
IQ

DiGiTAL
RESEARCH'

Concurrent CP/M™

System Guide
Operating System

COPYRIGHT

C opyright O 1984 by Digital Research Inc. A l l
rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, ar translated into any language or
camputar language, in any fore or by any means,
elactsonic, mechanical, magnetic, optical, chemical,
m anual a r ot he r w i se , w it h ou t t h e p ri o r w ri t t e n
permission of Digital Research Inc., Past Office Bax
579, Pacific Grave, California, 93950.

DISCLAIMER

Digital Reamsrch Inc. makes nc representations or
warranties with zeepect to the contents hereof and
e pec if ically disclaims any implied warranties af
aerchantability or fitness for any particular
purpose • Further, Digital Research Inc • reserves
the right to revise this publication and tc make
changes fram ties to time in the content hereof
without obligation af Digital Research Inc. to
notify any person of such revision or ohanges.

CP/H, CP/N-86, and Digital Research and its logo are
registered trademarks af Digital Research Inc. ASN­
86, Concurrent CP/H, DDT-86, NP/H-86, SID-86y and
GSX aze tradeaarke of Digital Research Inc. Intel
is a registered trademark af Intel Corporation. IBM
ia a regiatered trademark of Tnternatianal Bueinaaa
Hacbines. Compupzo is a registered trademark af
CcepuPro, a Gadbout Ccaapany. MS-DOS is a trademark
of Nicrosof t Carporation.

The ConCurrent CP K~ 0 gratin 8 s t em S st em
~ id was prepared using the Digital Research

'zext Formatter and printed in ths vnited states
of America.

tttt t t t t t t tt t ** t t t t *t tt t tt tt t t * t

t First Editionr January 1984 t

ttttttt t t t tt t *t t t t t t * tt * t ti t t t tt

Foreword

Concurrent CP/N' can be configured as a single or multiple user,
multitasking, real-time operating system. It is designed for use
with any disk-based microcomputer using an Intele 8086, BOBS, or
compatible microprocessor with a real-time clock. Concurrent CP/N
is modular in design, and can be modified to suit the needs of a
particular installation.

Concurrent CP/M also can support many IBMe Personal Computer Disk
Operating System (PC DOS) and MS -DOS programs. In addition, you
can read and write to PC DOS and MS-DOS disks. In this manual, the
term DOS refere tc both PC DOS and NS-DOS.

The information in this manual is arranged in the order needed for
use by the system designer. Section l provides an overview of the
CcnCurrent CP/N syetem. S e Cticn 2 describes hOw tc build a
Concurrent CP/M system using the GEHCCPM utility. Section 3
contains an overview of the Concurrent CP/M Extended Input/Output
System (XIOS) . XIOS Character Devices are covered in Section 4, and
Disk Devices in Section 5. Section 6 describes special character
I/O functions needed to support DOS programs.

A detailed description of the XIOS Timer Interrupt routine i.s found
in Section 7. Section 8 deals with debugging the XIOS. Section 9
discusses the bootstrap loader program necessary for loading the
operating system from disk. Section LO treats the utilities that
the OEM must write in order to have a commercially distributable
system. Section 11 covers changes to end-user documentation which
the OEM must make if certain modifications to Concurrent CP/M are
performed. Appendix A discusses removable media considerations, and
Appendix B covers graphics implementation.

Nany sections of this manual refer to the example XIOS. There are
two examples provided. One is a single user system to run on the
IBN Perscnal COmputer, The other iS a multi-user system running on
a CompuProe 86/87 with serial terminals. The single user example
includes source code for windowing support for a video mapoed
display. However windowing is not required for the system. The
source code for both examples appears on the Concurrent CP/N
distribution disk) we strongly suggest assembling the source files
following the instructions in Section 2, and referring often to the
assembly listing while reading this manual. Example listings of the
ConCurrent CP/M Loader BIOS and BOOt SeCtor can also be found on the
release di sk .

Digital Messsrche supports the user interface and softvar • interface
tc Concurrent cP/M, as described in the Concurrent cP rat i n
8 stem User'e Guide and the Concurrent 0 r a t n st em
Pr rammer's Reference Guide, respectively. Digital Research does
nct support any a t one or modifications made to Concurrent CP/M
by the OEM or d i s t r i b u t o r . The OSM or Co~cur r ent CP/M d is t r i bu t o r
must also support the hardware interface (ADIOS) far a particular
hardware environment •

The Concurrent CP/M System Guide i • intended for usa by system.
designers whc want tc modify either the user or hardware interface
ta Concurrent CP/M. It assumes you have already implemented a CP/M­
86 • 1.0 Basic Input/output system iBIQS), preferably on the target
CanCurrent CP/M maChina. It elec sseumea yau are familiar with
these four manuals, which document and support Concurrent CP/M:

• The Concurrent cp M 0 ratin 8 stem User'a Guide documents tha
user 8 interface to Cancurrent CP , exp a n i ng t he v a r i o us
features used to axeCute applications progress and Digital
Research ut i l i t y pro g rams •

• The Concurrent CP M 0 ratin 8 stem Pr reamer's Reference
guide ocuments t e app cat ans programmer a nter ace to
Concurrent CP/M., explaining the internal file structure and
system entry po i n ts--information essential to create
applications programs that run in the Concurrent CP/M
env ironment.

e The Concurrent CP M 0 rstin 6 ates Pr rasser 's Util ities
Guide documents the Digital Research util ty programs
Programmers use to write, debug, and verify applicatlane
programs written for tha Concurrent CP/M environment.

• The Concurrent CP 0 r at in 8 stem 8 ates Guide documents the
internal, hardware-dependent structures of Concurrent CP/M •

Stan4ar4 terminology is used throughout these manuals to refer ta
Cancurrent CP/M ieaturee. Por example, the names of all XIOS
function calls an4 their associated code routines begin with ?0 •
Concurrent CP/N system functions available through the logicalIy
invariant software interface ara called system calle. The names of
all data etzuctures internal to the operating system or xIOS are
capitalised: for example, MI08 Reader and Disk Parameter Block.
The Concurrent CP/M system data segment is referred ta as the SYSDAT
area or simPly SYSDAT. The f ixed structure at the beginning of the
SYSDAT area, documented in Section I • 10 of this manual, ie called
the SYSDAT DATA.

Table of Contents

1 System Overviev

1.1 Concurrent CP/M Organization

1.2 Memory Layout

1 .3 S uperv i s o r

l. 4 Real - t ime Monitor

1. 5 Memory Management Mcdu1e

1.6 Character I/O Manager

1.7 Basic Disk Operating System

1.8 Extended I/O System • • • • • • • • • • • • •

1.9 Reentrancy in the XIOS

1.10 SYSDAT Segment

l. 11 Resident system Processes

1-3

1-4

1-6

1-8

l - l l

1-11

1-13

1-13

1-14

1-20

2 Building the ZIOS

2. 1 GENCCPN Operation

2.2 GENCCPN Main Menu . . • • • • . . • • . • •

2. 3 System Parameters Menu

2.4 Memory Allocation Menu •

2.5 GENCCPN RSP List Menu

2.6 G ENCCPN OSLABEL Menu

2.7 GENCCPN Disk Buffering Menu

2.8 GBNCCPN GENSYS Option . •

2.9 GEECCPN Input Piles

2-1

2-2

2-10

2-12

2-13

2-13

2-15

2-16

3 BIOS Overview

3.1 XIOS Header and Parameter Table • . . • • 3-1

3-83.2 IMIT Entry Point

7able af Contents
(continued)

3 • 3 <I OS EHTRY • • r • • • • •

3,4 Converting tha CP/M-86 BIOS.. . • • 3-13

3. 5 Po l l e d D ev ices

3 • 6 Interrupt Devices . •... . • . . . • . • • .. • 3-15

3.7 8 D87 Bxcept ion Handler

3 • 8 XI08 System Calls

3-' 5

3-17

3-20

4 Character D evices

4.1 Console Control Black

4.2 Console I/O Punctiana

4.3 List Device punctiane • • . • . •

4.4 Auxiliary Device Punations

4.5 IO POLL tunction . • 4-17

4-2

4-7

4-l3

4-15

5 Di sk Devices

5-15.1 Disk I/O Functions

5 • 2 IOPS Oats Structure

5.3 Hultisactor Operations on Skaved Disks

5.4 D i s k Parameter Header

5.5 Disk Parameter Block

5 • 6 Buffer Control Black Data area

5 • 5 • 1 D isk Paraaeter Block Harksheet •
5. 5. 2 Dick Parameter L ia t War k Sheet

Memory Disk Applicatian ., • • , , •

5-16

5-21

5-27

5-35
5-40

5-41

5-47

5-505 • 8 multiple media Support

vi

Table of Contents
(continued)

6 PC~ Char a cter I/O

6-1

6-9

6-11

6-11

6.1 Screen I/O Punctione

6 .2 K e y board Punct i c n s

6.3 E q u ipment Check .

6 4 PC N ODE XO COEZH • • • • • • • • • • • • • • •

7 I7 ZXCSI TICK Interrupt Routine

8 Debugging the XIOS

8.1 Running Under CP/N-86 B-l

9 B c o te t r a y

9.1 C o a p onente of Tr ac k 0 on t he ZB N P C • . • . 9- 1

9.2 Th e Boots t r a p P rocess a a • • • • • 9 2

9.3 The Loader BOOS and Loader BIOS Punction Sets

9 .4 T r ac k 0 Const ruc t i o n

9.5 Other Bootstrap Methods

9.6 Organisation of CCPN.SYS • . • • . • . 9-8

9-4

9-5

• • • 9 7

lO GBN Utilities

10-1

10.2 Directory lnitialisation in the PORHBT Utility .. 10-11

10.1 B y p ass ing t h e BDOS

l l Eud-user Bccumat e t i a a 1 l-l

Appendixes

A Beaovable Media A-1• • • • • • • •

B Graphics Xay1eaeatatitm • B- 1

Tabies, Rgures, and LIsiings

Tables

1-1.
1-2.
1-3.
1-4.
1-5.
1-6.
1-7 •

3-1.
3 2 •
3-3

4-1 .
4-2.

5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-6.
5-10 •
5-11.
5-12.
5-13.
5-14.

Supervisor Bystea Calls • •
Real-ti.ae Mcnitor Eystea Calls
Definitions for Figure 1-3.
Keaory Manageaent 6ystea Calls
Character Z/0 Syetsa Calls • • •
BDQS Byetea Calls
B Y&DAT DATA Data P i e l d s

QEBCCPN Main Menu Options , . • . . • •
Systea Paraaetere Menu Qptians .

XZQS Reader Data Pielde . . . • •
XZQB Register U sage • • •
XZQB Functions

Console Control Block Data Fields
List Control Block Data Fields

Extended Error Codes • • . . . • •
ZQPB Data Pields
DQB ZOPB Data Fields. . . . •

Disk Paraaeter Header Data Fields
Disk Paraaeter Block Data Fields •
Extended Disk Paraaeter Block Data
B SB and BLM Values • •

Directory Entries per Block 8ixe .
ALQ • ALZ Va luce • • • • • •

PBH and PRN Values
Buffer Control Block Header Data Pi
D ZRBCB Data P i e l d s
DATBCB Data F i e l d s • . . • . • •

'F islds

• •

• •
•

• •

1-4
1-7

1 10
1-10
1-11
1-12
1-16

2-4
2-6

3-2
3-10
3-11

4-4
4-14

5-4
5-11
5-15
5-21
5-28
5-32
5-35
5-36
5-37
5-38
5-39
5-42
5-43
5-45

sids

v i i i

Tables, Figures, and Listings
(continued)

6-1.
6-2.
6-3.
6-4.
6-5.
6-6.

10-1. Directory Label Data Fields

6-3
6-3

6- 10
6-11
6-12
6-13

10-14

Alphanumer ic Nodes
Graphics Nodes
Keyboard Shift Status
DOS Equipment Status Bit Hap
Keyboard Scan Codes
Extended Keyboard Codes

Figures

1-1 •
1-2.
1-3.
1-4 •
1-5.

2-1 •
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.
2-10.

