0
DIGITAL
RESEARCH"

Concurrent CP/M™

Operating Systemn

Programmer’s
Reference Guide

COPYRIGHT

Copyright ®1984 by Digital Research Inc. All rights reserved. No part of this publication
may be reproduced, transmitted, transcribed, stored in & retrieval system, or transiated into
any language or computer language, in any form or by any mesns, electronic, mechanical,
magnetic, optical, chemical, manmnal or otherwise, without the prior wriiten permission of
Digitsl Research, Post Office Box 579, Pacific Grove, California, 93950,

DISCLAIMER

Digital Research makes no representations or warrantics with respect to the contents bersof
and gpecifically disclaims any implied warranties of merchantability or fitness for any par-
ticular purpose. Purther, Digital Research reserves the right to revise this publication and
to meke changes from time to time in the content hereof without obligation of Digital Research
to notify any person of such revision or changes.

TRADEMARKS
CPM and CP/M-86 ars registered trademaerks of Digital Research. ASM-86, Concurrent
CPM, DDT, DDT-86, MP/M, MP/M-B6, and PL/I are trademarks of Digital Research. Intsl

and MCS are registered trademarks of Intel Corporstion. ISIS-TI is a trademnark of Intel
Comporation. IBM is a registered trademark of International Business Machines.

The Concurrent CPIM Operating System Programmer's Reference Guide wes printed in the
United States of America.

First Edition: Jannary 1984

Foreword

Concurrent CP/M® ig a multi- or single-user operating system targeted specifically for
the Inte]® 8086/8088/80186 family of microprocessors. It supports multiple CP/M program-
ming environments each implemented on a virtual console. A different task runs concurrently
in each environment.

This manval des¢ribes the invariant programming interface to Concurrent CP/M. [t sup-
ports the applications programmer who must create applications programs that run in the
Concurrent CP/M environment.

Section | offers an overview of the entire operating system.
Section 2 describes the structure of the Concurrent CP/M file system.

Section 3 explains the format, structure, and uses of transient commands in the Concurrent
CP/M environment,

Section 4 explains the creation of transient command files in the Concurrent CP/M, envi-
ronment.

Section 5 documents the structure and creation of resident system processes or resident
commend files permanently installed in the Concurrent CP/M environment.

Section 6 describes all the Concurrent CP/M system calls.
Concurrent CP/M is supported and documented through four manuals:

8 The Concurrent CPIM Operating System User's Guide (hereinafier cited as Concurrent
CPIM User's Guide) documents the user’s interface to Concurrent CP/M, explaining
the various features nsed o execute applications programs and Digital Research utility
pragrams.

B The Concurrent CPIM Operating System Programmer's Reference Guide (hereinafter
cited as Concurrent CPIM Programmer’s Reference Guide) documents the applications
programmer’s interface to Concurrent CP/M, explaining the internal file structure
and system entry points, information that is essential for creating applications pro-
grams that run in the Concurrent CP/M environment.

W ‘The Concurrent CPIM Operating System Programmer’s Uttlities Gulde (hereinafter
cited as Programmers Ulilities Guide) documents the Digital Research utility pro-
grams that programmers use to write, debug, and verify applications programs written
for the Concurrent CP/M environment.

® The Concurrent CP/M Operating System System Guide (hereinafter cited as Concur-
rent CP/M System Guide) documents the internal, hardware-dependent structures of
Concurrent CP/M.

Table of Contents

1 Concurrent CP/M System Overview

A1
A2

IRroducton. ... e s s e e 1-1
Supervisor (SUP)viiciiiiciiiine e iveinn e res rrmrar s aaeenn s 1-5
Real-time Monitor (RTM)coiimiiiiiiiiercvre v rvvnsmarsecnnnans 1-5
1.3.1 Process Dispatchingoooiviii i 1-5
1.3.2 Queue Management.ccooivivieiniarmirnssarsnrnnaaaniies 1-7
i.3.3 System Timing Functions.,........ . Cieaseireaes O
Memory Module (MEM} arrireriaan O N 1-9
Basic Disk Operating System (BDOS)...civvivimsivismsrieisssniniiene. -9
Character O Module (CIO)........covviviviinsiiissanieniirarssrnisen, 1-10
Virtual Console Screen Managementvvvvseriescrsennnivescirieccnee 1-10
ExtendedInputhutputSystem(XIOS)....... Crresarees vrareennns 1-11
Terminal Message Processes {TMP} ...oovvviernneres vrreesinsrrrsresiens 1212
Transient Programscoiv0nne verives R 13)
SystemCallCthngConvcnnons erereriiranes verrensersnnnrenaes 1212
SYSTAT: System Status bemraeaas R PR £ I

2 The Concurrent CP/M File System

2.1

2.2
23
24

2.5

2.7
2.8
2.9
2,10
2,11
2.12
2.13

File System OVeIvVIEWcovviiiin ittt iiie e err i e enes 2-1
2.1.1 File-access Systemn Calls.........cccooveiiinceiiieiniciiniiiennnss 2-2
2.1.2 Drive-related System Callscooiiiiiiiiiiiiiiaac e 23
File Naming Conventions.ccu.uviirveinannrrareerermnnnnnnrsrnnes 2-5
Disk Drive and File Organization............cceeveecniineerinnnieneennn, 28
File Control Block Definition.c.cviieiiecciiiiiiiiiiiieennss 2-9
2.4.1 FCB Initialization aud Usage e e nan 2-12
2.4.2 File AMADULESvvviiieiiiinnisaniiinens s inr e ennrennenss 2-14
2,43 Interface AMHDULES ...ocovvevvvinesciiinnir e irrneaees 2-16
User Number Conventions.cu.eveviesiriereinmsssisrirerrarninices 2-17
Directory Labels and XFCBS......o.covvviiiiinrcirrisirsrsnsirnnnisnn 2-18
File Passwords,uveeucrciaianiennmrnrsonranesarnnisenersrasernnsirnns 222
File Date and Time Stampg: SFCBScoivueirciiiriniinnnnnnniiinas 224
File Oper Modescoooiiiviini i e 2-26
L1 PP 2-27
Extended File LOCKING. - ... vevvvuvrereernnsnrnenieneeenserenssereesenes 2-30
Compatibility AmrbUIESo 2-31
Multisector /O ... e e e e 2-34

Table of Contents (continued)

2.14 Concurrent File ACCeS8......cioiminiieiiiiiii it et 2-35
2.15 File Byte Countsciiiieiiiiiiie i arinsnerrnennns 2-37
2.16 Record Blocking and Deblocking......covvveevivinniinviiiniianiaennn. 2-33
2.17 Reset, Access, and Free Drive ... 2-39
2.18 BDOS Error Handling......ooeeeeiiiieianiiinairriiiir s eenieecaenas 243
Transient Commands
3.1 Transient Program Losdd and EXit....coooviiiiiiiiiineiiiieiiiiiieennan... 31
3.1,1 Shared Code....covvuviriranns eererereiininne et ittt 32
3.1,2 B087 Suppxtt .o cvvveiriiienan cerrreraians P 1+
3.1.3 3087 Exception Handling...........ccoviiiinisirmeiiiaceinnninns v 33
3.2 Command File BOrmat, .viiiiicsiiiiiesimmmmreriiiicieaini, s 33
3.3 Base Page Inftialization....ccocovuviiiininiiiniiiiiiiiiincininn, 35
3.4 Pareot/Child Relationshipg.....oooviinniiiiiiiiiiiiiiiisiiicininn 3-8
3.5 Direet Video Mapping.....c..coviiiiiiiiiiiiiiiiiiiiiisina e 3-8
Command Flle Generation
4.1 ‘Trenslent BxscutionModelsooiiiiiiii e 41
41.1 The 8080 Memory Modelc.oiiviiiiiiiiiiiiiiaiiane. 4-2
4.1.2 The Small Memory Modelc.oooiiiiiiiiiiiiiiii s 4.4
4.1.3 The Compact Memory Modeloi 4-5
T B ¢ 21 [4.4
4.3 Intel Hexadecimal File Formatccccoiiicceiiiiiiiiiiiiieeieenas 4-9
Resident System Process Generation
51 Introduction to RSPE .. .vvviiinnnirarnernnnnentssrsrannrsenntsrnerenss 5-1
5.2 RSP Memory Models...coooviienreieiniiieiiieniniiecsonanirnnrcsaconss 5-1
52,1 BOR0 Model RSP tuuuiirn e iiirsirnriinnnnisessssnnnsranntrssessans 52
522 SmaEll Model RSP ...t e e 52
5.3 Multiple Copies Of REPE ...vviceniiiiii it s viensrennsieninas 53
531 BOBO Model . iiviiiiiiiie i iiie e reiiiia e rrre i 53
5.3.2 Small Model.....iieiee et ieeiia e e e i ians e eresnmransriaaneen 54
5.3.3 Smal? Model with Shared Code......covvvnivveiricieeaiiinnns, - 54
5.4 Creating and Initializing an RSP......o.oooiiiiiiiiiiiiii e 54
541 The RSP Header.....ccooinriirii i e i imeee i ae 5-7

Table of Contents (continued)

5.4.2 The RSP Process Descriptor.....,...ccvevureiaeraeneerinresnenrns 5-8
5.43 The RSP User Data Area......ccoiiieeecrrnirriiineneienrannns 5-9
5,44 The RSP Stack........ouvesh. cererirennaas Cerriiiere, R |
5.4.5 The RSP Command Queuee00iees Prreresieiies P =
5.4.6 Multiple Processes within an RSP .,,........ - 11 L
5.5 Devcloping and Debugping an RSP - 1 8

6 System Calls
6.1 Systemn Call SUMIMATYcooiiiiiii i e e 6-13
6.2 Concurrent CP/M System Calls............vvvviieiiriiiaiannneeeniennes 6-20
6.2.1 Console VO System Callsccoeviiiiiiiiieiiniiaciirennn, 621
6.2.2 Device System Calls.......c.ooovviiimrrciaiiiir e nnineeens 641
6.2.3 Disk Drive System Calls.........coiiiiiiiiniiiiiiiiiaairenans 644
6.2.4 File-access System Calls...........ccovviiviiiiiiniiniieaiienann, 6-64
6.2.5 List Device VO System Calls........coovieiiiiiiiiicciiinicann, 6-122
6.2.6 Memory System Calls........coovviiiimiieiiii e 6-128
6.2.7 Process/Program System Calls................ e e 6139
6.2.8 QueucSystem Calls................ Ceeieerees Crvrareeres Veresaans 6-162
6.2.9 System Information System Calls............ e veevers 8-174

Appendixes

A System Call Summary by Function Number................ PPN . A-1
B ASCH and Hexadecimal Conversionscccoooviiiiieaniiiiieennas B-1
C ErrorCodes..............coocovnvvnnnne Crerereens . C-1
D ECHO.AB LISHNG.oooooiiiuiiiiiiitieeiiiereieeeieierinieeenneeens D-1
E 8087 Exception Handlngccooiiiiiiiii e E-1
GlOSSANY ...\ i e e e Gloseary-1
IOEX |, .o e i eiieeeccieieere e aaes Index-1

Table of Contents (continued)

Tables
1-1. Registers Used by System Calls.............. Crevrreeeen cereenrene 1-13
2-1. File Systemn CallSccoiuieeiniiiimaneonaaitiaicait e b aaens 23
2-2. Valid Filename Delimiterg eereresnntrerinas erevarenirerennanas 2-6
2-3. Filetype Conventionsovveeves Ceeereaciatieonines rerearirtrertaees . 27
2-4. Drive Capecity ...ovveeennnn creerins Viereeeens v rreerirrrr et 2-8
2-5. FCB Field Definitions e eeetreearioatirenterananinns TN . 2-11
2-6. File Attribute Definitions Viseetieateenens evrares Crrerrnrenas R 2-15
2-7. BDOS Dnterface Attributes FS’ and F6‘ berreens hvrrrreaserrnreras 2-16
2-8. Directory Label Field Definilions. .. ettt et 2-19
2-9. XFCB Field Definition®vovveeiiininniceniinn rterireerraaes . 221
2-10. Pazaword Protection Modes..... veernaenns srrena Veererias Cernereeans 2-22
2-11. Compatibility Ateibute Definitions e ras Srerirerirraas . 232
2-12. BDOS PhyncaIErm.... erriceariaen . r et e erran e re e . 24
2-13. BDOS Extended Errors........ e e 245
2-14. BDOS Error Codes . coiii et iiiiiiniintaemraeincarsnrsses rrecieranes 247
2-15. BDOS Physical and Extended Errors 249
31, Group DesCTiptorE ...ocuviiininnnasiiiiiesessarrrestnisststirsassriarsens 34
32, Group Descriptor Fieldscooiiiiiiinii i 34
4.1, Concurrent CP/M Memory Models.............c.oovvrciiiiinicicnnnn, 41
4.2, Intsl Hex Field Definitionsccoooiiiiiiioiiiiiiiieeie e e, 411
6-1. System Call Categories........... Cherrrrrerree e i irrrseeeseanis . &2
62. Concurrent CP/M Syatem Calls ,.....oovvvviiiniirniiieirniieicnnronann &4
6-3. System Call Summary............. N 613
64. Data Structures Index............... etnnrmreseteaaereneraetranreanrararie 618
6-5. CX Error Coge RePOttBcuiiiiiiniine i iaiiiaesisiinsssnnsassins 519
66. ACH Ficld Defimitionsoivviiieriiii s iiiesis s eenann s 522
57. C_RAWIO Calling Values......... bt ieeearearerarar e aay 531
6-8. Cousole Buffer Field Definitionsoooiviveimiiiin e 6-34
6-9. C_READSTR Line-cditing Cheracters..........ccccciiimmecninirnninnans 6-34
6-10. DPB Field Definitionscocoviiuenieriaaiianiaciiie e e einnaaaeaaes 649
6-11. PFCB Field Deflmitions.cooveieeiiiiiieieaicairenie e canareecnnnn 6-87
6-12. FCB Initilzation.oooiieeeiiiiiiiiaieeiieiiaatea s raninaaananeriasseas 6-89
6-13. MCB Field Definftionscooiiiiiiiiiiiiiaiiiaiaaieeeirareseooaaan 6-129
6-14. MPB Field Defimitions.ccocaieiieiiiiiiiiriesirnieriesesreertinionas 6-130

613,
6-16.
6-17.
6-18.
6-19.

6-21.
622,
6-23,

A-L.

B-1.
B-2,

1-1.
1-2.

2-1.
2-2.
2-3.
24,
2-5.

3-1.
32,

4-1,
4-2,

Table of Contents (continued)

APB Field Definitionsovveivrioaeiiiiavene e rennareitsassonass
Command Line Buffer Field Definitions...............cococveieiiiarennna,
PD Field Definitions........couviivriiierieiasmnnnrereersanrenronasasnae
UDA Field Definitions.ccviviiiierieienncraaranssieersnnasnnnsnens
CPB Field Definitionsccooovrineiveiinenirmmrerrircaamaneararnns
QPB Field Definitionscooviiiniiiiiiiiiiii s eeciiniiia s o
QD Field Definitions ... "
SYSDAT Table Data Fields.coociiemniieirtieiarenrcanasaass e
TOD Field Defiitons.......coouuviiiiereioerrrreeeesriornierasrmaners Ve

System Call Summary by Function Number............ Fereresirrrrrseneanes

ASCIL BymbolB. .. veeeiii e e e
ASCII Conversion Table.cooiciiiiieiiii i ieeeiiinanecirerans

Concurrent CP/M Error Codes ...vvevicvveeenevincnnans i rr et reaneseanes .

Figures

Concurrent CP/M Virtual/Physical Environments ,............cc..iovevvvee---
Concurrent CP/M Functional Modulesvcvvveureoaaaacnanieninss

FCB - File Control BIocKceciiiriiniiiiiaiiacnersiinaneneannenan
Directory Label Format...........cciciiemiiiiiiiiiiiiaccriiieraeeeeaans
XFCB - Extended File Control Blockcccciiecmiiiiieniinnnnann.nn.
Directory Record with SECB.......c..ocoiieiiiiiciiee i ieeiiaaaeanes
SFCB Subfields........ciiivveeeiiiineeiaiiieriiassiieacnaancecnacesssannons
Disk Sy8Iem RSBl . ..v vttt ietiiiiiii ittt e et e e ran

CMD File Header FOITOALoovviiiievinisrsrennnernneessssresinnennnnees
Group Descriptor FOTMALovoiviiiiiiieiiiiiiieiiiiioeiiiiiiiiiianneneoes
Concurrent CP/M Base Page VRIUES.........ovivviiemniiririeiinnninnenens

Initial Program Stackccoievimiiiiinieenieinresnicararsisneiens
Concurrent CP/M 8080 Memory Model ...vvenneieiiiiiiiiiiienccnieen

6-140
6-143
6-147
6-152
6-160
6-163
6-169
6-130
6-186

A-l

B-1
B-1

C-1

Table of Contents (continued)

Concurrent CP/M Small Memory Model.........c.ccvivevnvvvnnininns
Concurrent CP/M Compast Memory Modelccevvvvvnennennn
Intel Hexadeeimel File Formatscooooevveviivviiiiiiiiiireennens

Congole Buffer FOrmaEciiveiiiemmirniitraiiaeernerinereeees
Drive, R/0, or Login Vector Structureocooviiiieccricnnennnnnes
DPB - Disk Parameter Blockccvvviiiiiiiiiiiiie e,
Disk Free Space Field Format.........coovviiiiiiiiiiiiiiiieiene,
PFCB - Parse Filename Control Blockc.ccovivvvieneinnn,

. QPB - Quens Parameter BIOGKovvereoeso oo
. QD - QUEE DERCTIPIOT. ..o oeeeeses e oees oo

. SERIAL Number Format.........c.vivieiiiniiniimeee e iae e vnneamas
. SYSDAT Thbleciiiiei i e

61.

6-3.
D-1.
BE-1.

Table of Contents (continued)

Listings
Memory Control Block Definition..........ccceeeviiiiiiiiieneiinnnn. 6-129
Memory Parameter Block Definitionc.coceviviiiiianneniinnn. 6-130
Qucue Parameter Block Definition.........ccoevviviiiiiiiiiicecnnnnns 6-164
ECHO.ABG ..o e iirresircincirsiesnanons D-1
8087 Exception Handling...........cccoiiniiiiiiniiii i E-2
xi

Section 1
Concurrent CP/M System Overview

1.1 Introduction

Concurrent CP/M is a multi- or single-user, multitasking operating system that lets you
Tun multiple programs simultenecusly by initiating tasks on two or more terminalg or virtual
consales. Applications programs have access to system callz used by Concurrent CP/M 1o
control the multiprogramming environment. As a result, Concurrent CP/M supports extended
features, such as comumunication among and synchronization of independently running processes,
Figure 1-1 depicts the relationships between applications programs, virtual environments,
wvirtual consoles, and the user terminat.

J LOmCAL 08 1 Y IICAL LD STHTER
- [
f
APELICATION vnTua ——y TTUAL
PRCGARAL 1

.
—
DROEENT I COMNELE

AMPLICATICH
PROGRAM

APPLICATICN
maeALL CONBOLE

TEREA

VBITUAL WIRTUAL
COning

aide L

HARDGORY
PMANTER

Figure 1-1. Concurrent CP/M Virtual/Physical Environments

B DIGITAL RESEARCH®
1-1

1.1 Hatroduction Cascmyust CP/M Prograussn’s Guls

In the Concurrent CP/M environment there is an important distinction between s program
e & process. A progrem is simply e block of code residing somewhere in memory or on
disk; it is essentially static. A process, on the other hand, is a dynamic entty. You can think
of it as & logical machine that executes not only the program code, but algo the operating
system routines necessary to support the program’s functions.

When Concurrent CP/M loads a program, it creates a process associated with the loaded
pragram. Subsequently, it is the process, rather than the program, that obtains access to the
system’s resources. Thus, Coneurrent CP/M monitors the process, not the progrem. This
distinction is a subkle one, but vital to your understanding of system operstion ms & whole.

Processes yunning under Concurrent CP/M fall into two categories: iransient processes
end Rezident System Processes (RSPs). Translent processes run programs losded into mem-
ory from disk in rezponse to a user cormmend or gystern calls made by snother process.
Resident Systemn Processes run code that is a part of the operating system itself. RSPs
become en integral part of the operating system image during gystem gensration, They are
immediately available to performn opereting system tasks. For example, the CLOCK process
Is an RSP that maintains the time of day within the operating system.

The following list briefly summarizes Concurrent CP/M’s capabilities.

W Interprocess communication, synchronization, and mutusl sxclusion functions are
provided by system queues.

B A logical intertupt mechenism using flags allows Concurrent CP/M to interfbce with
any physical interrupt structure.

E System timing functions enable processes running under Concurrent CP/M (o com-
pute clapsed times, delay execution for specified intervals, and to sccess and set the
current date and time.

® Shered file systemn sllows multiple programs to access common data files whils
maintaining data integrity.

® Shered code support eliminates program loading of another copy of the same program
end conserves Memory space.

m 8087 support takes advantage of fast 8087 math instructions.

¥ Virtual console handling lets a single user run multiple programs, each in its own
console environment.

W Real-time process control allows communications and deta acguisition without loss
af information.

5 DIGITAL RESEARCH®
1.2

Comcurrest CP/M Programmer’s Guide L.} Iniroduction

Functionally, Concurrent CP/M is composed of several distinct modules, as shown in
Figure 1-2.

——— /=
—

g
o
of
|

AL T IS
NOMITOR

E i i
r] 1
1) 1
1 EXTENOED O BYSTEM 1
1 Ll 1
1 i 1
1 ! 1
{)
! u! ; f
avaTEd HARDICOMY DASXETTL CONTROL
PRNTER DRIV o

Figure 1-2, Conrarrent CP/M Functional Modules

B DIGITAL RESEARCH®

1.1 Imtreduction Couewrvont CP/M Prograssmer’s Gaide

N The Supervigsor (SUP)

B The Real-time Monitor (RTM)

B The Memory Management Module (MEM)
B The Character 'O Module (CIO)

B The Virtual Console Screen Manager

N The Basic Disk Operating System (BDOS)
m The Extendsd /O System (XIOS)

N The Terminal Message Processor (TMF)

The SUP module handles miscellanecus system ¢alls such as returning the version mmber
or the address of the Systern Data Area. SUP also calls other system calls when necessary.

The RTM module monitors the execution of running processes and arbitrates conflicts for
the system's resources.

The MEM moduls sllocates and frees memory upon demand from executing procasses.
The CIO moduls handles gll charscter 110 for congole and list devices in the system.

The Virtual Console Screen Manager extends the CIO to support virtual console envi-
ronments.

‘The BDOS ig the hardware-independent module thet containg the logically invarlent portion
of the file system for Concurrent CP/M. The BDOS file system is explained in detell in
Section 2.

The XTOS is the hardware-dependent moduls that defines the interface of Concurrent
CP/M to s apecific hardware environment. See the Concurrent CP/ M System Guide for
an explanation of the XIOS,

When Concurrent CP/M is axecuting a single program on a single virtual console, its
speed approxzimates that of CP/M-86. But when maltiple processes are running on several
virtual consoles, the execution of each individual process slows according to the proportion
of /D to CPU resources it requires. A process that performs a large amount of IO in
proportion to computing exhibits only minor spesd dagrsdation. This alsa applies to a procees
that performs e large amount of computing, but runs concwrrently with other processes that
ar¢ largely 1/O-bound. On the other hand, significant speed degradation occurs where mare
than one compute-bound process is running.

EDIGITAL RESEARCH®
14

Comcurrent CP/M Programumey’s Guide 1.2 Sapervisor (SUP)

1.2 Supervisor (SUP)

The Supervisor module (SUP) manages the interface between processes and the operating
systemn kernel, It also manages interna! communication between operating system modules.
All systemn calls, whether they originate from & transient process or internally from another
system module, go through a common table~driven function interface in SUP. SUP also
hendles the P_LOAD (Load Process) and P._CLI (Call Command Line Interpreter) systein
calls.

1.3 Real-time Monitor (RTM)

The Real-time Monitor (RTM) is the real-time multitasking nucleus of Concurrent
CP/M. The RTM performs process dispatching, queue management, flag management,
device polling, and system timing tasks. User programs can also call many of the RTM
system calls used to perform these tasks.

1.3.1 Process Dispatching

Although Concurrent CP/M is a multiprocess operating system, only one process has
access to the CPU resource at any given time. Unless you specifically write a program to
communicate or synchronize execution with ather processes, a process is unaware of other
processes competing for system resources.

The primary task of the RTM is to transfer, or dispatch, the CPU rescurce from one
process to another. The RTM module called the Dispatcher performs this task. The RTM
mgaintains two data structures, the Process Descriptor (PD) and the User Data Area (UDA),
for each process running under Concurrent CP/M. The Dispaicher uses these data structures
to save and restore the curreat state of each running process.

Each process in the systein resides in one of three states: ready, running, or suspended.
A ready process is one that is waiting for the CPU resource only. A running process is one
that the CPU is currently executing. A suspended process is one that is waiting for a system
resource or a specified event, such as the occurrence of an interrupt, an indication that polled
hardware is ready, or the expiration of a delay period.

Any existing process is represented on a system list. The Dispatcher removes a process
from one list and places it on another. The Process Deseripior of the currently running
process is the first entry on the Ready List. Other processes ready to run are represented on
the Ready List in order of priority. Suspended processes are on other system lists, depending
on why the processes were suspended.

I DIGITAL RESEARCH®

1.3 ReaMinw Mouitor (RTM) Concurrent CP/M Programmer's Guide

A dispatch opemtion can be summarized as follows:

1. The Dispatcher suspends the process from execution arxd stores its curtent state in
the Process Descriptor and the UDA.

2. The Dispaicher places the process on an appropriate system list, depending on why
the Dispatcher was called. For example, if a process is to delay for a certain mumber
of sysiem ticks, its Process Descriptor is placed on the Delay List. When a process
releasss a resource, the process is usnally placed back on the Ready List. If another
process is weiting for the resource, that process iz taken off its current system list
and elso placed on the Ready List.

3. The highest priority process on the Ready List is chosen for execution. If two or
more processes have the same priority, the process that hag waited the longest executes
first,

4, The Dispatcher resiores the state of the selected procass from its Process Descriptor
and UDA, and gives it the CPU resource,

5. The process executes untl it nesds a busy resource, a vesource needed by another
process becomes available, or an interrupt occurs. At this point, a dispatch occurs,
altowing ancther process to rua.

Only processes on the Ready List are eligible for sslection during dispatch. By definition,
a process is on the Ready List if it is waiting only for the CPLI resource. Processes waiting
for other system resources cannot execute until the resources they require are svaileble.
Concurrent CP/M blocks a process from execution If It is waiting for:

N a queue message 5o it can complete a Q_READ operation.

¥ zpace to become available in a queue so it can complete 8 Q- WRITE operation.

® a console or list device to become available.

® a epecified mumber of system clock ticks before it can be removed from the system
Delay List.

W an 170 event to complete.

These situations are discussed in greater detail in the following sections.

A running process not needing a resource and not refeasing one runs until an interrupt
causes a dispatch. While not all interrupts casuse dispatches, the system clock generates
interrupts every cleck tick and forces a dispatch each time. Clock ticks usually occur 60
times a second (approximately every 16.57 milliseconds), and allow time sharing within a
real-time environment.

BIDIGITAL RESEARCH®

Concurrent CP/M Programmer’s Gulde 1.3 Real-time Moniktor (RTM)

Concurrent CP/M is a priority-driven system. This means that during a dispatch, the
operating system gives the CPU resource to the process with the best priority. The Dispatcher
ellots squal shares of the system’s resources to processes with the same priority, With priority
dispatching, the system never passes control to a lower-priority process if there is a higher-
priotily process on the Ready List. Because high-priority, compute-bound processes tend 10
manopolize the CPU resource, it is best to reduce their priority to avoid degrading overall
system performance.

1.3.2 Queve Management

Queues perform several critical functions for processes running under Concurrent CP/M.,
A process can use a queue for communicating with another process, synchromizing its
execution with that of another process, and for exclusion of other processes from protected
fystem resources. A process can meke, open, delete, read from, or write to a queue with
system calls similar to those used to manage disk files.

Each system queue consists of two parts: the queue descriptor, and the queue buffer.
Concurremt CP/M implements these special data structures as memory files that contain
room for a specified number of fixed-length messages.

When the Q_MAKE system call creates a queue, this queue is assigned a unique 8-
character name. As the name queue implies, messages are read from a queue on a first-in,
first-out basis.

A process can read from or write to a queue conditicnally or unconditionally. If the queue
is empty when a conditional read is performed, or full when a conditional write is performed,
the system returns an error code to the calling process. On the other hand, if a process
ailempts an unconditional queve operation in these circumstances, the system suspends it
from execution until the operation becomes possible.

More than one process can wait to read or write a queue message from the same queue
a1 the same time. When these operations become possible, the system restores the highest
priority process first; processes with the same priority are restored on a first-come, first-
served basis.

Mutual exclusion queues are a special type of queue under Concurrent CP/M. They contain
one message of zero length and their names follow a convention, beginning with the upper-
case letters MX, A mutual exclusion queve acts as a binary semaphore, ensuring that only
orle process uscs A resource at any time.

B DIGITAL RESEARCH®

1.3 Roal-thne Monitor (RTM) Concwryent CP/M Proprammer’s Gulde

Accesg to a resource protected by a mutual exclusion queue takes place as foliows:

1. A process issues an unconditional Q_READ call to the MX queue protecting the
resource, thereby suspending itself if the message is not availshle.

2. When the message becomes available, the process accesses the protacted resource.
Note that from the time the process issues the unconditional read, any other process
attempting to sccess the same resource is suspended.

3. The process writes the zero-length message back to the quene when it has finished
using the protectsd resource, thus freeing the resource for other processes.

As an example, the system mutus! exclusion queue, MXdisk, ensures that processes cannot
access the file system simmltaneously. Note that the BDOS, not the application software,
executes the preceding series of gueve calls. Therefore the mutusl exclusion process is

transparent to the programiner, who is only responsible for originating the disk system calls.

Mutual exclusion queues differ from normal quaues in another way. When a process reads
& meszage from & mutual exclusion qusue, the RTM notes the Process Descriptor address
within the Queue Descriptor. This establishes the owner of the queue message. If the opersting
system eborts the process while it owns the mutual exciusion measage, the RTM antornaficelly
writes the message back to all mutual exclusion queues whose messages are owned by the
sborted process. This grants other processes access to protected resources owned by the
sborted process.

1.3.3 System Timing Functions

Concurrent CP/M's timing system calls include keeping the time of day and delaying the
excention of a process for & specified period of time. An intzrnel process called CLOCK
provides the time of day for the sysiem. This process iseues DEV_WATTFLAG system calls
on the system’s one second flag, Flag 2. When the XIOS Tick Interrupt Handler ssts this
fiag, it tnitiares the CLOCK process, which then Incremenis the internal time and date.

Subsequently,- the CLOCK. process makes another DEV_WATTFLAG call and suspends
itself until the flag is set again. Congurrent CP/M provides system calls that allow you to
set and access the internal date and time, In addition, the file system uses the internal time
and date o record when a file is updated, created, or last accessed.

& DIGITAL RESEARCH®

Concurrent CP/M Programmer's Guide 1.3 Real-time Monttor (RTM)

The P_DELAY system call replaces the typical programmed delay loop for delaying
process éxecution. P_DELAY requires that Flag 1, the system tick flag, be set approximately
every 16.67 milliseconds, or 60 times a second; the XIOS Tick Interrupt Handler also sets
this flag. When a process makes 2 P_DELAY system call, it specifies the mumber of ticks
for which the operating systern is to suspend it from execution. The system meintains the
address of the Process Descriptor for the process on an internal Delay List along with its
current defay tick count. When e DEV_SETFLAG call occurs, setting Flag 1, the tick count
is decremented. When the delay count goes to zero, the system removes the process from
the Delay List and places it on the Ready List.

Note: The length of a tick might vary from installation to installation. For instance, in
Eurape, & tick is commonly 20 milliseconds, yielding 50 ticks per second. The description
of the P_DELAY system call in Section 6 deseribes how to determine the correct number
of ticks to delay 1 second.

1.4 Memory Module (MEM)

Concurrent CF/M supporis an extended, fixed partition model of memory management;
the Memory Module handles ail memory management system calls. In practice, the exact
method that the operating system uses to allocate and free memory is transparent to the
application program. Therefore you should take care to write code independent of the memory
management model; use only the Concurrent CP/M specific memory system calls described
in Section 6.

1.5 Basic Disk Operating System (BDOS)

Except for auxiliary device support, Concurrent CP/M BDOS is an upward-compatible
version of the single-tasking CP/M-86 BDOS, It handles file creation and deletion, facilitates
sequentie] or random file access, and allocates and frees disk space. In most cases, CP/M-86
programs that make BDOS calls for IO can run under Concurrent CP/M without modifi-
cation. Concurrent CP/M’s BDOS is extended to provide support for multiple virtual consoles
and Hst devices. In addition, the file system is extended to provide services required in a
muldtasking environment. The major extensions to the fils system are

W File locking. Files opened under Concurrent CP/M cannot be opened or deleted by
other tasks. This feature prevents accidental conflicts with other tasks.

DIGITAL RESEARCH®

1-9

1.3 Basic Disk Operuting Systom (BEDOS) Cowcerrest CP/M Prograssssr’y Guide

¥ Shared access (o files. As 8 special option, independent users can open the same file
in ghered or unlocked mode. Concurrent CP/M supports record locking and unlocking
commands for files opened in this mode and protects files opened in shared mode
from deletion by other tasks.

N Dgre Stamps. The BDOS optionally supports two time and date stamps, one recording
when a file is updated, and the other recording when the file was created or Jast
accensed.

B Password Protection. The password protaction feature is optional at either the file or
drive level. The operstor or applications program assigns digk drive passwords, while
application programs can assign file protection passwords in several modes.

M Extended Brror Module. Besgidas the default ervor mode, Concurrent CP/M has two
optional error-handling modes that return an error code to the calling process in the
avent of an unrecoverable disk error.

1.6 Character I/0 Module (CIO)

The Character [0 module handles all console and list /O, Under Coneurrent CP/M, every
charecter IO device is associated with a data structure called a Console Control Block {CCB)
or a List Control Block (LCB). These dats structures regids in the X108, The CTUB contains
the current owner, status information, line editing variahlea, and ths root of & linked lst of
Proceas Descriptors (PDa) that are weiting for access. More than one process can wait for
access to & single conacle. These processes are maintained on a linked list of Process
Dexcriptors in priority order. The LCBs contain similar information about the list devices.
Ses the Concurrent CPIM System Guide for more mformation about LCBs and CCBa,

1.7 Virtual Console Screen Msnagement

Virtual console scresn management is coordinated by four sepamate modules: the CIOQ,
the PIN (Physical INput) end VOUT (Virtual QUTput) processes, and the XIOS, The line
editing associated with the C_READSTR call is performed in the CIO. The PIN process
handles keyboard input for all the virtual consoles; 1t a1s0 traps and implements the CTRL-C,
CTRL-S, CTRL-Q, CTRL-P, and CTRL-O functicns. The YOUT process spools console
ocutput from processes running on beckground buffered mode consoles, end handshakes with
the PIN process to display spooled console cutput when the background comsole is brought
to the foreground. The XIOS decides which special keys represent the virtual consoles, and
returns a special code from JO_CONIN when you request a screen switch. The XIOS also
implements any screen saving and restoring when screens are switched. See the Concurrens
CPIM System Guide and the discussion of the ID_SWITCH function.

B DIGITAL RESEARCH®
1-10

Concurrent CP/M Programmer’s Gulde 1.7 Virtual Console Screen Management

The PIN process reads the keyboard by directly calling the XIO8 IO_CONIN function.
This is the only place in the operating system I0_CONIN is called. The PIN scans the input
stream from the keyboard for switch screen requests and the special function keystrokes
CTRL-C, CTRL-S, CTRL-Q, CTRL-F, and CTRL-O. All other keyboard input is written
to the VINQ (Virtual Console INput Queue) associated with the foreground virtual console.
The data in the VINQ becomes a type-ahead buffer for each virtual console, and is returned
to the process attached to that console as it performs console input.

When PIN sees o CTRL-C it calls P_ABORT to abort the process attached to the virtnal
console, flushes the type-ahead buffer in the VINQ, turns off CTRL-S, and performs a
DRV_RESET call for each logged-in drive. The P_ABORT call succeeds when the Process
Keep flag is not on, saving the Terminal Message Processes (refer to P_CREATE for
information on the process descriptor). The DRY_RESET calls affect only the removable
media drives, as specified in the CKS field of the Disk Parameter Blocks in the XIOS (refer
1o the Cancurrent CPIM System Guide for further details on Disk Parameter Blocks).

CTRL-S stops any cutput to the screen. CTRL-S stays set when 2 virtual console is
switched to the background.

CTRL-O discards any console output to the virtual console. CTRL-O is turned off when
any ather key is subsequently pressed, except for the keys representing the virtual consoles.

CTRL-P echoes console output fo the default list device specified in the LIST field of the
process descriptor attached to the vartual console. [f the list device is attached to a progess,
a PRINTER BUSY message appears.

All of the above control keys can be disabled by the C_MODE call. When one of the
above control characters is disabled with C_MODE or when the process owning the virtual
console is nsing the C_RAWIO call, the PIN does not act on the controi character but instead
writes it to the VINQ. It is thus possible to read any of the above control characters from
an application program. Thesa contro! keys are discussed in depth in the Concurrent CP/M
User's Guide.

1.8 Extended Input/Qutput System (XIOS)

The XIOS module is similar to the CP/M-86 Basic Input/Output System (BIOS) module,
but it is extended in several ways. Primitive operations, such as console 1/0, are modified
to support mmltiple virtual consoles. Several new primitive system calls, such as
DEV_POLL, support Concurrent CP/M's additional features, including elimination of wait
leops for real-time 170 operations.

1 DIGITAL RESEARCH®

1-1n

1.9 Termimal Message Prucasses (TMF) Comemxront CP/M Prograsssers Guids

1.9 Terminal Message Processes (TMP)

The Concurrent CP/M Terminal Measage Procegses {TMPs) are regident system processes
that eccept command lines from the virtual consoles and call the Comimnand Line Interpreter
(CLI) 1o execuie them. The TMP prints the prompt on the virwal consoles.

Each virtual console has an independent TMP defining that console’s environment, includ-
ing defsult disk, user mxmber, printer, and console.

1.10 Transient Programs

Under Concurrent CP/M, a transient program is one that iz not system-resident. The
systern must load such programs from disk into available memary each time they execute.
The command file of a transient progrem is identified by the filetype CMD. When you enter
a command at the console, the operating aystem seerches on disk for the appropriate CMD
file, loads it, and initiates it. Concurrent CP/M supports three different execution models
for transient programs: the 8080 Model, the Smell Model, and the Compact Model.
Sections 4.1.1 through 4.1.3 déscribe these models in detail.

1.11 System Call Calling Conventions
When a Concurrent CP/M process mekes a system call, it loads values into the registers

shown in Table 1-1 and initiates Interrupt 224 (via the INT 224 ingtruction), reserved by
the [nte! Corporation for this purpose.

BDIGITAL RESEARCHS

1-12

Concurrent CP/M Progranmer’s Guide 1,11 System Call Calling Conventions

Table 1-1. Registers Used by System Calls

ENTRY PARAMETERS
Register CL: System Call Number
DL: Byte Parameter
or
DX: Word Parameter
or

DX: Address - Offset
DS: Address - Segment

RETURN VALLUES
Register AL: Byte Return
or
AX: Word Return

or
AX: Address - Offset
ES: Address - Segment

BX: Same as AX
CX: Error Code

Concurrent CP/M preserves the contents of registers SI, DI, BP, SP, S5, DS, and CS
through the operating system calls. The ES register is preserved when it is not vsed to hold
a return segment value, Error codes returned in CX are shown in Table 6-5, CX Error Codes.

1.12 SYSTAT: System Status

The SYSTAT utility is a development tool that shows the internal state of Concurrent
CP/M. SYSTAT describes memory ellocation, current processes, system queue activity,
and many informative parameters associated with these system data structures. Further-
more, SYSTAT presents two views: cither a static snapshot of system activity, or a
continuous, real-time window into Concurrent CP/ M.

B DIGITAL RESEARCH®

1-13

L12 BYSTAT: System Status Concurrent CP/M Programmer's Guide

You can specify SYSTAT in one of two modes. If you imow which display you want, you
can specify it in the invocation, using an option shown 'in the menu below. If you do not
specify an option, sglect a display from this mem: by typing

A>SYSTAT <>
The xereen clears and the main mem appears:
¥hich Option?

H(elp)
¥(emory)
O(verview)
P({rocessss — All)
R({ueues)
U({mer Procaseea)
C(onsoles)
E(xit)

-

Press the appropriate letier 1o obtain & display.

When you select Hielp), the HELP file demonstrales the proper syntax and available
options:

Ta usa SYSTAT with the menu: At the system prompt type SYSTAT <(CR>
Td use STSTAT wyithout the menu: At the system prompt type the command
SYSTAT [option] -or-

SYSTAT [option C} —or~
SISTAT [optlon C]

BDIGITAL RESEARCH®

Concurrent CP/M Programmer's Gulde 1.12 SYSTAT: System Status

—vhere-

-> option =
M(emory) P(rocessss) O{verview) C(onsoles)
Ufsar Processas) Q{ueues) H(slp)

~> € = Continuous display
= 1-2 digits indicating the period,
in seconds, beiwesn display refrashes.
Type eny latier to return to the menu.

The M, P, Q, and U end C options ask you if you prefer a contimuous display. If you
type v, Concurrent CP/M asks for a time interval, in seconds, and then digplays a real-time
window of information. If you type n, a static snapshot of the requested information appears.
In either case, press any key to return to the menu.

The M(emory) option displays all memory potentially available to you, but it does not
display restricted memeory. The partitions are listed in memory-address order. Length param-
eter is shown in paragraph values.

The O{verview) option displays an overview of the systermn parameters, as specified at
system generation lime. The display is not continuous,

The P{rocess) option displays all system processes and the resources they are using.
The Q(ueues) option displays alt system queues, listing queue readers, writers, and owners.

The U(ser Processes) option displays only user-initiated processes in the same format as
the P{rocess) option.

The C(onsoles) option displays console information; that is, background, foreground,
buffered, suspended, purging, CTRL-Q, and so on.

The E{xit) option returns you to system level from the menu, as does CTRL-C.

End of Section |

@ DIGITAL RESEARCH®

Section 2
The Concurrent CP/M File System

2.1 FKile System Overview

The Basic Disk Operating System (BDOS) file system suppoarts fram one to sixteen logical
drives. Each logical drive has two regions: g directory area and a data area. The directory
arca defines the files that exist on the drive and identifies the data arca space that belongs
to each file. The data arca contains the file data defined by the directory.

The directory arca consists of sixteen logically independent directories. These directories
are identified by user numbers 0 through 15, During execution, a process runs with a system
perameter called the user number set to a single value. The user number specifies the current
active directories for all drives on the system. For example, the Coneurrent CP/M DIR
utility displays only files within a directory selected by the current user numbet.

The file system sutomatically ellocates directory and data area space when a process
creates or extends a file, and returns previously allocated space to free space when a process
deletes or truncates a file. If no directory or data space is available for a requested operation,
the BDQOS returns an error code to the calling process. The allocation and retrieval of
directory and data space is transparent to the calling process. As a result, you need not be
concerned with directory and drive organization when using the file system ealls.

An eight-cheracter filename and a three-character filetype ficld identify each file in &
directory. Together, these fields must be unique for each file within a directory. However,
files with the same filename and filetype can reside in diffevent user directories without
conflict. Processes can also assign an eight-character password to a file to protect it from
unauthorized access.

DKGITAL RESEARCH®

21

2.1 Fliis System Ovesview Comcwrront CP/M Prograssser's Gulde

All systern calls that involve file operations specify the requesied file by filename and
filetype. For some system calls, multiple files can be specified by a technique called ambig-
uous refarence. This techrique nses question marks and asterisks as wildcard characters to
give the file systern g pattern to match as it gearches a directory.

The file system supporis two categories of system calls: file-access system calls and drive-
related system calls. The file-access system calls have mmemonics beginning with F_, and
the drive-related aystemn calls have mnemonics beginning with DRV_. The next two sections
introduce the file system calls.

2.1.1 File-access System Calls

Most of the file-access system calls can be divided into two groups: sysiem calls that
operate on files within a directory and system calls that operate on records within & file,
However, the file-access category slsc includes several miscellaneous functions that either
affect the execution of other file-access system calls or ere commanly used with them.

System calls in the first file-access group include calls to search for one or more files,
delete one or more files, rename or truncate a fils, set file attributes, asgign 2 password to
a file, and computa the size of a file. Aleo included in this group are system calls to open
a file, to cresie a file, and to close a fila,

The second Ale-accesz group includes system calls to read or write records to a file, sither
soquentially or andomly, by record position. BEDOS read end write system calls cansfer
data in 128-byte units, which is the basic record size of the file system. This group also
includes system calls to lock end unlock records and thereby allows multiple processes to
have coordinatad Bccess to records within a commonly sccessad file.

Before making read, write, lock, or unlock system calls for & file, you must first open or
create the file. Creating a file has the side effect of opening the file for record access. In
addition, becanse Concurrent CP/M supports three different modes of opening files (Locked,
Unlocked, and Read-Only), there can be other restrictions on system calls in this group that
are relaied to the apen mode. For example, you cannot write to & file that you have opened
in Read-Only mode.

After a process has opened a file, access to the file by other processes is restricted until
the file is closed. Again, the exact nature of the restrictions depends on the open mode.
However, in all cases the file sysiem does not allow a process to delete, rename, or change
a file's atiributes if another process has opened the file. Thus, the F_CLOSE systemn call
performs two steps to terminate record access to a file. It permanently records the current
status of the file in the directory and removes the open-file restrictions limiting access to
the file by other processes.

HDIGITAL RESEARCH®

2-2

Concurrent CP/M Programmer’s Guide 2.1 File Systese Orerview

The miscellancous file-access systam calls include calls to set the current user number,
set the DMA address, parse an ASCII file specification and set a dafault password. This
group also includes system calls to set the BDOS Multisector Count and the BDOS Error
Mode. The BDOS Multisector count determines the number of 128-byte records to be
processed by the read, write, lock, and unlock system calls. The Multissctor count can range
from 1 to 128; the default value is one. The BDOS Error Mode determines whether the file
aystem intercepts certain errors or returns on all errors to the calling process.

2.1.2 Drive-related System Calls

BDOS drive-related system calls select the default drive, compute a drive’s free space,
interrogate drive status, and assign a directory label to a drive, A drive’s directory label
controls whether the file system enforces file password protection for files in the directory.
It also specifies whether the file system is to perform date and time stamping of files on the
drive.

This category also includes system calls to resat specified drives and to coniro! whether
other processes can reset particular drives. When a drive is reset, the next operation on the
drive reactivates it by logging it in. Logging in a drive initializes the drive for directory and
file operations. The purpose of a drive reset call is to prepare for a media change on drives
that support removable media. Under Concurrent CP/M, drive reset calls are conditional.
A process cannot reset a drive if another process has a file open on the drive.

The following table summarizes the BDOS file system calls.

Table 2-1. File System Calls

Mnemonic Description
DRV_ACCESS Access Drive
DRY__ALLOCVEC Get Drive Allocation Vector
DRV_ALLRESET Reset All Drives
DRY_DPB Get Disk Parameter Block Address
DRV_GET Get Default Drive
DRV_GETLABEL Get Directory Label
DRV_FLUSH Flush Data Buffers
DRV_FREE Free Drive
DRV_LOGINVEC Return Logged In Vector
DRY_RESET Reset Drive
DRV__ROVEC Return R/OQ Vector
DRV_SETLABEL Set Directory Label

DIGITAL RESEARCH®

2-3

1.1 File Systom Overview

Comcmrremt CP/M Programemer’s Gulde

Thble 2-1, (continued)

Mnemonic Deseription
DRV_SET Set (Select) Drive
DRV_SETRO Set Drive To Read-Only
DRV_SPACE Get Free Space On Drive
F_ATTRIB Set File's Attributes
F_CLOSE Cloec File
F_DELETE Delete File
F_DMASEG Set DMA Segment
F_DMAGET Get DMA Address
F_DMAOFF Set DMA Offaet
F_ERRMODE Set BDOS Error Mode
F_LOCK Lock Record In File
F_MAKE Make A New File
F_MULTISEC Set BDOS Multisector Count
F_OPEN Open File
F_PARSE Parse Filename
F_PASSWD Set Defenlt Pessword
F_RANDREC Return Record Number For File Read-Write
F_READ Read Record Sequentially From File
F_READRAND Read Rendom Record From File
F_RENAME Rename File
F_SIZE Compute File Size
F_SFIRST Directory Search First
F_SNEXT Directory Search Next
F_TIMEDATE Return File Time/Date Stamps Password Mode
F_TRUNCATE Truncate File
F_UNLOCK Unlock Record In File
F_USERNUM Se/Get Directory User Number
F_WRITE White Record Sequentially Into File
F_WRITERAND Write Random Record Into File
F_WRITEXFCB Write File's XFCB
F_WRITEZF Write Random Record With Zere Fill

24

BDIGITAL RESEARCH®

Concurrent CP/M Programmer’ Gulde 2.1 Flkz System Overview

The following sections contain information on impottant topics related to the file system.
Read these sections carefully before attempting to use the system calls described individually
in Section 6.

2.2 File Naming Conventions

Under Concurrent CP/M, a file specification consists of four parts: a drive specifier, the
filename field, the filetype field, and the file password field. The generat format for & com-
mand line file specification is shown below;

{d:} filename {.typ} {;password}

The drive specifier field specifies the drive where the file is located. The filename and filetype
fields identify the file. The password field specifies the password if a file is password pro-
tected.

The drive, type, and password fields are optional, and delimiters are required only
when specifying their associated fields. The drive specifier can be assigned a letter from A
to P, where the actual drive letters supported on a given system are determined by the
X108 implementation. When the drive letter is not gpecified, the current default drive is
aasumed.

The filename and password fields can contain one to eight non-delimiter characters. The
filetype field can contain one to three non-delimiter characters. All three fields arc left justified
and padded with blanks, if necessary. Omitting the optional type or password fields implies
2 field specification of al] blanks.

& DIGITAL RESEARCH®

2.2 Fiie Numing Cowventions Cosewront CP/M Progrussss's Gulde

Under Concwrrent CP/M, the P_CLI systern call interprets ASCH command lines and
loads programs. The P_CLI system call makes F_ PARSE system calls to parss file gpecifi-
cations from a command line. F_PARSE recognizes certain ASCII characters as delimiters
when it parses a file specification. Theze characters are shown in Table 2-2.

Table 2-2. Valid Fiiename Delimiters

ASCH Hex Equivalent
mll 000H
space 020H
return DODH
tab 009H
: 03AH
; 02EH
: 03BH
= 03DH
' 02CH
[0SBH
1 05DH
< 03CcH
> 03EH
| 07CH

The F_PARSE system call also excludes all control characters from the file specification
flelds and translates sll lowercass letters to uppercase.

Avoid vsing parentheases and the backslash character, \, in the filename and filetype fields
because they am commonly used delimiters. Use asterisk and question mark chemecters, *
and ?, only to make an ambiguous file reference. When F_PARSE encounters an esterisk in
a filename or filetype field, it pads the remainder of the field with question marks. For
example, a filename of X*.* ia parsed to X7?7?7777.772. The BDOS F_SFIRST, F_SNEXT,
and F_DELETE syatem calls match a question mark in the filename or filetype fields to the
corresponding position of any directory entry belonging to the current user mumber. Thus, a
search aperation for X?7??772.7?? finds all the files in the current user directory beginning
in X. Most other file-access BDOS system calls treat the presence of a question mark in the
filename or hletype fields as an srror.

II DIGRAL RESEARCH?
26

Concwrrent CP/M Programmer's Guide 2.2 File Naming Conventions

It is not mandatory to follow the file naming conventions of Concurrent CP/M when you
creete or rename a file with BDOS system calls directly from an application program. How-
ever, the conventions must be used if the file is to be accessed from a command line. For
example, the P_CLI system call cannot locate a command file in the directory if its fiiename
or filetype field contains a lowercase letter.

As v general rule, the filetype field names the generic category of a particular file, and the

filename field distinguishes individuel files within cach category. Although they are generally
arbitrary, Table 2-3 lists some of the generic flletype categories that have been established.

Table 2-3. Filetype Conventions

Filetype Description

A6 8086 Assembler Source
ASM 8080 Assembler Source
BAK Text or Source Back-up
BAS BASIC Source File

C C Source File

CMD 8086 Command File
CcOM 8080 Command File
CON CCPM Modules

DAT Data File

HEX ASMB0 HEX File
H86 ASM86 HEX File

INT Intermediate File

LIB Library File

L86 Library File

LST List File

PLI PL/I Source File

PRL Page Relocatable

REL Relocatable Module
RSP Resident System Process
SER System Page Relocatable
SUB SUBMIT File

SYM Symbol File

5YS System File

355 Temporary File

DIGITAL RESEARCH®

2.7

2.3 Disk Drive and Flle Orgasization Concurrent CP/M Programsor’s Gulde

2.3 Disk Drive and File Organizetion

The file system can support up to sixtcen logical drives, identified by the letters A through
P. A logical drive usually corresponds to a physical drive on the system, particularly for
physical drives that support removable media such as floppy disks. High-capacity hard disks,
however, are commonly divided into multiple logical drives. If a disk containg system iracks
reserved for the boot loader, these tracks precede the tracks of the disk mapped by the logical
drive. In this manual, references to drives mean logical drives, unless explicitly smted otherwise,

The meximum file size supported on & drive is 32 megabytes. The maximum capacity of
e drive is determined by the data block size specified for the drive in the XIOS. The data
block size is the basic unit in which the BDOS allocates space to files. Table 2-4 displays
the relationship between data block size and total drive capacity.

Table 2-4. Drive Capacity

Data Block Sixe Maximum Drive Capacity
1K 256 kilobytes
2K 64 megabytes
4K 128 megabytes
8K 256 megabytes
16K 512 megabytes

Each drive is divided into two regions: a directory area and a data area. The directory ares
containg from one to sixteen blocks located at the beginning of the drive. The actual number
is sat in the XIOS. Directory entries residing in this area define the files that exist on the
drive. In addition, the directory entries belonging to a file identify the deta blocks in the
drive’s data erea that contain the file’s records. The directory ares is logicelly subdivided into
sixteen independent directories identified as user O throngh 15. Each independent directory
shares the actual directory ares on the drive.

W DIGITAL RESEARCH*

Concurrent CP/M Programmer’s Gulde 2.3 Disk Drive and Flle Orvganization

Each disk file may consist of a set of up to 262,144 (40000H) 128-byte records. Each
record of a file is identified by iis position in the file. This position is called the record’s
Random Record Number. If a file is created sequentially, the first record has a position of
zerg, while the last record has a position one less than the oumber of records in the file. Such
a file can be read sequentially, beginning at record zero, or randomly by record position.
Conversely, if a file is created randomly, records are added to the file by specified position.
A file created in this way is called sparse if positions exist within the file where a record has
not been written.

The BDOS automatically allocates data blocks to a file to contain the file’s records on the
basis of the record positions consumed. Thus, a sparse file that contains two records, one at
position zero, the other at pogition 262,143, consumes only two data blocks in the data arca.
Sparse files can be created and aceessed only randomly, not sequentially. Note that any data
block allecated to a file s permanently allocated until the file is deleted or truncated. These
are the only mechanisms supported by the BDOS for releasing data blocks belonging to a
file.

Source files under Concurrent CP/M are treated as a sequence of ASCH characters, where
each line of the source file is followed by a catriage return/line-feed sequence, ODH followed
by OAH. Thus, a single 128-byte record could contain several lines of source text. The end
of an ASCII file is denoted by a CTRL-Z charactet (1AH), or a real end-of-file, returned by
the BDAS read system call. Note that these source file eonventions are not supported in the
file system directly but are followed by Concurrent CP/M utilities such as TYPE and
ASM-86™. In addition, CTRL-Z characters embedded within ather types of files such as
CMD files do not signal end-of-file.

2.4 File Control Block Definition

The File Control Block (FCB) is a system data structure that serves as an important channe!
for information exchenge between a process and BDOS file-access system calls. A process
initializes an FCB to specify the drive location, filename and filetype fields, and other infor-
matian that is required to make a file-access call. For example, in an F_OPEN system call,
the FCB specifies the name and location of the file to be opened. In addition, the file system
uses the FCB to maintain the current state and record position of an open file. Some file-
access system calls use special fields within the FCB for invoking options. Other file-access
system calls use the FCB to return data to the calling program. All BDOS random /O system
<alls require the calling process to specify the Random Record Number in a 3-byte field at
the end of the FCB.

