4: Kernel Commands 167

QueryProcessStatus—Get the Process Status
QueryProcessStatus—Get the Process Status

This command returns the process status and process identification, when the process
name is specified.

Command Parameters

CommandNum in the common header must be set to KERN_QUERY_PROC_STAT.

Structures

struct RIC_QueryProcessStatusCmd
{
 char ProcName[MAX_RES_USER];
 struct RIC_ProcessStatusBlock ProcSB;
 RIC_ULONG Reserved;
}

where:

ProcName Process name

ProcSB Reference to the structure containing status information. See
QueryProcessStatus—Get the Process Status on page 25 for the format of the
process status block.

Reserved Reserved field (must be 0)

Response Parameters

ReturnCode values in RIC_KernResponse are:

RC_SUCCESS
RC_INVALID_NAME
RC_INVALID_RESERVED_PARM
RC_NAME_NOT_FOUND

The following shows the variant part of the response for this command.

struct RIC_QueryProcessStatusResp
{
 struct RIC_ProcessStatusBlock ProcSB;
 RIC_ULONG Reserved;
}

where:

ProcSB Reference to the structure containing status information. See
QueryProcessStatus—Get the Process Status on page 25 for the format of the
process status block.

Reserved Reserved field (must be 0)

Remarks

None
168 ARTIC960 Programmer’s Reference

UnloadProcess—Unload a Process
UnloadProcess—Unload a Process

This command unloads a process, given its process ID.

Command Parameters

CommandNum in the common header must be set to KERN_UNLOAD_PROC.

Structures

struct RIC_UnloadProcessCmd
{
 RIC_PROCESSID ProcessID;
 RIC_ULONG Reserved;
}

where:

ProcessID Process identification

Reserved Reserved field (must be 0)

Response Parameters

ReturnCode values in RIC_KernResponse are:

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_INVALID_PROCESSID
RC_PERMANENT_PROCESS

There is no variant response part for this command.

Remarks

None
Chapter 4: Kernel Commands 169

StopProcess—Stop a Process
StopProcess—Stop a Process

This command stops a process, given its process ID.

Command Parameters

CommandNum in the common header must be set to KERN_STOP_PROC.

Structures

struct RIC_StopProcessCmd
{
 RIC_PROCESSID ProcessID;
 RIC_ULONG Reserved;
}

where:

ProcessID Process identification

Reserved Reserved field (must be 0)

Response Parameters

ReturnCode values in RIC_KernResponse are:

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_PROCESS_NOT_STARTED
RC_INVALID_PROCESSID
RC_PERMANENT_PROCESS

There is no variant response part for this command.

Remarks

None
170 ARTIC960 Programmer’s Reference

StartProcess—Start a Process
StartProcess—Start a Process

This command starts the process specified by the process ID.

Command Parameters

CommandNum in the common header must be set to KERN_START_PROC.

Structures

struct RIC_StartProcessCmd
{
 RIC_PROCESSID ProcessID;
 RIC_ULONG OptionWord;
 RIC_SLONG TimeOut;
 RIC_ULONG Reserved;
}

where:

ProcessID Process identification.

OptionWord
Bit field indicating whether the requester wants the kernel to wait for the
process being started to perform a CompleteInit before the kernel returns a
return code (and thus completes the command).

WAIT_FOR_COMPLETEINIT
The kernel waits for the starting process to issue the CompleteInit call.

NO_WAIT_FOR_COMPLETEINIT
The kernel does not wait.

TimeOut Time, specified in seconds, that the kernel waits for the process to perform
the CompleteInit. The actual time waited is a multiple of approximately 1/4
seconds. A value of zero indicates that the requester does not want to wait.
There is no infinite timeout.

Reserved Reserved field (must be 0)

Response Parameters

ReturnCode values in RIC_KernResponse are:

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_INVALID_PROCESSID
RC_PROCESS_ALREADY_STARTED
RC_PROCESS_STOPPED
RC_TIMEOUT
Error code used by a process on CompleteInit

There is no variant response part for this command.

Remarks

None
Chapter 4: Kernel Commands 171

StartProcess—Start a Process
172 ARTIC960 Programmer’s Reference

5
 Adapter Library Routines Chapter 5
This chapter lists ANSI C library calls and describes the Miscellaneous Service, the
System Bus Interface Services, and the PCI Services.

ANSI C Functions
The following ANSI C library calls are supported by the kernel.

Use of some functions may require that additional libraries be used. Refer to your
compiler documentation for details. You can modify your ricproc.ld file to include
additional libraries. Refer to the ARTIC960 Programmer’s Guide for information
about doing this.

Character Handling

isalnum isgraph ispunt isxdigit

isalpha islower isspace tolower

iscntrl isprint isupper toupper

isdigit

Mathematics

acos cosh ldexp sinh

asin exp log sqrt

atan fabs log10 tan

atan2 floor modf tanh

ceil fmod pow

cos frexp sin

Variable Arguments

va_arg va_end va_start

Input/Output

fflush2,3 printf2,3 sprintf sscanf

General Utilities

abs atol free2 srand

atexit1 bsearch malloc2 strtod

atof div qsort1 strtol

atoi exit1,2 rand strtoul

1. Some ANSI C functions cannot be called from interrupt handlers.
2. These functions are implemented in libricc.a (OS/2) and libriccx.a (AIX) along with

other kernel services.
3. Refer to the ARTIC960 Programmer’s Guide for information on using this

C function.
Chapter 5: Adapter Library Routines 173

String Handlings

memchr strcat strerror strpbrk

memcmp strchr strlen strrchr

memcpy strcmp strncat strspn

memmove strcpy strncmp strstr

memset strcspn strncpy strtok

Date and Times

asctime difftime localtime time2

ctime gmtime mktime
1. Some ANSI C functions cannot be called from interrupt handlers.
2. These functions are implemented in libricc.a (OS/2) and libriccx.a (AIX) along with

other kernel services.
3. Refer to the ARTIC960 Programmer’s Guide for information on using this

C function.
174 ARTIC960 Programmer’s Reference

ProcessSleep—Sleep a Process
Miscellaneous Service

ProcessSleep—Sleep a Process

This service blocks a process for the specified length of time.

Functional Prototype

RIC_ULONG ProcessSleep (RIC_TIMEOUT Timevalue,
 RIC_ULONG Reserved);

Parameters

Timevalue Input. The length of time in milliseconds for the process to sleep.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_CALL
RC_INVALID_RESERVED_PARM
RC_INVALID_TIMEOUT
RC_NO_MORE_SEM
RC_NO_MORE_TIMERS

Remarks

This library routine allows users to block for a specified period of time without first
creating a semaphore. It does the equivalent of creating a semaphore, blocking on it for the
requested time, and then closing the semaphore. This routine is contained in the file
libricc.a.
Chapter 5: Adapter Library Routines 175

System Bus Interface Services
System Bus Interface Services
The kernel provides the following system-bus interface services.

These services allow a process to perform system bus operations. They are provided by the
System Bus I/O Subsystem RIC_MCIO.REL.

Programs that use the system bus interface services must define the constant INCL_MCHL
prior to the #include <ric.h> statement to obtain the proper declarations.

The libraries for these services are contained in the file libmclib.a for OS/2 and
libmclibx.a for AIX. To link a program with this library, add -lmclib or -lmclibx to
the LNK960 call. Refer to the ARTIC960 Programmer’s Guide for more information.

Service Page

MoveMCData 177

ConvertMCToCard 181

ConvertCardToMC 182
176 ARTIC960 Programmer’s Reference

MoveMCData—Move System Bus Data
MoveMCData—Move System Bus Data

This service moves data to/from a buffer on the local unit from/to a buffer on another unit
(a remote unit) through a system bus operation. It blocks the requesting process until the
operation is complete.

Functional Prototype

RIC_ULONG MoveMCData (RIC_DEVHANDLE DDHandle,
 struct RIC_MoveBlock *PPtr,
 RIC_ULONG Reserved);

Parameters

DDHandle Input. Handle of subsystem returned by OpenDev of System Bus I⁄O
Subsystem.

PPtr Input. Pointer to the move block

Reserved Input. Reserved parameter (must be 0)

The move block structure is:

struct RIC_MoveBlock
{

RIC_ULONG OptionWord;
RIC_CARDNUM SourceCard;
RIC_CARDNUM DestCard;
void *SourceAddptr;
void *DestAddptr;
RIC_ULONG Size;
struct RIC_MoveBlock *ChainPtr;

}

OptionWord
Input. Specifies options that can be selected for system bus operations. See
the Remarks section for option information.

SourceCard
Input. The logical card number for the ARTIC960 adapter source unit. A
valid ARTIC960 logical card number indicates that the source address
specifies a local address on that unit.

MC_SU_ADDR_CARD_NUMBER
This value indicates that the source unit is the system unit and that the
source address specifies a physical system bus address for the system
unit.
Chapter 5: Adapter Library Routines 177

MoveMCData—Move System Bus Data
MC_ADPT_ADDR_CARD_NUMBER
This value indicates that the source unit is not an ARTIC960 adapter
and that the source address specifies a physical system bus address for
that adapter.

DestCard Input. The logical card number for the ARTIC960 adapter destination unit. A
valid ARTIC960 logical card number indicates that the destination address
specifies a local address on that unit.

MC_SU_ADDR_CARD_NUMBER
This value indicates that the destination unit is the system unit and that
the destination address specifies a physical system bus address for the
system unit.

MC_ADPT_ADDR_CARD_NUMBER
This value indicates that the destination unit is not an ARTIC960
adapter and that the destination address specifies a physical system bus
address for that adapter.

SourceAddptr
Input. The address of the source buffer on the source unit. The address format
is determined by the source unit field.

DestAddptr Input. The address of the destination buffer on the destination unit. The
address format is determined by the destination unit field.

Size Input. The number of bytes of data to be moved. The maximum value is 1M–
1 for the MCA adapter. The maximum value is 16M–1 for PCI adapters. 0 is
not valid.

ChainPtr Input. The pointer to the next Move structure. If this is the last block in the
chain, this field is NULL.

• An ARTIC960 address cannot be expressed as a physical system
bus address.

• ARTIC960 Support for AIX Version 1.1 or higher and ARTIC960
Support for NT Version 1.0 do not support DMA transfers between
two peer adapters. They support DMA transfers only between the
adapter and system unit.

An ARTIC960 address cannot be expressed as a physical system
bus address.
178 ARTIC960 Programmer’s Reference

MoveMCData—Move System Bus Data
Returns

RC_SUCCESS RC_MC_LOSS_OF_CHANNEL_ERR
RC_INVALID_ADDRESS RC_MC_LOCAL_BUS_PARITY_ERR
RC_INVALID_COMBINATION RC_MC_EXCEPTION_ERR
RC_INVALID_SIZE RC_MC_TIMEOUT
RC_INVALID_OPTION RC_MC_INVALID_COMBINATION
RC_INVALID_CARD_NUMBER RC_MC_CHAINING_EX_ERR
RC_INVALID_MEM_ACCESS RC_MC_POSTSTAT_EX_ERR
RC_INVALID_CALL RC_RESET_ACTIVE
RC_MC_DATA_PARITY_ERR RC_MC_MASTER_ABORT
RC_MC_CHCK_ERR RC_MC_BUS_FAULT
RC_MC_CARD_SEL_FDBACK_ERR RC_MC_MEM_FAULT

Remarks.

• This function may block the requesting process. The function returns to the caller
when the move is complete.

• To open the system bus I/O subsystem, issue the following command:

OpenDev (MCSSNAME, (void *) NULL, 0 , &DDhandle);

• The source and destination units must be different, and one must be the requester unit.

• No validation is done on the physical system bus addresses.

• The logical card number is checked for validity.

• If memory protection is enabled, the local memory address is checked for system bus
access and a RC_INVALID_MEM_ACCESS error is returned if access is not correct.

• An unsupported system-unit address can generate a channel check.

• Because requests can be passed to two different system bus DMA channels, the order
of message delivery is not guaranteed. The order is guaranteed only within a chain.

The caller of this service must ensure that a reset does not occur during a
system bus operation.

This function does not support mixing of card-to-card and card-to-system unit
moves chained in the same MoveMCData request. To ensure correct
operation, such requests should be issued in separate MoveMCData
requests.
Chapter 5: Adapter Library Routines 179

MoveMCData—Move System Bus Data
• The following constants have been defined for the OptionWord parameter.

MOV_MEMORY
Move is for a memory address (default).

MOV_IO
Move is for an I/O address.

RC_INVALID_OPTION is returned if:

• The peer card is an ARTIC960Rx PCI adapter or ARTIC960RxD
PCI adapter. These adapters do not support I/O.

• The initiator card is an ARTIC960Rx PCI or ARTIC960RxD PCI
adapter, and the peer card does not have memory-mapped I/O.

MOV_INCR
Increment remote-unit address after each byte transfer (default).

MOV_NO_INCR
Do not increment remote-unit address after each byte transfer. This
option may be used to move consecutive bytes to an I/O address. This
option is ignored by PCI devices.
180 ARTIC960 Programmer’s Reference

ConvertMCToCard—Convert System Bus Address to Card Address
ConvertMCToCard—Convert System Bus Address to Card Address

This service converts a system bus address to a logical card number and local
address pointer.

Functional Prototype

RIC_ULONG ConvertMCToCard (RIC_DEVHANDLE DDHandle,
 void *MCAddress,
 RIC_CARDNUM *Card,
 void **LocalAddptr,
 RIC_ULONG Reserved);

Parameters

DDHandle Input. Handle of subsystem returned by OpenDev of system bus I/O
Subsystem.

MCAddress Input. System bus address to be converted.

Card Output. Logical card number represented by system bus address.

LocalAddptr
Output. Local address on the indicated logical card.

Reserved Input. Must be 0.

Returns

RC_SUCCESS
RC_UNABLE_TO_CONVERT_ADDRESS.

The compatibility of this function is not guaranteed across future releases.
Chapter 5: Adapter Library Routines 181

ConvertCardToMC—Convert Card Address to System Bus Address
ConvertCardToMC—Convert Card Address to System Bus Address

This service converts a logical card number and local address pointer to a system bus
address.

Functional Prototype

RIC_ULONG ConvertCardToMC (RIC_DEVHANDLE DDHandle,
 RIC_CARDNUM Card,
 void *LocalAddptr,
 void **MCAddress,
 RIC_ULONG Reserved);

Parameters

DDHandle Input. Handle of subsystem returned by OpenDev of System Bus I/O
Susbystem.

Card Input. Logical card number for local address.

LocalAddptr
Input. Local address to be converted.

MCAddress
Output. Converted system bus address.

Reserved Input. Must be 0.

Returns

RC_SUCCESS
RC_INVALID_CARD_NUMBER.

The compatibility of this function is not guaranteed across future releases.
182 ARTIC960 Programmer’s Reference

PCI Local Bus Configuration Device Driver Services
PCI Local Bus Configuration Device Driver Services
The kernel provides the following adapter PCI local-bus interface services.

These services call a device driver to access PCI devices on the adapter’s local PCI bus on
the ARTIC960Rx and ARTIC960Hx adapters. They are provided by the PCI Device
Driver RIC_PCI.REL.

Programs that use the PCI local bus interface services must define the constant INCL_PCI
prior to the #include <ric.h> statement to obtain the proper declarations.

The libraries for these services are contained in the regular kernel services libraries.

Service Page

pciBiosPresent 184

pciFindDevice 186

pciFindClassCode 187

pciReadConfigByte 188

pciReadConfigWord 189

pciReadConfigDWord 190

pciWriteConfigByte 191

pciWriteConfigWord 192

pciWriteConfigDWord 193
Chapter 5: Adapter Library Routines 183

pciBiosPresent—Query PCI Driver Presence
pciBiosPresent—Query PCI Driver Presence

This service determines the presence of the PCI device driver, and returns version
information and the number of PCI buses in the system.

Functional Prototype

RIC_ULONG pciBiosPresent (struct PCI_BIOS_INFO *PCI_InfoPtr);

Parameters

PCI_InfoPtr
Input. Pointer to the user’s structure. The PCI parameters are copied into this
memory.

Returns

RC_SUCCESS
RC_PCI_NO_BIOS

Remarks

struct PCI_BIOS_INFO
{
 RIC_ULONG Options;
 RIC_ULONG DriverVersion;
 RIC_ULONG BIOSVersion;
 RIC_ULONG LastBus;
 RIC_ULONG LocalMemBase;
 RIC_ULONG LocalIO_Base;
 unsigned char IntPinA_Vector;
 unsigned char IntPinB_Vector;
 unsigned char IntPinC_Vector;
 unsigned char IntPinD_Vector;
};

Options Reserved parameter (currently 0)

DriverVersion
Version number of the RIC_PCI.REL device driver

BIOSVersion
PCI BIOS version number compatible

LastBus Number of the last PCI bus on the adapter

LocalMemBase
Local bus base address for i960 access to a PCI-device memory (see
LocalIO_Base for more information).
184 ARTIC960 Programmer’s Reference

pciBiosPresent—Query PCI Driver Presence
LocalIO_Base
Local bus base address for i960 access to a PCI-device memory-mapped I/O

The LocalMemBase and LocalIO_Base values are used as a base address
when accessing a PCI device from the i960. These values should be added to
the physical address read from a PCI-device base address register to obtain a
local i960 address for accessing the device. The LocalMemBase value should
be used for memory base address registers, and the LocalIO_Base value
should be used for accessing memory-mapped I/O base address registers.

IntPinA_Vector, IntPinB_Vector, IntPinC_Vector, IntPinD_Vector
PCI interrupt-pin vector assignments

Normally, the interrupt-line-configuration register for the device should be
read to determine the vector. The IntPin information is provided for deviant
PMCs.
Chapter 5: Adapter Library Routines 185

pciFindDevice—Find a PCI Device by Vendor and Device ID
pciFindDevice—Find a PCI Device by Vendor and Device ID

This service finds the PCI device that is specified by the vendor and device ID.

Functional Prototype

RIC_ULONG pciFindDevice (PCI_DEVICE_ID DeviceID,
 PCI_VENDOR_ID VendorID,
 PCI_INSTANCE Instance,
 PCI_ID *pciID);

Parameters

DeviceID Input. The PCI device ID.

VendorID Input. The PCI vendor ID.

Instance Input. The instance number of the device. The first device with a given device
and vendor ID is instance zero. The next device with the same device and
vendor ID is instance one.

pciID Output. If the device is found, a unique identifier for the device is returned.
This identifier is then used when accessing the device on subsequent PCI
driver calls.

Returns

RC_SUCCESS
RC_PCI_NO_BIOS
RC_PCI_DEVICE_NOT_FOUND

Remarks

To find multiple devices having the same vendor ID and device ID, the calling software
should make successive calls to this function starting with Instance set to zero and
incrementing it until the return code is RC_PCI_DEVICE_NOT_FOUND.
186 ARTIC960 Programmer’s Reference

pciFindClassCode—Find a PCI Device by PCI Class Code
pciFindClassCode—Find a PCI Device by PCI Class Code

This service finds a specific PCI device given a class code.

Functional Prototype

RIC_ULONG pciFindClassCode (PCI_CLASS_CODE ClassCode,
 PCI_INSTANCE Instance,
 PCI_ID *pciID);

Parameters

ClassCode Input. The PCI device class code.

Instance Input. The instance number of the device. The first device with the given class
code is instance zero. The next device with the same class code is instance
one.

pciID Output. If the device is found, a unique identifier for the device is returned.
This identifier is then used when accessing the device on subsequent PCI
driver calls.

Returns

RC_SUCCESS
RC_PCI_NO_BIOS
RC_PCI_DEVICE_NOT_FOUND

Remarks

To find multiple devices having the same class code, the calling software should make
successive calls to this function starting with Instance set to zero and incrementing it until
the return code is RC_PCI_DEVICE_NOT_FOUND.
Chapter 5: Adapter Library Routines 187

pciReadConfigByte—Read a Byte from PCI Configuration Space
pciReadConfigByte—Read a Byte from PCI Configuration Space

This service reads one byte from the device PCI configuration space.

Functional Prototype

RIC_ULONG pciReadConfigByte (PCI_ID pciID,
 PCI_REG_NUM RegNum,
 unsigned char *Value);

Parameters

pciID Input. The PCI device identifier obtained by way of the pciFindDevice or
pciFindClassCode service.

RegNum Input. The register number to be read (normally 0 to 255).

Value Output. The byte read is returned in this parameter.

Returns

RC_SUCCESS
RC_PCI_NO_BIOS
RC_PCI_BAD_REGISTER_NUMBER

Remarks

None
188 ARTIC960 Programmer’s Reference

pciReadConfigWord—Read a Word from PCI Configuration Space
pciReadConfigWord—Read a Word from PCI Configuration Space

This service reads one 16-bit word from the device PCI configuration space.

Functional Prototype

RIC_ULONG pciReadConfigWord (PCI_ID pciID,
 PCI_REG_NUM RegNum,
 RIC_USHORT *Value);

Parameters

pciID Input. The PCI device identifier obtained by way of either the pciFindDevice
or pciFindClassCode service.

RegNum Input. The register number to be read (normally 0 to 255). The register
number must be divisible by 2.

Value Output. The word read is returned in this parameter.

Returns

RC_SUCCESS
RC_PCI_NO_BIOS
RC_PCI_BAD_REGISTER_NUMBER

Remarks

None
Chapter 5: Adapter Library Routines 189

pciReadConfigDWord—Read a Doubleword from PCI Configuration Space
pciReadConfigDWord—Read a Doubleword from PCI Configuration
Space

This service reads one 32-bit doubleword from the device PCI configuration space.

Functional Prototype

RIC_ULONG pciReadConfigDWord (PCI_ID pciID,
 PCI_REG_NUM RegNum,
 RIC_ULONG *Value);

Parameters

pciID Input. The PCI device identifier obtained by way of either the pciFindDevice
or pciFindClassCode service.

RegNum Input. The register number to be read (normally 0 to 255). The register
number must be evenly divisible by 4.

Value Output. The doubleword read is returned in this parameter.

Remarks

None
190 ARTIC960 Programmer’s Reference

pciWriteConfigByte—Write a Byte to PCI Configuration Space
pciWriteConfigByte—Write a Byte to PCI Configuration Space

This service writes one byte to the device PCI configuration space.

Functional Prototype

RIC_ULONG pciWriteConfigByte (PCI_ID pciID,
 PCI_REG_NUM RegNum,
 unsigned char Value);

Parameters

pciID Input. The PCI device identifier obtained by way of either the pciFindDevice
or pciFindClassCode service.

RegNum Input. The register number to be read (normally 0 to 255).

Value Input. The byte to be written.

Returns

RC_SUCCESS
RC_PCI_NO_BIOS
RC_PCI_BAD_REGISTER_NUMBER

Remarks

None
Chapter 5: Adapter Library Routines 191

pciWriteConfigWord—Write a Word to PCI Configuration Space
pciWriteConfigWord—Write a Word to PCI Configuration Space

This service writes one 16-bit word to the device PCI configuration space.

Functional Prototype

RIC_ULONG pciWriteConfigWord (PCI_ID pciID,
 PCI_REG_NUM RegNum,
 RIC_USHORT Value);

Parameters

pciID Input. The PCI device identifier obtained by way of either the pciFindDevice
or pciFindClassCode service.

RegNum Input. The register number to be read (normally 0 to 255). The register
number must be evenly divisible by 2.

Value Input. The word to be written.

Returns

RC_SUCCESS
RC_PCI_NO_BIOS
RC_PCI_BAD_REGISTER_NUMBER

Remarks

None
192 ARTIC960 Programmer’s Reference

pciWriteConfigDWord—Write a Doubleword to PCI Configuration Space
pciWriteConfigDWord—Write a Doubleword to PCI Configuration
Space

This service writes one 32-bit doubleword to the device PCI configuration space.

Functional Prototype

RIC_ULONG pciWriteConfigDWord (PCI_ID pciID,
 PCI_REG_NUM RegNum,
 RIC_ULONG Value);

Parameters

pciID Input. The PCI device identifier obtained by way of either the pciFindDevice
or pciFindClassCode service.

RegNum Input. The register number to be read (normally 0 to 255). The register
number must be evenly divisible by 4.

Value Input. The doubleword to be written.

Returns

RC_SUCCESS
RC_PCI_NO_BIOS
RC_PCI_BAD_REGISTER_NUMBER

Remarks

None
Chapter 5: Adapter Library Routines 193

pciWriteConfigDWord—Write a Doubleword to PCI Configuration Space
194 ARTIC960 Programmer’s Reference

6
 System Unit Utilities Chapter 6
System unit utilities are a set of command-line-driven utilities used to initialize and
examine the ARTIC960 adapter.

Although it is not shown in the syntax diagrams, help is provided for all utilities by using
the ? switch. The utilities display a brief message containing the syntax diagram for the
utility. The utilities also display the help messages if no parameters or switches are
entered, or if they are entered incorrectly.

All numeric parameters and command line options are assumed to be decimal values,
unless otherwise noted. To pass a hexadecimal value for any numeric parameter, prefix the
parameter with 0X or 0X. For example, 0X10 and 0X10 are equivalent to the decimal
parameter of 16.

The logical card numbers referred to by the utilities are assigned by the driver during
installation.

The ARTIC960 utilities do not perform any special processing to handle the OS/2
<Ctrl><Break> or <Ctrl><C> program termination signals.

• If the user breaks out of a load operation, it may be necessary to unload a
partially-loaded process or reset the card to continue.

• If the user breaks out of the Configuration utility or out of an active dump, a reset is
required to continue.

• If the user breaks out of a dump while waiting with an exception trigger set, no action
should be necessary.

Utilities that use input files use the following as search criteria to find the required file:

• Current directory

• RICPATH environment variable

• DPATH environment variable for OS/2 and Windows NT, and PATH environment
variable in AIX and Windows NT.

If the file is not found using this search criteria, the appropriate error code is returned.

For all utilities, the length of the command line is limited to 256 bytes. All lines within
files processed by the utilities are limited to a length of 256 bytes, including the
end-of-line sequence. The number of entries within configuration files and parameter files
is unlimited.
Chapter 6: System Unit Utilities 195

Application Loader (ricload) Utility
Application Loader (ricload) Utility
The Application Loader is a command-line-driven utility that loads processes onto the
ARTIC960 adapter. The Application Loader does not require the presence or absence of
any optional parameters to specify other optional parameters.

Arguments passed within quotes on the command line are passed as a single parameter.
Extraneous quotes within the argument parameter are deleted. See Examples of
Application Loader Calls on page 200. Blank lines within either a configuration or
parameter file are discarded. Within a parameter file, the standard C end-of-line sequence
is used to separate parameters.

Application Loader Syntax

–Q Specifies quiet Application Loader operation. Normally, the Application
Loader displays messages indicating a successful or unsuccessful operation
on the standard output device. In quiet mode, the Application Loader does not
display any messages.

–C config_filename
Specifies that the configuration file config_filename contains a list of
processes to be loaded. Each line in the configuration file is treated as an
individual load request. If an error is encountered during the processing of the
configuration file, the load operation is terminated and the remaining entries
are not processed.

card_num Specifies the logical card number to be loaded.

filename Specifies the file containing the process to be loaded.

Figure 6-1. Application Loader Syntax

path

card_num

ricload -C config_filename

filename

-Q

-K stack_size

-A “process_args”

-D cache_option
-F arg_filename

-L

-O

-V

-T

-P priority

-S process_name

-N process_name
-W timeout

-W timeout

-U process_name

-T
196 ARTIC960 Programmer’s Reference

Application Loader (ricload) Utility
–A “process_args”
Specifies that the arguments in process_args (which is enclosed within a
single set of quote marks), are to be passed to the process as argv[1] through
argv[n].

The process_args arguments themselves must not contain the quote
characters (“ ”). To use a quote mark within the arguments, use the –F
arg_filename parameter. Using this parameter allows you to pass command
line parameters in a file.

–F arg_filename
Specifies that the contents of the file arg_filename are passed to the process
as argv[1] through argv[n]. Each line in the file is passed as a separate argv
entry.

–D cache_option
Specifies data cache options for loading the process. The valid values are:

–D 0 Caching is not used (the default)

–D 1 Process stack is cached

–D 2 Process data section is cached

–D 3 Both the process stack and data sections are cached.

–K stack_size
Specifies the size of the process stack in bytes. If this parameter is not
specified, the kernel chooses its default stack size.

–L Specifies that the process is to be loaded but not started.

–W timeout
Specifies the time (in seconds) that the Application Loader waits for the
loaded process to complete initialization. The Application Loader then
outputs a message indicating the success or failure of that initialization. (See
CompleteInit—Mark Process as Completely Initialized on page 23.)

The maximum timeout value is 64. If a failure occurs, the message contains
the ErrorCode from the CompleteInit call. This option is automatically set by
the Application Loader for all files beginning with “RIC_”.

–N process_name
Specifies the name for the process being loaded. The process name is passed
to the process as argv[0]. If this parameter is not specified, filename is passed
as argv[0] (with the path information stripped). The length of the process
name is limited to 16 characters including the NULL terminator.

–O Specifies creating an outfile for symbolic debugging. The outfile name is the
filename with a file extension of .out instead of .rel. The file is created in the
current directory. The intended use is to download the task that is not started
(–L) and specify the –O switch. Then filename.out can be used with an 80960
interactive-computing environment (ICE) or a supported debugger.

This option has no effect unless the i960 data cache is enabled. See
the definition of DATA_CACHE on page 5.
Chapter 6: System Unit Utilities 197

Application Loader (ricload) Utility
–P priority
Specifies that the process should be started with a priority level of priority. If
this parameter is not specified, the kernel chooses a default priority level.

–T Specifies to set the time of day on the adapter. The system time is obtained
and passed to the kernel on the ARTIC960 adapter.

–V Specifies to display verbose information about the loaded task. Displayed
information includes the address of the task’s entry point, code segment, data
segment, BSS segment, stack address, and parameter address.

–S process_name
Specifies that the process (previously loaded) is to be started.

–U process_name
Specifies that the process should be unloaded.

To specify either a config_filename, filename, process_name, or arg_filename with spaces
or special characters in the name, the name must be enclosed within quotes (“ ”). This
allows support of the OS/2 high performance file system (HPFS).