3-1. XI O S Header

4-1
4-2
4-3
4-4
4-5

5-1.
5-2 •
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.
5-10

GENCCPN
GENCCPN
GEMCCPN
GBNCCPN
GENCCPX
GENCCPN
GBNCCPN
GENCCPN
GENCCPN
Typical

The CCB Table
CCB'e For Two Physical Consoles
Console Control Block Format
The LCB Table
List Control Block (LCB)

Input/Output Parameter Block (IOPB)
DOS Input/Output parameter Block (IOpB
DNA Address Table fo r Ru l t i s e c tor o p e r
Disk Parameter Header (DPH)
DPH Table
Disk Parameter Block Format
Extended Disk Parameter Block Format
Buffer Control Block Header
Directory Buf fe r C ont ro l B l oc k (D I RBCB
Data Buffer Control Block (DATBCB)

Concurrent CP/N Interfacing
Nemory Layout and File Structure
Finding a Process's Nemory
SYSDAT
SYSDAT DATA , • • • • •

Na in Nenu . . . • . •
Help Funct ion Screen I
HeLp Function Screen 2
System Parameters Nenu
memory Allocat ion Sample Sesei
RSP I iet Nenu Sample SeSSion
Operating System Label Nenu
Disk Buffering Samole Session
System Generation messages
GENCCPN Command Pile

• • •

on

5- 10
5-15
5-16
5-2 1
5-26
5-28
5-31
5-41
5-42
5-4 5

1-2
1-5
1-9

1-14
1- 15

2-2
2-3
2-4
2 — 6

2-10
2- 12
2- l 3
2-14
2- l6
2-17

3-2

4-2
4-3
4-4

4-13
4 — 14

)
ations

ix

Tables. Figures and Uslngs
(contfnued)

S-l.
8-2.
8-3 •

9-1 •
9-2 •
9-3 •
9-4.
9-5.

10 i. Concurrent CP/M Disk zaycut
10-2. Directory Znitialiaatian without Tine Stasps
10-3. Directory Zabel Znitialisaticn •
10-4. Directory !nitialisation With Tiae Staaps

•, 8 2
8 3
8-4

9-1
9-2
9-5
9 8

• 9- 9

10«12
• • 10 -1 3
• . 10 -1 3
• . 10 -1 5

Debugging Mseory l ayout
Debugging CCP/M Hnder DDT-86 and CP/M-86 •
Debugging the XZQS Under SZD-86 and CP/M-86

Trek 0 an t h e ZBR PC a . •

Evader Organisation • •
Disk Paraaster Pield znitialisation.
Croup Descrip tors - CCPM.SYS Header Record .
CCPM System Zaage and the CCPM.SX8 Pi1e

Z istiags

3-1.
3-2 •
3-3 •

5-l .
5 2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9 •
5-10 •
5 11.

10-1. Disk Utility Prograaaing Exaaple. 10- 3

3-7
3 12

• 3 - 19

5 5
5-13
5-18
5-25
5-26
5-30
5-34
5 42

• 5 -4 4
• 5 -4 6

5-48

XIDS Header Definition
XZGS Punotian Table • •
SOS7 Exception Handler

Neith,sector Operations • •
•

ZDPB Definition
Multisectar Vnskering
DPH Dei'initian • • • • • • •
SBrDSH, XZDS Punctiun
DPB Definition
Batended DPB Definition •
BCB Header Definition
DZRSCB Definition • • • • • •
DATBCB Definition
Baaaple M DZSX Zepleeentatian

Sertion i
System OverAew

Concurrent CP/M is a multitasking, real-time operating system. It
can be configured for one or more user terminals. Each user
terminal can run multiple tasks simultaneously on one or more
virtual consoles. Concurrent CP/M supports extended features, such
as intercommunication and synchronixation of independently running
processes. It is designed for implementation in a large variety of
hardware environments and as such, you can easi1y customize it to
fit a particular hardware environment and/or user's needs.

Concurrent CP/M a.lsc supports DOS (PC DOS and MS-DOS) programs and
media. The XIOS support for DOS media is described in Section 5 of
this manual. DOS character I/O is described in Section 6.

Concurrent CP/M consists of three levels of interfacei the user
inter f ace, the logically invar iant eof tware inter face, and t h e
hardware interface. The user interfare, which Digital Research
distr ibutes , i s t he Re s i dent System Process (RSP) ca l led t he
Terminal Message Process (TMP) . It accepts commands from the user
and either performs those commands that are built into the TMP, or
passes the command to the operating system via the Command Line
Interpreter (P Ctl). The Command L(ne Interpreter in the operating
system kernel either invokes an RSP or loads a disk file in order to
perform the command,

The logically invariant interfare to the operating system consists
of the system calls as described in the Concurrent CP M O cretin
S stem Pro rammer's Reference Guide. Th e l ogically rnvariant
interface also connects transient and resident processes with the
hardware inte r f ace .

The physical interface, or XIOS (extended I/O system), rommunirates
directly with the particular hardware environment. It is composed
cf a set of functions that are called by processes needing physical
I/O. SeCtiOns 3 through 6 deacribe these functions. pigure 1-1
shows the relationships among the three interfaces.

Digital Research distributes Concurrent CP/M with machine-readable
source code for both the user and example hardware interfaces. You
can write a custom user and/or hardware interface, and incorporate
them by using the system generation utility, GBNCCPM. There are two
example XIOSs supplied with the system. One is written for the ISM
Personal Computer, as a single user system with multiple virtual
consoles. The other XIOS is written for the CompuPro 86/87 with
multiple serial terminals. The example xIOSs are designed to be
examples and not commercially distr ibutable systems. wherever a
choice between clarity and ef f iciency is necessary, the examples are
written for clarity.

1 System OverviewConcurrent CP/)4 System Guide

This section describee the modulee comprising • typical Concurrent
CP/N operating system. It is important that you understand this
eatsrial before you try to customize the operating system for a
particular application.

User

User Interface

(TN)F)

Invariant
Inter face

(SUP RTN KBK CIO BDOS)

Hardware
InterfaCe

(XI08)

Hardware Environment

Figure l-I.. Concurrent CP/Il Interfacing

1-2

Concurrent CP/N System Guide 1.1 Organisatian

1.1 Concurrent CP/M Organisation

Concurrent CP/N is ccmpased of six basic code modules • The Real­
time Monitor (RTR) handles process-related functions, including
dispatching, creation, and termination, as well as the Input/Output
eyetea state logic. The Memory smdule (NBN) manages memory and
handles the Memory Allocate (m AZJOC) and memory Free pt 1?RES)
system calls. The Character I/O module (clO) handles all consale
and list device functions, and the Basic Disk Operating System
(BDOS) managee the file Syetem. Theee fOur madules Cammuniaate with
the Supervisor (SUP) and the Extended Input/Output System (XIOS).

The SUP module manages the interaction between transient processes,
such ae user programs, and the system modules. All function calls
go through a common table-driven interface in SUP. The SUP module
also contains the Program I oad (P LOAD) and Command Line Interpreter
(P CLI) system calla.

The XIOS module handles the physical interface to a particular
hardware environment. Any af the Concurrent CP/K logical code
modules can call the XIOS to perform specific hardware-dependent
functions. The names used in this manual far the XIOS functions
always begin with IO fn order to easily distinguish them from
Concurrent CP/M operating system cells.

All operating system code modules, including the SUp and XIOS, share
a data segment called the System Data Area (SYSDAT) • The beginning
of SYSDAT is the SYSDAT DATA, a well-defined structure containing
public data used by all system code modules. Fo11owing this fixed
portion are local data areas belonging to specific code modules.
The XIOS area is the last of these code module areas. Following tba
XIOS Area are Table Areas, used for the Process Descriptors, Queue
Descriptors, System Tlag Tables, and other operating system tables.
Tbsee tables vary in sixe depending an options chosen during system
generation. See Section 2, "System Generation.'

The Resident System Praceesee (RSPs) occupy the area in memory
immediately following the SYSDAT module. The RSPs yau select at
system generation time become an integral part of the Concurrent
CP/14 operating system. For more information on RSPs, see Section
1.11 of this manual, and the Concurrent CP 0 cr e tin 8 stem
Pro rammer's Reference Guide.

Concurrent CP/M loads all transient programs into the Transient
P rogram A r e a (TPA). Th e TP A fo r a g i ven i mplementat io n o f
Concurrent CP/M is determined at system generation time.

1-3

l. 2 Memory LayoutConcurrent CP/8 System Cuida

1. 2 %mary Layout

The COnCurrent CP/j4 operating System area Csn exiet anyvbere in
memory except over the interrupt vector area. You define the exact
location ot Concurrent CP/M during system generation. The CBNCCPH
program determines the memory locations of the system modulee that
make up Concurrent CP/3t based upan system generation parameters and
the siss of the modules •

The XZOS muet reside Vithin SYSDAT. Yau must vrite the XIOS ae an
S080 madel program, vith bath the code and data segment registers
Set ta the beginning Of SYSDAT.

Figure 1-2 ehOWs the releticnehip Of the CcnCurrent CP/N System
!mage to the CCPM.SYS disk file structure •

1.3 Supervisor

The Concurrent CP/K Supervisor (SUP) manages the interface betveen
system and transient proceseee and the invariant operating system.
All system calls go through a common table-driven inter face in BQP.

The SDP module also contains system calls that invoke other system
calls, like p toAD (program Load) and P cLI (command ! i n e
Interpreter) •

F PARSE
P CHA!B
P CLI
P XOAD
P RPL
8 BDOSVBR
8 BIOS
8 OSVBR
S SYSDAT
S SER! Ah
T SBCONDS

System Call

Table 1-1. Supervisor System Calle

ttumber Hex

152
47

150
59

151
12
50

163
154
107
155

98
2F
96
3B
97
OC
32

0A3
9A
68
98

Concurrent CP/K System Guide l . 3 S u perv i so r

(top of memory)

End of file~
CCPM SYS

Extra Group
(Used to ho l d
GEMCCPM options)

TPA

~ End of
O.S. Area

Disk Buf fe r s

~ m n d o f 0 . 8~

RSPs

CCPM • SY8
Data GroupTable Area

XIOS
with i n

64k

SYSDAT DATA.

BDO8 Code

CZO Code

MEM Code

RTM Code

SUP Code

~X I O S ~
Code a Data

Segment

CCPMISYS
Code Group

~b egi n n i n g~
o f O.S . a r e a

TPA CCPM.SYS
CMD Format
Pile Header

(Start of Pile)
0 > 0400H

0: 00008
Interrupt Vectors

Pigure 1-2. Memory r ayout aud rile Structure

1-5

l. 4 Real-ties MonitorConcurrent CP/M System Guide

l. 4 Real-thee Monitor

The Real-time Manitar (RTM) ie the multitaeking kernel Of CanCurrent
CP/M • It handles process dispatching, Gueue and flag management,
dsv ice polling, and system timing tasks. It also manages the
logical interrupt system of Concurrent CP/M. The primary function
of the RTM is transferring the CPv resaurce free ane process ta
another, a task accomplished by the RTM dispatcher. At avery
dispatch operaticni the dispatcher stops the currently running
process fram execution and stares its state in the Pracese
Dsscriptar ('PD) and Ueer Data Area (UDA) associated vlth that
process • The dispatcher then selects the highest-priarity process
in the ready state and restores it to execution, ue{ng the data in
its PD and GDA. A pro cess i e i n t he r ea d y s t a t e l f i t i e «s i t i ng
for the CPU resource anly. The ne« process aantinuee to execute
until it needs an unavailable resource, a resource needed by another
process becomes availabla, oz an external event, such as an
interrupt, occurs. At this time the RTM peziarms another dispatch
operation, allowing another praceea to run.

The Cancurrent CP/M RTM dispatcher eisa performs device palling. A
process «nits far a polled device through the RTM DEV POLL system
call .

xhsn a process needs to «ait faz an interrupt, it issues a
DEV WAITPLAG system call on a logical interrupt device. When the
appropriate interrupt actually occurs, the XIQS calls the
Dsv BETFLAG system eall, «hiah «akee up the «siting process. The
interzupt routine then performs a Par Jump ta the RTM dispatcher,
«hich reschedules the interrupted process. aa «ell ae all other

praceeaea that are nat yet on the Ready List. At thia paint,
the dispatcher places tha process «ith the highest priority into
execution. Processes that are handling interrupts should run at a
better priority than noninterrupt-dependent pzocesses (the lover the
priority number, the batter the priority) in o r de r t a r es p ond
Guiakly to incoming interrupts.

The system clock generates interrupts, clack ticks, typically 60
times per second. This alla«e Concurrent Cp/M to effect process
time slicing. Since the operating system «sits for the tick flag,
the XIQB TICE Interrupt routine must execute a Concurrent CP/M
DEV SRTFLAG system call at each tick (see Section 7, 'XIQB TICK
Interrupt Routine")> then perform e Per Jump to the BUP entry point.
At this point, processes «ith equal priority are scheduled far the
CPU resource in round-rabin fashion unlese a better-priority process
is on the Ready I ist. If na process ie ready to uee the CPU,
Concurrent CP/Ã remains in the dispatcher until an intezrupt occurs,
or a polling process is ready ta run.

1-6

Concurrent CP/N System Guide 1.4 Real-time Monitor

The RTN also handles queue management. System queues are composed
of twa parts: the Queue Descriptor, which contains the queue name
and other parameters, and the Queue Buffer, which can contain a
specified number of fixed-length messages. Processes read these
messages from the queue on a first-in, first-out basis. A process
can wr i t e t o o r r ead f r am a qu eue ei t he r cond i t i ana l l y or
unconditionally. If a process attempts a conditional read from an
empty queue, or a condrtional write to a full one, the RTN returnS
an error code to the calling process. However, an unconditional
read ar write attempt in these situatians causes the suspension af
the process until the aoeration can be accomplished. The kernel
uses this feature to implement mutual exclusion of processes frais
serially reusable system resources, such as the disk hardware.