B DIGITAL RESEARCH®

2.9

2.4 File Comirol Block Deflnition Concurrest CP/M Propraxasers Gulde

When a process makes a2 BDOS file-access system call, it passes an FCE address to the
BDQS. This address has two 16-bit components: register DX, which coatains the offset, and
register DS, which containg the segment. The length of the FCB data area depends on the
BDAOS system call. For most system calls, the minimum length is 33 bytes. For the
F._READRAND, F_.WRITERAND, F.WRITEZF, F_.LOCK, F_UNLOCK, F_RAND
REC, F_SIZE, and F_ TRUNCATE system calls, the minimum FCB length is 36 bytes.
When the F_OPEN or F_MAKE syst¢m calls open a file in Unlocked mode, the FCB must
be at least 35 bytes long. Figure 2-1 displays the FCB data structure in two formats.

CR NAME | TYPE EX cs RS RC Do-D15 CR RO R1 R2

00H [s]:] F1 F2 F3 F4 F5 F& F7.

08H F8 T T2 T3 EX Ccs RE RC

10H Do [va] D2 03 Da sL} o] , o7...
18H D8 o) D10 D11 012 D13 D14 D15
20H CR RO R1 R2

Figure 2-1. FCB - File Control Block

B DiGITAL RESEARCH®
2-10

Concurrent CP/M Programmer’s Guide 2.4 File Control Block Definition

The fields in the FCB are defined as follows:

Table 2-5. FCB Fleld Definitions
Field Definitions
DR Drive Code (0-16).

0 = > use default drive for file
1 = auto disk salect drive A
2 = auto disk select drive B

16 = > auto disk select drive P

F1...F8 Contain the filename in ASCII uppercase, with high bit = 0. F1’, ...,
F8’ denate the high-arder bit of these positions and are called attribute
bits.

T1,T2.T3 Contain the filetype in ASCII uppercase, with high bit = ¢. T1°, T2",
and T3 denote the high bit of these positions and are also called
attribute bits.

T1® = 1| => Read-Only file,
T2' = 1 => System file,
T3" = | =2 File has been archived.

EX Contains the current extent number. This field is initialized to O by the
calling process, but it can range from 0 to 31 during file I/O.

Ccs Contains the FCB checksum value for open FCBs.

RS Reserved for internal system use

RC Record count for extent EX. This field takes on values from 0 to 255

(values greater than 128 imply a record count of 128).

[DHGITAL RESEARCH®

2-11

2.4 Fila Comtrel Block Defuition Concarrent CP/M Programsser's Guide

Table 2.5. (continued)
Field Definitions
D0...D1S Normally filled in by Concurrent CP/M and reserved for systemn use.

Algo used to specify the new filename and filatype with the F_RENAME
system call,

CR Current record to read or write in a sequential file operation. This field
is normally set 1o zero by the calling process when & file is opened or
created.

RO,R1,R2 QOptional Random Record Number in the range 0-262,143 (0 - 3FFFFH).
RO, R1, R2 constitute an 18-bit value with low byte RO, middle byte
RI, and high byte R2.

Note: The 2-byte File ID is returned in bytes R0 and R1 of the FCB when = flle is suc-
cessfully opened in Unlocked mode (refer to Section 2.10).

2.4.1 FCB Iniiialization and Usage

The caliing process must initinlize bytes 0 through 11 of the refaranced FCB before
making the following file-access system calls: F_ATTRIB, F_DELETE, F_MAKE,
F_OPEN, F_RENAME, F_SFIRST, F_SIZE, F SNEXT, F_-TIMEDATE, F_-TRUN-
CATE, and F_WRITEXFCB. Normally, the DR ficld specified the drive location of the
{ile, and the name and type fields specify the name of the file. You must also set the EX
field of the FCB before calling F.MAKE, F_OPEN, F_SFIRST, and F_WRITEXFCB.
Except for the F.WRITEXFCB system call, you can usually sat this fleld to zero. Note
that the F_RENAME system call requires the calling process to plece the new filename
and filetype in bytes DI through D11,

The remaining fils-aceesa calls that use FCBs require an FCB thet has beeninitialized
by a prior file-access system call. For exemple, the E_SNEXT system call expects an FCB
initialized by a prior F_SFIRST call. In addition, the F_LOCK, F_READ, F_READ-
RAND, F_UNLQCK, F_-WRITERAND, and F_WRITEZF #ystcm calls require an
FCB that has been activated for record operations. Under Concurrent CP/M, only the
F_OPEN and F_MAKE systcm calls can activatz an FCB.

B DIGITAL RESEARCHY
2-12

Concwrrent CP/M Programmer’s Guide 2.4 File Control Block Definition

If you intend to process a file sequentially from the beginning, using the F_READ and
F_WRITE system calls, you must st the CR field to zero befare you make your first read
or write call. In addition, when you make an F_LOCK, F_READRAND, F_UNLOCK,
F-WRITERAND, or . WRITEZF system call, you must set bytes RO through R2 of the
FCB 10 the requested Random Record Number. The F_-TRUNCATE system call also
requires the FCB randem record field to be initialized.

The F_SFIRST, F_SNEXT, and F_DELETE system calls support multiple or ambiguous
reference. In generul, a question mark in the filename, filetype, or EX fields matches all
values in the corresponding positions of directory entries during a directory search operation.
File directory entries meintained in the directory area of each digk drive have the same format
as FCBs except for byte {J), which contains the file's user number, and bytes 32 through 35,
which are not present. The search system calls, F_SFIRST and E_SNEXT, also recognize
a question mark in the FCB DR field, and, if specified, they return all directory entries on
the disk regardless of user aumber, including empty entries. A directory FCB that begins
with ESH is an empty or erased directory entry.

When the FE_OPEN and F_MAKE gystem calls activate an FCB for record operations,
they copy the FCB’s matching directory entry from disk, excluding byte 0, into the FCB in
memory. In addition, these system calls compute and store a checksum value in the CS field
of the FCB. During subsequent record operations on the file, the file system uses this check-
sum field to verify that the FCB has not been medified by the calling process in an illegat
way. Thus, al read, write, lock, and unlock operations on a file must specify a valid activated
FCRB; otherwise, the BDOS returns a checksum error. The BDOS performs this checking to
protect the integrity of the file system. In general, you should not modify bytes 0 throngh 31
of an open FCB, except to set interface attribotes (see Section 2.4.3). Other restrictions
related to activated FCBs are discussed in Section 2.10.

The BDOS updates the memory copy of the FCB during file processing to maintain the
current position within the file, During file write operations, the BDOS also updates the
memory copy of the FCB to record the allocation of data blocks to the file. At the termination
of file processing, the F_CLOSE system call permanently records this information on disk.

Note that the BDOS does not record the data blocks allocated to a file during write
operations in the disk directory unti] the calling process issues an F_CLOSE call. Therefore.
a process that creates or modifies files must close the files at the termination of file processing.
Otherwise, data might be lost.

H DIGITAL RESEARCH®

2-13

2.4 Fia Centrol Block Deiimition Caacmrrest CP/M Prepammer’s Gulde

2.4.2 File Attributes

The high-order bits of the FCB filename (F!',...,F8") and filetype fields (T1',T2°, T3') are
called attribute bits. Attribute bits are 1-bit Boolean fields, where 1 indicates on or true, and
0 indicates off or false. Atiributz bits indicate twe kinds of attributes within the file system;
file attribuies and interface attributes, The file attributes are described in this section. Section
2.4.3 describes interface attributes,

The file sttribute bits, F1'...,F4’ and T1", T2', T3’, indicate that a file has a defined
atribute. These bits are racorded in & file's directory FCBs. File attributes can be sat or reset
only by the F_ATTRIB system call. When the F_MAKE system call creates a file, it
initializes ell file attributes to zero. A process can interrogate “file attributes in an FCB
activated by the F_OPEN system cell, or in directory FCBs returned by the F_SFIRST and
F_SNEXT system calls.

Note: The file system ignores the file atiribute bita when it attempts to locate 1 file in the
directory.

B DICITAL RESEARCH®
2-14

Concurrent CP/M Programmer’s Galde 2.4 Filz Cowrirol Block Definition

The file system defines file attributes T1°,T2’,and T3’ as follows:

Table 2<6. File Attribute Definitions
Asribute Definition

T1': Read-Only Attribute

This attribute, if set, prevents write operations to a file.

T2": System Amribute

This attribute, if set, identifies the file as a Concurrent CP/M system
file. The Concurrent CP/M DIR utility does not ususlly display Sys-
tem files. In addition, user-zero system files can be accessed on a
Read-Only basis from other user numbers.

T3’: Archive Attribute

User-written archive programs use this attribute. When an archive
program copies a file to back-up storage, it sets the archive attribute
of the copied files. The file system autometically resets the archive
attribute of a directory entry when writing to the directory entry’s
region of & file. An archive program can test this attribute in each of
the file's directory entries using the F_SFIRST and F_SNEXT sys-
tem calls. If all directory entries have the archive attribute set, the
file has not been modified since the previous archive. The Concurrent
CP/M PIP utility supports file archiving.

File attributes F1° through F4' of command files are defined as Compatibility Attributes
under Concurrent CP/M (see Section 2.12), However, for all other files, attributes F1° through
F4' are available for definition by the vser,

F DIGITAL RESEARCH®

2-15

2.4 Fila Costrol Block Deibuitine Coscurrest CP/M Prograsmsers Galde

2.4.3 Interface Atiributes

The interface attributes are FS’, F§', FT', and F8". These attributes cannat be used as file
attributes. Interface ettributes F5' and Fé' request options for BDOS file-access syst2m calls,
Table 2-7 lists the F3' arxd F6' attribule dafinitions for the system calls thet define interface
atributes. Maote that the FS' = 0 and F6' = (definitions are not listed if their definition
simply implies the absence of the associsted option.

Table 2-7. BDOS Interface Attributes F5’ and F6

System Call Attribute
F_ATTRIB F5' =] : Meintain extended file lock
F&' = 1 : Set filo byts count
F_CLOSE F5' = 1 : Partial Close
F6' = 1: Extend file lock
F_DELETE F5' = 1: Delete file XPCBs only and
maintain extended file Iock
FLOCK F5' = {: Exclusive Lock
F5' = 1: Shered Lock
E6' = 0 : Lock existing records only
E6' = 1 : Lock logical records
F_MAKE F5' = 0 : Open in Locked mode
F5' = 1: Open in Unlocked mode
F§' = 1: Assign password to file
F_OPEN F5' = 0 : Open in Locked mode
F5" = 1 : Open in Unlocked mode
F& = 0 : Open in mode specified by F5°
F& = 1:QOpen in Read-Only mode
F_RENAME F5§ = | : Maintain extended fils lock
F_TRUNCATE F5 = 1 : Maintain extended file Jock
F_UNLOCK F5* = | : Unlock ail locked records

B DIGITAL RESEARCH®

2-16

Concurrent CP/M Programmer's Guide 2.4 File Comtrol Block Definition

Section 6 details the above interface attribute definjtions for each of the preceding system
calls. Note that the BDOS always resets interface attributes F5' and F6® before returning to
the calling process. Interface attributes F7' and F8' are reserved for internal use by the file
system.

2.5 User Number Conventions

The Concurrent CP/M user facility divides each drive directory into sixteen logically
independent directories, designated as user 0 through user 15. Physically, all user directories
share the directory area of a drive. In most other aspectz, however, they are independent.
For example, files with the same name can exist on different user numbers of the same drive
with no conflict. However, a single file cannot extend across more than one user number.

Only one user number is sctive for a apecific process af one time. For this process, the
current uset number applies to all drives on the system. Furthermore, the FCB format does
not contain a field that can ovetride the current user number. A3 a result, afl file and directory
operations reference only directory entries associated with the current user number.

However, it is possible for a process to access files on different user numbers by setting
the user mumber to the file’s user number with the F_USERNUM system call before issuing
the BDOS call. However, if a process attempts to read or write to a file under 8 user number
different from the user number that was active when the file was opened, the file system
returns gn FCB checksum error.

When the P_CLI system call initiates a transient process or Resident Systemn Process
{described in detail in Section 5), it sets the user number to the default value established by
the pracess issuing the P_CLI system call. The sending process is usually the TMP. How-
ever, the sending process can be another process, such as a transient program that makes
2 P_CHAIN call. A transient process can change iis user number by meking an
F_USERNUM call. Changing the user number in this way does not affect the command
line user number displayed by the TMP. Thus, when a transient process that has changed
ils user number terminates, the TMP restores and displays the original user number in the
command line prompt when it regains control.

W DIGITAL RESEARCH®
217

235 e Number Convantions Comesgrmat CP/M Prograsuser’s Calda

User O has special properties undear Concurrent CP/M. The file system autometically opens
files listed under user zero but requested under ancther user mumber if the file is not present
under the current user oumber, and if the file on user zero has the system attribute (T2')
set. This convention allows utilities, including overlays and any other commonly accessed
files, to reside on user zero, but remain available o other users. This eliminates ths need
to copy commonly used utilities to all user numbers on & directory, and gives the Concurrent
CP/M manager control over which files are directly accessible to the differsnt ueer arens.

2.6 Directory Labels and XFCBs

The file system includes three special iypes of FCBs: the directory label and the XFCB,
described in this section, and the SFCB, deacribed in detail in Section 2.8,

The directory label spegifies for its drive whether password support is to be activated,
and if date and time stamping for files is to be performed. The format of the directory label
is shown below in Figure 2-2,

DR| MName Type |DL|S1|S2 |ARC| Password TS1 TS2

o 0. oa... 12 13 14 15 1B... 25.. 29..

Figure 2-2. Directory Label Format

@ DIGITAL RESEARCH®
2-18

Coneurrent CP/M Programmers Guide 2,6 Directary Labels and XFCBs

Table 2-8. Directory Label Field Definitions

Field Definition
DR drive code (0-16)
Name directory label narmne
Type directory label type
DL directory label data byte

Bit 7 - enable password support

Bit 6 - perform access time stamping

Bit 5 - perform update time stamping

Bit 4 - perform create time stamping

Bit 0 - Directory Label exists

(Bit references are right to left, relative to 0)

51,52,RC reserved for systern use
Password 8-byte password field (encrypted)
TS 4-byte creation time stamp field
TS2 4-byte update time stamp field

Only one directory label can exist in a drive’s directory area. The directory label name
and type fields are not used to search for a directory label; they can be used to identify a
disk.

You can use the DRV_SETLABEL system call to create a directory label or update its
fields. This system call can also assign a password to a directory label, The directory label
pessword, if assigned. cannot be circumvented, whereas file password protection on a drive
is an option controlied by the directory label. Thus, access to the directory label password
provides the ability to bypass password protection on the drive.

& DICITAL RESEARCH®

2.6 Directory Labels and XFCEs Concwarent CP/M Programmser's Guide

Note: The file sysiem provides no specific system call to read the directory labe] FCB
directly. However, you can read the directory label datg byte directly with the BDOS system
call, DRV_GETLABEL. In addition, you can use the BDOS search system calls F_SFIRST
and F_SNEXT to find a directory label. You can identify the directory label by a value of
32 (020H) in byte O of the directory FCB.

The XFCB is an extended FCB that can optionally be associated with 4 file in the directory.
H present, it contains the file’s password and pessword mode. The format of the XFCB is
shown below in Figure 2.3.

[
DR| File Type |PM|S1]82|RC| Pasaword FlESElRVED

00 01. 08, 12 13 14 15 16...... 25 28

Flgure 2-3. XFCB - Extended Flle Control Block

S DIGITAL RESEARCH*

Concurrent CP/M Programmer's Guide 1.6 Directory Labels end XFCBa

The fields in the XFCB are defined in Table 2-9:

Table 2-9. XFCH Field Definitions

Field Definition
DR drive code (0-16)
File filename field
Type filetype field
PM password mode

Bit 7 - Read mode

Bit § - Write mode

Bit 5 - Delete mode

{Bit references are right to left, relative to Q)

S1,82,RC reserved for system use
Password 8-byte password field (encrypted)
Reserved 8-byte aren reserved for future use

An XFCB can be created only on & drive that has a directory label, and only if the directory
label enables password protection. For drives in this state, there are two ways to create an
XFCB for a file: with the F_MAKE system call or the F_WRITEXFCB system call. The
F_MAKE system call creates an XFCB if the calling process requests that a password be
essigned 1o the created file. The F_WRITEXFCB system cal} creaies an XFCB when it is
called 1o assign a password to an existing file. You can identify an XFCB in the directory by
a value of 16 (0IOH) + N in byte O of the FCB, where N equals the user number.

@ DIGITAL RESEARCH®

2.7 File Pawwords Concurrent CP/M Prograaser’s Guide

2.7 File Passwords

There are two ways to assign passwords to a file: by the F_MAKE system call or by the
E_WRITEXFCR system call. You can also change & file's password or password mode with
the F_WRITEXFCE system call if you can supply the original password. Note that you
cannot change a file’s password or password mode if password protection for the drive is
disabled by the directory label. However. even if you cannot supply a file's password, you
cen dejete a flle's XFCB, thercby removing its password protection, if password protection
is disabied on the drive.

The Concurrent CP/M BDOS provides password protection in one of three modes when

passward support is enable by the directory label. Table 2-10 shows the difference in access
level llowed to BDOS system calls when the password is not supplied.

Thble 2-10. Password Protection Modes

Mode Access Level Allowed Withowt Password
(1) Read Cannot be read, modified, or deleted.
(2) Whrite Can be read, but not modified or deletad.
(3) Delete Can be read and modified, but not deleted.

If u file is prssword protected in Read mode, a process must supply the password to open
the file. Processes cannot write to & file protected in Write mode without the password. A
file protected in Delete mode ailows read and write access, but a process must specify the
password to delete or truncate the file, mname the file, or to modify the file's attributes.
Thus, pesaword protection in mode 1 implies mode 2 and 3 protection, and mode 2 protection
implizs mode 3 protection. All three modes require the user to specify the password to delete
or truncate the file, rename the file, or to modify the file’s attribufes.

B DIGITAL RESEARCH®
222

Concurrent CP/M Programmer's Guide 2,7 Flle Passwords

If a process supplies the correct password or the directory label disables password protec-
tion, then access to the BDOS system calls is the same as for a file that is not password-
protected. [n addition, the F_SFIRST and F_SNEXT system calls are not affected by file
passwards, The following BDOS system calls test for passwords.

DRV_SETLABEL
F_ATTRIB
f_DELETE
F_QPEN
F_RENAME
F_WRITEXFCB
F_TRUNCATE

The BDOS maintains file passwords in the XFCB and directory labe] in encrypted form.
To make a BDOS system call for a file that requires a password, a process must place the
passward in the first eight bytes of the current DMA, or make it the default password with
the F_PASSWD system call, before making the system call.

Note: The BDOS maintains the assigned default password for each process. Processes
inhertt the default password of their perent process. You can set a given TMP's default
passward using the SET command; all programs loaded by this TMP inherit the same default
passwoerd.

@ DIGITAL RESEARCH®

223

1.8 Fhe Dotz and Thue Stamps: SFCBe Comcurrost CP/M Prograsesesr’s Guide

2.8 File Date and Time Stamps: SFCBs

The Concurrent CP/M file system uses a special type of directory entry called an SFCB
to record date and time stamps for files. When a directory has been initialized for date and
time stamping, SFCBs reside in every fourth position of the directory. Each SFCB maintains
the date and time stamps for the previous three directory entrics, as shown in Figure 24.

FGB 1
FCBZ
FGB 3
21 STAMPS STAMPS STAMPS #
FQR FCB 1 FORFCB 2 FOR FCB 3 I
BYTE#® 0© 1 11 21 31 32

Figure 24. Directory Record with SFCB

This figure shows a 128-byte directory record containing an SFCB. Directory records have
four directory entries, each 32 bytes long; SFCBs always occupy the last 32-byte entry in
the directory record.

The SFCB itself contains five fields. The first field is a singfe byte containing the value
021H; this field identifies the SFCB within the directory. The next three fields, called the
SFCB subfields, are each 10 bytss in length and contain the date and time stamps for their
corresponding FCB entries in the directory record. The last byte of the SFCB is reserved for
system use. Figure 2-5 shows the detail of the SFCB subfields.

TIME AND DATE TIME AND DATE MODE

CREATE/ACCESS UPDATE PASSWORD l AESERVED

BYTE# 0 4 8 9 10

Fligure 2.5. SFCB Subfields

R DIGITAL RESEARCH®
2-24

Concurrent CP/M Progranuner’s Guide 2.8 File Date and Time Stamnps: SFCBs

An SFCB subfield only contains valid informatien if its corresponding FCB in the directory
record is an extent zero FCB. This FCB is a file's first directory entry. For password protected
files, the SFCB subfield also contains the password mode of the file; the password mode field
is zero for files without password protection. You can read SFCBs by making F_SFIRST
and F_SNEXT system calls. In addition, you cen make an F_TIMEDATE system call to
retrieve the date and time stamps and password mode of a specified file. Refer to the T_GET
system call definition in Section 6 for the description of the format of a date and time starnp
field.

Concurrent CP/M supports three kinds of file stamping: create, access, and update. Create
stamps record when the file was created, access stamps record when the file was last opened,
and update stamps record the last time the file was modified. Create and access stamps share
the same field. As a result, file access stamps overwrite any create stamps.

The directory label of a properly initialized disk determines the type of date and time
staroping for files on the drive. The INITDIR utility initializes a directory for date and time
staroping by placing an SFCB in every fourth directory entry. Disks not initialized in this
way cannot support date and time stamping. In addition, date and time stamping is not
performed if the disk’s directory label is absent or does not specify date and time stamping.
or if the disk is Read-Only.

Note that the directory label is also (ime stamped, but these stamps are not made in an
SFCB; time stamp fields in the [ast eight bytes of the directory label show when it was created
and last updated. Access stamping is not supported for directory labels.

The BDOS file system uses the system date and time when it records a date and time
stamp. This value is maintained in a field in the SYSDAT part of the Systemn Data Segment,
The DATE utility sets the system time and date (refer to the Concurrent CP/M User'’s Guide
for details of using DATE).

DXATAL RESEARCH®

2-25

1.9 Flle Open Modas Coucurrant CP/M Prograstmer’y Gulde

2.9 File Open Modes
The file system provides three different modes for opening files. They are defined below.
Locked Mode

A process can open 4 file in Locked mode only if the file iz not currently opened by
another process and the file is not & Read-Only file (attribute T1’ set). Once apen in
Locked mode, no other process can open the file untit it is clored. Thus, if a process
successfully opens & file in Locked mode, that process owns the file until the flle Is closed
or the process terminates. Files opened in Locked mode support read and write opera-
tions unless the file is. password-protecied in Write mode, and the process issuing the
F_OPEN call cannat supply the password. In this case the BDOS allows only read
operations to the file.

1f a file opened in Locked mode is a Read-Only file, the F_OPEN system callautomati-
cally changes the open mode to Read-Only mode. Read-Only mode is described below.

Note: Locked mode is the Defsult mode for opening files under Concurrent CP/M.
Unlocked Mode

A prociss can open a file in Unlocked mode if the file is not currently open, or if another
process has already opened the file in Unlocked mode. This mode allows more then one
process to open the same file. Files opened in Unlocked mode support read and write oper-
ations unless the file is a Read-Only file (attribute T1" set) or the file is password-protected
in Write mode and the process issuing the F..OPEN call cannot supply the password.

When opening a file in Unlocked mode, a process must reserve 35 bytes in the FCB
because the F_OPEN system call returns a 2-byte value called the File ID in the RO and R1
bytes of the FCB. The File ID is a required parameter for the B_LOCK and F_UNLOCK
system calls. These BDOS system calls work only for files opened in Unlocked mode.

Read-Only Mode
A process can open a file in Read-Only mode if the file is not currently opened by another

process or if another process has opened the file in Read-Only mode. This mode allows more
than one process to open the same file for Read-Only access.

@ DIGITAL RESEARCH®

2-26

Comenrrentt CP/M Programmer’s Goide 2.9 File Open Modes

The F_OPEN system call performs the following steps for files opened in Locked or Read-
Only mode. If the current aser number is nonzero, and the file to be opened does not exist
under the current user number, the F_OPEN system call searches the user zero directory for
the file. If the file exists under user zera and has the system attribute T2’ set, the BDOS
opens the file under user zero. The open mode is antomatically forced 1o Read-Cnly when
this is done.

The F..OPEN and FMAKE system calls use FCB interface atribytes FS' end F6" to
specify the open mode, The interface artribute definitions for thege functions are listed in
Table 2-7.

Note: The F- MAKE system call does not allow opening the file in Read-Only mode.

2,10 File Security

In general, the security measures implemented in the file system prevent accidental col-
lisions between running processes. It is not possible to provide total security under Concurrent
CP/M because the file system maintains file allocation information in open FCBs in the user™s
memory region, and Concurrent CP/M does not require memery protection. However, the
file system is designed to ensure that multiple processes can share the same file system without
interfering with each other by

® performing checksum verification of open FCBs.
& monitering all open files and Jocked records via the syatem Lock List.

The BDOS validates the checksum of user FCBs before all I/ O operations to protect
the integrity of the file system from corrupted FCBs, The F_.OPENand F_MAKE system
calls compute and assign checksums to FCBs, The F_READRAND, F_READ,
F_-WRITERAND, F_WRITEZF, F_WRITE, F_LOCK, and F_UNLOCK system calls
subsequently verily and recompute the checksums when they change the FCB. The
F_CLOSE system call also verifies FCB checksums, Note that FCB verification by these
system calls can be disabled (see Section 2.12), but Concurrent CP/M?s file security is
reduced when this is dene. If the BDOS detects an FCB checksum error, it does not
perform the requested command, Instead, it either returns to the calling process with an
error code, or if the system call is F_CLOSE and the BDOS Error maode is in the defanlt
state {(see Section 2.18), it terminates the calling process with an error message.

H¥ DIGITAL RESEARCH®
2-27

2.10 Fhe Security Coucurrest CP/M Programmer’s Guide

Concurrent CP/M uses e system data structure, called the Lock List, to manage file opening
and record locking by running processas. Each time a process opens a file or locks & record
successfully, the file system allocates an entry in the system Lock List ta record the fact.
The file system uses the following information to

M prevent a process from deleting, truncating, renaming, or updating the attributes of
ancther process’s open file.

B prevent & process from opening a file currently opened by another process, unless
both processes open the file in unlocked or Read-Only mode.

W prevent 2 procese from resetting a drive on which another process has an open file.

W prevent a process from reading, writing, or locking a record currently locked by
another process. Refer to Section 2.14 for more information on record locking and
unlocking.

The file gystem only verifies whether another process has the FCB-specified file open for the
following file-access sysiem call: F_OPEN. F_MAKE, F_DELETE, F_RENAME,
F_ATTRIB, and F_.TRUNCATE. For file-access system calls that require an opsn FCB, the
FCB checksum controls whether the calling process can use the FCB. By definition, a valid
FCB checksum implies that the file hes heen successfully apened and an entry for the file
resides in the aystem Lock List,

The most common wey a process relesses a lock entry for an epen file is by closing the
file. A close operation is permanent if it causes the remova! of the file’s open Lock List sntry.
'The file system invalidates the FCB checksum field on permanent close operations to prevent
continued open file operations with the FCB.

However, not all close operations are permanent. For example, if a process makes rmiltiple
B OPEN or F_MAKE calls 10 en open flle, a matching mumber of F_CLOSE cslls must be
mede before the file system permanently closes the file. Of course, if you only open a file
once, a single close operation permanently closes the file. In addition, a process can optionally
meke partial F_CLOSE calls to & file by setting interfect attribute F5*. A partial close
operetion does not affect the open state of a file. In the above example, a partial close
operation would not count against an F_OPEN or F_MAKE call. A partial close operation
simply upxates the dircctory to reflect the current state of the file.

As g general rule, under Concurrent CP/M a process should close files as soon as it no
longer needs them, even if it has not modified thern. While & process hag a file open, access
by other processes to the file Is restricted. For example, afier a process has opened & file in
Locked mode, the file cannot be opened by other processes until the file is closed or the
process terminales.

MDIGITAL RESEARCH®
2-28

Concarrent CP/M Prograummer’s Golde 2.10 Fie Security

Furthermore, space in the system Lock List is limijted, If a process attemnpts to open a file
and no space remains in the system Lock List, or if the process cxceeds the open file limit,
the BIDOS denies the open request and usually terminates the calling process. You can change
the way the file system handles this error by meking an F_ERRMODE system call. Note
that the size of the sysiem Lock List and the process open filg limit are GENCCPM parameters.

There are several other situations where the file system removes open file entries from
the system Lock List far a process. For example, if a process makes an F_DELETE call
for a file it has open in Locked mode, the file system deletes the file and also purges the
file's entry from the system Lock List, Deleting an open file is not recommended under
Concutrent CP/M but it is supported for files opened in Locked mode to provide
compatibility with software written under earlier releases of MP/M™ and CP/M®. The
file system does not allow deletion of 2 file opened in Unlocked or Read-Only mode.

To ensure that the process does not use the open FCB corresponding to the deleted file,
the file system subsequently checks all open FCBs for the process. Each open FCB is checked
the next time it is used with a file-access system cali that requires an open FCB. If a Lock
List entry exists for the file, the BDOS allows the operation ta proceed; if not, it indicates
that the file has been pirged and the file system returns an FCB checksum error.

The file system performs this verification of a process’s open FCBs whenever it purges an
open fils entry from the system Lock List. The following list describes these situations:

B A process makee an F_ATTRIB, F_DELETE, F_RENAME. or F_.TRUNCATE
systern call to a file it has open in Locked mode. These operations cannot be performed
on a file open in Unlocked or Read-Only mode.

W A process issues a DRV__FREE call for a drive on which it has an open file.

m The BDOS detects a change in media on a drive that has open files. This is a special
case because a process cannot contro| the occurrence of this situation, and becanse it
can impact more than one process. Refer to Section 2.17 for mare details on this
situation.

Open FCB verification can affect performance because each verification operation requires

& directory search operation. In general, you should avoid such situations when creating new
programs for Concurrent CP/M.

B DIGITAL RESEARCH®

2-29

4,11 Extendled File {ocking Comcmrremt CP/M Programsuec’s Guide

2.11 Extended File Locking

Extended file locking enables a Concurrent CP/M process to maintain a lock on a file
after the file is permanently closed. This facility allows a process to set the atiributes, delete,
rename, or truncats a file without interference from other processes. In addition, this tech-
nique avoids the problems associated with using these system calls on open files (see Section
2.10).

A process can also reopen a file with an exiended lock and contimue open file processing.
To illustrate how extended file locking might be used, a process can close an open flle,
renerne the file, reopen the file under its new name, and continue with file operations without
ever losing the file’s Lock List item and control over the file.

A process can only specify extended file locking for a file it has opened in Locked mode.
To extend a file’s Jock, set interface attribute F6' when closing the file. The F_CLOSE
system ¢all interrogates this attribute only when it is closing a file permanently. Thus,
inwerface atiribute FS', signifying a partial close, must be reset when the F_CLOSE call is
made. In addition, the close operation must be permanent. If 2 process has opened a file N
times, the B _CLOSE system call ignores the F6' attribute until the file is closed for the Nth
time.

Note that the access rules for a file with an extended lock are jdentical to the rules for e
file open in Locked mode. In addition, you cannot extend the lock of a Read-Only file
{attribute T!’ set). because a Read-Only file cannot be opened in Locked mode.

To maintain an extended file lock through an F_ATTRIB, F_RENAME, or E_TRUN-
CATE system call, st interface aftribute F5® of the referenced FCB when making the call.
The BDOS honoms this atiribute only if the file has been closed with an extended lock.
Setting aitribute F5' also mainteins an ¢xtended file lock for the F_DELETE system call,
but setting this atribuis also changes the naturs of the delete operation to an XFCB-only
delcte. If successful, all four of these system calls dslete a file's extended lock item if they
are called with atiribute F5° resst. However, the extended lock itsm is not deleted if they
teturn with an error code.

@ DIGITAL RESEARCH®
2-30

Concurrent CP/M Programmer’s Guide 2.11 Extended fMle Locking

You can make an F_OPEN call to resume record operations on a file with an extended
lock. Nate that you can also change the open mode when you reopen the file, The following
example illustrates the use of extended locks.

1. Open file EXLOCK,TST in Locked mode.
2. Perform read and write operations on the file EXLLOCK.TST using the open FCB.

3. Close file EXLOCK,TST with interface attribute F&6' set to retain the file’s lock
item.

4. Use the F_RENAME system cell to change the name of the file to EXLOCK.NEW
with interface attribute F5" set to retain the file’s extended lock item.

5. Reopen the file EXLOCK .NEW in Locked mode.
6. Perform read and write operations on the file EXLOCK.NEW, using the open FCB.

7. Close file EXLOCK.NEW ggain with interface attribute F&' set to retain the file's
lock item.

8. Set the Read-Only attribute and release the file's lock item by meaking an F_ATTRIB
system call with interface attribute F5* reset.

At this point. the file EXLOCK.NEW becomes available for access by another process.

2.12 Compatibility Attributes

Conpatibility attributes provide a mechanism to modify some of the Concurrent CP/M
file security rules for specific command files. Concurrent CP/M includes this facility because
some programs developed under earlier Digital Research operating systems do not run
properly under Concurrent CP/M. Most of the problems encountered by these programs
occur because they were designed for single-tesking operating systemns where file security
is not required. For example, a program might close a file and then continue reading and
wriling to the file. Under CP/M-86, this does not cause a problem. However, under Con-
current CP/M. the file system intercepts open file operations with a2 deactivated FCB to
ensure the integrity of the file system. With compatibility attributes. you have a tool for
dealing with these kinds of situations.

You should use compatibility attributes only with existing programs that run properly
under CP/M or CP/M-86®, Do not use compatibility attributes with new programs you
develop under Concurrent CP/M.

DIGITAL RESEARCH®
231

2.12 Cosspatidility Attributes Conewrrest CP/M Progreusser’s Guide

Compatibility attributes are defined as file attributes F1' through F4' of program (CMD)
files. You can use the Concurrent CF/M SET utility to set these file attributes from the
command line. However, setting a command file’s compatibility attributes has no effect
unless the GENCCPM COMFATMODE option has been selected during system generation,
if this has been done, the P._CLI system call interrogates file attributes F1' through F4’ of
the command file during program loading and modifies the Concurrent CP/M file security
rules for the loaded program.

The Concurrent CP/M BDOS defines the Compatibility Attributes as shown in Table

11,

Table 2-11. Compatibility Atiribute Definitions

Attribute

Definition

Ft*

Muodify the rules for Locked mode.

When a process running with F1' sst opens 2 file in Locked mode,
it can perform read and write operations to the file as normal, How-
ever, to other processes on the system, it appears ag if the file was
opened in Read-Only mode. Thus, another process rupning with F1°
act can open the zame flle in Locked mode and also perform write
operations to the file. In sddition, if a process with FI* reset attempis
to open the file in Locksd or Read-Only mode, the open attempt is
allowed but the open mode is forced to Read-Only. Furthermore,
write operations are not allowad when the process has F1" reset.

This compatibility mode is designed to allow multiple copies of the
same program to run concurrently, even though the progmm might
meke read and write cafls to & common file that it has opened in
Lockad mode. In eddition, this compatibility mode allows cther pro-
grems not in this compatibility mode to access the file on a Read-
Only basis. Note that record locking is not supported for this modified
open mode. In addition, to be safe, make all static files such as
program and help files Read-Only if you use this compatibility attribuie.

There is an alternative to using this attribute if a program only
makes read calls to the common file. By setting the file's Read-
Only attribute, you force the open mode to Read-Only when the
file is opened in Locked mode.

B DIGITAL RESEARCH®

2-32

Concurrent CP/M Programmes’s Guide 2.12 Compatibitity Attribates

Table 2-11. (continued)

Attribute Definition

F2' Change F_CLOSE to partial close.

Processes running with F2° set only make partial F_CLOSE system
calls. This attribute is intended for programs that close a file to update
the directory but continue to use the file, A side effect of this altribute
is that files opened by a process are not released from the system
Lock List until the process terminates. When using this attribute, it
might be necessaty to set the system Lock List parameters to higher
valuzes when you generate a system with GENCCPM.

F3' Ignore close checksum errors.

This attribule changes the way the F_CLOSE systern call handles
Close Checksum errors. Normally, the file system prints an error
message on the console and terminates the calling process. However,
if this attribute is set, the F_CLOSE system call ignores the check-
sum error and performs the close operation. This interface attribute
is intended for programs that modify an open FCB before closing a
file.

F4' Disable FCB Checksum verification for read and wtite operations.

Setting this attribuie also sets attributes F2'and FY. This attribute
is intended for programs that modify open FCBs during read and
write operations. Use this attribute very carefuily, and only with
software known to work, because it effectively disables Concur-
rent CP/M’'s file security.

Use the Concurrent CP/M SET utility to specify the combination of compatibility attributes
you want set in the program’s command file. For example.

A>SET filespec [fl=on}]
A>SET filespec [fl=on,f3=on]
A>SET filespec [fd=on]

DIGITAL RESEARCH®
2-33

2.12 Compatibility Attributes Concurrent CP/M Programmer's Guide

If you have a progmm that runs under CP/M or CP/M-86 but does not run properly under
Concurrent CP/M, use the following guidelines to select the proper compatibility attributes
for the program.

m If the program ends with the “File Currently Opened” message when multiple copies
of the program are run, set compatibility attribute F1', or place all common static
files under User 0 with the SYS and Read-Only attributes set.

w If the program terminates with the message “Close Checkswrn Error™, set compali-
bility attribute ¥3°,

¥ [f the program terminaies with an IO error, try running the program with attribute
F2" set. If the problem persists, then try attribute F4'. Use attribute F4' only as a last
resort.

2.13 Multisector 1/O

The BDOS file system provides the capability to read or write multiple 128-byte records
in g single BDOS zystem call. Thig muliisector facility can be visualized a8 a BDOS burst
mode, enabling a process to complets multiple YO operations without interference from other
running proceazes. In addition, the BDOS flle system bypassas, when possible, &l inter-
mediate meord buffering during multisector [0 cperations. Data is transferred directly between
the calling process’s memory and the drive. The BDOS also informg the XIOS when it is
reading or writing nmltiple phyeical records on a drive. The X108 can use this information
1o further optimize the 110 operation resnlting in even better performance. As a result, the
use of this facility in an application program can improve its performance and also enhance
overall system throughput, particularly when performing sequential I/0.

The mumber of records that cen be transferred with multisector /O ranges from 1 to 128.
This value, calied the BDOS Muitisector Count, can be set by the F_MULTISEC system
call. The P_CLI system call sete the Multisector Count to 1 when it initiates s transient
program for execution. Note that the greatest potential performance increases are obtained
when the Muitisector Count is set to 128. Of course, this requires 8 16K buffer. The Con-
current CP/M PIP utility performs its sequential /0 with a Multisector Count of 128.

The Multisector Count determines the number of operations to be performed by the fol-
lowing BDOS system calls:

®m F_READ and F_WRITE system calls
m F_READRAND, F_WRITERAND, and F_WRITEZF
B F_LOCK and F_UNLOCK

B DIGITAL RESEARCH®
2-34

Concarrent CP/M Programmer's Guide ' 2,13 Multinector [/0

If the Multisector Count is N, calling one of the above system calls is equivalent to making
N system calls. With the exception of disk /O errors encountered by the XIOS, if an error
interrupts a multisector read ar write operation, the file system returns the number of 128-
byte records successfully transferred in register AH. Section 2.14 describes how the Multi-
sector Count affects the F_LOCK and F_UNLOCK system calls.

2.14 <Concurrent File Access

Concurrent CP/M supports two open modes, Read-Only and Unlocked, which allow con-
currently running processes to access commeon files for record operations. The Read-Only
open mode allows multiple processes to read from a common file, but processes cannot write
to a file open in this mode. Thus, files remain static when they are opened in Read-Only
mode. The Unlocked open mode is more complex becaunse it allows multiple processes to
read and write records to a common file. As a result, Unlocked mode has some important
differences from the other open modes.

‘When a process openas a file in Unlocked mode, the file system returns a 2-byte field catled
the File ID in the RO and R1 bytes of the FCB. The File ID is a requited parameter of
Concurrent CP/M’s record locking system calls, F_LOCK and F_UNLOCK, which are only
supported for files open in Unlocked mode. Note that these system calls return a successful
error code if they are called for files opened in Locked mode. However, they perform no
action in this case, because, by definition, the calling process has the entire file locked.

The F_LOCK and F_UNLOCK system calls allow a process to establish and release
temporary ownership 1o particular records within a file. You must set the FCB Random
Record field and place the File 1D in the first two bytes of the current DMA buffer before
making these calls. The file system locks and unlocks records in units of 128 bytes, which
is the standard Concurrent CP/M record size. The number of records locked or unlocked
is controlled by the BDOS Multisector Count, which can range from [to 128 (see
Section 2.13). In order to simplify the discussion of record locking and unlocking, the
following paragraphs assume the Multisector Count is one. However, as discussed later in
this section, the more general case of multiple record locking and unlocking is a simple
extension of the single record case.

The F_LOCK system call supports two types of lock operations: exclusive locks and
shared locks. Interface attribute F5* specifies the type of lock. F5" = 0 requests an exclusive
lock; F5® = | requests a shared lock. If a process locks a record with an exclusive lock,
other processes cannot read, write, or lock the record. The locking process, however, can
access the record with no restrictions. You should use this type of lock when exclusive control
over a record is required.

B DIGITAL RESEARCH®

2.14 Comewrrent Fils Accems Concarrest CP/M Prograssesr’s Guide

If & process locks a record with a shered lock, other processes cannat write to the recond
or meke an exclusive lock of the record. However, other processes are allowed to read the
recort] and make their own shared locks on the record. No process, including the locking
process, can write to a record with a ahared lock. Shared Jocks are useful when you want to
enaure that a record does not change, but you want to allow other processes to resd the recond,

The F_LOCK system call also lets you change the lock of a record if there is no conflict.
For example, you ¢an convert an exclusive lock into a shared lock with no restrictions. On
the other hand, a process cannot convert a record’s shared lock to an exclusive lock if another
process has a shared lock on the record.

The F_LOCK system call has another option, specified by interface attribute F§’,
which controls whether a record must exist in order to be locked. If you make an
F_LOCK syatemn call with ¥6’= 0, the file system returns an error code if the epecified
record does not exist within the file. Setting F5' to ! requests a logical lock operation.
Logical lock operations are only limited by the meximum Concurrent CP/ M file size of
32 megabytes, which corresaponds to 8 maximum Random Record Number of 262,143.
You can use logical locks to control extending & shared file.

The F_UNLOCK system call is similar to the F_.LOCK call except that it rermoves locks
instead of creating them. There are few restrictions on unlock operations. Of course a
procesa can only remove locks that it has made. The F-UNLOCK system call has ¢ne
option, controlled by interface attribute F5'. If F5*is set to one, the F_UNLOCK system
call removes all locks for the file made by the calling process. Otherwise, it removes the
locks specified by the Random Record field and the BDOS Multisector Count. Note that
the F_CLOSE system call also reznoves alllocks for & file on permanent close operations.

H the BDOS Multisector Count is greater than one, the F. LOCK and F_TNLOCK systzm
calls perform multiple record locking or unlocking. In genersl, multiple record locking and
unlocking can be viewed as a sequence of N independent operations, where N equals the
Multisector Count. However, if an error occurs on ary record within the sequence, no locking
or unlocking is performed. For example, both F_LOCK and E_UNLOCK perform no ection
and return an error code if the sum of the FCB Random Record Number and the BDOS
Multisector Count is greater that 262,144. As snother exemple, the F_LOCK system call
also returns an error code if another process has an exclusive lock on any record within the
sequence.

B DIGITAL RESEARCH®
2-36

Conenrrvent CP/M Programmers Guide 2.14 Concurrent File Accems

Wher a process makes an F_EOCK system call, the file system allocates a new entry in
the system Lock List to record the lock operation and associate it with the calling process.
A corresponding F_UNLOCK system call removes the locked entry from the list. While the
lock entry exists in the system Lock List, the file system enforces the restrictions implied by
the lock item.

Because each lock item includes a record count field, a multiple lock operation normally
results in the creation of a single new entry. However, if the file system must split an existing
lock entry to satisfy the lock operation, an additional entry is required. Similarly, an unlock
operation can require the creation of a new entry if a split is needed. Thus, in the worst case,
a lock aperation can require two new lock entries and an unlock operation ¢an require one.
Note that lock item splitting can be avoided by locking and unlocking records in consistent
units.

These comsiderations are important because the Lock List is a limited respurce under
Concurrent CP/M. The file system performs no action and returns an error code if insufficient
availeble entries exist in the system Lock List to satisfy the lock or unlock request. In addition,
the number of lock items a single process is allowed to consumne is 8 GENCCPM parameter
established at SYSGEN time. The file system also returns an error code if this limit is
exceeded,

The file system performs several special operations for read and write system calls to a
file apen in Unlocked mode. These operations are required because the file system maintains
the current state of an open file in the calling process’s FCB. ‘When multiple processes have
the same file open, FCBs for the same file exist in each process’s memory. To ensure that all
processes have current information, the file system updates the directory immediately when
an FCB for an unlocked file is changed. In addition, the file system verifies error situations
such as end-of-file, or reading unwritten data with the directory before returning an error.
As a result, read and write operations are less efficient for files open in Unlocked mode when
campared to equivalent operations for files opened in Locked mode.

2.15 File Byte Counts

Although the logical record size of Concurrent CP/M is restricted to 128 bytes, the file
system does provide a mechanism to store and refrieve a byte count for a file. This facility
can identify the last byte of the last record of a file. The F_SIZE system call returns the
Random Record Number, + 1. of the last record of a file.

DIGITAL RESEARCH®

2115 Fila Byte Counts Conewrrent CP/M Programmer's Gulde

The F_ATTRIB system call can sst & file's byte count. This is an option controlled by
intarface attribute F6'. Conversely, the F_OPEN system call can return a file's byte count to
the CR field of the FCB. The F_SFIRST and F_SNEXT syatem calls slso return a file's byte
count. These system calls return the byte count in the CS field of the FCB returned in ithe
current DMA buffer,

Noie that the file sysiem does not access or update the byte count value in BDOS read or
write gyetem calls. However, the F_MAKE systern call does set the byte count value to zero
when it creates a file in the directory.

2.16 Record Blocking and Deblocking

Under Concurrent CP/M, the logical record size for disk I/O is 128 bytes. This is the basic
unit of data transfer between the operating system and running processes. However, on disk,
the record size is not restricted to 128 bytes. These records, celled plrysical records, cen
range from 128 bytes to 4K bytes in size. Record blocking end deblocking is required on
gysicms that support drives with physical record sizes larger than 128 bytes.

The process of building up physical records from 128-byte logica! records is called record
hlocking. This process is required in write operetions. The reverse process of breaking up
phyeical records into their component 128-byte logical records is callad record deblocking.
This process is required in read operations. Under Concurrent CP/M, record blocking and
deblocking is normelly performed by the BDOS.

Record deblocking implies a read-ahead operation, For example, if a process reads a logical
record that resides at the begioning of a physical record, the entire physical record is read
into an internal buffer. Subsequent BDOS read calls for the remaining logical records access
the buffer instead of the disk. Conversely, record blocking results in the postponement of
physicel writs operations but only for data write operations. For sxample, if a transient
progrem makes 8 BDOS write cell, the logical record is placed in a buffer equal in size 1o
the physical record size. The write operation on the physical record buffer is postponed unil
the buffer is needed in another IO operation. Note that under Concurrent CP/M, directory

write operations are never postponed.

 DIGITAL RESEARCH®

2-38

Concarrent CP/M Programmer’s Guide 2.16 Record Blocking and Deblocking

Posiponing physical record write operations has implications for some application pro-
grams. For programs that involve file updating, it is often critical to guarantee that the state
of the file on disk parallels the state of the file in memory after an update operation, This is
only an issue on drives where physical write operations are postponed because of record
blocking and deblocking. If the system should crash while a physical buffer is pending. data
would be lost. To prevent this loss of data, the F_FLUSH system call can be called to force
the write of any pending physical buffers associeted with the calling process.

Note: The file system discards all pending physical data buffers when a process tarminates.
However, the file system sutomaticelly makes an F_FLUSH call in the F._CLOSE system
call. Thus, it is sufficient to make an F_CLOSE system call to ensure that all pending physical
buffers for that file are written to the disk.

2.17 Reset, Access, and Free Drive

The BDOS system calls DRV_ALLRESET, DRV..RESET, DRV_ACCESS, and
DRV_FREE allow a process to control when to reinitialize a drive directory for file operz-
tions. This process of initializing & drive's directory is called logging-in the drive.

When you slart Concurrent CP/M., all drives are initialized to the reset siate. Subsequently,
as processes reference drives, the file system automatically logs them in. Once logged-in, a
drive remains in the logged-in state until it is reset by the DRV_ALLRESET or DRY_RESET
system calls or a media change is detected on the drive. If the drive is reset, the file system
automatically logs in the drive again the next time a process references it. The file system
logs in a drive immedialely when it detects a media change on the drive.

Note that the DRV_ALLRESET and DRV_RESET systemn calls have similar effects except
that the DRV_ALLRESET system call affects all drives on the system. You can specify the
combination of drives to reset with the DRV_RESET systern cail.

Logging-in a drive consists of several steps. The most important step is the initialization
of the drives allocation vector. The allocation vector records the allocation and deallocation
of data blocks to files, as files are created, extended, deleted and truncated. Another function
performed during drive log-in is the initialization of the directory checksum vector. The file
system uses the checksum vector to detect media changes on a drive. Note that permanent
drives, which do not support media changes. usually do not have checksum vectors.

) DIGITAL RESEARCH®

2-3¢

!
2.17 Reset, Accows, and Free Drive Concuryent CP/M Programmer's Guide

Under Concurrent CP/M, the DRV_RESET operstion is conditional. The file system
cannot reset & drive for & process if another process hiks an open fle on the drive. However,
the exact ection taken by a DRV_RESET operation depends on whether the drive to be reset
is permanent or emovable.

Concurrent CP/M determines whether a drive is permanent or removable by interrogating
e bit in the drive's Disk Parameter Block (DPB} in the XIOS. A high-order bit of 1 in the
DPB Checksum Vector Size field designates the drive as permenent. A drive's Removable
or Nonremovable designation is critical to the reset operation described below.

The BDOS first deterrnines whether there are any files currently open on the drive to be
reset, If there are none, the reset takes place. If there are open files, the action teken by the
reset operation depends on whether the drive is removable and whether the drive is Read-
QOnly or Read-Write. Note that only the DRV_SETRO system call can set a drive to Read-
Only. Following log-in, & drive is always Read-Write,

If the drive is a permanent drive and if the drive is not Read-Only, the reset operation is
not performed, but 2 successful result is relurned to the calling process.

However, if the drive is removable or set to Read-Only, the file systern determines whether
other processes have open files on the drive. If they do, then it denies DRY._RESET operation
and returns an error code to the calling process.

If all the open files on a removable drive belong to the calling process, the process is said
to own the drive. In this case, the file system performs a qualified reset on the drive and
returns a successful result. This means that the next time a process accesses this drive, the
BDOS performs the log-in operation only if it detects 2 media change on the drive. The logic
flow of the drive reset operation is shown in Figurs 2-6.

B DIGITAL RESEARCH®

240

Concurrest CP/M Programmer’s Guide 2.17 Reset, Access, and Free Drive
YES
OPEN FILES
ON CRIVE? |
NO
DRIVE YES
REMOVABLE?
¥ NO
YES
DRIVE R/Q?
l NO
RESET DO NOT RESET OFEN FILES YES
DRIVE DRIVE BELONG TO
ANOTHER
PROCESS?
t nO
QUALIFIED
RESET
PERFORMED
DISK DISK
RESET e RESET
SUCCESS DENIED
Figure 2-6. Disk System Reset

If the BDOS detects 2 media change on a drive after & qualified reset, it purges all apen
files on the drive from the system Lock List and subsequently verifies all open FCBs in file
operations for the owning process (refer to Section 2,10 for details of FCB verification).

In all other cases where the BDOS detects a media change on a drive, the file system
purges all open files on the drive from the system Lock List, and flags all processes owning
a purged file for antomatic open FCB verification.

@ DIGITAL RESEARCHS

2441

217 Roset, Accems, sud Free Thive Comemrrest CE/M Progromunir’s Gude

Note: If a proctss references a purped file with & BDOS command that requires an open
FCB, the file systerm returns (o the process with an FCB checkeum error.

The primary purpose of the drive reset fimctions is 1o prepare for a media change on 2
drive. Becanse a drive reset operation is conditional, it allows 4 proceas to test whether it is
sefe to change disks. Thus, a process should make & suceessful drive reset call before prompi-
ing the user to change disks. In addition, you should closs all your open files on the drive,
particularly files you have written to, before prompting the user to change disks. Otherwise,
you might lose date.

The DRV_ACCESS and DRV_FREE system calls perform speciel actions under
Concurrent CP/M. The DRV_ACCESS systern call inserts & dummy open file item into the
system Lock List for each specified drive. While that ilem exists in the systern Lock List,
no other process can reset the drive. The DRY_FREE systern call purges the Lock List of
all iterns, including open file itema, belonging to the calling process on the apecified drives.
Any subsequent reference to those files by a BDOS system call requiring an open FCB results
in an FCB checksum error refurn.

'The DRV_FREE system cell hes two important side effects. First of all, any pending
blocking/deblocking buffers on a specified drive that belong to the calling process are dis-
candad. Secondly, any date blocks that have been allocated to filea thet have not been closed
are lost. Be sure 1o close your files before making this sysism call.

The DRV_SETRO syste1n call is also conditional under Concurrent CP/M. The file system
does not allow & process to set a drive to Read-Cnly if another process has an open file on
the drive. This applics to both removeble and permanent drives.

A process can prevent other processes from resetting & Read-Only drive by opening s file
on the drive or by issning ¢ DRV_ACCESS call for the drive and then making 2
DRV_SETRO system ¢all. Executing DRY__SETRO befors the F__OPEN or DRV_ACCESS
call leaves 8 window in which another process could set the drive back 1o Read-Write. While
the open file or dummy item belonging to the process resides in the system Lock List, no
other process can reset the drive to take it out of Read-Only status.

MDIGITAL RESEARCH®
242

Concurrent CP/M Programmer's Guide 2.13 BDOS Error Handling

2.18 BDOS Error Handling

The Concurrent CP/M file system has an extensive error handling capabilitcy. When an
error is detected, the BDOS responds in one of three ways;

1. It can return to the calling process with retirn codes in the AX register identifying
the error.

2. It can display an error message on the console and terminate the process.

3. Itcan displey an error message on the console and return an error code to the calling
process, as in method 1.

The file system handles the mejotity of errors it detects by method 1. Twe examples of this
kind of error are the “file not found”™ error for the F_OPEN system call and the “reading
unwritten data” error for the F_READ call. More serious rrors, such as disk [/O errors, are
normeally handled by method 2. Errors in this category, called physical and extended errors,
can also be reported by methods 1 and 3 under program control.

The BDOS Error mode, which has three states, determines how the file system handles
physical and extended errors. In the default state, the BDOS displays the error message and
lerminates the calling process (method 2). In Return Error mode, the BDOS returns control
lo the calling process with the error identified in the AX register (method 1). In Return and
Display Error mode, the BDOS returns control to the calling process with the error identified
in the AX register and also displays the error message at the console (method 3).

While both return modes protect a process from termination because of a physical or
extended error, the Return &nd Display mode also allows the calling process to take advantage
of the built-in error reporting of the file system. Physical and extended errors are digplayed
an the console in the fellowing format:

CP/M Error on d: error message
BDOS Function = nn File = filename.typ

where d is the name of the drive selected when the error condition occurs; error message
identifies the error; nn is the BDOS function number, and filename.typ identifies the file
specified by the BDOS function. If the BDOS function did not involve an FCR, the file
information is omitted.

Tables 2-12 and 2-13 detail BDOS physical and extended error messages.

H DIGITAL RESEARCH®
2-43

2.13 BDOS Error Handling Concwrrent CP/M Programmer's Guide

Table 2-12. BDOS Physical Exrors

Messzage

Meaning

Disk I1/0

The “Disk 10" error results from an error condition returned to the
BDOS from the X1IOS module. The file system makes XIOS read
and write calls to execute BDOS file-access system calls, If the X108
read or writs routine detects an ervor, it returns an error code to the
BDOS, causing this error message.

Invalid Drive

The “Invalid Drive” error alsc reeults from an error condition returned
to the BDOS from the XIOS module. The BDOS makes an XIOS
Select Disk call before accessing a drive to perform a requested
BDOS function. If the XIOS does not suppert the selected disk, it
returns an error code resulting in this error.