The text files processed by the Application Loader (config_filename and
arg_filename) are processed as a text stream. The ANSI C end-of-line and
end-of-file sequence translation rules apply to these files.

Blank lines and comments in configuration files are ignored.
198 ARTIC960 Programmer’s Reference

Application Loader (ricload) Utility
Application Loader Messages and Exit Codes

The contents of the message file used by all utilities are listed in Appendix B: Message File
on page 295. The messages used by the Application Loader are listed in Table 6-1. The
Application Loader also sets its exit code value to indicate the status of the load operation.
The following table correlates the exit code of the Application Loader with the
Application Loader messages.

Table 6-1. Application Loader Messages and Return Codes

Message
Number Exit Code Notes
RIC0001 RC_UTIL_INVALID_CMDLINE_OPTION
RIC0002 RC_UTIL_INVALID_CMDLINE_PARM
RIC0003 RC_UTIL_FILE_NOT_FOUND

RIC0004 RC_UTIL_FILE_ACCESS
RIC0005 RC_UTIL_INVALID_CARD_NUMBER
RIC0006 RC_UTIL_NO_MORE_MEM

RIC0007 RC_UTIL_INVALID_NAME
RIC0008 RC_UTIL_DUP_RES_NAME
RIC0009 RC_UTIL_ADAPTER_EXCEPTION

RIC0010 RC_UTIL_NO_ADAPTER_RESPONSE
RIC0016 RC_UTIL_SYSTEM_ERROR
RIC0019 RC_UTIL_NOT_INSTALLED

RIC0022 RC_UTIL_SUCCESS Successful unload process operation
RIC0023 RC_UTIL_NAME_NOT_FOUND
RIC0024 RC_UTIL_SUCCESS Successful start process operation

RIC0025 RC_UTIL_ALREADY_STARTED
RIC0026 RC_UTIL_FILE_FORMAT
RIC0027 RC_UTIL_WRNHELP_GIVEN

RIC0035 RC_UTIL_INVALID_MICROCODE Kernel not loaded first
RIC0037 RC_UTIL_MICROCODE_ERROR Microcode error
RIC0038 RC_UTIL_ACCESS_ERROR

RIC0042 RC_UTIL_PROC_MISMATCH
RIC0044 RC_UTIL_PROC_DID_NOT_INIT
RIC0045 RC_UTIL_PROC_INIT_ERROR

RIC0052 RC_UTIL_TIMESET_ERROR
RIC0053 RC_UTIL_SUCCESS Successful start of System Clock
RIC0054 RC_UTIL_SUCCESS Additional Information about task being

loaded
RIC0057 RC_UTIL_SUCCESS Successful load process operation

If the Application Loader is processing a configuration file and the entire file is
processed successfully, the Application Loader returns a
RC_UTIL_SUCCESS. If an error occurs during the processing of the file, the
load operation terminates with an exit code corresponding to the error
detected. If a POST error is detected during the loading of a configuration file
and no subsequent errors are detected, the exit code
RC_UTIL_ADAPTER_EXCEPTION is displayed.
Chapter 6: System Unit Utilities 199

Application Loader (ricload) Utility
Examples of Application Loader Calls

The following examples show different methods of using ricload.

Example—Load, Start, and Name a Process

This example loads and starts the process c:\mydir\myproc.rel to logical card 0 and assigns
it a process name of PROCess_1.

ricload 0 c:\mydir\myproc.rel –N PROCess_1 –A "–C /T:'text'"

The parameters passed to the process are:

argv[0] [PROCess_1]
argv[1] [–C]
argv[2] [/T:'text']

Example—Load and Start a Process with a Default Name

This example loads and starts the process process.rel to logical card 0. The process is
named process.rel because a name was not specified.

ricload 0 process.rel –A "abc def ghi jkl mno"

The parameters passed to the process are:

argv[0] [process.rel]
argv[1] [abc]
argv[2] [def]
argv[3] [ghi]
argv[4] [jkl]
argv[5] [mno]

Example—Unload a Process

This example unloads the process PROCess_1 from logical card 0.

ricload 0 –U PROCess_1
200 ARTIC960 Programmer’s Reference

Application Loader (ricload) Utility
Example—Load a Process and Pass the Contents of a File

This example loads the process \sub dir\proc FILE001.rel to logical card 0. The process is
not started. The contents of the file parms.txt are passed as parameters argv[].

ricload 0x0 "\sub dir\proc FILE001.rel" –f parms.txt –L

The following shows the contents of the file parms.txt and the parameters passed to the
process in argv[].

Contents of File parms.txt

this is the FIRST line of parameters
 this is the second line
parameter 3

Parameters argv[]

argv[0] [proc FILE001.rel]
argv[1] [this is the FIRST line of parameters]
argv[2] [this is the second line]
argv[3] [parameter 3]

Example—Load and Start a Process Using a Configuration File

The following shows the contents of the file setup.cfg and the resulting action. The entire
load operation is done quietly (no messages displayed).

ricload –C setup.cfg –Q

Contents of File setup.cfg

* Setup configuration file
*

0 ric_kern.rel –F ric_kern.cfg

 0 ric_base.rel
*

0 ric_mcio.rel –F ric_mcio.cfg
0 ric_scb.rel -F ric_scb.cfg

Resulting Action

1. The file ric_kern.rel is loaded to logical card 0 with ric_kern.cfg passed as its
parameters. Then the process is started.

2. The file ric_base.rel is loaded to logical card 0 and started.

3. The file ric_mcio.rel is loaded to logical card 0, with ric_mcio.cfg passed as its
parameters. Then the process is started.

4. The file ric_scb.rel is loaded to logical card 0 with ric_scb.cfg passed as its
parameters. Then the process is started.
Chapter 6: System Unit Utilities 201

Dump Utility
Dump Utility
The Dump utility dumps the state of the ARTIC960 adapter for diagnostic purposes. The
Dump utility dumps all of the memory and I/O regions of the ARTIC960 adapter address
space.

The Dump utility compresses the dump data to minimize the size of the dump file. The
Status utility handles dump file decompression. The Dump utility does not contain any
user prompts, which enables it to run unattended.

The Dump utility has two modes of operation: triggered and immediate. In multitasking
operating systems, running the Dump utility in triggered mode requires a dedicated
session. While running in triggered mode, the Dump utility blocks on a triggering
mechanism provided by the device drivers.

Dump Syntax

–Q Specifies quiet dump operation. Normally, the Dump utility displays
messages indicating a successful or unsuccessful operation on the standard
output device. In quiet mode, no messages are displayed.

card_num Specifies the logical card number to be dumped.

filename Specifies the file into which the raw dump data is to be dumped. If the file
already exists, it is overwritten.

–A Specifies an I/O region to be dumped. This option can be repeated up to four
times. This option is not supported on the ARTIC960Rx PCI adapter.

addr Address of an I/O region to be dumped. No validity checking is done on this
address.

len Length of an I/O region to be dumped. No validity checking is done on this
length.

–P PMC_cfgfile
Specifies a PMC region to be dumped. Specifies that the configuration file
PMC_cfgfile contains a list of addresses and lengths to dump. Each line in
the configuration file is treated as an individual dump request.

The Dump utility does not break a dump into pieces across several diskettes.
The target drive must have the space necessary to capture the entire dump
file or the dump fails.

Figure 6-2. Dump Utility Syntax

path
card_numricdump

-C

filename
-Q path - I

-T

-A addr, len

-P PMC_cfgfile

-O out_file
202 ARTIC960 Programmer’s Reference

Dump Utility
The PMC_cfgfile can contain up to 31 lines of information. The following is
an example of this configuration file. The first parameter in each line is the
address to be dumped, and the second parameter is the amount of data to
dump.

0x1ffa1000,40
0x1ffb2000,0x28

If an error is encountered during the processing of the configuration file, the
dump operation is terminated and the remaining entries are not processed.

This option is not supported on ARTIC960 MCA and ARTIC960 PCI
adapters.

–O out_file
Specifies that the dump output from –P option is written to a binary file
named out_file. If out_file is not specified, the default file pmcdump.bin is
created. If the file already exists, the file is overwritten.

Use a binary editor to view the file created with the –0 option.

–I Specifies an immediate dump. This is the default mode of operation.

–T Specifies a triggered dump. The dump is triggered by an adapter exception.

–C Specifies the previously requested triggered dump should be canceled and the
Dump utility should terminate and uninstall. A triggered dump cannot be
canceled once the trigger has occurred.

–0 out_file is used only with –P PMC_cfgfile.
Chapter 6: System Unit Utilities 203

Dump Utility
PMC_cfgfile Dump File Header Structures

The –A option can be used to dump a daughter-card I/O region. This option is not needed
if the daughter-card ROM or daughter-card device driver fills in its specific daughter-card
I/O regions in the IORegions structure of ROMTable. Refer to the hardware technical
reference for your adapter for more information on ROMTable. If the address specified by
addr is not a valid Intel 960 local-bus card address for the length specified by len, a bus
error may be generated, causing the system to halt.

Data begins at offset 0X00000200.

typedef struct PMCFileHeader
{

RIC_ULONG MagicNo; /* Magic No. to specify a dump file*/
RIC_ULONG HdrSize; /* Indicates total header size */
RIC_ULONG Regions; /* Offset to next entry */
RIC_ULONG TimeStamp; /* Time Date Stamp */
DUMPFILEHDR DumpInfo[31];

}PMCFILEHEADER;

typedef struct DUMPFileHeader
{

RIC_ULONG AddressDump; /* Address to dump */
RIC_ULONG LengthDump; /* Amount to dump */
RIC_ULONG Offset /* Offset into the binary dump */

 /* file to locate information */
 /* for this entry */
 RIC_ULONG Reserved;
 }DUMPFILEHDR;

To specify a filename with spaces or special characters in the name, the name
must be enclosed within quotes. Quotes within a name are not supported.
204 ARTIC960 Programmer’s Reference

Dump Utility
Example of a PMC_cfgfile Dump File

The following is an example of the binary file created with the –O option when viewed
with a binary editor.

0x00000000: BAAB EDFE 0002 0000 0200 0000 7A08 1236
0x00000010: 0010 FA1F 2800 0000 0002 0000 0000 0000
0x00000020: 0010 1B1F 2500 0000 2802 0000 0000 0000
0x00000030: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000040: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000050: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000060: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000070: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000080: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000090: 0000 0000 0000 0000 0000 0000 0000 0000
0x000000A0: 0000 0000 0000 0000 0000 0000 0000 0000
0x000000B0: 0000 0000 0000 0000 0000 0000 0000 0000
0x000000C0: 0000 0000 0000 0000 0000 0000 0000 0000
0x000000D0: 0000 0000 0000 0000 0000 0000 0000 0000
0x000000E0: 0000 0000 0000 0000 0000 0000 0000 0000
0x000000F0: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000100: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000110: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000120: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000130: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000140: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000150: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000160: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000170: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000180: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000190: 0000 0000 0000 0000 0000 0000 0000 0000
0x000001A0: 0000 0000 0000 0000 0000 0000 0000 0000
0x000001B0: 0000 0000 0000 0000 0000 0000 0000 0000
0x000001C0: 0000 0000 0000 0000 0000 0000 0000 0000
0x000001D0: 0000 0000 0000 0000 0000 0000 0000 0000
0x000001E0: 0000 0000 0000 0000 0000 0000 0000 0000
0x000001F0: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000200: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0x00000210: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0x00000220: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0x00000230: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0x00000240: FFFF FFFF FFFF FFFF FFFF FFFF FF
Chapter 6: System Unit Utilities 205

Dump Utility
Dump Messages and Exit Codes

The contents of the message file used by all utilities are listed in Appendix B: Message File
on page 295. The messages used by the Dump utility are listed in Table 6-2. The Dump
utility also sets its exit code value to indicate the status of the dump operation. The
following table correlates the exit code of the Dump utility with the dump messages.

Table 6-2. Dump Utility Messages and Exit Codes

Message
Number Exit Code Notes
RIC0001 RC_UTIL_INVALID_CMDLINE_OPTION

RIC0002 RC_UTIL_INVALID_CMDLINE_PARM
RIC0003 RC_UTIL_FILE_NOT_FOUND
RIC0004 RC_UTIL_FILE_ACCESS

RIC0005 RC_UTIL_INVALID_CARD_NUMBER
RIC0010 RC_UTIL_NO_ADAPTER_RESPONSE
RIC0011 None Information-only message

RIC0012 RC_UTIL_SUCCESS Successful dump completion
RIC0013 None Information-only message
RIC0014 RC_UTIL_SUCCESS Successful dump cancellation

RIC0015 RC_UTIL_NOT_PENDING
RIC0016 RC_UTIL_SYSTEM_ERROR
RIC0019 RC_UTIL_NOT_INSTALLED

RIC0028 RC_UTIL_WRNHELP_GIVEN
RIC0038 RC_UTIL_ACCESS_ERROR
RIC0040 RC_UTIL_ALREADY_STARTED

RIC0056 None Information-only message
RIC0075 RC_UTIL_INVALID_CMDLINE_OPTION
RIC0080 RC_UTIL_UNSUPPORTED_OPTION Warning message

RIC0082 RC_UTIL_UNSUPPORTED_OPT_
HARDWARE

Warning message

RIC0083 RC_UTIL_DUMP_PROCESS_ERROR
RIC0084 None
RIC0085 RC_UTIL_SUCCESS Successful PMC dump completion

RIC0086 RC_UTIL_DUMP_CONFIG_ERROR
RIC0087 RC_UTIL_PARM_SYNTAX_ERROR Syntax for parameters incorrect
206 ARTIC960 Programmer’s Reference

Configuration Utility
Configuration Utility
The Subsystem Control Block (SCB) Logical I/O Architecture specifies how units on the
system bus communicate with one another. The SCB Configuration utility configures the
move-mode SCB pipes between the ARTIC960 adapters and the system processor and
between each ARTIC960 adapter. The SCB pipes should be configured before using
Remote Mailbox services. The Configuration utility must be run after the ARTIC960
kernel, base subsystem, system-bus I/O subsystem, and SCB subsystem are loaded, but
before any mailbox applications are loaded.

If you are going to use peer-to-peer communication, load the kernel with the
MAX_PEER_ADAPTERS parameter equal to the number of peer SCB units. The kernel
default is 0. In addition, if you are using the ARTIC960 Micro Channel adapter in an AIX
environment, configure the adapter with the attribute DMA2Enable set to YES if peer-to-
peer communication is needed. The attribute default is NO.

Unless otherwise specified, a default pipe size is used. The default pipe size is 1024 bytes
for a logical adapter pipe, and 2048 bytes for a system unit pipe. When a pipe size is
specified, it must be a minimum of 128 bytes.

The Configuration utility prevents configuration of a pair of logical adapters if they are not
physically able to communicate. If an adapter does not have a full memory window
configured, other adapters cannot directly access it. If an adapter is in a 16-bit Personal
System/2 (PS/2) slot and the window for the peer adapter is located above the 16 MB line,
it cannot access the other adapter. The Configuration utility rejects both of these
configurations with the error message RIC0041.

In AIX, the Configuration utility also prevents configuration of a pair of logical adapters if
peer-to-peer activity is not supported on PCI adapters. The error message RIC0080
(“Warning: Unsupported option: xxxxxxxx”) is returned.

The system-unit-to-card SCB pipes have to be configured prior to configuring the
card-to-card SCB pipes.

If an adapter is reset, this utility must be rerun.
Chapter 6: System Unit Utilities 207

Configuration Utility
Configuration Syntax

–Q Specifies quiet operation. Normally, the Configuration utility displays
messages indicating the success of an operation on the standard output
device. In quiet mode, no messages are displayed.

–L Specifies which logical cards are to be configured. A set of SCB delivery
pipes are configured between logical card_num1 and card_num2. If
card_num2 is not specified, it is assumed to be the system unit.

–S Specifies the size, in bytes, of the delivery pipe. The size s1 corresponds to
the size of the delivery pipe from card_num1 to card_num2. The size s2
corresponds to the size of the delivery pipe from card_num2 to card_num1.

The minimum size for s1 and s2 is 128 bytes. If a size is not specified, the
default size is used (1024 bytes for card-to-card pipes and 2048 bytes for
system-unit-to-card pipes).

–C config_filename
Specifies that the contents of the file config_filename is to be used as input to
the Configuration utility. Each line in the configuration file is treated as an
individual configuration request. The format of the file is described in Figure
6-4.

–A Specifies that all pipes (system unit/adapter and adapter/adapter) be
configured using the default pipe sizes.

–P Specifies that system unit/adapter pipes be configured using the default pipe
sizes.

Configuration File Entry Format

To specify a config_filename with spaces or special characters in
the name, the name must be enclosed within quotes (“ ”). Quotes
within a name are not supported.

Blank lines and comments in configuration files are ignored.

Figure 6-3. Configuration Utility Syntax

path
riccnfg

-Q

-A

config_filename

-P

-C

 -S s1 s2card_num2
-L card_num1

Figure 6-4. Configuration Utility File Entry Format

-L

-A
-P

card_num2

 *

 -S s1 s2
card_num1

comments
208 ARTIC960 Programmer’s Reference

Configuration Utility
Configuration Messages and Exit Codes

The contents of the message file used by all utilities are listed in Appendix B: Message File
on page 295. The messages used by the Configuration utility are listed in Table 6-3. The
Configuration utility also sets its exit code value to indicate the status of the configuration
operation. The following table correlates the exit code of the Configuration utility with its
messages.

Table 6-3. Configuration Utility Messages and Exit codes

Message
Number Exit Code Notes
RIC0001 RC_UTIL_INVALID_CMDLINE_OPTION
RIC0002 RC_UTIL_INVALID_CMDLINE_PARM
RIC0003 RC_UTIL_FILE_NOT_FOUND

RIC0004 RC_UTIL_FILE_ACCESS
RIC0005 RC_UTIL_INVALID_CARD_NUMBER
RIC0009 RC_UTIL_ADAPTER_EXCEPTION

RIC0010 RC_UTIL_NO_ADAPTER_RESPONSE
RIC0016 RC_UTIL_SYSTEM_ERROR
RIC0019 RC_UTIL_NOT_INSTALLED

RIC0029 RC_UTIL_WRNHELP_GIVEN
RIC0036 RC_UTIL_SUCCESS
RIC0037 RC_UTIL_MICROCODE_ERROR Microcode error

RIC0038 RC_UTIL_ACCESS_ERROR
RIC0041 RC_UTIL_PIPE_UNCONF (PS/2 systems only)
RIC0043 RC_UTIL_PIPE_SIZE_OUT_OF_RANGE

RIC0046 RC_UTIL_PIPE_ALREADY_CONF
RIC0047 RC_UTIL_PIPE_CONF_FAILED
RIC0055 RC_UTIL_UNIT_NOT_FUNCTIONING

RIC0067 RC_UTIL_SNGL_PIPE_CONF_FAILED
RIC0068 RC_UTIL_SUBSYSTEM_NOT_FOUND
RIC0080 RC_UTIL_UNSUPPORTED_OPTION
Chapter 6: System Unit Utilities 209

Reset Utility
Reset Utility
The Reset utility allows users to reset ARTIC960 adapters. Multiple adapters can be reset
with a single call of the Reset utility.

The Reset utility ensures that all other SCB units (system driver and adapters) are notified
of the reset operation before resetting the card.

Reset Syntax

–Q Specifies quiet operation. Typically, the Reset utility displays messages
indicating a successful or unsuccessful operation on the standard output
device. In quiet mode, no messages are displayed.

card_num Specifies the logical card number to be reset. If multiple adapters are
specified, they are reset sequentially.

If multiple adapters are being reset with a single call, the Reset utility continues to the next
adapter if an individual adapter reset fails or if an individual adapter number is invalid.
The proper messages are generated for each adapter as its reset is done. If any errors are
detected while resetting any of the adapters, the most severe error code is returned by the
Reset utility. These exit codes from least to most severe are:

RC_UTIL_SUCCESS
RC_UTIL_INVALID_CARD_NUMBER
RC_UTIL_RESET_FAILED
RC_UTIL_NO_ADAPTER_RESPONSE

All other errors cause the Reset utility to end immediately with the proper error code.

Figure 6-5. Reset Utility Syntax

path
card_numricreset

-Q
210 ARTIC960 Programmer’s Reference

Reset Utility
Reset Messages and Exit Codes

The contents of the message file used by all utilities are listed in Appendix B: Message File
on page 295. The messages used by the Reset utility are listed in Table 6-4. The Reset
utility also sets its exit code value to indicate the status of the reset operation. The
following table correlates the exit code of the Reset utility with the reset messages.

Table 6-4. Reset Utility Messages and Exit Codes

Message
Number Exit Code Notes
RIC0001 RC_UTIL_INVALID_CMDLINE_OPTION

RIC0005 RC_UTIL_INVALID_CARD_NUMBER
RIC0009 RC_UTIL_RESET_FAILED This message is followed by

message RIC0034
RIC0010 RC_UTIL_NO_ADAPTER_RESPONSE This message is followed by

message RIC0034
RIC0019 RC_UTIL_NOT_INSTALLED
RIC0031 RC_UTIL_WRNHELP_GIVEN

RIC0032 None Information-only message
RIC0033 RC_UTIL_SUCCESS Successful reset operation
RIC0034 None Exit code depends on preceding

message (RIC009 or RIC0010)
RIC0038 RC_UTIL_ACCESS_ERROR
Chapter 6: System Unit Utilities 211

Trace Utilities
Trace Utilities
The ARTIC960 kernel supports tracing of selected kernel services and user definable
services. Three system unit utilities support tracing of services on the card: Set Trace, Get
Trace, and Format Trace.

• Set Trace initializes, enables, and disables tracing of specified services.

• Get Trace reads the trace buffer (log) on the card and stores it on the system unit in a
user-definable trace file.

• Format Trace formats the trace file into a user-readable format.
212 ARTIC960 Programmer’s Reference

Set Trace Utility
Set Trace Utility

The Set Trace utility initializes, enables, and disables tracing of various service classes on
the ARTIC960 adapter. There is a defined set of kernel service classes that can be
specified. The defined service classes are listed under EnableTrace—Enable Tracing of
Service Classes on page 151. In addition, the user can define his own service classes.

The trace buffer must first be initialized before a service class can be enabled. An optional
wrap count may be specified to set the maximum number of times the trace buffer can
wrap. If a wrap count is not specified, the trace buffer wraps indefinitely. The wrap count
is helpful in cases when tracing exceeds the trace buffer.

This utility can be used to initialize the trace buffer and enable a service class on the same
command line prompt. Also, multiple, or all, service classes can be enabled and disabled
on the same command line prompt.

Set Trace Syntax

card_num Specifies the logical card number to be traced.

–I size Specifies the size of the trace buffer (in KB) to be created and initialized on
the adapter. Valid size range is 1 to 64.

–W count Specifies the count after which the tracing should stop wrapping in the trace
buffer. A count of –1 wraps the trace buffer infinitely.

–D class Specifies the service classes for which tracing is to be disabled. Valid service
classes are between 0 and 255. Service classes between 0 and 127 are
reserved for kernel services. User-defined services classes are between 128
and 255. For performance reasons, the kernel does not perform any class
range checking.

–E class Specifies the service classes for which tracing is to be enabled. Valid service
classes are between 0 and 255. Service classes between 0 and 127 are
reserved for kernel services. For performance reasons, the kernel does not do
any checking.

Figure 6-6. Set Trace Utility Syntax

path
ricsettr card_num

-I size
-W count -D class -E class
Chapter 6: System Unit Utilities 213

Set Trace Utility
Set Trace Messages and Exit Codes

The contents of the message file used by all utilities are listed in Appendix B: Message File
on page 295. The messages used by the Set Trace utility are listed in Table 6-5. The Set
Trace utility also sets its exit code value to indicate the status of the set trace operation.
The following table correlates the exit code of the Set Trace utility with the messages.

Table 6-5. Set Trace Utility Messages and Exit Codes

Message
Number Exit Code Notes
RIC0001 RC_UTIL_INVALID_CMDLINE_OPTION
RIC0002 RC_UTIL_INVALID_CMDLINE_PARM

RIC0005 RC_UTIL_INVALID_CARD_NUMBER
RIC0010 RC_UTIL_NO_ADAPTER_RESPONSE
RIC0019 RC_UTIL_NOT_INSTALLED

RIC0038 RC_UTIL_ACCESS_ERROR
RIC0300 RC_UTIL_WRNHELP_GIVEN
RIC0324 RC_UTIL_INVALID_CMDLINE_PARM Invalid service class

RIC0326 RC_UTIL_SUCCESS Successful set trace operation
214 ARTIC960 Programmer’s Reference

Get Trace Utility
Get Trace Utility

The Get Trace utility allows users to read data in the trace buffer on the RadiSys
ARTIC960 adapter and store it in a file in binary form. The data in this file can be
formatted by the Format Trace utility, discussed in section Format Trace Utility on
page 217. Prior to running the Get Trace utility, use the Set Trace utility to initialize the
trace buffer.

The trace buffer should not be read while tracing is active. Before reading the trace buffer,
the Get Trace utility disables tracing of all services currently enabled, unless the –E option
is specified. Tracing of services can be enabled again after the buffer is read by using the
Set Trace utility.

Get Trace Syntax

card_num Specifies the logical card number to be traced.

–O out_filename
Specifies the name of the file in which data from the trace buffer is stored. If
this option is not specified, the file rictrace.bin is created in the current
directory.

–E Specifies that the trace buffer should be retrieved without first disabling the
active tracing. This option should be used only when the trace cannot be
retrieved otherwise, because the trace buffer could be updated as it is
retrieved. This option can be used to recover the trace buffer from a card that
has an exception condition. It should not be used on a card during active
tracing.

Figure 6-7. Get Trace Utility Syntax

path
ricgettr

-O -E
card_num

out_filename
Chapter 6: System Unit Utilities 215

Get Trace Utility
Get Trace Messages and Exit Codes

The contents of the message file used by all utilities are listed in Appendix B: Message File
on page 295. The messages used by the Get Trace utility are listed in Table 6-6. The Get
Trace utility also sets its exit code value to indicate the status of the Get Trace operation.
The following table correlates the exit code of the Get Trace utility with the messages.

Table 6-6. Get Trace Utility Messages and Exit Codes

Message
Number Exit Code Notes
RIC0001 RC_UTIL_INVALID_CMDLINE_OPTION
RIC0002 RC_UTIL_INVALID_CMDLINE_PARM

RIC0004 RC_UTIL_FILE_ACCESS
RIC0005 RC_UTIL_INVALID_CARD_NUMBER
RIC0010 RC_UTIL_NO_ADAPTER_RESPONSE

RIC0016 RC_UTIL_SYSTEM_ERROR
RIC0019 RC_UTIL_NOT_INSTALLED
RIC0038 RC_UTIL_ACCESS_ERROR

RIC0301 RC_UTIL_WRNHELP_GIVEN
RIC0302 RC_UTIL_SUCCESS Successful Get Trace operation
RIC0303 None Information message to run Format

Trace utility
RIC0305 None Trace is not initialized
216 ARTIC960 Programmer’s Reference

Format Trace Utility
Format Trace Utility

The Format Trace utility allows users to format the data obtained in a file by the Get Trace
utility.

The formatted data consists of the fields of the Trace Control Block, which contains
general information about the trace and the trace data of the service classes enabled by the
Set Trace utility. The trace data is in the form of records to enhance readability.

The utility requires a service class file to correlate the service classes and procedure names
to service class numbers and procedure IDs. The text file ricclass.trc has all the
predefined kernel service classes and procedure names. This file must be present in the
current directory or one of the directories defined in the RICPATH or DPATH (for OS/2)
or PATH (for AIX) environment variables for the Format Trace utility to find it for trace
formatting.

You have the option to specify a user trace file using the –C option. Your trace file must
contain the same classes and procedure names that you have defined. You should use
ricclass.trc as an example for the format of the file. Service class names must begin with
C_ and procedure ID names must begin with P_.

If the Format Trace utility fails to find ricclass.trc, the warning message RIC0003 is
displayed. The trace file is formatted. However, the service class and procedure names do
not appear in the output file. If the Format Trace utility fails to find the user-specified
service class file, the message RIC0003 is displayed and the Format Trace utility
terminates with exit code RC_UTIL_FILE_NOT_FOUND.

The Format Trace utility fails with RC_UTIL_FILE_FORMAT if the binary data it formats
is corrupted.

Format Trace Syntax

–I in_filename
Specifies the name of the file that contains data obtained by the Get Trace
utility. The Format Trace utility formats the data in this file. If in_filename is
not specified, the utility searches the current directory, then RICPATH
followed by the DPATH (for OS/2) or PATH (for AIX) environment
variables for rictrace.bin.

–O out_filename
Specifies the name of the file for which the formatted information is stored.
If the file already exists, the data in the file is overwritten. If out_filename is
not specified, the formatted data is written to stdout.

–C class_filename
Specifies the name of the file that contains the user’s service class and
procedure ID information.

Figure 6-8. Format Trace Utility Syntax

path
ricfmttr

-I in_filename -O out_filename -C class_filename
Chapter 6: System Unit Utilities 217

Format Trace Utility
Example of a Format Trace Call

The following example illustrates the use of format trace.

ricgettr 0
ricfmttr

This sample reads the trace buffer on card 0 and writes the formatted trace to stdout. A file
rictrace.bin is created in the current directory.

Format Trace Messages and Exit Codes

The contents of the message file used by all utilities are listed in Appendix B: Message File
on page 295. The messages used by the Format Trace utility are listed in Figure 6-6. The
Format Trace utility also sets its exit code value to indicate the status of the Format Trace
operation. The following table correlates the exit code of the Format Trace utility with the
messages.

Table 6-7. Format Trace Utility Messages and Exit Codes

Message
Number Exit Code Notes
RIC0001 RC_UTIL_INVALID_CMDLINE_OPTION
RIC0002 RC_UTIL_INVALID_CMDLINE_PARM
RIC0003 RC_UTIL_FILE_NOT_FOUND

RIC0004 RC_UTIL_FILE_ACCESS
RIC0026 RC_UTIL_FILE_FORMAT
RIC0304 RC_UTIL_WRNHELP_GIVEN

RIC0306 RC_UTIL_SUCCESS Trace buffer is empty
RIC0307 –
RIC0322,
RIC0325

None Format messages

RIC0323 RC_UTIL_SUCCESS Successful Format Trace operation
218 ARTIC960 Programmer’s Reference

Format Trace Utility
Format Trace Record Details

The following figures depict the records displayed by the Format Trace utility.