Other functions of the Real-time Monitor are cavered in t h e
Concurrent CP N 0 ratin S stem Pro reamer's Reference Guide under
their individua1 descriptions.

Table 1-2. Real-time Monitor System Calls

System Call

DEV SETPLAG
DEV WAITFLAG
DEV POLL
P ABORT
P CREATE
P DELAY
P DISPATCH
P PDADR
P PRIORITY
P TERN
P TERNCPN
Q CREAT
Q CWRITR
Q DELETE
Q NAKE
Q OPEN
Q READ
Q WRITE

Number

133
132
131
157
144
141
142
156
145
143

0
138
140
136
134
135
137
139

85
84
83
9D
90
BD
BE
9C
93.
BP
00
BA
BC
88
86
87
89
SB

1-7

Concurrent CP/K 8ystem Guide 1 • S Memory Management Nodule

1. 5 Kmmary Management Nodule
The Kemary Management eOdule (NKK) handlee ell memcry funCtiOne.
Canourrent CF/M euppcrta an emtended madel af memary management.
Future releases of Conauzzsnt CP/K might suppart different versians
af the Memory module depending on classes of memory management
hardware that become available.

'fhe NXK module describes memory partitions internally by Nemory
bescriptors (KDs). Concurrent CP/N initially places sll available
par titione an the Memory Free Liat (MPL) . Once NEM sllccstee a
partition (ar set of contiguous partitions), it takes that partition
off the NFL and places it an the Memory Allacatian List (NRL) • The
Memory lllocation List contains descriptions of contiguous areas of
memory hna«n ss Memory allocation Units (KAUs) . Nhua al«ays contain
one or mar • partitions.The KEK module manages the space within an
NhU in the folio«ing «ay; «hen s process requests extra memory, KRN
first determines if the Khg has enough unused space. ! f it does,
the extra memory requested comes from the process' s o«n partition
f irst .

h prcCSSS Can Only allocate memOry ircm e KAU in whiCh it already
C«ne memOry, Or fram a ne« Nag Created fram the KFL. zf One praceSS
shares memory «ith anather, either can sllacate memory from the KAV
that contains the shared memory segment. The NEK module keeps a
count of ha«many processes a«n' a particular memory segment to
ensure rhat it becomes available «ithin the Mhv only when na
processes own it, When all of the memory within an KAU is free, the
KRK module frees the l4hU and returns its memory partitions ta the
NFL'

! f the system fax which Cancurrent CP/K is being implemented
contains memory management hard«ere, the X!08 can protect a
process's memory when it is not in context. When the process is
entering the operating system, all memory in the system should be
made Read-Write. When a process is exiting the operating system,
the pracesa's memory should be made Read-write, the operating Syatem
memory (iram ccpK8EQ to 880888) made Read-Only, and all other memory
made nonexistent. Nemory protection can be implemented «ithin the
xz08 by a routine that intercepts the IKT 224 entry paint for
Concurrent Cp/N system aells, and interrupt routines that handle
attempted memory protectian violations.

Figure 1-3 shows how to find s process's memory.

1-8

Concurrent CP/M System Gurde 1 . 5 Memory Management Module

SYSDATrSBH

ODH 0 2H l b H LBH 30 H

(HEM) oPD

02H ObH OSHOOH

LCHK (MAU) oMSD

Mext MSD
(0 af none)

(Al l MSD's p o x n t xn g t o a c ommon
M AU are grouped t o g e t h e r)

OUH 02H 04H GbH OAH

LENGTHb l'ART

Figure i-3. Finding m Process'e Memory

1.5 Memory Management McduleConcurrent Cp/N System Guide

Table 1-3. Definitions for Figure 1;3.

D ata Fie l d Explanation

Ready List RootI points to currently
running process.

Process DeacriptorI describea a process.

MEM field of Process Deecriptor.

Memory Segment DeecriptorI deecr ibee a
single memory allocation. A process may
have many of these in a linked list. The
NSD list pointed to by the NSM field
deecr ibee all tha success f ul memory
allocatione meds by tha process. Also,
many MSDs may point to the same MAII • All
NSDs pointing to the same MAU are grouped
together.

Memory Allocation UnitI describes a
contiguous area of allocated memory. A
MAU ie built from one or more contiguous
memory partitions. The START and LEEQTE
fields are tha starting paragraph and
number of paragraphs, respectively.

PD

Table 1-4. Memory Management System Calls

System Call

M ALMC
M FREE
ME ASS
MC ALLFREB
MC ALLOC
MC ALLOCASS
EC FREE
MC MAX

Number

128, 129
l30

56
58
55
56
57
53

Hex

80, 81' ea
36
3A,
37
38
39
35

%Wee The MC AES, NC AILOC, MC ALLOCAS8, MC FREE, MC ALZFREE, and
MC MAX system calls internally execute the M ALLOC and M FREB system
earls. They are supported for compatibility with the CP/N-86 and
MP /M-86 operating systems.

1-10

1.6 Character I/O ManagerConcurrent CP/)4 System Guide

1.6 Character I/O Manager

The Char'aeter Input/Output (CIO) module of Concurrent CP/N handles
all console and list device I/O, and interfaces to the XIOS, the PIN
(Physical Input Process) and the VOUT (Virtual OUTput process).
There is one PIN for each user terminal, and one VOUT for each
virtual console in the system. An overview of the CIO is presented
in the concurrent cP M 0 eratin S stem Pr rammer 's Reference
Guide, and xIOS Character Devices are described in Section 4 of thrs
manual. Por details of the Console Control Block (CCB) and List
Control Block (LCB) data structures, see Sections 4.1 and 4.3
r espect iv e l y .

System Call

C ASSIGN
C ATTACH
C CATPACH
C DELIMIT
C DETACH
C GET
C NODE
C RAWIO
C READ
C READSTR
C SET
C STAT
C WRITE
C WRITEBLK
C WRITESTR
L ATTACH
L CATTACH
L DETACH
L GET
L SET
L WRITE
L WRITEBLK

Table 1-5. Character I/O System Calle

Number Hex

149
146
162
110
147
153
109

6 1

95
92

OA2
6B
93
99
6D
06
01
OA
94
OB
02
6P
09
9E

OAl
9P

OA4
OAO

05
70

10
148
11

2
111

9
158
161
l,59
164
160

5
112

1.7 B a s i c D isk Operat ing System

The Basic Disk Operating System (BDOS) handles all. file system

ratin S stem Pro rammer's Reference Guide. Table 1-6 liats the
oncurrent CP M BDOS system calla.

1-11

Concurrent CP/M Byatea Guide 1 .7 Ba aic Dick Operatinq Byatea

Table 1 6 . a DDB aye tea Calla

Huaber

38
27
31
48
25

101
24
37
29
14

100
28
46
30
16
19
51
52
26
45
42
22
44
l5

106
20
33
36
23
17
35
18

102
99
43
32
21
34

103
40

105
104

Bex

26
1B
1P
30
19
65
18
25
lp
OE
64
1E
2E
1B
10
13
33
34

2D

16
2C
OP
6A
14
21
24
l7
11
23
12
66
63
26
20
15
22
67
28
69
68

Syetea Call

DRV ACCESS
DRV ALLDCVEC
DRV PPB
DRV tLVBH
DRV GET
DRV GETLABEL
DRV LDGIHVEC
DRV REBET
DRV RCIVBC
DRV SBT
DRV SETLABEL
DRV BETRD
DRV BPACE
P ATTRIB
r CLOSE
P DELETE
P DWABEG
P DWAQBT
r DHADPP
t ER1lNDDE
t LOCK
r WAEB
P NVLTIBEC
t DPEH
P PABBWD
t READ
r READRAHD
P RAHDREC
P REMAKE
r Brl 'RBT
r szza
r BHEXT
t TZXEDATE
P TRUHCATB
P VELOCE
t VBBRHUX
t WRITE
P WRZTERAHD
P WRZTEXPCB
P WRITBBP
T QET
T BET

1-12

Concurrent CP/M System Guide 1.8 Extended I/O System

l.8 Extended I/O System

The Extended Input/Output System (XIOS) handles the physical
interface to Concurrent CP/N. It is similar to the CP/M-86 BIOS
module, but it is extended in several ways. By modifying the XIOS,
yau can run Concurrent CP/m in a large variety of different hardware
environments. The XIOS recognizes twa basic types of I/O devices:
character devices and disk drives. Character devices are devices
that handle one character at a time, while disk devices handle
random blacked I/O using data blacks sized from ane physical disk
sector to the number of physical sectors in 16K bytes. Use of
devices that vary from these twa models must be implemented within
the XIQS . In this way, they appear to be standard Concurrent CP/N
I/O devices to other operating system modules through the XIOS
interface, Sections 4 through 6 contain detailed descriptions of
the XIO S f u n c t i o ns , a n d t h e s o u rc e c ad e fo r twa s ample
implementations can be found in machine-readable farmat an the
Concurrent CP/m QEN release disk •

1. • 9 Reentrancy in the XIOS

Concur r ant CP/N allows multiple processes ta use certain XIDS
functlans simultaneously. T h e system guarantees that only one
process uses a par ticulsr physical dev ice at any given time.
However, some XIOS functions handle more than one physical device,
and thus their interfaces must be reentrant. An example af this is
the IQ CONOUT Punctian. Th e calling pracess passes the virtual
console number to this function. There can be several processes
using the function, each writing a character to a different virtual
console ar character device. However, only one process is actually
outputting a character ta a given device at any time.

IO STATI INE can be called more than once. The CIOCK process calls
the IO STATE INE function once per second, and the PIN proaesa will
also call it an screen switches, cTRL-E, cTRL-P, and cTRL-O.

Since the XIOS file functions, IO SELDSK, IO REAO, IO WRITE, and
IO PLUSH are protected by the WXdisk mutual exclusion queue, only
one process may access them at a time. N one of these XIOS
functions, therefore, need to be reentrant.

1-13

l. 1O SYSDAT SegmentConcurrent CP/I System Guide

1.1O SYSDAT Segment

The System Data Area (SYSDAT) is the data segment far all modules af
Concurrent CP/I • The SYSDAT Segment ie ccspOsed of three main
areas, as shown in Figure 1-4. The first part is the fixed-format
portion, containing global data used by all modules. This is ths
SYSDAT DATA. It contains system variables, including values set by
GEHCCPK snd painter • to the various system tables • Ths Internal
Data portion contains i'ields of data belanging to individual
aperating system modules. The !xIos begins at the end of thi • second
area of SYSDAT • The third pok'tion oi SYSDAT is the System Table
Area, which is generated and initialised by the GENCCPK system
ganeratian utility.

Figure 1-4 shows the relatidnships among the various parts of
SYSDAT.

!

Table Area

XIOS

COOH!

Internal Data

OBOH!

(SYSDAT DATA)

OOOH!

Figure 1 - 4 . SY SDAT

Figure 1-5 gives the format of the SYSDAT DATA and describes its
data fields.

1-14

l. 10 SYS DAT SegmentCancurrent CP/Ã System Guide

00H

OBH

10H

188

20H

SUP ENTRY

RESERVBD

RBSERVE D

RESERVED

RESERVED

RBSE RVED

XIOS IN!TXIOS ENTRY

RESERVED308

38H

40H CCPNSBG

DISPATCHER

RSPSBG BNDSBG

PDISP

NVCNS

488

50H

NLCB

TBNP
DISK

MDUL

LUL

N SYS
FLAGS D I S K

CCB

RBSBR
-VED

RESER
-VED

FLAGS

58H

60H

68H

70H

78H

BOB

TICKS
iSEC

RLR

RESERVED

TOD TOD
HR KI N

OPEN FILE

TOD
SEC

LOCK
NAX

DLR

CCPMVERNUM

NLST N CI O
DEV DEV

OWNER 8087

PUL

DRL

QLR

TOD DAY

QUL

NCON
DEV

OPEN
MAX

RESERVED

LCB

PI R

88H

DAY
PILE

90H

98H

AOH

XPCNS

O PF 8087 8EG 8 0 87 SYS 87 OP SYS 87 S G

RESERVED

Figure 1-5 . SYS DAT DATh

1-15

1 • 10 BYSDAT SegmentConcurrent CP/m Systes cuide

Table Z-'l. EYNDST naTL nate Fields

Data Fie l d

SOP ENTRY

Explanation

XZOS ZNZT

XZOS ENTRY

DZ B PLTCEER

Double-word address of the supervisor
entry paint for intsrnoduls canaunication.
hlI internal aystsa calls go through this
• n try poin t .

Double-word address of ths Extended I/O
S ystem entry p a i n t for in tezaodule
ccxaaunication. All XZOS function calls go
through this entry point.