Read/Only Fils

The BDOS returns the “Read/Only File” errov message when a process
attempts to write 10 a file with the R/O attribuic sct.

Read/Only Disk

The BDOS returns the “Read/Omly Digk error™ message when a
process makes a write operstion to a disk that is in Read-Only status.
A drive can be placed in Read-Only status explicitly with the
DRV_SETRO system call.

244

BDIGITAL RESEARCH®

Concurrent CP/M Programmer's Guide 1.18 BDOS Error Handling

Tahle 2-13. BDOS Extended Errors

Message Meaning

File Opened in Read/0nly Mode

The BDOS returns the “File Opened in Read/Only Mode” error
message when a process attempis to write to a file opened in Read-
Only mode. A process can open a file in Read-Only mode explicitly
by setting FCB interface attribute F6'. In addition, if a process opens
a file in Locked mode, the file system automatically forces the open
mode to Read-Oniy mode when:

W the process opens a file with the Read-Only attribute set.

W the current user number is not zero and the process opens a user
zero file with the SYS attribute set.

The BDOS also returns this error if a process attempts 1o wrile toa
file that is pagsword-protected in Write mode, and it did not supply
the correct password when it opened the file.

File Currently Opsn

The BDOS rewrns the “File Currently Open™ ertor message when
a process attempts to delete, rename, or modify the atributes of a
file opened by another process. The BDOS also returns this error
when a process attempts to open a file in a mode incompatible with
the mode in which the file was previously opened by another process
or by the calling process.

Close Checksum Error

The BDOS returns the “Close Checksum Error” message when the
BDOS detects a checksum error in the FCB passed to the file system
with an F_CLOSE call.

Password Error

The BDOS returns the “Password Error” message when passwords
are required and the file password is not supplied or is incorrect.

B DIGITAL RESEARCH®

245

.13 BDOB Error Handling Concurrent CP/M Programmer’s Guide

Table 2-13. {contlnued)

Message Meaning

File Already Exists

The BDOS returns the “File Already Exists” error message for the
F_MAKE and F_RENAME systern calls when the BDOS detects a
conflict on filename and fletype.

Illegal t in FCB

The BDOS returns the “Illegal ? in FCB” error message when the
BDOS detects a ? character in the filename or filetype of the passed
FCB for the F_ATTRIB, F_OPEN, F_RENAME, F_TIMEDATE,
F_WRITEXFCB, F_TRUNCATE, and FMAKE system calls.

Open File Limit Exceeded

The BDOS returne the “Open File Limit Excesded” ermor messags
when e process excesds the process file lock limit specified by
GENCCPM. The F_OPEN, F_MAKE, and DRV._ACCESS system
calls can return this error.

No Room in System Look List

The BDOS returns the “No Room in Systemn Lock List™ error mes-
sage when no room for new eniries exists within the system Lock
List. The E_OPEN, F_MAKE, and DRY_ACCESS system calls
can return this error.

The following paragraphs describe the error raturn code conventions of the file system
calls. Most file system calls fall into three categories in regard to return codes; they return
an error code, a directory code, or an error flag. The error conventions let programs written
for CP/M-86 run without modification.

B DIGITAL RESEARCH®

Concurrent CP/M Programmer's Gukle

The following BDOS syatam calls return a Jogical error in register AL:

F_LOCK
F_READ
F_READRAND
F_UNLOCK
F_WRITE
F_WRITERAND
F_WRITEZF

Teble 2-14 lists error code definitions for register AL,

Table 2-14. BDOS Error Codes

Code Definition
00H: Function successful
0IH: Reading unwritten data
No available directory space (Write Sequential)
Q02H: No available data block
Q03H: Cannot close current extent
04H: Seek to unwritten extent
05H: No available directory space
06H: Random record mumber out of range
* 0O8H: Record locked by another process
(restricted to files opened in Unlocked mode)
09H: Invalid FCB (previous BDOS F_CLOSE system call
returned an error code and invalidated the FCB)
OAH: FCB checksum error
* OBH: Unlocked file unallocated block verify error
** OCH: Process record lock limit exceeded
** ODH: Invalid File ID
** (OEH: No room in System Lock List
OFFH: Physical error : refer to register AH
* - returned only for files opened in Unlocked mode
*+ . returned only by the F_LOCK and F_UNLOCK system calls for
files opened in Unlocked mode
1 DIGITAL RESEARCH®

2,18 BDOS Error Handling

247

118 BDOS Error Handlng Concurremt CP/M Programitier's Guide

For BDOS read and write system calls, the file syatem also sets register AH when the returned
error code is & value other then zero or OFFH. In this case, register AH comtaing the pumbsr
of 128-byte reconds successfully read or written before the error was encountered. Note that
register AH can only contain 8 nonzerm value if the calling process has sat the BDOS
Multisector Count to & value other than one; otherwise register AH is always set to zero. On
successful system calls (Error Code = 0), register AH ig aleo set to zera. If the Error Code
is OFFH, register AH conlains a physical error code (see Thble 2-15).

The following BDOS gystem calls return a directory code in register AL:

DRY_SETLABEL
F_ATTRIB
E_CLOSE
F_DELETE
F_MAKE
F_OPEN
F_RENAME
F.SIZE
F_SFIRST
F_SNEXT
F_TIMEDATE
F_TRUNCATE
F_WRITEXFCB

The directory code definitions for register AL follow.

00H - 03H : successful function
OFFH : unsuccesaful function

With the exception of the F_SFIRST and F_SNEXT system calls, all functions in this
category retorn with the directery code set to zero upon a successful return. However, for
these two system calls, a successful direciory code identifies the relative starting position of
the directory entry in the calling process's current DMA buffer.

@ DIGITAL RESEARCH®
248

Concurrent CP/M Frogrammer’s Guide 2.18 BDOS Error Handling

If & process uses the E_ ERRMODE system call to place the BDOS in Return Error mode,
the following system calls return an error flag in register AL on physical errors:

DRV_GETLABEL
DRV_ACCESS
DRV_SET
DRV_SPACE
DRV_FLUSH

The error flag definition for register AL follaws,

O0H : successful function
OFFH : physicel error : refer to register AH

The BDOS returns nonzero valuss in register AH to identify a physical or extended error
if the BDOS Error mode is in one of the return modes. Except for system calls that return
Directory Code, register AL equal to OFFH indicates that register AH identifies the physical
or extended error. For functions thet return a Directory Code, if register AL equals 255, and
register AH is not equal to z2ro, register AH identifies the physical or extanded error. Table
2-15 shows the physical and extended error codes returned in register AH.

Table 2-15. BDOS Physical and Extended Errors

Code Explanation

q1H Disk IO Error : permanent error

(02H Read/Only Disk

03H Read/Only File, File Opened in Read/Only Mode, or File Password Pro-
tected in Write Mode and Correct Password Not Specified

04H Invalid Drive : drive select error

05H File Currently Open in an incompatible mode

06H Close Checksum Error

07H Password Error

08H File Already Exists

09H Illegal 7 in FCB

0AH Open File Limit Exceeded

O0BH No Room in System Lock List

M DIGITAL RESEARCH®

249

2.18 BDOS Eror Handling Concwrrent CP/M Programmer's Guide

The following rwo system calls represent a specinl case becmuse they return an sddress in
register AX.

DRV_ALLOCVEC
DRV._DBP

When the calling process is in one of the BDOS return srrar modes and the BDOS datects
& physical error for these system calls, it raturns to the calling process with registers AX znd
BX set to OFFFFH. Otherwise, they retrn no error code.

Under Concurrent CP/M, the following system calls also represent s speciel case.

DRV_ALLRESET
DRV_RESET
DRV_SETRO

These system calls return to the calling process with registers AL and BL set to OFFH if
anothey process has an open file or has made a DRV_ACCESS call that prevents the reset or
write protect operation. If the calling procees is not in Return Error mode, these system calls
elso display an error message identifying the procesa that prevented the requested operation.

End of Section 2

W DIKGITAL RESEARCHS®

Section 3
Transient Commands

3.1 Transient Program Load and Exit

A transient program is a file of type CMD that is loaded from disk and rezides in memory
only during its operation. A resident system program is a file of type RSP that is included
in Concurrent CP/M during GENCCPM. Section 4 describes the three system memory models
that determine the initial values of ssgment registers in transient processes.

You can initiate a transient process by entering a command at a system console. The
console's TMP (Terminal Message Processor) then calis the Command Line Interpreter system
call (refer to the P__CLI system call), and passes to it the command line entered by the user.
If the command is not an RSP, then the P_CLI systern call locates and then loads the proper
CMD file. P_CLI then calls the F_FARSE system call to parse up to two filenames following
the command, and place the properly formatted FCBs at locations 005CH and 006CH in
the Base Page of the initial Data Segment.

The P_CLI system call initfalizes memory, the Process Descriptor, and the User Data
Area (UDA), and allocates a 96-byte stack area, independent of the program, to contain the
process’s mnitial stack. If 8087 processing is required (see Section 3.1.2) P_CLI allocates
an additional 96 bytes for the UDA. Concurrent CP/M divides the DMA address into the
DMA segment address and the DMA offset. P_CLI initializes the defanlt DMA segment to
the value of the initial data segment, and the default DMA offset to 0080H.

The P_CLI system call creates the new process with a P_CREATE systern call and seis
the initial stack so that the process can execute a Far Return insfruction to terminate. A
process also ends when it calls DRV_ALLRESET or P_TERM.,

Youcanalsoterminatea process by typing a single CTRL-C during console input. See
C_MODE for details of enabling/disabling CTRL-C. CTRL-C, when typed at the
prompt, forcesa DRV_RESET call for each logged-in drive. This operaticn only affects
removable media drives.

Note: Additional UDA space is allocated for 8087 processing only if the process is ini-
tialized by the P_CLI or P_LOAD system call. Other processes (such as RSPs) that require
2087 processing and do not use P_CLI or P_LOAD must allocate this additional UDA space
themselves,

18 DIGITAL RESEARCH®
3

3.1 Tramslensi Prograee Lond mad Exit Coucwrront CP/M Prograomser’s Culde

3.1.1 Shared Code

Concurrent CP/M allows processes to share program code. This capability of sharing
program code avoids unnecessary program loading of a code segment already in memory
and conserves memory space since multiple copies of the same progrem code do not have
to occupy different memory space. During progrem load of a “shareble™ progrem code, the
system alfocatzs the code group separately from the rest of the program, This code group
is maintaiped in memory even after the program bas terminated. Subsoquent loading of the
same progrem does not load the code group, but uses the existing one instead. Obviously,
programs written with scparatz code and data cen take advantage of this feature.

The system maintains a shared code group in memory until @ memory request or a reset
drive forces its release. The system maintsing shared cods groups in memory in Least
Recently Used (LRU) order on the Shared Code List. If a memory request iz made that
cannot be satisfied, the list is drained, one at & time, until the memory request is satisfied,
or the Shared Code List is emptied. If & drive is resget, the system purges all code groups
from the Shared Code List loaded from that drive.

A shared code program is flagged by the value 09H Inthe G__Type field of the Code
Group Descriptor in the CMD file header (see Section 3.2). The user may set this field by
using the CHSET utility (see Cortcurrent CPf M User’s Guide). Note that progrems using
the 8080 memory model cannot be set to shared code.

3.1.2 8087 Support

Concurrent CP/M provides optional 8087 support for systems that use the 8087 processor.
This suppart is indicated by the Program Flag, byte 127 {07FH), of the CMD file header.
Setring bit & {bit 0 is least significant bit) of the Program Flag indicates optional 3087
suppart, which means that if the 8087 is present, the program uses it; otherwise, the program
will emulate it. If bit 5 of the Program Flag is set, it indicates that the 8087 must be present
in order for the program to run. If no 8087 is present and bit 5 of the Program Fiag is set,
the system returns an error when it tries to load the program. The CHSET utility can be
used (o set the program’s header record for optional or required 8087 support.

If you use the P__CLI or P_LOAD systern call to initiate and execute a process, the system
allocates an extra 96 bytes to the UDA for 8087 support. If you require 8087 support end
de not use the P_CLI or P_LOAD system call, you mmst specifically allocate this additionat
96 bytes to the UDA, turn on the 8087 flag in the PD, and initialize the CW and SW fields
in the 8087 UDA extension {see description of these fields in Section 6 under the P_CREATE
system call).

8l DIGITAL RESEARCH®

3.2

Concurrent CP/M Programmesr’s Guide 3.1 Transient Program Lomd and Exit

3.1.3 8087 Exception Handling

Although the system provides its own 8087 exception handling routine, the user might
want to write his own 8087 exception handler. Appendix E includes instructions and infor-
mation required by the user o write his own 8087 exception handler, with a sample listing
of an 8087 exception handler routine,

3.2 Command File Format

A CMD file consists of a 128-byte header record followed immediately by the memory
image. The command file header record is composed of 8 group descriptors {(GDs), each 9
bytes long. Each group descriptor describes a portion of the program to be loaded. The
format of the header record is shown in Figure 3-1.

[GD1IGDZIGDSIGD4|GD5|GDS‘ GD?IGD&' I

128 BYTES

Figure 3-1. CMD File Header Format

In Figure 3-1, GD 1 through GD 8 represent group descriptors. Each group descriptor
corresponds to an independently loaded program unit and has the format shown in Fig-
ure 3-2,

Q3H 05H 07H 0sH

00H D1H
1 A
rG_TYPEJ G.LENGTH [A_BASE ' G_MIN I G.MAX I

Figure 3-2. Group Descriptor Format

G_Type determines the group descriptor type. The valid group descriptors have a G_Type
in the range 1 through 8, as shown in Table 3-1. All other values are reserved for sysiem
use. For a given CMD file header only a Code Group and one of any other type can be
included.

B DIGITAL RESEARCH®
3-3

3.2 Cozmmand FRe Formst Comcmrrest CPM Programser's Gulide

If a program uses either the Small or Compact Model, the code group is typically pure;
that is, il is not modified during program sxecution.

Table 3-1. Group Descriptors

G-Type Group Type
OlH Code Group (non-
ghared)
2R Data Group
03H Extra Group
04H Stack Group
05H Auxiliary Groop #1
06H Auxiliary Group #2
H Anxiliary Group #3
08H Auxiliary Group #4
09H Code Group (shered)

All remaining valnes in the group descriptor are given in increments of L6-byte paragmph
units with an agsumed low-order O nibble to complete the 20-bit address.

Table 3-2. Group Descriptor Fields

Field Description
G_Length Gives ths number of paregraphs in the group. Given &8 G_length
of 080H, for exarnple, the size of the group is 0800H (2048
decimal) bytes.
A_Base Defines the base paragraph address for a nonrelocatable group.
G_Min'G_Max Define the minimum and maximum zize of the memory area to
allocats to the group.

HDKITAL RESEARCH®

34

Concurreat CP/M Programmers Gulde 3.3 Base Page Initiallzation

The memory model described by a header record is implicitly determined by the group
descriptors {refer to Section 4.1). The §080 Model is assumed when only a code group is
present, because no independent data group is named, The Small Model is assumed when
both a ¢ode and data group are present but no additional group descriptors occur. Otherwise,
the Compaci Model is assumed when the CMD file is loaded.

3.3 Base Page Initislization

The Concurrent CP/M Basc Page contains defeult values and locations initialized by the
P_CLI and P_LOAD system calls and usad by the transient process.

The Base Page occupies the regions from offset 000OH through O0OFFH relative to the
initial data segment, and contains the values shown in Figure 3-3.

I8 DIGITAL RESEARCH®

12
18
1E
24
2A

a0

5C

8C

c

L M H L B
1 2 3 4 5
+ + + + +
CODELENGTH CODE BASE M80
t + +
DATALENGTH DATA BASE RESERVED
EXTRA LENGTH EXTRA BASE RESERVED
+ + -+
STACK LENGTH J STACK BASE RESERVED
AUX 1 L AUX 1 RESERVED
} + 1 + +
AUX 2 AUX 2 RESERVED
+ + + + 1
AUX 3 AUX 3 RESERVED
+ ¥ <+ + L
AUX 4 AUX 4 RESERYED
+ + + +
BYTES 030H THROUGH DaFH ARE NQT CURRENTLY USED AND
ARE RESERVED FOR FUTURE USE BY DIGITAL RESEARCH
+ +
DRIVE PASSWORD 1 ADDR I P1LEN PASSWORD 2 ADDR
+ +
P2 LEN RESERVED FOR FUTURE USE
+ + + + +
DEFAULT FILE NAME1
+ + + + +
DEFAULT FILE NAME2
ca){ RANDOM RECORD NUMBER {QPT) T
' + + 1 +

DEFAULT T28-BYTE DMA BUFFER

Figure 3-3. Concurvent CP/M Base Page Values

M DIGITAL RESEARCH®

Concurrent CP/M Programmer’s Gulde 3.3 Base Page Initialization

The fields in the Bese Page are defined as follows:

B The MB80 byte is a flag indicating whether the 8080 Memory Model was used during
lord. The values of the flag are defined as:

1 = 8080 Model
0 = not 8080 Model
If the 8080 Model is used, the code length never exceeds O0FFFFH.

E The bytes marked Aux 1 through Aux 4 correspond to a set of four optional inde-
pendent groups that might be required for programs that execute using the Compact
Memory Model. The initial values for these descriptors are derived from the header
record in the memory image file,

B Length is stored using the Inte] convention: low, middle, and high bytes.

® Base refers to the paragraph eddress of the beginning of the segment.

® The drive byte identifies the drive from which the transient program was read. 0

designates the default drive, while a value of 1 through 16 identifies drives A through
P.

® Password 1 Addr (bytes 005TH-0052H) contains the address of the password field of
the first command tail operand in the default DMA buffer at 0080H. The P_CLI
system call sets this field to 0 if no password is specified.

B P] Len (byte D053H} contains the length of the password field for the first command
tail operand. The P_CLI system call sets this to 0 if no password is specified.

B Password 2 Addr (bytes 0054H-0055H) contains the address of the password field of
the second command tail operand in the default DMA, buffer ai 0080H. The P._CLI
system call sets this field to 0 if no password is specified.

B P2 Len (byte 0056H) contains the length of the passwor field for the second command
tail operand. The P_CLI system call sets this field to 0 if no passwaord is specified.

& File Namel (bytes 005CH-0067H) is initialized by the P_CL] system call for a
transient program from the first command tail operand of the command line.

B File Name2 (bytes 006CH-0077H) is initialized by the P.__CLI system call for a
transient program from the second command tail operand of the command line.

Note: File Namel can be used as part of a File Contro! Block (FCB) beginning at
O5SCH. To preserve File Name2, copy it to another location before using the FCB in
file I/O system calls.

8 The CR field {byte 007CH) contains the current record position used in sequential
file operations with the FCB at Q5CH,

¥ DIGITAL RESEARCH®

3.3 Base Pape Inttinltzation Councurrent CP/M Programumer’s Reference Grlde

® The opiional Random Record Number (bytes 007DH-007FH) is an extension of the
FCB at 05CH, used in random record processing.

¥ The Default DMA buffer (bytes 0080H-00FFH) contains the command tail when the
P_CLI system call loads a transient program.

3.4 Parent/Child Reletionships

Under Concurrent CP/M when one process creatss another process, there is a parent/child
relationship between them, The child process inherits most of the default values of the parent
process, This includes the defanlt disk, user number, console, list device, and password. The
child process also inherits interrupt vectors 0, 1, 3, 4, 224, and 225, which the parent process
initialized.

3.5 Direct Video Mapping

Processes which bypass Concurrent CP/M Character 1/ O system calls anc use a video
map or sereen buffer directly cannot be monitored by the aystem and continue to display
characters on the screen even when running in the background. Consequently, any scréen
displayed by the program in the foreground console is interspersed with characters
displayed by the program in the background using direct video map I/0. To avoid the
screen problems created by using direct video 170, set bit 3 of the Program Flag to
indicate to thesystern that the process is to be put in suspend mode whenever itis running
inthe background and may continue ronning only when it is switehed to the foreground.
‘The CHSET utility (se¢ the Concurrent CP/ M User'’s Guide) can be uged to set bit 3 of the
Program Flag.

Noite that bypasaing the systemn Character I/O system cslls negates the concurrency of a
process, gince the system suspends it from running (if bit 3 of Program Flag is set) unless it
is running in the foreground.

End of Section 3

@ DIGITAL RESEARCH®
38

Section 4
Command File Generation

4.1 Translent Execution Models

When the program is loaded, the initial values of the segment registers, the instruction
pointer, and the stack pointer are determined by the specific type of memory model used
by the transient process, indicated in the CMD file header record.

There are three memory models, the 8080 model, the Small Model, and the Compact
Model, summarized in Thble 4-1.

Tabie 4-1. Concurrent CP/M Memory Models

Model Group Relationships
8080 Model Code and Data Groups Overlap
Small Model Independent Code and Data Groups
Compact Mode!l Three or More Independant Groups

The 8080 Model supports programs that are directly translated from an 8080 environment
where code and data are intermixed. The 8080 Model consists of one group that contains all
the code, data, and stack areas. Segment registers are initialized to the starting address of
the region containing this group. The segment registers can, however, be managed by the
application program during execution so that multiple s=gments in the code group can be
addressed.

The Small Model is similar to that defined by Intel, where the program consists of an

independent code group and a data group. The code end data groups often consist of, but
are not restricted to, single 64K byte segments.

9 DIGITAL RESEARCH®

4-1

4.1 Tramwieni Exscation Miodals Coucarrent CP/M Programwers Guide

The Compact Model occurs when any of the extr, stack, or muxiliery groups are presant
in program. Each group can consist of one or more segments, but if any group exceeds ane
segrment in gize, or if auxiliary groups are present, then the application program st manage
ils own segment registers during execution in order to address all code and data areas.

Theee three models differ primarily in how the operating system initializes the segment
registers when it loads & transient process. The P__LOAD system call determines the memory
model used by a transient program by examining the program group usage, as described in
the following sections.

For all models, the sysiem initializes an internal 96-byte stack area, The first two words
of thie siack are reserved for the double word return for fermination by a RETF (Far Return)
inetruction. The initial program stack for all models is shown in Figure 4-1 below,

Far Raturn Address Ret Segment
: . ———
soer Rat Offsat
82 BYTES

Figure 4-1. Inltinl Program Stack

The transient program car terminate by using the P_TERMCFM or P_TERM system calf
or by executing a RETF (Far Return) instruction when the SS and SP still point to the initial

program stack.

4.1 1 The 8080 Memory Model

The 8080 Mods] is assumed when the transjent program containg only e code group. In
this case, the Command Line Interpreter (P_CLI) system call initializes the CS, DS, and ES
registers to the beginning of the code group and sets the S8 and SP registers to a 96-byte
initial stack area that it allocates.

@ DIGITAL RESEARCH®
42

Comcerrent CP/M Programmer’s Guide 4,1 Trausient Execution Models

Note: The P_CLI system call initializes the stack so thail if the process sxecutes a Far
Return instruction, it terminates. This system call sets the Instruction Pointer {(IP) Register
to 100H, thus allowing Base Page values at the beginning of the code group. Following
program load, the 8080 Model appears gs shown in Figure 4-2.

CODE/DATA

CODE/DATA

C8:IP ——» 0100H

BASE PAGE

€8:0,08:0,E8:0 ——» 0000H

Figure 4-2. Concurrent CP/M 8080 Memory Model

The intermixed code and dats areas are indistinguishable. The Base Page values are described
in Section 3.3. The following ASM-86 example shows how to code an 8080 Model transient

mssembly language program.

cseg
org [00h

. (code)

endes equ $
dseg
org offset endes

(data)

end

DIGITAL RESEARCH®
4-3

4.1 Tramslont Expcution Medel Coscmrent CPM Prograwmer’s Gulde

4.1.2 The Small Memory Model

The Small Mode] is assumed when the trangient program containg both & code and data
group. (In ASM-86, ell code is generated following a CSEG directive. Data i defined
following a DSEG directive, with the origin of the Data Segment independent of the Code
Segment.) In this model, the P_CLI system call sets the CS register to the beginning of the
code group, the IP to 00Q0H, the DS and ES registers to the beginning of the data group,
end the SS and SP registars to 1 96-byte initisl steck area that it initializes. Following program
load, the Smal] Model appears as shown in Figure 4-3,

' DATA

. Q100H

CODE BASE PAGE
DS:0,E8:0 — 0000H

C8:.0,IP:0 =&~ DOOOH

Figure 4-3. Concurrent CP/M Small Memory Model

The machine code begins at C8 + 0000H, the Base Page values begin at DS +0000H, and
the date area starts at DS+ 0100H. The following ASM-86 example shows how to code a
Small Model transient assembly language program.

ceeg

. (code)
dseg
org 10Ch
. (data)
omd

@DIGITAL RESEARCH®

Comcarrent CF/M Programmer's Guide 4.1 Transient Execution Modelt

4.1.3 The Compact Memory Model

The Compact Modzl is assumed when code and data groups are present, along with one
or more of the remaining stack, extra, or auxiliary groups. In this case, the P_CLI system
call sets the CS, DS, and ES registers to the base addresses of their respective areas. with
the 1P set to D000H, and the S8 and SP registers set to a 96-byte stack arca allocated by this
system call.

Figure 4-4 shows the initial configuration of the segments in the Compect Model. The
values of the various segment registers can be changed during execution by loading from the
initial values placed in Base Page. This allows access to the entire memory space.

DATA

0100H .
CODE BASE PAGE DATA
cs.IP

0000H D&:0000H E3:0000H

Figure 4-4. Concurrent CP/M Compact Memory Model

[f the assembly language transient program intends to use the stack group as a stack area,
the SS and 5P registers must be set upon entry. The SS and SP registers remain in the initial
stack area, even if a stack group is defined.

Although it appears that the SS and SP registers should be set to address the stack group,
there are two contradictions. First, the assembly language transient program might be using
the stack group as a data area. In that case, the stack values set by the P_CLI system call to
allow a far return to terminate 2 transient program could overwrite data in the stack area.
Second, the SS register would logically be set to the base of the group, while the SP would
be set to the offset of the end of the group. However, if the stack group exceeds 64K, the
address range from the base to the end of the group exceeds a 16-bit offset value.

H DIGITAL RESEARCH®
4-5

4.1 Tyangient Execuiion Models Concurrent CP/M Proprummer’s Guide

The following ASM-86 example shows how 10 code a Compact Model assembly lengnage
transient progrem.

cseg
. {code)
dseg
org 100h
: (data)
eseg
. (more data)
£828
: (stack area)
end

4,2 GENCMD

The GENCMD ufility creates 2 CMD file from en input H86 file. GENCMD does not alter
the originel HR& file. The GENCMD invocation has the following form:

GENCMD filename {parameter-list}
where the filename corresponds to the H86 input file with an assumed and unspecified filetype
of H86. GENCMD accepts optional parameters to specifically identify the 3080 Model and
to describe memory requirements of each segment group. The GENCMD parameters are
listed foliowing the filename, s ghown in the command line above where the parameter list
consists of a sequence of keywords (shown below) and values separated by commas or blanks.
8030 CODE DATA EXTRA STACK X! X2 X3 X4

The 8080 keyword forces a single code group so that the P_LOAD system call sets up the
BO80 Model for execution, &llowing intermixed code and data in a single segment. The form
of this command is

GENCMD filename 8080

M CIGITAL RESEARCH®

Concurrent CP/M Programmer’s Guide 4.2 GENCMD

The remaining keywords follow the filename or the B080 option and define specific memory
requirements for each segment group, corresponding one-to-one with the segment groups
defined in the previous section. In each case, the values corresponding to each group are
enclosed in square brackets and separated by commas. Each value is 2 hexadecimal number
representing a paragraph address or segment length in paregraph units denoted by hhhh,
prefixed by a single letter that defines each value:

Ahhhh Load the group at absolute location hhkh

Bhhhh The group starts at hhhh in the hex file

Mhhbh The group requires a minimum of bhhh * 16 bytes
Xhhhh The group can address a maximum of ihhh * 16 bytes

Generally, the CMD file header record values are derived directly from the H86 file and the
parameters shown abave need not be included. The following situations, however, require
the use of GENCMD parameters,

B The 8080 keyword is included whenever ASM-86 is used in the conversion of 8080
programs to the 8086/8088 environment when code and data are intermixed within a
single 64K segment, regardless of the use of CSEG and DSEG directives in the source
program.

® An absolute address (a hexadecimal value) must be given for any group that must be
located at an absolute location. This value is not usually specified, as Concurrent
CPM cannot ensure that the required memory region is available. In that case the
CMD file cannot be toaded.

B The B value is used when GENCMD processes a HEX file produced by Intel's OH86
or & similar utility program that contains more than one group. The output from OH86
consists of a sequence of data records with no information to identify code, data,
extra, stack, or auxiliary groups. In this case, the B value marks the beginning address
of the group named by the keyword, causing GENCMD to load data following this
address {o the named group (refer to the examples below). Thus, the B value is usvally
used to mark the boundary between Code and Data Segments when no segment
information is included in the HEX file. Files produced by ASM-86 do not require
the use of the B value because segment information is included in the H86 file.

M DIGITAL RESEARCH®
4-7

4.2 GENCMD Castwrroui CP/M Proprasmmer’y Gulde

B The minimuim memory value (M valie) is incinded only when the HEX records do
not define the minimum memory requirements for the named group. Generully, the
code group size is datermined precisely by the data records Joaded into the arca. The
total space required for the group is defined by the mnge between the lowest end
highest data byte addresses. The data group, however, might contain uninitialized
storage at the end of the group. Thua no data records are present in the HEX flle that
define the highest referenced data item. The highest address in the data group can be
defined within the source program by including the ASMB6 directive DB 0 as the
last data item in the assembly language source file. Alternatively, the M value can
be included to allocate the additional space at the end of the group. Similarly, the
stack, extra, and auxiliary group sizes must be defined using the M value unless the
highest sddresses within the groups are implicitly defined by data records in the HEX
file.

®m The maximum memory size, given by the X velue, is generally used when additional
free memory might be needed for such purposes as [/O buffers or symbol tables. If
the data area size is fixed, then the X parameter need not be included. In this case,
the X value is assumed 1o be the same ag the M value. The value XFFFF allocates
the largest memory region available but, if used, the assembly language transient
program must be eware that a three-byie length field is produced in the Base Page for
this group where the high-order byte might be nonzero. Programs converted directly
from an 8080 environment or programs that use a 2-byte pointer to address buffers
should restrict this value to XFFF or less, producing a maximum allocation length of
OFFFOH bytes.

The fallowing GENCMD command line transforms the file X.H86 into the file X.CMD
with the proper header record:

A>GENCNMD x codefad)] data[a30,xfIT]

In this case, the code group is forced to paragraph address 40H or its equivalent, byte address
400H. The data group requires & minimum of 300H bytes, but can use up o OFFFCH bytes,
if aveilable.

Assuming a file Y.H86 exists on drive B containing Intel HEX records with no interspersed
segment information, the command

A>GENCMD b:y data{b30,m20] extra[b50] stack[md0] x1[md0}

E DIGITAL RESEARCH®
4-8

Conewrrent CP/M Programmesr’s Gukde 4.2 GENCMD

produces the file Y.CMD on drive B by selecting records beginning at address 0000H and
less than 0300H for the Code Segment, with records starting at 0300H and less than 0S00H
allocated to the Data Segment. The Extra Segment is filled from records beginning at 0500H
and higher, while the Stack and Auxiliary Segment #1 arc uninitialized areas requiring a
minimum of 0400H bytes each, In this example, the data area requires a minimum of 0200H
byies. Note again that the B value need not be included if the Digital Research ASM-86
assembler is used.

4.3 Intel Hexadecimal File Format

GENCMD input must be in Intel hexadecimal file format, produced by bath the Digital
Research ASM-86 assembler and the standard Inte] OHB6 utility program. (Refer to Intel
MCS-86 Sofrware Development Utilities Operaring Instructions for ISIS-II® Users, published
by Intel.) The CMD file produced by GENCMD contains a header record defining the memory
model and memory size requirements for loading and executing the CMD file.

An Intel hexadecimal file consists of the traditional sequence of ASCTI records where the
beginning of the record is marked by an ASCII colon, and each subsequent digit position
contains an ASCII hexadecimal digit in the range (-9 or A-F

There are four kinds of hexadecimal record formats. The Start Address Record
specifies the starting address of the execution file, The Extended Address Record specifies
the bits 4-19 of the Segment Base Address, where bits 0-3 of the SBA are zero, The Data
Record contains a string of hexadecimal ASClI code that represents a portion of the B086
memory image. The End-of-File record specifies the end of the abject file,

Figure 4-5 shows the four record formats, their ficlds, and the contents of these fields.
The fields are defined in Table 4-2,

EADIGITAL RESEARCH®
49

4,3 Intel Haxadecinmal Flie Formnt

Concwrrenst CP/M Prograsssec’s Guide

04 Q000 03 HHHH B
REC MARK REC LEN ZEROCES RECTYPE C-SEG CHECKSUM
STARTING ADDRESS RECORD
02 0000 02 HHHH B
RECMARK RECLEN ZERQES RECTYPE USBA CHECKSUM
EXTENDED ADDRESS RECORD
HH HHHH 00 DATA B
RECMARK RECLEN LDADDR RECTYPE CHECKSUM
DATA RECORD
0o 0000 o B
REC MARK RECLEN ZEROES8 RECTYPE CHECKSUM

END OF FILE RECORD

Figure 4-5. Intel Hexadecimal File Formats

410

8 DIGETAL RESEARCH?

Coacurrent CP/M Programmer’s Guide

4.3 Intel Hexadecimal File Format

Table 4-2. Intel Hex Field Definitions

Field

Contents

Rec Mark
Rec Len

22108

Ld Addr

Ret Type

C-Seg

USBA

data

¥ #* %

Specifies start of record
Record Length 00-FF (0-255 in decimal)

Extended Address Record: 0000H
Starting Address Record: 0000H
End-of-File Record: 0000H

Data Record: SBA offset defining address of byte 0 of data

00
01
02
03

[

Data Record

End-of-File Record
Extended Address Record
Starting Address Record

e

The following are cutput fram ASM-86 only:

81 same as 00, data belongs to Code Segment
82 same as 00, data belongs to Data Segment

83 satme as 00, date belongs to Stack Segment
84 same as 00, data belongs to Extra Segment
85 paragraph address for absolute Code Segment
86 paragraph address for absolute Data Segment
37 paragraph address for absolute Stack Segment
88 paragraph address for absolute Extra Segment

Four hexadecimal digits specifying the Code Segment address.
The high-order and low-order digits are the 10th and 13th char-
acters of the record, respectively.

Four hexadecimal digits specifying the Upper Segment Base
Address. The high-order and low-order digits are the 10th and
13th characters of the record, respectively.

Pairs of hexadecimal digits representing the ASCII code for each
data byte. The high-order digit is the first digit of each pair.

I} DIGITAL RESEARCH®

4-11

4,3 Intel Hesadechnal Flle Fornst Cowcurreat CP/M Programmer’s Reference Gulde

Tuble 4-2, {(continued)
Field Conzents

Checksum Extended Address Record: Checksum of Ree Len, zeros, Ree
Type, and USBA fields.

Starting Address Record: Checksum of Rec Len, zeros, Rec Type,
C-Seg, and IP fields.

Deta Record: Checksum of Rec Len, Ld Addr, Rec Type, and data
ficlds.

End-of-File Record: Containg ASCII code 4646H, checksum of
Rec Len, zeros, and Rec Type fields.

* 85, 86, 87, and 88 are Digital Rescarch Extensions.

All characters preceding the colon for each record are ignored. See MCS®-85 Absolute
Object Fiie Formats, published by Intel, for additional information on hexadecimal file record
format.

End of Section 4

W DIGTAL RESEARCH®

4-12

Section 5
Resident System Process Generation

5.1 Introduction to RSPs

Resident System Processes are programs that become part of the Concurrent CP/M. oper-
ating system. They can be useful in several ways; o create a tunkey system, autoloading
programs when Concurrent CP/M is booted; to build customized user interfaces or shells at
the consoles, for monitoring hardware not supported in the XIOS; and to avoid disk loading
time for frequently-used commands.

The source code for the ECHO RSP is included in Appendix D. Study this listing carefully
while reading this section. The discussion of the P_CREATE systern call in Section 6 is
also helpful in understanding RSPs,

Resident System Processes are included in Concurrent CP/M during system generation.
GENCCPM searches the directory for all files with the filetype RSP and prompts the user
to choose whether it is to be included in the genersted system file, CCPM.SYS. An RSP
file is created by generating a CMD file and renaming it with an RSP filetype. The GENCCPM
program is documented in the Concurrent CP/M System Guide.

5.2 RSP Memory Models

Under Concurrent CP/M, there are two basic memory models for RSPs. They are similar
to the 8080 Model and the Small Model of transient programs. However, several important
distinctions exist between the transient program and RSP memory models. The RSP has no
equivalent to the Base Page of the transient program’s Data Segment. The RSP is responsible
for its own Process Descriptor (PD) and User Data Area (UDA). The RSP must alsc allocate
an additional 96 bytes at the end of the User Data Area if 8087 processing is required. The
system creates and initializes these data structures for the transient programs automatically
at Joad dme. RSPs, on the other hand, must initialize these structures within their own Data
Segments (See P_CLI and P_CREATE system calls for PD and UDA descriptions).

Note that Concurrent CP/M does not support compact model RSPs. Exira and Stack
Segments must be part of the Data Segment.

#l DIGITAL RESEARCH®

3-1

5.2 RSP Memsory Mocels Cowerrresl CP/M Programsmery Guide

Although there iz no Base Page in an RSP, there i3 an RSP header that must exist at offset
00H of the Data Segment. In the 8080 Model, this implics that the RSP header is in the
Code Segment. The RSP header and the associated data structures are discussed in
Section 5.4.

5.2.1 8080 Model RSP

The 8080 Model consists of mixed code and data. When the system gives control of the
CPU to an 8080 Mode! RSP, it initializes the Code, Data, Extra and Stack Segment registers
to the same value. Use GENCMD with the 8080 option to generate en 8080 Model RSP.
GENCCPM assumes the 8080 Model if the CMD File Header Record of the RSP has a
single Code Group Descriptor and no other Group Descriptors (refer to Section 3.2). When
discussing an 8080 Model RSP, any reference to the Date Segment elso refers to the Code

Segment.
5.2.2 Smsli Model RSP

The Small Mode] RSP implies s2parate Code and Data Segments. Before the system gives
control of the CPU to a Small Model RSP, it initializes the Data, Extra and Stack Segment
Registers to the Data Segment address, while the Code Segment register is initialized to the
Code Segment address. There is no guarantee where GENCCFPM will place the Code Segment
in memory relative to the Data Segment. The CMD Header Record for this kind of RSP
must have both Data and Code Group Descriptors.

HIGH
MIXED DATA
CODE
AND
DATA DS —a | ASPHEADER
CODE
RSP HEADER
cs, 05 — CS. —= - LOW
8020 MODEL SMALL MODEL
Figure 5-1. 8080 and Small RSP Models
@ DIGITAL RESEARCH®

52

Coneurrent CP/M Programumer’s Guide 5.3 Multiple Copies of RSPs

5.3 Multiple Copies of RSPs

At system generation, GENCCFPM can make up to 255 extra copies of an RSP, such that
each copy generates a separate process running under Concurrent CP/M. GENCCPM accom-
plishes this by making multiple copies of the RSP, and initializing each to be a separate
RSP. The number of copies made by GENCCPM can be fixed, or dependent on a byte value
in the System Data Area. To determine the number of copies to make, GENCCPM looks
at two fields in the RSP Heeder. The format of the RSP Header is shown in Figure 5-2.

BYTE: 00H oz2H 04 OSH O10H

n Y
- - >

LINK SDATVAR NCP RESERVED

b L &

Figure 5-2. RSP Header Format

If the SDATVAR field is nonzero, it is used as an offset of a byte value in the System Data
Area, which contains the number of copies to be generated. The offset should indicate a
value that is set by the user during GENCCPM. The TMP RSP uses this feature by placing
the offset of the NVCNS (Number of Virtual Consoles) field into the SDATVAR field. This
way, 8 TMP is generated for each System Console specified by the user. If SDATVAR is 0
then the NCP byte in the RSP header is used as the number of extra copies to make. If both
of these fields in the RSP Header are 0 then no extra copies are made, and only & single
RSP is created. The ECHO RSP is an example of the latier.

If the number of extra copies is determined by GENCCPM to be greater than 0, each
copy of the RSP is given a unique copy number. The copy number is placed in the NCP
field and the ASCII equivalent is appended to the end of the Process Descriptor NAME field
of each capy. If there is not enough space for the number in the FD NAME, part of the PD
NAME is over written. For the example TMP RSP, GENCCPM makes the specified number
of copies and changes the NAME field ir each copy to be TMPQ, TMP!, TMFL...., and
sets the NCP field to 0, 1, 2,..., respectively.

5.3.1 8080 Model

When GENCCPM makes copies of an §080 Model RSP, the CS, DS, ES, and 88 fields
in each copy’s User Data Area are set to the paragraph address where the RSP is in memory
after loading.

W DIGITAL RESEARCH?

53

5.3 Migliiple Coples of RSPs Concurrent CP/M Programmer's Reference Guide

3.3.2 Smasll Model

If multiple copies of & Small Model RSP are to be generated, GENCCPM copies both
the Code and Data Groups of the RSP, if the MEM field of the Process Deseriptor is 0. See
the P_CREATE system call for a description of the Process Descriptor format. GENCCPM
sets the UDA fields CS to the Code Segment of the RSP and DS, ES and SS to the Data
Segment of the RSP.

X33 Small Model with Shared Code

If 2 Small Model RSP has a nonzero MEM field in its Process Descriptor, the Code
Segment is assumed to be reentrant. When copies are made of this type of RSP cnly the
Data Group is copied. GENCCPM sets the UDA CS field for each copy to the paragraph
address of the ope Code Segment for the RSP's. The DS, ES, and S8, in each copied Data
Segment, are set by GENCCPM to the paragreph address of the Data Segment for that
particular copy.

5.4 Creating and Initializing an RSP

An RSP that is to be invoked from & console, or tbrough the P_CLI system call, must
create & special queue called an RSP Command Quevs, Such an RSP is called a Command
RSP, This type of RSP usually performs some initialization routine and then goes into &
loop. The initialization Toutine consists of creating and opening an RSP Command Queus
as well as changing the pricrity to the default transient process priority. (Priority values with
regard to RSPs are discussed below.}

The first step of the loop reads a message from the RSP Command Queue. The process
thet writes the message to the RSP Command Quesue activates the sssociated RSP After the
RSP returns from the Q._READ system call, it obtains the system resources it nesds, such
a8 the calling procesa’ consale. Typically, the RSP process is essigned the console process
by the CLI after the CLI has succeeded in writing the command tail 1o the RSP Queune. This
is only true if the RSP Process Descriptor neme matches the RSP Command Queue name.
Refer to the P_CLI (Call Command Line Interpreter) system call description for information
gbout how the CLI handles & command.

H DIGITAL RESEARCH®

54

Concurrent CP/M Programmer’s Guide 5.4 Creating and Initializing an RSP

When the RSP completes its activities for the given command, it releases any system
resources it has scquired, including the console, and restarts the loop by reading from its
RSP Command Queue, A Command RSP is a single process and is 2 serially reusable
resource; in other words, the RSP acts on one message at a time. When several processes
atiempt to invoke a single Command RSP, they wait as described in the Q_READ and
Q_CREAD system call in Section 6. Refer to these and 1o the Q_WRITE and Q_CWRITE
system calls for further details.

Note: It is certainly possible to create RSPs that are invoked differently.

The format of the RSP Command Queue Message is shown in Figure 5-3.

Byte: 0COH OzH... 082H

PDADDRESS COMMARND TAIL (128 bytss)

Figure 5-3. RSP Command Quene Message

The PDADDRESS is the offset relative to the Systemn Data Area segment of the Process
Descriptor of the process calling the RSP, A program that wants to invoke an RSP and is
forming an RSP Command Queue Message, can find its Process Descriptor address by
calling the P_PDADR system call. The COMMAND TAIL usually contains what the TMP
sends to the CLE minus the command name. and is terminated with a zero byte.

When a command is entered at 2 console, the TMP performs a P_CLI system call. The
P_CLI system call attempts to open a queue that has the RSP Flag on and has the same
name as the command sent to the CLI. If the Q_QOPEN is successful, the P_CLI system
call attempts to assign the calling process’ console to a process with the same name as the
command. The P_CLI system call then creates an RSP Command Queue Message with the
command tail sent to the CLI from the TMP, and writes it to the RSP Command Queue
{refer to the discussion of the P_CLI and Q_WRITE system calls in Section 6). A transient
program can use a Command RSP in the same manner by writing directly to the appropriate
RSP Commend Queue. An advantage of using the P_CLI system call is that it looks for an
RSP first and only searches on disk for a CMD file if the the RSP is not found.

I8 DIGITAL RESEARCH®

335

3.4 Creating and Inftlalizing an RSP Concurrent CP/M Programmer's Guide

When an RSP reads an RSP Command Queue Message, it often needs information about
the calling process, such as which console, list device, drive, or user number to use. If an
RSP is invoked through the P_CLI system call, the RSP is assigned the calling process's
corsole, but if the RSP Command Queue is written to directly, the calling process might or
might oot assign its console to the RSP. A Command RSP can use the PD address in the
Command RSP Meesage to find out what the default devices of the calling process are. The
RSP shouid release any resources it assigns to itself when it is finished.

The beginning of the RSP Data Segment hes a fixed format starting at offset 0. This data
structure ia the RSP Header. Note that in the 8080 Model, the RSP Header is also in the
Code Segment. After the RSP Header i a Process Descriptor starting at offset 010H. A
User Data Area and a stack must alao be within the Data Segment, with the UDA placed
et & peragraph boundary relative to the beginning of the Data Scgment, If system calls
assuming a default DMA buffer are used, a 128-bytle DMA Buffer must also exist, The
DMA OFFSET field in the User Data Area should be set to the address of the DMA buffer.
When the process is created by Concurrent CP/M, the DMA SEGMENT field is initialized
to the same value as the DS register. The DMA SEGMENT and OFFSET can alzo be set
by calling F_DMASEG and F_DMAOFF once the RSP is running. The beginning of the
RSP Data Segment is shown in Figure 5-4.

WDIGITAL RESEARCH®
5-6

Concurrent CP/M Programmer's Guide 8.4 Creating and Initializing an RSP

PROGRAM
DATA
AND
RSP
STACK

01A0H

Optlonal 8087
UDA extension

0140H

USER
DATA
AREA

D040H

PROCESS DESCRIPTOR

0G10H
os RSP HEADER 0000 H

Figure 5-4, RSP Data Segment

The RSP Header must be [ocated at offset zero in the RSP Data Segment, the RSP Process
Descriptor must be at offset 010H, and the RSP User Data Area must begin on an even

paragraph boundary.

5.4.1 The RSP Header

As discissed in Section 5.2, the number of copies made of an RSP is dependent on the
values of the SDATVAR and NCP fields in the RSP Header. If no copies are desired, these
fields must be zero. As a convenience, when Concurrent CP/M creates the RSP process,
the LINK field in the RSP Header is set to the paragraph address of the System Data Area.
The System Data Area can always be obtaired by an RSP or transient program with the
S_SYSDAT system call.

B DIGITAL RESEARCH®
57

5.4 Creaiing and Inlilalizing an RSP Conemrent CP/M Programmer's Gukie

54.2 The RSP Process Descriptor

The RSP Process Descripior should be initinled to zeros, except for the PRIORITY,
FLAGS, NAME, and UDA SEGMENT flelds. The PRIORITY field is usually initialized
0 190. This i higher than transient programs and TMPs (200 and 198 respectively), but
lower than the INIT process, which has a priority of 1. The description of the P_PRIORITY
system call in Section 6 containg more information about system priority assignments.

Starting an RSP at a priority of 190 ensures that the RSP is able to create and open &n
RSP Command Queue before it can be invoked through 8 TMP. RSPs such as ECHO usually
set their priority to 200 after creating and opening their RSP Commend Quews and before
atiempting to read from the quaue.

Note: There are no guarantees gbout the order in which the RSP processes are created by
the Concurrent CP/M operating system. If one RSP muat run before another, it must have
8 higher priority. Such is the case when one RSP uses & resource creaied by B second RSP;
the second muat run (at leait during initialization)} with a priority higher than the first.

The Process Descriptor SYS and KEEP Flags can be initialized in the RSP Data Segment
(refer to P_CREATE in Section 6 for further flag details). The SYS Flag allows a process
to read and write to and from restricted system quenes, This is discussed below with regard
to RSP Command Queucs. The KEEP flag signals to the operating system that this process
cannot be terminated. ‘This flag is necessary if an RSP is not to be terminated when a CTRL-C
is typed on & console being used by the RSP. ‘The 8087 flag tells the system that a process
is actively using the 8087 processor.

The NAME field of the RSP’s Process Descriptor is 8 bytes long. It is assumed to be left-
Jjustified and padded with blanks on the right. If an RSP Command Queus iz going to be
used to invoke the RSP through the CLI, the PD rmust have the same uppercase name as
the Command Queue. The UDA field in the Process Descriptor must be the offset in para-
graphs of the UDA relative to the RSP data segment. GENCCPM restores the UDA field
in the Process Descripior to the actual UDA paragraph address when the system is generated.

If the PD field name ig not the same as the Command Queue, the console is not assigned
to the RSP by the CLI.

EDXGITAL RESEARCHS

Concurrent CP/M Programmer's Guide £.4 Crenting and Inhtializing an RSP

5.4.3 The RSP User Data Area

The User Data Area must have ita SP field set to the offset of a three-word IRET structure,
in the RSP Data Segment. The offset is relative to the beginning of the Data Segment.
The first of the three words is tha offset of the code entry point for the RSP, relative to the
beginning of the RSP Code Segment. Concurrent CP/M executes an IRET instruetion to
start the RSP using these three words for the IP, CS and Flag registers respectively. The C§
value an the stack is initialized to be the CS field of the UDA, while the Flag value is set
to 0200H (interrupts on). The RSP stack must come immediately before these three words.

The initial values of the AX, BX, CX, DX, DI, §1, and BP registers are taken from the
appropriate fields in the UDA.

The DMA OFRSET field should be set to the offset of the DMA buffer in the RSP’s Data
Segment. Except for the SP and DMA OFESET fields, and possibly the AX, BX, CX, DX,
DI, SI, and BP fields, the remainder of the UDA fields should be initialized to 0. The CS,
DS, ES, and SS fields are set by GENCCPM as discussed in Section 5.3.

[t you include the 8087 extension in the UDA, you must initialize the CW field (Control
Word) o 03FFH and the SW (Status Word) field to O before system generation.

54.4 The RSP Stack

The RSP must reserve spece for its stack, which is assimed to lie within the RSP’s Data
Segment. This stack must be large enough to accommodate what the RSP code needs, plus
four levels (eight bytes) to handle possible hardware interrupts. We highly recommend that
you reserve more than four extra levels of stack.

The SP field in the RSP’s UDA points to the top of this stack; the top contains the three-
word IRET instruction discussed above.

5.4.5 The RSP Command Queue

The RSP Command Queue contains information that determines when it begins
execution, and to which console it isattached. If an RSP is to be accessible froma console
via the TMP, the Command Queue name must be in uppercase. The FLAGS field in the
RSP Command Queue Descriptor must have the RSP bit on. If this flag is not on, the CL]
will nat write a message to the RSP Command Queue, and instead attempts to load a
transient program. The KEEP flag should be set on to protect the RSP QUEUE from
inadvertent use of the Q_DELETE system call.

B DIGITAL RESEARCH®

59

5.4 Creating and Inffialixing as RSP Coneurremt CP/M Programmar's Gulda

The RESTRICTED figg (refer o the Q_MAKE eysiem call in Section 6} makes 8 queue
accessible only by privileged processes. Privikeged processes have the SYS Flag on in their
Proceas Descriptor, IF the RESTRICTED Flag is on in an RSP Command Queue, then only
privileged processes can invoke the related RSP A lowercase letter in the RSP Command
Quete name and the RESTRICTED Flag provide rwo methods of filiering access to an RSP
QUEUE.

The Queus Descriptor of the RSP Command Queue rmst have » messege length of 131
bytes. The format of this messags is shown sbove. The number of messages iz usually 1.
If the Queue Descriptor is within 64K bytes of the bepinning of the System Dala Arza,
buffer space for the Queue Descriptor must be allocated in the RSP, The BUFFER field in
the Queue Descriptor must be the offset of this buffer, relative o the beginning of the RSP's
Dats. Segment. The buffer vizs is the messege length fimes the number of messages, usually

131 bytes.

Note: The queue buffer should be before the Queus Descriptor within the RSP Deta
Segment.

An RSP can certainly create other quenes besides the RSP Command Quense used with
Commeand RSPs. However, any queue an RSP creates that lies within 64K of the System
Data Area must have a buffer aree pointed to by the BUFFER fleld in its Queue Descriptor.
To be safe, the buffer shoukd come before the Queus Descriptor in the RSP's Data Ssgrment.
It is assumed the BUFFER field points to e buffer that is also within 64K of the System
Data Area. If the Queue Descriptor is farther than 64K from the System Data Area, Con-
current CP/M uses buffer space in the System Data Area. Refer to the Q_MAKE system
call in Section 6 for further details.

In order to open the RSP Command Queue and subsequently read from i, & Queus
Parameter Block and I8 associatsd buffer must be allocated in the RSPs Data Segment.
These structures are treated just a8 in a trensient process. For any quenes created by an RSP,
it is streased that the queue buffer areas associated with the Quene Descripior and the Queus
Parameter Block are separate, distinet arsas of storage.

5.4.6 Multiple Procemes withia an RSP

An RSP can create child processes by calling the P_CREATE system call. Note that if
the Process Descriplor of the process being created is within 64K bytes of the beginning of
the System Data Area, the PD struciure is used directly by Concurrent CP/M. Otherwise
the PD structure is copied inlo the PD table in the System Date Arce.

@DIGITAL RESEARCHS
510

Concurrent CP/M Programmer's Guide 5.5 Develuping and Debugging an RSP

5.5 Developing and Debugging an RSP

The first RSP you attempt should be very simple, on the order of complexity of the ECHO
RSP listed in Appendix D. New R5Ps should be developed and debugged as if they were
transient processes, such as Concurrent CP/M CMD utilities, then converted into RSPs.

An RSP debugging seasion should proceed like an XIOS dsbugging session: first load
CP/M-86, then invoke DDT-86", and then bring up Concurrent CP/M. The Concurrent
CP/M System Guide provides more information about running Concurrent CP/M under
CP/M-86.

After reading in the CCPM.SYS file under DDT-86, find the RSPSEG field of the System
Data Segment (SYSDAT). The paregraph address of the SYSDAT is found in the A _BASE
field of the Data Group Descriptor in the CCPM.SYS command file header. The CMD header
is described in Section 3.2 and the SYSDAT arfa is described in the S_SYSDAT system
call in Section 6. The RSPSEG field contains the paragraph address of the Data Segment
of the first RSP in a linked list of the RSPs included by GENCCPM.

By using the Display Memory (D) command of DDT-86 to show memory at the segment
RSPSEG, the name of the first RSP can be identified in the RSP's Process Descriptor. The
LINK fteld in the RSP Header, which will be the first word in the RSPSEG segment, is the
paragraph velue of the next RSP's Data Segment. A zero in the LINK field means the end
of the list of RSPs. Note that linkage information is lost once Concurrent CP/M is initialized.
The LINK field of the RSP Header contains the System Data Segment once an RSP begins
execution. ’

Once the RSP to be debugged is located, the initial code entry point can also be found.
As discussed previously, the SP field in the RSP's UDA is the offset from the beginning of
the RSP's Data Segment of the three-word IRET structure. The fist word of the IRET
structure contains the initial value of the [P register when Concurrent CP/M creates the RSP
process. The initial value of the C8 register i3 in the CS field also in the RSP's UDA. Once
this is done, you can set break points in the RSP, similar to setting break points in XIOS
system calls.

End of Section §

B DIGITAL RESEARCH®

Section 6
System Calls

This section desctibes the Concurrent CP/M sysiem calls in tabular form., It is intended
both as an introduction to the calls and as a referance for uss during programming. You
sheuld be familiar with the material in Sectiona 1 through 5 before proceeding.

The first table, Table 6-1, describes the categories of Concurrent CP/M system calls and
their general uses. Table 62 summarizes the Concurrent CP/M system calla. Use it as a
quick reference to find the system call you need while programming. The aystem cails are
broken down into functional groups. Immediately following is Table 6-3, a cross-reference
showing the system calls in mumerical order. Table 6-4 is an index providing the page numbers
and figure titles of commonly used data structures. Thble 6-5 lists the error codes returned
in register CX.