The first record contains the trace control block information. Each successive record
contains information for the required service classes. All displayed values are
hexadecimal.

For examples, see Format Trace Record Examples on page 222.

Trace Control Block Record: The following is the first record in the formatted trace. A
WrapAroundCount of 0XFFFFFFFF indicates an infinite wrap count. Service Classes
Enabled fields indicate which service classes were enabled at the time the ricgettr was
called.

Figure 6-9. Trace Control Block

���������	
���	��������								
������������	
���	�����								

������������������	����
�

�			�			�			�			�			�			�			�			
�			�			
Chapter 6: System Unit Utilities 219

Format Trace Utility
Record Description (Data in Bytes): In this record, the data is shown in bytes. The valid
kernel ServiceClass and ProcedureID fields are obtained from the service class file
ricclass.trc and the optional –C service class configuration file. The valid kernel
CallerPosition strings are PROCEDURE_ENTRY and PROCEDURE_EXIT.

Figure 6-10. Record Description for a Service Class (Data in Bytes)

�����������������������������		��������������������������������������
������
����������������������		��������������������������������������
��������������	��������������		��������������������������������������
�����������������������								��������������������������������������
���������	���

������������

�		�		�		�		�		�		�		�		� �		�		�		�		�		�		�		�		��������������������
�		�		�		�		���
220 ARTIC960 Programmer’s Reference

Format Trace Utility
Record Description (Data in Words): In this record, the data is shown in words. The
valid kernel ServiceClass and ProcedureID fields are obtained from the service class file
ricclass.trc and the optional –C service class configuration file. The valid kernel
CallerPosition strings are PROCEDURE_ENTRY and PROCEDURE_EXIT.

Figure 6-11. Record Description for a Service Class (Data in Words)

�����������������������������		��������������������������������������
������
����������������������		��������������������������������������
��������������	��������������		��������������������������������������
�����������������������								��������������������������������������
���������	���

���������
��

�								�								�								�								
�								�								�								�								
�								�								�								�								
�								�								
Chapter 6: System Unit Utilities 221

Format Trace Utility
Format Trace Record Examples

Figure 6-12. Trace Control Block Example

���������	
���	��������!!!!!!!!
������������	
���	������������"

������������������	����
�

���#���$

Figure 6-13. Record Description Example (Data in Bytes) Trace Record: 0x002E

����������������������������$����������������������%&��'�()%��*+���
������
���������������������#������������������������������%(��,&�)
���������������	�������������������������������������*(���-*���,.*/
����������������������������0��������������������������������������
����������	���*�%�1������2���

������������

�3��3"�04�#5���&�)52

Figure 6-14. Record Description Example (Data in Words) Trace Record: 0x0033

����������������������������#��������������������%��&��6(*�%��*+���
������
���������������������$���������������������������%*�'������&
���������������	�����������!!�������������������������*(���-*���)�.
����������������������������3��������������������������������������
����������	���*�%*��%&��%��

���������
��

���������
222 ARTIC960 Programmer’s Reference

Status Utility
Status Utility
The Status utility is a development tool used to examine the state of the ARTIC960
adapter. This utility can operate in the following states:

Live analysis
Examines an active card in a system. (This is the default.)

Post analysis
Examines a raw adapter dump file that was produced by the Dump utility.

The following are modes to control the display of card data:

Interactive mode
The user can interactively request the display of specific data on the card. It
uses the standard input (stdin) and standard output (stdout) devices. This is
the default.

Status mode
The utility displays a standard set of adapter structures to the standard output
device. The mode is similar to the PSTAT command in OS/2. Run the Status
utility in this mode using pipes. Type the following to call pipes:

ricstat <parameters> –S | more

The following items are displayed:

• Base hardware configuration (main menu option 1)

• The name, process ID, version, priority, and state of every process on the
adapter (main menu option 2)

• The name, attributes, and owner of every resource on the adapter (main
menu option 3)

• Exception conditions (main menu option 9)

Dump-format-mode
The address space of the adapter is displayed on the standard output device.
This mode displays all of the dumped adapter memory space in a form similar
to the dump memory command in DOS. This format is intentionally raw to
allow more advanced tools and utilities to scan the decompressed data while
still enabling manual inspection of the dump data.

The following chart summarizes the options for using the Status utility.

Table 6-8. Status Utility Options

Live Analysis Post Analysis
Interactive mode default –F dump_file

Status mode –S –F dump_file

–S
Dump-format mode N/A –D dump_file
Chapter 6: System Unit Utilities 223

Status Utility
Status Syntax

–I Specifies that all numeric prompts are decimal (the default is hexadecimal).

card_num Specifies the logical card number for live-analysis operation.

–F dump_file
Specifies a dump file for post-analysis operation.

–S Specifies non-interactive status mode.

–D dump_file
Specifies a dump file for dump-format mode.

To specify a dump_file with spaces or special characters in the name, the
name must be enclosed within quotes (“ ”). Quotes within a name are not
supported.

If no parameters are specified, the default is to prompt for card numbers in
interactive live-analysis mode rather than to provide help. The card number is
always interpreted as decimal.

Figure 6-15. Status Utility Syntax

path
ricstat

-S-I card_num

-D dump_file
-F dump_file
224 ARTIC960 Programmer’s Reference

Status Utility
Status Messages and Exit Codes

The contents of the message file used by all utilities are listed in Appendix B: Message File
on page 295. The messages used by the Status utility are listed in Table 6-9. The Status
utility also sets its exit code value to indicate the status of the operation. The following
table correlates the exit code of the Status utility with the utility messages.

Status Dump Format

The following shows the format of data displayed when using the dump-format mode of
the Status utility.

rraaaaaaaa hh hh hh hh hh hh hh hh-hh hh hh hh hh hh hh hh cccccccccccccccc

where:

rr Is either ’=>’ to indicate repeated blocks of data or ’ ’ to indicate a new block
of data.

aaaaaaaa Is the 32-bit address of this 16-byte block of data

hh Is the hexadecimal value of each byte in the block.

c Is the ASCII representation of each printable character in the block, or a
period (.) if the character is not printable.

The Status utility displays all of the memory address space contained in the dump file.
Gaps in memory address space are shown as a blank line. See Figure 6-16 for an example
of a formatted dump.

The menus, prompts, and displays used by the Status utility in interactive mode
follow those shown in Status Interactive Messages on page 227.

Table 6-9. Status Utility Messages and Exit Codes

Message
Number Return Code Notes
RIC0001 RC_UTIL_INVALID_CMDLINE_OPTION
RIC0002 RC_UTIL_INVALID_CMDLINE_PARM
RIC0003 RC_UTIL_FILE_NOT_FOUND

RIC0004 RC_UTIL_FILE_ACCESS
RIC0005 RC_UTIL_INVALID_CARD_NUMBER
RIC0010 RC_UTIL_NO_ADAPTER_RESPONSE

RIC0016 RC_UTIL_SYSTEM_ERROR
RIC0019 RC_UTIL_NOT_INSTALLED
RIC0026 RC_UTIL_FILE_FORMAT

RIC0030 RC_UTIL_WRNHELP_GIVEN
None RC_UTIL_SUCCESS Normal exit
RIC0038 RC_UTIL_ACCESS_ERROR

RIC0100–
RIC0299

None Interactive messages, menus, and
prompts
Chapter 6: System Unit Utilities 225

Status Utility
Example of a Formatted Dump

This example shows:

• Two unique blocks of data at addresses 00100000 through 0010002F, followed by
a block of FFs from address 00100030-001014FF.

• The memory address 00101410 through 0010141F is the other unique block.

• The block from 00101420–0010200F is all FFs.

• The block from 00102010 through 0010210F contains a repetitive string.

• The blank line indicates a gap in memory (from 00102110–001FFFFF) followed by a
16-byte block of 00s.

Figure 6-16. Sample Formatted Dump

�������

�������

���$%&'DEFG

�������������'��$��#�������DDDD

���

 !����������))�))�))�))�))�))�))�))�))�))�))�))�))�))�))�))��������������������

�������������������������'��'��������������������������(�������D�GXPP\�SDWWHUQ�

 !����������))�))�))�))�))�))�))�))�))�))�))�))�))�))�))�))��������������������

 !���

�������

�������

���

�������

������
226 ARTIC960 Programmer’s Reference

Status Interactive Messages
Status Interactive Messages

The following figures depict all of the menus, prompts, and displays of the Status utility in
interactive mode. In these figures:

• All displayed values are in hexadecimal

• All numeric prompts are assumed to be hexadecimal, unless preceded by "0d"

• The full hexadecimal width of numerical values is always displayed

• If a default adapter number is passed on the command line, the “Enter adapter
number” prompt does not appear and the default is used.

When responding to interactive prompts, any invalid data (entering "Z" at an adapter
number prompt, for example) causes the invalid input message to be displayed, followed
by a re-prompt for data.

When displaying data, the status utility keeps track of the number of lines displayed and
the number of lines on the screen when the Status utility is initiated. If the number of data
lines would cause the displayed data to scroll off the screen, press Enter to continue. Also,
when displaying structures that have lists of data that may potentially be corrupted or very
long, the Status utility allows the user to abort the display of the list by pressing the “q”
key while the list is being displayed. The scroll feature is disabled if the number of lines in
the current window is less than 25.

The following defines the characters used in the data:

n represents numeric data

s represents string data

t represents a memory type
Chapter 6: System Unit Utilities 227

Status Interactive Messages
Main Menu

This is the main menu for the Status utility.

The following sections explain each of the options on the Status utility main menu.

1) Configuration on page 229

2) Process Summary on page 230

3) Resource Summary on page 231

4) Memory on page 232

5) Process Details on page 233

6) Process Resources on page 237

7) Process Parameters on page 238

8) Resource Details on page 239

9) Exception Conditions on page 250

10) VPD Information on page 251

11) 80960 Registers on page 252. This option is displayed only if the Status utility is
called on a dump file with the -F switch.

Vector details are available only when specified by name or number. See Vector Resource
Details on page 249 for an explanation of the displayed information. See Figure 6-63 on
page 260 for an example.

Figure 6-17. Status Utility Main Menu

��7��8���
�57����	9�:������	
�"7������������11���
�#7��*����������11���
�37��&�1���
�07����������
������
�;7�������������������
�$7��������������1�����
�47��*��������
������
�<7����������	���	
����	�
5�7��+����	9��1����	
557��4�<;����:������

�	�������1�9���
�������=
228 ARTIC960 Programmer’s Reference

Status Interactive Messages
1) Configuration

The following screen shows the prompts and items displayed when the Configuration
option is chosen from the main menu.

• If a memory window is not configured, its data line is not displayed.

• On OS/2 systems with PCI cards, the Slot Number field displays FF.

• Valid values for Bus Type are MCA or PCI.

• Valid values for Interface Chip are Miami, MiamiP2P, or Rx.

• Valid values for Data Cache HW are Present or Not Present.

• To the right of the AIB ID is a descriptive AIB name.

– If the daughter-card type is a PMC and the card is not present,
0X00000000 ()is displayed.

– If a PMC card is present, 0XFFFFFFFF (PMC Adapter Present) is displayed.

• The Total memory size is first shown in bytes. To the right of the size in bytes is
the memory size converted to megabytes.

 See Figure 6-44 on page 253 for an example.

Figure 6-18. Status Utility Configuration Display

�	�����
������	�1����=�
�����	�1�������������������		
���
�����������������������								
����.�������������������������
�	���9�����>�������������������
��������>��6����������������������
������?(��

���������������				
�	�������������������������		
���������������������������								�@�����������7
!����A�	
�A��

������������								
.�����1�1������������������								�@	2	�&�7
����������1�1��������������								

&�1����*�:��	��������������������������.���
 ������� ���������������
								������������								�@	2	�&�7������������������������
								������������								�@	2	�&�7������������������������

 ��������	���������	��	���
Chapter 6: System Unit Utilities 229

Status Interactive Messages
2) Process Summary

The following screen shows the prompts and items displayed when the Process
Summary option is chosen from the main menu. The output line is repeated for each
process running on the adapter. Valid states are:

loaded
queued
blocked
suspended
stopped
driver
waiting on PMRq
expired

See Figure 6-45 on page 253 for an example.

Figure 6-19. Status Utility Process Summary Display

�	�����
������	�1����=

�����,�1��������������������+�����	������������������
 �� �� �� ��
������������������								��								��								������������
 ��������	���������	��	��� �
230 ARTIC960 Programmer’s Reference

Status Interactive Messages
3) Resource Summary

The following screen shows the prompts and items displayed when the Resource
Summary option is chosen from the main menu. The output line is repeated for each
resource on the adapter. Valid resource types are:

semaphore
event
memory
timer
queue
mailbox
signal
vector
driver
hardware device

See Figure 6-46 on page 254 for an example.

Figure 6-20. Status Utility Resource Summary Display

�	�����
������	�1����=

�����,�1����������.���
 ��
����������������������������
� ��������	���������	��	���
Chapter 6: System Unit Utilities 231

Status Interactive Messages
4) Memory

The following screen shows the prompts and items displayed when the Memory
option is chosen from the main menu.

• The address of the card can be specified by the local card address or the memory
name.

• By entering a B or W at the prompt, the data can be displayed two different ways:
byte mode or word mode.

– If the byte mode (B) is chosen, the three groups displayed are:

— Address
— Hexadecimal value of each byte
— ASCII representation of each byte (if the character is not a printable

character, a period is displayed)

– If the word mode (W) is chosen, the two groups displayed are:

— Address
— Hexadecimal value of each word

• If the address was previously entered and a NULL value was entered at the
memory address prompt, the Status utility continues to display the memory.

• The output line is repeated as necessary to display all data.

See Figure 6-47 on page 254 for an example.

Figure 6-21. Status Utility Memory Display

(QWHU�DGDSWHU�QXPEHU� !

(QWHU�>$GGUHVV_1DPH@>/HQJWK@>%_:@�2U���WR�5HWXUQ� !

��DDDDDDDD��KK�KK�KK�KK�KK�KK�KK�KK�KK�KK�KK�KK�KK�KK�KK�KK���FFFFFFFFFFFFFFFF

OR
��DDDDDDDD��KKKKKKKK�KKKKKKKK�KKKKKKKK�KKKKKKKK
232 ARTIC960 Programmer’s Reference

Status Interactive Messages
5) Process Details

The following screen shows the prompts and items displayed when the Process Details
option is chosen from the main menu.

Valid process states are:

loaded
queued
blocked
driver
suspended
wait on PMRq
stopped
expired

Valid process types are:

normal
driver
subsystem
kernel

An expired process is one that has been stopped and unloaded from the adapter. If a
process is in the stopped or expired state, the Process Details submenu also shows
termination status information. A process can be terminated because of the following
events:

Process Terminated by Software Event on page 234
Process Terminated by Processor Event on page 235
Process Terminated by Adapter Event on page 236

See Figure 6-48 on page 254 for an example.

Figure 6-22. Status Utility Process Details Display

�	�����
������	�1����=
�	������������	�1��������=

,�1�������������������������������
������������������								
������������������								
�	�������	��������								
����B����	��������								
����1����	��������								
�����������������������������
+�����	�����������								
.����������������������������
Chapter 6: System Unit Utilities 233

Status Interactive Messages
Process Terminated by Software Event: The following screen shows prompts and
items displayed when the Process Details option is chosen from the main menu, the
process is in a stopped or expired state, and the termination code is software.

See Figure 6-49 on page 255 for an example.

The valid values for Source Of Req are shown in Table 6-10.

Table 6-10. Source of Request

Source of Request Value Meaning
Local Request came from a process on the local adapter.
Remote Request came through a kernel mailbox command from

either the local adapter or a peer unit.
System Unit Command Request came from the system unit through a command

(probably issued using ricload with the -U parameter).

Figure 6-23. Process Details Display—Process Terminated by Software Event

�	�����
������	�1����=
�	������������	�1��������=

,�1�������������������������������
������������������								
������������������								
�	�������	��������								
����B����	��������								
����1����	��������								
�����������������������������
+�����	�����������								
.����������������������������

.��1�	����	���
�����9�A���
*�C��������
������								
�������(9�*�C���������������������
��������
���������								
234 ARTIC960 Programmer’s Reference

Status Interactive Messages
Process Terminated by Processor Event: The following screen shows the prompts
and items displayed when the Process Details option is chosen, the process is in a stopped
or expired state, and the termination code is processor.

See Figure 6-50 on page 255 for an example.

Table 6-11 shows the Fault Type and SubType values.

Table 6-11. Termination Status Fault Types and Subtypes for a Processor Event

Fault Type Fault Subtype Notes
Parallel Parallel faults occurred
Trace Instruction

Branch
Call
Return
PreReturn
Supervisor
Breakpoint

Operation Invalid Opcode Operation Unaligned is
80960CA specific
extension

Unimplemented
Unaligned
Invalid Operand

Arithmetic Integer Overflow

Arithmetic Zero-Divide

Constraint Constraint Range
Privileged

Protection Length
Type Type Mismatch
Reserved Reserved Reserved

Figure 6-24. Process Details Display—Process Terminated by Processor Event

�	�����
������	�1����=
�	������������	�1��������=

,�1�������������������������������
������������������								
������������������								
�	�������	��������								
����B����	��������								
����1����	��������								
�����������������������������
+�����	�����������								
.����������������������������

.��1�	����	���
������������
!�����.���������������������������
���.������������������������������
��
���

����������								
Chapter 6: System Unit Utilities 235

Status Interactive Messages
Process Terminated by Adapter Event: The following screen shows the prompts
and items displayed when the Process Details option is chosen from the main menu, the
process is in a stopped or expired state, and the termination code is Adapter.

Valid values for Trap Type are: memory violation and processor.

See Figure 6-51 on page 256 for an example.

Figure 6-25. Process Details Display—Process Terminated by Adapter Event

�	�����
������	�1����=
�	������������	�1��������=

,�1�������������������������������
������������������								
������������������								
�	�������	��������								
����B����	��������								
����1����	��������								
�����������������������������
+�����	�����������								
.����������������������������

.��1�	����	���
����
�����

.����.����������������������������
&�1�����

��������								
��
���

����������								
236 ARTIC960 Programmer’s Reference

Status Interactive Messages
6) Process Resources

The following screen shows the prompts and items displayed when the Process resources
option is chosen from the main menu. The display format is identical to the Resource
summary on page 231, except that only the resources for the selected process’ resources
are displayed. The output line is repeated for each resource.

See Figure 6-52 on page 256 for an example.

Figure 6-26. Status Utility Process Resources Display

�	�����
������	�1����=
�	������������	�1��������=

�����,�1�����������6�	
�����.���
 �� ��
������������������								������������
Chapter 6: System Unit Utilities 237

Status Interactive Messages
7) Process Parameters

The following screen shows the prompts and items displayed when the Process parameters
option is chosen from the main menu. The output line is repeated to display all parameters.

See Figure 6-53 on page 257 for an example.

Figure 6-27. Status Utility Process Parameters Display

�	�����
������	�1����=
�	������������	�1��������=

��:�D		E��F�����F
238 ARTIC960 Programmer’s Reference

Status Interactive Messages
8) Resource Details

The format of the Resource details display depends on the individual resource.

If a resource name without the resource type prefix is specified on the main menu, the
following menu is displayed and you are asked to indicate the resource type.

The following sections explain each of the options on the Resource details submenu.

1) Device Driver (Resource Details Submenu) on page 240

2) Event (Resource Details Submenu) on page 241

3) Mailbox (Resource Details Submenu) on page 242

4) Memory (Resource Details Submenu) on page 243

5) Queue (Resource Details Submenu) on page 244

6) Semaphore (Resource Details Submenu) on page 245

7) Signal (Resource Details Submenu) on page 246

8) Timer (Resource Details Submenu) on page 247

9) Hardware Device (Resource Details Submenu) on page 248

Vector details are available only when specified by name or number. See Vector Resource
Details on page 249 for an explanation of the displayed information. See Figure 6-63 on
page 260 for an example.

Figure 6-28. Resource Details Submenu

�7�*����	�������������1�	�
57��������������
"7����	�
#7�&������
37�&�1���
07�8����
;7���1��>���
$7���:	��
47�.�1��
<7�6��
A����������

�	�����>����������������=
Chapter 6: System Unit Utilities 239

Status Interactive Messages
 1) Device Driver (Resource Details Submenu): The following screen shows the
prompts and items displayed when a device driver is selected from the Resource details
submenu. The entries in the Access list fields show all processes that have access to the
resource.

See Figure 6-54 on page 257 for an example.

Figure 6-29. Device Driver Detail Display

�	�����
������	�1����=
�	�������������	�1�����>�	
���=

*���������������
�����
�������	�1����������������������
��������	�1���������������������
���������	���������������

������������

�����,����������������,�1����������������6�	
��
 ������ �����������
								���������������������������������								
240 ARTIC960 Programmer’s Reference

Status Interactive Messages
2) Event (Resource Details Submenu): The following screen shows the prompts
and items displayed when an event is selected from the Resource details submenu. The
entries in the Semaphores field show each semaphore in the event. The entries in the
Access list fields show all processes that have access to the resource.

See Figure 6-55 on page 257 for an example.

Figure 6-30. Event Detail Display

�	�����
������	�1����=
�	�������������	�1�����>�	
���=

*������������������	�
,�1�����������������������������
��1��>��������������������������
���������������������������������

������������

�����,��������������,�1�������6�	
��
 ���� ��
								����������������������								
Chapter 6: System Unit Utilities 241

Status Interactive Messages
3) Mailbox (Resource Details Submenu): The following screen shows the prompts
and items displayed when a mailbox is selected from the Resource details submenu.

• Valid mailbox types are: local, global, and remote.

• The Name field is the name of the memory associated with the mailbox. If no memory
is associated with the mailbox, nothing is displayed in this field.

• The entries in the Access list fields show all processes that have access to the resource.

• If the mailbox is empty, the string "<empty>" is displayed on the Messages line.
Otherwise, the first 16 bytes of each mailbox element are displayed in the standard
memory-display format.

See Figure 6-56 on page 258 for an example.

Figure 6-31. Mailbox Detail Display

(QWHU�DGDSWHU�QXPEHU� !

(QWHU�UHVRXUFH�QDPH�RU�KDQGOH� !

5HVRXUFH�W\SH���PDLOER[

1DPH������������VVVVVVVVVVVVVVVV

7\SH������������VVVVVV

5HFHLYHU��������VVVVVVVVVVVVVVVV

6HPDSKRUH�������QQQQQQQQ

$FFHVV�OLVW�

3URF�1R�����3URFHVV�1DPH����+DQGOH����0HPRU\�1DPH

��

QQQQQQQQ��VVVVVVVVVVVVVVVV��QQQQQQQQ��VVVVVVVVVVVVVVVV��

0HVVDJHV��������VVVVVVV

��DDDDDDDD��KK�KK�KK�KK�KK�KK�KK�KK�KK�KK�KK�KK�KK�KK�KK�KK����FFFFFFFFFFFFFFFF�
242 ARTIC960 Programmer’s Reference

Status Interactive Messages
4) Memory (Resource Details Submenu): The following screen shows the prompts
and items displayed when a memory is selected from the Resource details submenu.

• Valid strings for the AIB DMA Access and Mchl Access fields are: R/W, R/O, W/O,
or none.

• Valid strings for the Sharable field are: yes or no.

• The entries in the Access list fields show all processes that have access to the resource.

See Figure 6-57 on page 258 for an example.

Figure 6-32. Memory Detail Display

�	�����
������	�1����=
�	�������������	�1�����>�	
���=

*���������������1�1���
,�1�����������������������������
�

�������������								
����������������								
�����&�������������
&�>����������������
�>�����������������

������������

�����,��������������,�1�������6�	
������������
 ���� �� ��
								����������������������								������
Chapter 6: System Unit Utilities 243

Status Interactive Messages
5) Queue (Resource Details Submenu): The following screen shows the prompts
and items displayed when a queue is selected from the Resource details submenu.

• The entries in the Access list fields show all processes that have access to the resource.

• The Semaphore field is the handle of the semaphore associated with the queue.

• If the queue is empty, the string "<empty>" is displayed on the "Elements" line.
Otherwise, the first 16 bytes of each queue element are displayed in the standard
memory-display format.

See Figure 6-58 on page 259 for an example.

Figure 6-33. Queue Detail Display

(QWHU�DGDSWHU�QXPEHU� !

(QWHU�UHVRXUFH�QDPH�RU�KDQGOH� !

5HVRXUFH�W\SH���TXHXH

1DPH������������VVVVVVVVVVVVVVVV

$FFHVV�OLVW�

3URF�1R����3URFHVV�1DPH������+DQGOH����6HPDSKRUH

���

QQQQQQQQ���VVVVVVVVVVVVVVVV��QQQQQQQQ��QQQQQQQQ�

(OHPHQWV��������VVVVVVV

��DDDDDDDD��KK�KK�KK�KK�KK�KK�KK�KK�KK�KK�KK�KK�KK�KK�KK�KK����FFFFFFFFFFFFFFFF�
244 ARTIC960 Programmer’s Reference

Status Interactive Messages
6) Semaphore (Resource Details Submenu): The following screen shows the
prompts and items displayed when Semaphore is selected from the Resource details
submenu. The entries in the Access list fields show all processes that have access to the
resource.

See Figure 6-59 on page 259 for an example.

Figure 6-34. Semaphore Detail Display

�	�����
������	�1����=
�	�������������	�1�����>�	
���=

*�����������������1��>���
,�1�����������������������������
���	������������								

������������

�����,��������������,�1������6�	
��
 ���� ���
								���������������������								
Chapter 6: System Unit Utilities 245

Status Interactive Messages
7) Signal (Resource Details Submenu): The following screen shows the prompts
and items displayed when a signal is selected from the Resource details submenu.

• Valid signal options are: always, match, and sender.

• The entries in the Access list fields show all processes that have access to the resource.

• The Entry field is empty if the Option field is sender.

• The Key field is ignored unless the Option field is match.

See Figure 6-60 on page 259 for an example.

Figure 6-35. Signal Detail Display

�	�����
������	�1����=
�	�������������	�1�����>�	
���=

*�����������������:	��
,�1�����������������������������

������������

�����,��������������,�1������6�	
�������	���������G��������(����	
 ���� �� �� ��� ��
								��������������������								��								��								�����������
246 ARTIC960 Programmer’s Reference

Status Interactive Messages
8) Timer (Resource Details Submenu): The following screen shows the prompts
and items displayed when a timer is selected from the Resource details submenu.

Valid timer states are: running, stopped, and expired.

See Figure 6-61 on page 260 for an example.

Figure 6-36. Timer Detail Display

�	�����
������	�1����=
�	�������������	�1�����>�	
���=

*�����������������1��
,�1�����������������������������
6�	
������������								
6�	
������������								
���������������������
(A	���	�1�����������������������
(A	���	���������								
Chapter 6: System Unit Utilities 247

Status Interactive Messages
9) Hardware Device (Resource Details Submenu): The following screen shows
the prompts and items displayed when a hardware device is selected from the Resource
details option of the main menu.

• The values for the Valid data field are: yes and no.

• The Owner name and Owner no fields may be blank if the device is not allocated.

• The Device data fields are displayed only if the valid data flag indicates that it is
available.

See Figure 6-62 on page 260 for an example.

Figure 6-37. Hardware Device Detail Display

(QWHU�DGDSWHU�QXPEHU� !

(QWHU�UHVRXUFH�QDPH�RU�KDQGOH� !

5HVRXUFH�W\SH���KDUGZDUH�GHYLFH

1DPH������������VVVVVVVVVVVVVVVV

6WDWXV����������QQ

9DOLG�GDWD������VVV

2ZQHU�QDPH������VVVVVVVVVVVVVVVV

2ZQHU�QR��������QQQQQQQQ

'HYLFH�GDWD�

��DDDDDDDD��KK�KK�KK�KK�KK�KK�KK�KK�KK�KK�KK�KK�KK�KK�KK�KK����FFFFFFFFFFFFFFFF�
248 ARTIC960 Programmer’s Reference

Status Interactive Messages
Vector Resource Details: The following screen shows the prompts and items
displayed when a vector resource number or name is specified on the main menu.

• The entries in the Access list fields show all processes that have access to the resource.

• Valid values for the Protection field are: enabled and disabled.

• Valid values for the Return Code field are: yes and no.

See Figure 6-63 on page 260 for an example.

Figure 6-38. Vector Detail Display

�	�����
������	�1����=
�	�������������	�1�����>�	
���=

*���������������������
+���������������								

������������

�����,�����������,�1������6�	
�����6�	
����������������	��*����	���
�
 �� ����� ��� ���� ��
								������������������								�										�����������������������
Chapter 6: System Unit Utilities 249

Status Interactive Messages
9) Exception Conditions

The following screen shows the prompts and items displayed when the Exception
conditions option is chosen from the main menu.

• The exception code is interpreted and a descriptive string is displayed if the exception
is a predefined exception condition. Table 6-12 lists the recognized exceptions.

• The entries in the Exception data fields show the data for all exception conditions.
However, the Exception data fields are not displayed if the exception code indicates
that no exception-condition is present.

See Figure 6-64 on page 261 for an example.

Table 6-12. Recognized Exception Conditions

Fault Type Exception

Processor Fault Operation

Processor Fault Arithmetic

Processor Fault Constraint

Processor Fault Type Mismatch

Adapter Fault Watchdog Timeout

Adapter Fault Parity

Adapter Fault 80960 Memory Protection Violation

Adapter Fault System Bus Master Memory Protection Violation

Adapter Fault AIB Memory Protection Violation

Adapter Fault Async No More Resources

Adapter Fault Invalid Interrupt

Adapter Fault Processor

Adapter Fault NMI Interrupt

Adapter Fault PLX Interrupt

Adapter Error Power On Self Test Failure

Software Error Data Corruption

Software Error Adapter POST Failure

Software Error System Bus I/O Subsystem Failure

Software Error SCB Subsystem Failure

Software Error External Mailbox Failure

Figure 6-39. Status Utility Exception Conditions Display

�	�����
������	�1����=

��������	���
���								�@�����������������7

��������	�
����
������������>>>>>>>>�>>>>>>>>�>>>>>>>>�>>>>>>>>�

 ��������	���������	��	���
250 ARTIC960 Programmer’s Reference

Status Interactive Messages
10) VPD Information

The following submenu shows the available selections to display Vital Product Data
(VPD) information when the VPD information option is chosen from the main menu.