Double-VOrd addrsaa Oi the EXtended I/O
Hyatan Znitialiaatian entry point. Systex
hardware initialiaatian takes place by •
call through this entry paint.

Double-ward address af the Dispatcher
entry point that handles interrupt
returns. Executing a JEPP instruction to
this address is eguivalsnt to executing an
ZEET (Interrupt Return) instruation. The
Dispatcher routine causes a dispatch to
occur an d t h en ex e cutes a n Inter rup t
Return. All rsgistera are presarVad and
one level of stack ia used. Tha address
in this laaation can be used by XZOS
interrupt handlers ior tsrsinatlon instead
of executing an ZNET instruction. The
TZCX interrupt handler (I TICK in the
• xanple XZOS ' s) ends with a Jump Par
(JEPP) to the address in this location.
Usually, interrupt handlers that saks
DEV SETPXAQ calla snd rith a Jump far to
the address stored in the DZSPATCHER
field. Re fer to the example XZOS
interrupt routines and Sections 3.5 and
3.6 for ooze detailed Lnforaation.

Double-word address of the Dispatcher
entr y point that causes a dispatch to
occur vith all registers preserved. Once
the dispatah is done, a RETF instruction
is executed, Exec~ting a JNPP PDZSP is
equivalent to e x e c u t i n g a RET F
inatructian. This location should be used
as sn e x i t p oint whenever the XZOB
releases a resource that sight bs wanted
by a wait ing process •

PDISP

1-16

Concurrent CP/K System Guide l.1 0 S Y SDAT Segment

Table 1-7 . (con t i nued)

ExplanationD ata F i e l d

CCPMSEG

RSPSEG

ENDSBG

Starting paragraph of the operating system
area. This is also the Code 8egsent of
t he Superv i sor Nodule .

Paragraph Address of the first RBP in a
linked list of RSP Data Segments. The
first word of the data segment points to
the next ESP in the list. Once the system
has bean initialixad, this field is xsro.
Ses the Concurrent CP 0 rati n 6 s t em
Pro rammer's Reference Gu de section on
debugg ng RSPs or more n ormation.

First paragraph beyond the end of the
ops rat ing system area, including any
buf fere consisting of uninitialised RAM
allocated to the oper ating system by
GENCCPM. The se include the Directory
Hashing, D i s k Dat a, an d X I OS A L L OC
buf fere. These buf fer areas, however, are
not part of the CCPM.SYS file.

Number of virtual consoles, copied from
the XIOB Neaaer by GENCCPM.

Number of List Control Blocks, copied from
the XIOS Header by GENCCPM.

Number of Character Control Blocks, copied
fram the XIOS Header by GENCCPN.

Number of system f1ags as specii'ied byNPLAGS

8YSDISK

GENCCPM.

Default system disk. The CI I (Command
Line In te r p r e t e r) l o o k s on t h i s d i s k i f i t
cannot open the command file on the user's
current default disk. Set by GENCCPM.

Maximum memory allowed per process. Set
during GENCCPM.

Day Pile option. If this field is OFPHJ

the operating system displays date and
time information when an RSP or CMD file
is invoked. Set by GENCCPM­

DAY PILE

1-17

Concurrent CP/N 8ystam Guide 1 • lO SrSDAT Segment

Table l-7 • (continued)

ExplanationD ate Pie l d

TZNP DISK

PLR

QVL

DRL

DLR

CCB

NDUL

PLAGS

TICKB/SBC

LUL

Default temporary disk. P rograms that
create temporary files should uae this
diet. Set by %%CCPN.

The number of systes ticks per second.

Locked Vnused List. Li nk list root cf
unused Lack list items •

Address of the Character Control Block
Table, copied irom the XIOS Header by
GESCCPN.

Address of the tlag Table.

Nemory Descr iptor Unused List. Link list
root af unused Nsmory Dsscriptors.

Nsmory Prae Kist. Link list root of free
nmmory partit ions •

Process Unused List. Link list root of
unused Process Descriptore.

9ueus Unused Liat. Link list root of
unused Queue Deeoriptors.

Queue buffer Nesery Allocation Vnit.

Ready Liat ROot. Linked liat of PDa that
are ready to run.

Delay List Root. Linked liat of PDs that
are delaying for a speaif ied number of
system ticks •

Diepatcher Ready List. Temporary holding
place for PDa that have just been made
ready to run,

Pall List Root. Linked list of PDs that
are polling on devices.

Thread L is t R o ot . L i nk e d l i st o f a l l
current PDs an the system. The list is
threaded though the THREAD field of the PD
instead of the LINK field.

THRDRT

Concurrent CP/M System Guide 1. 1D SYSDAT Segment

Table 1 - 7 . (continued)

Explanat ionD ata Fi e l d

CC PMVE RN UM

Queue List Root. L inked list of all
System {)Ds.

Memory Allocation List; link list of
active memory allocation units, A NAU is
created f rom o n e o r mo r e m e m ory
p art i t i o n s .

Address, relative to CCPNSEG, of ASCII
v ersion s t r i n g .

Concurrent CP/H version number (returned
by the S BDOSVER system call).

Concurrent CP/M version number (system
cal l 1 63 , S OSVER).

Time of Day. Number oi days since 1 Jan,TOD DAY

TOD HR

TOD MIN

TOD SEC

NCONDEV

NC IODEV

NLSTDEV

197S.

Time of Day. Hour of the day.

Time of Day. Minute of the hour.

Time of Day. Second of the minute.

Number of XIOS consoles, copied from the
XIOS Header by GENCCPN.

Number of XIOS list devices, copied from
the XIOS Header by GENCCPN.

Total number of character devices (NCONDEV
+ NLSTDEV).

Offset of the List Control Block Table,
copied from the xIos Header by GENCcPM.

Open File Drive Vector. Designates drives
that have open files on them. Each bit of
the word value represents a disk drive;
the least significant bit represents Drive
A, and so on through the most significant
bit, Drive P • Bits which are set indicate
drives containing open files.

OPEN FILE

1-19

Concurrent CP/M System Guide 1.10 SYSDAT Segment

Table 1-7. (continued)

Bxplanat ionData Pield

XPCNS

OFP 8087

SEQ 808'7

OPBH NAX

SYS 87 OP

ONHBR 8087

Maximum number of locked records per
process • Set d u r i n g QEHCCPN.

Maximum number of open disk files per
process. Set during QB5fCCPM.

Process currently owning the 8087. Set to
0 if 8087 is not owned. Set to OPPPPB if
no 8087 present.

Number of physical consoles.

Offset of the 8087 interrupt vector in law
memory+

Segment of the 8087 interrupt vector in
loll memory'

Offset of ths default 8087 exceptian
handler.

Segment of the default 8087 exceptionSYS 87 SG
handler.

1. 11 Resident System Proaemses

Resident system Processes (RHPs) are an integr al par t of the
Concurrent CP/N operating system. At system generation, the QBNCCPN
RSP Iist menu lets yau select which RSPs to include in the operating
system. QBNOCPM then places all selected RsPs in a contiguaus area
af RAN starting at the end af SYSDAT. The main advantage of an RSP
is that it is permanently resident within the Operating System Ares?
and does not have to be loaded from disk whenever it ia needed.

Concurrent CP/M «utomatically alloaates a Process Descriptor (PD)
and User Data Area (UDA) for a transient program, but each RSp is
responsible for the alloaation and initialisation of its own PD and
ODA. Concurrent CP/M uses the PD and QD structures declared within
an RSP directly if they fall within 64E of the SYSDAT segment
address. If outside 64K, the RSP's PD and QD are copied to a pn or
()D allOCated fram the PrOeeaa Unuaed Diet Or the Queue Unuaed Liat.
In either aces the PD end OD af the RSP lie Within 64X Oi the
beginning of the sYSDAT Segment. This allows RSPs to occupy mars
area than remains in ths 64K SYSDAT segment.

1-20

Concurrent CP/N System Guide 1.11 Resident System Procesaee

Purther details on the creation and use of SHPs can be found in the
Concurrent CP 0 r atin S stem Pr rammer's Reference Guide.

and of Sec t i o n 1

1-21

Section 2
System Generation

The Concurrent CP/M XIOS should be written as an BOBD model (mixed
code and data) program and originad at location ccDOH using the
ASMB6 ORG assembler directive. Once you have written or modified
the XIOS source for a particular hard~are configuration, use the
Digital Research assembler ASM-86 " or RASM-86" to generate an
XIOS.CON fi l e f o r u s e w i t h GEHCCPN:

Assemble the XIOSA>ASM86 XIOS

A)GEECMD XIOS 8080 Create XIOS.CMD from XIOS.H86

AsREB' XIDS.CI% xlos.CMD ; Rename xIOS.cMD to xIOS • COH

Than invoke the QENCCPM program to produce a system image in the
CCPM.SYS file by typing the command:

; generate system imageA a GEEOCPM

2. I GEECCPM Operation

You can generate a Concurrent CP/M system by running the GENCCPM
program under an existing CP/M or Concurrent CP/N system. GENCCPM
builds the CCPN.SYS file, which is an image of the Concurrent CP/M
operating system. Then you can use DDT-86" or SID-86" to place the
CCPN.SYS file in memory for debugging under CP/M-B6.

GEECCPN allows the user to define certain hardware-dependent
var iables, the amount of memory to reserve for system data
structures, the selection and inclusion of Resident System Processes
in the CCPN.SYS Pile, and other system parameters. The first action
GENCCPN Performs is to check the current default drive for the files
necessary to construct the operating system image:

• SUP • CON
• RTN.CON
• NEN.CON
• CIO • CON
• BOOS.CON
• X I OS.CON
• SYSDAT CON

Supervisor Code Nodule
Real Time Monitor Code Nodule
Memory Manager Code Nodule
Character Input/Output Code Module
Basic Disk Operating System Code Nodule
Extended Input/Output System Nodule
SYSDAT DATA and Internal Data modules of
SYSDAT segment

2-1

concurrent cP/K system Guide 2.1 GENCCPM Operation

• VODT • REP
e PIN • RSP
• TKP.RHP
e CLOCK.R8P
e DIR.RSP
• ABORT.RSP

Virtual console OUTput process
Physical keyboard INput process
Terminal Message Process
CLOCK process
OIRsctcry process
ABORT procaee

'Note: * • RSP Resident System Process file • The VOUT, PIN, 'ZKP,
and CLOCK RSPs are required for Concurrent CP/K to run, The RSPs
listed are all distributed vith Concurrent CP/K.

If QBNCCPK does nct find the preceding .CON fl.las on tha default
drive, it prints an axrcr message cn the console:

Can' t find these modules: «FZLESPNC>...(«PILRSPSC>)
mbara FILSSPEC ia the name Of the mieeing file.

2-2 Q RRXBPIl Main Manu

All Of the GENCCPK Main menu Opticna haVe default Values. When
generating a system, GBNCCPK assumes the value shown ia square
bracketed' unless you speciiy another value. Any menu item that
requires a yes or no response represents a Boolean value, and can be
toggled simply by entering tha variable. For example, entering
VERBOSE in response tc the QENCCPK prompt vill change tha state of
the VERE08E variable froa the default state, [X], to the opposite
state.

In the GENCCPK Main manu illustrated in Figure 2-l, sll numeric
values are in hexadecimal notation.

ass Concurrent CP/N 3, 1 GENCCPM Main Manu ~~~

help
verbose [Y]

destdxive [A~]
deletesys [N]

GENCCPK Help
Kore Verbose QSNCCPM Kaeadgas
CcPK.SY8 Output To (Destination) Drive
Delete (instead of rename) old CCPK.SYS file

Display/Change System Parameters
Display/Change Memory Allocation Partitions
Display/Change Disk BuFfer Allocation
Display/Change Opexat ing System Label
Display/Change RBP List

I'a Finished changing things, go GEN a SXStaa

syspsrams
asmozy

diskbufiexe
cslabel

reps

gensys

ChangssP

Figure 2-1 O ENCCNli Ilain Nanu

2-2

2.2 GENCCPM Main MenuConcurrent CP/M System Guide

you type HELP in response to the GENCCPM Main Menu prompt
Changes?, as shown in this example:

Changes'? HEI' a c r >

the program prints the following message on the Help Function
Screen:

* ' * GENCCPM Help Funct i o n * ~ *

GENCCPM lets you edrt and generate a system image from
operating system modules on the default iist drive. A
detailed eXplanaticn of each GEMCCP>i paraeeter may be
found in the COnCurrent CP/M Syatem Guide, SeCtion 2.

GENCCPM assumes the default values shown within square
brackets. All numbers are in Hexadecimal. To change a
parameter, enter the parameter name followed by "=" and
the new value. Type <cr> (carriage r turn) to enter the
assignment. You can make multiple assignments if you
separate them by a space. xo soaces are allowed within
an assignment. Example:

Changes? Verbcae=H SySdr ive ? i: O p e nmaX=1A <cr>

Parameter n ames ma y b e sh >r t e ned t u th e m in im um
COmbination of letters uni lue to the currently displayed
menu. Ex ample:

Changes? v=N des A: d e l Y <cr >

Prese RETVRN to cont inue • • .