B DIGITAL RESEARCH®

&1

6 System Calls Concrrrent CP/M Programmer's Guide

Thble 6-1. System Call Categories

Category Use
C.. Console System Calls

The Console Systern Calls handle 10 operations for virtual consoles
on a charscier, string, and line basis, attach and dstach consoles from
processes, and return or change the number corresponding o the
default virtual console.

DEV_ Device Systern Calle

The Device System Calls deel with flage and polling in managing
syetermn resources,

DRV.. Disk Drive Sysiem Calls

The Digk Drive System Calls manage Concurrent CP/M logical drives.

F_ File-Access System Calls

The File-Access Syatemn Calls inchada calls that opersic on files within
a directory, calls that operate on records within files, and miscells-
neous system cells related to file T'Q.

L_ List Device System Calls

The List Device System Calls write characters or atrings to the defeult
list device, attach and detach the defeult list device from calling

processes, and return or change the number corresponding to the
defanit list device.

M_ MP/M-36% Memory Management System Calls

The M_ Memory Management System Calls are included for com-
patibility with MP/M-86. Thesz calls allocate and free memory seg-
ments eccording to the MP/M-86 segmentation algorithm.

HDEGITAL RESEARCH®
6-2

Concurrent CP/M Programmer’s Guide & System Calls

Table 6~1. (continued)

Category Use

MC_ CP/M-86 Memory Management System Calls

The MC_ Memory Management System Calls allocate and free
memory segments according to the CP/M-86 segmentation algorithm.

P_ Process/Programn System Calls

The Process/Program System Calls create and terminate processes,
call other processes, and perform other operations on processes.

Q_ Queue Management System Calls

The Queue Management System Calls create, delgte, open, read
from, and write to queues,

S_ System Calls

The System Calls return various types of systems data, such as ver-
sion numbers and addresses.

T.. Time System Calls

The Time System Calls set the system calendar and clock and return
the time from them in hours and minutes or in hours, minutes, and
seconds.

B DIGITAL RESEARCH®

System Calle Concurrent CF/M Proprammer's Guids

Thable &2, Concorrent CP/M Sysiem Calls

Number ;
Dec Hex Mnemonic Definition
Console 'O Systemn Calls

149 95 C_ASSIGN Assign default virual conscle o another
process.

146 92 C_ATTACH Establish ownership of the defanlt vir-
tual console to the calling process; sus-
pend process until console becomes
availabie.

162 A2 C_CATTACH Conditionally establish ownership of the
default virtual console by the calling
process; return an error message if the
device is unavailable.

110 6E C_DELIMIT Set or return current String Output
Delimiter. Used with C_WRITESTR.

147 53 C_DETACH Detach default virtual console from the
calling process.

153 99 C_GET Return the virtual console number of
the calling process.

19 6D C_MODE Set or return Console mode.

6 06 C_RAWIO Perform Raw mode L/Q with the defanlt
virtual console.

1 01 C_READ Read a character from the default vir-
tual console.

10 0A C_READSTR Read an edited line from the default
virtual conscle.

MDKATAL RESEARCH®

Concurrent CP/M Programmer’s Gulde

6 System Calls

Table 6-2. (continuad)

Number . .

Dec Hex Mnemonic Definition

148 04 C_SET Set or change the default virtual con-
sole for the calling process.

1L 0B C_STAT Obtain the input status of the default
virtual console.

2 02 C_WRITE White a character to the defanlt virtual
conscle.

LLl 6F C_WRITEBLK Write a specified number (block) of
characters to the default virtual console.

9 (1,] C_WRITESTR While a string to the default virtual con-
sole until delimiter.

Device System Calls

133 85 DEV_SETFLAG Set a system flag.

132 34 DEV_WAITFLAG ‘Wait for a system flag to be set before
restoring the current process.

131 &3 DEV_POLL Poll a noninterrupt-driven device.

Disk Drive System Calls

8 26 DRV_ACCESS Indicate access to specified drives.

27 1B DRV_ALLOCVEC Get the address of the disk Allocation
Vector.

13 oD DRY_ALLRESET Reset all disk drives.

31 IF DRV_DPB Return the segment and offset address
of the Disk Parameter Block for the
default disk of the calling process,

B DIGITAL RESEARCH®

6-5

§ Syatem Calis

Concwrrent CP/M Programmer’s Guids

Table 62. {conthmued)

Diumb;:x Manemonic Definition

4 3 DRV_FLUSH Write ioternal pending blocking/
deblocking data huffers to disk.

v 27 DRV_FRER Relinquish access to specified drives.

25 19 DRV_GET Retfurn the defeult drive of the calling
PIOCSSE,

101 65 DEV_GETLABEL Return the directory label data byte for
the specified drive,

4 18 DRY_LOGINVEC Return bit mep of logged-in disk drives,

37 25 DRV_RESET Reset the specified drives.

22 1D DRV_ROVEC Retura bit map vector of drives set to
Read-Only.

14 O DRV_SET Set default drive of calling process.

00 64 DRV_SETLABEL Cresate or updste a directory label.

2 IC DRV_SETRO Set the default drive to Read-Only.

46 2E DRV_SFACE Return unallocated space on the spec-
ifled drive.

Disk File System Calls

0 IE F_ATTRIB Set file attributes.

16 10 F_CLOSE Close file.

9 13 F_DELETE Delete file.

W DIGITAL RESEARCH®

Concurrent CP/M Programmer's Guide

& System Calbs

Table 6-2. (continued)

Dz-mb:]:x Mremonic Definition

52 34 F_DMAGET Return segment and offset address of
Direct Memory Address buffer.

2 1A F_DMAOFF Set the Direct Memory Address offsst
address.

51 33 F_DMASEG Set Direct Memory Address buffer seg-
ment address.

45 2D F_ERRMODE Set the BDOS Error mode.

2 24 F_LOCK Lock record within file opened in
Unlocked mode.

2 16 F_MAKE Create file.

4 2C F_MULTISEC Set the BDOS Multisector Count.

15 (F F_OPEN Open file for record access.

152 98 F_PARSE Parse an ASCII string and initialize an
FCB.

106 6A F_PASSWD Set the default password.

36 24 F_RANDREC Set the Random Record field in the FCB
from the sequential record position.

20 14 F_READ Read record sequentially.

33 21 F_READRAND Read random record.

23 17 F_RENAME Rename file.

17 H F_SFIRST Search for first matching directory FCB
that matches the specified FCB.

M DIGITAL RESEARCH®

6-7

§ System Calls

Concurrent CP/M Progranmimer’s Gulde

Thble 6-2. ({continued)

Number , .

Dec Hex Mnemonic Defirition

a3 23 F_SIZE Return the size of g file.

ig 12 F_SNEXT Search for next maiching directory FCB
that matches the FCB specified in the
F_SFIRST system call.

102 66 F_TIMEDATE Return fille's date and time stamps and
password mode.

99 63 F_TRUNCATE Truncate file to the specified Rendom
Record Number.

43 2B F_UNLOCK Remove record locks.

a2z 2 F_USERNUM Set or return the defeult user mumber of
the calling process.

21 15 F_WRITE ‘Write recards sequentially.

¥4 22 F_WRITERAND ‘Write random records.

103 67 F_WRITEXFCB Create or update file's XFCB.

40 28 F_WRITEZF ‘Write random records and zero-fill any
previously mellocated data blocks.

List Device Systern Calls

158 9E L__ATTACH Eeteblish ownership of the defeult list
device by the calling process; swipend
the process until the device is availsble.

161 Al L.CATTACH Conditionally estahlish ownership aof the
defaul list device by the calling process;
return error code H the deviee is
unavailabls.

68

0 DIGITAL RESEARCH®

Concurrent CP/M Programmer's Gulde § System Calls

Table 6-2. (continued)

Number . .

Dec Hex Mnemonic Definition

159 9F L_DFTACH Relinquish ownership of the default list
device.

164 A4 L_GET Return the default list device number
of the calling process.

160 A0 L_SET Change the default list device for the
calling process.

5 05 L_WRITE Write a chavacter to the defaunlt list
device.

112 70 L_WRITEBLK Write the specified number of cherac-
ters (block) to the default list device.

MP/M Compatible Memory Allocation System Calls

128 80 M_ALLOC Allocate the memory segment be-
tween the sizes specified in the Mem-

129 81 same as 128 ory Parameter Block to the calling
process,

130 82 M_FREE Free the specified memory segment.

CP/M Compatible Memory Allocation System Calls

54 36 MC_ABS Allocate the maxinum amount of RAM
available at a specified address.

58 3A MC_ALLFREE Free all memory owned by the calling
process.

55 37 MC_ALLOC Allocate a segment of RAM, as spec-
ified in the Memory Control Block, to
the calling process,

@ PIGITAL RESEARCH®
6-9

Systesn Calls

Table 6-2.

Concurrent CP/M Progranuser's Guide

(continued)

Dec

Number
Hex

Mnremonic

Definition

%

57

53

157

47

150

144

i41

142

549

38

39

35

9D

8D

8E

3B

MC_ALLOCAES

MC_FREE

MC_MAX

Process/Program System Calls

P_ABORT

P_CHAIN

P_CU

P_CREATE

P_DELAY

P_DISPATCH

P_LOAD

Allocate a specified amount of RAM,
as abave, bnt beginning at & specific
address.

Free an area of RAM beginning et a
specified address, and extending to the
end of the previonsly-allocated mem-
ory erea.

Allocats the maximum amount of RAM
available in the system.

Terminate 2 process specified by name
of Procesa Descriptor address.

Load, initielize, and jump to the pro-
gram specified in the DMA buffer.

Interpret and exscute the specified
command [ine by calling Cormmand Line
Interpreter (CLI).

Create & subprocess.

Suspend the cealling process for a spec-
ified mumber of gystem clock ticks.

Force a dispatch operution; give up the
CPU resource to the highest priority
process ready to run.

Losd the specified CMD file in mem-

ory; relurn its base page segment
address.

&-10

8 DIGITAL RESEARCH®

Concurrent CP/M Programmer’s Gulde & System Calls

Table 6-2. (continued)

Number , .

Dec Hex Mnemonic Definition

156 9C P_PDADR Return the address of the Process
Descriptor of the calling process.

145 9 P_PRIORITY Set the priority of the calling process.

151 97 P_RPL Invoke a system call from a Resident
Procedure Library.

143 8F P_TERM Terminate the calling process.

0 00 P_TERMCFM Terminate calling process uncondition-
ally, release all owned resources.

Queue System Calls

138 8a Q_CREAD Conditionally read a message from a
system queue; return error code if a
message is not avajlable.

140 8C Q_CWRITE Conditionally write 2 message to a sys-
fern queue; return an error code if space
is not available.

136 88 Q_DELETE Delete a system queue.

134 86 Q_MAKE Creale a system queue.

135 87 Q_OPEN Open a system quene for subsequent
queue operations.

137 89 Q_READ Read a message from a system queue;
suspend calling process until message
is available.

B DIGITAL RESEARCH®

6-11

§ Systemt Calls

Concurrent CP/M Programmer’s Gukde

Thble 6-3. (continued)

Number ..

Dec Hex Mnemonic Definition

13 8B Q-WRITE Write a message 10 a syslam queus; sus-
pend calling process until spece becomes
gveilable,

Sysiem System Calls

12 S_BDOSVER Return BDOS version number, CPU and
operating system type.

£ 3 S..BIOS Call specified CP/M-86 BIOS cherse- |
ter /O routine,

163 A3 5_OSVER Return type and version number of
Concurrent CP/M.

107 6B S_SERIAL Return the Concurrent CP/M system
serin] number.

154 %A S_SYSDAT Return address of the Sysicm Daia Seg-
ment {Sysdat}

Time System Cells

105 &9 T_GET Obtain the system calendar and clock,
hours and minutes anly.

155 9B T_SECONDS Return current system date and time;
hours, minutes, seconds.

104 68 T_SET Set internal systemn calender and clock
fo specified valne.

612

W DHGITAL RESEARCH®

Concurrent CP/M Programmer’s Guide 6.1 Systern CaH Summary

6.1 System Call Summary

Thble 6-3 lists the Concurrent CP/M system calls in summary form, including the param-
cters A process must pass when calling the system call, and the values the system returns
to the process.

Appendix A lists the Concurrent CP/M system calls by function rumber, and includes all
the informaticn in Thble 6-3,

Table 6-3. System Call Summary
Mnemonic Dec Hex p Inpu:”s Returned Values

C_ASSIGN 149 95 DX = ,ACB AX = Rin Code
C_ATTACH 146 92 none none
C_CATTACH 162 A2 none AX = Rtn Code
C_DELIMIT 110 6E DX = Out Delim AL = Out Delim
C_DETACH 147 93 none none
C_GET 153 99 none AL = con #
C_MODE 109 6D DX = ConMode none

= OFFFFH AX = Con Mode
C_SET 148 o4 DL = Console none
C_RAWIO 6 6 see def see def
C_READ 1 1 none AL = char
C_READSTR 10 A DX = .Buffer see def
C_STAT 11 B none AL = 00/01
C_WRITE 2 2 DL = char none
C_WRITEBLK 111 6F DX =.CHCB none
C_WRITESTR 9 9 DX = .Buffer none
DEV_POLL 131 83 DL = Device none
DEV_SETFLAG 133 85 DL = Flag AX = Rtn Code
DEV_WAITFLAG 132 84 DL = Flag AX = Rt Code
DRV_ACCESS 38 26 DX = drive Vect none
DRV_ALLOCVEC 27 1B none AX = .Alloc
DRV_ALLRESET 13 D none see def
DRV_DPB 3 IF none AX = .DPB
DRV_FLUSH 48 30 none see def

DIGITAL RESEARCH®

§.1 System Cpll Summary

Comcurrent CP/M Proprmomer’s Guide

Table &3. (continued)

Mnemonic Dec Hex Input Returned Values
Parameters
DRY_FREE 39 27 DX = drive Vect none
DRV_GET 25 19 none AL = Cur Drive #
DRVY._GETLABEL 101 &5 DX = Drive # Al = Label Data Byte
DRVY_LOGINVEC 24 18 none AX = login Vect.
DRY_RESET 37 25 DX = drive Vect AL = Brr Code
DRV_ROVEC 29 iD none AX = R/O Vect.
DRVY_SET 14 E DL = Drive # see def
DRV_SETLABEL 100 64 DX = .FCB Al = Dir Code
DRV_SETRO 28 1C none see def
F_ATTRIB 30 1E DX = .FCB see def
F_CLOSE 16 10 DX = .FCB Al = Dir Code
F_DELETE 19 13 DX = .FCB Al = Dir Code
F_DMAGET 52 34 none AX = DMA Offset
F_DMAOFF 26 1A DX =.DMA none
F_DMASEG 51 KX] DX = .DMA Seg none
F_ERRMODE 45 2D DL = Eoxr Mode none
F_LOCK 42 2A DX = _FRKB AL = Er Code
F_MAKE 22 16 DX = KCB Al = Dir Code
F_MULTISEC 44 2C DL= # of Records AL = Rtn Code
F_OPEN 15 E DX = .FCB AL = Dir Code
F_PARSE 152 08 DX = .PFCB see def
F_PASSWD 106 6A DX = .Password none
FE_RANDREC 36 24 DX= FB RO,R1,R2
F_READ 20 14 DX = FCB Al = Err Code
F_READRAND 33 21 DX = FCB AL = Err Code
F_RENAME 23 17 DX = FCB AL = Dir Code
F_SFIRST 17 11 DX = FCB AL = Dir Code
F_SIZE 35 23 DX = .FCB RO, R1,R2
AL = Dir Code
F_SNEXT 18 12 none AL = Dir Code
F_TIMEDATE 102 66 DX = .XFCB AL = Dir Code
F_TRUNCATE 99 63 DX = .FCB see def
F_UNLOCK 43 2B DX = FCB AL = Brr Code
F_USERNUM 32 20 DL = QFFH (getf) AL = User #
= Liser # (set) none

B DIGITAL RESEARCH®

6-14

Concurrent CP/M Programmer’s Guide

Table 6-3, (continued)

6.1 System Call Sumsry

Mnemonic Dec Hex Pa:{:gz ';:"s Returned Values
F_WRITE 21 15 DX = .FCB AL = Err Code
F_WRITERAND 4 22 DX=.FCB AL = Err Code
F_WRITEXFCB 103 67 DX = XFCB AL = Dir Code
F_WRITEZF 40 28 DX =.FCB AL = Er Code
L_ATTACH 158 9E none none
L_CATTACH 161 Al none AX = Rtn Code
1._DETACH 159 9F nome none
1_GET 164 A4 none AL = list #
L_SET 160 A0 DL = List # none
i._WRITE 5 5 DL = char nons
L_WRITEBLK 112 70 DX = .CHCB none
M_ALLOC 128 80
M_ALLOC 12¢ 81 DX = .MPB AX = Rtn Code
M_FREE 130 82 DX = .MPB none
MC_ABSALLOC 56 38 DX = .MCB see def
MC_ABSMAX 54 36 DX= . MCB see def
MC_ALLFREE 58 3A none none
MC_ALLOC 55 37 DX = .MCB see def
MC_FREE 57 39 DX =.MCB see def
MC_MAX 53 35 DX = .MCB see def
P_ABORT 157 oD DX = .ABP AX = Rin Code
P_CHAIN 47 2F see def none
P_CLI 150 96 DX = .CLBUF none
P_CREATE 144 50 DX = PD none
P_DELAY 141 8D DX = #ticks none
P_DISPATCH 142 BE none none
P_LOAD 59 3B DX = .FCB AX = BP Addr
P_PDADR IS5 9C none AX = PD Addr
P_PRIORITY 145 91 DL = Priority nong
P_RPL 151 97 DX = .CPB AX = result
P_TERM 143 8F DL = Term.Code AX = Rtn Code
P_TERMCPM (] Q none AX = Rtn Code

¥ DIGITAL RESEARCH?

6-15

6.1 Sysiam Call Bevassary Cascwrrent CP/M Programsmer’s Gulde

Table §3. (continued)

Mnemonic Dec Hex Input Returned Values
Parameters

Q_CREAD 133 8A DX =.QFB AX = Rtn Code
Q_CWRITE 140 3C DX =.QFB AX = Rtn Code
Q-DELETE 13 8 DX = .QFB AX = Rtn Code
Q-MAKE 134 8 DX=.QD none
Q_OPEN 133 87 DX =_.QPB AX = Rin Code
Q_READ 137 8 DX = .QPB none
Q-WRITE 139 BB DX = .QFB none
S_EBDOSVER 12 C none AX = Version#
S_BIOS 5 32 DX=.BD AX = BIDS rtn
S_OSVER 163 A3 none AX = Version #
S_SERIAL 107 68 DX = .serialnmb sariginmb aet
S_SYSDAT 154 9A none AX = Sys Data Addr
T_GQET 105 69 DX = .TOD AL = seconds
T_SECONDS 155 98 DX =.TOD TOD filled in
T_SET 104 68 DX =.TOD none

Note: System calis 3, 4, 7, and 8 are not supported by Concurrent CP/M.

B DIGITAL RESEARCH®

&6

Concerrent CP/M Programmery Guide

Conventions used in Teble 6-3:

. = Address of

= Number

ACB = Assign Control Block
APB = Abort Parametar Block
Addr = Address

BD = Bios Descriptor

BP = Base Page

Char = ASCII Charucter
CHCB = Chamcter Control Block
CLBUF = Command Line Buffer
CPB = Call Pemmeter Block
Con = Console

Cur = Current

Delim = Delimiter

Dir = Directory

DMA = Direct Memory Address
Err = Error

FCB = File Control Block

MCRB

Num
QOut
D
PFCB
QD
QPB

Rm
Sys

VYect

L/ | V' T I A

6.1 System Call Summary

Mermmary Control Block
Memory Pardmeter Block
Number

Output

Process Descriptor

Parse Rlename Contro! Block
Queue Descriptor

Queus Parameter Block
Record

Rewrn

System

Termination

Time of Day

Vector

Uppercase mnemonics refer to Data Structures; see the function definition. A . before 2
Data Structure means the byie offset of the Data Structure. A Return Code is either O for
success or OFFFFH to indicate failure, When the Return Code in AX is OFFFFH, CX is the
Error Code (see Table 6-5). An error code returned in AL is specific to the BDOS system

call that was made.

DEGITAL RESEARCH®

6-17

6.1 Systam Call Bmssary Camcmrront CP/M Prograntners Gaide

Table 64. Dais Stroctures Index

Figure Tiis Fage
2-1 FCB - File Control Block 2-10
22 Directory Label Format 2-18
23 XFCB - Extended File Control Block 2-20
24 Directory Record with SFCB 2-24
2-5 SFCB Subfields 2-24
2-6 Disk System React 241
31 CMD File Header Format 33
32 Group Descriptor Format 33
33 Concurrent CP/M Baze Page Values 6
4-1 Initial Program Stack 42
42 Concurrent CF/M 8080 Memory Model 4-3
4-3 Concurrent CP/M Small Memory Model 44
4-4 Concurrent CP/M Compact Memary Model 4-5
4.5 Inte] Hexadecimal File Formats 4-10
5-1 3080 and Small RSP Models 52
5.2 RSP Header Format 53
53 RSP Command Quene Message 55
54 RSP Data Begment 57
6-1 ACB - Assign Control Block 6-21
62 Console Buffer Format 633
63 Drive, R/O, or Login Vector Structure &44
64 DPB - Disk Parameter Block 6-43
65 Disk Fres Space Field Format 6-63
6-6 PFECB - Parse Filename Control Block 686
6-7 MCB - Memory Control Block 6128
68 MPB - Memory Parameter Block 6-129
69 MFPB - M_FREE Parameter Block 6-132
6-10 APB - Abort Parameter Block 6-139

W DIGITAL RESEARCH®
6-18

Concarrent CP/M Programmer's Guide

Table §-4. (continued)

6.1 System Call Summary

Figure Tiile Page
611 CLI Command Line Buffer 6-142
612 PD - Process Descriptor 6-146
613 UDA - User Data Area 6-151
6-14 CPB - Call Parameter Block 6-159
6-15 QPB - Queue Parameter Block 6-163
6-16 QD - Queue Descriptor 6-168
6-17 BDOS Version Number Format 6-174
6-18 BIOS Descriptor Format 6175
6-19 Operating Systems Version Number Format 6176
6-20 SERIAL Number Format 6177
6-21 SYSDAT Table 6-179
622 TOD Time-of-Day Structure 6-185

B DIGITAL RESEARCH®

Table 6-5. CX Error Code Reports

Dec Hex Error Report

00H No error

01H System call not implemented
02H Illegal system call number
03H Cannot find memory

04H Yllegal flag number

0SH Flag overrun

06H Flag underrun

07H No unuzed Queue Descriptors
0O8H No free queve buffer

09H Cannot find queue

10 DAH Queue m use

12 OCH No free process descriptors
i3 0DH No queue access

14 OEH Empty queve

15 OFH Full queue

16 10H CLI queue missing

17 11H No 8087 in system

18 12H No unused Memory Descriptors
1¢ 13H Illegal console number

WO~ AWND—~O

6-19

6.1 Systems Call Sy Cascarvout CP/M Prograsuuser’y Gulde

Table &5. (continued)

Dee Hex Error Report
20 14H Nao Process Descriptor match
21 15H No console maich

22 16H Na CLI process

23 17H Iliegal disk mimber

24 18H Iliegal filename

25 19H Illegal filstype

26 1AH Character not ready

27 1BH Illegel memory descriptor

28 1CH Bad return from BDOS load
29 1DH Bed return from BDOS rend
30 1EH Bad return from BDOS open
31 1FH Null command

32 Z20H Not owner of resource

33 21H No CSEG in load file

34 22H Process Descriptor exists on Thread Root
35 23H Could not terminate process
36 24H Cannot attach to process

37 25H Illegel list device number

38 26H Ilegal password

40 28H External termination occurred
41 29H Fixup error upon load

42 2AH Flag set ignored.

6.2 Concurrent CP/M System Calls
‘This section presenis detailed information on the Concurrent CP/M system calls. Read the

enfire section through before attempting to use the system calls in e progrem, as many of --
them interact with one another.

B DIGITAL RESEARCH®

6-20

Cancurrent CP/M Pragrammer’s Guide

§.2.1 Console /O System Calls

C_ASSIGN

C_ASSIGN
Assign Default Console Device
To Another Process
Entry Parameters:
Register CL: 095H (149}
DX: ACB Address - Offset
DS: ACB Address - Segment
Returned Values:
Register AX: 0if assign "OK”
OFFFFH on Failure
BX: Samers AX
CX: Emor Code
00 | CNS iMATCHi PD
04) i) NAME

Figure 6-1. ACB - Assign Control Block

I DIGITAL RESEARCH®

6-21

C_ASSIGN Concurrent CP/M Progmmmer’t Guide

Table 6. ACH Field Definitions

Field Definitions
CNS Console to assign
MATCH Boolean; if OFFH, the process being assigned the console must have
the CNS as its default console for a successful Assign. If 0H, no check
is made,
FD Process ID of the process being assigned the console. If this field is

zero, a search is made of the Thread List for & process whose name is
NAME. This fleld must be either zero or a valid Process 1D, If this
velue is not a valid PD, an error occurs.

NAME 8-byte process name to search for. An error oceurs if a process by this
name does not exist.

The C_ASSIGN sysiemn call directly assigns the specified console to a specified process.
This system call overrides the normal mechanism of the C_ATTACH and C_DETACH
system calls. The system call returns an error code if & process other than the calling process
ownz the console. The system call ignores other processes waiting to attach to the specified
console, and they continue to wait until the current owner either calls the C_DETACH system
call, or terminates.

Refer to Table 6-5 for a list of error codes returned in CX.

W DIGITAL RESEARCH®
622

Concrrrent CP/M Programmer’s Guide C_ATTACH

C_ATTACH

Attach Default Console
To Calling Process

Entry Parameters:
Register CL: 092H (146)

The C_ATTACH system call artaches the default console to the calling process. If the
console is already owned by the calling process or if it is not owned by another process, the
C_ATTACH system call immediately returns with ownership established and verified. If
anather process owns the console, the calling process waits until the console becomes available.

Refer to Table 6-5 for a list of error codes returned in CX.,

8 DIGITAL RESEARCE®

6-23

C_CATTACH Comearrent CP/M Prograssssers Guide

C_CATTACH
Conditionally Attach Default
Console To Calling Process
Entry Parameters:
Register CL: 0A2H (162)
Returned Values:
Register AX: O if attach ‘OK’

OFFFFH on failure
BX: Samsam AX
CX: Error Code

The C_CATTACH sysiem call attaches the default console of the calling process only if
the console is currently unattached.

If the console is currently attached fo another process, the system call returns a value of
OFFH indicating that the consale could not be attached. The system call returns a value of 0
to indicate that either the console is already attached to the process or that it was unattached
and & successful attach operation was made.

Refer to Table 6-5 for a list of error codes returned in CX.

H DIGITAL RESEARCH®
624

Concyrent CP/M Programmer’s Gulde

C_DELIMIT

C_DELIMIT

Set Or Return Output Delimiter

Entry Parameters:
Register CL:

DX

DL:

Returned Values:
Register AL:

BL:

06EH (110)
OFFFFH (get) or
Output Delimiter (set)

Output Delimiter or
{no value if set)
Same as AL

A program can get or interrogate the current Qutput Delimiter by calling C_DELIMIT. If
register DX = OFFFFH, then the current Output Delimiter is returned in register AL. Other-

wise, C_DELIMIT sets the Output Delimiter to the value in register DL.

C_DELIMIT sets the string delimiter for C_WRITESTR. When a new process is created,
the defanlt delimiter value is set ta a dollar sign, $. The defanlt delimiter is not inherited

from the parent process.

W DIGITAL RESEARCH®

6-25

C_DETACH Concwrresl CP/M Programmer’s Gulde

C_DETACH

Detach Default Console
From Calling Process

Entry Parameters:
Register CL: 093H (147)

Returned Values:
Register AX: 0 if detack *OK’
OFFFFH on failure
BX: Sameas AX
CX: Error Code

The C_DETACH system call detaches the defanlt console from the calling process. If the
default console is not attachied to the calling process, no action is taken. If' other processes
ars waiting to aitach 10 the console, the process with the highest priority attaches the consale.
If there is more than one process with the same priority waiting for the console, it is given
to the quene writing processes on a first-come, first-serve basis.

Refer to Table 6-5 for a list of error codes returned in CX.

W DIGITAL RESEARCH®

6-26

Concarrest CP/M. Programmer’s Guide

C_GET

Return The Calling Process’s
Defanlt Console

Enfry Parameters:
Register CL:

Returned Values:
Register AL:
BL:

099H (153)

Console number
Same as AL

C_GET

The C_GET system czll returns the default console number of the calling process.

H DIGITAL RESEARCH®

6-27

C_MODE

Concurrent CP/M Programmery Gulde

C_MODE

Set Or Return Console mode

Entry Parameters:
Register CL: 06DH (109)
DX: OFFFFH (get) or
Console Mode (set)

Retwrned Values:
Register AX: Console Mode or
(no value)
BX: Same a1 AX

A process can set or interrogate the Console Mode by calling C_MODE. If register
DX = OFFFFH, then the current Console Mode is returned in register AX. Otherwise,

C_MODE sets the Console Mode to the value contained in register DX.

6-23

@ DIGITAL RESEARCH®

Cancurrent CP/M Programmer’s Guide C_MODE

The Console Mode is a 16-bit system parameter that determines the ection of certain
Console 1O functions. Note that the Console Mode bits are numbered from right to left. The
Console Mode is set to zero when a new process created; it is not inherited from its parent.
The definition of the Conscle Mode is

bit 0 = 1 - CTRL-C only status for C_STAT,
= (- Normal status for C_STAT.

bit | 1 - Disable stop scroll, CTRL-S, start scroll, CTRL-Q, support.

0 - Enable stop scroll, start scroll support.

a0

bit 2 = 1-Raw console output mode. Disables tab expansion for C_WRITE,
C_WRITESTR, and C_WRITEBLK. Also disebles printer echo,
CTRL-P, support.

0 - Normal console output mode.

Il

I

bit 3 = 1 - Disable CTRL-C program termination

0 - Ensble CTRL-C program termination

bit 7 Digable CTRL-O console output byte bucket

1-
0 - Enable CTRL-O console output byte bucket

DIGITAL RESEARCH®

6-29

C_RAWID Concurrent CP/M Programmers Guide

C_RAWIO

Perform Direct Console I/'O
With Default Console

Entry Paramoters:
Register CL: 06H (6)
DL: OFFH (Input/
Status) or
OFEH (Status} or
OFDH (Input) or
Character (Output)

Returned Values:
Register AL: (Input/Status)

= OH (No Character)
= Character

(Status)
= 0OH - No Character
= OFFH - Ready

(Input)
= Charscter

(Output)
No return value

BL: Same as AL

The C_RAWIO system cal! allows the calling process to do raw console I/O to its default
console. Concurrent CP/M verifies that the calling process owns its default console before
allowing any /0.

A process calls the C_RAWIO system call by passing one of three different values shown
in Table &-7.

H DIGITAL RESEARCH®
6-30

Concwrent CP/M Programmer's Gulde C_RAWIO

Table 6-7. C_RAWIO Calling Values
Value Description
OFFH Console input status command (if no character is ready, a O0H is returned,
else the character is returned).
OFEH Console status command (on return, register AL containg O0OH if no

character is ready; otherwise it contains OFFH).

OFDH Console input command (if no character is ready, the calling process

weits until one is typed). Input characters are not echoed to the screen.
ASCII If the parameter is less than OFDH, C_RAWIO systern call assumes
character register DL contains a valid ASCII character and sends it to the console.

The C_RAWIO system call places the calling process in Raw mode. The CTRL-C, CTRL-F,
CTRL-S, and CTRL-O characters are not acted on by the PIN (Physical Input Process) but
are passed on to the calling process when C_RAWIO is used.

Note: If the virtual console is in CRTL~S mode, and the process that owns the virtual
console then performsa C_RAWIO call, the CTRL-S state is reset. Characters read with
C_RAWIO are not echoed on the screen, thus allowing passwords and so forth to be
entered int a secure manner.

H DIGITAL RESEARCH®

631

C_READ Concmrent CP/M Frogremener’s Gulde

C_READ

Read A Charrcter From
The Default Console

Entry Parameters:
Register CL: 01H (1)

Returned Values:
Register AL:: Characier
BL: Same as AL

The C_RBEAD system call reads a charactsr from the default conscle of the calling process.
Before attempting the read, Concurrent CP/M internally verifiss the ownership of the conzole.
If the calling process does not own the console, it relinguishes the CPU resource until the
celling process can attach to the console. Typically, a process that is created through the
P_CLI system call owns its default console when it begins execution.

C_READ echoss characters read from the console, This includes the carringe return, line
feed, snd beckspace characters. [t expands tab characters (CTRL-I) in columns of eight
characters,

C_READ ignores the termination character (CTRL-C) if the calling process cannos ter-
minste (refer 1o the P_TERM system call). C_READ does not return until a character is
typed on the console. The system suspends the calling process until a character is ready.

B DIGATAL RESEARCH®
&32

Cancurrent CP/M Programmer's Guide C_READSTR

C_READSTR

Read An Edited Line From The
Default Console

Eniry Parameters:
Register CL: 0AH (10)
DX: BUFFER Address - Offset
DS: BUFFER Address - Segment

The C_READSTR system call reads characters from the calling process’s defanit
console and places them into the specified buffer. The format of the buffer is shown in
Figure 6-2. C_READSTR performs line-zditing system calis on the line as it is read from
the console; it completes a line and returns upon receiving a terminator character
{carriage return or line feed) from the console or when the maximum number of charac-
tera is reached. As in the C_READ system call, C_READSTR echoes all graphic
charecters read from the console. Concurrent CP/M verifies that the celling process owns
its default console before allowing 170 to begin.

0 1 MAX + 2

-

"
e

MAX |NCHAR CHARACTERS ..

-+ e s —_— -

Figure 6-2. Console Buffer Format

I DIGITAL RESEARCH®

6-13

C_READSTR Concurrent CP/M Programmer's Guide

Table 6-8. Console Buffer Field Defintifon

Field Definition

MAX Maximum mimber of characters that can be read into the buffer.
This velue must be initislized before calling the C_READSTR
gystem call.

NCHAR Actual number of characters read into the buffer as filled in by
the C_READSTR system call.

CHARACTERS Actual charactars read from the console as filled in by ihe
C_READSTR system call.

C_READSTR recognizes 8 number of special characters used in editing the input line, as
well a5 a set of special characters that actually control the calling procesa,

Tuble 6-9. C_READSTR Line-editing Characters
Character Runction

RUB/DEL

Removes the 1ast character from the line and echoes it.

(CTRL-E)

Echoes new line, a carriage return (CTRL-M), and a line feed
(CTRL-]), to the screen but doas not affect the line buffer.

BACKSPACE (CTRL-H)

Removes the lest character from the line end backspaces over that
character.

TAB (CTRL-I)

Echoes enough spaces to place the next character position 2t a tab
stop. Tab stops are fixed at cvery eighth character of the physical
line.

W DIGITAL RESEARCH®
6-34

Concwerent CP/M Programmer’s Guide C_READSTR

Table 6-9, {continued)

Character Function

LINE FEED (CTRL-J)

Terminates the input line. The C_READSTR system call does not
echo & terminating character, nor does it place the character in the
line buffer.

RETURN (CTRL-M)

Terminates the input line.

REDRAW (CTRL-R)

Retypes the current line after echoing & new line.

(CTRL-U)

Removes all of the current line from the line buffer, echoes a new
line, and starts all over again.

(CTRL-X)

Remaoves all of the current line from the line buffer and echoes
enough backspeces to return to the beginning of the line.

13 DIGITAL RESEARCHS®
6-35

C_SET Coucarrent CP/M Prograsscers Galde

C_SET

Set The Calling Process's
Defanlt Console

Entry Prrameters:
Register CL: 094H (148)
DL: Corsole Number

Returned Values:
Register AX: 0 if successful
OFFFFH on failure
BX: Sameas AX
CX: Error Code

The C_SET system cel! changes the calling process'’s default console to the value specified.
If the console number specified is not one supported by this particular implementation of
Concurrent CP/M, the system call returns an error code, and does not change the default
console.

Rasfer to Table 6-5 for a list of error codes returned in CX.

W DIGITAL RESEARCH®
6-36

Coacurrent CP/M Programmer’s Guide C_STAT

C_STAT
Obtain The Statug Of The
Default Console
Entry Parameters:
Register CL: O0BH (11)
Returned Values:
Register AL: O1H character ready
O0H not ready
BL: Sameas AL

The C_STAT system call checks to see if a character has been typed at the default conscle.
H the calling process is not attached to its default console, the C__STAT system call causes
& dispatch to occur and return D0OH (the Not Ready condition).

This system call sets the console to the Nonraw mode, allowing recognition of special
control characters such as the terminate character, CTRL-C, Use C_RAWIO to obtain console
status in Raw mode.

Note: If bit 0 is set in the Console Mode word, using the C_MODE f{unction call,
C_STAT only returns AL = 01H when & CTRL-C is typed on the default conaole,

@ DICITAL RESEARCH*

6-37

C_WRITE Concurreat CP/M Programmer's Guide

C_WRITE

Write A Character To The
Default Conscle

Entry Parameters:
Register CL: 02H (2)
DL: ASCH character

The C_WRITE system call writes the specified character to the calling process'’s default
console. As in the C_READ zystemn call, Concurrent CP/M verifies thet the calling process
owns its defmlt console before performing the operation. On output, C_WRITE expands
tabs in columns of eight characters.

W DIGITAL RESEARCH®
6-38

Concurrent CP/M Programmer’ Guide C_WRITEBLK

C_WRITEBLK

Send Specified String To Default Console:

Entry Parameters:
Register CL: 06FH (111)
DX: CHCB Address

C_WRITEBLK sends the character string located by the Character Control Block,
CHCB, addressed in register pair DX to the console. [f the Console Mode is in the Default
statc C_WRITEBLK expands tab characters, CTRL-I, in columns of eight characters.

The CHCB format is
bytes 0 - 1 : Offsat of cheracter string

bytes 2 - 3 : Segment of character string
bytes 4 - 5 : Length of character string to print

Il DIGITAL RESEARCH®

6-39

C_WRITESTR Comcurresd CP/M Programumer’s Gulde

C_WRITESTR

Print An ASCII String
To The Default Console

Entry Paremeters:
Register CL: 0SH (%)
DX: STRING Address - Offset
DS: STRING Address - Segment

The C_WRITESTR system call printe an ASCII string atarting st the indicated string
address and continuing until it reaches & dollar sign (§) character (024H). § is the defanlt
string delimiter, and can be changed by the C__DEILIMIT sygtern call. C_WRITESTR writes
this string to the calling procesa’s default consols.

Concurrent CP/M verifies that the calling process owns the console before writing the
string. C_WRITESTR seta the console to & Monraw state and expands tebs in columas of
eight characterz, as does the C_WRITE systermn call.

Use the C_WRITESTR system call whenever possible, mther thin the single-cheracter
rystem calls. The CPU overhead involved in handling the first character is the same &s that
for a single-character system call, but subsequent characters require &s little as one-fifth the
CPU overhesd.

8 DIGITAL RESEARCHY

Concurrent CP/M Programmex’s Guide DEY. POLL

6.2.2 Device System Calls

DEY_POLL

Poll A Device

Entry Parameters:
Register CL: 083H (131)
DL: Device Number

Returned Values:
Register AX: 0 onsncoess
OFFFFH on failure
BX: Sameas AX
CX: Error Code

The DEV_POLL system call is used by the XIOS to poll non inferrupt-driven devices, It
should be used whenever the XIOS is waiting for a non interrupt event. The calling process
relinquishes the CPU and allows Concurrent CP/M to poll the device at every dispatch. The
XIOS contains routines for each pelling device number. These routines are <alled through
the DEV_POLL system call, and they return whether the device is ready or not. When the
device is ready, DEV_POLL restores the calling process to the RUN siate and returns. Upon
return, the calling process knows the device is ready.

Refer to Tabls 6-5 for a list of error codes returned in CX,

B DIGITAL RESEARCH®

DEV_SETFLAG Comcurrest CP/M Programmier’s Guide

DEV_SETFLAG

Set A Systern Flag

Entry Parameters:
Register C1: 085H (133)
DL: Flag Number

Returned Values:
Register AX: (on snccess
OFFFFH on failure
BX: Sameas AX
CX: Error Code

The DEV_SETFLAG system call ia used by interrupt routines to notify the system that a
logical interrupt has occurred.- A process waiting for this flag is placed back into the RUN
state. If there ave no progesses weiting, then the next process to wait for this flag returns
successfully without relinquishing the CPU. The system call detacts an error if the flag has
alreedy been set, and no process has done B DEV_WAITFLAG csll to reset it.

Note: ¥f a process waiting for a specific fiag to be sef is sboried, the next DEV_SETFLAG
cail is ignored and an error code is returned in CX. In this case, the interrupt handler should
continne to set call DEV._SETFLAG until it successfully ssts the flag IP, and AX = 0 on
return,

Refer to Table -5 for a list of error codea returned in CX.

I DIGITAL RESEARCH®
642

Concurrent CP/M Programiner’s Guide DEY_WAITFLAG

DEY_WAITFLAG

Whait For A System Flag

Entry Parameters:
Register CL: 084H (132)
DL: Flag Number

Returned Values:
Register AX: 0 on success
OFFFFH on failure
BX: Sameas AX
CX: Error Code

The DEV_WAITFLAG system call is used by a process to wait for an interrupt. The
process relinquishes the CPU until an interrupt routine calls the DEV_SETFLAG system
call, which places the waiting process in the RUN state. When DEY_WAITFLAG returns
to the calling process, the interrupt has occurred, or an error has occurred. An error occurs
when a process is already waiting for the flag. If the fiag was set before DEV_WAITFLAG
was called, the routine returns successfully without relinquishing the CPU. This routine is
usually used by the XIOS. The mapping between types of interrupts and flag numbers is
maintained in the XIOS, although Concurrent CP/M reserves flags 0, 1, 2, and 3 for system
use.

Refer to Table 6-5 for a list of error codes returned in CX.

B DIGITAL RESEARCH®

6-43

DEY_WAITFLAG Cancturent CP/M Programmer's Gulde

6.2.3 DHek Drive System Calla

The Drive Vector, Read-Only Yector, and Login Yeetors aze referenced or returned by
severel Concurrent CP/ M Disk Drive system calls. The Drive, RO, or Login Vectorsare
16-bit values specifying one or more drives, where the leagt significant bit corresponds to
drive A, and the high-order bit corresponds to the sixteenth drive, labeled P, The format
of the Drive, RO, end Login Vectors is illustrated below:

s e s s e e i e s o e e
DHVPONMLKJIHGFEDGBA'

& e &

i & A 3 a ' I
L4 T - " g " b g P et o T T

BIT 16 14 13 12 11 10 9 8 H B 5 4 3 2 1 0

Figure 3. Drive, RO, or Login Yector Structore

EDIGITAL RESEARCH®

Coscurrent CP/M Programmws's Guide DRV-ACCESS

DRV_ACCESS

Access Specified Disk Drives

Entry Parameters:
Register CL: 026H (38)
DX: Drive Vector

Returned Values:
Register AL: Return Code
AH: Extended Error
BX: Sameas AX

The DRV_ACCESS system call inscrts a special open file item into the system Lock List
for sach specified drive. While the item exists in the Lock List, the drive cannot be reset by
another process. The calling process passes the drive vector in register DX, The format of
the drive vector is discussed at the beginning of Section 6.2.3.

The DRV_.ACCESS system call inserts no items if insufficient free space exists in the
Lock List to support all the new items or if the number of items to be inserted puts the calling
process over the Lock List open file maximum. If the BDOS Error mode i3 in the defanlt
mode (refer to the F_ERRMODE system calt), the file system displays & message at the
console identifying the error and terminates the calling process. Otherwise, DRV_ACCESS
returns {o the calling process with register AL set to OFFH and register AH set to one of the
following hexadecimal values.

QAH - Open File Limit Exceeded
OBH - No Room in system Lock List

On successful calls, DRY_ACCESS returns with register AL set to 00H.

M DIGITAL RESEARCH®

6-45

DRVY_ALLOCVEC Concurrest CP/M Prograsmser’s Guide

DRV_ALLOCVEC

Get Allocation Vector Address
For The Calling Process's Defanlt Disk

Entry Parameters:
Register CL: 01BH (27)

Returned Values:
Register AX: ALLOC Address - Offset
BX: Sameas AX
ES: ALLOC Address - Segment

Concurrent CP/M mainlaing an allocation vector in memory for sach active disk drive.
Sorne programs use the information provided by the allocation vector to determine the amount
of free data space on & drive. Note, however, that the sllocation information can be ineccurate
if the drive has been marked Read-Only.

The DRY_ALLOCVYEC system call returns the eddress of the allocation vector for the
currsntly selsctad drive. If & physical error is encountersd when the BDOS Brror mode is in
one of the return modes (refer to the F_ . ERRMODE system call), DRV._ALLOCVEC returns
the value OFFFFH in AX.

You can use the DRV_SPACE system call to directly return the number of free 128-byte

records on a drive. The Concurrent CP/M utility, SHOW, finds a drive's fre¢ space by using
the DRV_SPACE system csll.

SDIGITAL RESEARCH®

Comcurrenit CP/M Programmer’s Gulde DRV_ALLRESET

DRV_ALLRESET

Restore All Drives To Reset State

Entry Parameters:

Register CL: ODH (13)
Returped Values:

Register AL: 0O if successful

OFFH on error
BL: Same as Al.

The DRV_ALLRESET sysiem call restores the file systemn to a reset state where all the
diak drives are set to Read-Write (refer to the DRV_SETRO and DRV_ROVEC system calls),
the default disk is set to drive A, and the default DMA address is teset to offset 080H relative
o the current DMA segment address. This system cell can be used, for example, by
an application program that requires disk changes during operation. You can also use the
DRV_RESET system call for this purpose.

This system call is conditional under Concurrent CP/M. If another process has a file open
cn any aof the drives to be reset, and the drive is also Read-Only or removable, the
DRV_ALLRESET system call is denied, and ncne of the specified drives are reset (see
Section 2.17).

Upon return, if the reset operation is successful, DRV_ALILRESET sets register AL to
COH. Otherwise, it sets register AL to OFFH. If the BDOS is not in one of the return error
modes (refer to the F_ERRMODE system call), the file system displays an error message
at the console identifying the process owning the first open file that cansed the
DRV_ALLRESET 1o be denied.

B DIGITAL RESEARCH®
6-47

DRY_DPB Coocmrrent CP/M Programmer’s Gulde

DRV_DPB
Return Address Of Disk Parameter Block
For Calling Process’s Defauli Disk
Entry Parameters:
Register CL: 01FH (31)
Returned Values:
Register AX: DPB Address - Offset
OFFFFH on Physical Error
BX: Sameas AX

ES: DPB Address - Segment

DRY_DPB returns the address of the XIOS-resident Disk Parameter Block (DFB) for the
currently sclected drive. The calling process can usc thisaddress to extract the disk paramater
velues.

If & physical error is encountered when the BDOS Error mode is one of the Return Erpor
modes (refer to the F_ERRMODE systzm call), DRV_DPB returns the value OFFFFH.

The Disk Pearameter Block (DPB) contains the paremeters that define the actual disk.

00H SIT’T BSH BLM EXM
05H DS.M DRM

08H ALO ALl CI1<S

0DH OFF PEH PRM

Figure 6-4. DFB - Disk Parameter Block

I DIGITAL RESEARCH®

Concurreni CP/M Programmer's Guide DRV_DPB

Table 6-10. DPB Fleld Definitions

Field

Definition

SPT Sectors Per Track

The number of Sectors Per Track equals the total mumber of physical
sectors per track. Physical sector size is defined by PSH and PRM
described below.

BSH Allocation Block Shift Factor

BLM Ailocation Block Mask

The data allocation block size determines the values of the data
allocetion Block Shift Factor and the allocation Block Mask. The
Block Shift factor equals the logarithm base two of the block logical
size in 128-byte records, or BSH = LOG2(BLS). The Block Mask
cquals the number of 128-byte records in an allocation block minus
1, or BLM = (2**BSH)— 1. Refer to the Concurrert CP/M System
Guide for valid block sizes and BSH and BLM values.

EXM Extent Mask

The datz block allocation size end the mumber of disk allocation
blocks determine the value of the Extent Mask. The Extent Mask
determines the maximum number of 16K exients that can be con-
tained in a dirsctory entry. It is equal to the maximum rumber of
16K extents per directory entry mimus one. Refer to the Concurrent
CPiM System Guide for EXM values.

DSM Disk Storage Maximum

The Disk Storage Maximum defines the total storage capacity of the
drive. This is equal to the total number of allocation blocks minus 1
for the drive. DSM must be less than or equal to 7FFFH. If the disk
uses 1024 byte blocks (BSH =3, BLM = 7), DSM must be less than
or equal to OOFFH.

B DIGITAL RESEARCH®

DRY_DPB

Concwrrent CP/M Programmer's Guide

Table 6-10. (continued)

Field

Definition

DRM Directory Maximum

The Directory Maximum defines the total number of directory entries
for the drive. This is equal io the total number of directory entries,
mimus 1, that can be kept on this drive. The directory requires 32
bytes of disk per entry. The maximum directory allocation is 16
blocks, where the block size is determined by BSH and BLM.

ALQ Directory Allocation Vector {
AL Directory Allocation Vector 1

The Directory Allocation Vectors determine the reserved directory
allocation blocks.

CKS Checksum Vactor Size

The Checksum Vector Size determines the required length of the
directory checksum vector and the mimber of directory eatries that
the BDOS will checksum, The Checksum Vector Size it equel to the
mumber of directory enties divided by 4, or CKS = (DRM +1)/4.
If the media is fixed, CKS might be 2210, no storags nesds to be
teserved, and the BDOS does not calculste directory checksurns for
the drive.

The high-bit of CKS (that is, > = 08000H) is set if the referenced
drive is considered to be a nomremovable media drive. Note that this
madifies the rules for resctting the drive. For more information, refer
to Section 2.15.

550

W@ DIGITAL RESEARCH®

Concurrent CP/M Programmer's Gulde DRY_DPFPR

Table 6-16, (continued)
Field Definition
OFF Track Offset

The Track Offset is the number of reserved tracks at the beginning
of the disk. OFF is equal to the track nusnber on which the directory
starts,

PSH Physical Record Shift Factor

The Physical Record Shift Factor ranges from 0 to 5, corresponding
to physical record sizes of 128, 256, 512, 1K, 2K, or 4K bytes. It
is equal to the logarithm base two of the physical record size divided
by 128, or LOG2(sector_size/128),

PRM Physical Record Mask

The Physical Record Mask ranges from 0 to 31, corresponding to
physical record sizes of 128, 256, 512, 1K, 2K, or 4K bytes. It
is equal to the physical sector size divided by 128 minus 1, or
{sector._size/128)—1.

For more information on DPB parameters, refer to the Concurrent
CP/M System Guide, Section 5.4.

T DIGITAL RESEARCH®

6-51

DRV_YXLUSH Concmrent CP/M Programsmer's Guide

DRV_FLUSH

Flush Write-Deferred Buffers

Entry Parameters:
Register CL: 030H (48)
DL: Puwge Flag

Reiumed Values:
Register Al: Error Flag
AH: Permanent Error
BX: Same asx AX

‘The DRV_FLUSH system call forces the write of any write-pending records contained in
internal blocking/deblocking buffers. If register DL is set to OFFH, DRV_FLUSH also purges
all active data buffers after performing the writss. Programs that provide write with read
verify support needed to purge internal buffers to ensure that verifying reads ectually access
the disk instesd of returning data resident in intsrnal data buffers. The Concurrent CP/M PIP
ntility is an example of such a program.

Upon return, the system call sets register AL to O0H if the fiush operstion is successful.
If a physical error i encountered, DRV_FLUSH performs different actions depending on
the BDQS Error mode {refer to the F_ ERRMODE system call). If the BDOS Error mode is
in the defanlt mode, the systein displays a message &t the consale identifying the error and
terminatea the calling process. Otherwise, it returns to the calling process with register AL
sat to OFFH and register AH set to one of the fallowing physical ertor codes:

01H - Digk 1’0 Error : permanent error
02H - Read/Only Disk

I DAGITAL RESEARCH®
652

Concurrent CP/M Programmer's Guide DRV_FREE

DRV_FREE

Free Specified Disk Drives

Entry Parameters;
Register CL: 027H (39)
DX: Drive Vector

The DRV_FREE system call purges the system Lock List of all file and locknd record
items that belong to the calling process on the specified drives, DRV_FREE passes the drive
vector in register DX.

DRV_FREE does not close files associated with purged open file Lock List items, In
eddition, if a process references a purged file with a BDOS system call requiring en open
FCB, the system call returns a checksum error. A file that has been written to should be
closed bafore making 2 DRV_FREE call to the file's drive, or data cap be Jost, Refer to
Section 2.17 for more information on this system call.

1 DIGITAL RESEARCH®

6-53

DRY_GET Concarrent CP/M Progressmer's Guide

DRV_GET

Return The Calling Process’s Default Drive

Entry Parameters:
Register CL: 019H (25)
Returned Values:
Register AL: Drive Nurnber
BL: Same as AL

The DRV_GET system call returns the ceiling process™s currently selected default disk
number. The disk numbers range from 0 through 15, corresponding to drives A through P.

B DACITAL RESEARCH®
6-54

Cosemrrent CP/M Programmer’s Guide DRY_GETLABEL

DRV_GETLABEL

Return Directory Label Data Byte
For The Specified Drive
Entry Parameters:
Register CL: 065H (101)
DL: Drive
Returned Values:

Register AL: Directory Label Data Byte
AH: Physical Error
BX: Same ag AX

The DRV_GETLABEL system call returns the directory label data byte for the specified
drive. The calling process passes the drive number in register DL with 0 for drive A, 1 for
drive B, continuing through 15 for drive P in a full 16-drive system. The format of the
directory label datz byte is shown below:

bit 7 - Require passwords for password protected files
6 - Perform access time and date stamping
5 - Perform update time and date stamping
4 - Perform create time and date stamping
0 - Directary label exists on drive

(Bit 0 is the least significant bit)

DRV_GETLABEL returns the directory label data byte 1o the calling process in register
AL. Register AL equal to 00H indicates that no directory label exists on the specified drive.
If the system call encounters a physical error when the BDOS Error mode is in one of the
return error modes (refer to the F_ERRMODE system call}, it returns with register AL set
to OFFH and register AH set to one of the following:

OLH - Disk YO Error : permanent error
O4H - Invalid Drive : drive select error

H DIGITAL RESEARCH®

6-55

DRV_LOGINVEC Canrprrent CP/M Programuser's Guide

DRY_LOGINVEC

Return Bit Map Of Logged-in Disk Drives

Entry Perameters:
Register CL: 018H (24)

Returned Velues:
Register AX: Login Vector
BX: Sameas AX

The DRV_LOGINVEC system call returns the Login Vector in register AX, The Login
Vector is a 16-bit valve with the least significant bit corresponding to drive A, end the high-
order bii corresponding to the 16th drive, drive P A 0 bit indicates that the drive is not
logged-in, while a 1 bit indicates the drive is logged in. Refer to the beginning of Section
5,2.3 for & complete description of the Login Vector.

B DIGITAL RESEARCH®

Concurrent CP/M Programmer’s Guide DRV_RESET

DRV_RESET

Reset Specified Disk Drives

Entry Parameters:
Register CL: 025H (37)
DX: Drive Vector

Returned Values:
Register AL! Return Code
BL: Same as AL

The DRV_RESET gsystem call i3 used to programmatically restore specified removable
media drives to the reset state {a reset drive iz not logged in and is in Read-Writs status).
The pessed parameter in register DX i3 a 16-bit vector of drives to be reser, where the least
significant bit corresponds fo drive A, and the high-order bit corresponds to the sixteenth
drive, labeled P. Bit values of 1 indicate that the specified drive is 1o be reset. Refer to Section
2,17 for more information regarding the use of this system call.

This system call is conditional under Concurrent CP/M. If another process hes a file open
on any of the drives to be reset, the DRV_RESET system call is denied, and none of the
drives are regat,

Upen return, if the reset aperation is successful, DRV_RESET sets register AL to O0H.
Otherwise, it sets register AH to OFFH. If the BDOS Error mode is not in Return Error mode
(refer to the F_ERRMODE system call), the system displays an error message at the console,
identifying the process owning the first open file that caused the DRV_RESET request to be
denied.

8 DIGITAL RESEARCH®

§-57

DRV_ROVEC Comemerent CP/M Progracusers Guide

DRV_ROVEC
Return Bit Map Of Read-Only Disks

Entry Parameters:
Register CL: OLDH (29)

Retwrned Valuesa:
Register AX: RO Vector
BX: Sameas AX

The DRY_ROVEC system call returns a bit vector indicating which drives have the tem-
porary Read-Only bit set. The Read-Only bit can only be set by 2 DRY_SETRO call-

Note;: When the file system detects a change in the media on & drive, it sutomatically logs
in the drive and sets it to Reed-White.