• For each selection, the resulting screen format is the same.

• Selection 2 is not displayed if the attached card is a PMC card.

The following screen shows the VPD information contained in the ROM for Intel-based
systems.

The following screen shows the VPD information contained in the ROM for RISC
System/6000.

Figure 6-40. Status Utility VPD Information Display

��7����������&�	�
�57������*(&�+����	9��1����	
�"7�����*(&�+����	9��1����	

�	�������1�9���
�������=

Figure 6-41. Displayed VPD Information for Intel-based Systems

���������������&����:����������������������������������
����
������.�������������		
��������,�1��������������												
���!*-�,�1���������������												
����������,�1������������								
���&�	�9�����������������										
������'������������������												
���*(��'������	
���������	2	

 ��������	���������	��	���

Figure 6-42. Displayed VPD Information for RISC System/6000

���������������&����:����������������������������������
����
������.�������������		
��������,�1��������������												
���!*-�,�1���������������												
����������,�1������������								
���&�	�9�����������������										
������'������������������												
�����������������'�������	2	
������:	������'����������	2	
���'��
�����&������
�����		2		
���*(��'������	
���������	2	

 ��������	���������	��	���
Chapter 6: System Unit Utilities 251

Status Interactive Messages
11) 80960 Registers

The following screen shows the prompts and items displayed when the 80960 registers
option is chosen from the main menu. This option is available only if the Status utility
is called on a dump file using the -F switch.

See Figure 6-67 on page 262 for an example.

• The following SF registers are displayed, depending on the adapter.

• The lines fp0–fp3 are displayed only on adapters with an 80960 processor that
supports floating-point operations.

Adapters

SF Registers Displayed

 sf0 sf1 sf2 sf3 sf4

ARTIC960 and ARTIC960 PCI y y y n n

ARTIC960Rx and ARTIC960RxD y y n y n

Figure 6-43. Status Utility 80960 Registers Display

�	�����
������	�1����=

:����								��������������								�@�9�7
:5���								����������5���								�@��7
:"���								����������"���								�@���7
:#���								����������#���								
:3���								����������3���								
:0���								����������0���								
:;���								����������;���								
:$���								����������$���								
:4���								����������4���								
:<���								����������<���								
:5���								����������5���								
:55��								����������55��								
:5"��								����������5"��								
:5#��								����������5#��								
:53��								����������53��								
:50��								�@9�7�����50��								

�9���								�@����7
�95��								�@����7
�9"��								�@����7
�9#��								�@����7
�93��								�@����7

�����								
�����								
�����								
�����								

9����																				����9�"��																				
9�5��																				����9�#��																				

 ��������	���������	��	���
252 ARTIC960 Programmer’s Reference

Examples of Interactive Messages
Examples of Interactive Messages

The following examples all assume that the adapter number has been passed on the
command line as a default.

1) Configuration

This example shows an Rx card with one window.

2) Process Summary

Figure 6-44. Example Screen—Configuration

�����	�1���������������������!!
���
�������������������������4�5�53
����.�������������������������
�	���9�����>���������������*�
��������>��6���������������,��������	�
������?(��

���������������������
�	����������������������������
�����������������������������!!!!!!!!�@�&���
�����������	�7
!����A�	
�A��

��������������!�������
.�����1�1����������������������3������@32��&�7
����������1�1������������������#�4���

&�1����*�:��	�������������������������������.���
 ���� �����������������������
���������������������3������@32��&�7�����������B��

 ��������	���������	��	���

Figure 6-45. Example Screen—Process Summary

�����,�1�����������������������+�����	������������������������
 �� ����� ����� �����
�*�%���%B��	2����������0����������5�����5��������������������B�

�*�%*��%&��%���������5�0���5������5�����5������������"�������B�

�*�%���%����2��������5�0���"������5�����5�����������"4���
�����
�*�%���%1���2��������5�0���#������5�����5�����������"4�������B�

�*�%���%���2���������5�0���3������5�����5������������5�������B�

�*�%�*(�52�����������"�0���0������������������������"4���C����

�*�%��9�	������������"�0���;������������������������"4��������	
�

�*�%&���	������������"�0���$������������������������"4�������B�

 ��������	���������	��	���
Chapter 6: System Unit Utilities 253

Examples of Interactive Messages
3) Resource Summary

4) Memory

5) Process Details

Figure 6-46. Example Screen—Resource Summary

�����,�1�������������.���
 �����
8-�%8-�-�%�����������C����
&�&%��.�%�-!!�*������1�1���
��&%���������	�5�������1��>���
��&%���������	�"�������1��>���
.�&%!��
&�,�A����������1��

 ��������	���������	��	���

Figure 6-47. Example Screen—Memory

(QWHU�>$GGUHVV_1DPH@>/HQJWK@>%_:@�2U���WR�5HWXUQ� !�����������$�%

���$%&�������

���DE��������

��

(QWHU�>$GGUHVV_1DPH@>/HQJWK@>%_:@�2U���WR�5HWXUQ� !������������:

���

���

Figure 6-48. Example Screen—Process Details

�	������������	�1��������=��*(����%�

,�1����������������*�%�*(����%�
���������������������5�0���$
��������������������"4
�	�������	����������""�;5�;�
����B����	����������""�;;5!�
����1����	����������""�;$5#3
������������������C����

+�����	��������������
.�����������������	��1��
254 ARTIC960 Programmer’s Reference

Examples of Interactive Messages
This example shows a process terminated by a software event. The process stopped normally with
an error code of 0.

This example shows a process terminated by a processor event. The process was stopped
because it tried to perform an unsupported operation.

Figure 6-49. Example Screen—Process Terminated by Software Event

�	������������	�1��������=�;

,�1���������������*�%��������2���
��������������������5�0���;
�������������������"4
�	�������	���������""�$!���
����B����	���������""�$�5��
����1����	���������""�4�5#3
�����������������������

+�����	�������������
.����������������	��1��

.��1�	����	���
����9�A���
*�C��������
��������5�0���;
�������(9�*�C����'����
��������
�����������

Figure 6-50. Example Screen—Process Terminated by Processor Event

�	������������	�1��������=���9����2���

,�1���������������*�%��9����2���
��������������������5�0���$
�������������������"4
�	�������	���������""�4"�"�
����B����	���������""�455��
����1����	���������""�4#533
�����������������������

+�����	�������������
.����������������	��1��

.��1�	����	���
�����������
!�����.����������(�������	
������������������	����
�(���
�
��
���

�����������""�4#���
Chapter 6: System Unit Utilities 255

Examples of Interactive Messages
This example shows a process terminated by an adapter event. The process was stopped
because of an unsupported memory access.

6) Process Resources

The process resources screen includes resources that the process created (owns) and
opened.

Figure 6-51. EXample Screen—Process Terminated by Adapter Event

�	������������	�1��������=�.�*(�%#

,�1���������������*�%.�*(�%#
��������������������5�0����
�������������������"4
�	�������	���������""�4����
����B����	���������""�4!5��
����1����	���������""�<#5#3
�����������������������

+�����	�������������
.����������������	��1��

.��1�	����	���
���
�����

.����.��������������������
&�1�����

���������"���"�3�
��
���

�����������""�4�5��

Figure 6-52. Sample Screen—Process Resources

�	������������	�1��������=�;

�����,�1�����������6�	
��������������.���
 �� �����������
�*�H������2����������#�3�04;���������1�1���
�*�H������2����������#�3�04����������1�1���
�*�H������2����������#�3�04<���������1�1���
&�&IH��&�0�I���������"�3�044���������1�1���
�.&H������2����������"���04"�����������1��
&��H��&��������������"�$�045�����������1��>���
&�)H��&��������������"�#�04����������1������
&�&%��99�������������"�3�04#���������1�1���
8�&H���&�:�����������"�$�04������������1��>���
8-�%���&�:�����������"�;�043���������C����
��&%�����������������"�$�0$!�����������1��>���
256 ARTIC960 Programmer’s Reference

Examples of Interactive Messages
7) Process Parameters

8) Resource Details

The following are example screens for resource details.

Figure 6-53. Example Screen—Process Parameters

�	������������	�1��������=�&���	

��:�D�E��F&���	F
��:�D5E��FJ��F
��:�D"E��F�99F
��:�D#E��F�>�F
��:�D3E��F�����F
��:�D0E��F���F
��:�D;E��F�����
F
��:�D$E��F���KF

Figure 6-54. Example Screen—Device Driver Detail

�	�������������	�1�����>�	
���=�5�5�0$�

*���������������
�����
�������	�1���������%����������
��������	�1������*�%������)
���������	������
������

������������

�����,������������������,�1������������6�	
��
 �������� �������
�����0�����������*�%����������������������5�5�0$�
�����;�����������*�%�	����2���������������5�5�0;<
�����$�����������*�%�������2��������������5�5�00�

Figure 6-55. Example Screen—Event Detail

�	�������������	�1�����>�	
���=��5�"�00!

*������������������	�
,�1��������������+,%�+�,.%�5
��1��>������������&%���������	�5
������������������&%���������	�"
������������������&%

������������

�����,���������������,�1�������6�	
��
 ����� ��
�����<��������*�%��1��������������5�"�00!
Chapter 6: System Unit Utilities 257

Examples of Interactive Messages

Figure 6-56. Example Screen—Mailbox Detail

(QWHU�UHVRXUFH�QDPH�RU�KDQGOH� !��[��������

5HVRXUFH�W\SH���PDLOER[

1DPH������������0%;B,QFRPLQJ'DWD0E[

7\SH������������ORFDO

5HFHLYHU��������35&B/LQH3URFHVVRU

6HPDSKRUH��������[��������

$FFHVV�OLVW�

3URF�1R�����3URFHVV�1DPH�������+DQGOH���������0HPRU\�1DPH

��

�[����������35&B/LQH3URFHVVRU���[�������������0%0B/LQH%XIIHU'DWD

�[����������35&B/LQH)HHGHU������[�������%�����0%0B/LQH%XIIHU'DWD

0HVVDJHV�

���$%&�������

���DE��������

���DE&�������

Figure 6-57. Example Screen—Memory Detail

�	�������������	�1�����>�	
���=��5�3�00�

*���������������1�1���
,�1�������������&�&%��.�%�-!!�*�
�

���������������"��3"���
������������������"���
�����&����������*?�
&�>�������������*?�
�>�����������������

������������

�����,���������������,�1����������6�	
����������������
 ����� ������ ������
����5���������*�%����&�16�:����������5�3�00�����*?�
����5���������*�%�������&�	����������5�3�05$����*?(
258 ARTIC960 Programmer’s Reference

Examples of Interactive Messages

Figure 6-58. Example Screen—Queue Detail

�	�������������	�1�����>�	
���=��5�;�0$"

*���������������C����
,�1�������������8-�%8-�-�%�

������������

�����,��������������,�1����������6�	
�����������1��>���
 ���� ����� �����
����55�������*�%��	�����������������5�;�0$"������5�$�0$5
����5"�������*�%��������������������5�;�0;5������5�$�0;�

���1�	����������L�1���=

Figure 6-59. Example Screen—Semaphore Detail

�	�������������	�1�����>�	
���=��5�$�0;�

*�����������������1��>���
,�1���������������&%���������	��
���	�������������

������������

�����,������������������,�1���������6�	
��
 �������� ����
�����;�����������*�%�*(��2�������������5�$�0$5
�����$�����������*�%�*(��2�������������5�$�0;�

Figure 6-60. Example Screen—Signal Detail

(QWHU�UHVRXUFH�QDPH�RU�KDQGOH� !��������(

5HVRXUFH�W\SH���VLJQDO

1DPH������������%XIIHU5FYG6LJ

$FFHVV�OLVW�

3URF�1R�����3URFHVV�1DPH������+DQGOH������(QWU\������.H\���������2SWLRQ

���

�[����������0RQLWRU$OO���������[�������(���[����%�)���[����������DOZD\V

�[����������0RQLWRU6RPH��������[�����������[������$���[����������PDWFK
Chapter 6: System Unit Utilities 259

Examples of Interactive Messages
The following screen shows the prompts and items displayed when a vector resource
number or name is specified on the main menu.

Figure 6-61. Example Screen—Timer Detail

�	�������������	�1�����>�	
���=��5���0$#

*�����������������1��
,�1�������������.�&%!��
&�,�A
6�	
���������������5���00�
6�	
��������������""�435��
������������������		�	:
(A	���	�1��������*�%&���	
(A	���	��������������;

Figure 6-62. Example Screen—Hardware Device Detail

(QWHU�UHVRXUFH�QDPH�RU�KDQGOH� !���&����

5HVRXUFH�W\SH���KDUGZDUH�GHYLFH

1DPH������������6WUDQJH�'HYLFH

6WDWXV�����������[���

9DOLG�GDWD������\HV

2ZQHU�QDPH������35&BDLEBSURF

2ZQHU�QR���������[���%

'HYLFH�GDWD�

���$%&���������

��

Figure 6-63. Example Screen—Vector Detail

(QWHU�UHVRXUFH�QDPH�RU�KDQGOH� !���

5HVRXUFH�W\SH���YHFWRU�9HFWRU����������9(&B6:9HFW���

$FFHVV�OLVW�

3URF�1R����3URFHVV�1DPH���+DQGOH������+DQGOHU�����3URWHFWLRQ��5HWXUQ�&RGH

���

�[���������35&B7UDQV'DWD���[�������(���[����%�)���HQDEOHG�����\HV

�[���������35&B0RQLWRU(UU��[�����������[������$���GLVDEOHG����\HV
260 ARTIC960 Programmer’s Reference

Examples of Interactive Messages
9) Exception Conditions

10) VPD Information

Figure 6-64. Example Screen—Exception Conditions

��������	���
�����"3�@�
������!����������>
�:�.�1����7

��������	�
����
�����������5�����������������5�0���"�����������5
����""�����3������������������������������������
��

 ��������	���������	��	���

Figure 6-65. Example Screen—VPD Information for PS/2 Systems

���������������&����:�����*.��<;���� �����������
�����
����
������.���������������
��������,�1�������������������<5!$$5�
���!*-�,�1��������������������;5J"<5;
����������,�1������������5"#30;$4
���&�	�9�����������������5<44������
������'�������������������������##";5
���*(��'������	
���������523

 ��������	���������	��	���

Figure 6-66. Example Screen—VPD Information for RISC System/6000

���������������&����:�����*.��<;���� �����������
�����
����
������.���������������
��������,�1�������������������<5!$$5�
���!*-�,�1��������������������;5J"<5;
����������,�1������������5"#30;$4
���&�	�9�����������������5<44������
������'�������������������������##";5
�����������������'�������52�
������:	������'����������52�
���'��
�����&������
������52�5
���*(��'������	
���������523

 ��������	���������	��	���
Chapter 6: System Unit Utilities 261

Examples of Interactive Messages
11) 80960 Registers

Figure 6-67. Example Screen—80960 Registers

�	�������1�9���
�������=55

:������"���#5�3��������������""�;�0�(�@�9�7
:5���������������������5�����""�;�;;��@��7
:"���������������������"�����""��;45��@���7
:#�����""�;$"����������#�����5!!�"�5�
:3�����"���#5#4��������3�������������
:0�����""�;$"�4��������0�����������5�
:;���������������������;������������5
:$���������������������$������������5
:4�����""�;�#����������4�����""�;$"��
:<����������5�5��������<�����������"3
:5����������3�3��������5�����������"�
:55����������#���������55����������"�
:5"����""�;4�4���������5"������������
:5#����������5"��������5#������������
:53��������������������53������������
:50����""�;�;5��@9�7���50������������

�9����������!!!�@��,�7
�95�������������@�&�G7
�9"�������������@�&��7

�������""��;45��
��������4$!44!!�
�������!!!!;�!��
�������!��5!!45
262 ARTIC960 Programmer’s Reference

7
 System Unit APIs Chapter 7
System unit application program interfaces (APIs) are provided to allow the developer to
write programs that use the services of an ARTIC960 adapter. These APIs support only
C programs.

API Page

Base API 264

Mailbox API 276
Chapter 7: System Unit APIs 263

Base API
Base API
The following interface routines are available to the application in the base API.

All API routines block until they are completed, unless otherwise noted. Refer to the
ARTIC960 Programmer’s Guide for additional information on system unit APIs.

Routine Page

RICOpen 265

RICClose 266

RICRead 267

RICWrite 269

RICReset 271

RICGetConfig 272

RICGetVersion 273

RICGetException 274
264 ARTIC960 Programmer’s Reference

RICOpen—Open an ARTIC960 Adapter
RICOpen—Open an ARTIC960 Adapter

This routine is used to obtain a handle for use in accessing the ARTIC960 adapter.

Functional Prototype

RIC_ULONG RICOpen (RIC_CARDNUM CardNum,
 RIC_HANDLE *Handle,
 RIC_ULONG Reserved);

Parameters

CardNum Input. The logical card number to open for access.

Handle Output. Adapter device handle returned to the calling process. This handle is
passed to all other services when referring to this adapter.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_CARD_NUMBER
RC_INVALID_RESERVED_PARM
RC_SU_OPEN_FAILED

Remarks

• An application must obtain a handle for each card it accesses directly through the base
API services.

• The logical card numbers are assigned by the driver during installation. Refer to the
ARTIC960 Programmer’s Guide for information on the Micro Channel and PCI buses.

• In AIX:

– The configuration manager scans the physical slots from low to high, and defines
the consecutive logical card numbers starting at 0 for each supported card found.
If an ARTIC960 adapter is added to a slot before an already defined ARTIC960
adapter, it is assigned the next consecutive logical number.

– Handle is only valid to use within the process that opened it.

– There is no thread support.

• The error RC_SU_OPEN_FAILED is returned if the device driver is not installed.
RC_INVALID_CARD_NUMBER is returned if the card number is out of range (0–6 for
OS/2 and Windows NT and 0–13 for AIX).
Chapter 7: System Unit APIs 265

RICClose—Close an ARTIC960 Adapter
RICClose—Close an ARTIC960 Adapter

This routine is used to terminate access to an individual ARTIC960 adapter.

Functional Prototype

RIC_ULONG RICClose (RIC_HANDLE Handle,
 RIC_ULONG Reserved);

Parameters

Handle Input. The handle to be closed.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_SU_INVALID_HANDLE

Remarks

An application calls this routine to return a handle when it is no longer needed to access
the adapter.
266 ARTIC960 Programmer’s Reference

RICRead—Read from ARTIC960 Memory
RICRead—Read from ARTIC960 Memory

This routine is used to read data from memory on an ARTIC960 adapter into system
memory.

Functional Prototype

RIC_ULONG RICRead (RIC_HANDLE Handle,
 RIC_PTR SrcBuffer,
 void *DestBuffer,
 RIC_ULONG BufferLen,
 RIC_ULONG OptionWord);

Parameters

Handle Input. The handle for the ARTIC960 adapter.

SrcBuffer Input. The source memory buffer address on the adapter. This is a flat, 32-bit
ARTIC960 address.

DestBuffer Input. The destination buffer address in system memory. This is a 32-bit
logical address.

BufferLen Input. The length, in bytes, to be read.

OptionWord
Input. Reserved (must be 0).

Returns

RC_SUCCESS RC_NO_MORE_RES
RC_ADAPTER_EXCEPTION RC_RESET_ACTIVE
RC_DMA_TRANSFER_FAILED(AIX only) RC_SCB_TRANSFER_FAILED
RC_DUMP_ACTIVE RC_SU_INVALID_HANDLE
RC_INVALID_ADDRESS RC_TIMEOUT
RC_INVALID_MEM_ACCESS RC_SYSTEM_ERROR
RC_INVALID_OPTION RC_UNIT_NOT_FUNCTIONING
RC_INVALID_SIZE RC_WRN_PIPES_NOT_CONFIGURED
RC_NO_ADAPTER_RESPONSE

Remarks

• All references to ARTIC960 memory are flat addresses. There is no concept of
paging, shared memory, or DMA visible to the user application.

• The memory-protection hardware on the ARTIC960 adapter reports all errors to the
ARTIC960 processor. The system unit driver is not directly notified of access
violations. Because of this, short RICRead calls may succeed, even though they cause
access violations—whereas a long RICRead call to the same region may be rejected
because of improper access rights. This is because the subsystems on the card verify
proper access on all transfers requested by the system unit using SCB control
elements.

• The return code RC_WRN_PIPES_NOT_CONFIGURED is a warning indicating the
memory transfer was completed but the SCB subsystem is not configured.
Chapter 7: System Unit APIs 267

RICRead—Read from ARTIC960 Memory
• The return codes RC_DUMP_ACTIVE and RC_RESET_ACTIVE indicate a dump or reset
was active when this call was made, or a dump or reset was done while the call was
blocked.

• The return code RC_UNIT_NOT_FUNCTIONING occurs when the driver uses SCB
control elements to move the data and the adapter does not respond within an internal
driver timeout period.

• A buffer length of 0 is not valid. The maximum buffer size is limited to 64 KB.

• The IBM RISC System/6000 uses big-endian memory format, whereas the 80960 on
the ARTIC960 adapter uses little-endian format across the PCI or MCA bus. It is up to
the calling application to perform byte and word swapping where necessary. The
RICRead and RICWrite functions do not steer the data for the application.
268 ARTIC960 Programmer’s Reference

RICWrite—Write to ARTIC960 Memory
RICWrite—Write to ARTIC960 Memory

This routine is used to write data to memory on the ARTIC960 adapter.

Functional Prototype

RIC_ULONG RICWrite (RIC_HANDLE Handle,
 void *SrcBuffer,
 RIC_PTR DestBuffer,
 RIC_ULONG BufferLen,
 RIC_ULONG OptionWord);

Parameters

Handle Input. The handle for the ARTIC960 adapter.

SrcBuffer Input. The source buffer address in system memory. This is a 32-bit logical
address.

DestBuffer Input. The destination buffer address on the adapter. This is a flat 32-bit
ARTIC960 address.

BufferLen Input. The length, in bytes, to be written.

OptionWord
Input. Reserved (must be 0).

Returns

RC_SUCCESS RC_NO_MORE_RES
RC_ADAPTER_EXCEPTION RC_RESET_ACTIVE
RC_DUMP_ACTIVE RC_SCB_TRANSFER_FAILED
RC_DMA_TRANSFER_FAILED(AIX only) RC_SU_INVALID_HANDLE
RC_INVALID_ADDRESS RC_SYSTEM_ERROR
RC_INVALID_MEM_ACCESS RC_TIMEOUT
RC_INVALID_OPTION RC_UNIT_NOT_FUNCTIONING
RC_INVALID_SIZE RC_WRN_PIPES_NOT_CONFIGURED
RC_NO_ADAPTER_RESPONSE

Remarks

• All references to ARTIC960 memory are flat addresses. There is no concept of
paging, shared memory, or DMA visible to the user application.

• The memory-protection hardware on the ARTIC960 adapter reports all errors to the
ARTIC960 processor. The system unit driver is not directly notified of access
violations. Because of this, short RICRead calls may succeed, even though they cause
access violations—whereas a long RICRead call to the same region may be rejected
because of improper access rights. The reason is because the subsystems on the card
verify proper access on all transfers requested by the system unit using SCB control
elements.

• The return codes RC_DUMP_ACTIVE and RC_RESET_ACTIVE indicate a dump or reset
was active when this call was made, or a dump or reset was done while the call was
blocked.
Chapter 7: System Unit APIs 269

RICWrite—Write to ARTIC960 Memory
• The return code RC_INVALID_MEM_ACCESS cannot be received in OS/2. If the driver
detects an access violation, OS/2 terminates the process with a trap unless the
application has an exception handler registered with OS/2.

• The return code RC_UNIT_NOT_FUNCTIONING occurs when the driver uses SCB
control elements to move the data and the adapter does no respond within an internal
driver timeout period.

• The return code RC_WRN_PIPES_NOT_CONFIGURED is a warning indicating the
memory transfer was completed but the SCB subsystem is not configured.

• A buffer length of 0 is not valid. The maximum buffer size is limited to 64 KB.

• The IBM RISC System/6000 uses big-endian memory format, whereas the 80960 on
the ARTIC960 adapter uses little-endian format across the PCI or MCA bus. It is up to
the calling application to perform byte and word swapping where necessary. The
RICRead and RICWrite functions do not steer the data for the application.
270 ARTIC960 Programmer’s Reference

RICReset—Reset an ARTIC960 Adapter
RICReset—Reset an ARTIC960 Adapter

This routine is used to reset an adapter.

Functional Prototype

RIC_ULONG RICReset (RIC_HANDLE Handle,
 RIC_ULONG Reserved);

Parameters

Handle Input. The handle for the ARTIC960 adapter.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_RESERVED_PARM
RC_NO_ADAPTER_RESPONSE
RC_RESET_FAILED
RC_SU_INVALID_HANDLE
RC_SYSTEM_ERROR

Remarks

This routine resets the adapter and aborts any pending RICRead, RICWrite, SendMbx, or
ReceiveMbx commands for the adapter. In addition, the SCB configuration for the adapter
is lost during the reset.
Chapter 7: System Unit APIs 271

RICGetConfig—Get Configuration Information
RICGetConfig—Get Configuration Information

This routine is used to obtain specific hardware configuration information that is otherwise
unavailable at the application level.

Functional Prototype

RIC_ULONG RICGetConfig (RIC_HANDLE Handle,
 RIC_ULONG ConfigLen,
 RIC_CONFIG *ConfigData,
 RIC_ULONG Reserved);

Parameters

Handle Input. The handle for the ARTIC960 adapter.

ConfigLen Input. The length of the buffer provided for the returned configuration
information. The length must be less than 64 KB for OS/2 and Windows NT.

ConfigData
Input. The address of a buffer in system unit memory to receive the
configuration information. This is a 32-bit logical address.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_INVALID_RESERVED_PARM
RC_ADAPTER_EXCEPTION RC_NO_ADAPTER_RESPONSE
RC_BUFFER_TOO_SMALL RC_SU_INVALID_HANDLE
RC_INVALID_MEM_ACCESS RC_SYSTEM_ERROR (AIX only)
RC_INVALID_SIZE

Remarks

• The following information is returned in the RIC_CONFIG structure:

– Card and slot numbers
– Window sizes and locations
– Memory sizes
– AIB ID

The SlotNum field is not supported when using the ARTIC960 PCI, ARTIC960Hx, or
ARTIC960Rx adapters. The value returned should not be used at this time.

For more details on the information returned by this structure, see RIC_CONFIG
Structure on page 290.

• When either RC_ADAPTER_EXCEPTION or RC_NO_ADAPTER_RESPONSE is returned,
most of the configuration data is not valid. The partial data that is returned on these
errors includes only the logical card number, slot number, and system bus base I/O
address.

• The return code RC_INVALID_MEM_ACCESS cannot be received in OS/2. If the driver
detects an access violation, OS/2 terminates the process with a trap unless the
application has an exception handler registered with OS/2.
272 ARTIC960 Programmer’s Reference

RICGetVersion—Get Version Number
RICGetVersion—Get Version Number

This routine is used to obtain the version numbers of all of the installed ARTIC960
software. The structure returned includes major and minor version numbers for the device
driver, library code, kernel, and base subsystems.

Functional Prototype

RIC_ULONG RICGetVersion (RIC_HANDLE Handle,
 RIC_ULONG VersionLen,
 RIC_VERDATA *VersionData,
 RIC_ULONG Reserved);

Parameters

Handle Input. The handle for the ARTIC960 adapter.

VersionLen
Input. The length of the buffer provided for the returned version information.
(Cannot be greater than 64K–1 bytes.)

VersionData
Input. The address of a buffer in system unit memory to receive the version
information. This is a 32-bit logical address.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_INVALID_RESERVED_PARM
RC_BUFFER_TOO_SMALL RC_INVALID_SIZE
RC_INVALID_MEM_ACCESS RC_SU_INVALID_HANDLE

Remarks

• If the kernel or subsystems are not loaded or the adapter is inaccessible (reporting an
exception, being reset, and so forth), this service returns 0 in the corresponding
RIC_VERDATA field.

For more details on the information returned by this structure, see RIC_VERDATA
Structure on page 292.

• The return code RC_INVALID_MEM_ACCESS cannot be received in OS/2. If the driver
detects an access violation, OS/2 terminates the process with a trap unless the
application has an exception handler registered with OS/2.
Chapter 7: System Unit APIs 273

RICGetException—Get Exception Status
RICGetException—Get Exception Status

This routine is used to query and wait for the ARTIC960 adapter’s exception conditions.

Functional Prototype

RIC_ULONG RICGetException (RIC_HANDLE Handle,
 RIC_ULONG ExceptLen,
 RIC_EXCEPT *ExceptData,
 RIC_TIMEOUT Timeout,
 RIC_ULONG Reserved);

Parameters

Handle Input. The handle for the ARTIC960 adapter.

ExceptLen Input. This field specifies the length of the ExceptData buffer provided. The
value must be at least 8 to allow the exception code and actual exception data
length to be returned. It cannot be greater than 64K–1 bytes.

ExceptData
Input. The pointer to the buffer where the exception data should be returned.

Timeout Input. The timeout parameter specifies whether the call should block waiting
for an exception condition to occur. A value of 0 indicates the call should
return immediately. A value of –1 indicates the call should block until an
exception occurs on the adapter. Any other value specifies the number of
milliseconds to wait for an exception before timing out.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_INVALID_TIMEOUT
RC_DUMP_ACTIVE RC_NO_ADAPTER_RESPONSE
RC_BUFFER_TOO_SMALL RC_NO_MORE_RES (OS/2 only)
RC_HANDLE_CLOSED RC_RESET_ACTIVE
RC_INVALID_MEM_ACCESS RC_SU_INVALID_HANDLE
RC_INVALID_RESERVED_PARM RC_SYSTEM_ERROR
RC_INVALID_SIZE RC_TIMEOUT

Remarks

• RC_SUCCESS indicates that an exception has occurred and the exception data is in the
ExceptData field.