Figure 2-2. GBNCCPN Help Function Screen 3.

2-3

2 • 2 GEECCPK Main MenuCo~current CP/M System Guide

Sub-menus (the last fev rptiona) aze accessed by typing
the sub menu name folloved by acri. You asy enter
multiple sub- menue, in which case each eub-menu vill be
displayed in order. Example x

Chsngesy help eyapazaas reps <cr~

Enter <or> alone to exit • menu, or a paraaeter nese, "

a nd the nev v a l u e t o ensign • par ameter. Multiple
assignaente may be entered, as in response to rhe Main
Menu pzoahpt.

Prese RETURN to cont i nue .

Fi9'ure 2-3 • QSeXm Kelp Function Sarsen 2

Table 2-l describes the resaining SEECCPK Main Menu options.

Table 2-l. QMCCPN Main Menu Opticms

Option

WaRSDSS

Explanatian

DES T DRIVE

The GENCCPM progzes messages aze normally
verbose. However, experienced operators
alght want to limit them ih ths interest
cf ef f iciency. Setting VENOSE to E
(no) limits the length of QEWCCPM
messages to the absolute minimus.

The drive upon which ths generated
CCPK.SXS f ile ie to reside. Zf no
destinat ion drive is speci f ied, SEECCPM
assumes the currently logged drive as
the default.

Delete, instead of zenaae, old CCPK.SXS
f ile. Normally, GSHCCPK zenasss the
previaua system file tc CCPK.a?a bsfoze
building the nev system image. Ey
• pec if y ing DE L ETES YS~ 2, ycu cau s e
QESCCPK to delete the old file instead.
Tbi • is useful when disk space ie
l imi t e d .

T yp ing SYS PAEAKS coz > d ispleys the
GENcCPK System Parameter Ksnu. N e e
Figure 2-4 and accompanying text,

DELETMYS

2-4

2.2 GENCCPM Main MenuConcurrent CP/Ã System Guide

Table 2-1 . (con t i n ued)

ExplanationOption

MEMORY Typing MEMORY <cr> displays the GENCCPM
Memory Partition Menu . See Figure 2-5
and accompanying text.

REPS

OSLAEEL

DI8KBUFFERS Ty p i n g D I SKBUFFERS <cr> displays the
GENCCPM Disk Buf fer Allocation Menu.
See Figure 2-7 and accompanying text.

Typing OSLABEL <cr> displays the GENCCPM
Operating System Label Menu. See Figure
2-8 and accompanying text.

Typing REPS <cr> displays the GENCCPM RSP
I is t Menu • See F i gure 2 -6 a n d
accompanying text.

Typ in g G E NSYS <or > initiates the
GENeration of the SYStem file. When
using an input f ile to specify system
parameters, and the GENSYB command is
not the last line in the input file,
GENCCPM goes into interactive mode and
prompts you for any additional changes.
See Section 2. 9, "GENCCPM Input F iles,"
for more information.

GENSYS

Note: To create the CCPM.SYS file you must type in the GENSY8
command, or include it in the GENCCPM input file.

2-3 System Paraaeters Menu

The GENCMD System P arameters Menu is shown in Figure 2-3. Y o u
access this menu by typing SYSPARAMS in response to the Main Menu.

Noter All GENCCPM parameter values are in hexadecimal.

Concurrent CP/M System Guide 2 • 3 8ystem Parameters menu

Display/Change System Parameters Menu

eysdrlve [8 :]
tmpdrive [B :]

cmdlogg ing [8]
compatmode [Y]

msmaax [4000]
cpenmax [20]
lockmax [20]

osstart [1008]
nopsnf iles [40]

npdescs [14]
n iche [20]

gbufsiss [400]
nflags [20]

System Dr iv e
T empcrsry P i l e D r i v e
Command Day/Pile Logging at Console
CP/Ã PCB Compatibility Node
Naximum Memory per Process (paragraphs)
Open Piles psr Process Maximum
Locked Records per Process maximum

Starting Paragraph of Operating System
Number of Open Pile and Locked Record Bntriss
Number of Process Dsscriptors
Number of Queue Control Blocks
Queue Buffer Total Sire in bytea
Number of System Plage

Changes'

Pigurs 2- • . CENCE% System Paraactars Manu.

Table 2-2. System Parameters Menu Options

Option

SYSDRZVE

Bxplanation

Ths system drive where Concurrent CP/N
lrxskm for a transient program when it is
nct found on ths current default drive.
A ll t ha c om m o nl y use d t r ans i en t
processes can thus be placed on one disk
under User Number 0 and are nct n e eded
on every dr i v e sn d us sr number. Bs s t hs
Concurrent CP M O ratin 8 stem User'8
Curds ior n f o rmat on on how t e
operating system performs file saarchsm.

The drive entered hers is used as the
drive for tsmporary disk files, This
entry can be accessed in the System Data
Bagment by application programs as the
drive o n w h i c h t o c re a t e t e mporary
iiles. The temporary drive should be
the fastest drive in the system, for
exam p l e , t he N em c ry D isk , i f
implemented.

TKPDRIVE

Concurrent CP/M System Guide 2.3 System Parameters Menu

T able 2 - 2 . (aontinusd.)

ExplanationOption

CMDLOGG I NG

MENMAX

CQMPATMODE

Entering the response [Y) causes the
generated Concurrent CP/M Command Line
Interpreter (CLI) to display the current
time and how the command will be
executed.

C P/Me FCB COmpatibi l i t y Made [Y] . W h e n
the de fault value [Y] is set, the
o perating s y s te m r e c o g n izes th e
compatibility attributes. Setting this
parameter to [N) makes the generated
system ig nore th e c o m p atibility

0 eratin S stem Pr rammer's Reference
u e, ec t i on . , 'Compati i ty

Attributes," for more information on
this feature.

Maximum Paragraphs Per Process [4000) • A
process may make Concurrent CP/% memory
allocations. This parameter puts an
upper limit on how much memory any one
process can abtain. The default shown
here is 2 56t< (40000H) bytes .

Maximum Open Files per Process [20] .
Th i s parameter specif les the maximum
number of files that a single process,
usually one program, can open at any
given time. This number can range from
0 to 255 (0FFH) and must be less than or
equal to the total open files and locked
r ecords fo r th e s y s t em . Se e th e
explanation of the NOPENFILBS parameter
below.

Maximum Locked Records per Process [20) .
This p a r ameter sp e c i fi e s t he m a ximum
number of records that a single process,
usually one program, can lock at any
given time. This number can range fram
0 to 255 (OFFH) and must be less than ar
equal to the total open files and locked
records for t h e s y s t e m. Se e the
explanation af the NOPENFIIES parameter
in the 0 YSPARAMS Menu .

0 PENMAX

2-7

Concurrent cp/m System Guide 2.3 System Parameters Menu

table 1- 2 , (continued)

ExplanationOption

OSSTART

moPRNtibme

Star ting Par agr aph at the operating
system [1006] . The starting paragraph
ie where tha CCPJRIDR le to put the
operating system. Code execution starts
here, with the CS register eat ta this
value and the IP register aet to d. The
Data Segment Register ie eat tc the
STSDAT segment address. Whe n first
bringing up and debugging concurrent
CP/M under CP/M-86, the anerar to this
question should bs 8 plus where M' r-86
running under CP/M-86 reads in the file
using the R ccmmand. T h e DDT86 R
command also csn be uesd to read ths
CCPM • SYS file to a specific memory
lacation. After debugging the system,
you might want to relocate it to an
address more appropriate to your
hardware configuration. This location
naturally dependsan where th e B oat
Sector and Loader ar e p l ac e d, an d h o r
muCh RAM ia used by ROM moniker or
memory-mapped I/O devices.

Total open Piles in system (40] . This
parameter epeaifies ths total cise of
the System bock bieti which includea the
total number cf open disk files plus the

tha proceeaee executing under Concurrent
CP/M at any given time, This number
must be greater than or equal to the
maximum open f iles Per process (the
t5%NSR parameter abave) and the maximum
loaked reoarde per process (the LOCEMAX
parameter above). It ia possible either
to allow each process to uae up ths
total system Lack Liat spaces' or to
allow each process to only open a
iractian af the system total. The first
technique implies a situation rhsrs one
process can iorcibly block others
because it ha e c o nsumed all the
available Lack liat items.

total number of locked records for all

Concurrent CP/N System Guide Nenu2.3 System Parameters

T able 2 - 2 . (cont inued)

E xplana t i onOption

NPDSSCS

NQCBS

QBUPSIKB

Number of Process Descriptors [14} . For
each memory partition, at least one
transient program can be loaded and run.
I f transient programs create child
processes, or if RSPs extend past 64K
from the beginning of SYSDAT, extra
P rocess Descr i p t o r s a r e n e eded . Wh e n
f irst bring ing up and d ebugging
Concurrent CP/M, the default for this
parameter sufficee. A fter the debug
phase, during system tuning, you can use
the Concurrent CP/N SYSTAT Utility to
monitor the number of processes and
queues in use by the system at any time.

Number Of Queue Control Blocks [20]. The
number of Queue Control Blocks should be
the maximum number of queues that may be
created by transient programs or RSPs
outside of 64k from SYSDAT. The default
value suffices dur ing initial system
debugging.

Size Of Queue Buffer Area in Bytes [4001.
The Queue Buffer Area is space reserved
for Queue Buf fere. The size of the
buffer area required for a particular
queue is the message length times the
number of messages. T h e Queue Buffer
Area should be the anticipated maximum
that tr ansient programs will need.
Again, the default value will be
adequate for initial system debugging.
Nots that the Queue Buffer Area can be
large enough (up to OFFFFH) to extend
past t h e S YSDAT 64K boundary .

Size of the flag table [20]. Flags are
three-byte semaphores used by interrupt
routines. The number of flags needed
depends on the design of the XIOS. Nore
information on using flags for interrupt
devices can be found in Section 3 under
"Interrupt Devices" • See also the
C oncurrent CP N 0 c r e ti n S st em
Pro rammer ' e Guide on Dev flagset,
Dev ag w t.

NPLAGS

2-9

Concurrent CP/M System Guide 2.4 Memory Allocation Menu

2.4 Wsmry Alloaation)6enu

The memory Allocation partitions Nenui shovn in Pigure 2 Sy is an
interactive menu. Shen the menu is first displayed, it lists the
current memory partitions. If nona have been specified, the list
field is blank. P o l loeing the list is the menu of options
available • You msy chonae either to ADD tc the liat of partitions,
or to DELETE one or more partitions. Partition assignments must be
made by specifying either ADD or DBLBTE, folloeed by an equal sign,
the starting address and last address of the memory region to be
partitioned, and the sixei in paragraphs, of each partition. All
values must be in hexadecimal natation snd separated by commas. An
asterisk can ba used to delete all memory partitions. The Start and
Last values are paragraph addresses) multiply thea by 16 (108) to
obtain absolute addresses • Similarly, partition sixes sre in
paragraphs) multiply by 16 (10E) to obtain sixe in bytes.

In the example balue, all defsul(t memory partitions are first
deleted (DELETE *). Then tso kinds of memory partitions ara added
to the lists 16X (4000h) partitions fraa address 240030 to 4000i0,
and 32E (6000h) partitions fros 4000>0 to 600030.

Addresses
Start Last
400h 6000h

Partitions (in paragraphs)
8 isa ()t y
400h 17h

Dieplay/Change Xemory Allccagion Partitions

delete DELETE memory partition� (s)

Changes? delete e add 2400,4000,400 add~4000,6000,600

add ADD memory partition(s)

Addresaea partitions
6 St ar t I ast Sixe ()ty
1 • 2400h 4000h 400h 7h
2 • 4000h 6000h 800h 4h

Display/change @emory Allocation Partitions

delete DELETB memory partition(e)

Changesy <cr>

add A DD memory part i t i o n (e)

tigure 2-S • (2ESCCRl R~xy allocation Sample Session

2-10

2.4 Memory Allocation MenuConcurrent CP/M System Guide

Memory partitions are highly dependent an the particular hardware
• nviranment. Therefore, ycu should carefully examine the defaults
that are given, and change them if they are inappropriate. The
memory partitions cannot overlap, nor can they averlap the operating
system axes. GENCCPM checks and tr ims memory par ti t ion s that
avexlap the operating system but dass nat check far partitions that
refer to nonexistent system memory. GENccPM does not sise existing
memory because the hardware on which it is running might be
different from the target Concurrent CP/M machine (this might be
done b y t he XI OS at i n i t i a l i z at i o n t i me) . Er ror me s s ages a r e
displayed in case of averlapping or incorrectly sised partitions,
but GENCCPM does not automatically tx im over lapping memory
partitions. GEHCCPM dose not allow you to exit the Main Menu or the
Msmoxy Allacstian Menu if the memory partition list is not valid.