The format of the RO Vector is analogous to that of the Login Vector. The least significant

bit corresponds to drive A; the most significant bit corresponds to drive P. For a complete
dexcription of the RO Vector, refer to the beginning of this section.

 DIGITAL RESEARCH®

658

Concurrent CP/M Programuer’s Guide DRV_SET

DRV_SET

Set Calling Process’s Default Disk

Entry Parameters:
Register CL: OEH (14)
DL: Selected disk

Returned Values:
Register AL: Error Flag
AH: Physical Error
BX: Same as AX

The DRV_SET systern call designates the specified disk drive as the default disk for
subsequent BDOS file operations. Set the DL register to O for drive A, 1 for drive B,
continuing through L5 for drive P. DRV_SET also logs in the designated drive if it is currently
in the reset state. Logging in a drive activates the drive’s directory for file operations.

FCBs that specify drive code zero (DR = 00H) amtomatically reference the currently
selected defanlt drive. FCBs with drive code values between 1 and 16, however, ignore the
selected default drive and directly reference drives A through P,

Upon return, register AL equal to 00H indicates the select operation was successful, If a
physical error is encountered, DRV__SET performs different actions depending on the BDOS
Error mode (refer to the E_FRRMODE system call).

If the BDOS Error mode is in the default mode, the system displays a message at the
console, identifying the error and terminates the calling process. Otherwise, DRV_SET
returns to the calling process with register AL set to OFFH and register AH set to one of the
following physical error codes:

01H - Disk /O Brror : permanent error
04H - Invalid Drive : drive select error

B DIGITAL RESEARCH®

6-59

DRY_SETLABEL Coucwront CP/M Programmers Guids

DRV_SETLABEL

Create Or Updste A Directory Label

Entry Parameters:
Register CL: 064H (100)
DX: FCB Address - Offset
DS: FCB Address - Sepinent

Returped Values:
Register Al: Directory Code
AH: Physical or Extended Error
BX: Same as AX

The DRV_SETLABEL system call craates a directoty labe] or updates the existing direc-
tory label for the specified drive, The calling proctse passes the address of an FCB containing
the pame, type, and extent fields to be assigned to the directory labei. The name and type
fields of the referenced FCB are not used to locate the directory label in the directory; they
are simply copisd into the updated or created directory label. Byta 12 of the FCB containg
the user's specification of the directory label data byte.

EDIGITAL RESEARCHS

Concmrrent CP/M Programmer's Guide DRY.SETLABEL

The definition of the directory label data byte is

bit 7 - Require passwords for password protected filos
6 - Perform access time and date starnping
§ « Perform update time and date stamping
4 - Perform create time and date stamping
0 - Arsign a new password to the directory labe]

(Bit O is the least significant bit)

If the current directory label is password protected, the correct password must be placed
in the first 8 bytes of the current DMA or heva been previously established as the defanlt
password (refer to the F_PASSWD system call). If bit O of the directory label data byt is
set to 1, it indicates that 8 new password for the directory iabel has been placed in the second
eight bytes of the current DMA.

The DRV_SETLABEL system call also requires that the referenced directory contains
SFCBs in order to activate date and time stamping on the drive. If an attempt ia made to
activate date and time stamping when no SFCBs exist, the DRV_SETLABEL system call
returns en error code and performs no action. The Concurrent CP/M INITDIR utility ini-
tializes a directory for date and time stemping by placing an SFCB in every fourth entry of
the directory.

Upon return, the DRY_SETLABEL system call returns a directory code in register AL
with the value OOH if the directory label create or update was successful, or OFFH if no space
existed in the referenced directory to create a directory label. It also returns OFFH if date
and time stamping was requested and the referenced directory did not contain SPCBs. Register
AH is set to 00H in all of these cases.

If a physical or exiended error is encountered, the DRV_SETLABEL system call performs
different actions depending on the BDOS Error mode (refer to the F_ERRMODE system
call). If the BDOS Error mode is in the defanlt mode, the file system displays a message at
the console identifying the error and terminates the calling process. Otherwise, the
DRV_SETLABEL system call returns to the calling process with register AL set to OFFH
and register AH set to one of the following physical or extended error codes:

01H - Disk I/C Error : permanent error
02H - Read-Only Disk
04H - Invalid Drive : drive select error
07H - Password Error

8 DIGITAL RESEARCH®
6-61

DRV_SETRO Conemrent CP/M Proprasmar’y Gulde

DRV_SETRO

Set Default Disk To Read-Only

Entry Parameters:
Register CL: O1CH (28)

Returned Values:
Register AL: Return Code
BL: Same as AL

The DRV_SETRO systam call provides temporery write protection for the curvently selected
disk by marking the drive as Read-Only. No proczss cen write to a disk thaf is in the Read-
Unly state. You must perform & successful DRV_RESET operation o restors a Read-Only
drive to the Read-Whiite state (refer to the DRV_ALLRESET and DRV_RESET systern calls).

The DRV_SETRO system call is conditionel uader Concurtent CP/M. If another process
has an open file on the drive, the operation is denjed, and the system call returns the value
OFFH to the calling process. Otherwise, it returns a 00H. If the BDOS Error mode is not in
Return Ervor mode (refer to the F_ERRMODH sysiem call), the file system displiys an erroe
message at the console, identifying the process owning the first open fils that caused the DRV
SETRO request 10 be denied.

Note that a drive in the Read-Only state cannot be reset by a process if another process
has an open file on the drive.

MDIGITAL RESEARCH®
662

Concurrent CP/M Programmer’s Gulde DRV_SPACE

DRV_SPACE

Return Free Disk Space On Specified Drive

Entry Parameters:
Register CL: 02EH (46)
DL: Drive
Returned Values:

Register AL: Error Flag
AH: Physical Error
BX: Same as AX
First 3 bytes of DMA Buffer filled in

The DRV_SPACE system call determines the number of free sectors (128-byte records)
on the specified drive. The calling process passes the drive number in register DL, with 0
for drive A, 1 for B, continuing through 15 for drive P. DRY_SPACE returns a binary oumber
in the first 3 bytes of the current DMA buffer. This number is returned in the format shown
in Figure 6-5.

FS0 FS1 FS2

FSD = LOW BYTE
F81 = MIDDLE RBYTE
FS2 = HIGH BYTE

Figure 6-5. Disk Free Space Field Format

Note that the returned free space value might be inaccurate if the drive has been marked
Read-Only.

DICITAL RESEARCH®
6-63

DRV_SPACE Concurvent CP/M Programmer’s Guide

Upon return, DRV_SPACE sets register AL to 00H, indicating the operstion was suc-
ceseful. However, if the BDOS Error mode is one of the return modes (refer to the
F_ERRMODE system cell), and a physical error occurs, it sets register AL to 0¥FH, and
register AH to one of the following values:

01H - Disk I'Q Error : permanent error
04H - Invalid Drive : drive select error
6.2.4 File-Acceny Syrtem Calls

Most file-access system calls reference a File Control Block (FCB). This data structure is
illustratsd in Teble 2.1, Refer to Section 2.4 for 2 comprehensive explanation of the FCB
data structure, its injtialization, and usage.

@ DIGITAL RESEARCH®

6-64

Concwrrent CP/M Programmer's Guide F_ATTRIB

F_ATTRIB

Set The Atributes Of A Disk File

Entry Parameters:
Register CL: OIEH (30)
DX: PFCB Address - Offset
DS: PFCB Address - Sogment

Returned Values:
Register AL: Directory Code
BL: Samecas AL

By calling the F__ATTRIB system call, a process can modify a file’s attributes and set its
Iast record byte count. Other BDOS system calls can interrogate these file parameters, but
cnly F_ATTRIB can change them. The file attributes that can be set or reset by F_ATTRIB
are FI° through F4’, Read-Only (T1"), System (T2'), and Archive (T3"). The specified FCB
contains & filename with the appropriate atributes set or reset. The calling process must
ensure that it does not specify an ambiguous filename. Also, if the specified file is password
protected, the correct password must be placed in the first eight bytes of the current DMA
buffer or have been previonsly established ag the defanlt password (refer to the F_PASSWD
syatem call).

Interface attribute F5' specifies whether an extended fiie lock is to be maintained after the
F_ATTRIB call. Interface attribute F& specifies if the specified file’s byte count is to be zest.
The interface attribute dafinitions are listed below:

F5'= 0 - Do not maintain an extended file lock (dafault)
F5'= | - Maintain an extended file lock

F6'= 0 - Do not set byte count (default)

F&'= 1 - Set byte count

If F5° ig set and the referenced FCB specifies a file with an extended file lock, the calling
process maintains the lock on the file. Otherwise, the file becomes available io other processes
on the system. Section 2.11 describes extended file locking in detail.

M DIGITAL RESEARCH®

F_ATTRIR Concorrent CP/M Programmer's Guide

If interface attribute F&' is set, the calling process must ses the CR ficld of the referenced
FCB o the new byte count value. A process can access a file's byte count value with the
BDOS F_OPEN, F_SFIRST, and F_SNEXT system calls. File byte counts are described in
section 2.15.

F_ATTRIB searches the FCB specified directory for an entry belonging to the current
user number that matches the FCB apecifisd name and type fields. The system call then
updates the directory to contain the selected indicators, axd if interface aitribute F6" is sat,
the specified byte count value. Note that the last record byte count is maintsined in the byte
13 of a file's directory FCBs.

File attributes T1°, T2, and T3’ are defined by Concurrent CP/M a3 described in Section
2.4.2, Anributes F1" through F4* of command files are defined as Compatibility Attributes,
as described in Section 2.12. However, for all other files, attibutes F1° through F4° are
available for definition by the user. Attributes FS' through F3' are reserved as Interface
Attributes and cannot be used e8 file aftributes. Interface aitributes are described in Section
2.4.3.

AnF_ATTRIB system call is not performed if the referenced FCB specifies a file currently
open for another process, It is performed, however, if the referenced file i3 open by the
calling process in Locked mode. However, the fils's lock entry is purged when this i done
and the file system prevents contimued read and writs operations on the file. F_ATTRIB doss
not set the attributes of a file currently open in Read-Only or Unlocked mode for any process.

Making an F_ATTRIB system call for an open file can adversely affect the performance
of the celling process. For this reason, you should close an open file before you call the
F_ATTRIB system call.

Upcn return, F_ATTRIB returns a directory code in register AL with the value O0H if the

system call is successful, or OFFH if the file specified by the referenced FCB is not found.
Register AH is set to O0H in both cases,

W DIGITAL RESEARCH®

6-66

Concurrent CP/M Programmer's Gaide F_ATTRIB

If a physical or extended ervor is encountered, the F_ATTRIB gystem cell performs dif-
ferent actions depending on the BDOS Error mode (refer to the F-ERRMODE sgystem call).
If the BDOS Error mode is in the defanlt mode, the file system displays e message at the
console identifying the error and terminates the process. Otherwise, it returns to the calling
process with register AL set to OFFH and register AH set to one of the following physical
or extended error codas:

O1H - Disk /O Error : permanent error
O2ZH - Read-Only Disk

O4H - Invalid Drive : drive select error
O5H - File open by another proceas
O7H - Pessword Error

0%H - Illegal ? in FCB

il DIGITAL RESEARCH®
6-67

F_CLOSE Concwrrant CF/M Programmer's Gulde

F_CLOSE

Close A Disk File

Enfry Parametars:
Register CL: Q10H (16)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Regisier AL: Directory Code
AH: Phyasical or Extended Error
BX: Sameas AX

The F_CLOSE system call performs the inverse oparation of the F_OPEN system call.
The referenced FCB mmust have been previously activaied by a successful ¥ OPEN ar
F_MAKE system call. Interface sttributes FS’ end F6' specify how the file is to be closed,
es shown below:

F5' = 0, F§’ = 0 - Defmlt Cloee
F5' = 0, F¢’ = 1-Extend File Lock
F5' = 1, F§' = 0 - Purtial Closs
F5' = 1,F§’ = 1 -Partial Close

The F_CLOSE aystem cell performs the following ateps regardless of the interface sttribute
specification. Fist, it verifies that the referenced PCB has & valid checksum. If the checksum
is invalid, F_CLOSE performs no action and returns an error code.

If the checkaum i valid end the referenced FCB contains new information becase of write
opersations to the FCB, F_CLOSE permanently records the new information in the directory.
[f the FCB does not contain pew information, the directory update step is bypassed. However,
F_CLOSE alweys attempts to locate the FCB’s corresponding entry in the directory and
returus en errorf code if the directory entry cannot be found.

If the F_CLOSE system call successfully performs the sbove steps, it performs different
sctions, depending on how the interface attributes are set. In defanlt close operations,
F _CLOSE decrements the file's open count, which is maintained in the file's system Lock
List entry. If the open count decrements to zero, it indicates that the umber of default close
operations for the file matches the number of open operations.

W DIGITAL RESEARCH®
6-68

Concurrent CP/M Programmers Guide F_CLOSE

If the open count decrements to zero, F_CLOSE permanently clasea the file by performing
the following steps. First of all, it removes the files item from the system Lock List. If the
FCB is opened in Unlocked mode, it also purges all record locks belonging to the file from
the system Lock List. In addition, F_CLOSE invalidates the FCB's checksum to engure the
referenced FCB is not subsequently used with BDOS gystem calls that require an apen FCB
(for example, F_WRITE).

If the open count does not decrement to zero, F_CLOSE simply returns to the calling
process ard the file remains open.

For partial close aperations, F_CLOSE does not decrement the file's oper count and returns
to the calling process. The flle alweys remains open following & partial close request.

Closing a file with an extended file lock modifies the way F_CLOSE performs a permanent
close. F_CLOSE only honors an extended lock request on a permanent close of a file opened
in Locked mode. If these conditions ere satisfied, E_CLOSE invalidates the FCB's checksum
but meintains the ock item. Thus, although the file is permanently closed, other processes
cannot access the file. Section 2.11 describes extended file locking in deteil.

Upon return, the F_CLOSE system call returns a directory code in register AL with the
value OOH if the close operation is successful, or OFFH if the file is not found. Register AH
is set to O in both of these cases.

If a physical or extended error is encountered, the E_CLOSE system call performs different
actions depending on the BDOS Error mode (refer to the F_ERRMODE system call). If the
BDOS Error mode is in the default mode, the file system displays a message identifying the
errar at the conscle and terminates the calling process. Otherwise the F._CLOSE system call
returns to the calling process with register AL set to OFFH and register AH set to one of the
following physical or extended error codes:

Ol1H - Disk }/O Error : permanent error
02H - Read-Only Disk

04H - Invalid Drive : drive select error
06H - Close Checksum Error

¥ DIGITAL RESEARCH®

6-69

F_DELETE Concurzent CP/M Programmer’s Gulde

F_DELETE

Delete A Disk File

Entry Parameters:
Register CL: OI3H (19)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code
AH: Physical or Extended Error
BX: Sameas AX

The F_DELETE system call removes files andior XFCB3 that maich the FCB addressed
in register DX. The filename and filetype fields can conmin wildcard file specifications
(question marks in bytes 1 through 11), bat byte 0 cannot be a wildend as it can be in the
F_SFIRST and F_SNEXT systern calls. Interface attribute FS' specifies the rype of delers
operation 1o be parformed, as shown below:

F5' = { - Stendard Delete {Default mode)
F§' = | - Delete only XFCB's and maintain an extended file lock.

K any of the files specified by the referenced FCB are password protected, the correct
password must be placed in the first eight bytes of the current DMA buffer or it must have
been previously estshlished as the default password (refer to the 7 PASSWD system call).

For standard delete operations, the F_DELETE systemn call removes all directory entries
belonging to files that match the refsrenced FCE. All disk direciory and data space owned
by the deleted files is returned to free space end becomes available for allocation to other
files. Directory XFCBs that were owned by the deletsd files are also removed from the
directory. If interface attribute F5* of the FCB is set to 1, F_DELETE deletes only the
directory XFCBs matching the referenced FCB.

B DIGITAL RESEARCH®
570

Concurrent CP/M Programmer’s Guide F_DELETE

Note: If any of the files matching the input FCB specification fail the password check, arc
Read-Only, or are currently open by another process, then F_DELETE deletes no files or
XFCBs. This applies to both types of delete operations.

Interface attribute F5° also specifies whether an extended flle lock is to be maintained after
the F_DELETE call. If S’ is set and the referenced FCB specifies a file with an extended
lock, the calling process mainteins the lock on the file. Section 2.11 describes extended file
locking in detail.

A process can delete a file that it currently has open if the file is opened in locked mode.
However, the BDOS returns a checksum error if the process makes a subsequent refersnce
to the file with a BDOS system call requiring an open FCB. A process cannot delete files
open in Read-Only or Unlocked mode.

Deleting an open file can adversely affect the performance of the calling process. For this
reason, you should close an open file befare you delete it.

Upon return, the F_DELETE system call returns a directory code in ragister AL with the
value OOH if the delete is successful, or OFFH if no file matching the referenced FCB is
found. Register AH is set to 0 in both of these cases. If & physical or extended error is
encountered, F_DELETE performs different actions, depending on the BDOS Error mode
(refer to the F_ERRMODE system call).

If the BDOS Error mode iz the default mode, the systsm displays a message identifying
the error at the console and terminates the calling process. Otherwise, it returns to the calling
process with register AL set to OFFH and register AH set to one of the following physical
or extended error codes:

01H - Disk IYO Error : permanent error

02H - Read-Only Disk

QO3H - Read-Only File

04H - Invalid Drive : drive select error

05H - File opened by another process or open in Read-Only or Unlocked mode
07H - Password Error

i5i DIGITAL RESEARCH®

&7

F_DMAGET Concerrest CP/M Programmer™s Gulde

F_DMAGET

Beturn Address Of Direct
Memory Access Buffer

Entry Perameters:
Register CL: 034H (52)

Returned Values:
Register AX: DMA Offset
BX: Same as AX
ES: DMA Segment

F_DMAGET returns the current DMA Base Segment address in ES, with the current
DMA Offset in AX,

B DIGITAL RESEARCH®
672

Cancurrent CP/M Programmer™s Guide F_DMAOFF

F_DMAOFF

Set The Direct Memory Address Offszt

Entry Parameters:
Register CL: (1AH (26)
DX: DMA Address - Offset

DMA is an acronym for Direct Memory Address, which is often used with disk controllers
that directly access the memory of the computer to transfer data to and from the disk aub-
system. Under Concurrent CP/M, the current DMA is usually defined as the buffer in memory
where e record resides before a disk write and afier & disk read operation, If the BDOS
Multisestor Count is equal to one (refer to the F_MULTISEC syastem call), the sjze of the
buffer is 128 byies. However, if the BDOS Multisector Count i8 grealer than one, the size
of the buffer rmust equal N * 128, where N equals the Multisector Count.

Some BDOS system calls also use the current DMA to pass parameters and to feturn
values. For example, BDOS system calls that check and assign file passwords require that
the password be placed in the current DMA Buffer. As another example, DEV_SFACE
returns its results in the first 3 bytes of the current DMA, ‘When the current DMA is used in
this context, the size of the buffer in memory is determined by the specific requirements of
the system call.

When the P_CLI system call initiates a transient program, it sets the DMA offset o 080H
and the DMA Segment or Base to its initial Data Segment. DRV_ALLRESET also sets the
DMA offset to 080H. The E_DMAOFF system call can change this default value to another
memory address. The DMA address remains at its current value until it is changed by an
E_DMASEG, F_DMAOFFE, or DRY__ALLRESET call,

DHGITAL RESEARCH®

673

F_DMASEG Concurrest CP/M Prograsmers Gudde

F_DMASEG

Set Direct Memory Access
Segment Address

Entry Parameters:
Register CL: 033H (51)
DX: DMA Segment Address

F_DMASEG sets the segment value of the current DPMA buffer address. The word param-
eter in DX is a paragraph address end is used with the DMA offset value to specify the 20-
bit address of the DMA buffier. Refer to the F__DMAQFF systemn call for additional information.

Note that upon initial program loading, the default DMA base is set to the address of the

user'’s data segment (the initial value of DS) and the DMA offset iz set to 080H, which
provides access to the defanlt Buffer in the Base Page.

W DIGIYAL RESEARCH®

674

Concurrent CP/M Programynes's Guide F_ERRMODE

F_ERRMODE

Set BDOS Error Mode For Error Returns

Entry Parameters:
Register CL: 02DH (45)
DL: BDOS Error mode

The BDOS Error mode is a system parameter maintained for sachk running process that
determines how the file system handles physical and extended errors. Physical and extended
errors are described in Section 2.18. The BDOS Error mode has three states: the defanlt
mode, Return Brror mode, and Return and Display mode.

If a physical or extended error occurs when the BDOS Error mode is in the default mode,
the BDOS displays a system message at the console identifying the error and terminates the

calling process.

If a physica} or extended error occurs when the BDOS Error mode is in Return Error
made, the BDOS sets register AL to OFFH, places an error code identifying the physical or
extended error in register AH, and returns to the calling process.

If a physical or extended error oceurs when the BDOS Error mode is in Return and Display
mode, the BDOS displays the systam message before returning to the calling process, and
sets registers AH and AL as in the Return Error mode.

The F_ERRMODE system call sets the BDOS Error mode for the calling process to the
mode specified in register DL. If register DL is set to OFFH, the mode is set to Return Error
mode. If register DL is set to OFEH, the mode is set to Return and Display mode. If register
DL is set to any other value, the mode is set to the default mode.

DIGITAL RESEARCH®

6-75

F.LOCK Concxrent CP/M Programmsr's Guide

F_LOCK

Lock Records In A Digk File

Entry Parameters:
Register CL: 02AH (42)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Error Code
AH: Physical Error
BX: Samess AX

The E_LOCK system call allows a process to establish temporary ownership to particular
records within a file. This gystem call is only supported for files open in Unlocksd mode. If
it ix called for a file open in Locked or Read-Only mode, ne locking actlon is performed and
a euccessful rosult is retrned. This provides compatibility between Concurrent CP/M and
CPM-86.

The calling process passes the addregs of an FCB in which the random record field {s filled
with the Random Record Number of the first record to be locked. The number of records to
be locked is determined by the BDOS Multissctor Count (tefer to the F_MULTISEC system
call). The curreat DMA mist aleo contain the 2-bywe File ID requned by F_OPEN or
F_MAKE when the referenced FCB was operied. Note that the File ID is only returned by
the F_OPEN and F_MAKE system call when the Open mode iz Unlocked.

Interface attribute F5* specifies the type of lock to perform. Interface attribute F6' specifies
whether records have to exiet in order to be locked. The F_L.OCK interface attribute defi-
nitions are listed below:

F5'= 0 - Exclusive lock {default)

F5'= 1 - Shered lock

F6'= 0 - Lock existing records only (dzfanlt}
F6'= 1 - Lock logical records.

These options are described in detail in Section 2.14.

W DIGITAL RESEARCHS
6-76

Concurrent CP/M Programmer’s Guide F_LOCK

B_L.OCK verifies that a locking conflict with another process does not exist for each of
the records to be locked. In addition, if F_LOCK is called with etiribute F6’ reset, it also
verifies that each record number to be locked exists within the specifiad file. Bath tests are
made before any records are locked.

Most F_LOCK requesizs require a new entry in the BDOS systsm Lock List. If thers is
insufficient space in the system Lock List to satisfy the lock requesst, or if the process record
lock limit is exceeded, then F_LOCK does not lock any records and returns an error code
to the calling process.

Upon return, the F_LOCK system cell sets register AL to 00H if the lock operation is
successful. Otherwise, register AL. contains one of the following error codes:

01H - Reading unwritien data

03H - Cannot close current extent

04H - Seek to unwritien cxtent

06H - Random Record Number out of range

08H - Record locked by another process

OAH - FCB Chacksum Error

OBH - Unlocked file verification srror

OCH - Process record lock limit exceeded

ODH - Invalid File ID

0EH - No Room in system Lock List
OFFH - Physical error; refer to register AH

The system call returns error code 0tH when it accesses a data block that has not been
previously written.

The system call returns error code 03H when it cannot close the current extent prior to
moving to 8 new extent.

The system call returns error code O4H when it accesses an extent that has not been created.

The system call returns error cade 06H when byte 35 (R2) of the referenced FCB is greater
than 3,

The system call returns error code 0BH if the specified record is locked by ancther process
with an incompatible lock type.

M DIGITAL RESEARCH®

6-77

F_LOCK Coonrwvrent CP/M Programmer’s Gukide

‘The system call returns error code 0AH if the referenced FCB failled the BCB checksum
test.

The system call returns error cods OBH if the BDOS cannot locate the referenced FCB's
dirsctory eniry when attempting to verify that the FCB contains current information.

The system call returns error code OCH if performing the lock request would require that
the process consume more than the maximum allowed mmber of gystern Lock List entries.

The system call returns error code 0DH when an invalid File ID is placed at the beginning
of the current DMA.

The system call requrns error code 0EH when the system Lock List is full and performing
the lock request woukd require at least one new entry.

The system call returny errar code OFFH if a physical error is encountered, and the BDOS
Error mode is either Return Error mode or Return and Display Error mode (refer to the
F_ERRMODE system call). If the Error mode is in the defsult made, the system displays a
message at the console idemtifying the physical error and terminates the calling procass,
‘When the system call returns a physical error to the calling process, it is identified by register
AH as shown below:

O1H - Disk /O Error : permanent error
04H - Invalid Drive : drive select error

B DIGITAL RESEARCH®
&-78

Concurrent CP/M Programmer’s Guide

F_MAKE

F_MAKE
Create A Disk File
Entry Parameters:
Register CL: 0I6H (22)
DX: FCB Address - Offset
DS: FCB Address - Segment
Returned Values:
Register AL: Directory Code
AH: Physical or Extended Error
BX: Sameas AX

The F_MAKE system call creates a new directory entry for a file under the current user
rumber, It also creates an XFCB for the fle if the referenced drive has a directory label that
enables password protection on the drive, and the calling process assigns a passwond to the

file.

The calling process passes the address of the FCB with byte 0 of the FCB specifying the
drive, bytes | through 11 specifying the filename and filetype, and byte 12 set to the extent
munber. Byte 12, the EX field, is usually set to 00H. Byte 32 of the FCB, the CR field, must
be initialized 10 00H, before or after the F_MAKE call, if the intent is to write sequentially

from the beginning of the file.

Interface attribute F5' specifies the mode in which the file is to be opened. Interface
attribute F6* specifiss whether a password is to be assigned to the created file. The interface

attributes are summarized below:

F5* = 0 - Open in Locked mode (default)
F5* = 1 - Open in Unlocked mode

F6' = 0 - Do not assign password (defanlt)
F6" = 1 - Assign password to created file

E DIGITAL RESEARCH®

6-79

F.MAKE Concwrent CP/M Programmer's Culde

‘When attribute F5" is s2t to 1, the calling process must place the pessword in the first § bytes
of the current DMA buffer and st byts 9 of the DMA buffer to the password mode. Notz
that R MAKE only interrogetes attribute F6' if the referenced drive' directory label hes
enabled pessword support, The XFCB Password mode is summarized below:

XFCB Password Mode

Bit 7 - Read mode
Bit 6 - Write mode
Bit § - Delets mode

The F_MAKE system call rerurng with an error code if the referenced FCB names a file
that currently exists in the directory under the current user number, IT there is any poesibility
of duplication, an F__DELETE call should precede the F- MAKE call.

If the make file operation is successful, it activates the referenced FCB for record operations
{opens the FCB) and initiplizes both the directory entry and the referenced FCB to an empty
file. It alsc computes & checkgum and aasigns it to the FCB., BDOS system calls that require
an open FCB (for example, F_WRITE) verify that the FCB checksum i8 valid before per-
forming their operation. If the file is opened in Unlocked mode, F_MAKE alto sets bytes
RO and R1 in the FCB to & two-byte value called the File ID. The File ID is a required
paramneier for the BDOS Lock Recond and Unlock Record sysiem calls. Note that the
F_MAXE system call initializey all fle ativibutea o 0.

The BDOS file system also creates an open file itam in the systerm Lock List to record &
successful F_MAKE operation. While this item exists, no other process can delete, rentme,
truncats, or sat the file atiributes of thig file.

A creation and/for update stamp is made for the created fils if the yaferenced drive containg
B direciory labe] that enables crestion and/or updete time and date stamping and the FCB
exient oumber is equal to 0.

F_MAKE also crestes an XFCB for the created file if the referenced drive contains a
directory labe] that enables password protection, interface attribute F6® of the FCB is 1, and
the FCH is an extant zero FCB. In addition, F-MAKE also assigns the password and password
mode placed in the first nine bytes of the DMA to the XFCB.

Upon return, the F-MAKE system call returns & directory code in register AL with the
value O0H if the make operation is successful, or OFFH if no directory space is available.
Register AH 1is set iv 00H in both cases,

W DIGITAL RESEARCH®
6-30

Concurrent CP/M Programmers Guide F_-MAKE

If a physical or extended error is encountered, the F_ MAKRE system call performs different
sections depending on the BDOS Error mode (refer to the F_ERRMODE system call). If the
BPOS Error mode is in the defauit mode, the system displays a message at the console
identifying the error and terminates the calling process. Otberwise, it returns to the calling
process with register AL set to OFFH and register AH aet to one of the foilowing physical
or extended error codes:

01H - Disk VO Error : permanent error
02H - Read-Only Disk

(4H - Invalid Drive : drive select error
08H - File Already Exists

(9K - Tllegal ? in FCB

CAH - Open File Limit Excesded

0BH - No Room in system Lock List

B DIGITAL RESEARCH®

6-81

F_MULTISEC Concarrent CP/M Programmer's Guide

F_MULTISEC

Set BDOS Multisector Count

Entry Parameters:
Register CL: 02CH (44)
DL: Number of Sectors

Returned Values:
Register AL: Return Code
BL: Same as AL

The F_MULTISEC system call provides logical record blocking under Concurrent CP/M.
It enables a process to read and write from 1 to 128 logical records of 128 byies at 4 time
during subsequent BDOS resd and write system calls, It also specifics the number of 128-
byte records to be locked or unlocked by the F_LOCK and F_UNLOQCK gystem calls.

F_MULTISEC szts the Multisector Count value for the ¢alling process to the value passed
in register DL. Once set, the specified Multisector Count remains in effect until the call-
ing process mekes another F MULTISEC system cell and changes the value, Note that the
P_CLJ system call scts the Multisector Count to one when it initiates a transient procsss.

The Multisector Count effects BDOS error reporting for the BDOS read and write system
calls. With the exception of physicel errors, if an error occurs during these system calls and
the Multisector Count is greater than one, the system returns the mumber of records success-
fully processed in register AH.

Upon return, the systern call sets register AL to O0H if the specified value Is in the range
of 1 to 128. Otherwise, it sets register AL to OFFH.

B DIGITAL RESEARCH®

6-32

Conecurrent CP/M Programmer’s Gukle F_OPEN

F_OPEN

Open A Disk File

Entry Parameters:
Register CL.: OFH (15)
DX: FECB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code
AH: Physical or Extended Error
BX: Same as AX

The F_OPEN system call activates the FCB for a file that exists in the disk directory under
the currently active user number or user zero. The calling process passes the address of the
FCB, with byte 0 of the FCB specifying the drive, bytes 1 through 11 specifying the filename
and filetype, and byte 12 specifying the extent. Byte 12 is usually set to zero.

Interfece attributes FS' and F§' of the FCB specify the mode in which the file is to be
opened, as shown below:

Fs' =0, F6” = 0 - Open in Locked mode (Default mode)
Fs' =1, F6’ = 0 - Open in Unlocked mode
F5' = 0orl, F6' = 1 - Open in Reed-Only mode

hn

If the file is password protected in Read mode, the correct password must be placed in the
first eight bytes of the current DMA or have been previously established as the default
password (refer to the F_PASSWD system call). If the current record field of the FCB, CR,
is set to OFFH, the F_OPEN system calf returns the byte count of the last record of the file
in the CR field. The last record byte count for a file can be set using the F_ATTRIB system
call.

Note: The calling process must sct the CR field of the FCB to O0H if the file is to be
accessed sequentially from the first record.

B DIGETAL RESEARCH®

6-83

F_OPEN Concurrent CP/M Programmer’s Guide

The F_OPEN system call performs the following steps for files opened in locked or Read-
Only mode. If the current user is nonzero and the ftle to be opened doss not exist under the
current user number, the F_OPEN system call segrches user O for the file. If the file exists
under user 0 and has the system attribute (T2') set, the file is opened under user 0. ‘The Open
mode s sutomatically sst to Read-Only wkhen this is done.

The F_OPEN system cell also performs the [cllowing action for files opened in locked
mode. If the file has the Read-Only attribute (T1?) set, the Open mode iz antomaticaily set
to Read-Cnly. Notethat Read-Only mode implies the file can be concurrently nccessed by
other processes if they alto apen the file in Read-Only mode.

If the open operation is successful, F_OPEN activates the user’s FCB for record operations
a8 follows: F_OPEN copits the relevant directory information from the matching directory
FCB into bytes DO through D15 of the FCB. It also compules a checksumn and assigns it to
the RCB. All BDOS system calls that require an open FCB (for example, . READ) verify
that the FCB checksum is valid before performing their operation.

If the file is opened in Unlocked mode, the F_OPEN system czll seis bytes RO and R1 of
the FCB to e two-byte value called the File ID. The File ID is a required perameter for the
F_LOCK and F_UNLOCK system calls. If the Open mode is forced to Read-Only, F_OPEN
sets interface attribute F8’ to 1 in the user’s FCB. In addition, the systzm call sets attribute
F7’ to] if the refervaced filo is password protected in Writs mode and the correct password
was not passed in the DMA or did not match the defsult password, The BDOS does not
enpport write operations for an activated FCB if interface attribute F7' or F8” is set to 1.

The BDOS file system elso creates an open file item in the system Lock List to record a
guccesaful open file operstion. While this item exists, no other process can delete, rename,
or madify the file’s attributes, In addition, this item prevents other processes from opening
the file if the flle is opened in Locked mode. It also requires that other processes match the
file’s Open mode if the file is opened in Unlockad or Read-Only mode. This itsm remains in
the system Lock List until the file is permanently closed or until the process that opened the
fils terminates.

When the open operation is successful, the F_OPEN system call also makes an access
time end dete stamp for the opened file when the following conditions are satisfied: the
refersnced drive has a directory label that requests access date and time stamping, the FCB
extent field is equal to zero, and the referenced drive is Read-Wiite.

W DIGITAL RESEARCH®

Concurrent CP/M Programmet's Guide F-OPEN

Upon return, F_OPEN returns & directory code in register AL with the value 00H if the
open is successful, or OFFH if the file is not found. Register AH is set 1o O in both of these
cases, If a physical or extended error ia encountered, the E_OPEN systern call performs
different actions depending on the BDOS Error mode (refer to the F_ERRMODE system
call). If the BDOS Error mode is in the default mode, the system displays a message iden-
tifying the error at the console and terminates the process. Otherwise, F_OPEN returns to
the calling process with register AL set to OFFH and register AH set to one of the following
physical or extended error codes:

OIH - Disk IO Error : permanent error

04H - Invalid Drive : drive select error

05H - File is open by another process or by the current process in an incompatible
mode

O7H - Password Error

09H - Dllegal ? in FCB

0AH - Open File Limit Exceaded

OBH - No Room in system Lock List

W DIGITAL RESEARCH®
6-85

F_PARSE

Concurrent CP/M Programmer's Guide

F. PARSE

Parse An ASCII String
And Initialize An FCB

Entry Paremeters:

Register CL: 098H (152)

DX: PFCB Address - Offset
DS: PECB Address - Segment

Returned Values:

Register AX: OFFFFH if error
0 if end of filename string
0 if end of lineaddress of next item

to parse
BX: Same as AX
CX: Error Code
FILENAME FCBADR

Figure 6-6. PFCB-Parse Filename Control Block

6-86

9 DIGITAL RESEARCHe®

Conewrrent CP/M Programmer’s Guide F_PARSE

Table 6-11. PFCBE Field Definitions

Field Description
FILENAME Offset of en ASCII file specification tn parse. The offset is relative
to the same Data Segment as the PFCB.
FCBADR Offset of a File Control Block to initialize. The offset is relative to
the same Data Segment as the PFCE.

The F_PARSE system call parses an ASCII file specification (FILENAME) and prepares
a File Coatrol Block (FCB), The calling process passes the address of a data structure called
the Parse Filename Control Block, (PFCB) in registers DX and DS. The PFCB contains the
ofiset of the ASCII filename string followed by the offset of the target FCB.

F_PARSE assumes the file specification to be in the following form
{Dx} FILENAME {.TYF} {;PASSWORD}
where those items enclosed in curly brackets are optional.
The F_PARSE system call parses the first file specification it finds in the input string. First
of all, it eliminates leading blanks and tabs. F. PARSE then assumes the file specification
ends on the first delimiter it encounters that is out of context with the specific field it is

parsing. For instance, if it finds a colon (¢), and it is not the second character of the file
specification, the colon delimits the whole file specification.

DHGITAL RESEARCH®

6-87

F_PARSE Cooeurrent CP/M Programmer’s Golde

The F._PARSE system call recognizes the following characters as delimiters:

refurn

; (semicolon) - except before password field

= {equal)

< (less than)

> (greater than)

(period) - except after filename and before filstype
(colon) - except before filename and after dtive
(comma)

(verticel bar)

(left square bracket)

(right square bracket)

ek —y — -

If the F_PARSE aystem call encounters a nongraphic character in the range 1 through 31 not
listed above, it treats the character as an error.

The F_PARSE system cell initializes the gpecified ECB as shown in Table 6-12.

688

W DIGITAL RESEARCH®

Conecurrent CP/M Programmer’s Guids F_PARSE

Table 6-12. FCB Inftalization

Byte number

Explanation

byte O

byte 1-8

byte 9-11

byte 12-15

byte 1623

byte 24-31

The drive field is set to the specified drive. If the drive ia not specified,
the dafault value is used. 0= defanlt, 1 = A, 2=B, etc.

The name is set to the specified filename. All letters are canverted to
uppercase. If the name is not eight characters long, the remaining bytes
in the filename field are padded with blanks. If the filename has an
asterisk (*), all remaining bytes in the filename field are filled in with
question marks (7). The system call returns an error if the filename is
more than eight bytes long.

The type is set to the specifted filetype. If no type is specified, the type
fleld is initialized to blanks. All letters are converted to uppercase. If
the type iz not three characters long, the remaining bytes in the filetype
field are padded with blanks. If an asterisk is encountered, &ll remain-
ing bytes are filled in with question marks. The system call returns an
error if the type field is more than 3 bytes long.

Filled in with zeros.

The password field is set to the specified password. If no password is
specified, thia field is initialized to blanks. If the password is not eight
characters long, remaining bytes are padded with blanks. All letters
sre converted to uppercase. The system call returns an exror if the
password field is more than eight bytes long.

Reserved for system use.

If an error occurs, F_PARSE returns OFFFFH in register AX indicating the error.

B DIGITAL RESEARCH®

6-89

F_PARSE Concwrent CP/M Programimer’s Guide

COn 2 successtul parss, the F_PARSE systern call checks the next item in the FILENAME
string. It scans for the first character that follows trailing blanks and tabs, If the character is
& line feed (OAH), a caniage return (ODH), or a mull charscter (00H), it returns a 0 indicating
the end of the FILENAME string. If the next character is a delimiter, it returns the address
of the delimiter. If the pext charscter is not a delimiter, it returns the address of the first
truiling blank or tab.

I the E._PARSE system call i8 to be used to pares a subsequent filename in the FILENAME
string, the retrned address should be advanced over the delimiter before placing it in the
PFCB.

Refer o Table 6-5 for a list of error codes returned in CX,

M DIGITAL RESEARCH®
&80

Concnrrent CP/M Programmer’s Guide F_PASSWD

F_PASSWD

Establish A Defanlt Password
For File Access

Entry Parameters:
Register CL: 06AH (106)
DX: Password Address - Offset
DS: Password Address - Segment

The FLPASSWD system call allows a process to specify a password value before a file
protected by the password is accessed. When the file system accesses a password-protecied
file, it checks the current DMA, and the default password for the correct value. If either
value matches the file’s password, full access to the file is allowed.

Concurrent CP/M maintains a defanlt password for each process running on the system.
A new process inherits its initial default password from its parent, the process creating the
DEW Process.

Note: Changing the defanlt password does not affect other processes currently running on
the system.

To make an F_PASSWD call, the calling process passes the address of an eight-byte field
containing the password,

B DIGITAL RESEARCH®

6-91

F_RANDREC Cancerront CP/M Prograssmer’s Gulide

F_RANDREC

Return The Random Record Number Of The
Next Record To Access In A Disk File

Register CL: 024H (36)
DX: FECB Address - Offset
DS: FCB Address - Segment

Returned Values: Random Record Field of FCB Set

The F_RANDREC system call returns the Random Record Number of the next recond to
be accessed from a file that has been read or written sequentially to a particular point. The
system call returns this valpe in the Random Record field, bytes RO, R1, and R2, of the
addressed FCB, The F_RANDREC sysiem call can be useful in two ways,

Firut, it is often neceasary to initially read and scan a sequential file to extract the positions
of various key ficlds. As esch key is encountered, F_RANDREC is called to compuie the
random record position for the dats corresponding to thia key, [T the dets unit size is 128
bytes, the resulting record number minus one i3 placed info a table with the key for later
retricval.

After scanning the entire file and tabularizing the keys and their record numbers, you can
move directly to & particular record by performing & random read using the corresponding
Randomn Record Number that was saved sarfier. The scheme is sasily genemlized when
variable record lengthe sre invalved, because the program need only atore the buffer-relative
byie position slong with the bey and record nmumber in order to find the exact starting position
of the keyed data at a later time,

F_RANDREC can also be used when switching from a sequential read or write {¢ # random
read or write, A file is saquentially accetsed to a particular point in the file, E_RANDREC
ix called to set the record number, and subsequent random read and write operations contime
from the next record in the file,

W DIGITAL RESEARCH®

692

Concurrant CP/M Programmers Guide F-READ

F_READ

Read Records Sequentially
From A Disk File

Entry Parameters:
Register CL: 014H (20)
DX: FCB Address - Offset
DS: PFCB Address - Segment

Returned Values:
Register AL Error Code
AH: Physicel Error
BX: Same as AX

The F_READ system call reads the next 1 to 128 128-byte records from a file into mem-
ory, beginning at the current DMA address. The BDOS Multisector Count (refer to the
F_MULTISEC system call) determines the number of records to be read. The default is
one record. The addressed FCB must have been previously activated by an F_OPEN or
P_MAKE system call.

F_READ reads each record from the current record (CR) field in the FCB, relative to the
current extent, then automatically increments the CR field to the next record position. If the
CR field overflows, then F_READ automatically opens the next logical extent and resets the
CR field to zero for the next read operation. The calling process must set the CR field to 00H
following the open call if the intent is to read sequentially from the beginning of the file.

Upon return, the E_READ system call sets register AL to zero if the read operation is
successful. Otherwise, register AL contains an error code identifying the error as shown
below:

01H - Reading unwritten data (end-of-file)

0SH - Record locked by another process

0OH - Invalid FCB

0AH - FCB Checksum Error

OBH - Unlocked file verification error
OFFH - Physical error; refer to register AH

B DIGITAL RESEARCH®

603

F_READ Concurrent CP/M Programmer’s Gulde

The system call returns error code OLH if no date axizts st the naxt record position of the
file. The po data situation iz usually encountered at the end of a file. Howsver, it can also
occur if you try to read a data block that has not been previously written or an extent that
has not been created. These situations arc usually restricted to files created or appended with
the BDOS random write system calls (F_WRITERAND and F_WRITEZP).

The systam call returns error code O8H if the calling process attemnpts to read a record
locked by another process with an exclusive Iock. This erTor cocde is only returned for files
opened 1n Unlocked mode.

The system call returna error code 09H if the FCB is invalidated by a previcus F_CLOSE
system call that returned an error.

The system call returns error code DAH if the referenced FCB friled the FCB checksum
test,

The gystem call returns error code OBH if the BDOS camnot locate the FCB's directory
eniry when attempting to verify that the referenced FCB contains current information. The
system call only returns this error for files opened in Unlocked mode.,

‘The system call returns error code OFFH if a physical error is encountered and the BDOS
Error mode is in one of the return modes (refer to the F_ERRMODE system call). If the
Error mode is in the defmit mode, the file xystem displays a message at the console identifying
the physical emor and terminates the calling procsss. When the rystem call retumns a physical
error to the calling process, it 1s identified by register AH a3 shown below:

O1H - Disk /0 Error : permanent efror
04H - Invalid Drive : drive salect ermor

On ali esor returns, except for physical error returns (AL = 255), F_REAI) sets register
AH to the number of records successfully read before the error was encountered. This value
can range from O to 127 depending on the current BDOS Multisector Count. It is always set
to zero when the Multisector Count is equal to one.

1 DIGITAL RESEARCH®

6-94

Conewrrent CF /M Programmer’s Gukie F_READRAND

F_READRAND

Read Random Records
From A Disk File

Entry Parameters;
Register CL: 021H (33)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Error Code
AH: Phyzsical Error
BX: Same as AX

The F_READRAND system call is similer to the F_READ system cell except that the
read operation takes place at a particular Random Record Number, selected by the 24-bit
value constructed from the three-byte, RO, R1, R2, field beginning at position 33 of the
FCB. Note that the sequence of 24 bits is stored with the least significant byte first, RO, the
middle byte next, R1, and the high byte last, R2. The Random Record Number can range
from O to 262,143, This corresponds to a maximum value of 3 in byte R2.

To read a file with the F_READRAND system call, the calling process must first open the
base extent, extent 0. This ensures that the FCB iz properly initialized for subsequent random
access operations. The base extent might or might not contain any allocated data.

The F_READRAND gystem call reads the record specified by the random record field into
the current DMA address. F_READRAND automatically sets the FCB extent and current
record number values, EX and CR, but unlike the F_READ system call, it does not advance
the current record mimber. Thus, a subsequent E_READRAND call rereads the same record.
After a random read operation, a file can be accessed sequentially, starting from the current
randomly accessed position. However, the last randomly accessed record is reread or rewritten
when switching from random to sequential mode.

If the BDOS Multisector count js greater than one (refer to the F_MULTISEC system
cali), E_READRAND reads multiple consccutive records into memory beginning at the
current DMA., F_READRAND automatically increments the R0, R1, R2 field of the FCB
to read each record. However, it restores the FCB's Random Record Number to the first
record’s value upon return to the calling process.

B DIGITAL RESEARCH®
6-95

F_READRAND Concwrint CF/M Progmmmer'y Gulds

Upon return, BE_READRAND sets register AL o 00H if the read operetion is succsssful.
Ortherwise, register AL conteins one of the following error codes:

01H - Reading unwriiten data
03H - Cannot close current extent
04H - Seek to unwritten extent
05H - Random Record Number ot of rangs
08H - Recard locked by snother process
0AH - FCB Checksum Error
0BH - Unlocked file verification error
OFFH - Physical error; refer o register AH

The system call returna error code OLH when it sccesaes a dats block not previously written.
This may indicate sn end-of-fils (EQF) condition.

The aystem call retms error code 03H when it cennot close the current extent prior to
moving to & new extent.

The system call returns errar code 04H when a read rendom operation accesses an extent
thet has not been created.

The rystem ca]} returna error cods O6H when byts 38 (R2) of tha referencad FCB ia greater
then 3.

The system call returns error code 08H if the calling process attempts to read a record
locked by snother process with an exclusive lock. This error code is only returned for files
opened in Unlocked mode.

‘The: system call returns error code OAH if the referenced FCB failed the FCB checksum
test.

The system call returns error code OBH if the BDOS cannot locate the FCB’ directory

entry when attempting to verify that the referenced FCB contains current informsation. The
system call only returns this error for files open in Unlocked mode.

 DKGITAL RESEARCH®

6-56

Conewrrent CP/M Programmer's Guide F_-READRAND

The system eall returns etror code OFFH if a physical error is encountered and the BDOS
Error mode is in one of the return modes (refer to the E ERRMODE systom call). If the
Error mode is in the defau]t mode, the file system displays a message at the console identifying
the physical error and terminates the calling process. When a phyaical error is returned 10
the calling process, it is identified by the four Jow-order bits of register AH as shown below:

OLH - Disk I/Q Error : permanent error
04H - Invalid Drive : drive select error

On all error returns except for physical error returng, AL = 255, F_READRAND sers
register AH to the mumber of records successfully mad befare the error was encountered.
This value can range from D to 127 depending on the current BDOS Multisector Count. It
15 always set to zero when the Multisector Count is equal to one.

B DIGITAL RESEARCH®
697

F_RENAME Coucturent CP/M Programmer'y Gulde

F_RENAME

Rename A Disk File

Register CL: Q17H (23)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register Al: Directory Code
AH: Physical or Extended Eror
BX: Sameas AX

The F_RENAME system call uses the referenced FCB to change ail directory entries of
the file specified by the drive and filentme in bytes O to 11 of the FCB to the filename

gpecified in bytes 17 through 27.

If the file specified by the first filename is password-protected, the correct password must
be placed in the first eight bytes of the current DMA buffer, or bave been previcusly estab-
lished as the defmlt paggword (refer to the F_PASSWD syatem call).

The calling process muist al=o ensnre that the filenames specified in the FCB are valid and
unambiguous, and that the new filename doss not already exist on the drive. F_RENAME
uses the drive code at byie O of the FCB to select the drive. The drive code at byts 16 of the

FCB is ignored.

Interface attribuie F5' specifics whether an extended file lock is to be maintained affer the
F_ATTRIE call as shown below:

B5’
Fs’

0 - Do not maintain &n extended file lock (defeult)
1 - Mainfain en axtended file lock

[

If F5” is set and the referenced FCB specifies a flle with an extended file lock, the calling
process maintaing the lock on the file. Otherwise, the file becomes availeble to other processes
on the system. Section 2.11 describes extended fils locking in detail.

D DIGITAL RESEARCH®

6-98

Consurrent CP/M Programmer’s Gulde F_RENAME

A process can renarne a file that it has open if the filo is open in locked mode. However,
the BDOS returns a checksum error if the process subsequently references the file with a
system call requiring an open FCB. A file open in Read-Only or Unlocked mode cannot be
renamed by any process,

Renaming an open file can adversely affect the performance of the calling process. For
thia reason, you should close an open file before you renasme it.

Upon return, the F..RENAME systemn call returns a directory code in register Al with
the value 0O0H if the rename i3 successful, or OFFH if the file named by the first Gilename in
the FCB is not found. Register AH is set to O0OH in both of these cases, [T a physical or
extended error is encountered, the F_ RENAME system call performs different actions depending
on the BDOS Error mode (refer to the F_ERRMODE system call). If the BDOS Error mode
is in the default mode, the system displays a message at the console identifying the error,
and terminates the process. Otherwise, it returns to the calling process with register AL set
to OFFH dnd with register AH set to one of the following physical or extended error codes:

01H - Disk I/O Error : permanent error
02H - Read-Only Disk

03H - Read-Only File

04H - Invalid Drive ; drive select error
OSH - File open by another process
O7H - Password Error

O8H - File Already Exists

O%H - Iljegal ? in FCB

1D DIGITAL RESEARCH®

6-99

F_SFIRST Concurrent CP/M Programmer’s Guide

F_SKFIRST

Find The First File That Malches
The Specified FCB

Entry Parameters:
Register CL: O11H (17
DX: FCB Addreas - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code
AH: Physical or Extended Brror
BX: Same ss AX

The F_SFIRST systsm call scans the directory for n match with the referenced FCB, Two
types of zearches can be performed. For standard searches, the calling process initializes
bytes 0 through 12 of the referenced FCB, with byte 0 specifying the drive directory to be
searched, bytes 1 through 11 specifying the file or files to be searched for, and byte 12
specifying the sxtent. Byte 12 is usuully set to 00H. An ASCII question mark (63, or 03FH
hexadecimel) in sny of the bytes 1 through 12 matches all satries on the directory in the
corresponding position. This fecility, called ambiguous file reference, cen be used to search
for multiple files on the directory, When called in the standard mode, F_SFIRST scans for
the first file eotry in the specifisd directory that matches the FCB and belongs to the current
user number.

The F_SFIRST systemn call also initinlizes the F.SNEXT system call. After the
F_SFIRST system call has loceted the first directory entry matching the referenced FCB,
F_SNEXT can be called repeafedly to locate all remaining matching entries. In terms of
execution sequence, however, the F_SNEXT call must follow either a F_SFIRST or
F_SNEXT call with no other intervening BDOS file-access system calls.

If byte O of the referenced FCB is set 10 a question mark, F_SFIRST ignores the remzinder
of the referenced FCB and locates the first directory entry residing on the current default
drive. All remaining directory entries can be located by making multiple F._SNEXT calls,
This type of search operation is not usually made by application programs, but it dots provide
complete Aexibility to scan all directory entries. Noie that this type of search operation musi
be performed 10 access & drive’s directory label.

W DIGITAL RESEARCH®
6-100

Concwrent CP/M Programmer's Guide F_SFIRST

Upon return, the F_SFIRST system call returns & directory code in register AL with the
velue O to 3 if the search is successful, or OFFH if a matching directory entry is not found.
Register AH is set to zero in both of these cases. For successful sgarches, the current DMA
is plso filled with the directory record containing the matching entry, and the relative atarting
position is AL * 32. The directory information can be extracted from the buffer st this
position.

If the directory has been initialized for dete and time stamping, then an FCB resides in
every fourth directory entry, end successful directory codes are restricted tothe values O to
2, For successful searches, if the metching direetory record is an extent zero entry, and if
an SFCB resides at offset 96 within the current DMA buffer, then the contents of
(DMA Address +96) = 021H, and the SFCB contains the time and dete stamp informa-
tion and password mods for the file. This information is located &t the relative starting
position of 97 + (AL * 10) within the current DMA in the following format;

C - 3 : Create or Access Date and Time Stamp Field
4 - 7 Update Date and Time Stamp Field
8 : Password Mode Field

Refer to Section 2.8 for more information about SFCBs.

If a physical error is encountered, the F_SFIRST system call performs different actions
depending on the BDOS error mode (refer to the F_ERRMODE system call). If the BDOS
Error mode is in the defanlt mode, the system displays a message identifying the error at the
console and terminates the calling process. Otherwise, it returns to the calling process with
register AL set to OFFH and register AH set to one of the following physica! error codes:

O1H - Disk 10 Error : permanent error
04H - Invalid Drive : drive select error

B DMETAL RESEARCH®

6-101

F_SI7X Concwrrest CP/M Programnmer’s Guide

F_SIZE

Compute The Size Of A Disk File

Entry Parameters:
Register CL: 023H (35)
DX: FCB Address - Offset
DS8: FCB Address - Segment

Returned Values:
Register AL: Directory Code
AH: Physical or Extended Brror
BX: Sammaz AX
Random Record Field of FCB Set

The F_SIZE system call determines the virtual file size. This is the address of the record
immediately following the end of the file. The virtual slze of a file corresponds to the physical
size if the file is written sequentially. If the file is written in mndom mode, gaps might exist
in the allocation, and the fle rnight contain fewer records than the indicated size. For example,
if & single recard with record mumber 262,143, the Concurtent CPYM maximuim, is written
to & file using the F_WRITERAND sysitm call, then the virtual size of the file is 262,144
records even though only one data block is actuelly allocated.

To compute file size, the calling process passes the address of en FCB with bytes R0, R1,
end R2 present. The F_SIZE eystem cell s=is the random record field of the FCE to the
Rendom Record Number + 1 of the last record in the file, If the R2 byte is set to 04H, and
RO and R1] are both zerv, then the file contains the meximum record count, 262,144,

A process cen append data to the end of an existing file by calling E_SIZE to set the
random record position to the end of file, and then performing a sequence of random writes.

Note: The file need not be open in order to use E_SIZE. However, if the file is open in
Locked mode and it has been extended by the calling process, the file must be closed before
F_SIZE is called. Otherwise, F_SIZE returns an incorrect file size. F_STZE returns the
correct size for files open in Unlocked mode and Read-Only mode.

W DIGITAL RESEAXCH®
6-102

Concurrent CP/M Programmer's Guide F_SIZE

Upon return, F_SIZE returns a O0H in register Al if the file specified by the referenced
FCB is found, or 2 OFFH in regisier AL if the file is not found. Register AH is set to 00H
in both cases.