• RC_DUMP_ACTIVE and RC_RESET_ACTIVE are returned if a dump or reset is active
when the RICGetException call is made.

• RC_BUFFER_TOO_SMALL indicates that an exception has occurred, but that the length
of the buffer provided (specified in ExceptLen) is insufficient to return all of the
exception information (partial data is returned).

• RC_INVALID_MEM_ACCESS cannot be received in OS/2. If the driver detects an
access violation, OS/2 terminates the process with a trap unless the application has an
exception handler registered with OS/2.
274 ARTIC960 Programmer’s Reference

RICGetException—Get Exception Status
• RC_NO_ADAPTER_RESPONSE is returned if the adapter does not complete POST and
cannot reliably report the failing exception condition.

• RC_TIMEOUT is immediately returned if the caller specifies a timeout of 0 and no
exception condition is present.

• In AIX, ExceptData is word swapped for the caller because all exception data fields
are defined as word length.

For more details on the information returned by this structure, see RIC_EXCEPT Structure
on page 293.
Chapter 7: System Unit APIs 275

Mailbox API
Mailbox API
The programming interface for the mailbox routines is the same as the ARTIC960 kernel
mailbox API, except that there may be slight differences in the implementations—such as
additional error codes and different limits due to word sizes. These differences are noted
within the function descriptions. The following are the mailbox routines.

Only remote mailboxes are supported (mailboxes between a system process and a card
process). For system-process to system-process communications, the inter-process
communication features of the operating system can be used.

Refer to the ARTIC960 Programmer’s Guide for additional information on mailboxes.

Service Page

CreateMbx 277

OpenMbx 280

GetMbxBuffer 282

FreeMbxBuffer 283

SendMbx 284

ReceiveMbx 286

CloseMbx 288
276 ARTIC960 Programmer’s Reference

CreateMbx—Create a Mailbox
CreateMbx—Create a Mailbox

This creates a mailbox and gives access to the requesting process.

Functional Prototype

RIC_ULONG CreateMbx (char * RIC_SUPTR MbxName,
 char * RIC_SUPTR MbxRxMemName,
 RIC_ULONG MsgUnitSize,
 RIC_ULONG MsgUnitCount,
 RIC_ULONG OptionWord,
 RIC_MBXHANDLE * RIC_SUPTR MbxHandle,
 RIC_SEMHANDLE * RIC_SUPTR SemHandle,
 RIC_ULONG Reserved);

Parameters

MbxName Input. A mailbox name to assign to the mailbox so other processes can get
access to the same mailbox by name.

MbxRxMemName
Input. Optional storage-area name associated with this mailbox for receiving
messages. A value of null means that there is no name associated with the
memory, and memory cannot be shared.

MsgUnitSize
Input. The smallest message size that can be allocated. All messages are
allocated in units of this size.

MsgUnitCount
Input. The maximum number of message units that can be allocated from
this mailbox.

OptionWord
Input. Bit field to describe the options to be used to create the mailbox. The
following constants should be ORed together to build the appropriate set of
options.

• Type of mailbox to create

The caller can create either a mailbox that accepts messages from other
units (using MBX_CREATE_GLOBAL) or one that does not accept these
messages (using MBX_CREATE_LOCAL).

Because the system unit supports only remote mailboxes, the
MBX_CREATE_LOCAL option is ignored.

• Mailbox buffer-pinning option (ignored in AIX)

The caller can have the memory associated with mailbox buffers
permanently pinned (using MBX_PIN_MEMORY). If this option is not
selected, memory is pinned only for as long as absolutely necessary. This
option applies only when memory is allocated by this CreateMbx call.

MbxHandle
Output. The mailbox handle returned to the requesting process. This handle
is passed to all other mailbox services when referring to this mailbox.
Chapter 7: System Unit APIs 277

CreateMbx—Create a Mailbox
SemHandle
The semaphore handle associated with the mailbox. This handle is passed to
all other semaphore services when referring to this mailbox-associated
semaphore. This semaphore is modified whenever a message is placed in the
mailbox. In OS/2, it is cleared; in AIX, the semval variable is set to 0. For
information on semval, see /usr/include/sys/sem.h.

OS/2 Output
The semaphore is allocated by the service and the semaphore handle is
returned to the application to allow it to be used in OS/2 multiple
semaphore waits.

AIX Input/Output
The semaphore must be created by the application and removed after
CloseMbx. The application can then use the semaphore handle for a
multiple wait call. For input, the user must initialize semid and semnum
of the RIC_Semhandle (see page 279). Upon return, semval is
initialized to 1, indicating an empty mailbox.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_NO_MBX_PROCESS
RC_DUP_RES_NAME RC_NO_MORE_MBX
RC_INVALID_COUNT RC_NO_MORE_MEM
RC_INVALID_NAME RC_NO_MORE_RES
RC_INVALID_OPTION RC_NO_MORE_SEM
RC_INVALID_RESERVED_PARM RC_SYSTEM_ERROR
RC_INVALID_SIZE

Remarks

• Only the process that created the mailbox can receive messages from the mailbox.

• This service call allocates the memory requested by the user. This memory is used to
keep the messages in the mailbox. If the memory name provided by the process is the
same as that used on a previous CreateMbx or OpenMbx call, this service call gets
access to the memory pool already created. Otherwise, the service call allocates the
memory requested by the process. When memory is shared, the MsgUnitSize and
MsgUnitCount parameters must each be equal to those passed when the memory was
allocated. Otherwise, the RC_INVALID_SIZE or RC_INVALID_COUNT error is
returned, depending on which parameter is not the same as the respective input
parameter.

• OS/2 does not provide counting semaphores. In its implementation, the ReceiveMbx
call sets the semaphore before blocking on it. Applications wanting to use the
semaphore directly to wait on the arrival of a message must call the ReceiveMbx call
with a no-wait timeout value before blocking on the semaphore. The semaphore is
cleared by mailbox services when a message arrives.
278 ARTIC960 Programmer’s Reference

CreateMbx—Create a Mailbox
• In AIX, the application is responsible for creating a semaphore and providing the
returned information into the structure RIC_Semhandle (defined in rictaixa.h).

typedef struct RIC_Semhandle
{

int semid ;
int semnum ;

} RIC_SEMHANDLE ;

semid The semaphore identifier returned from semget system call

semnum The semaphore number

• After CloseMbx is called, the application is responsible for removing the semaphore
from the system. The application must not modify the variable semval (for
information on semval, see /usr/include/sys/sem.h.), which is modified by the AIX
Mailbox Daemon and has one of the following values.

0 Messages in mailbox

1 No messages in mailbox

• In AIX, MbxHandle is valid only within the process that obtained it. There is no
thread support.
Chapter 7: System Unit APIs 279

OpenMbx—Open a Mailbox
OpenMbx—Open a Mailbox

This opens a mailbox previously created by another process.

Functional Prototype

RIC_ULONG OpenMbx (char *RIC_SUPTR MbxName,
 char *RIC_SUPTR SendMbxMemName,
 RIC_ULONG MsgUnitSize,
 RIC_ULONG MsgUnitCount,
 RIC_ULONG OptionWord,
 RIC_MBXHANDLE *RIC_SUPTR MbxHandle,
 RIC_ULONG *RIC_SUPTR MbxType,
 RIC_ULONG Reserved);

Parameters

MbxName Input. The mailbox name used to create the mailbox.

SendMbxMemName
Input. Optional storage-area name associated with the mailbox for sending
messages by this process. A value of NULL means that the memory cannot
be shared. Refer to the ARTIC960 Programmer’s Guide for information
about mailbox memory options.

MsgUnitSize
Input. The smallest allocatable message size. All messages are allocated in
units of this size. If the size is 0, RC_INVALID_SIZE is returned.

MsgUnitCount
Input. The maximum number of messages that can be allocated from this
mailbox.

OptionWord
Input. Bit field to describe the options to be used to open the mailbox. The
following constants should be ORed together to build the appropriate set of
options.

• Search option for finding mailbox:

MBX_OPEN_SEARCH_GLOBAL
Other cards are searched if the mailbox does not exist on card.

• Mailbox buffer-pinning option (ignored in AIX)

The caller can have the memory associated with mailbox buffers
permanently pinned down with a parameter value of MBX_PIN_MEMORY.
If this option is not selected, memory is pinned only for as long as
absolutely necessary. This option applies only when memory is allocated
by this OpenMbx call.

Because the system unit supports only remote mailboxes, the
MBX_OPEN_SEARCH_LOCAL option (local cards are searched)
is ignored.
280 ARTIC960 Programmer’s Reference

OpenMbx—Open a Mailbox
MbxHandle
Output. The mailbox handle returned to the requesting process. This handle
is passed to all other mailbox services when referring to this mailbox.

MbxType Output. Type of mailbox that was opened. The MbxType field can return the
following value:

MBX_TYPE_REMOTE
The mailbox is not local.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_NO_MBX_PROCESS
RC_DUP_RES_NAME RC_NO_MORE_MBX
RC_INVALID_COUNT RC_NO_MORE_MEM
RC_INVALID_NAME RC_NO_MORE_REM_MBX
RC_INVALID_OPTION RC_NO_MORE_RES
RC_INVALID_RESERVED_PARM RC_NO_MORE_RES_ON_REMOTE
RC_INVALID_SIZE RC_SYSTEM_ERROR
RC_NAME_NOT_FOUND

Remarks

If the memory name provided by the process is the same as that used on a previous
CreateMbx or OpenMbx call, this service gets access to the already created memory.
Otherwise, the service allocates the memory requested by the process. When memory is
shared, the MsgUnitSize and MsgUnitCount parameters must each be less than or equal to
those passed when the memory was allocated. Otherwise, RC_INVALID_SIZE or
RC_INVALID_COUNT error is returned, depending on which parameter is not the same as
the respective input parameter.

In AIX, MBXHandle is valid only within the process that obtained it. There is no thread
support.

Because the system unit supports only remote mailboxes, the
following options are ignored:

• MBX_TYPE_LOCAL (the mailbox is local but does not accept
remote messages)

• MBX_TYPE_GLOBAL (the mailbox is local and accepts card
messages)
Chapter 7: System Unit APIs 281

GetMbxBuffer—Get a Free Mailbox Buffer
GetMbxBuffer—Get a Free Mailbox Buffer

This allocates a free mailbox buffer to the requesting process.

Functional Prototype

RIC_ULONG GetMbxBuffer (RIC_MBXHANDLE MbxHandle,
 RIC_ULONG Size,
 void *RIC_SUPTR *MsgPtr,
 RIC_ULONG Reserved);

Parameters

MbxHandle
Input. Handle of the mailbox from which the process wants to get a message
buffer.

Size Input. Message size in bytes. The size is rounded up to a multiple of the
message unit size set by CreateMbx or OpenMbx. The size parameter must
be in the range 0 < Size < 65503.

MsgPtr Output. Pointer to allocated mailbox buffer.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_HANDLE
RC_INVALID_RESERVED_PARM
RC_INVALID_SIZE
RC_NO_MBX_BUFFER
RC_NO_MBX_PROCESS
RC_NO_MBX_RECEIVER

Remarks

No more than 65503 bytes can be allocated with a single call to GetMbxBuffer.
282 ARTIC960 Programmer’s Reference

FreeMbxBuffer—Free Mailbox Buffer
FreeMbxBuffer—Free Mailbox Buffer

This returns a previously allocated mailbox buffer.

Functional Prototype

RIC_ULONG FreeMbxBuffer (RIC_MBXHANDLE MbxHandle,
 void * RIC_SUPTR MsgPtr,
 RIC_ULONG Reserved);

Parameters

MbxHandle
Input. Handle of the mailbox where the process wants to free a message
buffer.

MsgPtr Input. Pointer to allocated mailbox buffer.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_HANDLE
RC_INVALID_MBX_BUFFER_ADDR
RC_INVALID_RESERVED_PARM
RC_NO_MBX_PROCESS
RC_MBX_BUFFER_IN_QUEUE

Remarks

None
Chapter 7: System Unit APIs 283

SendMbx—Send a Message
SendMbx—Send a Message

This puts a message into a mailbox.

Functional Prototype

RIC_ULONG SendMbx (RIC_MBXHANDLE MbxHandle,
 void * RIC_SUPTR MsgPtr,
 RIC_ULONG Size,
 RIC_ULONG OptionWord,
 RIC_ULONG Reserved);

Parameters

MbxHandle
Input. Handle of the mailbox to which the process wants to send the message.

MsgPtr Input. Pointer to the message buffer.

Size Input. Size of the message buffer. The size parameter must be in the range 0<
Size< 65503. For ARTIC960 PCI co-processors, the size parameter must be
in the range 0 < Size <16384.

OptionWord
Input. Bit field to describe how to send the message. Use the OR operation on
the following constants to build the appropriate set of options.

MBX_SEND_COPY
Forces a copy of the message in the mailbox memory. This option
applies only when the sender and receiver are sharing memory. Because
the system unit supports only remote mailboxes, the MBX_SEND_COPY
option is ignored.

MBX_SEND_NO_COPY
This is the default because the system unit supports only remote
mailboxes.

MBX_SEND_FREE_BUFFER
Returns the buffer to the free pool.

MBX_SEND_KEEP_BUFFER
The buffer must be freed explicitly with the FreeMbxBuffer call. This
is the default.

MBX_SEND_LIFO
Puts the message in the front of the message queue.

MBX_SEND_FIFO
The message is put in the back of the message queue. This is the default.

Reserved Input. Reserved parameter (must be 0).
284 ARTIC960 Programmer’s Reference

SendMbx—Send a Message
Returns

RC_SUCCESS RC_NO_MORE_RES
RC_INVALID_HANDLE RC_NO_RCV_BUFFER
RC_INVALID_MSG_BUFFER RC_PIPES_NOT_CONFIGURED
RC_INVALID_OPTION RC_SYSTEM_ERROR
RC_INVALID_RESERVED_PARM RC_UNABLE_TO_ACCESS_UNIT
RC_INVALID_SIZE RC_MBX_BUFFER_IN_QUEUE
RC_NO_MBX_PROCESS RC_MC_TIMEOUT (AIX only)
RC_NO_MBX_RECEIVER

Remarks

If MBX_SEND_FREE_BUFFER is specified and the SendMbx service fails, the buffer is not
freed. It must be explicitly freed by the sender using the FreeMbxBuffer service.
Chapter 7: System Unit APIs 285

ReceiveMbx—Receive a Message
ReceiveMbx—Receive a Message

This reads or receives a message from a mailbox.

Functional Prototype

RIC_ULONG ReceiveMbx (RIC_MBXHANDLE MbxHandle,
 RIC_ULONG OptionWord,
 RIC_TIMEOUT Timeout,
 void * RIC_SUPTR * MsgPtr,
 RIC_ULONG * RIC_SUPTR Size,
 RIC_ULONG Reserved);

Parameters

MbxHandle
Input. Handle of the mailbox from which the process wants to receive a
message.

OptionWord
Input. Option word for specifying receive options. The following constant
can be used.

MBX_RECEIVE_READ_MESSAGE
Return the pointer to the message but do not remove it from the mailbox
message queue.

MBX_RECEIVE_GET_MESSAGE
Return the pointer to the message and remove it from the mailbox
message queue. This is the default.

Timeout Input. Optional timeout (in milliseconds) for waiting on a semaphore
associated with this mailbox.

0 The process should not wait if no messages are available in the mailbox.
–1 There is no timeout. The process waits indefinitely for a message to

arrive.

MsgPtr Output. Pointer to the received message buffer.

Size Output. Size of the received message buffer.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_INVALID_TIMEOUT
RC_INVALID_HANDLE RC_MBX_EMPTY
RC_INVALID_OPTION RC_NO_MBX_PROCESS
RC_INVALID_RECEIVER RC_NO_MORE_RES
RC_INVALID_RESERVED_PARM RC_SYSTEM_ERROR
286 ARTIC960 Programmer’s Reference

ReceiveMbx—Receive a Message
Remarks

• If the MBX_RECEIVE_GET_MESSAGE option is set in the OptionWord parameter, this
call dequeues the first message buffer from the mailbox queue. The semaphore
associated with the mailbox on the ARTIC960 adapter is decreased by 1.

• In OS/2 system-unit mailboxes, the semaphore is set if the dequeued message is the
last one in the queue.

• In AIX system-unit mailboxes, the variable semval of the semaphore is set to 1 if the
dequeued message is the last one in the queue. For information on semval, see
 /usr/include/sys/sem.h.

• If the MBX_RECEIVE_READ_MESSAGE option is set in the OptionWord parameter, the
message is not dequeued from the message queue.
Chapter 7: System Unit APIs 287

CloseMbx—Close a Mailbox
CloseMbx—Close a Mailbox

This releases the mailbox and deletes it if no other process has access to it.

Functional Prototype

RIC_ULONG CloseMbx (RIC_MBXHANDLE MbxHandle,
 RIC_ULONG Reserved);

Parameters

MbxHandle Input. Handle of the mailbox to close.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_INVALID_HANDLE
RC_INVALID_RESERVED_PARM
RC_NO_MBX_PROCESS
RC_NO_MORE_RES
RC_PIPES_NOT_CONFIGURED
RC_SYSTEM_ERROR
RC_UNABLE_TO_ACCESS_UNIT

Remarks

• If the close is issued by a process while other processes still have access to the
mailbox, the service simply removes access rights for the calling process.

• If the calling process is the only process using the memory pool associated with the
mailbox, this memory pool is released by the mailbox process.

• In OS/2, if the mailbox to be closed was created by the calling process, the semaphore
associated with the mailbox is released by the mailbox process.

• In AIX, the semaphore associated with the mailbox must be removed by the calling
process after it calls CloseMbx.
288 ARTIC960 Programmer’s Reference

A
 Structure Definition Appendix A
This appendix contains structure definitions for RIC_CONFIG, RIC_VERDATA, and
RIC_EXCEPT.
Appendix A: Structure Definition 289

RIC_CONFIG Structure
RIC_CONFIG Structure
The following is the structure definition for RIC_CONFIG (configuration information for
the ARTIC960 adapter).

typedef struct RIC_Config
{
 RIC_ULONG Reserved0;
 RIC_ULONG AIBID; /* AIB ID */
 RIC_ULONG FullWindowLoc; /* Physical address */
 RIC_ULONG FullWindowSize; /* Size in bytes */
 RIC_ULONG TotalMemSize; /* Size in bytes */
 RIC_ULONG Reserved1[9];
 RIC_ULONG MCBaseIOAddr; /* Base I/O address */
 RIC_CARDNUM CardNum; /* Logical card number */
 RIC_ULONG NumOfMemoryRegions;
 RIC_ADDRESS_RANGE MemoryRegions[MAX_MEM_REGIONS];
 RIC_ULONG NumOfIO_Regions;
 RIC_ADDRESS_RANGE IO_Regions[MAX_IO_REGIONS];
 unsigned char SlotNum; /* Physical slot number */
 unsigned char UnitID; /* SCB unit ID */
} RIC_CONFIG;

Reserved0

Reserved0 contains information about the adapter card type. It indicates the bus type, the
presence of data cache hardware, and the interface chip type. The following masks can be
used

RIC_CARD_TYPE Indicates the bus type. Bus type values are:

RIC_MCA Micro Channel
RIC_PCI PCI (Peripheral Connect Interface)

RIC_DCACHE Indicates the presence of data cache hardware. Data cache hardware
values are:

0 Data cache hardware is not present.
1 Data cache hardware is present.
290 ARTIC960 Programmer’s Reference

RIC_CONFIG Structure
RIC_IF_CHIP Indicates the type of interface chip. Interface chip values are:

RIC_MIAMI Miami (on an ARTIC960 MCA or ARTIC960 PCI
adapter)

RIC_MP2P Miami PCI to PCI (on an ARTIC960Hx PCI adapter)
RIC_RP i960Rx (on an ARTIC960Rx PCI adapter)
RIC_RXD i960Rd (on an ARTIC960RxD PCI adapter)

RIC_NO_P2P Indicates that peer-to-peer activity is not supported.

Defined Macros

The following macros can be used to determine card information.

• isMCA
• isPCI
• isMIAMI
• isRP
• isMP2P
• isRXD

For example:

RIC_CONFIG ConfigData;
isMCA(&ConfigData) ;
Appendix A: Structure Definition 291

RIC_VERDATA Structure
RIC_VERDATA Structure
The following is the structure definition for RIC_VERDATA (version numbers of the
installed ARTIC960 software).

typedef struct RIC_Version
{
 union
 {
 RIC_ULONG CombinedVer;
 struct RIC_SeparateVer SeparateVer;
 } Driver;

 union
 {
 RIC_ULONG CombinedVer;
 struct RIC_SeparateVer SeparateVer;
 } Lib;

 union
 {
 RIC_ULONG CombinedVer;
 struct RIC_SeparateVer SeparateVer;
 } Kernel;

 union
 {
 RIC_ULONG CombinedVer;
 struct RIC_SeparateVer SeparateVer;
 } BaseSS;

 union
 {
 RIC_ULONG CombinedVer;
 struct RIC_SeparateVer SeparateVer;
 } MChanSS;

 union
 {
 RIC_ULONG CombinedVer;
 struct RIC_SeparateVer SeparateVer;
 } SCBSS;
} RIC_VERDATA;
292 ARTIC960 Programmer’s Reference

RIC_EXCEPT Structure
RIC_EXCEPT Structure
The following is the structure definition for RIC_EXCEPT (the exception conditions for
the ARTIC960 adapters).

struct RIC_Except
{
 RIC_ULONG ExceptionCode;
 RIC_ULONG ExceptionDataSize;
 union
 {
 struct RIC_AsyncEvent EventInfo;
 struct RIC_Invalid_Intr InvIntr;
 struct RIC_Data_Corrupt BadData;
 struct RIC_Kern_Init KernIni;
 struct RIC_MBXErrInfo MBXInfo;
 struct RIC_SCBErrInfo SCBInfo;
 struct RIC_MCErrInfo MCInfo;
 struct RIC_RPErrInfo RPInfo;
 struct RIC_HxErrInfo HxInfo;
 }ExceptionData;
};
Appendix A: Structure Definition 293

RIC_EXCEPT Structure
294 ARTIC960 Programmer’s Reference

B
 Message File Appendix B
Driver, Mailbox Process, and Utility Messages
The following messages are displayed by the ARTIC960 tools, drivers, and processes. See
Mailbox Process Messages and Return Codes on page 13 for a list of return codes for the
OS/2 mailbox process.
Appendix B: Message File 295

RIC0001 • RIC0006
RIC0001 Unrecognized option: “xx”

RIC0002 Invalid parameter: “xxxxxxxx”

RIC0003 File “yyyyyyyy” not found

RIC0004 Error accessing file “yyyyyyyy”

RIC0005 Invalid card number: nn

RIC0006 Insufficient storage

Explanation: The option xx is not a valid command line option. This message is followed by help messages
RIC0027–RIC0031.

Action: Correct the command line and reissue the command.

Source: Application Loader, Dump, Status, Configuration, Reset, OS/2 Driver, and Mailbox Process

Explanation: The parameter xxxxxxxx is invalid. Either a required parameter is missing or an optional parameter
has been improperly specified.

Action: Correct the parameter and reissue the command.
Source: Application Loader, Dump, Status, Configuration, OS/2 driver, and Mailbox Process

Explanation: File yyyyyyyy does not exist or is not in the specified directory.
Action: Verify that the file exists and is in the proper directory.
Source: Application Loader, Dump, Status, Configuration, and Mailbox Process

Explanation: An error was received when attempting to access file yyyyyyyy.
Action: Verify that the file still exists and is accessible. If the file exists, make sure that no other applications

are accessing the file or have a lock on it. For output files, verify that the destination file is write
accessible and that the disk is not full.

Source: Applicatio Loader, Dump, Status, Configuration, and Mailbox Process

Explanation: The specified logical card number is invalid. The card number is either nonnumeric or out of range.
Action: Correct the card number and reissue the command.

Source: Application Loader, Dump, Status, Configuration, Reset

Explanation: There is not enough free storage to complete the request.
Action: On a load operation, this indicates that there is not enough free memory available on the card. Either

reduce the amount of memory required by the process, free up storage on the adapter, or install
more memory on the adapter.
During Mailbox Process initialization, this message indicates there is not enough system unit
memory to allocate the threads memory pools. Reduce the values set for any of the following in the
mailbox configuration parameter file:

MAX_GLOBAL_MAILBOX
MAX_REMOTE_MBX
MAX_REMOTE_MAILBOX_OPEN
MAX_REMOTE_MAILBOX_SEND
MAX_REMOTE_MAILBOX_RCV
MAX_NUM_OF_UNITS

Source: Application Loader, Mailbox Process
296 ARTIC960 Programmer’s Reference

RIC0007 • RIC0014
RIC0007 Invalid process name: “xxxxxxxx”

RIC0008 Duplicate process name: “xxxxxxxxx”

RIC0009 Exception condition xxxxxxxx detected on card nn

RIC0010 No device response from card nn

RIC0011 Dump of card nn in progress

RIC0012 Dump of card nn complete

RIC0013 Dump trigger set for card nn

RIC0014 Triggered dump of card nn cancelled

Explanation: The process name xxxxxxxx is too long.

Action: Rename the process and retry the command.
Source: Application Loader

Explanation: The process name xxxxxxxx is already active on the adapter.

Action: Either specify a different process name, or unload the active process and retry the command.
Source: Application Loader

Explanation: The adapter has detected exception condition xxxxxxxx (hex) on card nn.

Action: This message indicates that an unrecoverable exception has occurred on the adapter. Reset the
adapter and retry the operation. If the problem persists, call support personnel.

Source: Application Loader, Configuration, Reset, OS/2 driver.

Explanation: Adapter nn is not responding to commands.
Action: Check the state of the processes running on the adapter for severe error conditions. Reset the

adapter and retry the operation. If the problem persists, call support personnel.
Source: Application Loader, Dump, Configuration, Reset, Status

Explanation: A dump of card nn is currently in progress. This message is displayed during an immediate dump
and after a triggered dump has been triggered by an error condition on the card.

Action: Wait for message indicating that the dump has been completed.
Source: Dump

Explanation: The dump of card nn is complete.

Action: Use the Status Utility to analyze the raw dump file. Reset the card to continue using it.
Source: Dump

Explanation: A dump of card nn has been set up to trigger on an NMI error from the card.

Action: No action is necessary. This message is followed by a message indicating that a dump has started
when the dump is triggered.

Source: Dump

Explanation: The previously set up dump trigger for card nn has been canceled.
Action: To retrigger the card, call the dump utility again.

Source: Dump
Appendix B: Message File 297

RIC0015 • RIC0023
RIC0015 Triggered dump of card nn not pending

RIC0016 Unexpected system error nnnn

RIC0019 Driver not installed

RIC0020 Licensed Materials — Property of RadiSys
RadiSys ARTIC960 Adapter Support Version n.nn.n
(C) Copyright RadiSys Corporation yyyy, zzzz All rights reserved.
US Government Users Restricted Rights -
Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with
RadiSys Corporation.
xxxxxxxx initializing

RIC0021 xxxxxxxxx installed and running

RIC0022 xxxxxxxx successfully loaded from card nn

RIC0023 Process xxxxxxxx not found on card nn

Explanation: There is no untriggered dump of card nn pending that can be canceled.

Action: None.
Source: Dump

Explanation: An operating system error condition has been received by the adapter firmware. The unexpected
error code is nnnn (decimal).

Action: Consult the appropriate operating system reference to determine the meaning of the error code.

Source: Application Loader, Dump, Status, Configuration, OS/2 driver, and Mailbox Process

Explanation: The driver is not installed and running in the system. This occurs when a utility or mailbox process
attempts to access an ARTIC960 adapter and the device driver is not installed.

Action: Verify that the proper drivers are installed in the system and retry the operation.
Source: Application Loader, Dump, Status, Configuration, Reset, and Mailbox Process

Explanation: The driver or process xxxxxxxx is installing. yyyy, zzzz are the copyright years.

Action: None. This message is normally followed by a message that states that the driver is installed and
running.

Source: OS/2 driver

Explanation: The driver or process xxxxxxxx has installed successfully.
Action: None.

Source: OS/2 driver, and Mailbox Process

Explanation: The process xxxxxxxx was successfully unloaded from logical card nn.
Action: None.

Source: Application Loader

Explanation: The process xxxxxxxx was not found on logical card nn and could not be unloaded.
Action: Correct the process name and call the command again.

Source: Application Loader, Status
298 ARTIC960 Programmer’s Reference

RIC0024 • RIC0027
RIC0024 xxxxxxxx successfully started on card nn

RIC0025 xxxxxxxx already started on card nn

RIC0026 File format error in file “yyyyyyyy”. Internal error xxxxxxxx

RIC0027 Correct syntax is:

Explanation: The process xxxxxxxx was successfully started on logical card nn.

Action: None.
Source: Application Loader

Explanation: The process xxxxxxxx was already running on logical card nn.

Action: Either stop and restart the process or let it run.
Source: Application Loader

Explanation: The file yyyyyyyyy is not in the proper format. The Application Loader returns this when a process
file does not have the proper executable format. The Status utility returns this message when a
dump file does not have the proper format. The error code xx is an internal error code that indicates
the problem detected in the file.

Action: When reported by the Application Loader, recompile and relink the process in error with the proper
options. When reported by the Status utility, the dump file is probably corrupted; the card must be
dumped again.

Source: Application Loader, Status

Explanation: Application Loader utility syntax help message.
Action: Select the proper parameters and call the Application Loader.

Source: Application Loader

path

card_num

ricload -C config_filename

filename

-Q

-K stack_size

-A “process_args”

-D cache_option
-F arg_filename

-L

-O

-V

-T

-P priority

-S process_name

-N process_name
-W timeout

-W timeout

-U process_name

-T
Appendix B: Message File 299

RIC0028 • RIC0032
RIC0028 Correct syntax is:

RIC0029 Correct syntax is:

RIC0030 Correct syntax is:

RIC0031 Correct syntax is:

RIC0032 Reset of card nn in progress

Explanation: Dump utility syntax help message.
Action: Select the proper parameters and call the Dump utility.

Source: Dump

Explanation: SCB Configuration utility syntax help message.