The nature of your application dictates haw yau should specify the
partition boundaries in your system. The system never divides a
single partition among unrelated pxogxams. If any given memory
request requires a memory segment that is larger than the available
partitions, the system concatenates ad]oining partitions to form a
single contiguous area of memory. The MBM module algorithm that
determines ths best fit for s given memory allocation request takes
inta account the number of partitions that will be used and the
aaeunt of unused space that will be left in the memory region • This
allows yau to evaluate the tradeoffs between memory allocatian
boundary conditions causing internal versus external memory
fragmentation, as described below.

External memory fragmentation occurs shen memory is allocated in
small amounts. This can lead ta a situation where there is plenty
of memory but no contiguous area large enough to load a large
program. Internal fragmentation occurs when memory is divided into
large partitions, and loading a small program leaves large amounts
of unused memory in the partition. In this case, a large program
can always load if a partition is available, but the unused areas
within the large partitions cannot be used to load small programs if
all partitions are allocated.

When running GENCCPM yau can specify a few large partitions, many
small partitions, or any combination of the two. If a particular
environment requires running many small programs frequently and
large programs only occasionally, memory should be divided inta
small partitions. This simulates dynamic memory management as the
partitions become smaller. Large programs are able to load as long
ae memory has not become too f xagmented • If the environment
consists of running mostly large programs or if the programs are run
serially, the large-partition madel should be used. The choice is
nat trivial and might require some experimentation befoxe s
satisfactory compromise is attained. T ypical solutions divide
memory into 4K to 16K partitions.

2-11

2 • 5 CBBCCPN RBP Liat MenuConcurrent CP/M System Guide

2.5 QRROCPM RSP Liat Menu

The GBRccPN RBP (Resident Bystes Process) List Menu is sbowss in
Figure 2-6 • The example session illustrates excluding ABORT • RSP and
MY.RBP from ths liat Oi' RSPe tc be inoluded in the eyetea,

RBPs tc be i n c l uded aces

PIB.RSP
VOUTeRSP

DIR. RSP
CLOCK.RBP

hBORT • RBP
HY.RBP

THP.RSP

bispiay/Change RBP Liat

Include RSPs
Bxclude RSPs

Changee2 exclude~abort . rep,my.rsp

RBPe to be i n c l u ded are:

include
exclude

PZH • ABP
TMP • sSBP

C hangee2 «c r i

DIA. RBP VQJT. RBP CLOCK. RSP

tfgurs 2-6 SE MOCPM RMP Liat Nano Ssapls Seeeicm

The QEHCCPH RSP List Menu fIrst reads the directory oi the current
default disk end lists all .BSP files present. Responding to the
GBRCCPM prcmpt Changee2 With either an inClude Or eXClude Ccmmand
edits the list of RBPs to bs made part of the operating syatss et
ayetea generation time • The wildcard (~ s i file specification can bs
used with the include comsaand tc automatically include all .RSP
files on the disk.

Rotes The PIM, VQUT, and CLOCK RBPa aust be included for Concurrent
CP/M to run .

2-12

2. 6 G ENCCPN OSLABEZ NenuConcurrent CP/N System Guide

2.6 G N NCCPN OSLABEL Menu

Zf you type OSLABez in response to the main menu prompt, as shown in
this example:

Changes7 OSLABBL

the following screen menu appears on your screen:

Display/Change Operating System Label
C urrent message i s :
(nul l >

Add lines to message. Terminate by entering only RETURN:

Figure 2-7. GENCCPN Operating System Label Nenu

You can type any message at this point. This message is printed on
each virtual console when the system boots up. Note that if the
message contains a $, GENccPN accepts it, but it causes the
operating system to terminate the message when it is bei~g printed.
This is because the operating system uses the C WRITESTR function to
print the message, and $ is the default message terminator.

The XIOS might also print its own sign-on message during the ZNZT
routine. In this case, the XZOS message appears before the message
specified in the GENCCPN OSLABEL Menu.

2.7 GENCCPN Disk Buffering Nenu

Typing DISKBUFFERS in response to the main menu prompt displays the
GENCCPK Disk Buffering Nenu. Figure 2-S showa a sample Seas ion:

2-13

Concurrent CP/N Systee Cuide 2 • 7 GSNCCPJ! Buffering Menu

Disk Buffeting Inforsation ~ee

$

Drv
Dit 4aX/Ptac Data 24ax/Prac Hash specif ied
Bufs Dir Bufs Bufs Dat Bufs - ing Buf P g p hs

7? 0 ?2 0 yes 2?
22 0 72 0 yes 2?
77 0 7? 0 yes 27
?7 0 72 0 yee ?7
27 0 72 0 yes 27
2'? 0 f ixed f ixed 77
Tota1 paragraphs allocated to bufferei 0

$ 5 $ $ $ $ '$ \ $ $ $ 5 $ $ $ $ $ $ $ '$ $ $ ' $ $ $ $ $ $ $ $ $

A:
Ba

C:
Di
EI
Ni

DriVe (err> ta eXit) 2 a:
Nuraber of directory buffets, or drive ta share «ith? 8
Maximus ditectoty buffets per process]8] 7 4
Murober of data buffers, or drive to shaie «ith? 4
Maximus data buffets per process [4]7 2
H ashing [yes] 2 c a r >

e~~ Disk Buffering Inforaation ~~e
Dir Max/Proc D ata Max/Proc Hash specified

Drv Bu fs Dir Bufs Bufs Dat Bufs - ing Buf P gphs

A! 8 4 4 2 yee 200
B: 27 0 27 0 yes 7?
Ci 27 0 77 0 yes ?7
0 : ?2 0 72 0 yes 22
E: 72 0 ?2 0 yes ?2
Ri ?2 0 f ixed fixed ?2

Total paragraphs allocated ta bufferai 200

Number af directory buffets, or drive to share with7 a:
Number of data buffets, or dtive to share «ith? ai
Hashing (yes] 2 c c r >

$ $ $ $ $ $ — $ $ — $

Drive (ccr> to exit) 2 ea

Disk Buffering xnformation e • e
Dir Max/Proc D ata Max/Proc Hash

Drv Bufs Dir Bufs Bufs Dat Bui'a -ing

A.i 8 4 4 2 yes
8: shares A: shares A: yes
C: Sha wnee As shares A: yee
D: shares A: shares A: yes
E: shares A: shares A: yes
Ki shares A i f i xed f ixed

Total paragraphs allocated ta buffers: 2CB

$ $ $ $$ $

B pecif i e d
Buf Pgphs

200
80
20
18
10

0

$ $ $ $ $ $ $ $

Dr ive (ccr> to exit) 2 ccr>

Pigure 2-8. 4NSCCPN Disk Buffering Eaaple Bees%on

2-14

Concurrent CP/N System Guide 2. 7 GEHCCPN Buffering Menu

In the sample session shown in Figure 2-8, GBNccPN is reading the
DpH addresses from the x108 Header, and calculating the buffer
parameters based upon the data in the DPHs and the answers to its
questions. GBMCCPM only asks questions for the relevant fields in
the DPH that you have marked with OFFFFh values. See Section 5.4,
"Disk Parameter Header," for a detailed explanation of DpH fields
and GEMCCPN table generation. An asterisk can be used to specify
all drives, in which case GENCCPM applies your answers to the
following questions to all unconfigured drives.

Note that GBHCCPN prints out how many bytes of memory must be
al.located to implement your disk buffering requests. You should be
aware that disk buffering decisions can significantly impact the
performance and efficiency of the system being generated. I f
minimising the amount of memory occupied by the system is an
important consideration, you can use the Disk Buffering Menu to
specify a minimal disk buffer space. We have found< however< that
the amount of Directory Hashing space allocated has the most impact
on system performance, followed by the amount of Directory Buffer
space allocated. As w ith the trade-offs in memory partition
allocation discussed above, deciding on the proper ratio of
operating system space to performance requires some experimentation.

Note also that if DOS media is supported, directory hashing space
must be allocated for the DOS file allocation table (FAT) . See
Section 5.5.1 for information on allocating enough space for the FAT
and the hash table •

GEHCCPN checks to see that the relevant fields in the DPHs are no
longer set to OFFFFH G BNCCPM does not allow you to exit from the
Hain menu until these fields have been set using the Disk Buffering
Menu.

2. 8 GEHCCPN GE88%3 Option

Finally, specifying the GEMSYS option in answer to the main menu
prompt causes GBMCCPN to generate the system image on the specified
destination disk drive. During the actual system generation, the
following messages print out on the screen:

2-15

Concurrent CP/N System Quide 2.I QHNCCPN QHHSYH Qptfon

Concreting new SYS fifo
Qoneratiug tahlsa
Appending RBPs to system file
Doing Pfaups
SY8 image load maps

Coda starts at QQQQh
Data starts at HHHHh

Tables start at XXXXh
RSPs start a t JJJJ h

xzos Suffers start at KKKKh
End of 08 a t L L LLh

hddroesee
(in Paragraphs)
Start Laat
AAAAh B BBBh
%994h NNN Nh

Trimming meacry partitiOna. New I fati

Partitions
Siss Hcw

(Parse.) Nany
XKXXh Yh
Ogggh Vh

(only i f
necessary)

l •
2.

Wrapping up

Pf gare 2-9. QR CPS(SXnstam Qesexet fee Neesegea

2 • 9 QHSCCPN Xnput Piles

QHH'CCPN allcva you to input all system generation commands from an
input file. You can also redirect the console output to a disk
file. You uee these QHNCCPN ieaturea by invoking it with oakland of
the forms

QHNCCPH «fiiein ~fflecut

where fflefn fs the naae of the QHHCCPN input ffle. Note that no
spaces can intervene between the greater-than or lese-than sign and
the file speciffcation. Xf this condition fs not met, QHNCCPM
responds with the aeseagei

REDXRHCTZOH HRROR

The format of the input file ia • imllar to a SVHNXT filet each
command is entered on a separate lfne, followed by a carriage
return, exactly in the order reguired during a manually operated
QHNCCPN ssssfon. The last command can be followed by a carriage
return and the commands

2-16

2.9 GENCCPM Input FilenConcurrent CP/M System Guide

to end the command sequence and generate the system. If the GENSYS
command ie not present, GENCCPM queries the console for changes.

The following exemple illustrates the use of the GEMCCPM input file.
Assuming that the input file file specification is GENCCPM.I'0, use
the followinq cammand ta invoke GENCCPMi

A>GENCCP%l «GESCCPM. I' N

Figure 2-10 sho~s a typical GENCCPM command file:

«cr>

VERBOSE=N DESTDRIVE=D:
SYSPARAMS
OSSTART 4000 NPDESCS 20 QBUFSIZE 4FF TMPDRIVE=A: CMDLOGGING Y

MEMORY
D ELETE~ A DD~2400,4000 , 400 ADD~4000,6000 , 8 0 0

DISKBUFFERS
A:
8
4
4
2
hashing
e for all remaining drive questions
A: share directory buffers with A:
A: share data buffers with A:
hashing > hashing on all drives

«cr)

«cr>
OSLABEL
Concurrent CP/M Version 1.21 04/15/83
Hardware Configuration:

A : 10 MB Hard D i s k
B : 5 MB Hard D i s k
C: Single-density Floppy
D: Double-density Floppy
M: Memory Disk

<ar>
GBNSYS «cr> ~ — - — — Only if yau do not want ta be able

to specify additional changes

Figure 2-10. Typical G~ C aesa nd Pile

Af ter reading in the command f i le and optionally accepting any
additional changes you want to make, GENCCPM builds a system image
in the CCPM.SYS f i l e i n t he ma nner descr ib ed i n S e c t i o n 2 . 1 .

E nd af S e c t i o n 2

2-17

Section 3
XIOS OverAew

Concurrent CP/N Vers ion 3. 1 , as imp l e mented with o ne of t h e e x a mple
Xiob's diecussed in SeCticn 3.1, ie Ccnfigured fOr Operation with
the Compu-PrO with at leaet two 8-inCh flOppy dick driVes and at
least 12BK of RAN. All hardware dependencies are concentrated in
subroutines collectively referred to as the Extended Input/Output
System, or XIQS. Ycu can modify these subroutines to tailor the
system to almost any B086 or BOBB disk-based operating environment.
This section provides an overview of the XIOS, and variables and
tables referenced within the xloS.

The foliowing material assumes that you are familiar with the CP/M­
88 BIOS. To use t h is material fully, refer frequently to the
example XLOS's found in source code form cn the Concurrent CP/N
d ist r i b u t i o n d i s k ,

Eotea Pro grams that depend upon the interface tc the XIOS must
check the version number of the operating system before trying
direct access to the XIOS. Future versions of Concurrent CP/N can
have di fferent X IOB int e r f aces, in c l u d i n g ch anges to X IOB function
numbers and/or parameters passed to XIOS routines.