[f a physical or extended error is encountered, F_SIZE performs different actions depend-
ing an the BDOS Error mode {refer to the F_ERRMODE system call). If the BDOS Error
mode is in the default mode, the system displays a message at the console identifving the
error and terminates the process. Otherwise, F_SIZE returns to the calling process with
register AL set fo OFFH and register AH set to one of the following physical or extended
error codes:

01H - Disk YO Error ; permanent error

04H - [nvalid Drive : drive select error
9H - Illegal ? in FCB

B DIGITAL RESEARCH®

6-103

F_SNEXT Cosewrrend CP/M Progranmeey’s Guide

F.SNEXT

Find A Subsequent File That Matches
The Specified FRCB Of A Previous
F_SFIRST Or F_SNEXT

Entry Perameters:
Register CL: O12H (18)

Returned Vilues:
Register Al.: Directory Code
AH: Physical or Extended Error
BX: Sameas AX

The F_SNEXT system call is identical to F_SPIRST except that the directory scan con-
tinues from the last entry that was matched. F_SNEXT retrns a directory code in register
AL, analogous to B_SFIRST.

Note: In execution asgquence, 8 F_SNEXT cali mast follow either an F_SFIRST or another
F_SNEXT with no other intsrvening BDQS fils-access system calls.

B DIGITAL RESEARCH®

6-104

Concnrrent CP/M Programuwr’s Guide

F_TIMEDATE

F_TIMEDATE
Return File Date Stamps
And Password Mode
Entry Perameters:
Register CL: 066H (102)
DX: FCB Address - Offset
DS: FCB Address - Segment
Returned Values:
Register AL: Directory Code
AH: Physical Error
BX: Same as AX

The F_TIMEDATE sysiem call returns the time and date stamp information and password
mode for the specified file in byte 12 and bytes 24 through 31 of the specified FCB. The
calling process passes the address of an FCB in which the drive, filename, and type fields

have been defined.

If F_TIMEDATE is successful, it seis the following fields in the referenced FCB

byte 12 password mode field

bit 7 - Read mode
bit 6 - Write mode
bit 5 - Delete mode

Byte 12 equal to 0 indicaies the file has not been assigned a password.

byte 24 - 27 XFCB Create of Access time stamp field
byte 28 - 31 XFCB Update time stamp field

8 DIGITAL RESEARCH*

6105

F_TIMEDATE Concwsrent CP/M Programmer’s Gulde

Upon return, F_TIMEDATE returng & directory code in register AL with the value O0H
if the operatior is successful, or OFFH if the specified file is not found. Register AH is set
ta 00H in both of these cases. If a phygical or extended error is encountered, F_TIMEDATE
performs different actions depending on the BDOS Error mode (refer to the F_ERRMODE
system cell). If the BDOS Error mode is in the defanlt mode, the system displays a mes-
sage at the console identifying the error and terminates the calling process. Otherwise,
F_TIMEDATE returns to the calling process with register AL set to OFFH and register
AH szt to one of the following physical error codes:

01H - Disk IYO Error : permanent error

04H - Invalid Drive : drive selact error
09H - Ulegal 7 in FCB

O DIGITAL RESEARCH®

6-106

Cancurrent CP/M Programmers Guide F_TRUNCATE

F_TRUNCATE

Truncate File

Entry Parameters:
Register CL: 063H (99)
DX: FCB Address - Offset

Returned Values:
Register AL: Directory Code
AH: Physical or Extended Error
BX: Sameas AX

The F_TRUNCATE system call s2ts the last record of a file to the Rendom Record Number
caonteioed in the referenced FCB, The calling program passes the address of the FCB in
register DX with byte O of the FCB specifying the drive, bytes 1 through 1 specifying the
filename and filetype, and bytes 33 through 35 (RO, R, and R2) specifying the last record
of the file. The last record number is a 24-bit value, stored with the least significant byte first
(R0O), the middle byte next (R1), and the high byte last (R2}. This value can range from 0 to
262,143 (03FFFFH).

If the file specified by the referenced FCB is password-protected, the correct password
must have been placed in the first eight bytes of the current DMA buffer, or have been
previously established as the default password (refer to the F_PASSWD system call).

Interface attribute F5® specifies whether an extended file lock is to be maintained after the
F_TRUNCATE call, as shown below;

F5* = 0 - Do not maintzain an exiended file lock (default)
F§* = 1 - Maintzin an extended file lock

Jf F5' is set and the referenced FCB specifies a file with an extended file lock, the calling
process maintains the lock on the file. Otherwise, the file becomes available to other processes
on the system. Section 2,11 describes extended file locking in detail.

F_TRUNCATE requires that the Random Record Number field of the referenced FCB
specify a value less than the current file size, In addition, if the file is sparse, the random
record field must specify a region of the file where data exists.

B DIGITAL RESEARCH®
6-107

F_TRUNCATE Concurrent CP/M Programmers Gulde

A process can truncate a file that it currently has open if the file is openad In locked mode,
and the file has not been extended during the open seasion. However, the BDOS returns a
checksum error if the process makes a subsequent reference to the file with a BDOS system
call requiring an open FCB. A process cannot truncate files open in RO or Unlocked mods.

Truncating an open file iz not recommended under Concurrent CP/M. F_TRUNCATE
truncates & file based on the file’s state in the directory. If a process attempts to truncate at a
region of the file that has been allocated in memory but has not been recorded in the directory,
P_TRUNCATE returns an error. Even when successful, an open file truncats can sdversely
affect the performance of the ceiling process. For these ressons, you should closes an open
fife before you truncete it,

After completion, F_TRUNCATE returns a directory code in register AL with the valus
ODH if the operution is successful or OFFH if the file is not found or if the record mumber is
invalid. In botk cases register AH is set to 00H.

If a physical or extended error is sncountered, F TRUNCATE performs different actions
depending on the BDOS erxor mode (refer to F_ERRMODE). If the BDOS error mode is
in the defsult mode, a message identifying the error is displayed at the console and the
progrem is terminated. Otherwise, F_ TRUNCATE returns to the calling program with reg-
ister AL set to OFFH and register AH set to one of the following physical or extendad ervor
codes:

01H - Disk I/O Error ; permanent error
02H - Read/Only Disk

03H - Read/Only File

04H - Invalid Drive : drive select error
05H - File Currently Open

06H - Close Checksumn Error

O7H - Paaaword Error

08H - File Already Exists

09H - Illegal 7 in RCB

0AH - Open File Limit Exceaded
0BH - No Room in System Lock List

EDIGITAL RESEARCH®

6-108

Concurrent CP/M Programmery Guide F_UNLOCK

F_UNLOCK

Unlock Records In A Disk File

Entry Parameters:
Register CL: C02BH (43)
DX: FCB Address - Offsat
D§: FCB Address - Segment

Returned Values:
Register AL: Error Code
AH: Physical Error
BX: Same as AX

The F_UNLOCK system call unlocks one or more consecutive records previously locked
by the F_LOCK system call. This system call is only supported for files open in Unlocked
mode. If it is called for a file open in Locked or Read-Only mode, no unlocking action occurs
and a successful result is returned. Record locking and unlocking is described in detail in
Section 2.14.

The calling process passes the address of an FCB in which the Random Record Field
is filled with the Random Record Number of the first record to be unlocked. The number
of records to be unlocked is determined by the BDOS Multisector Count (refer to the
F_MULTISEC system call). The corrent DMA mnst contain the 2-byte File ID returned by
the F_OPEN or F_MAKE syst=m call when the referenced FCB was opened. Note that the
File ID is only returned by F_OPEN or E_MAKE when the file open mode is Unlocked.

If interface attribute F5’ is sat to 1, F_UNLOCK unlocks all locked records belonging to
the calling process. The F_UNLOCK interface atribute definition is listed below:

F5® = 0 - Unlock records specified by Random Record Number and BDOS

Multisector Count (default)
F5°= 1 - Unlock all locked records.

B DKGITAL RESEARCH®

6-109

F_UNLOCX Concimrant CP/M Programmer's Guide

F_UNLOCK ignores the FCB Random Record field and the BDOS Multisecior Count
when F&' is set,

F.UNLOCK does not unlock a record that is currently locked by another process.
Howaver, the system call does not return an error if & procesz atiempts to do that, Thus, if
the Multisector Count is greater than one, F_UNLOCK unlocks all records locked by the
calling process, skipping those records locked by other processes.

Same F_UNLOCK requests require a new entry in the BDOS system Lock List. If there
is insufficient space in the system Lock List to zatisfy the F_UNLOCK request, or if the
process record Lock List limit is exceeded, then F_UNLOCK does not unlock any records
and returns an error code fo the calling process.

Upon return, E_UNLOCK sets ragister AL to O0H if the unlock operation wea successful.
Otherwise, register AL contains one of the following error codes:

01H - Reading unwritten data

03H - Cannot close current extent

04H - Seek to unwritten extent

06H - Random Record Mumber out of range
0OAH - FCB Checksum Error

OCH - Process record Lock List limit sxceeded
0DH - Invalid File ID

OEH - No room in system Lock List
QOFFH - Physical error refer to register AH

The system call returns error code O1H when it accesses a data hlock which hes not been
previoualy written,

The systemn call returns error code O3H when it cannot close the current extent prior to
moving to & new extent.

The system call returns error code 04H when it accesses an extent that has not been created.

The systern call returns error code O6H when byte 35 (r2) for u list of the referenced FCB
is greater than 3.

The sysiem call returns error code QOAH if the referenced FCB failed the FCB checksum
test.

#l DIGITAL RESEARCH®

&-110

Concurrent CP/M Programmer's Guide F_UNLOCK

The system call returns error code OCH if performing the unlock request would require
that the process consume more than the maximum allowed mmmber of system Lock List
entries.

The system call returns error code $DH when an invalid File ID is placed at the beginning
of the current DMA,

The system call returns error code OEH when the system Lock List is full and performing
the unlock request would require &t icast one now enfry.

The system call returns error code 0FFH if s physical error was encountered and the BDOS
Error mode is ong of the return modes (refer to the F._ERRMODE system call). If the Error
mode is the Default mode, the system displays a message at the console identifying the
physical error and terminates the calling process. When the system call returns & physical
error to the calling process, it is identified by register AH as shown below:

01H - Disk VO Error : permanent error
04H - Invalid Drive : drive select error

B DIGITAL RESEARCH®

6-111

¥F_USERNUM Cacorrent CP/M Progruseser’s Guide

F_USERNUM

Set Or Return The Calling Process’s
Default User Number

Entry Perameters:
Register CL: 020H (32)
DL: OFFH to GET User Number
User Number to SET

Returned Values:
Register AL: Current User Number if GET
Bl: Sameas AL

A process can change or interrogate its current default user number by calling
F_USERNUM. If register DL = OFFH, then the systam call retirns the value of this user
number in register AL. The velue can range from O to OFH. If regiater DL i3 not OFFH, then
the system call changes the default user number to the value in DL, modulo 010H (the high
nibble of DL js masked off).

Under Concurrent CP/M, & new procsss inherits itz initis] defanlt usey mmber from its
parent, the process creating the new process. Changing the defmlt user mumber does not
change the user code of the parent. On the other hand, gl child processes of the calling
process inherit the new user mumber.

This convention is demonstratad by the operation of the TMP. When a command is typed,
8 new process is created with the same user number 8z thet of the TMP. If thix new process
changes its user number, the TMP is unaffected. Once the new process terminates, the TMP
displays the same user number in its prompt that it displayed before the command was entered
and the child process was created.

W DIGITAL RESEARCH®
&112

Concurrent CP/M Programmer’s Guide F_WRITE

F_WRITE

Write Records Sequentially
To A Disk File

Entry Parameters:
Register CL: 015H (21)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returoed Values:
Repister AL: Error Code
AH: Physical Error
BX: Same as AX

The F_WRITE system call writes 1 to 128, 128-byte data records beginning at the current
DMA address into the file named by the specified FCB. The BDOS Multisector Count (refer
to the F_MULTISEC system call} determines the namber of 128-byte records that are written.
The default is one record. An F_OPEN or F_MAKE system call must have previously
activated the referenced FCB.

F_WRITE places the record into the file at the position indicated by the CR byte of the
FCR, and then sutomatically increments the CR byte to the next record position. If the CR
field overflows, the system call automatically opens or creates the next logical extent and
resets the CR field to O0H in preparation for the next write operation. If F_WRITE is used
10 write to an existing file, then the newly written recorda overlay those already existing in
the file. The calling process must set the CR field to 00H following an F_OPEN or F-MAKE
system call if the intent is to write sequentially from the beginning of the file.

E_WRITE makes an update date and time stamp for the file if the following conditions
are met: the referenced drive has a directory label that requests update date and time stamping,
and the file has not sircady been stamped for update by a previous F_MAKE or F_WRITE
gystem call,

B DIGITAL RESEARCH®

6-113

F_WRITE Concmrent CP/M Programmor's Guiie

Upon return, the E_WRITE system call sets regitier AL to 0DH if the write operation is
successful. Otherwise, regisier AL confeing &n error code identifying the error a8 ghown
below:

01H - No available directory space

0ZH - No available data block

08H - Record locked by ancther process

09H - Invalid FCB

0AH - FCB Checksum Error

0BH - Unlocked file verification error
OFFH - Physical error; refer to register AH

The system call returna error code 01H when it attempts to create a new extent that requires
a2 new directory entry, and no availeble directory entries exist on the selocted disk drive.

The systern call returns error code 02H when it attempts o allocate a new data block to
the file, and no unallocated data blocks exist on the selected disk drive.

The system call returns error code O2H if the calling process attempts to write to a record
locked by another process, or & record locked by the calling process in shared mode. The
system call returns this crror only for files open in Unlocked mode.

The system call returns error code 09H if the FCB is invalidated by a previous E_CLOSE
system call that returned an error.

The system call returns error code 0AH if the referenced FCB failed the FCB checksum
fest.

The system call returns error code OBH if the BDOS cannot locate the FCB's directory

eniry when attempting to verify that the referenced FCB contains current information. The
system call returns this error only for files oper in Unlocked mode.

W DIGITAL RESEARCH®

6114

Conewrrent CP/M Programmer's Gulde F_WRITE

The system call returns error code OFFH if e physical error was encountered and the BDOS
is in Return Error mode or Return end Display Error mode (refer to the F_ERRMODE
system calf). If the Error mode is the Defeanlt mode, the system displays a message at the
conscle identifying the physical error and terminates the calling process. When ths system
call returns a physical emror to the calling process, it is identified by register AH as shown
below:

01H - Disk I/0 Error ; permanent error
02H - Read/Only Disk
03H - Read/Only File or
File Opened in Read/Only Mode or
File password protected in Write mode
04H - Invalid Drive : drive select error

On all error returns except for physical error roturna (AL = 255), F_WRITE sets register
AH to the number of records successfully written before the error was encountered. This
value can range from 0 to 127, depending on the current BDOS Multisector Count. It is
always set to zero when the Multisactor Count is equal to one.

B DIGITAL RESEARCH®
6-115

F_.WRITERAND Concwrent CP/M Programmer'’s Gulde

F_WRITERAND

Write Random Records
To A Disgk File

Entry Parametirs:
Register CL: 022H (34)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Eror Code
AH: Phygical Error
BX: Sameas AX

The FE_WRITERAND system call is analogous to the F_READRAND systern call, except
that data is written to the disk from the current DMA address, If the disk extent and/or data
block where the data is to be written is not already allocated, the BDOS sutomatically
performs the allocation before the write operation continues,

In order to write io a file using the F_WRITERAND system call, the calling process must
first open the base extent, extent 0. This ensures that the FCB is properly initialized for
subsequent random access operations, If the file is empty, the calling process must create the
bese extent with the F._MAKE system call before an F_WRITERAND system call. The base
extent might or might not contain data, but it records the file it the directory o that it can
be displaysd by the DIR utility. If a process does not open extent 0 and allocates data 1o some
other extent, the file is invisible to the DIR utility.

The F_WRITERAND systern call sats the logical sxtent and current record positions to
corresporid with the random record being written, but doss not change the Random Record
Number. Thus sequential read or write operations can follow a random write, with the current
rocord being reread or rewritien as the calling process switches from mndom to sequential
mode.

F_WRITERAND makes an updare date and time stamp for the file if the following con-
ditions sre mei: the referenced drive has a directory label that requests update date and time
stamping, apd the file has not already been stamped for update by a previous F_MAKE or
F_WRITE system call.

8 DIGITAL RESEARCH®
6116

Concurrent CP/M Programmer’s Guide F..WRITERAND

If the BDOS Multisector Count is grester than one (refer to the F_MULTISEC aystem
call), the F_WRITERAND system call writes multiple consecutive records from memory
beginning at the current DMA address. The system call automatically increments the RO,
RI, and R2 field of the FCB to write sach record. However, it restores the FCB"s Random
Record Number to the first record’s value upon return to the calling process.

Upon return, the F_WRITERAND system call sets register AL o 00H if the write oper-
ation is successful. Otherwise, register AL contains one of the following error codes:

O02H - No available dste block

03H - Cannot close current extent

OSH - No evailable directory space

O06H - Random record number out of range

O8H - Record locked by another process

QAH - FCB Checksum Error

OBH - Unlocked file verification error
OFFH - Physical error refer to register AH

The system call returns error code 02H when it attempts to allocate a new data block to
the file. No unallocated data blocks exist on the selected disk drive.

The system call returns error code G3H when it cannot close the current extent before
moving to a ncw extent.

The system call returns ertor code 05H when it attempts to create a new extent that requires
a new directory entry and no available directory entries exist on the selected disk drive.

The system call returns error code O6H when byte 35 (R2) of the referenced FCB is greater
than 3.

The system call returns error code OfH if the calling process attempts to write to a record
Jocked by another process, or a recard locked by the calling process in shared mode. The
system call returns this error only for files open in Unlocked mode.

The system call returns error code 0AH if the referenced FCB failed the FCB checksum
tesc.

The system call returns etror code DBH if the BDOS cannot locate the FCB’s directory
entry when attempting to verify that the referenced FCB containg current information. The
system call returns this error only for files open in Unlocked mode.

B DIGITAL RESEARCH®
) 6-117

F_WRITERAND Concurrent CP/M Programmer's Guide

The system call returns érror code OFFH if & physical error is encountered and the BDOS
Error mode is in one of the return modes (refer to the F_ERRMODE system call). If the
Error mode is in the default mode, the system displays a messege et the console identifying
the physical error end terminates the calling process. When & physical error is returned o
the celling process, it is identified by register AH as shown below:

O1H - Digk 10 Error : permanent error
02H - Read/Only Digk
D3H - Read/Only File or
Hle Opened in Read/Only Mode or
File password protected in Write mode
O4H - Invalid Drive : drive select error

On all error returns, except for physical error returns (AL = 255), F_WRITERAND sets
register AH to the number of records successfully written before the error was encountered.
This value can range from 0 to 127 depending on the current BDOS Multisector Count. It
is always set to zero when the Multisector Count is equal to one.

I DIGITAL RESEARCH®
6-118

Concurrent CP/M Programmer’s Guide F_WRITEXFCB

F_WRITEXFCB

Write Extended File Control Block
Of A Disk File

Entry Parameters:
Register CL: 067H (103)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code
AH: Physicsl or Extended Error
BX:. Same as AX

The F_WRITEXFCB system call creates a new XFCB or updates the existing XFCB for
the specified file. The calling process passes the address of an FCB in which the drive, name,
type, and extent fields have been defined. The FCB extent field, if set, specifies the password
mode and whether a new password is to be assigned to the file. The format of the extent field
byte is shown below:

FCB byte 12 (EX) XFCB password mode

bit 7 - Read mode

bit & - Write mode

bit 5 - Delete mode

bit O - assign new password to the file

If the FCB is currently password-protected, the correct password must reside in the first
8 bytes of the current DMA or have been previously established as the defmlt password
(refer to the F_PASSWD system call). If bit 0 is set to 1, the new password must reside in
the second 8 bytes of the current DMA,

Note: The F_WRITEXFCB system call does not create or update an XFCB if the XFCB

specifies a file open by ancther process. However, a process can update or create an XFCB
for a file that it has open in Locked mode.,

H DIGITAL RESEARCH®

6-119

F_WRITEFXCE Conomrent CP/M Programmer's Guide

Upon return, F_ WRITEXFCR returns a directory code In register AL with the vaiue 00H
if the XFCB create or update was successful. B WRITEXFCB returns OFFH in register AL
if no directory label existed on the specified drive, or the file specified in the FCB was not
found, or no space existed in the directory to create an XFCB, or if the drive is not password
enabled. F_WRITEXFCB also returns OFFH if passwords are not enabled by the specified
drive’s directory label. Register AH is set to 00H in gl] of thcse cases.

If a physical or extended erTor is encountered, F_WRITEXFCB performs different actions
depending on the BDOS Error mode (refer to the F_ ERRMODE system call). If the BDOS
Ermor mode is in the defanlt mde, the system diaplays 8 message at the console identifying
the error and terminates the calling process. Otherwise, F-WRITEXFCE returns to the
celling process with regiater AL set to OFFH and register AH set to one of the following
physical or extended error codes:

01H - Disk I/O Error : permanent error

02H - Read/Only Diak

O4H - Invalid Drive : drive select error

0SH - File open by another process, or open in Read-Only or Unlocked mode
O7H - Password Error

09H - llegal 7 in FCB

B DIGITAL RESEARCH®
5120

Concwrrent CP/M Programmer's Guide F_WRITEZF

F_WRITEZF

Write A Random Record To A Disk File
And Prefili New Data Blocks With Zeros

Entry Parameters:
Register CL: 028H (40)
DX: FCB Address - Ofiset
DS: FCB Address - Segment

Returned Values;
Register AL: Frror Code
AH: Physical Error
BX: SameasAX

The F_WRITEZF system call is gimilar to the F_WRITERAND system call, with
the exception that it fills a previously unallocated data block with zeros (00H) before writing
the record. If this system call has been used to creste a file, records accessed by an
F_READRAND systern call that contain all zeros identify unwritten random records.
Unwritten random records in allocated data blocks of files created using the F-WRITERAND
aystem call contain uninitialized data.

H DIGITAL RESEARCH®

6-121

L_ATTACH Coucerrest CP/M Prograwemet’s Guide

6.2.5 List Device /O System Calls

L_ATTACH

Attach The Defanlt List Device
To The Calling Process

Entry Paramcters:
Register CL: Q9EH (158)

The L__ATTACH system call attaches the default list device of the calling process. If the
list device i3 already attached to some other process, the calling process relinquishes the CPU
until the other process detaches fram the liat device. When the list device becomes free, and
the calling process is the highest priority process waiting for the list device, the atiach
operation occurs.

Refer to Table 6-5 for a list of error codas returned in CX.

B DAGITAL RESEARCH®
6-122

Concurvest CP/M Progranumer’s Guide L_CATTACH

L_CATTACH
Conditionally Attach To The
Default List Device
Entry Parameters:
Register CL: DA1H (161)
Returned Values:
Register AX: 0 if attach ‘OK’

OFFFFH on failure
BX: Sameas AX
CX: Error Code

The L_CATTACH system call attaches the default list device of the calling process only
if the list device is currently available.

If the list device is currently attached to another process, the system call returns a value
of OFFH, indicating that the list device could not be attached. The system call returns e value
of O0H to indicate that cither the list device is already attached to the process, or that it was
unattached, and a successful attach operation was made,

Refer to Table 6-5 for a list of error codes returned in CX.

I DIGITAL RESEARCH®

6-123

Conturrent CP/M Prograntcaer's Guide

L_DETACH

Detach The Default List Device
From The Calling Process

Eniry Parameters:
Register CL:

Returned Values:
Register AX:

BX:
cx:

09FH (159)

0 if detach 'OK’
OFFFFH on failure
Same sz AX
Error Code

The L_DETACH system call detaches the default list device of the calling process. If the
list device is not currently attached, no action takes place.

Refer to Table 6-5 for a list of error codes retumed in CX.

6124

W ENGITAL RESEARCH®

Concurrest CP/M Progrmmner’s Guide

L_GET
Return The Calling Process's
Default List Device
Entry Parameters:
Register CL: 0A4H (164)
Returned Velues:

Register AL: List Device Number

BL: Same as AL

L_GET

The L_GET system call returns the default list device number of the calling process.

H DIGITAL RESEARCH®

6-125

Comenrvest CP/M Prograssners Gulile

L_SET

Set The Calling Process's
Defeault List Device

Eniry Porameters:

Register CL:
DL:

Returned Values:
Register CX:

0OAOH (160)
List Device Number

Error Code

The L_SET system call sets the default list device for the calling process.

Refer to Table 6-5 for a list of error codes returned in CX.

6-126

I DIGITAL RESEARCH®

Concurrent CP/M Progracemer's Gulde

L_WRITE

L_WRITE

Write A Character To The
Defanlt List Device

Entry Parameters:

Register CL.: OSH (5)

DL: Character

The L_WRITE system call writes the specified character to the default list device of the
calling process. Before writing the character, the system infernelly calls . ATTACH to verify
that the calling process owns its default list device.

B DIGITAL RESEARCH®

6127

L_WRITERLK Concwrent CP/M Programmer’s Gulds

L_WRITEBLK

Send Specified Character
String to Defeult List Device

Entry Peremetars:
Register CL.: 070H (112)
DX: CHCB Address

L_WRITEBLK sends the character string specified in the Charweier Control Block (CHCB)
end addressed in register pair DX to the logical list device, LST:, The CHCB format is

bytes O - | ; Offest of character string
bytes 2 - 3 ; Segment of character skring
bytes 4 - 5 ; Length of charscter string to print

6.2.6 Memory Sysitem Calls

There are two clagses of Memory System Calls in Concurrent CP/M. The first class
supports the MP/M-86 memory allocation scheme and conteina two system calls,
M_ALLOC and M_FREE. The sscond cless contains aix system calls, MC_ABS,
MC_ALLFREE, MC_ALLOC, MC_ALLOCABS, MC_FREE, and MC_MAX. These
system calls support the CP/M-86 memory allocation scheme.

Note: The CP/M-86 memory calls are also supported under MP/M-86.

Many of the Memory system calls use the Memory Control Block (MCB) or the Memory
Perameter Block (MPB) to pass perametsrs to and from the operating systemn. The format,
structure and example programrning equates for these date structures are presented below,
along with example listings.

EXT

BASE LENGTH

+—+

Figure 6-7. MCB - Memory Control Block

B DKITAL RESEARCH®
6-128

Concurrent CP/M Propammer’s Gulde L_WRITERLK

Table 6-13. MCB Fleid Definitions

Field Definition
BASE The Segment Address of the beginning of the specified memory segment.
LENGTH Length of the Memory Segment in paragraphs. The LENGTH field is

set to the oumber of paragraphs wanted.
EXT The EXT field is voused but must be available.

CREERARERETEFEREFRREFRFSRFEE R R EE SR RSFF LR B

%
’
i Nemory Control Blook Definition
#
;*i!i!li!iliiiiiIliiil!ii!iii!ili!!i}li!!Iili'liii
nobk_base equ word ptr D
ncb_length equ word ptr meb_base + word
mchoext egu byte ptr mcb_length + word
pob_len equ mcb_ext + byte
Listing 6-1. Memory Conirol Block Definition
START MIN MAX * 0000H . 0(;ODH
Figure -8, MPFB - Memory Parameter Block
B DIGITAL RESEARCH®

6129

F_WRITEBLK Concmrent CP/M Programmer’s Guide
Thable 6-14. MPB Field Definltions
Field Description
START if non-00H, an absolute request at this paragraph
MIN minimum memory needed (paragraphs)
MAX maximm memory wanted {paragraphs)
* DOOOH these fields must be OO, they are used internally.

SRR ELBREREERERAEREREARERAERDECRERRERE RN RRRAEDERE SRR ES

]
N
?
.
3
- %
3

Memory Parameter Block Definition

REPAREER AR R RAFLEERLGARERFREERREIREREERRRERRRFRRRTERERE

»

aph_start
mpb min
Nph_max
mphb_pdadr
mpb_rlags

mpb..len

aqu wvord ptr 0

equ word ptr apb_siart + word
equ word ptr apb_min + word
aqu word ptr mpb_max <+ word
equ word ptr mpbh.pdadr <+ word

&qu mpb_flage + word

; mpb_flage definition

af_load
af.shars
nf_code

equ 00001h
aqu 00002k
aqu 00004h

Listing 6-2. Memory Parameter Block Definition

WDIGITAL RESEARCH®

6-130

Concarrent CP/M Programeer’s Guide

M_ALLOC

Allocate A Memory Segment

Entry Parameters:
Register CL:

DX:

DS:

Returned Values:
Register AX:

BX.:
CX:

OBOH or 081H (128,129)
MPB Address-Offset
MPRB Address-Segment
MPR filled in

0 on success
OFFFFH on failure
Same as AX

Error Code

MPB_ start filled in

The M_ALLOC system call allows a program to allocate extra memory. A successful
allocation allocates a contiguous memory segment whose length is at least the MIN and no
more then the MAX mumber of pamgraphs specified in the MPB. The START field of the
MPB is modified to be the starting paragraph of the memory scgment. The MIN and MAX
fields are modified to be the length of the memory scgment in paragraphs. Memory Segments
can be explicitly released through the M_FREE system call; Concurrent CP/M also releases
all memory owned by a process at termination.

Note: MIN and MAX fields must be explicitly filled in. The MAX value must be greater

than or equal to the MIN value,

Refer to Table 6-5 for a list of error codes returned in CX.

B CAATAL RESEARCHS

6-131

Comcarrent CP/M Programssery Guldy

M_FREE

Free A Memory Segment

Entry Parameters.
Register CL:

DX:

DS:

Returned Values:

Register AX:
BX:
CX:

082H (130)
MFPB Address - Offset
MFPB Address - Segment

0 on success
OFFFFH on fatlure
Same as AX
Error Code

START

* 000CH

Figwre 6-9. MFPB - M_FREE Parameter Block

The M_FREE system call releases memory starting at the START paragraph to the
end of & single previously allocated segment that contains the START peragraph. If the
START paragraph is the seme a2 that returned in the MPB of & memory allocation call,
then M_FREE releasss the whole memory segment. The * 0000H field must be initialized

to zero.

Refer to Table 6-5 for a list of error codes returned in CX.

%132

B DKATAL RESEARCH®

Concurrent CP/M Programmers Guide

MC_ABSALLOC

MC_ABSALLOC
Allocate A Memory Segment
At A Specified Address
Entry Parameters:
Register CL: (38H (56)
DX: MCB Address - Offset
DS: MCB Address - Segment
Returned Values:
Register AL: 0 on success
OFFH on failure
BL: Sameas AL
CX: Error Code

The MC_ABSALLOC system call allocates a memory area that starts at the address
specified by the BASE field. The memory arez’s length is specified by the LENGTH field of
the MCB. Upon return, register AL contains a O0H if the request was successful, and a OFFH
if the memory could not be allocated. If the calling process already owns the requested

memory, 1o error is returned. This assures compatibility with CP/M-86.

Refer to Table 6-5 for a list of error codes returned in CX.

B DIGITAL RESEARCH®

6133

MC_ARSMAX

Concmrent CP/M Programmer’s Gulde

MC_ARBSMAX
Allocate Maximum Memory Available
At A Specified Address
Entry Parameters:
Register CL: O36H (54)
DX: MCB Address - Offset
DS: MCB Address - Segment
MCB_base filled in, MCB_length
set to max number of paregraphs
wanted
Returned Values:
Register AL: 0 on success
OFFH on failure
BL: Same as AL
CX: Ermor Code
MCB_length set to actual nomber
of paregraphs allocated

[n CP/M-86, system call 035H does not allocate memory, but under Concurrent CP/M,
this system call allocates memaory, because other processes are competing for common mem-
ory. For compatibility with CP/M-86, MC_ABSALLOC (system call 56) does not return an

error if there is 8 memory segment allocated at the absoluie acidress.

MC_ABSMAX is used 1o allocate the largest possible region at the absolute paragraph
boundary given by the BASE ficld of the MCB, for a maximum of LENGTH paragraphs. If
the allocation is successful, the system call sets the LENGTH to the actua! length. Upon
return, register AL has the value OFFH if no memory is available at the absolute address,

and OOH if the request was successful.

Refer to Table 6-5 for & list of error ¢codes returned in CX.

5134

B DIGITAL RESEARCH®

Cancurvest CP/M Programamer™s Guide MC_ALLFREE

MC_ALLFREE

Free All Memory Owned
By The Calling Process

Entry Parameters:
Register CL: 03AH (58)

In the Concurrent CP/M environment, the MC_ALLFREE system call releases a]l of the
calling process’s memory except the User Data Area (UDA). This system call is useful for
system processes and for subprocesses that share the memory of another process.

Note: This system call should not be used by processes running programs loaded into the
Transient Program Arcas (TPAs).

H DIGITAL RESEARCH®
6-135

MC_ALLOC

Coscarrent CP/M Prograssic's Galde

MC_ALLOC

Allocate A Memary Segment

Entry Perameters:

Register CL:
DX:
DS:

Returned Values:
Register AL:

BL:
CX:

037H (33)

MCB Address - Offset
MCB Address - Szgment
MCB_length filled in

0 on success

0FFH on failure
Same a8 AL

Error Code
MCB_base filled in

The MC_ALLOC system cell allocates & memory area whose size is the LENGTH ﬁel'r.l
of the MCB, MC_ALLOC returns the base paragraph address of the allocated region in the
user's MCB. Upon return, register AL conteins a OO if the request was successful, and a

OFFH if the memory could rot be allocated.

Refer to Table 6-5 for a list of error codes returned in CX.

6136

S DICITAL RESEARCH®

Concurrent CP/M Prograner’s Guide MC_FREE

MC_FREE

Pree A Specified Memory Segment

Entry Parameters:
Register CL: 039H (57)
DX: MCB Address - Offset
DS: MCB Address - Segment
MCB_base, MCB_ext filied in

Returned Values:
Register AL: 0 if successful
0FFH on failure
BL: Sameas AL
CX: Ermor Code

The MC_FREE system call is used to release memory areas allocated to the program.
The value of the EXT field of the MCB controls the operation of this system call. If
EXT = 0FFH, then the systern call releases all memory areas allocated by the calling
program. If the EXT field iz 00H, the system call releases the memory area beginning at
the specified BASE and ending at the end of the previously allocated memory segment.

Refer to Table 6-5 for a list of error codes returned in CX.

8 DIGITAL RESEARCH®

6-137

MC_MAX Cancwront CP/M Programmer's Gulide

MC_MAX

Allocate Maximum Memory Available

Entry Parameters:
Register CL: 035H (53)
DX: MCB Address - Offset
DS: MCB Address - Segment

(MCB_lengith contains maximam
number of paragraphs wanted)

Returned Valuss:
Register AL: 0 on succesy
OFFH on failure
BL: Same as AL
CX: Exror Code

{MCB_bas¢ filled in, MCB_length
set to ectua] number of paragraphs
allccated)

[n CP/M-86, eystem cell 035H docs not allocate memory, but under Concurrent CP/M,
this system call allocatss memory because other processes are competing for common mem-
ory. For compatibility with CP/M-86, MC_ABSALLOC (system call 56) doss not return an
arvor if there ia & memory scgment allocated e the abscluty addreax.

MC_MAX allocates the largest availsble memory region that is lesy than or equal to the
LENGTH fleld of the MCB in paragraphs. If the allocation is successful, the gystem call sets
the RASE 1o the base paragraph address of the available area and LENGTH to the paragraph
length. Upon return, register AL has the value OFFH if no memory is available, end O0H if
the request was successful. The system call sets the EXT to 1 if there is additional memory
for ellocation, and O if no additional memory is available.

Refer to Table 6-5 for a list of error codes returned in CX.

0 DIGITAL RESEARCHS

6138

Conewrrend CP/M Programmers Guide

6..7 Procesa/Program System Calls

P_ABORT

P_ABORT

Terminate A Process
By Name Or PD Address

Entry Parameters:
Register CL:
DX:

09DH (157)
APB Address - Offset

DS: APB Address - Segment
APB filled in
Returned Values:
Register AX: 0 on success
QFFH on failure
BX: Sameas AX
CX: Ermor Code
00 P!s TER'M CNS | “00H
o8 ' NAME
Figure 6-10. APB - Abort Parameter Block
i DIGITAL RESEARCH®

6-139

P_ABOKT

Coucwrront CF/M Froprasmaer's Guide

Tabie 615, APB Fisd Defnitions

Field

Definition

PD

*00H
CNS

NAME

Process Descriptor offset of the process to be terminated. If this field is
zero, a match is attempied with the NAME and CNS fields to find the
process, If this field is nonzero, the NAME and CNS fields are ignored.

Termination Code. This field corresponds to the tarmination code of the
P_TERM sgystem call. If the low-order byte of TERM i¢ OFFH,
P_ABORT can abort a specifled sysiem process; if the termination
code is not OFFH, the system call can only terminate & uscr process. (A
gystemn process i identified by the SYS flag in the Process Descriptor's
FLAG field.)

'This fisld is reserved for system use and must be set to zzro.

Default consols of process to be sborted. If the PD field is 0, the
P_ABORT system call scans the Thread List for a PD with the same
NAME and CNS fields s specified in the APB. P_ABORT only aborts
the first process that it finds. Subsequent calls must be made to abort all
proceases with the same NAME and CNS.

Name of the process to be aboried. Cornbined with the CNS fleld, the
NAME field is used to find the process to be eborted. This iz only used
if the PD field ix 0.

The P_ABORT system call permite a process to terminate another specified process. The
calling process passes the address of n data structure called an Abort Parameter Block,
initielizad as described above.

If the Process Descriptor address 18 known, it can be filled in, and the process neme amxi
console can be omitted. Otherwise, the Process Descriptor address field should be & 00H and
the process name and coneole must be specified. In either case, the calling process must

call

supply the termination code, which is the same parameter passed to the P_.TERM systemn

Refer to Thble 6-5 for & list of error codes returned in CX.

WDICITAL RESEARCH®

6-140

Concoarent CPM Programmer’s Guide P_CHAIN

P_CHAIN

Load, Initialize And Jump
To Specified Program

Entry Parameters:
Register CL: 02FH (47)
DMA Buffer: Command Line

Returned Values:
Register AX: OFFFFH - Couid not find
Command

The P_CHAIN system call provides a means of chaining from ane program to the next
wlthout operator intervention. Although there is no passed parameter for this call, the calling
procass must place a command line termineted by a 0 byte in the dafault DMA buffer.

Under Concurrent CP/M, the P_CHAIN system call releases the memary of the calling
process before executing the command. The command is processed in the same manner as
the P_CLI system call. If the command warrants the loading of a CMD file and the memory
released is large enough for the new program, Concurrent CP/M loads the new program into
the same memory area as the old program. The new program is run by the 2ame process that
ran the old program. The name of the process is changed to reflact the new program being
Tun,

Parameter passing between the old and new programs is accomplished through the use of
disk files, queues, or the command line. The command line is parsed and placed in the Base
Page of the new program in the manner documented in the P_CLI system call.

The P_CHAIN system call returns an error if no CMD file is found. If a CMD file is
found, and an error occurs after it is successfully apened, the calling process terminates, as
its memory has been released.

B DICITAL RESEARCH®
6-14]

P_CLI Concurrent CP/M Programmer'y Guide

P_CLE

Interpret And Execute Command Line

Entry Perameters:
Register CL: 096H (150)

DX: CLBUF Address - Offaset
DS8: CLBUF Address - Segment
Returned Values:
Register AX: 0 on success
OFFFFH on error
CX.: Error Code
o 1 2 3 128 128
t + ;o /
*00H COMMAND AN *00H
+ + /7

Fligure &11. CLI Command Line Buaffer

M DIGITAL RESEARCHe
6142

Concurrent CP/M Programmer’s Guide P_CLI

Thble §-16. Command Line Buffer Field Definitions

Field Definition
*00H Must be st to zero for system uge.
COMMAND 1~128 ASCII characters terminated with a oull character.

The P_CLIT system call obtains an ASCH command from the Command Line Buffer
(CLBUF) and then executes it. If the calling process is attached to its default virtual console,
the P_CLI system call assigns the virtual console to either the newly created process, or to
the Resident System Process (RSP) that scts on the command. The calling process must
reattach to its default virtual console before accessing it.

P_CLI calls F PARSE to parse the command line. If an error occurs in F_PARSE,
P_CLI returns to the calling process with the error code set to the same code that
F_PARSE returned.

If there is no disk specification for the command, P_CLI tries to open a system queue
with the same name es the command. If the open operation is successful, and the queue is
an RSP-type queue, P_CLI then writes the command tail to the RSP queue. If the queue is
full, the system call returns an error code to the calling process. The P_CLI function also
attemnpts o assign the calling process’s virtual console to a process with the same name as
the RSP queue. If the RSP queue cannot be found, the CLI assumes the command is on disk
and continues.

The P_CLI system cell opens a file with the filename being the command and the filetype
being CMD. If the command has an explicit disk specification, and the E_OPEN systern call
fails, P_CLI returns an error code to the calling process. If there is no disk specification
with the command, P_CLI attempis tc open the command file on the system disk. If the
F_OPEN system call succeeds, P_CLI checks the file to verify the SYSTEM attribute is
on. This search order is discussed in Section 2.9.1 of the Concurrent CPIM User's Guide. If
this second F_OPEN fails or if the DIR attribute is on, P_CLI returns an error cods to the
calling process.

Once the P_CLI system call succeeds in opening the command file, it calls the P_LOAD
system call. The P_LOAD system call finds, and then loads the file into an appropriate
memory space. If P_LOAD encounters any errors, the P_CLI systemn call returns to the
calling process with the error code set by the P_LOAD system call.

@ DIGITAL RESEARCH®
6-143

P_CLI Concmryent CP/M Programmer's Guide

A auccessful [oad operation establishes the command file in memory with its Base Page
pertially initialized. The P_CLI system call then continyes parsing the command tail to szt
up the Base Puge values from 030H to 0FFH.

P_CLIinitializes an vnused Process Descripior from the interns! PD table, a UDA {(expanded
UDA if 8087 processing is requived) and u 96-byte stack ares. The UDA and siack ere
dynamically allocated from memory, P_CLI then calls the P_CREATE systern call. If
P_CLI encouniers an error in any of thege stepa, it relzases all memory segments allocated
for the new command, es well as the Process Descripior, and then returne with the appro-
priate error code set.

Once the P_CREATE system call returng sucesasfully, the P_CLI system call askigns the
calling process'’s default viriwal console to the new process end then returns.

The calling process should set its priority 1o less than the TMP (198) if it wenis to attach
to the virtuel console after the created process releases it. Once the calling process has
succeasfully reaitached, it should set its priority back to 200.

Refer to Thkle 6-5 for a list of error codes returned in CX.

A DIGITAL RESEARCH®
6144

Concurrent CP/M Programmer's Guide P_CREATE

P_CREATE

Create A Process

Entry Psrameters:
Register CL: 090H (144)
DX: FPD Address - Offset
DS: PD Address - Segment
PD filled in

Returned Values:
Register AX: 0 on suceess
OFFFFH on failure
BX: Same as AX
CX: Error Code

The P_CREATE system call allows a process to create a subprocess within its own memory
area. The child process shares all memory owned by the calling process at the time of the
P_CREATE call. If the Process Descriptor (PD) is outside of the operating system area,
the system copies it into 2 PD from the internal PD Table. The system call retuns an error
code if there are no more enused PDs in the table.

The User Data Area (UDA) can be anywhere in memory but is required to be on a pamagraph
boundary. The only time the system copies the PD is if it is not within 84k of the System
Data Segment.

Process Descriptors, as well as Quene Descriptors and Queue Buffers, are required to be
within the System Data Segment because they are linked together on various system lists or
are used by more than one process. Because of this, they cannot be in the Transient Process
Area (TPA), where they cannot be protected.,

More than one process can be created by a single P_CREATE call if the LINK field of
the PD is nonzero. In this case, it is assumed to point to another PD within the same Data
Segment. After it creates the first process, the system call checks the Process Descriptor’s
LINK field. Using this linked list of PDs, a single P_CREATE cal! can create multiple

processes.

M DIGITAL RESEARCH®

6-145

P_CREATE

Conemrent CFP/M Programmer'’s Guide

Note: The P_CREATE syster call does not check the validity of the PD addresses passed
by the calling process. An invalid PD address can canse Concurrent CP/M o cresh if no
hardware memory proiection is available on the system.

Refer to Table 6-5 for a list of error codes returnad in CX.

10
18

-I - T

LINK THREAD STAT | FRIOR FLAG
NAME
UDA .° | DISK | USER | RESERVED MEM
RESERVED PARENT
CNS RESERVED ust [RESER| srLaa
RESERVED
+ + " +
Figure 6-12. FD - Process Descriptor
1B GIGITAL RESIARCH®

6-146

Concurrant CP/M Programmer’s Gukie

P_CREATE

Table 6-17. PD Field Definitions

Field Definition
LINK Link field for insertion on current system Iist. If this field's initial value
is nonzero, it iz assumed to point to another PD. This field is used to
create more than one process with a single Create Process call,
THREAD Link field for insertion on Thread List. Initislized to be zero (0).
STAT Current Process activity. Initialized to be zero (0). Activity codes are
listed below:
00 RUN The process is ready to run, The STAT field is always
in this state when & process is examining its own
Process Descriptor. The PD iz on the Ready List.
The cutrently running process ig always at the head
of Ready Liat.
0l POLL The process is polling a device. The PD is on the
Poll List.
02 DELAY The process is delaying for a specified number of
system ticks. The PD is on the Delay List.
06 Read Queue The process is waiting to read a message from a
system queus that is empty. The PD is on the Read
Queue List whose root is in the Queve Descriptor
of the system queue involved.
07 Write Queue The process is waiting to write a message to a 8ys-
tem queue whose buffer iz full. The PD is on the
Write Queue List, whose root is in the Queue
Descriptor of the gystem queue involved.
8 DIGITAL RESEARCH®

6-147

P_CREATE

Coucurrsni CP/M Programumar's Gulde

Table 6-17. {continued)

Fleld

Definition

PRIOR

(08 FLAGWAIT The process is waiting for a system flag to be set.
The PD is in the fing teble entry of the flag it is
weiting for.

09 CIOWAIT The process is waiting to sitach to & chamctar /O
devics (console or list) while another process awas
it. The PD is on CQUEUE list whiose root is in the
Character Control Block of the device in question.

Current priority. Process scheduling is done based on this field. Typical
user progrms run at a prianty of 200. 0 is the best priority, and 255 is
the worst priority. The following is a list of priority assignments used
by most Concurrent CP/M systema. User processes priorities should be
from 200-254.

1 Initialization Process
2-31 Interrupt Handlers
3263 System Processes
64—190 Undefined
191--197 Undefined
198 Terminal Message Process
198 Undefined
200 Default Priority For Transients
201-254 User Processes
255 1dle Process

Bit field of flags determining run-time characteristics of a process. Ini-
tialize ax needed. All uniocumenied flags are usad internally or are
reserved for system use.

OHH SYS System Process. Has privileged access to various
festures of Concurrent CP/M. This process can only
be terminated if the termination code is OFFH. This
process can access restricled systemn queues. This
flag is turned off if the calling process is not a sys-

t2m process.

W DIGITAL RESEARCH®

6-148

Concurrent CP/M

Programmer’s Gulde P_CREATE

Table 617, (continued) '

Field

Definition

NAME

ubA

DISK

USER

MEM

SFLAG

PARENT

002H KEEP This process cannot be texminated. This flag is turned
off if the calling process is not a system process.

004H KERNEL. This process resides within the operating system.
This flag is turned off if the PD is not within the
operating system.

010H TABLE This PD is copied into the PD from the PD table.
When this process terminates, the PD is recycled
into the PD table.

8000H 3087 This process is an 83087-running process.

Process Name. Eight bytes, all eight bits of each byie are used for
matching process names.

Segment eddress of this process’s User Data Area. Initialized to be the
nmumber of paragraphs from the beginning of the calling process’s Data
Segment. The User Data Area contains process information that is not
needed between processes. It also contains the System Stack of each
process. Refer to the UDA description below.

Current default disk
Current defanlt user number

Root of linked list of Memory Segment Descriptors that are owned by
this process. Initialized to zero, except for reentrant or shared code RSPs.

Second Flag. If bit O of SFLAG (01H) is set, the system suspends this
process whenever it is switched out to the background end runs it only
when it is switched in to the foreground.

Process that created this process. The P_CREATE system call sets this
value at process creation. The parent field is set to zero if the parent
terminates before the child.

B DIGITAL RESEARCH®

6-149

P.CREATE

Concurrent CP/M Programmer's Guide

Table 6-17. {continned)

Field DefInition

CNS Current defauit console’s number. Initialized to be the default conscle
mumber.

LIST Current default list device's munber. Initialized to be the default list
device number.

RESERVED Reserved for inrnal use. These ficlds must be initialized to zero (0).

6150

B DIGITAL RESEARCH¢

00H
o8H
10H
18H
20H

28H

asH
40H
48H
50H

5BH

a8H

F8H

100H

158H

Concurrent CP/M Programmer's Gulde P.LREATE
+ ¢ + t $
RESERVED | DMA OFFSET RESERVED
' " RESERVED) '
) ' " RESEAVED ' '
' ' " RESEAVED) '
AJ:(BJ:(ci(m::
oI s Bp 1™ Resenveo
' RESERVED 8P RESERVED
©INTO INTH '
) REs:ERVED [N'I:' 3 T
INT# ' " RESEAVED
cs DS ES 55
' INT224 INT 225 N
_ ' | RESERVED
' * ' ' ' ' ' aFH
USER SYSTEM STAGK
FFH
cW sim : REs:EFlVED ' o
i ' ' - - ptional
. : , RESEF;VED : , : — t:tﬁ,m
} + } } 4 + }
R) RESERVED . .
. . RESERVED) . 15FH

o

Figure 6-13. UDA - User Data Area

The length of the UDA is 256 bytes (352 bytes if 8087 processing is required), and it roust
begin on a paragraph boundary.

B DIGITAL RESEARCH®

6-151

P_CREATE

Concurrent CP/M Progmmmer's Gulde

Table 6-13. UDA Fleld Definition

SP

Field Definition
DMA QOFFS The initial DMA OFFSET for the new process. The segment
address of the DMA is assumed to be the same as the initial
Data Segment (refer to DS below)
AX,BX,CX,DX, The initia] register values for the new process. These are typi-
DL SIBP cally set to zero,

The injtial stack pointer for the new process. The stack pointer
is relative to the initial Stack Segment (refer to 58 below). The
initial stack of the new proceses must be initialized with the offset
of the first instruction (o be execuied by the new process. The
word that the stack pointer points to is the inltial instruction
pointer. Two words must follow the initial IP, which iz filled in
with the initial Code Segment (refer to C8 below) and the initial
flags. The initial flags are set t0 0200H, which means that inter-
rupts ;e on, and a1l other flags are off. Concurrent CP/M atarts
a new process by exceuting an Interrupt Retun ingtruction with
the inftial stack.

Note: This stack ares is distinct from the User System Stack
at the end of the UDA,

Low Memory
stack ares
§S SP P
0 (cS)

0 (Flags)

Stack Inltalization Area

o132

R DICUTAL RESEARCH®

Concurrent CP/M Programmer's Guide

P_CREATE

Table 6-18. (continued)

Fieid

Definftion

INT O, INT |,
INT 3, INT 4

CS,D§,
ES,S5

INT 224,
INT 225

RESERVED

USER SYSTEM
STACK

Cw=*

Sw*

The initial interrupt vectors for the first five interrupt types can
be set by filling in these fields, The first word of ezch field is
the Instruction Pointer {IF), and the second word is the Code
Segment (CS) for a list of the interrupt routine that services
these interrupts. Those fields that are zero are initialized to be
the same as the calling processes interrupt vectors, These fields
are typically initialized to be Q.

The initial segment addresses for the new process are taken from
these fields, Those fields that are zero are initialized to be the
same as the calling process's Dala Segment,

Interrupts 224 and 225 are used to communicate with Concur-
rent CP/M by typical programs. These interrupt vectors are
initialized to be the seme as the calling process if these values
ars zero, The ability to change these values allows a run-time
sysiem to intercept Concurrent CP/M calls that its children make,
The suggested protocol is to keep INT 225 pointing to the Con-
current CP/M entry point and changing INT 224 to point to an
internal routine. When a child process does an INT 224, the
internal routine can filter calls to Concurrent CP/M using INT
225 for the actual Concurrent CP/M call.

All reserved fields are used internally and must be initialized
to zero.

This is the stack area used by the process when it is in the
operating system. The SP variable in the UDA should not point
to this area.

Control word for 8087 processor. Processes bypassing the P_
CLI or P_LOAD systemn call must set this word to 03FFH.

Status word for 8087 processor. Processes bypassing the P_CLI
or P_LOAD systemn call must sef this word to 0000H.

*Part of optional 8087 Extension. If the 8087 flag is set in the SFLAG field, this
6-paragraph extension must be included for the 8087 environment.

B DIGITAL RESEARCH®

6-153

P_DELAY Comcsrrent CP/M Prograssmer Gulde

P_DELAY

Delay For Specified
Number Of Systam Ticks

Entry Parameters:
Register CL: OBDH (141)
DX: Number of System Ticks

The P_DELAY system call causes the calling process to wait until the specified numbet
of systern ticks has occwrred. The P._DELAY system call avoids the neceasity of prograznmed
delay loops. It allows other processes to use the CPU resource while the calling process
weita.

The length of the system tick verigs among installations. A typical system tick is 60Hz
(16.67 milliseconds). In Europe, it is liksly to be 50Hx (2D milliseconds). The exact length
of che system tick can be obtained by reading the TICKS/SEC value from the System Data
Segment (refer to the 8 SYSDAT system cali).

There is up to one tdek of uncertainty in the exact emount of time delayed, This is due to
the P_DELAY system call being called egynchronously from the actual time bass, The
P_DELAY system cell is guaranised to delay the celling process at least the number of
ticks specified. However, when the calling process iz reschaduled to run, it might wait quite
a bit longer if there are higher priority processes waiting to run. The P_DELAY system call
ia used primerily by programs that need to wait specific amounts of time for 'O events o
occur. Under these conditions, the calling process usually has e very high priority level. If
B process with & high priority calls the P_DELAY system call, the actual delay is typically
within & system tick of the amount of time wanted,

W DIGITAL RESEARCH®
6154

Concarrent CP/M Programmer’s Guide P_DISPATCH

P_DISPATCH

Cali Dispatcher

Enty Parameters:
Register CL: 08EH (142)

The P_DISPATCH system call forces a reschedule of processes that are waiting to run.
Normally, dispatches accur at every system tick interrupt {usually 60 times a second), and
whenever a process releases a systern resource. Dispatching also occurs whenever a process
neasds a system resource that is not currently available. A CPU-bound process runs for no
more than one system tick before a dispatch is forced. The dispaich occurs at the next system
tick.

The Concurrent CP/M Dispatcher is priority driven, with round-robin scheduling of equiv-
alent-priority processes. When a process calls the P_DISPAT'CH system call, it is resched-
tled, so that processes with higher or equivalent priorities are given the CPU before the
calling process obtains it again. The calling process regains contro! of the CPU resource
when it becomes the highest priority process again.

H DIGITAL RESEARCH®

6-155

P_LOAD Concarreni CP/M Prograssmer’s Gulde

P_LOAD
Load A CMD Type File Into Memeory

Eniry Parameters:
Registar CL: 03BH {59)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AX: Base Page Address
(OFFFFH on error
BX: Same as AX
CX: Error Code

The P_LOAD system call loads a disk CMD iype file into memory. Upon eniry, registar
DX contwina the offset, relative to DS, of a successiully openad FCB that specifies the CMD
file to load. Upon mturn, register AX has the value OFFFFH if the program load failed.
Otherwise, AX contains the paragraph address of the Base Page belonging to the loaded
program. The pamagraph addreas snd length of sach group loaded from the CMD file 12 found
in the Base Page. See Sections 3.2 and 3.3,

Note that before calling P_ILOAD, the calling process must sstabligh the DMA address of
where the CMD file is to be loaded. Thia is accomplished with F_DMASEG and F. DMAOFER

Note: Open the CMD file in Read-Only mode and close it once the load is compisted.

Refer 1o Table 6-5 for a list of error codes returned in CX.

W DIGITAL RESEARCH®
6156

Concarrest CP/M Progranzner’s Guide

P_FDADR

P_PDADR

Return The Address Of The

Calling Proc

ess's Process Descriptor

Entry Parameters:

Register CL:

039CH (156)

Refturned Values:

Register AX:
BX:
: PD Address - Segment

ES

PD Address - Offset
Same as AX

The P_PDADR system call abtains the address of the calling process’s Pracess Descriptor.
For a description of the format of the Process Descriptor, refer to the P_CREATE system

call.

8 DIGITAL RESEARCH®

6-157

P_PRIORITY Coscmerent CP/M Progrusmser’s Guide

P_FRIORITY

Set The Priority Of
The Calling Process

Entry Parameters:
Register CL: 091H (145)
DL: Priority

The P_PRIORITY system call sets the priority of the calling process to the specified value.
This syztem call is useful in situations where a process needs to have a high priority during
un initielization phase, but afterwards ¢an run at g lower priority.