Action: Select the proper parameters and call the SCB Configuration utility.
Source: Configuration

Explanation: Status utility syntax help message.

Action: Select the proper parameters and call the Status utility.
Source: Status

Explanation: Reset utility syntax help message.
Action: Select the proper parameters and call the Reset utility.
Source: Reset

Explanation: A reset of card nn is in progress.
Action: None.

Source: Reset

path
card_numricdump

-C

filename
-Q path - I

-T

-A addr, len

-P PMC_cfgfile

-O out_file

path
riccnfg

-Q

-A

config_filename

-P

-C

 -S s1 s2card_num2
-L card_num1

path
ricstat

-S-I card_num

-D dump_file
-F dump_file

path
card_numricreset

-Q
300 ARTIC960 Programmer’s Reference

RIC0033 • RIC0040
RIC0033 Reset of card nn complete

RIC0034 Reset of card nn failed

RIC0035 Invalid microcode load

RIC0036 Peer communications between cards xx and yy successfully configured

RIC0037 Microcode error. Internal error xxxx

RIC0038 Error accessing card nn. Internal error nnnn

RIC0039 xxxxxxxx not installed, no adapters found

RIC0040 Dump on card nn already active

Explanation: Card nn has been reset successfully.

Action: None.
Source: Reset

Explanation: Card nn failed to reset.

Action: Run diagnostics to determine the cause of the failure.
Source: Reset

Explanation: The adapter kernel is not loaded.

Action: Make sure that the kernel is properly loaded before attempting to load another process.
Source: Application Loader

Explanation: The SCB delivery pipe was successfully configured.

Action: None
Source: Configuration

Explanation: The adapter kernel unexpectedly returned an error. xxxx is an internal error code.

Action: Verify that the kernel is properly loaded and there is enough memory available to satisfy Application
Loader requests. xxxx is an internal kernel error code that generally maps to a kernel return code. If
the problem persists, call support personnel.

Source: Application Loader, Configuration

Explanation: An unexpected error was returned by the device driver while accessing card nn. xxxx is an internal
error code that generally maps to a device driver return code.

Action: Call support personnel.
Source: Application Loader, Dump, Status, Configuration, and Reset

Explanation: The driver xxxxxxxx did not install because no ARTIC960 adapters were found.

Action: Verify that an adapter is installed before attempting to install the driver. If the problem persists, call
support personnel.

Source: OS/2 Driver

Explanation: An attempt to call the dump utility on card nn failed because dump was already active for that
adapter.

Action: Wait until the dump of the card has completed.
Source: Dump
Appendix B: Message File 301

RIC0041 • RIC0047
RIC0041 Peer communications not configurable with current hardware options

RIC0042 WARNING: Process mismatch

RIC0043 Peer communications pipe size out of range

RIC0044 Process failed to initialize

RIC0045 Process failed to initialize correctly. Error xxxxxxxx

RIC0046 Cards xx and yy are already configured

RIC0047 Configuration failed between xx and yy.

Explanation: The peer adapters could not be configured to communicate on a peer-to-peer basis due to the
configuration of the adapter. Either the adapter full memory window is not present, or it is in a
location that is inaccessible to the other peer adapter. This error can only be received in PS/2
systems.

Action: Use the Reference Diskette to configure the location of the adapter memory window to allow the two
adapters to communicate. In address constrained environments, it may be necessary to move an
adapter from a 16-bit slot to a 32-bit slot to enable the necessary configuration.

Source: Configuration

Explanation: The file to be loaded was compiled for a processor type that is different from the one on the
ARTIC960 adapter.

Action: Recompile the file for the appropriate processor type.
Source: Application Loader

Explanation: The peer adapters could not be configured to communicate on a peer-to-peer basis because the
specified pipe size was too small.

Action: Increase the pipe size to the minimum size.

Source: Configuration

Explanation: The process was loaded using the –W option of the Application Loader, and it failed to issue the
kernel service CompleteInit function call in the specified time period.

Action: Correct the initialization error in the process.
Source: Application Loader

Explanation: The process was loaded using the –W option of the Application Loader, and it passed a non-zero
error code on the kernel service CompleteInit function call. xxxxxxxx contains the error code.

Action: Correct the initialization error in the process.
Source: Application Loader

Explanation: The SCB pipes between units are already configured.

Action: Accept the configuration as defined or reset the adapter and reconfigure.
Source: Configuration

Explanation: The SCB pipe between units xx and yy is already configured.

Action: Verify the unit is not out of memory; if not, contact support personnel.
Source: Configuration
302 ARTIC960 Programmer’s Reference

RIC0048 • RIC0053
RIC0048 Correct syntax is:

RIC0049 Unable to install interrupt handler for card nn

RIC0050 Resource xxxxxxxx already in use

RIC0051 xxxxxxxx already started on system unit

RIC0052 Unable to set System Clock on card nn.

RIC0053 System Clock successfully started on card nn.

Explanation: Mailbox process syntax help message.
Action: Select the proper parameters and call the mailbox process.
Source: Mailbox Process

Explanation: The driver could not allocate the interrupt level for card nn. The driver allocates interrupt levels with
the share option. Therefore, another device has already allocated this interrupt level exclusively or
more than four cards tried to share the interrupt level.

Action: For micro channel, change the interrupt level for card nn using the reference diskette. For PCI, this
message indicates that a driver loaded prior to the ARTIC960 driver is claiming an interrupt as
non-shared. Install an updated driver that claims the interrupt as shared for this other device.

Source: OS/2 Driver

Explanation: The process is unable to create xxxxxxxx because it is already being used by another person.

Action: Terminate any other process using this resource.
Source: Mailbox Process

Explanation: The process xxxxxxxx was already running on the host machine.

Action: Either stop and restart the process, or let it run.
Source: Mailbox Process

Explanation: The system clock could not be set on card nn

Action: Load the base device driver on the card.
Source: Application Loader

Explanation: The system clock was successfully started on card nn.

Action: None
Source: Application Loader

path
path

drive
RICMBX32

-C

-K

config_filename
Appendix B: Message File 303

RIC0054 • RIC0061
RIC0054 Entry Point = 0xnnnnnnnn
Code = 0xnnnnnnnn
Data = 0xnnnnnnnn
BSS = 0xnnnnnnnn
Stack = 0xnnnnnnnn
Parameters = 0xnnnnnnnn

RIC0055 Timeout trying to configure with card nn.

RIC0056 nnn percent complete.

RIC0057 xxxxxxxx successfully loaded on card nn
Process Name = “yyyyyyyy”
Process ID = 0xnnnnnnnn

RIC0059 Peer communications between card nn and system unit successfully configured

RIC0060 Card nn and system unit area already configured

RIC0061 Configuration failed between card nn and system unit

Explanation: Additional information about the task being loaded. Values are all in hexadecimal.
Action: None
Source: Application Loader

Explanation: There was a timeout waiting for a response from card nn.
Action: Reset the adapter and reconfigure. Also, make sure all of the necessary subsystems are loaded on

the card before attempting to configure the SCB pipes.
Source: Configuration

Explanation: nnn Percent complete of the dump.

Action: None
Source: Dump

Explanation: The file xxxxxxxx was successfully loaded on logical card nn. The process name is yyyyyyyy and the
process ID is 0xnnnnnnnn (hex).

Action: None
Source: Application Loader

Explanation: Peer communications between card nn and the system unit were successfully configured.

Action: None
Source: Configuration

Explanation: Communications between card nn and the system unit area already configured.

Action: None
Source: Configuration

Explanation: Configuration between card nn and the system unit failed.

Action: Reset the adapter and reconfigure.
Source: Configuration
304 ARTIC960 Programmer’s Reference

RIC0062 • RIC0069
RIC0062 Mailbox process successfully terminated.

RIC0063 Mailbox process not running.

RIC0064 ROM error 0xnnnnnnnn detected on card nn.

RIC0065 Symbol xxxxxxxx is undefined.

RIC0066 xxxxxxxx Interrupt nesting disabled

RIC0067 Pipe configuration failed between card nn and system unit.

RIC0068 One or more of the required subsystems was not found for card nn.

RIC0069 xxxxxxxx SCB transfers disabled

Explanation: The Mailbox process was successfully terminated.

Action: None
Source: Mailbox Process

Explanation: The Mailbox process was not found and could not be terminated.

Action: None
Source: Mailbox Process

Explanation: The adapter has detected ROM error 0xnnnnnnnn (hex) on card nn.

Action: This message indicates that an unrecoverable exception has occurred on the adapter. Reset the
adapter and retry the operation. If the problem persists, call support personnel.

Source: Application Loader, Configuration, Reset, OS/2 Driver

Explanation: The linker failed to understand the external symbol xxxxxxxx
Action: Define symbol then recompile and link.

Source: Application Loader

Explanation: Interrupt nesting disabled in the driver through the –N command line switch.
Action: None

Source: OS/2 Driver

Explanation: The configuration between card nn and the system unit failed.
Action: Reset the adapter and reconfigure. Also ensure that all of the necessary subsystems are loaded on

the card before attempting to configure the card.
Source: Configuration, Application Loader, Reset.

Explanation: The card could not be configured because a required system was not found.
Action: Reset the adapter and load the necessary subsystems on the card before attempting to configure

the card.
Source: Reset, Application Loader, Configuration.

Explanation: Device driver data transfers through SCB are disabled. All transfers are done through programmed I/
O. This driver option is usually only configured for a development or debug environment.

Action: To enable device driver SCB transfers, remove the –S option from the device driver CONFIG.SYS
entry.

Source: OS/2 Driver
Appendix B: Message File 305

RIC0070 • RIC0080
RIC0070 xxxxxxxx timeouts disabled

RIC0071 Down-level ROM version on card %1.

RIC0072 Correct syntax is:

RIC0073 Timeout during mailbox initialization.

RIC0075 Only 4 –A options can be specified.

RIC0076 User must have root authority to execute ricmbx.

RIC0079 Unable to register hardware for card nn

RIC0080 Warning: Unsupported option: xxxxxxxx

Explanation: Device driver timeouts for SCB transfers and commands to the card are disabled. This driver option
is usually only configured for a development or debug environment.

Action: To enable device driver timeouts, remove the –T option from the device driver CONFIG.SYS entry.

Source: OS/2 Driver

Explanation: The version of ROM on the adapter is down level and cannot be supported by the device driver.
Action: Update the ROM code on the adapter to a valid level.

Explanation: Mailbox process syntax help message.
Action: Select the proper parameters and call the mailbox process.
Source: Mailbox process.

Explanation: Initialization of the mailbox process failed.
Action: Restart the process.
Source: Mailbox Process

Explanation: The ricdump utility only accepts four –A options at one time.
Action: Retry the command with four or fewer –A options.
Source: Dump

Explanation: ricmbx requires root authority for execution.
Action: Login with root authority, and reissue the command.

Source: Mailbox Process

Explanation: The driver was unable to register hardware information with the operating system. Conflicting
settings and/or unsupported hardware options may be the cause of the problem.

Action: Verify adapter configuration and check that the operating system is at the required install level.
Source: Novell Driver

Explanation: The parameter xxxxxxxx is not supported.
Action: No action is needed because the parameter xxxxxxxx is ignored.
Source: Configuration, Dump, Application Loader

path
ricmbx

path
-C

-K

config_filename
306 ARTIC960 Programmer’s Reference

RIC0081 • RIC0100–RIC0299
RIC0081 Calibrating ARTIC 960/RP Timers using card nn

RIC0082 Unsupported option xxxxxxxx for this hardware.

RIC0083 Dump process not followed correctly.

RIC0084 Dump of PMC on card xxxxxxxx in progress.

RIC0085 Dump of PMC on card xxxxxxxx complete.

RIC0086 The format of the configuration file is incorrect.

RIC0087

RIC0100–RIC0299

Explanation: Informational message notifying the user that the device driver is calculating the local bus speed
constant using the ARTIC 960/RP card displayed in the message.

Action: None

Source: OS/2 Driver

Explanation: This option xxxxxxxx is not supported with the current hardware.
Action: Reissue the command without option xxxxxxxx.

Source: Dump

Explanation: One must first initiate a regular dump of the card before a dump of the PMC regions can be dumped.
Action: Reissue the command dumping the card first and then the PMC regions.

Source: Dump

Explanation: The PMC dump of card xxxxxxxx is currently in progress.
Action: Wait for a message indicating that the PMC dump has completed.

Source: Dump

Explanation: The PMC dump of card xxxxxxxx is complete.
Action: Use a binary editor to analyze the raw dump file. Reset the card to continue using it.

Source: Dump

Explanation: The configuration specified has too many entries or the syntax of the entries is incorrect.
Action: Reduce the number of entries in the configuration file or correct the syntax of the entries in the

configuration file and reissue the command.
Source: Dump

Explanation: The format specified is incorrect.
Action: Correct the format and reissue the command.
Source: Dump

Explanation: These messages are used in the status utility.
Action: None
Source: Status
Appendix B: Message File 307

RIC0300 • RIC0305
RIC0300 Correct syntax is:

RIC0301 Correct syntax is:

RIC0302 Trace buffer successfully fetched from card nn in file ssssssss

RIC0303 Run ricfmttr to format and view the trace

RIC0304 Correct syntax is:

RIC0305 Trace uninitialized on card nn

Explanation: Set Trace utility syntax help message.
Action: Select the proper parameters and call the Set Trace.
Source: Set Trace

Explanation: Get Trace utility syntax help message.
Action: Select the proper parameters and call the Get Trace.

Source: Get Trace

Explanation: The trace buffer was successfully read from card number nn and written to a file name ssssssss.
Action: None

Source: Get Trace

Explanation: After a successful Get Trace, this message is displayed to instruct the user to run the Format Utility
to analyze the results of the trace.

Action: None
Source: Get Trace

Explanation: Format Trace utility syntax help message.
Action: Select the proper parameters and call the Format Trace.

Source: Format Trace

Explanation: Get Trace failed to enable and/or disable a service class because the trace buffer was not previously
initialized on card number nn.

Action: Include –I on the ricgettr command line.
Source: Get Trace

path
ricsettr card_num

-I size
-W count -D class -E class

path
ricgettr

-O -E
card_num

out_filename

path
ricfmttr

-I in_filename -O out_filename -C class_filename
308 ARTIC960 Programmer’s Reference

RIC0306 • RIC0400–RIC0460
RIC0306 The trace buffer is empty - no trace logged

RIC0307 – RIC0322

RIC0323 Trace input file successfully formatted

RIC0324 Invalid Service Class xxx: Valid Class Range <0 - 255>

RIC0325

RIC0326 Trace successfully set on card nn

RIC0350–RIC0399

RIC0400–RIC0460

Explanation: The trace file is empty.

Action: Run the card application to be traced, run Get Trace and rerun Format Trace.
Source: Format Trace

Explanation: These messages are used to format the trace buffer.

Action: None
Source: Format Trace

Explanation: The Trace Formatter successfully formatted the input trace file.

Action: None
Source: Format Trace

Explanation: The service class specified xxx must be in the range 0 to 255.

Action: Select a valid service class and reenter command.
Source: Set Trace

Explanation: This message is used to format the trace buffer.

Action: None.
Source: Format Trace

Explanation: The Set Trace command was successfully executed on card number nn.

Action: None

Explanation: These messages are used for the ROM Update Utility.
Action: None

Source: ROM Update

Explanation: These messages are used for the RICDiag utility.
Action: None

Source: RICDiag
Appendix B: Message File 309

RIC0400–RIC0460 • RIC0400–RIC0460
310 ARTIC960 Programmer’s Reference

C
 Return, Error, and Exit Codes Appendix C
This appendix contains a listing of the codes used by programs and applications in the
ARTIC environment. Return codes are returned by the various routines and services
provided by the ARTIC960 APIs. These codes are listed in alphabetic and numeric order.
The numeric listing includes a description of the exception condition.

The terminal error codes for the adapter, returned by the kernel, and the exit codes,
returned by the system utilities, are listed in numeric order only.

• Return Codes (Listed Alphabetically) on page 312

• Return Codes (Listed Numerically) on page 316

• Kernel Terminal Error Codes on page 325

• Exit Codes for System Unit Utilities on page 327
Appendix C: Return, Error, and Exit Codes 311

Return Codes (Listed Alphabetically)
Return Codes (Listed Alphabetically)

Return Code VALUE
RC_ADAPTER_EXCEPTION 0x00010001
RC_ALREADY_INITIALIZED 0x00010209

RC_BAD_QUEUE_ELEMENT 0x80011601
RC_BAD_CONFIG_PARAM 0x00011201
RC_BUFFER_TOO_SMALL 0x00010019

RC_CALL_TERMINATED 0x00010105
RC_CANT_STOP_SHARING 0x00010303
RC_CLOSE_ENTRY_FAILURE 0x00010A04

RC_CMD_NOT_DELIVERED 0x00010E02
RC_DD_RC_OUT_OF_RANGE 0x00010A06
RC_DEPENDENT_EVENTS 0x00010403

RC_DEVICE_DRIVER 0x00010206
RC_DMA_TRANSFER_FAILED 0x00010021
RC_DUMP_ACTIVE 0x00010002

RC_DUMP_NOT_ACTIVE 0x00010009
RC_DUP_ASYNC_EVENT 0x00010D01
RC_DUP_RES_HANDLES 0x00010503

RC_DUP_RES_NAME 0x00010101
RC_ELEMENT_NOT_FOUND 0x00010802
RC_ENTITY_ALREADY_REGISTERED 0x00010010

RC_ENTITY_NOT_FOUND 0x00011102
RC_ENTITY_NOT_REGISTERED 0x00010011
RC_HANDLE_CLOSED 0x0001000A

RC_HOOK_ALREADY_REGISTERED 0x00010F01
RC_HOOK_NOT_REGISTERED 0x00010F02
RC_HW_ALREADY_ALLOCATED 0x00010C01

RC_HW_NOT_ALLOCATED 0x00010C02
RC_INVALID_ADDRESS 0x0001001A
RC_INVALID_ALIGNMENT 0x00010307

RC_INVALID_BASEPTR 0x00010302
RC_INVALID_CALL 0x00010104
RC_INVALID_CALLER_POSITION 0x00011004

RC_INVALID_CARD_NUMBER 0x0001000D
RC_INVALID_CMD_DEST 0x00010E01
RC_INVALID_COMMAND 0x00010E03

RC_INVALID_COUNT 0x00010014
RC_INVALID_ENTITY_NUMBER 0x00010012
RC_INVALID_EVN_MASK 0x00010501

RC_INVALID_FUNCTION_CODE 0x00010108
RC_INVALID_HANDLE 0x00010020
RC_INVALID_HOOK 0x00010F03

RC_INVALID_MBX_BUFFER_ADDR 0x00010905
RC_INVALID_MEM_ACCESS 0x0001001B
RC_INVALID_MSG_BUFFER 0x00010908

RC_INVALID_NAME 0x00010015
RC_INVALID_NUM_RES 0x00011202
312 ARTIC960 Programmer’s Reference

Return Codes (Listed Alphabetically)
RC_INVALID_OPTION 0x00010016
RC_INVALID_PIN 0x00010B04
RC_INVALID_PRIORITY 0x0001020A

RC_INVALID_PROCEDURE_ID 0x00011003
RC_INVALID_PROCESSID 0x00010106
RC_INVALID_RECEIVER 0x00010903

RC_INVALID_RESERVED_PARM 0x0001001C
RC_INVALID_SEM_COUNT 0x00010402
RC_INVALID_SEMHANDLE 0x00010910

RC_INVALID_SERVICECLASS 0x00011002
RC_INVALID_SIZE 0x0001001D
RC_INVALID_SUBALLOC_ADDR 0x00010304

RC_INVALID_TICKS 0x80011502
RC_INVALID_TIMEOUT 0x0001001E
RC_INVALID_TIMER 0x80011501

RC_INVALID_UNIT_NUMBER 0x0001000F
RC_INVALID_VECTOR 0x00010B01
RC_INVOKE_ENTRY_FAILURE 0x00010A05

RC_MBX_BUFFER_IN_QUEUE 0x0001090F
RC_MBX_EMPTY 0x00010906
RC_MC_BUS_FAULT 0x0001130F

RC_MC_CHAINING_EX_ERR 0x00011309
RC_MC_CARD_SEL_FDBACK_ERR 0x00011303
RC_MC_CHCK_ERR 0x00011302

RC_MC_DATA_PARITY_ERR 0x00011301
RC_MC_EXCEPTION_ERR 0x00011306
RC_MC_INVALID_COMBINATION 0x00011308

RC_MC_LOCAL_BUS_PARITY_ERR 0x00011305
RC_MC_LOSS_OF_CHANNEL_ERR 0x00011304
RC_MC_MASTER_ABORT 0x0001130E

RC_MC_MEM_FAULT 0x00011310
RC_MC_POSTSTAT_EX_ERR 0x0001130A
RC_MC_SERR 0x0001130D

RC_MC_TARGET_ABORT 0x0001130C
RC_MC_TIMEOUT 0x00011307
RC_MEM_SHARING_ERROR 0x00010301

RC_MOVE_ASYNC_ALREADY_REG 0x80011402
RC_MOVE_ASYNC_HANDLER_NOT_REG 0x80011401
RC_MSG_BUFFER_NOT_FREED 0x00010902

RC_NAME_NOT_FOUND 0x00010103
RC_NEW_SEM_COUNT 0x00010401
RC_NO_ADAPTER_RESPONSE 0x00010003

RC_NO_BASE_DEVICE_DRIVER 0x00010701
RC_NO_ELEMENTS 0x0001000B
RC_NO_FLOAT_SUPPORT 0x00010208

RC_NO_MBX_BUFFER 0x00010907
RC_NO_MBX_PROCESS 0x00010909
RC_NO_MBX_RECEIVER 0x00010901

Return Code VALUE
Appendix C: Return, Error, and Exit Codes 313

Return Codes (Listed Alphabetically)
RC_NO_MORE_DEV 0x00010A02
RC_NO_MORE_ENTITIES 0x00010013
RC_NO_MORE_EVNS 0x00010502

RC_NO_MORE_HOOKS 0x00010F04
RC_NO_MORE_MBX 0x00010904
RC_NO_MORE_MEM 0x00010306

RC_NO_MORE_PROC 0x00010207
RC_NO_MORE_QUEUES 0x00010803
RC_NO_MORE_REM_MBX 0x0001090D

RC_NO_MORE_RES 0x0001001F
RC_NO_MORE_RES_ON_REMOTE 0x0001090A
RC_NO_MORE_SEM 0x00010404

RC_NO_MORE_SIGS 0x00010602
RC_NO_MORE_TIMERS 0x00010704
RC_NO_RCV_BUFFER 0x0001090B

RC_NO_RES_ACCESS 0x00010102
RC_NO_SUCH_SIG_ID 0x00010601
RC_NOT_DD_OR_SS 0x00010A01

RC_NOT_REGISTERED 0x00010D02
RC_OPEN_ENTRY_FAILURE 0x00010A03
RC_OWNER_CLOSED_SEM 0x00010406

RC_PCI_BAD_REGISTER_NUMBER 0x00011403
RC_PCI_DEVICE_NOT_FOUND 0x00011404
RC_PCI_INVALID_COMMAND 0x00011402

RC_PCI_NO_BIOS 0x00011401
RC_PERF_TIMER_NOT_ENABLED 0x00010707
RC_PERMANENT_PROCESS 0x00010204

RC_PIPE_FULL 0x0001000C
RC_PIPES_NOT_CONFIGURED 0x00010017
RC_PROCESSES_WAITING_ON_SEM 0x00010408

RC_PROCESS_ALREADY_STARTED 0x00010203
RC_PROCESS_NOT_LOADED 0x00010202
RC_PROCESS_NOT_STARTED 0x00010201

RC_PROCESS_STOPPED 0x00010205
RC_QUEUE_EMPTY 0x00010801
RC_REMOTE_CFG_NOT_EST 0x0001090E

RC_RESET_ACTIVE 0x00010004
RC_RESET_FAILED 0x00010005
RC_SCB_INIT_ERROR 0x00011101

RC_SCB_TRANSFER_FAILED 0x00010006
RC_SEM_ALREADY_OWNED 0x00010407
RC_SEM_NOT_OWNED 0x00010409

RC_SU_INVALID_HANDLE 0x00000006 (OS/2)
0x00000009 (AIX)

RC_SU_OPEN_FAILED 0x0000006E (OS/2)
0x00000013 (AIX)

RC_SUCCESS 0x00000000
RC_SYSTEM_ERROR 0x00010007
RC_TIMEOUT 0x00010018

Return Code VALUE
314 ARTIC960 Programmer’s Reference

Return Codes (Listed Alphabetically)
RC_TIMER_IS_ACTIVE 0x00010702
RC_TIMER_IS_INACTIVE 0x00010703
RC_TIMER_OVERFLOWED 0x00010706

RC_TOD_NOT_ENABLED 0x00010705
RC_TRACE_NOT_INITIALIZED 0x00011001
RC_UNABLE_TO_ACCESS_UNIT 0x0001090C

RC_UNABLE_TO_CONVERT_ADDRESS 0x0001130B
RC_UNIT_NOT_FUNCTIONING 0x0001000E
RC_UNSUPPORTED_FUNCTION 0x00010107

RC_VECTOR_NOT_ALLOCATED 0x00010B03
RC_VECTOR_NOT_AVAILABLE 0x00010B02
RC_WRN_PIPES_NOT_CONFIGURED 0x00010008

Return Code VALUE
Appendix C: Return, Error, and Exit Codes 315

Return Codes (Listed Numerically)
Return Codes (Listed Numerically)
See Mailbox Process Messages and Return Codes on page 13 for mailbox process return codes.

Return Code Description
0x00000000 RC_SUCCESS

No error occurred.
0x00000006 RC_SU_INVALID_HANDLE

In OS/2, an invalid handle was passed to the API call.
0x00000009 RC_SU_INVALID_HANDLE

In AIX, an invalid handle was passed to the API call.
0x00000013 RC_SU_OPEN_FAILED

In AIX, this error indicates the driver is not installed.

0x0000006E RC_SU_OPEN_FAILED
In OS/2, this error indicates the driver is not installed.

0x00010001 RC_ADAPTER_EXCEPTION

A terminal adapter exception condition has been detected on the adapter.
0x00010002 RC_DUMP_ACTIVE

The command was aborted by a dump of the adapter or the request or command cannot be
issued because a dump is active.

0x00010003 RC_NO_ADAPTER_RESPONSE

This error indicates a severe adapter error. This code is returned when the adapter fails to pass
the power-on self test at power on or after a reset.

0x00010004 RC_RESET_ACTIVE

A reset is currently active on the destination unit.
0x00010005 RC_RESET_FAILED

The card failed to reset properly. This error usually indicates defective hardware. This error may
also be returned because of either user-specified timeouts or internal driver timeouts during
API calls.

0x00010006 RC_SCB_TRANSFER_FAILED
An error occurred when trying to transfer data using a subsystem control block.

0x00010007 RC_SYSTEM_ERROR

An unexpected system error occurred. Under AIX, more information about the error condition can
be found in errno.

0x00010008 RC_WRN_PIPES_NOT_CONFIGURED
The operation completed successfully even though there is no subsystem control block (SCB)
pipe configured to communicate with the adapter.

0x00010009 RC_DUMP_NOT_ACTIVE
A dump command was called without first activating the dump.

0x0001000A RC_HANDLE_CLOSED
Another thread within the process closed the process’ handle, which forces any threads using that
handle to abort with this error. The SCB entity is also deregistered.

0x0001000B RC_NO_ELEMENTS
This error is returned on a dequeue SCB call when no elements are available to be dequeued.

0x0001000C RC_PIPE_FULL
• The element cannot be enqueued at this time because the destination pipe is full.
• The SCB pipe was full when attempting to enqueue a control element.

0x0001000D RC_INVALID_CARD_NUMBER
• The requesting card is not one of the cards specified in the move system bus operation.
• The logical card number is out of range or invalid.

• The requested operation is not supported on this card in this environment.
316 ARTIC960 Programmer’s Reference

Return Codes (Listed Numerically)
0x0001000E RC_UNIT_NOT_FUNCTIONING
• The peer unit involved in the operation is not functioning. A timeout error occurred accessing

the unit or waiting for a response from the unit.
• A timeout occurred when trying to send or receive an SCB element to the unit.

0x0001000F RC_INVALID_UNIT_NUMBER

• The unit number is beyond the range of acceptable unit numbers.
• An invalid unit number was passed.

0x00010010 RC_ENTITY_ALREADY_REGISTERED

The entity is already registered.
0x00010011 RC_ENTITY_NOT_REGISTERED

The entity number passed by the caller is invalid. The entity number has not been registered.

0x00010012 RC_INVALID_ENTITY_NUMBER
Entity zero is reserved by the system for the system management entity.

0x00010013 RC_NO_MORE_ENTITIES

The number of entities registering has exceeded the maximum (8).
0x00010014 RC_INVALID_COUNT

• The count parameter is out of range.

• The mailbox message count is incompatible with the previously created mailbox.
0x00010015 RC_INVALID_NAME

The name used to create or open a resource exceeds the maximum size.
0x00010016 RC_INVALID_OPTION

• An invalid user option was selected, possibly through an OptionWord parameter.

• An invalid option was passed on the call.
0x00010017 RC_PIPES_NOT_CONFIGURED

• SCB pipes are not configured for this unit (after a reset).

• The SCB pipes to the destination unit are no longer configured.
0x00010018 RC_TIMEOUT

• The semaphore wait timed out before the process was awakened. This may occur during an
explicit call to RequestSem or implicitly through another call that waits on a semaphore for the
process.

• The operation timed out before it could complete successfully.
0x00010019 RC_BUFFER_TOO_SMALL

• The buffer provided by the caller is too small. The buffer will be filled up to its size.
• The supplied memory buffer is not large enough to receive the entire buffer of the data

requested.
0x0001001A RC_INVALID_ADDRESS

• The adapter address is out of range.

• An invalid adapter address was specified. The invalid address can be either a bad memory or I/
O address.