The XIOS must fit within the 64K System Data Segment along with
the SYSDAT and Table Area. Co ncurrent CP/N accesses the XIOB
through the two entry points IEIT and ENTRY at offset OCOOH and
OC03H, respectively, in the System Data Segment. The IEIT entry
point is for system hardware initialization only. The ESTRY entry
point is for all other XIOB functions. Because all operating system
routines use a Call Far instruction to access the XIOS through these
two entry points, the XIOS function routines must end with a Return
Far instruction. Subsequent sections describe the XIOS entry points
a nd other f i xed data f i e l d s .

3.1 X I OS Header

T he X ZO S H e a de r c o n ta ins v a r i ables t ha t G E S C CPN u s e s w h e n
constructing the CCPN. SYS file and that the operating system uses
When executing. Fi gure 3-1 illustrates the XIOS header.

3-1

3.1 XI O H Headerconcurrent cP/H systen Cuide

CQCE

C08H

JHP BHTRYJMP IHI T

8UPBRVXSQR DOOR RESER­
VED

8Y8DAT

TZ CK TICKS
SEC

C108

C18H

C30H

C 28E

C30H

C38H

HPCHS HVCHE ECCB HLCB

DPH(B)

DPH(F)

DPH(J)

DPH(E)

DPH(C)

DPH(c)

DPH(K)

DPH(O)

DPH(D)

DPH(H)

DPH(L)

DPH(P)

DPH(A)

DPH(E)

DPH(I)

DPH(K)

Figure 3-1. ~ Header

Table 3 1. XZOS Header Data Fielde

E xplanat i o nData Fie l d

XXOS Znitialiaation Point • At systen boot, the
Supervisor Ecdule enecutee a CA il FAR
instruction to thi • location in the XZOE (XZOE
Code Eegnents OCOOH). Thia call tranafere
control to the XIQ8 XSXT routine, which
initialises the XXO8 and hardware, then
executes a RETURE FAR instruction. The JEP
ZHZT instruction aust be pz'ascot in tha
XIOH.A86 file. For details of the XHXT routine
eee 8ection 3 . 2 , "XEZT Entry Po i n t . "

XZOS Entry Point. A l l ac cess to the XXO8
functions goes through the XIO8 Entry Point.
Ths operating system executes a far call
(CALLF) to this location in the XIOS (XIOH Code
8egnents QC03H) whenever I/O ie needed, This

routine Whioh calls the appropriate functian
within the XIO8. On c e the function i •
conplete, the RETRY routine srecutee a return
far (RETF) to the operating systea. The RETF
instruction aust be present in the XIOE.A86
file. For details cf the EETRY routine, eee
Section 3 . 3 , XZO E BHTRY.'

instruction transfers control tc the XZOH BHTRY

3-2

Concurrent cP/M system Guide 3.1 X ZOS Header

Table 3-1 . (continued)

E xplana t i o nData F i e l d

SYSDAT The Segment address Of SYSDAT. It is in the
Code Segment of the XIOS to allow access ta
data in SYSDAT while in interrupt rOutines and
other areas of code where the Data Segment is
unknown. For example, the following routine
accesse s t h e cu r r e n t p r oce ss ' s P r oc e s s
Descrip t o r I

ORG 68H paint t o R L R f i el d
of SYSDAT
d ace no t g e n e r a t e
a hsx v a lu e
of XIOS

RW I

POP DS

PUSH DS Save XZQS Data

HOV DS, CScSYSDAT s Mave t h e S YSDAT
segment address
xnto DS
H ave th e c u r r e n t
process's PD

I Address i n t o B X
a nd per f o r m
o peration . (Se e
FIg 1-5 fo r e xp l a ­
n ation o f R L R)
Restore the XIOS
Data Segment

This variable is initialimed by GEMCCPM.

FAR Address (double-word pointer) of the
Supervi sor Module entry point. Whenever the
XIOS makes a system call, it must access the
operating system through this entry p aint.
GENCCPM initialixes this field. Section 3.8,
"XIOS System Calls", describes XIOS register
usage and restrictions.

Segment

SUPERVISOR

3-3

3 .1 X I Q S S s a d s rConcurrent CP/6 System Guide

Table 3-1. (con t i n ued)

Explanat ionD ata Fi e l d

TZCK

TZCK6 SEC

Set Tick Flag Boolean. The Timer Interrupt
routine uses this variable tc determine whether
the DEV SETPIAG system call should be called to
aat the TZCK FLAG. Initfalixe this variable to
sero (006) in the XZO8.COH file. Concurrent
CP/6 sets this field to Outs whenever a
process is delaying • The field is reset tc
aero (QQH) when all processes finish delaying.
Sas th s Con c ur r ent CP/ M 0 r a t i n stem
Pr xasusar 'a e erence Gus a or atai • on t e

an syetea ca l l . s . Se e
Section 7 of this manual, 'XZQ8 TICK Interrupt
Routine," for aors iniormaticn cn the XIOS
usage of TI C K.

Humbar of Ticks per Second. This field must 'be
ini t i a l i s e d i n t h e XI O S.CQH f i l e to be t h e
number cf ticks that make up one second as
implemented by this XIQS • GESCCPH copies this
field into the 8YSDAT DATA. A p p lication
prograsusara can use TzcKS SEc tc detera ine how
many t i eke to delay in order tc delay ona
s econd. S e e S e c t i o n 7 , "XI06 TICK Interrupt
Routine," for more information.

Global Door Open Interrupt Plag. This field
must be set to QPFE by the drive door open
interrupt handler routine if the XZOS detects
that any drive door haa been opened. The BDOS
checks this field before every dia'k operation
tc verify that the media ia unchanged. If a
door 'has been opened, the XIOS must also set
chs Media Flag in the DPH associated with ths
drive.

Humber of Physi,cal Conaclsa. Znitialias this
field tc tha nuabsr of physical consoles, or
ussr tarainals connected tc tha system. This
number does not include extra I/O devices.
GENCCPN uses this value, and creates a PIH
process for each physical console. It also
capias HPCH6 into the XPCH8 field of tha 6YSDAT
DATA.

Humbex of Virtual Consoles. Znitialiss this
field tc th e n u m ber c f v i rtual consoles
supported hy the XZOS in tha XIOS.COH f ile.
GEHCCPN creates a TICP and a VQUT process for
each virtual console. G E SCCPN copies NVCHS
into the HVc86 field of the sYBDAT DATA.

DOC 6

3. l XI O S HeaderConcurrent CP/l4 System Guide

Table 3- l . (con t i n ued)

E xplanat i c nData P i e l d

NCCB

descr i b e d i n th e Concu r r e n t CP N O e r a t i n

Number af Logical Consoles. I n i tialize this
field ta the number of virtual consoles plus
the number of character I/O devices suppo»ted
by the XIOS. Character I/O devices are devices
accessed through the console system calls of
Concurren t CP/N (f unct ians whose mnemonic
begins with C) but whose cansale numbers are
beyond the range af t he v irtual consoles.
Application programs access the character I/O
devices by setting their default console number
ta the character I/O device's console number
and using t' he regular console system calls of
Concurrent CP/N. Sse the C SET system call as

S stem Praqrammer 's Re erence Guide. GE NCCPN
copies t is ie into t e ield o f t h e
SYSDAT DATA.

Numbe» of List Control Blocks. lnitialise this
field in the XIOS.CON file to equal the number
of List devices supported by the XIOS. A list
device is an output-only device, typically a
printer. GENCCPK capies this field inta the
NICE field af the SYSDAT DATA.

NLCB

CCB Of f se t c f t he Co n s o l e C a n t r a l Bl ack Tabl e .
Ini t i a l i se t h i s f i e l d in t he XI OS . C ON f i le t o
be the add»see Of the CCB Table in the XIOS. A
CCB Entry in the Table must exist for each of
the consoles indicated in NCCB. Each entry in
the CCB Table must be initialised as described
i n S e c t i o n 4 . 1, "Console Control Block".
GENCCPSL copies t h i s f i e ld i nt a t he CCB f i e l d of
the SYSDAT DATA.

Offset of the List Control Block. This field is
ini t i a l i r e d i n t he XI O S .CON f i l e t o be t he
address of the LCB Table in the XIOS. T h e r e
must be an LCB En t r y fo r each a f th e l i s t
devicee indioated in NLST. EaCh entry muet be
ini t i a l i z e d a s d e sc r i bed in S e c t i o n 4 . 3 , "I ist
Device Punctions." GENCCPH ccpiee thie field
into the L.cB field of the SYsDAT DATA.

ICB

3-5

3 • l XX OS HeaderConcurrent CP/N 8ystea Guide

Table 3 l . (continued)

ExplanationData Pie l d

DPH(A)-DPH(P) Offset of initial Disk Parameter Header (DPH)
for drives A through P, respectrvely. Zi the
value of thi • field i • 0000H, tha drive i • not
supported by the XIQS. GEECCPN usaa the DPH
Table to i n i t i a l i s e specific f i e l ds i n the DPHs
when it, automatically creates ECBs and bui fare.
Zf the relevant DPH fields ara not initialised
to QPPFPH, GKSCCPN assumes tha ECEs and buf fera
are defined by data already initialirad in the
XI OS •

Thi • value i • initialisad in the XXOS to the
eisa, in paragraphs, of an uninitialisad RAN
buffer area to be reserved for the XIOS by
GEECCPN. W hen GEECCPN craataa the CCPN.SYS
image, rt sets thi • iield in tha CCPN.SYS file
to the starting paragraph (segment value) of
the XZQS uninitialised buf fer area. This value
asy then be used by the XIOS for based or
indexed addressing into the buffer area.
Typically, the XXQS uses this buffer area for
the virtual console scraan maps, programmable
function key buffera, and nondisk-related I/O
buffe r i n g . GE S C CP M al l O c a t • • this
uninitialised EAN iaaediately following the
system image and any system disk data or
directory hashing buffara. Because the XZQS
buffer area is not included in the CCPN.8YS
file, it can bs of any desired siss without
affecting system load ties parforaance. Zf the
ALl QC f i aid i a initial ised to sero in the
XI08.CQS file, GEMCCPN allocates no buffer RAN
and leaves ALLQC set tc sero in the system
iaage.

3-6

C oncurren t C P/M System Guide

Listing 3-1 illustrates the XIOS Header definition:

3 • I XXOS Header

t tt t7

XZOS Header De f i n i t i on

gt**t * t * * ** tt tt t t* t t * t* * t t t tl tt t t t t* * t tt t t t tt t t t tt t t t

sysdat
supervisor

CSEG
o rg OCOO h

gmp init
gmp entry

dw
rw

isystem initialisation
rxios entry point

;Syedat Segment

DSEG
org

t i c k
t i cks e e c
door

rsvd

OCOCh

db
db
db

false
60
0

apens
nvcns
nccb
nls t

ccb
lcb

dph tb l dw
dw
dw
dw
dw
dw
dw
dw
dw

db
db
db
db

dw
dw

db

4 8 8 1

offset ccbO
offset l,cbO

;drive A:
iBt
i CI , D : , E a
; P: ,G : , H :
; I > , J : , K :
iL'
;M:
i 8 : , 0 : , P

;tick enable flag
of t i c k s pe r s e cond

;global d r i v e do or op en
i n t e r r up t f l ag

:reserved f o r o p e r a t i ng
;system uee

;number of physical consoles

;total number of ccba
;number of list devices

: of f se t o f th e f i r s t c cb
:offset of first lcb

;disk parameter header offset table

offset dphO
offset dphl.
0 ,0 ,0
0,0,0
0,0,0
0
offset d p h2
0,0,0
0

:number of virtual consoles

a l loc

Listing 3-l. XZOS Header Definition

3-7

Concurrent CP/N 8ystem Guide 3 • 4 ISIT Entry Paint

3.2 INIT Entry Point

The XZO6 initialisation zoutine entry point, IMIT, zs at offset
OCOOH fzcm the beginning of the XIOS code module. The INZT process
calls the XZO6 Initialisatiac routine during system fnftialisatian,
The sequence of events from the ties CCRC.SYS i • loaded into memory
until the R6Ps are created i • important far understanding and
debugging the XZOS.

'the loader loads CCPlC.SYS into memory at the absolute Cade Segment
location contained in the CCPK.SYS file Header, and initialises the
C6 and D6 registers ta the Supervisor code segment and the SYSDAT,
respectively. At this point, the loader executea a JHPP ta offset 0
of the CCPE,SYS cade and begins the initialisation code of the
Concur r en t CP/R 6UP module as described below. W h e n loading
CCPH.SYS under DDT-86 or SID-B6, use the R camsand and sat the cade
and data segments manually before beginning execution. You cannot
use the E command because it initialisas the data segment base page
to incorrect values. See Section 8, "Debugging t h e X ZOS."