‘The best or highest priority is O0H, while the worst or Jowest priority is OFFH. Transient
processes are initialized to run st C8H (200 decimal) by the P_CLI system call.

B DIGITAL RESEARCH®
6-158

Concwrrent CP/M Programmer’s Guide

P_RPL
Resident Procedure Library
Entry Parameters:
Register CL: 097H (151)
DX: CPB Address-Offset
DS; CPB Address - Segment
Returned Values:
Register AX: 01H if RPL not found
RPL return parameter
BX: gsame as AX
CX: Error Code
ES: RPL return segment if addr

— + + + +—+
NAME
b e e e i § e e
PARAM
‘_-_+
Figure 6-14. CPB - Call Parameter Block

P_RPL

T DIGITAL RESEARCH®

6-159

P_RPL Conewrrent CP/M Programers Guide

Tublie 619, CPB Fleld Defluitions

Field Definltion
NAME Name of Resident Procedure, eight ASCI characters
PARAM Parameter to send to the Resident Procedure

P_RPL permits a process to call a system call in an optional Resident Procedure Library
(RFL).

P_RPL opens a system queue with the specified name. If the Q_OPEN sysiem call suc-
ceeds, P_RPL checks the queus (o verify that it is an RPL-type queue. If either the Q_OPEN
fails, or if it is not an RPL~type queue, P_RPL returns io the calling process with an error
colle,

P_RFL reads a message from the queuve that contains the address of the specified system
cell. It then places the PARAM field of the CPB in register DX, and places the calling
process’s Date Segment address in register DS, P_RPL performs a Far Cel] instruction to
the eddress it obtains from the queue message. Upon return from the RPL, the system call
copies the BX register to the AX register and then returns to the celling process.

Note: The P_RPL system call does not writs the addresa of the Resident Procedure back
to the queue. The Resident Procedure itself must do this. If the Resident Procedure is to be
reentrant, it must write the message into the queuc upon entry. If it is to be serially reusable,
the procedure must write the message just before returning,

Refer to Table 6-5 for a list of error codes returned in CX.

W DIGITAL RESEARCH®
6-160

Concurreat CP/M Proprammer’s Guide P_TERM

P_TERM
Terminate Calling Process
Entry Parameters:

Register CL: 0RFH (143)

DL: Term Code

Returned Values:

Register AX: OFFFFH on failure

BX: Sameas AX

CX: Error Code

The P_TERM system call terminates the calling process. If the termination code is not
0FFH, the system call can only terminate a user process. If the termination code is 0FFH,
the system call can terminate the calling process even though the process’s SYSTEM flag is
on. P_TERM canno! terminate a process with the KEEP flag on. If the termination is
successful, the system call releases the mutual exclusion queues owned by the process. It
also releases all memory segments owned by the process, and returns the Process Deseriptor
to the PD table,

A process can own one or more of the following resources: memory segments, consoles,
printers, mutual exclusion messeges, and syatem Lock List entries that record open files and
locked records, When a process terminates and releases its regources, these resourees become
available to other processes on the system. For example, if a terminating process releases &
system console, the console is usually given back to the console’s TMP. This occurs when
the TMP is the highest priority process waiting for the console.

1f the system call renirns to the celling process, the P_TERM call has failed for one of
two reasons. Either the process has the KEEP flag on, or it has the 8YSTEM flag on, and
the termination code is not OFFH.

I DICITAL RESEARCH®
6-161

P_TERMCPM

Conctrremt CP/M Programmer's Gulde

P_TERMCPFM

Eniry Parameters:
Register CL:

Returned Values:
Register AX:
BX:
CX:

00H (D)

OFFFFH on failure
Same as AX
Error Code

The P_TERMCPM system call terminates the calling process, releasing all system resources

owied by the process.

P_TERMCPM is implemented internilly by calling P_ TERM with the termination code

set to 00H.

Under CP/M-86, the P_TERMCPM aystem call has a further argument that allows a
process not to releass its memory, This argument places a piece of code into memory that
bocomes an interface for later programs. Concurrent CP/M does not inclede this opfion.
Memory segments are not recovered by the system until all processes that own the memory

segment have released it.

Refer 10 Table 65 for a list of returned error codes.

6162

R DIGITAL RESEARCH®

Concurrent CP/M Programmer's Guide P_TERMCPFM

6.2.8 Queve System Calls

Queue system calls under Concurrent CP/M use the Queue Parameter Block data structure
to pass parametess to and from the operating system. Listing 6-3 shows the structure of the
Queue Paremeter Block and the equates for its fields.

+ + +
* 0000H I QUEUEID 1 * 000QH I BUFFER

+ + +

NAME

+ + + + + + +

Figure 6-15. QPB - Quene Parameter Block

Table 6-20. QPB Field Definitions

Field Description
QUEUEID Queue number field; filled in by 2 Q_OPEN operation
¥ 0000H Reserved for internal use: must be initialized to zero
BUFFER Offset address of Quene Message Buffer
NAME Name of Queue for Q_OPEN cperation
D DIGITAL RESEARCH®

6-163

P_TERMCPM Conswrent CP/M Programmer’s Guide

T RSERRARREEERRNLEANT R IR RRERERBER RN SRR IR ERER IR SR L ERRN SR

(=
Q

Me Me e we we me we bl ke e vl we we o w
% R oM K AR E B K K kK R %
Q
[+}

QPB — Queus Parameter Block Definition

0000H gqueusid O000H buffer

name

queusid - Queue ID, address of QD
buffer - addrese to read/write into/from
name - nawe of gqueue (for opsn only)

EXITIITIYTIT ST IITIT I 2 I TS XSS I LTI I IS YL

~

apb 0 aqu word ptr 0

apb_dqueueid equ word ptr qpb0 + word
qpb.buffer equ word pir gpb_gueunsid + 4
4ph.nene equ byte pir gpb_buffer + word
Qpb_len 6qu qpb.neme + gnamsglz
gnageiz stu, 2

Listing 6-3. Queue Parmmeter Block Definition

61864

B DIGITAL RESEARCH®

Concwrrent CP/M Programmer’s Guide

Q_CREAD

Q_CREAD
Conditionally Read A Message
From A System Queue
Entry Parameters:
Register CL: 08AH (138)
DX: QPB Address - Offset
DS: QPB Address - Segment
QPB_queueid filled in by previous
Q_OPEN
QPB_buffer set to message buffer
offset
Returned Values:
Register AX: 0 on success
OFFFFH on failure
BX: Sameas AX
CX: Error Code message in buffer

The Q_CREAD system call is analogous to the Q_READ system call, but it returns an
error code if there are not enough messages to read, instead of waiting for another process

to write to the queue.

Refer to Table 6-5 for a list of error codes returned in CX.

R DIGITAL RESEARCHE

6-155

Q_CWRITE

Concarrent CP/M Propraauser's Guide

Q-CWRITE

Conditionally Write A Message
To A System Queuve

Eniry Parameters:
Register CL:

DX:

DS:

Returned Values:
Register AX:

BX:
CX:

08CH (140)

QPB Address - Offset

QPB Address - Segment
QPB_queueid filled in by previous
Q_CPEN

QPB_buffer get Lo message buffer
offset message in current DMA
buffer

0 on success
OFFFFH on failure
Seme as AX
Exror Code

The Q_CWRITE system cell is analogous to the Q_WRITE system call, but it returns an
arror code if there is not enough system queus buffer space for the message lo be wrilten,

nstead of weiting for enother process to read from the queue.

Refer to Table 6-5 for a list of error codes returned in CX.,

~166

@ DIGITAL RESEARCH®

Concarrest CP/M Programmer’s Guide

Q_DELETE

Q_DELETE
Delete A System Quene
Entry Parameters:
Register CL.: 088H (136)
DX: QPB Address - Offset
DS: QFB Address - Segment
QPB_queueid filled in by a
previous Q_OPEN call
Returned Values:
Register AX: 0 on success
OFFFFH on failure
BX: SameasAX
C¥X: Error Code

The Q_DELETE system call reraves a system queue from the system, The system returns
error codes if the queue cannot be deleted or if the queue has not beea opened prior to the

Q_DELETE call.

Refer to Table 6-5 for a list of error codes returned in CX.

M DIGITAL RESEARCH®

6-167

Q_MAKE Concurrent CP/M Programmer's Guide

Q-MAKE

Make A System Queue

Entry Parameters:
Register CL: O86H (134)
DX: QD Address - Offset
DS: QD Address - Segment

QD filled in
Returned Values:
Register AX: Con success
QFFFFH c¢n failure
BX: Sameas AX
CX: Eror Code
-+ 4 + 3 + +
* 0000H * DOOOH l FLAGS NAME. .
- + ' +
... NAME MSGLEN
+ + + +
NMSQSs * D0OOH I * DobOH * 000CH
+ 1 + + +
* DOOCH BUFFER |
+ 1 +

Figure 6-16. QD - Queue Descripéor

B DAGITAL RESEARCH®

6163

Concurrent CP/M Programmer’s Guide Q_MAKE

Table 6-21. Quene Descriptor Field Definitlons
Field Definition
FLAGS Quecue Flags, The bits are defined as follows

0001H - Mutual exclusion queus
0002H - Cannot be deleted

0004H - Restricted to system processes
0008H - RSP message queue

0010H - Used internally

0020H - RPL address queue

0040H - Used internally

0080H - Used internally

Remaining flags reserved for future uac

NAME 8-byte quene name. All § bita of each character are matched on a
Q_.OPEN call.

MSGLEN Number of bytes in each logical message

NMSGS Maximum number of logical messages to be supported. If the mumber

of messages written to the queus eguals this maximum, no more mes-
sages are allowed until a message is read.

BUFFER Address of the quene buffer. This buffer must be (NMSGS * MSGLEN)
bytes long. The address is an offset relative to the DS register. This
field is unused if the QD resides outside of the System Data Segment.
Typically this field is 0 if the queue is being created by a transient
program. RSPs that create quenes must initialize this field to point to
a buffer. The Data Segment of an RSP’s quene is considered part of
the System Data Segment unless it is beyond 64k of the beginning of
the System Data Segment.

* 0000H For internal use. Must be initialized to zero.

B DIGITAL RESEARCH®

6-169

QMAKE Concmrent CP/M Programmer's Guide

Every systsm quene under Concurrent CP/M is associated with & Queus Descriptor that
resides within the Concurrent CP/M System Data Segment. In the Q_MAKE system call,
the calling process passes the address of a Queune Descripior. IF this Queue Descriptor is
within the Concurrent CP/M Systern Data Segment, the system uses it directly for the System
Quene. If the Qusue Descriptor is outside of the System Data Segment, the system obtains
2 Quens Descriptor from an internal Quene Descriptor table, If there are no unused Queue
Descriptors in the internal table, the gystem call returns an error code.

Refer to Table 6-5 for a list of error codes returned in CX.

The buffer for a system queue must also reside within the System Data Area. For non-
00H length buffers, resident buffers are used directly. The system obtains a buffer from the
Queus Buifer Area if the buffer does not reside within the Sysiem Data Segment. The size
of the buffer is calculaizd from the NMSGS and MSGLEN fields. The system call returns
an crror code if there is not enough umused buffer area Isft 1o accommodate this new buffer.

All system queues must have unique names. The system call returns an error code if &
syslem queue already exists by the given name.

Under Concurrent CP/M, all system queuess must be explicitly opened (refer to the
Q_OPEN systzm call) before being uzed to read or wiite messages or to delete the queue.

@ DIGITAL RESEARCHS®
&1

Comestrent CP/M Programener’s Gulde

Q_OPEN
Open A System Queue
Entry Parameters:
Register CL: 087H (135)
DX: QPB Address - Offset
DS: QPB Address - Segment
QPB_name filled in
Returned Values:
Register AX: 0 on success
OFFFFH on failure
BX: Sameas AX
CX: Error Code

QPB_queueid filled in

Q_OPEN

All system queues under Concurrent CP/M must be explicitly opened before a read, write,
or delete operation can be done. The Q_OPEN system call examines each existing system
queuc and attempts (o match the name in the QPB with the name of a system quoue. All
cight bytes of the name must match for a successful open. All bits of each byte are examined.
If the open operation is successful, the Q_OPEN system call modifies the Queue ID Field
of the QFB. Once the the queue is opened, subsequent reads, writes, or a delete are allowed,

Refer te Table 6-5 for a list of error codes returned in CX.

B DIGITAL RESEARCH®

6-171

Q-_READ Coscwrrent CP/M Prograssmer’s Gulde

Q-_READ
Read A Message From A System Queue

Bntry Parameters:
Register CL: 0B9H (137)

DX: QPB Address - Offset

DS: QPB Adlress - Segment
QPB_queueid filled in by previous
Q_OPEN
QPB_buffer set to message buffer
offset

Returned Valuee:
Register AX: 0 on success
OFFFFH on failure
BX: Sameas AX
CX: Error Code message in buffer

The Q_READ systsm call reads 4 message from a system queue that was previcusty
opened by the calling process, The syetem call returns an error code if the queue was not
previously opened or if the system queuc has been deleted since the Q_OPEN call. If there
arc nol enough messages to read from the queue, the calling process waits until another
Process writes into the queue before returning.

Refer to Tabie 6-5 for a list of emror codss returped in CX,

W DKGITAL RESEARCH®
8172

Concatrent CP/M Progranimers Guide

Q_WRITE

Q_WRITE

Write A Message To A System Queue

Entry Parameters;
Register CL:

DX:

DS:

Returned Values:
Register AX:

BX:
CxX:

08BH (139)

QPB Address - Offset

QPB Address - Segment
QPB_gucued filled in by previous
Q_OPEN

QPB_bufier set to messege bufier
offset

0 on success
OFFFFH on failure
Same 88 AX

Error Code

The Q_WRITE system call writes a message to a system queue that was previously opened
by the calling process. The system call returns an error code if the quene was not previonsly
opened or if the system queue has been deleted since the Q_OPEN call. If there is not enough
buffer space in the queue, the calling process waits until another process reads from the
queue before writing to the queue and returning.

Refer 1o Table 6-5 for a list of error codes returned in CX.

0 DIGITAL RESEARCH®

6-173

S_BDOSVER Concorront CP/M Proprwsser’s Guide

6.2.9 System Information System Calls

S_BDOSVER

Return BDOS Version Number

Entry Parameters:
Register CL: OCH (12)

Returned Values:
Register AL: 31 (BDOS Version 3.1)
AH: 14 (Concurrent CP/M)
BX: BSameas AX

The S_BDOSYER ayatem call retorns the BDOS file system version number, allowing
version-independent programming.

AL High Nibble = BOS Version Number
AL Low Nibble = BDOS Ravision Lavsl
AM High Nibble = GPU Typa

Q= 5080
1= 5088

AH Low Nibble = O8 Type

0= GCP/M 2 s CP/M w/nstwarking
1=MPM 3 = MP/M w/natworking
4 = Concurrent CP/M 8 = Concurrant CP/M
5,7 to E = Rasarvad winetworking

Figure 6-17. BDOS Version Number Format

W DIGITAL RESEARCH®
6174

Coarnrrent CP/M Programmer’s Gulde
S_BIOS
Call BIOS Charucter Routine
Eniry Parameters:
Register CL.: 032H (50)
DX: BIOS Desc. Addr. - Offset
DS: BIOS Desc. Addr, - Segment
Returned Values:
Repgister AX: BIOS Return
BX: Same as AX
¢ + +
FUNGC 1 CX I DX
+ +

Figure 6-18. BIOS Descriptor Format

8_B10S

The S_BIOS system call is provided under Concurrent CP/M for compatibility with pro-
grams generated under CP/M-86 that use this system call (Function 50). Under Concurrent
CP/M, only routines that interface with character devices are supported. The arguments to
character routines such as CONIN and LIST must be converted to those appropriate for the
Concurrent CP/M X108, Refer to the Concurreat CPIM System Guide for further information

about the XIOS.

Note: Calls to the XIOS Console Status, Input, and Output system calls do not go to the
X108 if the referenced device is a virtual console.

B DIGITAL RESEARCH®

6-175

Concwrreat CP/M Pregrammuer’s Guide

S_0OSVER

Return The Version Of Current
Concurrent CP/M System

Entry Parameters:
Register CL: 0A3H (163)

Returned Values:

Register AX: Version Number (01431H)
BX: Samecas AX
CX: Error Code

The S_.OSVER system call provides information that allows version-independent pro-
gramming. The system call returns a two-byte value, with AH set to 014H for Concurrent
CP/M, and AL set 1o the Concurrent CP/M version level. The AH register contains a value
sct 1o the type of operating system. A value of 01431H indicates Concurrent CP/M 3.1.

Refer to Table 6-5 for a list of error codes returned in CX.

AL High Nibble = Congurrent CP/M-88 Yersion Number
AL Low Nibbla = Cencurrant GP/M Revialon Level

AH High Nibble = GPUJ Typa

0= 8080
1= 5088

AH Low Nibble = OS Type

0= CF/M 2= CP/M w/nstworking
1= MP/M 3= MP/M w/nstworking
4 = Concurrsnt CB/M 8 = Concurrent CP/M
5,7 10 £ = Ressrvad w/networking

Figure §19. Operating System Version Number Format

B DIGATAL RESEARCH®
§176

Concurrent CP/M Programmer’s Guide B_SERIAL

S_SERIAL

Return Current System’s
Serial Number

Entry Parametars:
Register CL: 06BH (107)
DX: SERIAL Address - Offset
DS: SERIAL Address - Segment

Returned Values:
SERIAL filled in

[o)==

Figure 6-20. SERIAL Number Format

S_SERIAL returns the Concurrent CP/M serial number to the addressed, six-byte SERIAL
field as a six-byte ASCIU mumeral.

@ DIGITAL RESEARCH®
6177

S_SYSDAT

Concurrent CP/M Programmer’s Guide

S_SYSDAT

Return Address Of The
Systzm Data Segment

Entry Parameters:
Register CL:

Returned Values:
Register AX:
BX:

ES:

09AH (154)

Sysdat Address - Offset
Same 83 AX
Syedat Address - Segment

The S_SYSDAT system call returns the address of the Systermn Dats Segment of the calling
process. The System Data Segment contains all Process Deacriptors, Queue Descriptors, the

roots of system lists, and other internal deta that Concurrent CP/M uses.

Figure 6-21, illustrates the SYSDAT Thble and its fields.

6178

W DIGITAL RESEARCHe

Concwrent CP/M Programmer’s Gulde

00H
0sH
104
18H
20H

28H

38H

40H

48H

S0H

58H
achH
68H
70H
78H

80H

88H

80H

8BH

AOH

B DIGITAL RESEARCH®

S_SYSDAT
+ + + + + +
SUP ENTRY RESERVED
+ + + + + +
RESERVED
+ + + + - + +
RESERVED
+ * + + + + +
RESERVED
+ T + + + + +
RESERVED
- * + + + ¢ mm—
X109 ENTRY XIOS INIT
+ + + + + L4
RESERVED
+ ¥ ¥ + + ¢
DISPATCHER PDISP
CCPMSEG RSPSEG ENDSEQ RES’ES NVCNS
N- | SYs- X RESER| DAY
NLCB | NCCB | 1) ans| misk MMP VED| FILE
+ r
TEMP { TICKS
osk | /SEG LUL cCR FLAGS
l. + + +
MDUL MFL PUL ouL
+ + + +
QMAL
+ - + "
RLR DLR DAL PLR
+ + + +
RESERVED THRORT OLR MAL
+ + + +
VERSION VERNUM CCPMVERNUM | TOD_DAY
b
Top | ToD | TOD | NCON| NLST| NCIO Lca
HR{ N} sec| opev!| pev| oev
OPEN_FILE | LOCK_{ OPEN.| owNER_Bes7 | RESERVED
mMax| max
RESERVED
RESERVED XPCNS
OFF_g087 SEG_BOA7 RESERVED
Figure 6-21. SYSDAT Table

6179

8. SYSDAT Concurrent CP/M Progmmmer’s Gulde

Table 5-22. SYSDAT Teble Dats Flekis

Field Explanarion
SUP ENTRY Double-word address of the Supervisor entry point for inter-
module communication. All internal system calls go through
thig entry point.
XIOS ENTRY Double-word address of the Extended /0O System entry point
for intermodule communication. All XIOS function calls go
through this entry paint.

XIOS INIT Double-word address of the Extended I/O System Initializetion
. spiry point. System hardware initialization takes place by &
call through this entry point.

DISPATCHER Double-word address of the Dispascher entry point that handles
interrupt returns, Executing a Far Jump to this address is equiv-
alent to executing an Interrupt Return instruction. The Dis-
patcher routine causes & dispatch to occur and then executes
an Interrupt Return. All registers are preserved and one level
of stack is used. This lncation should be used as an exit point
by all X108 interrupt hendlers that use the DEV_SETELAG
systemn call.

PDISP Double-word address of the Dispatcher entry point that causes
a dispatch to occur with all registers preserved. Once the dig-
paich is done, a RETF instruction iz executed. Executing a
IMPF PDISP is equivalent to executing a RETF instruction.
This location should be used as an exit point whenever the
XIOS releases & resowrce that might be wented by & weiting

process.

CCPMSEG Starting paragraph of the opersting system area, This is also
the Code Segment of the Supervisor Moduls,

RSPSEG Paragraph Address of the first RSP in a linked list of RSP Data
Segments. The first word of the dete segment points to the next
RSP in the list. Once the sysicm has been initialized, this field
is zero,

B DIGITAL RESEARCH®

6-180

Concuwrrent CP/M Programmer's Guide S_SYSDAT

Table 6-22. (continued)

Field

Explanation

ENDSEG

NVCNS

NLCB

NCCB

NFLAGS

SYSDISK

MMP

DAY FILE

TEMP DISK

TICKS/SEC
LuL

CCB

First paragraph beyond the end of the operating system area,
including any buffers consisting of uninitialized RAM allo-
cated to the operating systam by GENCCPM, These include
the Directory Hashing, Disk Data and X108 ALLOC buffers.
‘These buffer areas, however, are not part of the CCPM.SYS
file.

Number of virtual consoles, copied from the XIOS Header by
GENCCPM.

Number of List Control Blocks, copied from the XIOS Header
by GENCCPM.

Number of Character Contro} Blocks, copied from the XIOS
Header by GENCCPM.

Number of system flags as specified during GENCCPM.
Default system disk. The CLI looks on this disk if it cannot
open the command file on the user’s current default disk. Set
during GENCCPM.

Maximum memory allowed per process. Set during GENCCPM.
Duay File option, If this field is OFFH, the operating system
displays file logging information on system consoles at each

command. Set during GENCCPM.

Default temporary digk. Programs that create temporary files
should use this digk, Set during GENCCPM.

The number of system ticks per second.
Link list root of unused Lock List items.

Address of the Character Control Block Table, copied from the
XIOS Header by GENCCFM.

&5 DIGITAL RESEARCH®

6-181

S_SYSDAT Concwmrent CP/M Programniers Guide
Table &25, (continued)
Field Explanation

FLAGS Address of the Flag Teble.

MDUL Link lizt roor of unused Memary Descripiors.

MFL Link list root of free memory partitions.

PUL Link Iist root of unused Process Descriptors.

QUL Link list root of unused Quene Descriptors.

QMAU Queue Buffer Memory Allocation Unit.

RLR Ready List Root. Linked list of PDs that ere ready to run.

DLR Delay List Root. Link list of PDs that are delaying for a spec-
ified number of system ticks,

DRL Dispatcher Reedy List. Temporery holding place for PDs that
have just been made ready to o

PLR Poll List Root. Linked list of PDs that are polling on devices.

THRDRT Thread List Root. Linked list of all current PDs on the system.
The list is thresded through the THREAD field of the PD
instsad of the LINK field.

QLR Qusue List Root. Linked lst of all System QDs.

MAL Link 1ist of active memory allocation units. A MAU is created
from one or more memory partitions.

VERSION Address, relstive to CCPMSEQG, of version string.

VERNUM Concurrent CP/M version number (system call 12,
S_BDOSVER).

CCPMVERNUM Concurrent CP/M version number (system call 163, S_OSVER).

6-182

& DAGITAL RESEARCH®

Concurrent CP/M Programmer's Guide

S_SYSDAT

Table 6-22. (continued)

Fieid Explanation

TOD_DAY Time-of-Day. Number of days since 12/31/77.

TOD_HR Time-cf-Day. Hour of the day.

TOD_MIN Time-of-Day. Mimute of the hour.

TOD_SEC Time-of-Day. Second of the minute,

NCONDEY MNumber of XIOS consoles, copied from the XIOS Header by
GENCCPM.

NLSTDEVY Number of XIOS list devices, copied from the XIOS Header
by GENCCPM.

NCIODEV Total mumber of character devices NCONDEY + NLSTDEY).

LCB Offset of the List Control Block Table, copied from the XIOS
Header by GENCCPM.

OPEN_FILE Open File Drive Vector. Designates drives that have open files
on them. Each bit of the word value represents a disk drive;
the least significant bit represents Drive A, and so on through
the most significent bit, Drive P. Bits which are set indicate
drives containing open files,

LOCK_MAX Maximuem number of locked records per process. Set during
GENCCPM.

OPEN_MAX Maximum number of open disk files per process. Set during
GENCCPM.

OWNER_8087 Specifies 8087 information. If set to OFFFFH, the system
assurnes there is no 8087 in the system. If set to 0, there is an
8087 but no one owns it. If set to any other value, the system
assumes that this valve is the PD offset of the 8087 current
process.

B DIGITAL RESEARCH®

6-183

S_SYSDAT Conewrvent CP/M Programmer’s Gulde
Table 6-22. (continued)
Fleld Explanation

XPCNS Specifies the number of physical consoles,

OFF_B087 Offset of the hardware-dependent 8087 interrupt vector. If you
supply your own 8087 exception handler routine, store the
offset of your exception handler routing at this offset eddress.

SEG_8087 Segment address of the hardware-dependent BOB7 interrupt
vectar. If you supply your own 8087 exception handler routine,
store the segment address of your exception handler routine at
this segment address.

& 184

W@ BIGITAL RESEARCH®

Concurreni CP/M Programmer’s Guide

T_GET

Get System Time And Date

B DIGITAL RESEARCH®

Entry Parameters:
Register CL: 069H (105)
DX: TOD Address - Offsat
DS: TOD Address - Segment
Returned Values:
Register AL: Seconds
TOD filled in
{Days, Hours and Minutes only)
A |
DAY HOUR | MIN I SEC
+

Figure 6-22. TOD - Time-of-Day Structure

T-GET

6-185

T-GET Concwrrent CP/M Programmer's Guide

Thbie 6~23. Time-of-Day Fledd Definitlons

Field Definition

DAY The number of days since 12/31/77. The day is stored as a 16-bit integer.

HOUR The current hour of the current day. The hour is represented as a 24 hour
clock in 2 binary coded decimal (BCD) digits.

MIN The current mimte of the current hour. The minute is stored as 2 BCD
digits.

SEC The current second of the current mimute. The second is stored as 2 BCD
digits.

The T_GET aystean call obtains the system internel time and date. The calling process
passes the address of a four-byte data structure that receives the time and date values. This
systern call is equivalent to the T_SECONPS system call, except that it does not return the
SECONDS field of the internal time.

 DIGITAL RESEARCM®
6-136

T_SECONDS

Comcucrent CP/M Programmer’s Guide
T_SECONDS
Get Current System Time And Day
Entry Parameters:
Register CL: 09BH (155)
DX: TOD Address - Offset
DS: TOD Address - Segment
Returned Values:
TOD filled in
{Days, Hours, Minutes, and Seconds)

The T_SECONDS system call returns the current encoded time and date {including sec-
onds) in the TOD structure passed by the calling process.

I DiGITAL RESEARCH®

6-187

T_SKT Concarrent CP/M Progranamess Galde

T_SET

Set Systemn Time And Date

Entry Parnmeters:
Register CL: 068H (104}
DX: TOD Address - Offset
DS: TOD Addrese - Segment

The T_SET system call sets the system internal time and date. The calling process passes
the address of a 4-byte structure containing the time and dste specification.

‘The dats i& rspresanted s£ a 16-bit integer with day 1 corresponding to January 1, 1978,
The time is represented as two bytes hours and minutes stored a1 two BCD digits.

Under Concurrent CF/M, this system call also sets the second field of the system time and
date to 00H.

End of Section 6

W DIGITAL RESEARCH®

6-188

Appendix A
System Call Summary by
Function Number

This appendix lists the Concurrent CP/M system calls by function mumber including the
parameters a process must pass when calling the function, and the values the function returns
to the process.

Table A-1. System Call Summary by Fonction Number
Dec Hex Mnemonic Input Parameters Returned Values
0 0 P_TERMCFM none AX = Rin Code
1 1 C_READ none AL = char
2 2 C_WRITE DL = char none
5 5 L_WRITE DL = char none
6 6 C_RAWIO see def see def
9 9 C_WRITESTR DX = .Buffer none
10 A C_READSTR DX = .Buffer see def
11 B C_STAT none AL = 1 if ready

= 0 if not ready

12 C S_BDOSYER none AX = Version#
13 D DRV_ALLRESET none see def
14 E DRV_SET AL = Drive # see def
15 F F_OPEN DX = .FCB AL = Dir Code
16 10 F_CLOSE DX = FCB AL = Dir Code
17 11 F_SFIRST DX = .FCB AL = Dir Code
18 12 E_SNEXT none AL = Dir Code
19 13 F_DELETE DX = .FCB AL = Dir Code
20 14 F_READ DX = .FCB AL = Err Code
21 15 F_WRITE DX = .FCB AL = Err Code
22 16 F_MAKE DX = .FCB AL = Dir Code
23 17 F_RENAME DX = .FCB AL = Dir Code
24 18 DRV_LOGINVEC none AX = Login Vect.
25 19 DRV_GET none AL = Cur Drive
26 1A F_DMAQFF DX = .DMA none
27 IB DRV.__ALLOCVEC nome ES:AX = Alloc Addr

¥’ DIGITAL RESEARCH®

A-l

A System Call Summary

Coacwrent CP/M Programmer's Guida

Table A-1. (continued)

Dec Hex Mnemonic Input Parameters Returned Values
28 iC DRV_SETRO none see def
29 1D DRV_ROVEC none AX = R/O Vect,
3¢ 1E F_ATTRIB DX = .FCB see def
31 IF DRV_DPB none ES:AX = DPB Addr
32 20 F_USERNUM DL = OFFH (get) Al = User #

= Usecr # (s¢1) nonc
33 21 F_READRAND DX = .FCB Al = Err Code
4 22 F_WRITERAND DX = .FCB AL = Err Code
35 23 F_SIZE DX = .FCB RO, R1, R2

AL = Dir Code
36 24 F_RANDREC DX = .FCB RO, R]1, R2
37 25 DRV._RESET DX = drive Vect AL = Exr Code
33 26 DRV_ACCESS DX = drive Vect none
a9 27 DRV_FREE DX = drive Vect none
40 28 F_WRITEZF DX = _FCB AL = Err Cods
42 2A FLOCK DX = .FCB AL = Err Code
43 2B F_UNLOCK DX = _FCB AL = Err Code
4 2C F_MULTISEC DL= # of Records AL = Rtm Code
45 2D F_ERRMODE DL = Error Mods nooe
46 2E DRV_SFACE DL = Drive # see def
47 2F P_CHAIN see def none
48 30 DRV_FLUSH none gez def
50 32 S_BIOS DX = .BD AX = BIOSRin
51 33 F_DMASEG DX = .DMA Seg none
52 M F_DMAGET none ES:AX = DMA Addr
53 35 MC_MAX DX = MCB se¢ def
54 36 MC_ABSMAX DX = MCB poe def
55 37 MC_ALLOC DX = .MCB see def
56 38 MC_ABSALLCC DX = MCB see def
57 39 MC_FREE DX = MCB ses cef
58 3A MC_ALLFREE none none
59 3B P_LOAD DX = .FCB AX = BP Addr
99 63 F_TRUNCATE DX = .FCB see def
100 64 DRV_SETLARBEL DX = .FCB AL = Dir Code
101 65 DRV_GETLABEL DX = Drive # AL = Label Dag Byte
102 66 F_TIMEDATE DX = XFCB AL = Dir Cods
103 67 F_WRITEXFCB DX = . XFCB AL = Dir Code
104 68 T_SET DX = .TOD none
8 DIGITAL RESEARCH®

A2

Concurrent CP/M Programmer’s Guide

Table A-1. (continued)

A System Call Summary

Dec Hex Mnemonic Input Parameters Returned Values
10s 69 T_GET DX = .TOD AL = seconds
106 6A F_PASSWD DX = .Password none
107 6B S_SERIAL DX = .serial# serinl #
109 6D C_MODE DX = Con Mode none

= OFFFFH AX = Con Mode
110 6E C_DELIMIT DL = Out Delim none

= OFFFFH AL = Cut Delim
111 6&F C_WRITEBLK DX = .CHCB nene
12 W L_WRITEBLK DX = .CHCB none
1286 & M_ALLOC DX = ,MPFB AX = Rm Code
129 81 M_ALLOC Same as above Same as above
130 82 M_FREE DX = ,MFB none
131 83 DEV_POLL DL. = Device none
132 &4 DEV_WAITFLAG DL = Flag AX = Rtn Code
133 85 DEV_SETFLAG DL = Flag AX = Rin Code
134 86 Q_MAKE DX = .QD none
135 87 Q_OPEN DX = .QPB AX = Rin Code
136 88 Q-DELETE DX = .QPFB AX = Rtn Code
137 89 Q-READ DX = .QPB none
138 8A Q_CREAD DX = .QFB AX = Rt Code
139 8B Q_WRITE DX = .QPB
140 8C Q_CWRITE DX = .QPB AX = Rtn Code
141 8D P_DELAY DX = #ticks none
142 8E P_DISPATCH none none
143 8F P_TERM DI = Term. Code AX = Ritn Code
4 90 P_CREATE DX = .PD none
145 91 P_PRIORITY DL = Priority none
146 92 C_ATTACH none none
147 93 C_DETACH none none
148 %4 C_SET DL = Console none
149 95 C_ASSIGN DX = .ACB AX = Rin Code
150 96 P_CLI DX = .CLBUF none
151 97 P_RPL DX = .CPB AX = result
152 98 F_PARSE DX = .PFCB see def
153 99 C_GET none AL = con #
154 9A S_SYSDAT none ES:AX = Sys Data Addr
155 9B T_SECONDS DX = .TOD TOD fiiled in
156 9oC P_PDADR none ES;:AX = PD Addr

it DIGITAL RESEARCH*

A-3

A Systers Call Summary

Concuwrrent CP/M Progmmmer's Guide

Table A-1. (continued)

Der Hex Mnemonic Input Parameters Returned Values
157 9D P_ABORT DX = ,ABP AX = Rin Code
158 9E L _ATTACH none none
159 9F L _DETACH none none
160 A0 L SET DL = List # none
161 Al L_CATTACH none AX = Rin Code
162 A2 C_CATTACH none AX = Rm Code
163 A3 S_OSVER none AX = Version #
164 A4 L GET none AL = List #
B DIGITAL RESEARCHS

A4

Concurrent CP/M Prograsunes’s Guide

Conventions used in Appendix A:
= Address of

= Number

ACB Assign Control Block

Addr = Address
APB = Abort Parameier Block

BD = Rios Descriptor
BP = Base Page
Char = ASCI Character

CHCB = Chamcter Conirol Elock
CLBUF = Command Linc Buffer

Con = Console

CPB = Call Parameter Block
Cur = Current

Delim = Delimiter

Dir = Directory

DMA = Dircct Memory Address
Err = Error

FCB = File Control Block

MCB = Memory Control Block
MPB = Memory Parameter Block

Num = Number
Out = Output
PD = Process Descriptor
PECB = Parse Filename Control Block
QD = Queue Descriptor
QPB = Queue Parameter Block
Rec = Record
Rin = Return
Sys = System
Term. = Termination
TOD = Time of Day
Vect = Vector
End of Appendix A
DIGITAL RESEARCH®

A System Call Summary

Appendix B
ASCI and Hexadecimal Conversions

This appendix contains tables of the ASCII symbols, including their binary, decimal, and
hexedecimal convergions,

Table B-1. ASCII Symbois

Symbol Mzaning Symbol Meaning
ACK acknowledge FS file separator
BEL bell GS group separator
BS hackspace HT horizontal tabulation
CAN cancel LF line feed
CR carriage return NAK negative ackpowladge
DC device control NUL null
DEL delete RS record separator
DLE data link escape SI shift in
EM end of medium SO shift out
ENQ enquiry SOH start of heading
EOT end of transmission SP space
ESC escape STX start of text
ETB end of transmission SUB substitute
ETX end of text SYN gynchronous idle
FF form feed us unit separator

vT vertical tabulation

Thable B-2. ASCI Conversion Table

Binary Decimal Hexadecimal ASCHl
0000000 000 00 NUL
0000001 001 01 SOH (CTRL-A)
0000010 002 0z STX (CTKL-B)
0000011 003 03 ETX (CTRLC)
0000100 004 04 EQT (CTRL-D)
0000101 005 05 ENQ (CTRL-E)

K DIGITAL RESEARCH®

B-1

B ASCH and Hexadeclan! Conversions

Table B-2. (continned)

Concurrent CP/M Programmer's Gulde

Binary Decimal Rexadecimal ASClt
0000110 006 06 ACK (CTRL-F)
0000111 oG7 07 BEL (CTRL-G}
0001000 0c8 08 BS {CTRL-H)
0001001 009 09 HT (CTRL-I}
0001010 010 DA LF (CTRL-J)
0001011 011 0B ¥T (CTRL-K)
0001100 012 oC FF {CTRL-L)
0001101 013 oD CR (CTRL-M)
0001110 014 OE SO (CTRL-N)
0001111 015 OF SI (CTRL-0)
0010000 016 10 DLE (CTRL-P)
0010001 017 11 DC1 (CTRL-Q)
0010010 018 12 DC2 (CTRL-R)
0010011 019 13 DC3 (CTRL-8)
0010100 020 14 DC4 (CTRL-T}
0010101 021 15 NAK (CTRL-U)
0010110 022 16 SYN (CTRL-V)
0010111 023 17 ETB (CTRL-W)
0011000 024 18 CAN (CTRL-X)
0011001 a2s 19 EM (CTRL-Y)
0011010 026 1A SUB (CTRL-Z)
0011011 027 1B ESC (CTRL-|)
0011100 028 1C FS (CTRL-)
0011101 020 1D GS (CTRL-))
0011110 030 1E RS (CTRL-)
0011111 Q31 1F us (CTRL-.)
0100000 032 20 (SPACE)

0100001 033 21 !
0100010 034 22 "
0100011 Q35 23 #
0100100 036 24 $
0100101 037 25 %
0100110 038 26 &
0100111 039 27 !
0101000 040 28 {
0101001 041 29)
0101010 042 2A b
Qi01011 043 2B +
i DIGITAL RESEARCHS

B-2

Concurrent CP/M Programmer’s Guide B ASCII and Hexadeelmal Conversions

Thble B-2. (continued)

Binary Decimal Hexadecimal ASCH
0101100 044 2C .
0101101 045 2D -
0101110 046 2B .
0101111 47 2F /
0110000 048 30 0
0110001 49 3 1
0110010 050 32 2
0110011 051 3 3
0110100 052 M4 4
0110101 053 35 5
0110110 054 36 6
0110111 055 37 7
0111000 056 38 3
0111001 057 39 9
oL11010 053 3A :
oLio1l 059 iB :
oL11100 060 aC <
OL11101 061 D =
OL11110 062 3E >
OLlI111 063 3F ?
1000000 064 40 @
1000001 065 41 A
1000010 066 42 B
1000011 067 43 C
1000100 068 44 D
1000101 069 45 E
1000110 070 46 F
1000111 071 47 G
1001000 072 43 H
1001001 073 49 I
1001010 074 4A J
1001011 075 4B K
1001100 076 4C L
1001101 077 4D M
1001110 078 4E N
1001111 079 4F o]
1010000 080 50 P

$. DIGITAL RESEARCH®

B-3

B ASCII and Hexadecimsl Conversions Concurvent CP/M Progratumer’s Guide

Table B-2. (contimeed)

Binary Decimal Hexadecimal ASCH
1010001 081 51 Q
1010010 082 2 R
1010011 083 53 3
1010100 084 54 T
1010101 085 55 U
1010110 086 56 Y
1010111 087 57 W
1011000 088 58 X .
1011001 089 55 Y
1011010 090 3A A
1011011 091 5B [
1011100 092 5C \
1011101 093 3D]
1011110 094 5E A
1011111 095 5F <
1100000 096 60 !
1100001 097 61 a
1100010 008 62 b
1106011 0599 X] c
1100100 100 64 d
1100101 101 65 e
1100110 102 66 f
1100111 103 67 g
1101000 104 68 k
1101001 105 69 i
1101010 106 6A j
1101011 107 6B k
1101100 108 6C 1
1101101 109 6D m
1101110 110 6E n
1101111 111 6F o
1110000 112 70 p
1110001 113 71 q
1110010 114 72 r
1110011 115 73 5
1110100 116 74 t
1110101 117 75 u

W DIGTAL RESEARCH®

B4

Cancurrent CP/M Programmer's Guide B ASCII and Hexadecimal Conversions

Table B-2, (continned)

Binary Decimal Hexadecimal ASCH
1110110 118 76 v
1110111 112 77 w
1111000 120 78 x
1111001 121 79 y
1111010 122 TA z
1111011 123 7B {
1111100 124 7C |
1111101 125 Fiy }
1111110 126 7E -~
1111111 127 TF DEL

End of Appendix B
8 DIGITAL RESEARCH®

Appendix C
Error Codes

Table C-1. Concorrent CP/M Error Codes

Code #

Definition

RO VoAhads

—
[F]

14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30

NO ERROR

FUNCTION NOT IMPLEMENTED

ILLEGAL FUNCTION NUMBER

CAN'T FIND MEMORY

ILLEGAL SYSTEM FLAG NUMBER

FLAG OVERRUN

FLAG UNDERRUN

NO UNUSED QUEUE DESCRIPTORS LEFT IN QD TAELE
NO UNUSED QUEUE BUFFER AREA LEFT
CAN'T FIND QUEUE

QUELE IN USE

NO UNUSED PROCESS DESCRIPTORS LEFT IN PROCESS
DESCRIPTOR TABLE

QUEUE ACCESS DENIED

EMPTY QUEUE ~

FULL QUEUE

CLI QUEUE MISSING

NO 8087 IN SYSTEM

NO UNUSED MEMORY DESCRIPTORS LEFT IN
MEMORY DESCRIPTOR TABLE

ILLEGAL CONSOLE NUMBER

CAN'T FIND PROCESS DESCRIPTOR BY NAME
CONSOLE DOES NOT MATCH

NO CLI PROCESS

ILLEGAL DISK NUMBER

ILLEGAL FILE NAME

ILLEGAL FILE TYPE

CHARACTER NOT READY

ILLEGAL MEMORY DESCRIPTOR

BAD LOAD

BAD READ

BAD OPEN

DIGITAL RESEARCH®

C Enor Codes Concarrent CP/M Prograsssar'y Guids

Table C-1. (continned)

Code # Definition
31 NULL COMMAND
32 NOT OWNER
33 NO CODE SEGMENT IN LOAD FILE
34 ACTIYE PROCESS DESCRIPTOR
35 CAN'T TERMINATE
35 CAN'T ATTACH
37 ILLEGAL LIST DEVICE NUMBER
38 ILLEGAL PASSWORD
40 EXTERNAL TERMINATION OCCURRED
41 FEXUP ERROR UPON LOAD
42 FLAG SET IGNORED
End of Appendix C

EDIGITAL RESEARCH®
C-2

Appendix D
ECHO.A86 Listing

Listing D-1. RCHO.A86

ECHD ~ Resident System Process
Print Command tail to consols

; DEFINITIONS
copmint equ 224 ;eopm antry interrupt
¢ writestr oqu 9 ;print string
c_detach equ 147 ;detach consola
¢ _set equ 148 5ot default consols
q_make equ 134 ;create queue
g_open equ 135 ;open queue
q read aqu 137 ;read gueus
q _write squ 139 :erite queus
p_priority aqu 145 ;sat priority
pdlen oqu 43 ;length of Process

; Descriptor
p cna equ byte ptr 020h ;defauli cne
p disk 8qu byte ptr 012h ;default disk
p user aqu byte ptr 013h ;default user
p_list equ byte ptr 024h :defauli list
ps_run squ 0 ;PD run staius
pf_keep equ. 2 ;FD nokill flag
rsp lop aqu 0 ;rep offgset
rap pd aqu 010h ;FD offset
rap_uds 8qu D40h ;UDA offset
Tsp bottom equ 140h ;end rsp header
af rsp equ 08h ;queue RSP flag
B DKGITAL RESEARCH®

D]

D ECHO.ABE Lhsting Concuwrrent CP/M Programmer’s Gulde

cCpR:

asin:

loop:

Listing D.1. (continued)

GODE SEGMENT

CSEG
org 0

int ocpmint
ret

;create ECHO quaus
pov cl,q maks | mwov dx,offmat ad
cell oopn

;open ECHO queua
mov cl,q open | mov dx,offset qpb
call copa

;aet pricrity to normal
wov cl,p priority | mov dx, 200
cell oopa

:ES points to SYSDAT
Ky o8, edatseg

i faraver

;read cmdiail from qusue
mov cl,q reed | mov dx,offset qph
call copm

;aet default valyues from PD
MOV bx, pdedr
wov dl,es:p disk[bx] :p_dimk=0-16
ing dl | mov disk,dl ;make disk=1-16
wov d},es:p vser[bx]
mov user,dl
nov dl,as:p ligt[bx]
mov list,dl
mov d),es:p cnefhx]
mov console,dl

I DIGITAL RESEARCH®

D-2

Cancurrent CP/M Programmer's Guide

Listing D-1, (continued)

;30t default consols
; mov dl,consale
mov cl,q_SET ! call cocpa

;8can cmdtall and look for '§' or 0.

iwhien found, replace w/ ¢r,1f,'§’

lee bx,cmdtail [wov r),'$' | mov ah,0

mov dx,bx ! add dx,131
nextehar:

cup bx,dx | j& endomd

cmp [bx],81 ! je sndemd

cmp [bx],ah [je endomd

inc bx ! jmpa nextchar

endend:

zov byta ptr [bx],13

wov byte ptr 1[bx],10

nov byte ptr 2[bx],'$’

;¥rite command tall

lea dx,cmdiail ! mov cl,C WRITESTR
call ccpm -

;detach consols
mov dl,conaoles
mov cl,c detach ! call copm

Tdone, get next command
jzps loop

; DATA SEGMENT

D ECHQ.A86 Listing

T2 DIGITAL RESEARCH®

B3

D ECHO.AS6 Listing

sdatasg

org

rsp_ﬁup

dw

Concurrent CP/M Programumner’s Gulde

Listing D-1. (continsed)

dr
dw

org rsp pd

SEBETITEESELEESR

db
db
db
db
dw

0,0,0

0,0,0

0.0

0.0 ; link,thread
pA run ; status

150 ; priority
pf kasp ; flags

'ECHO ! : name

offset uda/iCh ; ude eeg
0,0 ; disk,usmer
0,0 : loed dsk,usr
0 } MOM

0,0 : dvract,walt
0.0

)

0 ; consola
0,0,0

0 ; list

0,0,0

0,6,0,0

D-4

HDIGITAL RESEARCH®

Concurrent CP/M Programmer's Gulde

Listing D-1. (continued)

Org rap uda

uda dw 0,oftset dma,0,0 ;0
dw 0.0,0,0
dw 0,0,0,0 ;10h
dw 0.0,0,0
dw 0,0.0,0 120h
dw 0,0,0,0
dy 0,0,cffget stack tos,0 :30h
dw 0,0,0,0
dw 0.0,0,0 140h
dw 0,0,0,0
dw 0,0,0,0 ;B60h
dr ¢,0,0,0
dw 0,0,0,0 ;E0h
Org rsp_hotton
gbuf rb 131 ;Queue buffer
qd dw 0 ;1link
db 0.0 ;net,org
dw qf rep ; flags
db 'ECHO ;name
dw 131 ;msglen
dw 1 ; nSgs
dw 0,0 ;dq.ng
dw 0,0 imegent, msgont

dw offset gbuf ;buffer addr.

D ECHO.A86 Listing

M DICITAL RESEARCH®

D ECHO.A86 Liniing

gtack

stuck_tos

pdadr
cmdtail

apb

consale
.disk
;USar
;list

end

rb

dr
dw
dy
dw
dv
dw
dw
dw

rh
db

db
dw
dw
dw

db
db
db

Coacurrent CP/M Programméts Guide

Listing D-1. (continued)

128

Oceoch,Ococeh,Decech
Oocech,Ococch,Dcccch
Ocooch,0cocch, Occech
Occceh,Occech, Occech
Oceoch,Oceoch, Occoch

offset wain ; start offset
0 ; start meg
0 ; init flegs
1 ; QPB Buffer
129 ; starts here
13.10,'§'
0.0 (ISt be zero
0 ;queue ID
1 1 nwsgs
offaet pdadr ;buffer addr.
'ECHO ' ;name to open
0
]
0
0

£nd of Appendix D

D-6

WDIGITAL RESEARCH®

Appendix E
8087 Exception Handling

This appendix includes an axample of an 8087 interrupt hardling routine to demanstrate
the requirements for using the 80B7 processor. Refer to Intel’s iAPX 84,88 User's Manual
for e description of 8087 exception handling in the section on * 8087 Numeric Data Processor®.

In order to guarantes the data integrity for each 2087 process in the muoltitasking envi-
ronment, any user-defined exception handler must adhere to a8 minimum sequance of steps
within the exception handier;

1,
2,

N L W

H DIGITAL RESEARCH®

Save the 8086 environment of the 8086-running process.

Save the environment of the 8087-running process. The OWNER_8087 field in
SYSDAT will contain the offset of the 8087-running process (see description of
SYSDAT in Section § with the S_SYSDAT system call).

, Clear the 8087 interrupt request bit in the status word.

. Disable the 8087 interrupts.

. Clear the PIC interrupt (this instruction is hardware-dependent).

. At this point, you might want to modify the 8087 environment image saved in step

2 above.

. Befare enabling the 8086 interrupts, restore the 8087 environment with its status

word’s interrupt request bit cleared, If the environment is not restored before 2086
interrupis are engbled, and an interrupt occurs (like a tick), a different 8087 process
cen gain control of the 8087 and swap in its 8087 context. On a second interrupt,
or on an IRET instruction, the 8086-running process that happened to be executing
the exception haniler code is brought back into 8086 context and writes over the
new 8087 context.

The user program, which uses its own exception handler, must replace the system’s
interrupt vector with its own. Once this is done, the system swaps this vector into
memory every time the program comes back into 8087 context. The address of the
interrupt vector is in the SYSDAT table at offset AOH (the description of the SYSDAT
Table is included in the description of the S_SYSDAT system call in Section 6).

The default exception handler aborts those 8087 programs that have enabled 8087
interrupts and that generate a severe error (such as stack underrun, divide by zero,
and so forth). Any other errors are ignored by the default exception handier.

E $087 Exception Handling Concurrent CP/M Programmer's Guide

e
’

adpint:

: T

e me we we mr mr mm ome ms oms owy ua

Listing E-1. 8087 Exceptlon Handling

; 8087 interrupt routine

This sxception handier 1z non-specific and
is mouni as an exsmple

default. It la assuwed that if the 8087
programmer has enabled BOBT

interruptis and has specified sxcepilon flags
in the control word, then

the programmer has also included an
excaption handler io taks

spscific actions within the progrem
bafors continuing in the 8087.

This handler will ignore non-severs

errora (overflov,eic) and will

terminate processes with severs errors
{divide by zsro,stack violation}.

E-2

I DIGITAL RESEARCH®

B DIGITAL RESEARCH®

push ds

mov ds,sysdat
nov ndp ssreg,ss
mov ndp spreg,ap
mov s8,5ysdat

mov sp,0ffset ndp_tos

push ax! push bx
pueh ox! push dx
push di! push si
push bp! push es
nov as,syadat
FNSTENY env BOST
FEAIT -
FNCLEX

Xar ax,ax

FNDISI

mnov al,020h

out 060h,&l

mov al,020h

out 058h,al

call In 8087

mov bx,offset env 8087
mov byte ptr 2[bx],0

pop es! pop bp
pop Bi! pop di
pop dx! pop ¢x
pop bx! pop ax

mov 38,ndp sareg
mov sp,ndp Spreg
FLDENV env 8087
FRAIT

pap ds

irset

Concurrent CP/M Programmet™s Guide

~e

E 8087 Exception Handling

Listing E-1. (continued)

SAVE CURRENT DATA SEGMENT

GET X105 DATA SEGMENT

DO STACK SWITCH FOR BOB6 ENVIRONMENT
SAVE

SAVE THE B0BS REGISTERS

HOR SAVE THE BO87 EMVIRONMENT
SAVE 80B7 PROCESS INFO

CLEAR ITS INT REQUEST BIT

DISABLE ITS INTERRUPTS

SEND 2 INTERRUPT ACKNOWLEDGES - 1 FOR
ONE FOR MASTER PIC. ONE FOR SLAVE

IN 8087 WILL CHECK THE BO87 ERROR
CONDITION. IF ERROR IS SEVERE, IT
FILL ABORT, ELSE IT WILL RETURN WITH
NO CHANGES.

CLEAR ITS STATUS WORD FOR ENV RESTORE

RESTORE THE 8086 ENVIRONMENT

SWITCH BACK TQ PREVIOUS STACK
RESTORE 8087 ENV WITH GOOD STATUS

RESTORE PREVIOUS DATA SEGMENT

E 8087 Excepilon Handling Coneurrent CP/M Programmer's Guide

Listing E-1. (continued)

—

entry: DS = SYSDAT
Only user-specified error conditions genarate

in BOBT:
; intsrrupts from the B0BT.

; NOT 3A = ZERD DIVIDE OR INYALID

or p_flag[bx],080n
; OPERATION (STACK ERROR)

mov bx,ownsr 8087 ; GET THE PROCESS DESCRIPTOR
teat bx,bx ; CHECK IF OWNER HAS ALREADY
Jz end 87 ; TERMINATED
mov Bi, offsst env BOSY ; IP IT'S A SEVERE ERROR, TERMINATE
mov ax, statuew[si] ;

; TF NOT SEVERE,RETURN & CONTINUE
teat ax,03ah : 3A = UNDER/OVERFLOW. PRECISION,
Jnz end 87 ; AND DENORMALIZED OPERAND

ond__87 :
rot

End of Appendix E

W DIGITAL RESEARCH®

E4

Glossary

Base Page: Memory region between 0000H and 0100H relative to the beginning of the
Data Segment used to hold system parameters. Base Page serves primarily as an interface
region between user programs. Note that in the 8080 Model, the code and data are intermixed
in the cade segment.

BCD: Acronym for Binary Coded Decimal. Representation of decimal numbers using
binary digits. Ses Tsble B-2 for representations of ASCII codes.

BDOS: Basic Disk Opersting System (BDOS). The BDOS manages the Concurrent
CP/M file structure and executes most of the Concurrent CP/M system calls.

block: Basic unit of disk space allocation under Concurrent CP/M, Each disk drive has a
fixed block size (BLS) defined in its disk Parameter Block in the X108, The block size can
be 1K, 2K, 4K, 8K, or 16K of conseculive bytes. Blocks are numbered relative to zero on
a disk. Blocks are not shared between files.

Boolean: Varisble that can have only two values; usually interpreted as true/false or
on/off.

Checksum Vector {CSV): Contiguous data area in the XIOS with one byte for each
directory sector 1o be checked, that is, CKS8 bytes. A Checksum Vector is initialized and
maintained for each logged-in drive. Each directory access by the systemn results in a
checksum calculation that is compared with that in the Checksurmn Vector. If there is a
discrepancy, the drive is set to Read-Only status. This prevents the user from inadvertently
switching disks without logging in the new disk with a CTRL-C. If not logged in, the new
disk is treated the same as the old one, and you can destroy data on it if you write to it.

CI10: Character I/0 (CIO) Module. The CIO module handles all character [/O to and from
consoles and list devices.

CLI: Command Line Interpreter. The P_CLI system call interprets the command requested

in 2 command line and performs the system calls needed to open a process, load the command
file, and execute the code.