0x0001001B RC_INVALID_MEM_ACCESS
• The memory access on the address passed by the user is not appropriate for the action to be

taken. The user should check system bus as well as 80960 access.
• The application does not have proper access to the supplied memory buffer or the driver was

unable to pin the physical memory to perform the necessary DMA request. Note that in 16-bit
OS/2, applications will not receive this return code. Instead, 16-bit OS/2 terminates the process
with a trap. In 32-bit OS/2, threads have the ability to get control through an exception handler
when the driver reports this error.

0x0001001C RC_INVALID_RESERVED_PARM
A non-zero reserved parameter was passed. Reserved parameters must be zero.

Return Code Description
Appendix C: Return, Error, and Exit Codes 317

Return Codes (Listed Numerically)
0x0001001D RC_INVALID_SIZE
• Size of request exceeds amount of memory allocated or size is 0.
• Mailbox message unit size is incompatible with previously created mailbox.

• Size specified for a system bus operation exceeds maximum allowed.
• The size of a passed parameter was invalid (out of range).

0x0001001E RC_INVALID_TIMEOUT

The timeout value given must be between 0 and 0xFFFF or –1.
0x0001001F RC_NO_MORE_RES

• Either no more of the resource is available for allocation, or not enough internal kernel control
blocks are available to handle the allocation. If the latter is true, increasing the maximum value
for the resource type removes this constraint.

• All available internal Mailbox Process resources have been allocated.

0x00010020 RC_INVALID_HANDLE
• An invalid resource handle was passed to a resource service. The user can use only handles

returned by the Create and Open services. In addition, implicit semaphore handles returned by
CreateQueue and CreateMbx cannot be passed directly to ReleaseSem or RequestSem. They
can be passed only to WaitEvent. To wait on a single implicit semaphore, use GetQueue or
ReceiveMbx.

• An invalid semaphore handle or an invalid lock was passed to the API call.
0x00010021 RC_DMA_TRANSFER_FAILED

RICRead or RICWrite attempted to obtain direct memory access to the data and a
failure was reported by the operating system. This is an AIX-only return code.

0x00010101 RC_DUP_RES_NAME

The same name cannot be used to create two resources of the same type. Resources of
different types can have identical names.

0x00010102 RC_NO_RES_ACCESS

• The requester does not have access to the resource.
• Global mailboxes of the same name exist on two or more units.

0x00010103 RC_NAME_NOT_FOUND

• The open resource name does not match any previously created resources. If a mailbox name
was specified using the global search option, this message indicates that a global mailbox
matching the resource name was not found on a remote unit. This could be because the
mailbox was never created, because SCB pipes for the remote unit are not configured, or
because the remote unit is not functioning.

• The requested name does not exist or could not be found within the specified domain. The
domain is limited to the SCB pipes configured. The query may have failed due to a timeout
waiting for the SCB pipes to change to a not-full state.

0x00010104 RC_INVALID_CALL

The called service is not available from the caller’s environment, for example, calling a
blocking service in an interrupt handler.

0x00010105 RC_CALL_TERMINATED

The subsystem that was called has been stopped. This error occurs when a process
was executing as an extension of the caller’s process and is stopped.

0x00010106 RC_INVALID_PROCESSID

The process ID parameter specified was invalid.
0x00010107 RC_UNSUPPORTED_FUNCTION

The function number used for the calling SVC call is invalid.

Return Code Description
318 ARTIC960 Programmer’s Reference

Return Codes (Listed Numerically)
0x00010108 RC_INVALID_FUNCTION_CODE

The function number passed to QueryCallAddress is out of range. This may also be
returned if a service is called directly using InvokeDev, and an invalid function number is
passed.

0x00010201 RC_PROCESS_NOT_STARTED

The process being stopped is not started as yet.
0x00010202 RC_PROCESS_NOT_LOADED

Only a previously loaded process can be started or unloaded.
0x00010203 RC_PROCESS_ALREADY_STARTED

The process has already been started.
0x00010204 RC_PERMANENT_PROCESS

The process has declared itself as permanent and cannot be stopped or unloaded.
0x00010205 RC_PROCESS_STOPPED

The process is already stopped.
0x00010206 RC_DEVICE_DRIVER

Only a device driver/subsystem or the kernel can stop a device driver/subsystem.
0x00010207 RC_NO_MORE_PROC

No more process management resources are available to create a new process.
0x00010208 RC_NO_FLOAT_SUPPORT

The adapter does not support floating point.
0x00010209 RC_ALREADY_INITIALIZED

Process has already called issued a CompleteInit.
0x0001020A RC_INVALID_PRIORITY

The process is trying to use a reserved or out of range priority.
0x00010301 RC_MEM_SHARING_ERROR

The memory cannot be opened because it was not made sharable by the creating
process.

0x00010302 RC_INVALID_BASEPTR

The memory base pointer is invalid.
0x00010303 RC_CANT_STOP_SHARING

The memory protection on the allocated memory cannot be made non-sharable because multiple
processes have access to the memory.

0x00010304 RC_INVALID_SUBALLOC_ADDR

The suballocation block cannot be freed because the suballocation block pointer is
invalid.

0x00010306 RC_NO_MORE_MEM
There is no more memory or not enough contiguous memory to complete the allocation request.

0x00010307 RC_INVALID_ALIGNMENT

The process is trying to allocate memory on a boundary that is not possible.
0x00010401 RC_NEW_SEM_COUNT

When SetSemCount is called for a semaphore that has processes waiting on it, the
processes are awakened with this return code.

0x00010402 RC_INVALID_SEM_COUNT

An invalid semaphore count was passed to SetSemCount.
0x00010403 RC_DEPENDENT_EVENTS

The semaphore could not be closed because events still exist that depend on the
semaphore. Close the events before attempting to close the semaphore.

Return Code Description
Appendix C: Return, Error, and Exit Codes 319

Return Codes (Listed Numerically)
0x00010404 RC_NO_MORE_SEM

No more semaphores can be allocated. All available semaphores have been allocated.
0x00010406 RC_OWNER_CLOSED_SEM

The process that owned a mutex semaphore closed it, or a process was stopped while it
owned the mutex semaphore. The code and data serialized by the mutual exclusion
semaphore may be in an state that cannot be determined.

0x00010407 RC_SEM_ALREADY_OWNED
The process requesting the mutual exclusion semaphore already owns that semaphore.

0x00010408 RC_PROCESSES_WAITING_ON_SEM

Returned when calling SetSemCount. This is a warning to the process that other
processes were waiting on this semaphore.

0x00010409 RC_SEM_NOT_OWNED

The semaphore is not owned by the process trying to release it.
0x00010501 RC_INVALID_EVN_MASK

Invalid wait mask passed to WaitEvent.
0x00010502 RC_NO_MORE_EVNS

All available events have been created.
0x00010503 RC_DUP_RES_HANDLES

Duplicate semaphore handles were passed to CreateEvent.
0x00010601 RC_NO_SUCH_SIG_ID

There was no process to receive the signal.
0x00010602 RC_NO_MORE_SIGS

All signal resources are allocated.
0x00010701 RC_NO_BASE_DEVICE_DRIVER

The service failed because the base subsystem or device driver is not installed.
0x00010702 RC_TIMER_IS_ACTIVE

The TimeOfDay or Performance timers cannot be started because it is active.

0x00010703 RC_TIMER_IS_INACTIVE

The time-of-day or performance timer cannot be stopped because it is inactive.
0x00010704 RC_NO_MORE_TIMERS

All the timers have been allocated.
0x00010705 RC_TOD_NOT_ENABLED

The time of day timer was not enabled using the TIME_OF_DAY parameter in the kernel
configuration file.

0x00010706 RC_TIMER_OVERFLOWED

The performance timer has already expired.
0x00010707 RC_PERF_TIMER_NOT_ENABLED

The performance timer was not enabled using the PERFORMANCE_TIMER parameter in the
kernel configuration file.

0x00010801 RC_QUEUE_EMPTY

The queue was empty and no elements were added before the timeout expired on the
call to GetQueue.

0x00010802 RC_ELEMENT_NOT_FOUND

SearchQueue did not find the element in the queue.
0x00010803 RC_NO_MORE_QUEUES

All queues are allocated.

Return Code Description
320 ARTIC960 Programmer’s Reference

Return Codes (Listed Numerically)
0x00010901 RC_NO_MBX_RECEIVER

No receiver is present for the mailbox. The mailbox has been closed.
0x00010902 RC_MSG_BUFFER_NOT_FREED

• The message buffer was not returned to the pool even though the buffer return option was set
in SendMbx.

• Sender and receiver are sharing memory, and copy option was not used. Receiver should free
buffer when finished with the message.

0x00010903 RC_INVALID_RECEIVER

Only the creating process can receive messages from a mailbox.
0x00010904 RC_NO_MORE_MBX

All available mailboxes have been allocated.
0x00010905 RC_INVALID_MBX_BUFFER_ADDR

• The message buffer pointer was invalid.

• An invalid mailbox buffer pointer was passed to FreeMbxBuffer.
0x00010906 RC_MBX_EMPTY

There are no messages in the mailbox.
0x00010907 RC_NO_MBX_BUFFER

• There is not enough memory left in the mailbox pool to allocate the buffer.

• There are no more available mailbox buffers in the pool.
0x00010908 RC_INVALID_MSG_BUFFER

The message is not in the message pool associated with the open of this mailbox or the
message has been freed.

0x00010909 RC_NO_MBX_PROCESS

The mailbox process is not loaded.
0x0001090A RC_NO_MORE_RES_ON_REMOTE

• A RC_NO_MORE_RES error was received from the remote unit on a remote mailbox operation.

• During an open mailbox, the remote unit did not have enough available internal Mailbox
Process resources to satisfy the request.

0x0001090B RC_NO_RCV_BUFFER

The destination mailbox has no receive buffers to accept the message.
0x0001090C RC_UNABLE_TO_ACCESS_UNIT

This unit is unable to perform the requested operation with the peer unit. Possible
reasons are adapter exception, dump active, reset active, peer unit not functioning.

0x0001090D RC_NO_MORE_REM_MBX

All of the remote mailboxes have been allocated.
0x0001090E RC_REMOTE_CFG_NOT_EST

A global search for the named mailbox cannot be made because the remote
configuration has not been established. This could be because the Configuration Utility
has not successfully established system unit <-> adapter SCB pipes, because the
system bus I/O Subsystem has not been installed successfully on the adapter, or
because the SCB Subsystem has not been installed successfully on the adapter.

0x0001090F RC_MBX_BUFFER_IN_QUEUE

The buffer is queued currently to a mailbox and has not been received by the mailbox
creator.

0x00010910 RC_INVALID_SEMHANDLE

Cannot access the semaphore handle.

Return Code Description
Appendix C: Return, Error, and Exit Codes 321

Return Codes (Listed Numerically)
0x00010A01 RC_NOT_DD_OR_SS

This process is not a device driver or subsystem, but is attempting to use a service
restricted to device drivers and subsystems.

0x00010A02 RC_NO_MORE_DEV

No more device drivers/subsystems can be created.
0x00010A03 RC_OPEN_ENTRY_FAILURE

The open entry routine failed for the subsystem or device driver.
0x00010A04 RC_CLOSE_ENTRY_FAILURE

The close entry routine failed for the subsystem or device driver.
0x00010A05 RC_INVOKE_ENTRY_FAILURE

The call entry routine failed for the subsystem or device driver.
0x00010A06 RC_DD_RC_OUT_OF_RANGE

A subsystem or device driver has returned a value out of the range specified for use by
subsystems and device drivers. The acceptable range is 0XFFFF0000 through
0XFFFFFFFF.

0x00010B01 RC_INVALID_VECTOR

The process is trying to allocate a vector greater than 255.
0x00010B02 RC_VECTOR_NOT_AVAILABLE

The requested vector number is not available.
0x00010B03 RC_VECTOR_NOT_ALLOCATED

The requester is trying to return or set a vector that was never allocated.
0x00010B04 RC_INVALID_PIN

The valid range of external interrupt pin numbers is from 0 to 7.
0x00010C01 RC_HW_ALREADY_ALLOCATED

The requested hardware name is already allocated.
0x00010C02 RC_HW_NOT_ALLOCATED

The requester is returning a hardware resource that was not previously allocated.
0x00010D01 RC_DUP_ASYNC_EVENT

A process can register an async handler for an event only once. If a process wants to
change the address of its async handler, then it should de-register the async handler
before re-registering it.

0x00010D02 RC_NOT_REGISTERED

A process is trying to deregister an asynchronous event for which it is not registered.
0x00010E01 RC_INVALID_CMD_DEST

The destination process ID for the command is invalid.
0x00010E02 RC_CMD_NOT_DELIVERED

The command could not be delivered to the destination process.
0x00010E03 RC_INVALID_COMMAND

The command is invalid.
0x00010F01 RC_HOOK_ALREADY_REGISTERED

The hook has already been registered by the calling process.
0x00010F02 RC_HOOK_NOT_REGISTERED

The process is trying to deregister a hook that it has not registered.
0x00010F03 RC_INVALID_HOOK

The process is trying to register an invalid hook.
0x00010F04 RC_NO_MORE_HOOKS

All available hooks are already registered.

Return Code Description
322 ARTIC960 Programmer’s Reference

Return Codes (Listed Numerically)
0x00011001 RC_TRACE_NOT_INITIALIZED

A call to EnableTrace or DisableTrace was made without a successful call to InitTrace.
LogTrace specified a service class that was not enabled.

0x00011002 RC_INVALID_SERVICECLASS

The range of valid service classes is from 0 to 255.
0x00011003 RC_INVALID_PROCEDURE_ID

The Procedure ID specified is not valid for the service class.
0x00011004 RC_INVALID_CALLER_POSITION

The caller position is not within the valid range of values.
0x00011101 RC_SCB_INIT_ERROR

The reply to an Initialize SCB Pipe command is responding with an error element.
0x00011102 RC_ENTITY_NOT_FOUND

The named entity was not found on the remote unit.
0x00011201 RC_BAD_CONFIG_PARAM

Invalid parameter passed to kernel through configuration file.
0x00011202 RC_INVALID_NUM_RES

The configuration parameters passed were such that the required number of resources
exceeded the kernel’s limit.

0x00011301 RC_MC_DATA_PARITY_ERR

A system bus data parity error was returned on a Micro Channel operation.
0x00011302 RC_MC_CHCK_ERR

A channel check was returned on a system bus operation.
0x00011303 RC_MC_CARD_SEL_FDBACK_ERR

A card selected feedback error was returned on a system bus .
0x00011304 RC_MC_LOSS_OF_CHANNEL_ERR

A loss of channel error was returned on a system bus operation.
0x00011305 RC_MC_LOCAL_BUS_PARITY_ERR

A local bus parity error was returned on a system bus operation.
0x00011306 RC_MC_EXCEPTION_ERR

An exception error was returned on a system bus operation.
0x00011307 RC_MC_TIMEOUT

A timeout occurred on a system bus operation or waiting for DMA resources.
0x00011308 RC_MC_INVALID_COMBINATION

An invalid combination error was returned on a system bus operation.
0x00011309 RC_MC_CHAINING_EX_ERR

A list-chaining exception error was returned on a system bus operation.
0x0001130A RC_MC_POSTSTAT_EX_ERR

A posted status exception error was returned on a system bus operation.
0x0001130B RC_UNABLE_TO_CONVERT_ADDRESS

The system bus address does not correspond to a local card address.
0x0001130C RC_MC_TARGET_ABORT

A target abort error was returned on a system bus operation on the ARTIC960 PCI card.
0x0001130D RC_MC_SERR

A SERR# error was returned on a system bus operation on the ARTIC960 PCI card.
0x0001130E RC_MC_MASTER_ABORT

A master abort error was returned on a system bus operation on the ARTIC960Rx PCI
card.

Return Code Description
Appendix C: Return, Error, and Exit Codes 323

Return Codes (Listed Numerically)
0x0001130F RC_MC_BUS_FAULT

A bus fault error was returned on a system bus operation on the ARTIC960Rx PCI card.
0x0001310 RC_MC_MEM_FAULT

A memory fault error was returned on a system bus operation on the ARTIC960Rx PCI
card.

0x00011401 RC_PCI_NO_BIOS

PCI driver not installed or card does not have a local PCI bus.
0x00011402 RC_PCI_INVALID_COMMAND

An invalid IOCTL number was issued to the PCI driver. This happens only when the
driver library services are not being used.

0x00011403 RC_PCI_BAD_REGISTER_NUMBER

An invalid configuration register number was specified.
0x00011404 RC_PCI_DEVICE_NOT_FOUND

The PCI device is not present.
0x80011401 RC_MOVE_ASYNC_HANDLER_NOT_REG

The service called requires an async handler to be registered.
0x80011402 RC_MOVE_ASYNC_ALREADY_REG

The subsystem name is already registered as a move async handler.
0x80011501 RC_INVALID_TIMER

A bad timer number was given to the base subsystem.
0x80011502 RC_INVALID_TICKS

The base subsystem attempted to start a hardware timer with zero ticks.
0x80011601 RC_BAD_QUEUE_ELEMENT

An internal link list is invalid or corrupted.

Return Code Description
324 ARTIC960 Programmer’s Reference

Kernel Terminal Error Codes
Kernel Terminal Error Codes

Error Code Description
0x0020 TERMERR_MC_IO_FAIL

System bus IO subsystem failure.
0x0021 TERMERR_SCB_FAIL

SCB subsystem failure.
0x0022 TERMERR_EXTMAIL_FAIL

External mailbox failure.
0x0023 TERMERR_INVALID_INTR

Hardware interrupt occurred. No second-level handler was installed.
0x0024 TERMERR_WATCHDOG

Watchdog timeout.
0x0025 TERMERR_PARITY

A parity error has occurred. It is one of the following: multiple-bit ECC error, AIB bus
read parity error with 80960 master, and local bus parity for ARTIC960 32-bit Memory
Controller Chip, system bus Interface Chip, and CFE Local Bus/AIB Interface Chip.

0x0026 TERMERR_MEM_PROCESSOR
Memory-protection violation with 80960 master occurred at interrupt time.

0x0027 TERMERR_MEM_MICROCHANNEL

Memory-protection violation with system bus master.
0x0028 TERMERR_MEM_AIB

Memory-protection violation with AIB master.
0x0029 TERMERR_ASYNC_NO_MORE_RES

No more async event resources could be allocated because the internal pools are
exhausted. The event cannot be processed.

0x002A TERMERR_PROCESSOR

Program has attempted to perform an illegal operation on an architecture-defined data
type or a typed data structure.

0x002B TERMERR_DATA_CORRUPTION

The kernel found its internal data structures corrupted.
0x002C TERMERR_KERNEL_INIT

Kernel initialization error.
0x002D TERMERR_NMI_INTERRUPT

An NMI interrupt occurred on an ARTIC960Rx adapter.
0x002E TERMERR_PLX_INTERRUPT

PLX caused an error on an ARTIC960Hx adapter.
0x1001 TERMERR_NO_MORE_MEM

There is not enough memory left in the internal pools to perform the operation.
0x1002 TERMERR_MC_ERR

An error occurred on a system bus operation.
0x1003 TERMERR_NO_MORE_SEM

There is no semaphore available to perform the operation.
0x1004 TERMERR_NO_MORE_QUEUES

There is no queue available to perform the operation.
0x1005 TERMERR_NO_MORE_TIMERS

There is no timer available to perform the operation.
Appendix C: Return, Error, and Exit Codes 325

Kernel Terminal Error Codes
Refer to the ARTIC960 Programmer’s Guide for more information about terminal errors.

0x1006 TERMERR_DATA_PARITY

A data parity error was returned on a system bus operation.
0x1007 TERMERR_CHCK

A channel check error was returned on a system bus operation.
0x1008 TERMERR_CARD_SEL_FDBACK

A data card selected feedback error was returned on a system bus operation.
0x1009 TERMERR_LOSS_OF_CHANNEL

A loss of channel error was returned on a system bus operation.
0x100A TERMERR_LOCAL_BUS_PARITY

A local bus parity error was returned on a system bus operation.
0x100B TERMERR_EXCEPTION

A local exception error was returned on a system bus operation.
0x100C TERMERR_TIMEOUT

A timeout error was returned on a system bus operation.
0x100D TERMERR_PIPE_ACCESS

A system bus error was returned while trying to enqueue an SCB element.
Note: This error can occur in RISC systems if the secondary arbitration level is not configured.
See ARTIC960 Support for AIX on page 10.

0x100E TERMERR_PIPE_TIMEOUT

A system bus timeout error occurred while trying to enqueue an SCB element.
0x100F TERMERR_INVOKING_RIC_MCIO

An error occurred trying to open or call the system bus Subsystem.
0x1010 TERMERR_INVOKING_RIC_SCB

An error occurred trying to open or call the system bus Subsystem.

Error Code Description
326 ARTIC960 Programmer’s Reference

Exit Codes for System Unit Utilities
Exit Codes for System Unit Utilities
The following exit codes are listed by decimal value.

Exit Code Description
0 RC_UTIL_SUCCESS

The utility command executed successfully.
1 RC_UTIL_INVALID_CARD_NUMBER

The specified logical card number is invalid. The card number is either non-numeric or
out of range.

2 RC_UTIL_RESET_FAILED

The card failed to reset due to an exception condition detected on the card.
3 RC_UTIL_ACCESS_ERROR

An unexpected error was returned by the device driver while accessing the card.
4 RC_UTIL_NO_ADAPTER_RESPONSE

The adapter is not responding to commands.
5 RC_UTIL_NOT_INSTALLED

The driver is not installed and running in the system. This occurs when a utility or
mailbox process attempts to access an adapter and the device driver is not installed.

6 RC_UTIL_ADAPTER_EXCEPTION

The adapter has detected an exception condition.
7 RC_UTIL_ALREADY_STARTED

The process was already running on the adapter.
8 RC_UTIL_DUP_RES_NAME

A process with the same name has already been loaded on the adapter.
9 RC_UTIL_FILE_ACCESS

An error was received when attempting to access a file.
10 RC_UTIL_FILE_FORMAT

A file is not in the proper format. The Application Loader returns this message when a
process file does not have the proper executable format. The status utility returns this
message when a dump file does not have the proper format. The trace formatter returns
this message when the input trace file is not in the proper format.

11 RC_UTIL_FILE_NOT_FOUND

A file does not exist or is not in the specified directory. Under AIX, it may indicate a file
permissions problem.

12 RC_UTIL_INVALID_CMDLINE_OPTION

An option is not a valid command line option.
13 RC_UTIL_INVALID_CMDLINE_PARM

A parameter is invalid. Either a required parameter is missing or a optional parameter
has been improperly specified.

14 RC_UTIL_INVALID_MICROCODE

The RadiSys ARTIC960 kernel is not loaded.
15 RC_UTIL_INVALID_NAME

The process name is too long.
16 RC_UTIL_MICROCODE_ERROR

The kernel unexpectedly returned an error.
17 RC_UTIL_NAME_NOT_FOUND

The process was not found on the adapter and could not be unloaded.
Appendix C: Return, Error, and Exit Codes 327

Exit Codes for System Unit Utilities
18 RC_UTIL_NOT_PENDING

There is no triggered dump pending on the adapter that can be canceled.
19 RC_UTIL_NO_MORE_MEM

There is not enough free storage to complete the request.
20 RC_UTIL_PIPE_ALREADY_CONF

The SCB pipes between units are already configured.
21 RC_UTIL_PIPE_CONF_FAILED

Configuration failed between the adapter and the system unit.
22 RC_UTIL_PIPE_SIZE_OUT_OF_RANGE

The peer adapters could not be configured to communicate on a peer-to-peer basis
because the specified pipe size was too small.

23 RC_UTIL_PIPE_UNCONF

The peer adapters could not be configured to communicate on a peer-to-peer basis
because of the configuration of the adapter. Either the adapter full memory window is
not present, or it is in a location that is inaccessible to the other peer adapter. This error
can be received only in PS/2 systems.

24 RC_UTIL_PROC_DID_NOT_INIT

The process was loaded using the –W option of the Application Loader and it failed to
issue the kernel CompleteInit() call in the specified time period.

25 RC_UTIL_PROC_INIT_ERROR

The process was loaded using the –W option of the Application Loader, and it passed a
non-zero error code on the kernel CompleteInit() call.

26 RC_UTIL_PROC_MISMATCH

The file to be loaded was compiled for a processor type that is different from the adapter
type.

27 RC_UTIL_SYSTEM_ERROR

An operating system error condition has been received by the software.
28 RC_UTIL_UNIT_NOT_FUNCTIONING

The peer adapters could not be configured to communicate on a peer-to-peer basis
because of the configuration of the adapter. Either the adapter full memory window is
not present, or it is in a location that is inaccessible to the other peer adapter.

29 RC_UTIL_WRNHELP_GIVEN

Appropriate syntax diagram is displayed for the selected utility.
30 RC_UTIL_RESOURCE_BUSY

The process is unable to create the resource because it is already being used by
another process.

31 RC_UTIL_TIMESET_ERROR

There was a timeout waiting for a response from the adapter.
32 RC_UTIL_SNGL_PIPE_ALRDY_CONF

Peer communications between the adapter and the system unit were successfully
configured.

33 RC_UTIL_NOT_RUNNING

The mailbox process was not found or could not be terminated.
34 RC_UTIL_SNGLPIPE_CONF_FAILED

Configuration failed between the adapter and the system unit.
35 RC_UTIL_SUBSYSTEM_NOT_FOUND

The specified subsystem was not found.

Exit Code Description
328 ARTIC960 Programmer’s Reference

Exit Codes for System Unit Utilities
36 RC_UTIL_FILL_ROM_FAILED

Fill ROM failed during the ROM update process on the adapter.
37 RC_UTIL_ERASE_ROM_FAILED

Erase ROM failed during the ROM update process on the adapter.
38 RC_UTIL_WRITE_ROM_FAILED

Write ROM failed during the ROM update process on the adapter.
39 RC_UTIL_CHECKSUM_FAILED

Checksum procedure failed during the ROM update process on the adapter.
40 RC_UTIL_DATA_COMPARE_FAILED

ROM Update on the adapter failed. After the new image was written to the ROM, a
comparison was done with the ROM image supplied. This comparison failed.

41 RC_UTIL_INVALID_VPD_DATA

Invalid data was detected in the VPD data file.
42 RC_UTIL_INVALID_VPD_FILE

Invalid VPD file format. The VPD file specified does not conform to the required format.
43 RC_UTIL_INVALID_SERIAL_NUMBER

The serial number specified is invalid.
44 RC_UTIL_AIB_VPD_NOT_FOUND

VPD information not found in the file specified.
45 RC_UTIL_AIB_NOT_INSTALLED

AIB option is not installed. An attempt was made to update a card that is not installed.
46 RC_UTIL_INVALID_MFG_ID_NUMBER

The manufacturer ID specified is invalid.
47 RC_UTIL_BASE_VPD_NOT_FOUND

VPD information not found in the file.
48 RC_UTIL_UNSUPPORTED_OPTION

• The option listed is not supported.

• The option is not supported in this environment.
49 RC_UTIL_INVALID_ROM_FILE

ROM image file specified for ROM update is not valid for the specified card.
50 RC_UTIL_ROM_FILE_WARNING

The specified ROM image file cannot be positively identified for the specified card.
51 RC_UTIL_PROTECT_ROM_SECTOR

One of the sectors of the flash is write protected and cannot be updated by the ROM
update utility.

52 RC_UTIL_NO_ROM_FOR_PMC

The PMC card does not have ROM. Cannot update the PMC ROM.
53 RC_UTIL_UNSUPPORTED_OPT_HARDWARE

The option listed is not supported on the current hardware.
54 RC_UTIL_DUMP_PROCESS_ERROR

A regular dump on the card was not initiated before the PMC dump was requested.
55 RC_UTIL_DUMP_CONFIG_ERROR

The config file specified for the PMC dump has too many entries.
56 RC_UTIL_PARM_SYNTAX_ERROR

The format of the parameter is incorrect.
58 RC_UTIL_NO_MORE_ROM

The image is too large for the ROM size.

Exit Code Description
Appendix C: Return, Error, and Exit Codes 329

Exit Codes for System Unit Utilities
59 RC_UTIL_OEM_ROM

The image is non-RadiSys.

Exit Code Description
330 ARTIC960 Programmer’s Reference

Glossary
A
AAL: ATM Adaptation Layer — Enhances the services provided by the ATM Layer to support

functions required by the next higher level.

B
BIB: Backward indicator bit

C
calling processes:

Processes that open a signal with a NULL EntryPoint. See receiving process.

counting semaphore:
Semaphore used for synchronizing processes, such as synchronizing a producer-consumer
pair of processes.

D
DMA: Direct memory access

E
explicit semaphore:

Semaphore that is decremented before control returns to the process.

H
HAL: Hardware abstraction layer

HPFS: High performance file system

I
ICE: 80960 interactive computing environment

implicit semaphore:
Semaphores that are decremented when the process calls the appropriate resource services,
such as removing a queue element or mailbox message.
Glossary 331

M
MVDM: Multiple virtual DOS machines

MP Safe: Multiprocessing safe

mutex: Mutual exclusion semaphores used for serializing access to code or data structures.

O
OSS: On-card STREAMS subsystem

R
RDT: Resource Descriptor Table

receiving processes:
Processes that open a signal with a non-NULL EntryPoint. See calling processes.

ricmbx: The mailbox process for AIX that is a daemon process that works in conjunction with the
device driver to handle remote mailbox processing.

RICMBX32.EXE:
The mailbox process for OS/2 that is a detached process that works with the physical device
driver to handle remote mailbox processing.

ROM: Read only memory

S
SCB: Subsystem Control Block

SAL: STREAMS Access Library

semval: AIX variable. For information on semval, see /usr/include/sys/sem.h.

SMP: Symmetric multiprocessing

system executables:
A collective term for the kernel and related subsystems that must be loaded onto the adapter
before any application processes are loaded.
332 ARTIC960 Programmer’s Reference

Index
A
access violation 267, 269
adapters, supported (chart) 1
address

convert system bus 181
destination 178
element 102
fault code 142
I/O 7, 10
physical system bus 178

addressability, get memory 67
AIX mailbox process syntax 11
alignment values, block 64
alignment, memory boundary 75
allocate

free mailbox buffer 282
memory for trace buffer 150
message units 104
resources 95
timer 5

AllocHW -- Allocate a Hardware Device 134
AllocVector -- Allocate an Interrupt Vector 128
AllocVectorMux -- Allocate an Interrupt Vector 129
ANSI C end of line/file 198
ANSI C functions support 173
APIs

base services 264
mailbox 276
system unit return codes 312, 316

application loader
description 196
messages and exit codes 199
sample calls 200
syntax 196

arguments within quotes 196
arithmetic-controls (AC) register 142
ARTIC960 services 15
ARTIC960 Support for AIX 10
ARTIC960 Support for OS/2 7
ARTIC960 Support for Windows NT 14
assign

logical card numbers 195
name to event word 58
name to memory 105
process name 34
queue name 95
semaphore name 51
timer 84

async handler
deregister 145
register 139

asynchronous events
DeregisterAsyncHandler 145
notification 138
RegisterAsyncHandler 139

B
base APIs

RICClose 266
RICGetConfig 272
RICGetException 274
RICGetVersion 273
RICOpen 265
RICRead 267
RICReset 271
RICWrite 269

base device driver configuration 6
base kernel services 21
bit map allocation 75
bits, defined 27
blank lines in file 196, 208
block

alignment values 64
call parameter 127
size of 69

books, reference xv
buffer trace 150
byte swapping 268, 270

C
C functions, ANSI, support 173
call

device driver 7
kernel 1
mailbox process 8

calling process 116
333

calls, ANSI C library 173
card configuration information, getting 28
change

adapter attributes using SMIT 11
memory protection 70, 71
process priority 42

close semaphore 53
CloseDev -- Close a Subsystem or Device Driver 126
CloseEvent -- Release Access to an Event Word 60
CloseMbx -- Close a Mailbox 114, 288
CloseMem -- Remove Addressability to Memory 68
CloseQueue -- Close a Queue 97
CloseSem -- Close a Semaphore 53
CloseSig -- Close a Signal 119
CloseSwTimer -- Return a Software Timer 85
collect memory 82
CollectMem -- Collect Memory 82
commands, kernel

common header 164
DeRegisterResponseMbx 167
overview 163
QueryProcessStatus 168
RegisterResponseMbx 166
StartProcess 171
StopProcess 170
UnloadProcess 169

common header, kernel commands 164, 165
CompleteInit--Mark Process as Completely Initialized

23
compress dump data 202
CONFIG.SYS 7
configuration

ARTIC960 Support for AIX 10
ARTIC960 Support for OS/2 7
ARTIC960 Support for Windows NT 14
device driver/subsystem 6
driver, PCI bus 2, 332
file entry format 208
for adapter, SCB 271
get hardware data 272
kernel 1
kernel/subsystem 4
subsystems 6
system bus I/O subsystem 6
utility 207

constants, defined 65
control information, kernel 77
conventions, notational xiv
ConvertCardToMC -- Convert Card Address to System

Bus Address 182
ConvertMCToCard -- Convert System Bus Address to

Card Address 181
corruption, data structure 77
count, set semaphore 57
334 ARTIC960 Programmer’s Reference
counting semaphore 50
create

access rights 65
binary file name 203
event word 58
mailbox 104, 277
memory 64
memory type 80
process 34
queue 95
semaphore 51, 105
signal 115
software timer 84

CREATE_CACHE_DATA option 35
CreateDev -- Register a Subsystem or Device Driver 122
CreateEvent -- Create an Event Word 58
CreateMbx -- Create a Mailbox 104, 277
CreateMem -- Allocate Memory 64
CreateProcess -- Create a Process 34
CreateQueue -- Create a Queue 95
CreateSem -- Create a Semaphore 51
CreateSig -- Create a Signal 115
CreateSwTimer -- Allocate Software Timer 84
critical code section 47

D
data cache

enable 5
i960 197
options 197

data steering 270
DATA_CACHE parameter 80
decimal values, parameter 195
default pipe size 207
delete

event 60
extraneous quotes in argument 196
mailbox 288

DeregisterAsyncHandler -- Deregister an Async Handler
145

DeregisterHook -- Deregister an Entry Point for a Hook
148

DeRegisterResponseMbx command 167
device driver/subsystem

AllocVector 128
AllocVectorMux 129
asynchronous event notification 138
CloseDev 126
configuration 6
CreateDev 122
DeregisterAsyncHandler 145
DeregisterHook 148
driver call syntax, OS/2 Support 7

InvokeDev 127
messages 8, 295
OpenDev 125
QueryHW 137
RegisterAsyncHandler 139
RegisterHook 147
ReturnHW 136
ReturnVector 133
ric_base.rel, file 1
RICIO16.SYS 7
SetVector 131
support 121

diagnostic dump 202
disable interrupts/preemptions 47
DisableTrace service 152
Dispatch -- Cause a Dispatch Cycle 49
DMA (Direct Memory Access) 10
driver messages 295
dump utility

description 202
file decomprsesion 202
format 225
messages and return codes 206
modes 202
syntax 202

E
e-mail address, RadiSys xv
enable interrupts/preemptions 48
EnableTrace service 151
end access to adapter 266
end-of-line sequence 196
EnterCritSec -- Enter Critical Section 47
entry point

deregister hook 148
interrupt vector 131
register hook 147

error
bus 204
codes, kernel terminal 325
messages 295
POST load 199

event
notification, asynchronous 138
wait for 61

event word
creating 58
deleting 60
open access to 59
release/close access to an 60

executable files 1
executing process, get ID 44
exit codes, system unit utilities 327
exit routine, setting process 41
ExitCritSec -- Exit Critical Section 48
expired process 233

F
faults, processor 140
file entry format, configuration 208
find PCI device 187
flags, access 70
Format Trace utility 217
format, big-endian/little-endian 270
FreeMbxBuffer -- Free Mailbox Buffer 109, 283
FreeMem -- Free Memory 81
FreeSuballoc -- Free Suballocated Memory 78
functional prototype 31

G
get

adapter handle 265
addressability to memory 67
hardware configuration data 272
memory suballocation 77
ROM information 28
semaphore count 56
software version numbers 273

Get Trace utility 215
GetMbxBuffer -- Get a Free Mailbox Buffer 108, 282
GetProcessData -- Get Process Data 46
GetQueue -- Get or Peek at an Element on a Queue 100
GetSuballoc -- Suballocate Memory 77
Getsuballocsize -- Return Size of Suballocation Pool 79

H
hardware device

query status of 137
return a 136

header, kernel commands common 164, 165
help xv
hexadecimal value, parameter 195
high performance file system (HPFS) 198
hooks

DeregisterHook 148
overview 146
RegisterHook 147

HPFS (high performance file system) 198
HxInfo 143

I
i960 data cache 197
ID

get process 44
PCI device 186
Index 335

immediate dump mode 202
InitSuballoc -- Prepare a Block of Memory for

Suballocation 75
InitTrace 150
interface routines 264
interrupt vector

allocate 128, 129
entry point, set new 131
return 133

interrupts/preemptions, disabling 47
invocation

device driver 7
kernel 1
mailbox process 8

InvokeDev -- Call a Subsystem or Device Driver 127
InvokeSig -- Call a Signal 120

K
kernel 151

base services 21
call 1
configuration 4
control information 77
loading 1
parameters 4
process management 22
process synchronization 50
return codes 316
ric_kern.rel, file 1
services, modes 15
terminal error codes 325
trace information 150, 155

kernel commands
common header for responses 165
DeRegisterResponseMbx 167
overview 163
QueryProcessStatus 168
RegisterResponseMbx 166
StartProcess 171
StopProcess 170
UnloadProcess 169

keywords 4

L
library routines

ANSI C functions support 173
ConvertCardToMC 182
ConvertMCToCard 181
MoveMCData 177
ProcessSleep 175

load application
description 196
messages and exit codes 199
336 ARTIC960 Programmer’s Reference
sample calls 200
syntax 196

loading/configuring ARTIC960 Support 1
log trace information 153
logical card numbers 178, 182
LogTrace service 153

M
mailbox

allocate free buffer 282
APIs, system unit 276
CloseMbx 114
create 277
CreateMbx 104
FreeMbxBuffer 109
GetMbxBuffer 108
messages 295
open 280
OpenMbx 106
process, start 8, 11
put message in 284
ReceiveMbx 112
release/delete 288
return buffer 283
SendMbx 110
type 104

MallocMem -- Allocate Memory 80
MEM_DCACHE parameter 80
memory

addressability to allocated, open/get 67
alignment 75
allocate 64, 80
close/remove addressability to allocate 68
collect 82
free 81
free suballocated 78
free, query 74
get suballocation 77
get/remove addressability 68
management 63
protection 70, 140
protection services 1
protection, query 72, 73
resize allocated 69
suballocation 75
transfer 267, 269

memory management
CloseMem 68
CollectMem 82
CreateMem 64
FreeMem 81
FreeSuballoc 78
GetSuballoc 77

GetSuballocSize 79
InitSuballoc 75
MallocMem 80
OpenMem 67
QueryFreeMem 74
QueryMemProt 72
QueryProcMemProt 73
ResizeMem 69
SetMemProt 70
SetProcMemProt 71

messages
Configuration utility 209
driver/mailbox/utility 295
Format Trace 218
Get Trace 216
loader 199
put into mailbox 284
quiet mode 196
read/receive mailbox 286
Set Trace 214
Status utility 225
Status utility interactive 223

modes, kernel service 15
move system bus data 177
MoveMCData -- Move system bus Data 177
move-mode SCB pipes 207
MP Safe (multiprocessing safe) driver 11
Multiple Virtual DOS Machines (MVDM) 7
mutex semaphores 50
mutual exclusion semaphore 50
MVDM (Multiple Virtual DOS Machines) 7

N
name

mailbox 277
memory 278, 281
queue 95

notational conventions xiv
null-terminated strings 35

O
open

access to event word 59
mailbox 280
RadiSys ARTIC960 adapter 265
semaphore 52

OpenDev -- Open a Subsystem or Device Driver 125
OpenEvent -- Open Access to an Event Word 59
OpenMbx -- Open a Mailbox 106, 280
OpenMem -- Get Addressability to Allocated Memory

67
OpenQueue -- Open a Queue 96
OpenSem -- Open a Semaphore 52
OpenSig -- Open a Signal 117

P
parameter

DATA_CACHE 80
MEM_DCACHE 80
separators 4

peek at queue 100
peer process, creating 34
peer-to-peer communication 207
performance timer

read current time 93
start 91

physical system bus address 178
pipe size, default 207
pipes, configure SCB 207
POST error, load 199
primary process state bits 27
priority

process 42, 198
query process 43

process
change memory protection 71
Completelnit 23
control block 23
faults 140
ID, getting 44
instance data, location 45
instance data, returned 46
management services 22
mark as completely initialized 23
messages 295
peer, creating 34
ProcessSleep 175
query memory protection 73
resuming 40
setting exit routine 41
starting 36
status, getting 25
suspending 39
synchronization services 50
unloading 38

process communication
CloseMbx 114
CloseQueue 97
CloseSig 119
CreateMbx 104
CreateQueue 95
CreateSig 115
FreeMbxBuffer 109
GetMbxBuffer 108
GetQueue 100
InvokeSig 120
Index 337

Openmbx 106
OpenQueue 96
OpenSig 117
PutQueue 98
ReceiveMbx 112
SearchQueue 102
SendMbx 110

process management
CompleteInit 23
CreateProcess 34
Dispatch 49
EnterCritsec 47
ExitCritSec 48
GetProcessData 46
QueryCardInfo 28
QueryConfigParams 31
QueryPriority 43
QueryProcessInExec 44
QueryProcessStatus 25
ResumeProcess 40
SetExitRoutine 41
SetPriority 42
SetProcessData 45
start/stop process 37
StartProcess 36
SuspendProcess 39
UnloadProcess 38

process synchronization
CloseEvent 60
CloseSem 53
CreateEvent 58
CreateSem 51
OpenEvent 59
OpenSem 52
QuerySemCount 56
ReleaseSem 54
RequestSem 55
SetSemCount 57
WaitEvent 61

process type, signaling 116
process-controls (PC) register 142
ProcessSleep -- Sleep a Process 175
programming interface, mailbox 276
publications, reference xv
put message into mailbox 284
PutQueue -- Put an Element into a Queue 98

Q
query

exception conditions 274
free memory 74
memory protection 72
process priority 43
338 ARTIC960 Programmer’s Reference
QueryCardInfo -- Get the Card Configuration
Information 28

QueryConfigParams -- Get the Configuration
Parameters 31

QueryFreeMem -- Query Free Memory 74
QueryHW -- Query Status of Hardware Device 137
QueryMemProt -- Query Memory Protection 72
QueryPriority -- Query the Priority of the Process 43
QueryProcessInExec -- Get ID of Process in Execution

44
QueryProcessStatus -- Get the Process Status 25, 168
QueryProcMemProt -- Query a Process’s Memory

Protection 73
QuerySemCount -- Get a Semaphore Count 56
QuerySystemTime -- Get the Time of Day 90
queue

CloseQueue 97
CreateQueue 95
GetQueue 100
name 95
OpenQueue 96
PutQueue 98
SearchQueue 102

quiet dump operation 202
quiet mode 196, 208
quote in parameter 197

R
RadiSys, contacting xv
RDT, Resource Descriptor Table 135
read

16-bit word from PCI space 189
32-bit doubleword from PCI space 190
byte from PCI space 188
data from adapter memory 267
mailbox message 286

ReadPerfTimer -- Read Current Time of the
Performance Timer 93

realtime multitasking kernel 21
receive mailbox message 286
ReceiveMbx -- Receive a Message 112, 286
receiving process 116
record description 220, 221
records, Format Trace utility 219
reference publications xv
Register asynch handler service 139
register, PC and AC 142
RegisterHook -- Register an Entry Point for a Hook 147
RegisterResponseMbx command 166
release

access to memory 68
mailbox 288

release access

to event word 60
ReleaseSem -- Release a Semaphore 54
remove

queue element 102
response mailbox 167

RequestSem -- Request a Semaphore 55
reset utility 210
resize allocated memory 69
ResizeMem -- Reallocate Memory 69
responses, common header 165
resume process 40
ResumeProcess -- Resume a Process 40
return

hardware device 136
hardware device status 137
interrupt vector 133
mailbox buffer 283
memory pages 82
size of suballocation pool 79
software timer 85

return codes
Configuration utility 209
Get Trace 216
listed alphabetically 312
listed by values 316
loader 199
Set Trace 214
system unit API 312, 316
terminal error, kernel 325

ReturnHW -- Return a Hardware Device 136
ReturnVector -- Return an Interrupt Vector 133
ric_base.rel, system executable file 1
RIC_CONFIG structure 290
ric_ess.rel, system executable file 2
RIC_EXCEPT structure 293
ric_kdev.rel, system executable file 1
ric_kern.rel, kernel file 1
ric_mcio.rel, system executable file 1, 2
ric_oss.rel, system executable file 2
ric_pci.rel, system executable file 2
ric_scb.rel, system executable file 2
RIC_VERDATA structure 292
RICCLOSE -- Close a RadiSys ARTIC960 Adapter 266
RICGetConfig -- Get Configuration Information 272
RICGetException -- Get Exception Status 274
RICGetVersion -- Get Version Number 273
RICIO16.SYS, device driver 7
RICLOAD application loader 196
RICOpen -- Open a RadiSys ARTIC960 Adapter 265
RICRead -- Read from RadiSys ARTIC960 Memory

267
RICReset -- Reset a RadiSys ARTIC960 Adapter 271
RICWrite -- Write to RadiSys ARTIC960 Memory 269
ROM (Read Only Memory) 13
ROM data structure, get data from 28
RPInfo 143

S
sample

format trace call 218
formatted dump 226
loader calls 200

SCB (subsystem control block)
configuration 6
Configuration utility 207
file (ric_scb.rel) 2
parameters 6

search queue for element 102
SearchQueue -- Search a Queue for an Element 102
semaphore

closing/deleting 53
creating 51
get count 56
name 51
opening 52
releasing 54
requesting 55
set count 57
types 50

semval, AIX variable 278
SendMbx -- Send a Message 110, 284
sequence translation rules 198
service class names 217
services

AllocHW 134
AllocVector 128
AllocVectorMux 129
CloseDev 126
CloseEvent 60
CloseMbx 114
CloseMem 68
CloseQueue 97
CloseSem 53
CloseSig 119
CloseSwTimer 85
CollectMeM 82
CompleteInit 23
CreateDev 122
CreateEvent 58
CreateMbx 104
CreateMem 64
CreateProcess 34
CreateQueue 95
CreateSem 51
CreateSig 115
CreateSwTimer 84
DeregisterAsyncHandler 145
Index 339

DeregisterHook 148
DisableTrace 152
Dispatch 49
EnableTrace 151
EnterCritSec 47
ExitCritSec 48
FreeMbxBuffer 109
FreeMem 81
FreeSuballoc 78
GetMbxBuffer 108
GetProcessData 46
GetQueue 100
GetSuballoc 77
GetSuballocSize 79
InitSuballoc 75
InitTrace 150
InvokeDev 127
InvokeSig 120
LogTrace 153
MallocMem 80
OpenDev 125
OpenEvent 59
OpenMbx 106
OpenMem 67
OpenQueue 96
OpenSem 52
OpenSig 117
PutQueue 98
QueryCardInfo 28
QueryConfigParams 31
QueryFreeMem 74
QueryHW 137
QueryMemProt 72
QueryPriority 43
QueryProcessInExec 44
QueryProcessStatus 25
QueryProcMemProt 73
QuerySemCount 56
QuerySystemTime 90
ReadPerfTimer 93
ReceiveMbx 112
RegisterAsyncHandler 139
RegisterHook 147
ReleaseSem 54
RequestSem 55
ResizeMem 69
ResumeProcess 40
ReturnHW 136
ReturnVector 133
SearchQueue 102
SendMbx 110
SetExitRoutine 41
SetMemProt 70
SetPriority 42
340 ARTIC960 Programmer’s Reference
SetProcessData 45
SetProcMemProt 71
SetSemCount 57
SetSystemTime 89
SetVector 131
StartPerfTimer 91
StartProcess 36
StartSwTimer 86
StopPerfTimer 92
StopProcess 37
StopSwTimer 88
SuspendProcess 39
UnloadProcess 38
WaitEvent 61

set
bits 27
configuration parameters 31
exit routine 41
process instance data 45
process priority 42
time of day on adapter 198
trace buffer 150

Set Trace utility 213
SetExitRoutine -- Set the Exit Routine for the Process 41
SetMemProt -- Change Memory Protection 70
SetPriority -- Set the Priority of the Process 42
SetProcessData -- Set Process Data 45
SetProcMemProt -- Change a Process’s Memory

Protection 71
SetSemCount -- Set a Semaphore Count 57
SetSystemTime -- Set the Time-of-Day Clock 89
SetVector -- Set a New Interrupt Vector Entry Point 131
signal

CloseSig 119
InvokeSig 120
OpenSig 117

signaling types 116
size

memory block 69
memory to allocate 77
return suballocation pool 79
smallest allocatable message 104

sleep a process 175
software timer

close/return 85
create/allocate 84
start 86
stop 88

standard input/output devices 223
start

allocated block alignment 64
mailbox process 8, 11
performance timer 91
priority process 198

process 36
process examples 200
software timer 86

STARTED/STOPPING states 27
StartPerfTimer -- Start the Performance Timer 91
StartProcess -- Start a Process 36, 171
StartSwTimer -- Start a Software Timer 86
status utility

description 223
interactive message examples 227, 253
main menu 228

status, get process 25
stop

performance timer 92
process 37
software timer 88

StopPerfTimer -- Stop the Performance Timer 92
StopProcess -- Stop a Process 37, 170
StopSwTimer -- Stop a Software Timer 88
structure, RDT 135
suballocation

free memory 78
GetSuballoc 77
GetSuballocSize 79
prepare memory block 75

Subsystem Control Block (SCB) 2, 332
summary

ARTIC960 services 15
kernel services 15

support xv
supported adapters 1
suspend process 39
SuspendProcess -- Suspend a Process 39
syntax

Configuration utility 208
Format Trace 217
Get Trace 215
mailbox process 11
Reset utility 210
Set Trace 213
Status utility 224

system bus interface
ConvertCardToMC 182
ConvertMCToCard 181
I/O subsystem parameters 6
MoveMCData 177
ric_mcio.rel, I/O subsystem file 2

system executables 1
system time 198
system unit APIs

base
RICClose 266
RICGetConfig 272
RICGetException 274
RICGetVersion 273
RICOpen 265
RICRead 267
RICReset 271
RICWrite 269

mailbox
CloseMbx 288
CreateMbx 277
FreeMbxBuffer 283
GetMbxBuffer 282
OpenMbx 280
ReceiveMbx 286
SendMbx 284

T
technical support xv
terminate access to adapter 266
time-of-day

clock, setting the 89
query system 90

timeout value, mailbox 5
timer

services 83
trace buffer 150
trace control block record 219
trace information

disable 152
enable 151
logging 153

trace utilities 212
transport services 1
triggered dump mode 202
troubleshooting xv

U
UnloadProcess -- Unload a Process 38, 169
URL, RadiSys xv
utility

application loader 196
configuration 207
dump 202
format trace 217
get trace 215
messages 295
reset 210
set trace 213
Status 223
trace 212

V
VPD (Vital Product Data) 261
Index 341

W
wait for exception conditions 274
wait for semaphore 55
WaitEvent -- Wait on an event 61
word swapping 268, 270
World-Wide Web, accessing RadiSys xv
wrap trace buffer 213
write

32-bit doubleword to PCI space 193
byte to PCI space 191
data to adapter memory 269
word to PCI space 192
342 ARTIC960 Programmer’s Reference

	Contents
	Figures
	Tables
	About This Book
	Guide Contents
	Notational Conventions

	Where to Get More Information
	Reference Publications
	Developer’s Assistance Program

	Chapter 1. Loading and Configuring
	Supported Adapters
	Kernel and Subsystems
	Kernel Performance Considerations
	Configuration Parameters

	ARTIC960 Support for OS/2
	Supported ARTIC960 Configurations
	Device Driver Installation
	Mailbox Process (RICMBX32.EXE)

	ARTIC960 Support for AIX
	Supported ARTIC960 Configurations
	Device Driver Installation
	Mailbox Process (ricmbx)
	Error Logging
	Trace Facility

	ARTIC960 Support for Windows NT
	Supported ARTIC960 Configurations
	Device Driver Installation
	Mailbox Process
	Event Logging

	Chapter 2. ARTIC960 Kernel Services
	Summary of Services
	Parameter Types

	Chapter 3. Base Kernel Services
	Process Management Services
	CompleteInit—Mark Process as Completely Initialized
	QueryProcessStatus—Get the Process Status
	QueryCardInfo—Get the Card Configuration Information
	QueryConfigParams—Get the Configuration Parameters
	CreateProcess—Create a Process
	StartProcess—Start a Process
	StopProcess—Stop a Process
	UnloadProcess—Unload a Process
	SuspendProcess—Suspend a Process
	ResumeProcess—Resume a Process
	SetExitRoutine—Set the Exit Routine for the Process
	SetPriority—Set the Priority of the Process
	QueryPriority—Query the Priority of the Process
	QueryProcessInExec—Get ID of Process in Execution
	SetProcessData—Set Process Data
	GetProcessData—Get Process Data
	EnterCritSec—Enter Critical Section
	ExitCritSec—Exit Critical Section
	Dispatch—Cause a Dispatch Cycle

	Process Synchronization Services
	CreateSem—Create a Semaphore
	OpenSem—Open a Semaphore
	CloseSem—Close a Semaphore
	ReleaseSem—Release a Semaphore
	RequestSem—Request a Semaphore
	QuerySemCount—Get a Semaphore Count
	SetSemCount—Set a Semaphore Count
	CreateEvent—Create an Event Word
	OpenEvent—Open Access to an Event Word
	CloseEvent—Release Access to an Event Word
	WaitEvent—Wait on an Event

	Memory Management Services
	CreateMem—Allocate Memory
	OpenMem—Get Addressability to Allocated Memory
	CloseMem—Remove Addressability to Memory
	ResizeMem—Reallocate Memory
	SetMemProt—Change Memory Protection
	SetProcMemProt—Change a Process’ Memory Protection
	QueryMemProt—Query Memory Protection
	QueryProcMemProt—Query a Process’ Memory Protection
	QueryFreeMem—Query Free Memory
	InitSuballoc—Prepare a Block of Memory for Suballocation
	GetSuballoc—Suballocate Memory
	FreeSuballoc—Free Suballocated Memory
	GetSuballocSize—Return Size of Suballocation Pool
	MallocMem—Allocate Memory
	FreeMem—Free Memory
	CollectMem—Collect Memory

	Timer Services
	CreateSwTimer—Allocate a Software Timer
	CloseSwTimer—Return a Software Timer
	StartSwTimer—Start a Software Timer
	StopSwTimer—Stop a Software Timer
	SetSystemTime—Set the Time�of�Day Clock
	QuerySystemTime—Get the Time of Day
	StartPerfTimer—Start the Performance Timer
	StopPerfTimer—Stop the Performance Timer
	ReadPerfTimer—Read Current Time of the Performance Timer

	Process Communication Services
	CreateQueue—Create a Queue
	OpenQueue—Open a Queue
	CloseQueue—Close a Queue
	PutQueue—Put an Element into a Queue
	GetQueue—Get or Peek at an Element on a Queue
	SearchQueue—Search a Queue for an Element
	CreateMbx—Create a Mailbox
	OpenMbx—Open a Mailbox
	GetMbxBuffer—Get a Free Mailbox Buffer
	FreeMbxBuffer—Free Mailbox Buffer
	SendMbx—Send a Message
	ReceiveMbx—Receive a Message
	CloseMbx—Close a Mailbox
	CreateSig—Create a Signal
	OpenSig—Open a Signal
	CloseSig—Close a Signal
	InvokeSig—Call a Signal

	Device Driver/Subsystem Services
	CreateDev—Register a Subsystem or Device Driver
	OpenDev—Open a Subsystem or Device Driver
	CloseDev—Close a Subsystem or Device Driver
	InvokeDev—Call a Subsystem or Device Driver
	AllocVector—Allocate an Interrupt Vector
	AllocVectorMux—Allocate an Interrupt Vector
	SetVector—Set a New Interrupt Vector Entry Point
	SetVectorMux—Set an Interrupt Vector
	ReturnVector—Return an Interrupt Vector
	AllocHW—Allocate a Hardware Device
	ReturnHW—Return a Hardware Device
	QueryHW—Query Status of Hardware Device

	Asynchronous Event Notification Services
	RegisterAsyncHandler—Register an Async Handler
	DeregisterAsyncHandler—Deregister an Async Handler

	Hook Services
	RegisterHook—Register an Entry Point for a Hook
	DeregisterHook—Deregister an Entry Point for a Hook

	Kernel Trace Services
	InitTrace—Initialize a Trace Buffer
	EnableTrace—Enable Tracing of Service Classes
	DisableTrace—Disable Tracing of Service Classes
	LogTrace—Log Trace Information
	Kernel Trace Information

	Chapter 4. Kernel Commands
	Common Headers for Commands and Responses
	RegisterResponseMbx—Register a Command Response Mailbox
	DeRegisterResponseMbx—Deregister a Command Response Mailbox
	QueryProcessStatus—Get the Process Status
	UnloadProcess—Unload a Process
	StopProcess—Stop a Process
	StartProcess—Start a Process

	Chapter 5. Adapter Library Routines
	ANSI C Functions
	Miscellaneous Service
	ProcessSleep—Sleep a Process

	System Bus Interface Services
	MoveMCData—Move System Bus Data
	ConvertMCToCard—Convert System Bus Address to Card Address
	ConvertCardToMC—Convert Card Address to System Bus Address

	PCI Local Bus Configuration Device Driver Services
	pciBiosPresent—Query PCI Driver Presence
	pciFindDevice—Find a PCI Device by Vendor and Device ID
	pciFindClassCode—Find a PCI Device by PCI Class Code
	pciReadConfigByte—Read a Byte from PCI Configuration Space
	pciReadConfigWord—Read a Word from PCI Configuration Space
	pciReadConfigDWord—Read a Doubleword from PCI Configuration Space
	pciWriteConfigByte—Write a Byte to PCI Configuration Space
	pciWriteConfigWord—Write a Word to PCI Configuration Space
	pciWriteConfigDWord—Write a Doubleword to PCI Configuration Space

	Chapter 6. System Unit Utilities
	Application Loader (ricload) Utility
	Application Loader Syntax
	Application Loader Messages and Exit Codes
	Examples of Application Loader Calls

	Dump Utility
	Dump Syntax
	Dump Messages and Exit Codes

	Configuration Utility
	Configuration Syntax
	Configuration Messages and Exit Codes

	Reset Utility
	Reset Syntax
	Reset Messages and Exit Codes

	Trace Utilities
	Set Trace Utility
	Get Trace Utility
	Format Trace Utility

	Status Utility
	Status Syntax
	Status Messages and Exit Codes
	Status Dump Format
	Status Interactive Messages
	Examples of Interactive Messages

	Chapter 7. System Unit APIs
	Base API
	RICOpen—Open an ARTIC960 Adapter
	RICClose—Close an ARTIC960 Adapter
	RICRead—Read from ARTIC960 Memory
	RICWrite—Write to ARTIC960 Memory
	RICReset—Reset an ARTIC960 Adapter
	RICGetConfig—Get Configuration Information
	RICGetVersion—Get Version Number
	RICGetException—Get Exception Status

	Mailbox API
	CreateMbx—Create a Mailbox
	OpenMbx—Open a Mailbox
	GetMbxBuffer—Get a Free Mailbox Buffer
	FreeMbxBuffer—Free Mailbox Buffer
	SendMbx—Send a Message
	ReceiveMbx—Receive a Message
	CloseMbx—Close a Mailbox

	Appendix A. Structure Definition
	RIC_CONFIG Structure
	RIC_VERDATA Structure
	RIC_EXCEPT Structure

	Appendix B. Message File
	Driver, Mailbox Process, and Utility Messages

	Appendix C. Return, Error, and Exit Codes
	Return Codes (Listed Alphabetically)
	Return Codes (Listed Numerically)
	Kernel Terminal Error Codes
	Exit Codes for System Unit Utilities

	Glossary
	Index