BDICITAL RESEARCH®

Glossary-1

Glossary Concurrent CP/M Programmer's Guide

CMD: Filetype for Concurrent CF/M command files. These are machine language oblect
modules ready to be loaded and executed. Any file with this type can be executed by simply
typing the flleneme afler the drive prompt. For exemple, the program PIP.CMD can be
executed by simply typing PIP.

conrpand: Set of instructions that are executed when the cornmand name is typed after
the syatem prompi. Theas instructiona can be built in the Concurrent CP/M system or can
reside on disk as a file of type CMD. Concurrent CP/M commends consist of three parta:
the comrmand name, the command tail, and e carriege return.

cousole: Primary IO device used by Concurrent CP/M. The console usually consists of
a CRT screen for displaying output and & keyboard for input.

contral character: Nonprinting ASCII charecter produced an the console by holding down
the CTRL (CONTROL) key while striking the character key. CTRL-H means hold down
CTRL and press H. Control cheracters are sometimes indicated using the up-arraw symibel
{*), g0 CTRL-H can be representsd as AH. Certgin control charactery are treated as special
commands by Concrrrent CP/M.

Defanlt Buffer: 128-byts buffer maintained at 0080H in the Base Page. When the CLI
losds 8 CMD file, it initializes this buffer to the command tail, that is, any chamcters typed
sfter tha CMD file ngme. The iirst byis &t 0080H containa the lsngth of the command tail
while the command tzil itself begins at 0081H. A binary zero terminatss the comumand tail
velue. The | command under DDT™ initializes this buffer in the same way as the CLI.

Defsult FCB: One of two FCBs maintsined at 005CH and 006CH in the Base Page. The
P_CLI system call initializes the first default FCB from the first delimited field in the
command taf] and initiglizes the secon default FCB from the next field in the command
tail.

dellmiters: ASCII charucters used (o scparate constituent parte of a lle specification. The
P_CLI systam call recognizes certeln delimiter chavacters &8 : . = ; <> _' biank, and
carriage return. Several Concurrent CPM commands aleo treat ; [] () . and $ a8 delimiter
characters. If is advissble (o evoid the use of delimiter charscters and lowercase characters
in filenames,

directory: Portion of & digk containing entrics for each file on the dizk and locations of
the blocks allocated 1o the files. Each file directory entry is in the form of a 32-bytz FCB,
afthough one file can have several entries, depending on its size. The maximum number of
directory entries supported is specified in the drive’s Disk Parameter Block.

B DIGITAL RESEARCHS
Glossery-2

Concurrent CP/M Programmer's Guide Glossary

directory entry: 32-byls entry associated with each disk file. A file can have more than
one directory entry associated with it. There are four directory entries per directory sector.
Directory entries can also be referred to as directory FCBs.

disk, diskette: Magnetic medis used for mass storage of data in the computer system. The
taerm disk can refer to a diskatte, a removable cartridge disk, or a fixed hard disk,

Disk Parameter Block (DPB): Table residing in the XIOS that defines the characteristics
of a drive in the disk subsystem used with Concurrent €£P/M, The address of the DPB is in
the Disk Parameter Header at DPhase + OAH. Drives with the same characteristics can use
the same DPB. However, cach logical drive must have ita own Disk Parameter Header and
DPB. The address of the drive’s Disk Perameter Header must be rewurned in registers HL
when the BDOS calls the SELDSK entry point in the XI0S. DRY_DPB returns the DPB
address.

Disk Parameter Header {DPH): 16-hyte area in the XIOS containing information about
the disk drive and 2 scratchpad area for certain BDOS operations. See the Concurrent
CPiM System Guide for further detaila.

extent (EX): 16K consecutive bytes in a file. Extents are numbered from 0 to 31. One
extent can contain 1, 2, 4, 8, or 16 blocks. EX is the extent number field of an FCB and
iz 2 one-byte field at FCB + 12, where FCB labels the first byte in the FCB. Depending
on the Block Size (BLS) and the maximum data Block Number (DSM), a directory entry
contains 1, 2, 4, 8, or 16 extents. The EX field is usually set to 0 by the user, but contains
the current extent number during file /O. The term “Extent Folding™ describes directory
entries containing more than one extent. In CP/M version 1.4, cach FCB conteined only
one extent.

FCB: See File Control Block.

flle: Collection of data containing from zero to 242,144 records. Each record contains 128
bytes and can contain either binary or ASCII data. Files consist of one or more 16K extents,
with 128 records per extent.

Flle Control Block (FCB): Thirty-six consecutive bytes maintained and updated by system
calls for file /0. The FCB fields are described in Section 2.4,

hex file format: Absolute output of ASM86 for the Intel 8086. A HEX file contains a

sequence of absolute records, which give a load address and byte values to be stored starting
at the load address (refer to Section 4.3).

BIDIGITAL RESEARCH®

Glossary-3

Glossary Concurrent CP/M Programmer's Guide

/O: Acronym for Input/Cutput operalions or routines handling the input and output of
date in the computer system.

logical drive: Logically distinct region of a physical drive. A physical drive can be
divided into one or more logicel drives, and designated with specific drive references {(such
asa:orf:). Thus.atthe userinterface, itappears that there ere several disksin the system.

MEM: Memory Module. The Memory Module handles all memory manngement calls by
methods transparent to your applications program.

parse: Separate a commend line into its syntactic parts,

queue: Data structure used by the flle system to keep track system information, such as
processes ready to run, locked files, and resources currently in use by processes. Processes
alec use queues to communicale with one another. The BDOS systemn calls create and maintain
quenes.

Read-Ouly: Condition in which a logical disk drive can be read but not written to. A
drive can be set to Read-Only status by using the SET utility. This protests the user from
switching disks without execuling a disk reset. Files can also be set to Read-Only status
with the SET utility or the F_ATTRIB systern call. Read-Only i6 ofien abbreviated ma
RO,

record: Smallest unit of data in a disk flle that can be read or written. A record consists
of 128 consecutive byles whose byte displacement in a file is the produet of the Record
Number times 128. A 128-byte record in a file occupies one 128-byte sector on the disketts.
X the blocking and deblocking algorithm iz used, several records can occupy eech disk
aector.

resntrani code: Cuxic thai can be usad by one process while another is already executing
it. Reentrant code must not be self-modifying; it must be pure code that does net contain
date. The data for reentrant code can be kept in a sepsrate data area or pleced on the stack,

RSP: Reserved Systern Process, An RSP is a Concurrent CP/M utility included within
Concurrent CP/M during the execution of GENCCPM.

RTM: Real Time Monitor. The RTM is the nucleus of Concurrent CP/M., managing queues
and flags, polling devices, and dispatching and suspending processes. Application programs
gain ecceds to RTM functions throngh system calls.

8 DIGITAL RESEARCH®
Glossary-4

Concurrent CP/M Programmer's Gulde Glossary

sector: Unit of data read from and written to the disk by the XIOS. The sector size is
dependent on the disk drive hardware and is usuelly a power of two, such as 256, 512,
1024, or 2048 bytes, These disk sector are referred to as Host Sectors.

source file: ASCIT text file usually created with a text editor that is an input file w a
program, such as a compiler, assembler, or a text formatter.

sack: Reserved area of memory where the proceasor saves the return address when it
receives a Call instruction. When the processor encounters a Return instruction, i restores
the current address on the stack to the Instruction Pointer. Dats such as the contents of the
registers can also be saved on the stack on a first-in-last-out basis. The Push instruction
places data on the stack and the Pop instruction removes it. 8086 stacks are 16 bits wide;
instructions operating on the stack add and remove stack items one word at a time. An item
is pushed onto the stack by decrementing the stack pointer (8P) by 2 and writing the itemn
at the SP address. In other words, the steck grows downward in memory.

SUP: The Supervisor (SUP) manages communications between processes and the operating
systemn kernel, and between other operating system modules. All system calls are intercepted
by the SUR.

frack: Concentric ring on the disk; the standard IBM single density disks have 77 tracks.
Each track consists of a fixed number of numbered sectors. Tracks are numbered from 0 to
one less than the number of tracks on the disk. Data on the disk media is accessed by
combinations of track and sector numbers.

TMP: Terminal Message Processes. The TMPs are Resident Systemn Processes that inter-
cept command lines from the virtual consoles, check for errors, and pess on executable
requests to the CLL The TMP prints the prompt and some Sysiem error messages on your
console. Each virtual console has an independent TMP heading defining the console’s envi-
ronment, including the default disk, user number, printer, and console.

tramsient command file: File of type .CMD stored on disk. Such files must be loaded
into the system cach time they are executed, and therefore execute mere slowly than Resident
System Processes (RSPs), which are an integral part of the operating system and execute
rapidly. Transient commands are created with the GENCMD utility; RSPs are included in
the operating system during execution of GENCCPM.

user: Logically distinet subdivision of the directory. Each directory cen be divided into
16 user munbers.

BDIGITAL RESEARCH®
Glossary-3

Gloszary Concurrent CF/M Programmer’s Guide

wildcard: A ? or * character. The BDOS directory search calls matches ? with any single
character and * with multiple characters. Refer to the F_SFIRST and F_SNEXT system
calls for further details.

X108: Extended I/O System. In Concurrent CP/M, the BDOS is the invariant file-handling
system, which operates independent of the hardware implementation. The XIOS is the
customizable /O interfece configured for your hardware systemn by ths system manufacturer.
The X108 is similar to the BIOS in CP/M and CP/M-86, but it has been extended to implement
virtual consoles and associnted features,

Erd of Glossary

M DIGITAL RESEARCH®
Glossary-6

8080 and Small RSP Modeis, 5-2
8080 keyword, 4-6
2080 Memory Model, [-12, 3-5, 3-7,
4-1, 4-3, 5-2, 56
exception handling, 3-3
8087 Flag
PD, 5-8
pracessor, 3-2
support, 1-2, 3-2
96-byte initisl stack, 3-1
file ceference, 2-7

A

absolutc address, 4-7
ACB—Assign Control Black
(Figure 6-1), 6-21

access stamp, 2-24, 6-84
address

Flag Table, 6-86

maximum, 4-7

PD, 6-157

queue buffer, 6-169

System Data Segment, 6-178

version string, 6-182
Ahhhh parameter 4-7
ALO, 6-50
ALI, 6-50
Allocation Block Mask, 6-49
Allocation Block Shift Factor, 6-49
allocation vector, 2-39, 646
ambiguous reference, 2-6, 6-16
APB—Abort Parameter Block

(Figure 6-10), 6-139

Archive, 6-65

attribute, 2-15

Index

ASM-86 utility, 2.9
saterisk, 2~6
attribute bits, 2-11, 2-14
attribute
compatibility, 2-31
file, 2-14
interface, 2-14
interface F§', 2-30
interface Fé&’, 2-30
AX
UDA field, 6-152
A_Base, 34, 5-11

B value, 4-7
background, t-10
backslash, 2-6
backspace, §-32
BACKSPACE, 6-34
base extent, 6-11, 6-116
Base Page Initialization, 3-5
Base Page, 4-3, 6-14], 6144
Compact Model, 4-5
initial Data Segment, 3-1
Small Model, 44
BASE
MCB, 6-129
Basic Disk Operating System, 14,
-9, 2-1
BDOS, -4
BDOS Error Codes, 2-47
BDOS Error mode, 6-45, 6-75
BDOS file system, 2-1
BDOS Multisector Count, §-113
BDOS physical errors, 2-44

BDIGITAL RESEARCH®

BDOS revision level, 6-174
BDOS VYersion Number Format
{Figure 6-17), 6-174
BDOS
Concurrent CP/M, 19
single-tasking CP/M-86, 1-9
Bhhhh parameter, 4-7
BIOS, 1-11
BIOS Descriptor Format
(Figure 6-18), 6-175
bit map, 656
BLM, 549
blocking/deblocking, 2-38, 6-52
BP
UDA field, 6-152
BSH, 649
BUFFER field, 5-10
tize, 5-10, 673
BUFFER
QD field, 6-169
QPB field, 5-163
buffers
disk dats, 5181
NIOS ALLOC, 6181
burst made, 2-34
BX
UDA field, 6-152
byts count, 2-37, 2-38, 6-65, 6-83

c

C option
SYSTAT, 1-.14
C{onsale) option, 1-15
C(onsoles) option
SYSTAT, 1-14
C-Seg, 4-11
Call Parameter Block, 6-159
carriage return, 2-9, 6-32, 6-33, 6-34,
&90

CCB, 1-10
SYSDAT field, 6-181
CCPM.BYS file, 5-11, 6-180
CCPMBEGQG, 6-182
SYSDAT field, 6179
CCPMVYERNUM
SYSDAT ficld, 6-182
Character Control Block, [-10, §-39,
6-128, 6148, 6-150, 6-181
character device, 6-175, 6-183
Character [/O Module, 14, 1-10
CHARACTERS
C_READSTR, 6-34
CHCB format, 6-39, 6-128
checksum, 2-11, 2-17, 2-27, 2-33, 4-12,
6-68, 6-80, 6-84
Checksum Yector Size, 6-50
Checksum Vector Sizs field
DPE, 2-40
checksum verification, 2-27
disgble, 2-33
child process, 5-10
CI0, 14, 1-10
CIOWAIT
Activity code, 6-148
CKS, &30
CKS field
Diak Parameter Block, 1-1!
CLBUF, 6-143
CLL, 1-11, 6181
CL1 Command Line Buffer
(Figure 6-11), 6-142
CLI
handling RSPs, 54
CLOCE, 1-8
CLOCK process, 1-2, 1-8
clock ticks, |6
Close Checksum error, 2-33, 245
CMD, 112
CMD filetype, 6-143

@ DIGITAL RESEARCHS®

Index-2

CMD file, 2-9, 4-1, 4-8, 5-5, 6141,
&156
CMD File Header Format
(Figure 3-1), 3-3
CNS
APB field, 6-140
C_ASSIGN system call, 6-22
PD field, 6§-150
Code Grovp Desceriptor, 3-2, 5-2
Code Segment, 3-2, 6-152, 6-153
Supervisor, 6180
Commend Line Buffer, 6-143
Command Line Interpreter, [-11, 3-1
Commend RSP, 54, 55, 56
COMMAND TAIL
RSP Command Queu¢ Message,
5-5
COMMAND
CLI Command Line Buffer, 6-142
Compact Memory Model, 3-5, 4-5
Compact Model, 1-12, 4-2, 4-§
compatibility attribute, 2-15, 2-31
definition, 2-32, 2-313
COMPATMODE option
GENCCPM, 2-32
compute file size, 2-2
Concurrent CP/M Compact Memory
Model (Figure 4-4), 4-5
Concurrent CP/M Functional
Modules (Figure 1-2), 1-3
Concurrent CP/M Virtual/Physical
Enviranments (Figure 1-1), L-]
Concurrent CP/M Base Page Values
(Figure 3-3), 3-6
concurrent file access, 2-35
conditional queue write, 6-166
conditionsal read
queue, -7
conditional write
queue, 1-7
CONIN, 6-39, 6175

HDIGITAL RESEARCH®

CONOUT:, 6-39
console, 1-11

. Console Buffer Format (Figure 6-2),

6-33
console 1/0, 1-10
Console I/O System Calls, 64, 6-21
console
input, 6-131, 6-175
mode, 6-39
number, 6-36
number of XI0S, 6-183
number of SYSDAT, 6184
Output, 6-175
status, 6-31, 6-175
system calls, 6-2
virtual, 6-18}
contiguous memory scgment, 6-131
Continous display option
SYSTAT, I-14, 1-15
control characters, 2-6
Control Word
UDA 8087 extension, 6-153
copy number
RSP, 53
CP/M Compatible Memory
Allocation System Calls, &9
CP/M-86 compatibility, 6-175
CP/M-86 memory allocation scheme,
6128
CPB, 6-160
CPB-—Call Parameter Block
{Figure 6-14), 6-159
CPU type, 6-174, 6-176
CR byte, 6-113
CR field, 3-7, 6-79, 6-83, 6-84, 693,
696
CR field of FCB, 6-66
CR field
FCB, 2-12, 2-38
CS, 6-153

Index-3

CS field
FCB, 2-11, 2.38
CS register
Small Model, 4-4
53
UDA field, 6-153
CSEG directive
ASM-86, 44
CTRL-C, 1-10, 1-15, 5-8, 6-3!, 6-32,
637
disable, 6-29
enable, 5-29
CTRL-E, 6-34
CTRL-H, 6-34
CTRL-I, 632, 6-34, 6-29
CTRL-), 6-34, &35
CTRL-M, 6-34, 6-35
CTRL-O, 1-10, 1-11, 631
disable, 6-29
enable, 629
CTRL-P, I1-10, 1-11, 6-29, 631
CTRL-Q, 1-10
disable, 6-29
enable, 6-29
CTRL-R, 6-35
CTRL-S, 110, I-11, 6-31
disable, 6-29
enable, 6-29
CTRL-U, 635
CTRL-X, 6-35
CTRL-Z at EQF, 2.9
current DM A, 6-61, 691, 696, 6-101
current DMA address, 6-113
current DM A buffer, 6107
Current Qutput Delimiter, 6-25
current processes, 1-13
current record field, 6-93
FCB, 2-12
current record position, 3-7
current user number, 2-17, 6-149
current process activity, 6147

Cw

UDA 2087 extension, 6-153
CX Error Code Reports, 619
CX error codes, 1-13
CX

UDA field, 6-152
C_ASSIGN system call, 6-22
C_ATTACH system call, 622, 6-23
C_CATTACH systemn call, 6-24
C_DELIMIT system call, 6-25, 6-40
C_DETACH sgygtem call, 622, 626
C_GET system call, 627
C_MQDE, 31, 637
C_MODE call, 1-11
C_MODE system call, 5-23
C_RAWIQ, 637
C_RAWIO ¢all, 1-11
C_RAWIO system call, 6-30
C_READ gystem call, 6-32, 6-33, 6-38
C_READSTR call, 1-10
C_READSTR system call, 6-33
C_SET system call, 6-36
C_STAT, 629
C_STAT aystem call, 6-37
C.WRITE, 629
C_WRITE system call, 6-38
C_.WRITEBLK, 6-29
C_WRITEBLK system call, 6-39
C_WRITESTR, &25, 6-2%
C_WRITESTR system call, 640

D

DO-D15 field
FCB, 2-12
date area, 2-1, 2-3
data block size, 2-8
Data Group Deseripter, 5-2, 5-11
Data Record, 4-9, 4-10
Data Segment, 5-1

Index-4

& DIGITAL RESEARCH®

Data Structures Index, 6-18
date and time, 1-2
date and time stamps, 2-3, 2-18, 2-24,
661
DATE uiility, 2-2§
Day file aption, 6-181
DAY FILE
SYSDAT field, 6-181
DAY
TOD field, 6-185
days
number of, 6-183, 6-185
DDT-86, 5-11
Default Close, 668
default console, 6-26, 627, §150
C_ATTACH, 623
C_CATTACH, 6-24
default disk, 1-11, 647, 6-54, 6-59,
6149
default DMA base, 6-74
default DM A buffer, 3-8, 6-141
default drive, 2-3, 2-5, 3-7
default error mode, 1-10, 2-43
default list device, 6-122, 6-123, 6-124,
6-126, 6-127
default list device number, 6-1285,
6150
default mode
BDOS Error mode, 6-75
Locked mode, 2-26
password, 2-3, 2-23, 6-91, 6107
TMP, 2-23
Delay List, 1-6,1-9, 6-147, 6-182
DELAY
Activity code, 6-147
Delete mode, 2-22
delimiters, 2-6, 6-88
Device System Calls, 6-2, -5, 641
DEV_POLL system call, I-11, 6-41
DEV_SETFLAG, 6-42, 643, 6-180
DEV_WAITFLAG, |-8, 6-42, 6-43

B9DICITAL RESEARCH®

DI
UDA field, 6-152
DIR attribute, 6-143
DIR utility, 2-1, 2-15
Direct Memory Address, 673
direct video mapping, 3-8
Directory Allocation Vector 0, 6-50
directory area, 2-1
code, 2-46, 2-48, 6-17
code definitions, 248
entry, 6-79
label, 2-3, 2-18, 2-19, 2-20, 6-55,
6-60, 6-113
directory label data byte, 2-19, 2-20,
6-55, 6-60
Directory Label Format (Figure 2-2),
2-18
Directory Maximum, 6-50
Directory Record with SFCB
(Figure 24), 2-24
directory space, 2-1
directory write operations, 2-38
Disk Data buffers, 6~181
disk directory area, 2-8
disk drive organization, 2-8
Disk Drive System Calls, 6-2, 6-5.
644
Disk File System Calls, 6-7
Disk Free Space Ficld Format
(Figure 6-5), 6-63
Disk 1/0 error, 2-44
Disk Parameter Block, 1-11, 240,
6-48, 6-49
Disk Reset, 6-51
Disk Storage Maximum, 6-50
Disk System Reset (Figure 2-6), 2-41
DISK
DP field, 6-149
disk
temporary, 6-181

[ndex-5

Dispatcher, 1-5
Dispatcher entry point, 6-180
Digpaicher Ready List, 6-182
DISPATCHER
SYSDAT field, &180
DL field
directory label, 2-19
DIR
SYSDAT field, 6-182
DMA address, 2-3, 3-1, 6-156
DMA baie, 3-1
DMA Buffer, 56, 59, 6-73
DMA OFFS
UDA field, 6-152
DMA offset, 3-1, 672, 6-152
DMA
default address, 647
DPB, 240, 6-48
DPB—Disk Perameter Block
(Figure 6-4), 6-48
DR FCB field, 6-59
DR field
direclory label, 2-19
FCB, 2-11
XFCB, 2-21
Drive Code
FCB, 2-11
drive code
XFCB, 2-21
drive
directory label, 6-101
field, 6-89
reset, 2-39, 2-41
spegifier, 2-5
status, 2-2, 2-3
Drive Vector, 6-44
Drive

RO, or Login Vector Structure

(Figure 6-3), 6-44
DRL
SYSDAT field, 6-182

DRM, 6.50
DRV., 2-2
DRV_ACCESS system call, 2-39,
2-42, 645
DRY_ACCESS call, 2-42
DRVY_ALLOCVEC system call, 6-46
DRV_ALLRESET, 3-], 673
DRV_ALLRESET eystem call, 2-39,
6-47, 6-62
DRV_DPB system call, 648
DRV_FLUSH system call, 6-52
DRV_FREE, 2-29
DRV_FREE system call, 2-39, 2-42,
633
DRV_GET system call, 6-54
DRV_GETLABEL system call, 2-20
6-53
DRV_LOGINVEC system call, 6-56
DRVY_RESET, 240, 3-1
DRV_RESET call, 1-11
DRV_RESET operation, 2-40, 6-62
DRY_RESET sysiem call, 2-39, 6-57
DRVY_ROVEC system call, 647, 6-58
DRV_SET system call, 659
DRV_SETLABEL system call, 2-19,
6-60
DRV_SETRQ system call, 240, 242,
244, 647, 6-58, 6-62
DRV._SPACE, 673
DRY_SPACE system call, 646, 6-64
DS and ES registers
Small Model, 4-4
DS
UDA field, 6153
DSEG directive, 44
DSM, 650
DX
UDA field, 6-152

Index-6

& DIGITAL RESEARCH®

E F

E(xit) option, 1-15 F1’ compatibility sttribute, 2-32
SYSTAT, 1-14 F1-F¢, 2-15
ECHO, 58 F1-F4’ compatibility attributes, 2-32
ECHO RSP, 51, 53, 511 F1'.F4 file attribute, 665
ENDSEG F1-F%, 2-14
SYSDAT field, 6-181 F1-F8 field
EOF, 6-12 FCB, 2-11
EOF (CTRL-Z), 29 FZ' compatibility attribute, 2-33
error codes, 1-13, 2486, 2-47 F3’ attributes, 2-36
crror flag, 2-47, 249 F3* compatibility attribute, 2-33
error handling, 2-43 FA4’ compatibility attribute, 2-33
Error mode, 2-3, 2-43 F5, 2-17
ES F5’ interface attribute, 2-30, 2-35,
UDA field, 6-153 6-65, 668
EX field, 679 F5' interface attribute, 870
FCB, 2-11 F5 interface attribute, 6-76, 6-79, 6
exception handling 107, 6-111
RO87, 6-184 F5’ interface ettribute, 2-36
exclusive lock, 6-76 F5-F8’, 2-16
exclusive locks, 2-35 F5-F8’ attribute, 6-66
exit point, 6-180 Feo’, 2-17
EXM, 649 F6&’ interface attribute, 2-27, 2-30,
EXT 2-36, 2-38, 6-65, 6-68, 6-83
MCB, 6129 ¥, 2-17
Extended Address Record, 4-9, 4-10 F8’, 2-17
extended error ¢odes, 2-49 Far Jump instruction
Extended Error Module, 1-10 Far Return, 3-1, 42, 4-3
extended errors, 2-43, 2-45, 2-46 FCB, 2-9, 6-17, 664

extended file lock, 2-30, 6-15, 6-107
Extended IfO System, 1-4
Extended 1/ System entry point,
6180
Extended Input/Output System, 1-1!
extent, 693
Extent Mask, 649
extent number
FCB, 2-11
Extra Segments, 5-1

HIDIGITAL RESEARCH®

Index-7

FCB—File Control Block
{Figure 2-1), 2-10
checksum, 2-29
checksum verification, 2-33
drive code, 6-59
extent number, 6~80
format, 2-17
initialization, 2-12
length, 2-10
usage, 2-12
verification, 2-41
ECR
File Namel, 3-7
Fils Name2, 3-7
FCBADR
PFCB, 6-87
file access, 2-35
concurrent, 2-35
shared, 1-10
File Already Exists error, 2-46
file attributes, 2-14, 6-65
file byte counts, 2-37
File Control Block, 2-9, 6-64
File Currently Open error, 2-45
File field
XFCB, 2-21
file header
CMD, 3-2
File 1D, 2-12, 2-26, 2-35, 6-76, 6-80,
6-84, 6109
File lock, 6-14
extended, 6-65, 6-68
file locking, 1-9
extended, 2-30
file logging information, 6~181
file open modes, 2-26
File Opened in Read/Only Maode
error, 2-45

file
organization, 2-8
rcurity, 2-27
size, 2-8
specification, 2-5
pystem, 2-i, 2-18, 2-37
system calls, 2-3, 24
File-Access System Callg, 6-2, 6-64
filename, 2-1, 6-89
field, 2-1, 2-5
file size,
maximum, 2-8
filetype, 2-1, 689
FCB, 2-11
filetype conventions, 2-7
filetype field, 2-5, 2-6, 2-11
XFCB, 221
Flag 1
tick flag, 1-©
Flag 2
second flag, 1-8
FLAG field
PD, 6-140
flag 1P, 6-42
flag numbers, 643
Flag Table
address, 6-182
FLAG
PD field, 6-149
flag
Process Keep, 111
SYS, 6-140
flags O
1, 2,and 3, 643
FLAGS [icld, 58, 59
flags
initial, 6-152
FLAGS
QD field, 6-169
flags
queus, 5-169

Index-8

[DKXTAL RESEARCH®

FLAGS

SYSDAT field, 6-182

FLAGWAIT

Activity code, 6-149

flush buffers, 2-39
Function 0, 6162
Function 1, 6-32
Function 2, 6-38
Function S, 6127
Function 6, 630
Function 9, 640
Function 10, 6-33
Function 11, 6-37
Function 12, 6-174
Function 13, 6-47
Function 14, 6-59
Function 15, 6-83
Function 16, 6-68
Function L7, 6-100
Function 18, 6-104
Function 19, 670
Function 20, 6-93
Function 21, 6-113
Function 22, 6-79
Function 23, 6-98
Function 24, 6-56
Function 2§, 6-54
Function 26, 6-73
Function 27, 6-46
Functian 28, 6-62
Funetion 29, 6-58
Function 30, 6-65
Function 31, 6-48
Funection 32, 6-112
Function 33, 6-95
Function 34, 6-116
Function 35, 6-102
Function 36, 6-92
Function 37, 6-57
Function 38, 6-45
Function 39, 6-53

WDIGTAL RESEARCH®

Function 40, 6-121
Function 42, 6-76
Function 43, 6-109
Function 44, 682
Function 45, 6-75
Function 46, 6-63
Function 47, 6-141
Function 48, 6-52
Function 50, 6-175
Function 51, 6-74
Function 52, 672
Function 53, 6-138
Function 54, 6-134
Function 55, 6-136
Function 56, 6-133
Function 57, 6137
Function 58, 6135
Function 59, 6-156
Function 99, 6107
Function {00, 6-60
Function 101, 6-55
Function 102, 6105
Function 103, &119
Function 104, 6-188
Function 105, 6-185
Function 106, 6-91
Function 107, 6-177
Function 109, 6-28
Function 110, 6-25
Function 111, 639
Function 112, 6-128
Function 128, 6-13]
Function 129, 6-131
Function 130, 6132
Function 131, 6-41
Function 132, 6-43
Function 133, 6-42
Function 134, 6168
Funetion 135, 6-171
Function 136, 6-167
Function 137, 6-172

Index-9

Function 138, 6-155

Funetion 139, 6-173

Function 140, 6-166

Function 141, 6-154

Function 142, 6-155§

Function 143, 6-161

Function 144, 6-145

Function 145, 6-158

Function 146, 6-23

Funciion 147, 6-26

Function 148, 6-36

Function 149, 621

Function {30, 6-142

Function 151, 6-159

Function 152, 6-86

Function 153, 6-27

Fucction 154, 6-178

Function 155, 6-187

Function 156, 6-157

Function 157, 6139

Function 158, 6-122

Function 159, 6-124

Function 160, 6-126

Funciion 161, 6123

Function 162, 6-24

Function 163, 6-176. 6-182

Function 164, 6-125

F ’ interface attribute, 6-76

F.,h22

F_ATTRIB system call, 2-14, 2-30,
2-31, 2-38, 6-85, 6-83, 6-98

F_CLOSE system call, 2-30, 2-33,
2-39, 6-68

F_DELETE eystem call, 2-30, 6-70,
6-30

F_DMAGET system call, 673

F_DMACOFTF, 6-156

F_DMAOFF sysiem cell, 5-6, 6-74,
6-75

F_DMASEG, 6-73, 6-156

F_DMASEG system call, 5-5, 6-74

F_ERRMODE system call, 2-29, 2-49.
645, &75

F_FLUSH system call, 2-39

E_LOCK, 2-35

F_LOCK sysiem call, 2-26, 2-34, 2-36,
676, 582

F_MAKE, &76

F_MAKE system call, 2-10, 2-14,
2-21, 2-22, 2-27, 2-3§, 5§-79, 693,
&113

F_MULTISEC saystem call, 2-34, 6-82,
693, 6.95, 6-113

E_OPEN, 6-76

E_OPEN call, 2-26

F_OPEN system call, 2-9, 2-10, 2-14,
2-26, 2-27, 2-31, 2-38, 6-66, 6-83,
693, 6-109, 6-113, 6-143

F_PARSE system call, 2-6, 3-1, 6-87,
6-143

F_PASSWD, &98

F_PASSWD systemn call, 2-23, 6-61,
6-55, 691, 6107

F_RANDREC swtem cal, 592

F_READ system call, 2-34, 6-93

F_READRAND sysiem call, 2-34,
6-9§

F_RENAME system call, 2-12, 2-30,
231, 698

F_SFIRST system call, 2-14, 2-15,
2-20, 2-23, 2-25, 2-38, &-66, 6-70,
6-100

F_S1ZE systern call, 6-102

F_SNEXT system call, 2-14, 2-15,
2-20, 2-23, 2-25, 2-38, 6-66, 6-70,
6100, 6-104

F_TIMEDATE system call, 2-25,
6105

F_TRUNCATE system call, 2-30,
6107

F_UNLOCK, 2-35

Index-10

i DIGITAL RESEARCH®

F_UNLOCK system call, 2-26, 2-34,
2-35, 2-36, 2-37, 6-34, 6-109

F_USERNUM system call, 2-17,
6112

F_WRITE system call, 2-34, 6113

F-WRITERAND system call, 2-34,
6-94, 6-102, 6116

F.WRITEXFCB system call, 2-21,
2-22, 6119

F-WRITEZF system call, 2-34, 6-94,
6121

G

G_Farm, 3-3

G_Type field, 3-2

GENCCPM, 2-29, 3-1, 5-1, 5.3, 5-11,
&6-181

GENCMD, 4-6, 4-9, 5-2

generic category, 2-7

Group Descriptor, 3-3

Group Descriptor Format
(Figure 3-2), 3-3

G_Length, 34

G_Max, 34

G_Min, 34

H

H86 filetype, 4-6
Hard Disk, 6-51
hardware initialization, 6-180
Header Record, 3-3
CMD file, 41, 47
header
RSP, §-2
HEX file, 4-6, 4-7
highest priority process, 1-6
hour of day, 6-186

b8 DIGITAL RESEARCH®

HOUR
TOD field, 6-186

)|

legal 7 in FCB error, 2-46
independent group, 3-7
initial flags, 6-152
initie] stack area, 4-2
initial stack
3080 model, 4-2
initial values
instruction pointer, 4-1
segment registers, 4-1
stack pointer, 4-1
initialization
hardwere, 6-180
initinlize directory, 2-39
Instruction Pointer, 4-3, 6-153
INT 0, 6153
INT 1, 6-153
INT 3, 6-153
INT 4, 6-153
INT 224, 1-12, 6-153
INT 225, 6-153
Intel héxadecimal file format, 4-9
Intel utilities, 4-7
Intel
small model, 41
interface attribute
F%, 668, 6-70, 6-83
F&’, 6-70, 6-83
F7, 6-34
F8’, 6-84
interface attributes, 2-14, 2-16, 2-27,
665
Interrupt Return instruction, 6-152,
6130
interrupt returns, 6-180
interrupt vectors, 6-153

[ndex-11

interrupt

logical, 1-2

physical, I-2

types, 6-43
interrupts enabled, 59
lavelid Drive error, 2-44
10_CONIN

X108, 1-10
1P, 6-153
IF flag, 6-42
1P register, 4.3

Small Model, 4.4
1P

instruction pointer, 6-152
IRET instruction, 5.9
IRET structure, 3-11

J

JMPF PDISP instruction, 6-180

K

KEEP Flag, 5-8
KEEP flag, 5-9, 6-149, 6-16]
KERNEL flag, 6-149

L

labe!

directory, 2-18
last record byte count, 6-65
last record number, 6-107
LCB, I-1D

SYSDAT field, 6-183
Ld Addr, 4-i1
Least Recently Used arder, 3-2

LENGTH
MCB, 6129
line feed, 2-9, 6-12, 6-33, 6-34, 6-90
line-editing, 633, &34
LINK {icld, 6-146, 6-182
RSP header, &7, 511
Link list root, 6-181
Link list
memory allocation units, 6182
LINK
PD field, 6-147
LIST, 6175
Liat Control Bleck, 1-10, 6-181, 6-183
list device, I-11, 6-122, §-123, 6-124,
6126, 6-127
List Device 1O System Calls, 6-122
List Device System Calls, 6-2, 6-8
list devices
number of XI0S, 5182
List field
process descriptor, 1-11
list 1/Q, 1-10
LIST
PD fisld, 6-150
lock existing records only, 676
Lock List, 2-27, 2-28, 2-29, 2-30, 2-33,
2-37, 2-41, 242, 645, 6-53, 6-77,
5-31, 5-B5, 611D, 5-161, 6-181
lock logical recorde, 676
lock operations, 2-36, 2-37
Locked, 2-2
Locked mode, 2-26, 2-30, 6-19, 6-80,
683
locked records
maximum number, 6-183
locks
exclusive, 2-35
shared, 2-35
LOCK_MAX
SYSDAT ficld, 6183
log-in drive, 2-3

Index-12

¥ DIGITAL RESEARCH®

log-in operation, 2-39
logged-in, 2-39
logical console, 6-37, 6-39
logical drives, 2-8
logical extent, 6-113
logical interrupt, 1-2, 6-42
logical list deviee, 6-128
logical mesgage, 6-162
logical record size, 2-37
Login Vector, 6-44, 6-56
lowercase, 2-6, 2-7
LRU, 3-2
LST:, 6128
LUL

SYSDAT field, 6181
[LATTACH, 6-127
L_ATTACH system call, 6-122
L_CATTACH system call, 6-123
L_DETACH system call, 6-124
[_GET systern call, 5-125
L_SET systemn call, 6126
L_WRITE system call, 6-127
L_WRITEBLK system call, 6-128

M

M value, 48
M30 byte, 3-7
machite code

Small Model, 44
make system queue, 6168
MAL

SYSDAT field, 6182
MATCH

C_ASSIGN system call, 6-22
MAX numter of paragraphs, 6-131
MAX

C_READSTR, 6-34

MPB, 6130

MCB—Memory Control Block
(Figure 6-7), 6-128
MC_ABSALLOC sysiem call, 6-133
MC_ABSMAX aystem call, 6134
MC_ALLFREE system ¢all, 6-135
MC_ALLOC sysiem ecall, 6-136
MC_FREE system call, 6137
MC_MAX system call, 6138
MDUL
SYSDAT field, 6-182
media change, 2-3, 2-29, 2-39, 2-40,
2-41, 242
media
nonremovable, §-50
MEM, 14, 1-§
MEM field
Process Descriptor, 5-4
MEM
DP field, 6-149
memory, 3-7
memory allocation, 1-13
Memory Allocation System Calls
MP/M Compatible, 69
CP/M Compatible, 69
memory allocation units, 6-182
Memory Control Block, 6-128
Definition, 6-129
Memory Descriptors
unused, 6-182
Memory Management System Calls,
62, 6-3
Memory Management Module, 14
memory model, 4-1
RSP, 5-1
Memory Module, 1-9
Memery Parameter Block Definition,
6-130
memory partitions
free, 6-182
memory protection, 6146
Memory Segment Descriptars, 6-149

EADKGITAL RESEARCHY

Index-~13

Memory Systers Calls, 6-128
memory
absolute, 6134
initialization, 3-|
largest available region, 6138
maximum per process, 5181
message
length, 510, 6-169
meximum number, 6-169
zero-length, 1-8
MFL
SYSDAT field, 6-182
MFPB—M_FREE Parameter Block
(Figure 6-9), 6-132
Mhhhh parameter, 4.7
MIN length, 6-131
MIN
MPR, &130
TOD field, 6-185
minimum memory velue, 4-8
minimum memory requircment, 4-7
minute of hour, 6183, 6-185
MMP
SYSDAT field, 6-181
modes
file open, 2-26
MP/M Compatible Memory
Allceation System Calls, 59
MP/M-86 memozy ellocation scheme,
6-128
MPB—Mezmory Parameter Block
{Figure 6-8), 6-129
MSGLEN
QD field, 6-169
multi-user, 1-1
multiple programs, 1-2
Multisector count, 2-3, 2-34, 2-385,
2-36, 6-12, 613, 6-73, 676, 6-82,
693, 6-117, 6-118
Multisector 170, 2-34
mutual exclusion queues, 1-7, 1-8

MX queue, 1-8

MXdisk, -8

M_ALLOC system call, 6-131
M_FREE &ystem call, 6131, 6-132

N

NAME fiald, 5-8
directory label, 2-19
APB field, 6140
CPRB field, 5160
C_ATTACH, 623
DP field, 6-149
PD, 53
QD field, 6-169
QPB field, 6-163
queus, 6-169
RSP PD, 5-8

NCCB
SYSDAT field, 6181

NCHAR
C_READSTR, 6-34

NCIODEV
SYSDAT field, 6-183

NCONDEY
SYSDAT field, & 153

NCP byte
field, &3
RSP header, 5-3

networking interfaces, [.5

NFLAGS
SYSDAT field, 6-181

NLCB
SYSDAT field, 6-181

NLSTDEV
SYSDAT field, 6-183

NMSGS
QD field, 6-169

no data, 694

Index-14

DIGITAL RESEARCH®

No Room In System Lock List error,
246

non-8080 model, 3-7

noninterrupt-driven devices, 8-41

Nonremovable Media Drives, 6-50

null character, 6-90

NVCNS

SYSDAT field, &181
NVCNS field, 5-3

0

OFF, 6-50
OFF_8%087

SYSDAT, 6-184
OHS6 utility, 4-9
one secand flag

Flag 2, -8
open disk files

maximum number, 6183
open file, 2-2
QOpen File Drive Vector, 6-183
Open File Limit Exceeded error, 2-46
open made, 2-2, 2-26
open verification, 2-2%
OPEN_FILE

SYSDAT field, 6-183
OPEN_MAX

SYSDAT field, 6-183
Operating System Version Number

Farmat (Figure 6-19), 6-176

OS type, 6-174, 6-176
os versian, 6-176
Output Delimiter, 6-25
owner

queue message, 1-8
OWNER 8087

SYSDAT, 6-183

HWIRGITAL RESEARCH®

P

Pl Len, 3-7
P2 Len, 3-7
PARAM field
CPR, 6-160
PARAM
CPR field, 6150
parameter passing, &-140
PARENT
PD field, 5-149
parent/child relationship, 3-8
parentheses, 2-8
parse file specification, 2-3
Parse Filename Contrel Block, 686
partial close, 2-30, 2-33, 6-68
password, 2-1, 2-2, 3-7, 661, 6-65,
6-78, 6-98
default, 2-3, 2-23
length, 3.7
mode, 6-79, 6-105
password error, 2-45
password field, 2-§, 6-89
directory label, 2-19
Password field
XFCB, 2-21
password protection, 1-10, 2-3, 2-22,
6-80
password support, 2-13
PD, 1-5, 5-I
PD—Process Descriptor
{Figure 6-12), 6-145
PD address, 6157
PD table, 6-145, 6-149, 6-161
PD
APB [ield, 6-140
C_ASSIGN, 622
PDADDRESS
RSP Command Queue Message,
5-5

Index-15

PDISP

SYSDAT field, 6-180
permanent drive, 2-39, 240, 242
PFCB—Perse Filename Control

Block (Figure &-6), 5-86

Physical and Extended Errors, 2-49
physical error, 2-43, 249, 2-50
Physical Input Process, [-10, 6-31
physicel interrupt, -2
Physical Record Mask, 6-50
Physical Record Shift Factor, 6-50
physical records, 2-38
PIN, 1-10, I-11, 6-31
PIP utility, 2-15, 2-34
PLR

SYSDAT field, 6132
PM field

XFCB, 2-21
Poll List, &-147
POLL

Activity code, 6-147

List Root, 6-182
printer, 111,

echo, 6-29
priority

highest, 6-158

lowest, 6~158

transient process, 54, 6-158
PRIORITY field, 5-8
PRM, 649, 6-51
process, -2, 2-28, 2-35
Process Descriptor, 1-5, 5-1, 6-144,

6-145, 6-146, 6-1681, 6178

address, 1-8, 6-140, 6-157
Process Descripior

initialization, 3-1

unused, 6-182
Process 1D

C_ASSIGN, 6-22
Process Keep flag, 1-11

process name, 6-149
aboried, 1-3
priority, 6-154
privileged, 5-10
register values, 6-152
resources, 6-161
scheduling, 6-148
Process/ Program System Calls, 6-3,
611
program, 1-2
Program Flag
CMD header record, 3-2
PSH, 649, 651
PUL
SYSDAT field, 6-182
P_ABORT, I-11
P_ABORT system call, 6-140
P_CHAIN system cgll, 2-17, 6-141
P_CLI system call, 1-5, 2-6,2-7, 2-17,
2-32, 31, 42, 4-3, 44, 4-5, 34,
5.5, 56, 632, 673, 6-82, 6-143,
6144
P_CREATE, 6-145
P_CREATE system call, 3-1, 5-1, 54,
58, 5-10, 6-146, 6-149, 6-157
P_DELAY system call, 1-9, 6154
P_DISPATCH system call, 6~155
P_LOAD aystem call, 1.5, 3.5, 4-2,
4-p, 6-143, 6156
P_PDADR system call, 5-5, 6-157
P_PRIORITY system call, 5-8, 6-158
P_RPL system call, 6-160
P_TERM, 31, 42, 6-162
P_TERM system call, 6-32, 6-140,
6141, 6161
P_TERMCPM, 42
P_.TERMCPM system call, 6-162
P_TERMCFPM
CP/M-86, 6-162

Index-16

8 DIGITAL RESEARCH®

Q

QD—Queue Descriptor (Figure 6~16),
6-168
QLR
SYSDAT field, 6-182
QMAU
SYSDAT field, 6-182
QPB, 6-171
QPB-- Queue Parameter Block
(Figure 6-15), 6-163
qualified reset, 2-40
question mark, 2-6
queue buffer, 1-7, 6-145, 6~169
queue descriptor, 1-7, 1-8; 6-147,
6-168
unused, 6-182
queue flags, 6169
ID Field, 6-171
List Root, 6-182
Management, 1-7
Management System Calls, 6-3
message, 1-6, 1-7
Message Buffer, 6-163
name, 1-7, 6-163, 6-16%
Parameter Block, 5-10, 6-163
System Calls, 6-12, 6-163
QUEUID
QPB field, 6-163
QUL
SYSDAT field, 6-182
Q_CREAD system call, 5-5, 6-165
Q_CWRITE system call, 55, 6-166
Q-DELETE system call, 5-9, 6-[67
Q_MAKE system call, 1-7, 5-10, 6-168
Q_OPEN, 55, 6-163
Q_OPEN call, 6-172, 6-173
Q_OPEN system call, 6-160, 6-170,
6171
Q_READ, 1-6

Q_READ system call, 5-5, 6-165,
6-172
unconditional, -8
Q_WRITE, 1-6 !
Q_WRITE system cali, 5-5, 166,
6-173

R

R/O drive test, 2-42
R/O Vector, 6-58
RO
R1 field, File ID, 6-80
R1,R2 field, 618
R1,R2 field, FCB, 2-12
R1,R2 fields, 6-92
random, 2-2
read, 2-9, 6-12

‘Random Record Ficld, 2-36

FCB, 2-35
Random Record Number, 2-9, 2-37,
3-8, 6-76, 6-92, 6-96, 6-102, 6-109,
6-111, 6-117
FCB, 2-12
raw console output, 629
mode, 6-31
RC field
FCR, 2-11
XFCB, 2-21
read message, 6-172
read made, 2-22, 6-80, 6-105
Read Queue List, 6-147
read record, 2-2, 693

B DIGITAL RESEARCH®

Index-17

Read-Only, 2-2, 2-40, 6-65
mode, 2-26
attribute, 2-15, 2-26
gitribute TV, 6-34
attribute 11, 2-15
drive, 6-62
file, 2-11, 6-76
mode, 2-35, 6-83
Vector, 6-d4
Read-Write, 240
Read-Write, 647
Read-Write state, 6-62
Read/Only Disk error, 2-44
File error, 2-44
Ready List, 1-5, 1-6, 1-7, 1-9, 6-147
Ready List Root, 6182
ready process, 1-§
Resl-time Monitor, 14, 1-5
real-lime process control, 1-2
window, 1-13
Rec Len, 4-11
Rec Mark, 4-11
Rec Type, 4-11
record blocking, 2-38, 6-82
record count
file, 2-9
fiset, 2-9
locking, 2-28, 2-36
physical, 2-38
sizz, 2-2, 2-37
unlocking, 2-36
REDRAW, 6-35
reentrant, 6-149, 6-160
recoirant RSP, 54
register AL, 247
register contents preserved, 1-13
regieter initlalization, 5-8, 5-9
removahle drive, 2-40, 2-42
reget
drive, 2-39
Resident Procedure Library, 6-160

reaident system process, 1-2, 3-1, 5-1,
6-143
resources
process, 6-161
RESTRICTED flag, 510
RETF instruction, 4-2, 6180
RETURN, &35
Return and Display Error mode, 243
Return and Display mode
BDOS Error mode, 675
return codes, 247
Return Error mode, 2-43, 2-4¢
BDOS Error mode, 6-75
Revision Level, 6-176
RLR
SYSDAT field, 6-182
roots of system lists, 6178
round-robin scheduling, 6-155
RPL, 6-160
RS field
FCB, 2-11
RSP, 1-2, 6143
bit, 53-9
CMD Heeader Record, 5-2
ECHO, 51
first, 6181
multiple copies, 5-3
shared code, 54
2080 Model, 5-2, 5-3
Small Model, 5-2, 54
RSP Commeand Queus, 5-4, 5-5, 5-6,
59

Index-18

W DIGITAL RESEARCH®

RSP Command Queue Message
(Figure 5-3), 5-5
Data Segment (Figure 5-4), 5-7,
6180
Flag, 55
header, 5-2, 53, 56, 57
Header Format (Figurs 5-2), 5-3
memory models, 5-1
Process Descriptor, 54, 58
queue, 6-143
stack, 59
typ‘n 3-t
UDA, 56, &7
RSPSEG field, 511
RSPSEG
SYSDAT field, 6-180
RTM, 1-4, 1-5, -8
RUB/DEL, 6-34
RUN siate, 6-41
RUN
Activity code, 6-147
running process, 1-1, 1-5

S

Sl
S2 fields, directory label, 2-1%
S2 fields, XFCB, 2-21
screen switch, 1-10, 1-11
SDATVAR field
RSP header, 5-3
SEC
TOD field, 6-186
second flag, |-8
second of minute, 6-183, 6-186
seconds, 6-187
Sectars Per Track, 6-49
security
file, 2-27
segment addresses, 6-153

¥R DIGITAL RESEARCH®

Segment Base Address, 4-9
segment register initialization, 4-2
SEG_8087

SYSDAT, 6184
scquential, 2-2

access, 612

1O processing, 2-34

read, 2-9

write, 6-79
serizl number, &177
SERIAL Number Format

(Figure 6-20), 6-177

SET command, 2-23
SET utility, 2-32, 2-33
SFCB, 2-18, 2-24, 6-17
SFCB Subfields (Figure 2-5), 2-24
SFCBs, 661
shared code, 1-2, 3-2

file mccess, 1-10

file systern, 1-2

List, 3-2

RSPs, 6-149

locks, 2-35, 6-77
S1

UDA field, 6-152
singte-user, 1-1

size
physical records, 2-38
record, 2-2, 2-37

Small Memory Model, 3-5, 4-4
Small Model, 1-12, 4-2
source files, 2-9
SP field
UDA, 59, 6152
sparse file, 2-9
SPT, 649
SS and SP registers
Small Model. 4-4
UDA field. 6-153
stack area. 6-144
stack pointer, 6152

Index-19

Stack Segment, 5-1, 5-152
stack

RSP, 59
start address, 4-7, 4-9
START field, 6-131
START paragraph, 6132

MPB, 6-130
STAT

PD fleld, 6-147
ptae

reset, 2-39
Stetus Word

UDA 2087 extension, 6-153
string delimiter, 6-40
SUP, 14, 1-5
SUP ENTRY

SYSDAT field, 6-180
Supervisor, 1.4, 1-5

Code Segment, 6-180

entry point, 6-180
sugpended process, 1-5
5w

UDA 8087 extension, 6-153
switch screen, 111
synchronization, 1-2
SYS Flag, 5-8
SYS flag, 6140, 6-148

SYSDAT Table (Figure 6-21), 6-179

SYSDAT, 2-25, 511
H(elp) option, 1-14
M(emory) option, 1-14, 1-15
SYSDAT field, 6-181
SYSDISK
SYSTAT. 1-14
Q{verview) option, 1-15
P{rocess) option, 1-15
Qucues) option, 1-15
U(ser Processes) option, 1-13
Sysiem, 6-65
system attribute, 2-15
SYSTEM attribute, 6-143

system sattribute t2’, 5-84
systern calls 3, &1, 6-18, 6-21
conventions, 1-12
systern call register initialization, 1-13
System Call summary, 614
System Dats Arca, 5-7, 5-10
System Data Segment, 5-11, 6-145,
6170
eddress, 6-178
system disk, 6-143
default, 6-181
System file, 2-11
uger-zero, 2-15
SYSTEM flag, 6-161
gyatem
flags, 6-181
generation, 3-1
Iists, 1.5, 1-6
process, 6-148
processes, 1.2
queus, 1-2, I-13, 6-170
Status, 1-14
System Calls, 63, 613
ticks, 6-162, 6155
ticks per second, 6181 —
time and date, 6-185
timing, 1-8, [-©
tracks, 2-8
S_BDOSVER, 6-182
S _BDOSVER system call, 6-174
S_BIOS zystem call, 6-175
S_OSVER, 6-182
8 OSVER ystem call, 6-176
S_SERIAL zystem call, 6-177
S_SYSDAT system call, 5-7, 6-178

B DIGITAL, RESEARCH®

Index-20

T

TI, 2-15
T1’ attribute, 2-26
TI1-T%, 2-14, 6-65
FCB, 2-1{
T2, 2-15, 2-18
T3, 2-15
TAB, 635, 690
characters, 6-32
expansian, 6-29, 6-3%, 6-39
TABLE flag, 6-149
TEMP DISK
SYSDAT field, 6-181
TERM
APB field, 6-139
Terminal Message Processes, I-11
Terminal Message Processor, 1.4, 3-1
termination
character, 6-32, 6-33
code, 6-139, 6-161, 6-162
THRDRT
SYSDAT field, 6-182
THREAD
field, 6-182
list, 6-22, 6-139, 6-147
List Root, 5-182
PD field, 6-147
tick flag, 1-9
Tick Interrupt Handler
XIOS, |8, 19
TICKS/SEC
SYSDAT field, 6181
time and date, -2, 1-8, 6-105, 5185,
6-187
time of day, 1.8
time stamp
directory label, 2-25
Time Systemn Calls, 6-3, 6-13
timing functions, -2

TMP, 14, 1-11, 2-17, 3-1, 5-5, 58,
6112, 6-161
priority, 6-144
RSP, 5-3
TOD—Time~of-Day Structure
(Figure 6-22), 6-185
TOD_DAY
SYSDAT field, 6-183
TOD_HR
SYSDAT field, 6183
TOD_MIN
SYSDAT flald, &183
TOD_SEC
SYSDAT field, 6-183
TPA, 6-145
Track Offset, 6-51
Transient Execution Models, 4-1
Process Area, 6-145
processes, 1-2, {-5
program, 1-12, 3-|
truncate file, 2-1, 2-2
TS1 field
directory label, 2-19
TS2 field
directory label, 2-19
type field
directory label, 2-19
XFCB, 2-21
TYPE utility, 2-
T_-GET system call, 2-25, 6-186
T_SECONDS system call, 6-187
T_SET system call, 6-188

U

UDA, 1-5, 1-6, 5-1, 6-135, 6-144,
6-145

UDA—User Data Area (Figure 6-23),
6-151

UDA SEGMENT field, 5-8

BDIGITAL RESEARCH®

Index-2]

UDA
B0R7, 3.1, 32
initialization, 3-1
PD field, 6-149
RSPy, 3-1
unallocated data block, 6-121
unconditional read
queue, 1-7
unlock operations, 2-36
records, 6-111
imlocked, 2-2
mode, 1-10, 2-12, 2.26, 2.35, 2-37,
679, 6-82
unused Process Descriptors, 6-182
unused Queue Descriptors, 182
unused Memory Descriptors, 6-182
unwritien random records, 6121
update date and time stamp, 6~17,
6114
update stamp, 6-80
field, 219
time stamp, 2-24
Upper Segment Base Address, 4-12
USBA, 412
User 0, 2-18, §&-83
uger attributes, 2-15
User Dale Area, 1-5, 31, 5-1, 6135,
6-145, 6-149, 6-151
RSP, 59
user default disk, 6-181
directorizs, 2-17
number, 1-11, 2-1, 2-3, 6-82
number conventions, 2.17
terminal, 1-1
zero, 6-82
user processes priorities, 6-148
User System Stack, 6-152
USER SYSTEM STACK
UDA field, 6-153
USER
PD field, 6-149

user-zeto system files, 2-15

A4

VERNUM
SYSDAT field, 6-182
version number, 6-174, 6-182
version string address, 6-182
version
o8, 6176
YERSION
SYSDAT field, 6-182
VING, 1-11
virtual console, 1.1, 1-2, 6175, 6-18]
Virtual Console Input Queue, 1-11
Yirtual Console Screen Management,
1-1¢
Yirtual Console Screen Manager, 14
virtual environments, 1-1
virtusl file size, 6-18
Yirtual QUTput procsssss, 1-10
YOUT, i-10

W

wildeard file specifications, 6-70
window
real-time, 1-13
write data records, 6-113
write, &173
write mode, 2-22, 6-80, 6-105
Queue List, 6-147
record, 2-2
sequential, 679
zeroes, 6-121

Index-22

B DIGITAL RESEARCH®

X

X value, 48
XFCB, 2-18, 2-20, 6-79, 6-81
Exiended File Control Block
(Figure 2-3), 2-20
Create or access time stamp field,
6-105
password mode, 6-119
Update time stamp field, 6-105
Xhhhh parameter, 4-7
X108, [-4, 1-10, 1-11, 641, 6-43,
6175
ALLOC buffers, 6-181
ENTRY, 6-180
Heerder, 6-181
X108 INIT, 6-180
X108 Initialization entry point, 6~180
XPCNS
SYSDAT, 6-184

Z

Zeroes, 4-11

MEDIGITAL RESEARCH®

Index-23