1. The first step of initialisation in the SUP is ta aet up the
ZHZT pracess. The ISZT process performs the rest of system
i n l t i a l i sa t i o n a t a p r i or i t y e q ua l t o l .

2. The ZSIT process call • the initialisation routines of each af
the other modulea with a Far Call instruction. T he f irat
instruction of each code module rs assumed to be a JNP
i nstruction to it a i n itialisation routine. The X Z O S
initialisatian rautina ia tha last Of these madulea called.
Dace this call i • made, the XIDS fnitiaiisation code is never
used again. Thus, rt can be located in a directory buffer or
other uninitialised data area.

As shown in the example XIOS listing, tha rnitialisation
routine must initialixe all hardware and interrupt vectors.
Interrupt 224 is saved by the SUP module and restored upon
return fram the XZO8. Because DDT-86 uses interrupts 1, 3, and
225, do not. initialise them when debugging the XIOS with DDT-86
running under CP/K-86. On each context switch, interrupt
vectors O, 1, 3, 4, 224, and 225 ars saved and reatozad as part
of a process's enviranment.

4. The XZQS initialisation routine can optionally print a message
to the console before it executes a Par Return (RETP)
instruction upon coaplation. Sate that each TNP prints out the
• tring addressed by the VERSZOE variable in the SYSDAT DATA.
This string can be changed using the OSLABEL menu in GEMCCPH.

5. Upon return fras the XIOS, the SUP Initialiaatian routine,
running under the ZNZT process, creates same queues snd starts
up the RSPS. OnCe this ie dane, the ISIT prOcess terminates.

3-8

Concurrent CP/K 8yatem Guide

The XIOS IHIT routine should initialiae all unused interrupts to
vector tc an interrupt trap routine that prevents spurious
interrupts from vector ing to an unknown location. The example XIOS
handles uninitialixed interrupts by printing the name of the process
that caused the interrupt followed by an uninitialixed interrupt
error message. Then the interrupting process is unconditionally
terminated.

Concurrent Cp/M saves Interrupt Vector 224 prior to syetea
initialixation and restores it following execution of the XIOS IH1T
routine. H o w ever, it doss not store oz alter the Hon-Maskabls
I nterrupt (H KI j vec t or , I H T 2 . S e t t i ng H R ! i s a l s o t h e
responsibility of the XIOS. The example XIOS first initialiaes all
the Interrupt Vectors to the uninitialised interrupt trap, then
initialixea specifically used interrupts.

Hates Whe n debugging the X108 with DDT-86 running under CP/H-86,
do not initialise interrupt Vectors 1, 3, and 225. The example
XIOS's have a debug flag that is tested by tha XHXT routine for this
purpose.

3.2 IHIT Entry Point

3 3 XI OH E HTEY

All acceeses to the XIOS after initialisation go through the EHTRY
routine. The entry point for this routine is at offset OC038 from
the beginning ot the XIOS code module. T h e operating system
acceeaes the EHTRY routine with a Far Call to the location offset
OC03H bytes from t' he beginning of the SYSDAT Segment. When the XIOS
function is complete, the ENTRY routine returns by executing a Far
Return instruction, as in the example XIOS'a. On entry, the AL
zegieter contains the function number of the routine being accessed,
and registers CX and DX contain arguments passed to that routine.
The XIOS must maintain all segment registers through the call. This
means that the CS, DS, ES, SS, and SP registers are saintained by
the functions being called.

3-9

3.3 XZ OS EhtTRYconcurrent CP/8 Systse Guide

Table 3-3. XIO6 Register Usage

Registers on Ent r y

AL ~ f unc t i o n n usber
B X ~ PC-6006 parass t s r
CX ~ te rat pa ra nets r
DX ~ second paraeeter
DB I SYSDAT segment
BS ~ User Data A re a
AH, SI, DI, BP, DX, CX ars undefined

R egisters o n Re t u r n

AX r e t ur n o r XI 0 6 er r o r cOd s
BX ~ AX
DS ~ SYSDAT ssgeent
ES ~ User Data Area
SI, DI, BP, DX, CX are undefined

All XIOS functions, with the exception of disk functions, use the
register conventions shown above.

The ssgssnt registers (DS snd BS) aust be preserved t'hrough the
BSTRY routin». However, when calling the 6UP from wrthin the XIQS,
the ES Register aust equal the UDA of the running process and DS
wust equal the Syatss Data Ssgsent. Thuet if the XIQS ia gcing to
perfozn a string nova or other code using ths ES'Register, it aust
preserve ES using the stack as in the following exaspLes

push es
sov es,ssgsent address

rsp sovsw

pop ss
• • •

Zn the exasple XIOS' s, the XIQS function routines are accessed
through a function table with the function nusbsr being the actual
table entry. Table 3-3 lists the XIOS function nusbsrs and the
corresponding XIQS routines; detailed explanations of the functions
appear in ths referenced sections of thi • docussnt. I isting 3-a is
an sxasple XI 0 6 K b lTRY Junp TabLe.

3-LO

3.3 X l o s ENTRYConcurrent CP/M System Guide

Table 3-3. EIOS Punctions

Function Number XIOS Routine

Console Functions -- Section 4.2

Punction
Punction
Function
Punction
Function

IO CONST
ZO CONIN
IO CONOUT
ZO SWITCH
ZO STATLINE

CONSOLE STATUS
CONSOLE INPUT
CONSOLE OUTPUT
SWITCH SCREEN
DISPLAY STATUS I INE

F unction 3
Punct ion 4

List Device Punctions -- Section 4.3

LIST STATUS
LIST OUTPUT

Other Character Devices — Section 4.4

ZO LSTST
ZO ISTOUT

Function 5
P unction 6

IO AUXIN
ZO AUXOUT

AU X I I I A RX INPUT
AUXILIARY OUTPUT

Pall Device Function -- Sect.ion 4 • 5

F unction 13 ZO PO L L POLL DEVICE

Punction
Punctian
Punctian
Function
Function
Function

PC Node Character Functions — Section 6

Function
Punctian
Function
Function
Function

30
31
32
33
34

ZO SCREEN
IO VIDEO
IO KEYED
IO SHFT
ZO EQCK

ZO SEIDSK
IO READ
ZO WRITE
IO FLUSH
ZO INT13 READ
ZO ZNT13 WRITE

Disk Functions -- Section 5.1

9
10
11
12
35
36

SELECT DISK
READ DISK
WRITE DISK
FLUSH BUFFERS
READ DOS DZSK
WRITE DOS DZSK

GET/SHT SCREEN
VIDEO ZO
KEYBOARD NODE
SHIFT STATUS
EQUIPMENT CHECK

3-11

Concurrent 3.3 X ZOB EMTRYCP/N Bystea Guide

XIOS FUNGI'?OH TABLE

functab dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
4w
dw
dw
dw
dw

ia const
io con1n
io conout
io lietst
i o l i s t
io auxin
io auxout
io switch
i o e t a t l i ne
ia eeldek
io read
io w ri t e
io flushbuf
i o~ l l
io ret
i o r e t
1a re t
i o ra t
ia re t
i a r a t
1 o ra t
io re t
io r a t
i a re t
io ra t
ia ret
i o r a t
i o re t
io re t
1 0 1 s t
io screen
io video
io keybd
ia shf t
io egck
io i n t l 3 r eed
io i n t l 3 w r i t e

l 6
g 7
1 8

9
l 10
;11
;12
!13
:14
;15
g16
)17
;18
;19
;20
l21
g'22
:23
;24
g25
;26
;27
;ae
;29
>30
l31
;32
;33
;34
l35
g36

0 1 2 3 5

console status
console in put
conso1e output
list statue
list output
eux in
allx out
switch screen
display status line
select d i sk
read sector
write sector
flush buffer
pO11 devioe
duaay return
duaay return
duaay return
dusesy return
dumay return
dually return
duaay return
duaay return
4uaay return
duaay retur~
duaay return
duaay return
duaay return
duaay return
duaay return
duaay return
Sat/sat screen soda
video i/o
keyboard i n f o

aquipaent check
read DOS disk
write DOB disk

• hift statue

Funotian TableListing 3-2. XZOB

3-12

Concurrent CP/N System Guide 3. 4 Converting CP/N-86 BIOS

3.4 Converting the CP/N-86 BIOS

The implementation of concurrent cp/N described below assumes that
you have written and fully debugged a CP/N-86 8108 cn the target
Concur rent Cp/M machine. T his is desirable for the following
reason.s:

• The implementation of CP/M-86 on the target Concurrent CP /N
machine greatly simplifies debugging ths XZO8 using UDT-86 or
SID-86.

• A CP/N-86 or a running Concurrent CP/M system is reguired for
the initial generation of the Concurrent CP/N system when using
GBNCCPN.

• You can use the CP/M-86 BI08 as a basis for construction of the
target Concurrent CP/M XIOS.

To transform the CP/N-86 BIOS to the Concurrent CP/N XIOS, you must
make the following principal changes. Details of the changes given
in the following list can be found in the referenced sections of
this manual, and in the example XIOS' s found on the Concurrent CP/N
distribution disk • Often it is easier to start with the example
Concurrent CP/N KIOS and replace the hardware-dependent code with
tbs corresponding drivers from the existing CP/N-86 BIOS. Eowever>
there are several important changes, also outlined below, that you
must make to the CP/N-86 drivers before they work in the Concurrent
CP/N XIOS

l. Change the BIOS Jump Table to use only the two XIOS entry
points, INIT and BNTRY. Concurrent CP/N assumes these entry
points to be u nconditional jump instructions to the
corresponding routines. The INZT routine takes the place of
the CP/N-86 cold start entry point end is only invoked once, at
system initialization time. The ENTRY routine is the single
entry point indexing into all XIOS functions and replaces the
BIOS Jump Table. Concurrent CP/N accesses the ENTRY rout.ine
vitb the XIOS function number in the I register. The example
xIOS then uses the value in the Ar register as an index into a
f unction table to obtain the address of the corresponding
function routine.

2 . Add a 8UP module interface routine to enable the XZOS to
execute Concurrent cp/N syetem calls. The XIOS is within the
operating system area and already uses the User Data Area
stack r therefore, the XZOS cannot make system calls in the
conventional manner. See Section 3.8, "XZOS System Calls ."

3. Modify the console routines to reflect the ZO CONST, ZO CONIN,
IO CONOUT, ZO ZSTST, and ZO ZZSTOUT specifications. Note that
the register conventions for Concurrent CP/N are different from
CP/N-86 and NP/N-86.

3-13

4.

5 •

6.

7.

8.

9 •

Concurrent CP/K Systea cuide 3.4 Converting CP/R-86 BIOS

Recite the CP/R-86 disk routines to conf ora to the ZO SBLDSK,
ZO RRBD, ZO WRITE, and ZO PLUSH specificaticms.

Change all polled devices to use the Concurrent CP/5 DRV POLL
• ystea call. Ss s Sections 4.5, 'ZO POLL Punctian"; 3.5,

Operating Systsa Pxograamez's Reference Suide.

Change all interrupt-driven 4evice 4x ivers to use the
Gcncurrsnt CP/R DEV WAIT?IAG and DJKV SETPLLS systsa cells. Ssa
Sections 3.6, "Interrupt Devices' g 7, 'XZOS Tick Interrupt
Routine"; and Section 6 af the Concurrent CP M Q xatin 8 stan
Progxasaez's Rsiexsnce t3uids.

Change ths stzurture af tha Disk Paraaster Reader' (DPI) Snd
Disk Paraastex Black (DPB) data structures referenced by the
XKOS disk driver routines. See Sections 5.4, "Disk Paxaaetez
Headex" and 5 .5 . " Disk Paxaastex B l ock . "

Raaave the Blacking/Deb3.ackiag algarithas fraa the XZOS disk
drivers • The Concurrent CP/K BDO8 now handles the
blacking/4eblacking function. The XZOS still. han4les seatar
translat i ac.

Change the disk zautines to r sf erence the Input/Output
Pazaaeter Black (IQPB) an the stack. See Bection 5.2, "ZOPB
Data St r u c t u re . " Nodi f y the d i s k dr i v er r ou t i n e t o ha n 4 le
aultissctox reads and writes.

Rewrite the console and list driver cade to han4le virtual
paso] ee and, paesiblyp aultiple physical consoles • Details af
the virtual cansale systsa axe given in Section 4, 'Qmxaater
Devices • "

Zapleaent the TICE interrupt rautine (Ses I TICK in the eramp1e
XZOS ' •) • This routine is used for pracess dispatching,
aaintaining the P DRAY systsa aall, and vaking up the CLOCK
process R SP. S a s S e c t i o n 7 , "XZOS Tick Interrupt Routine.'

10.

3-14

3 .5 Pol l ed Devi cesConcurrent CP/M System Guide

3 .5 P ol l e d D e v i c es

Polled I / O d e v i c e dr i Ve rs i n t he CP /M -86 B IOS ty p i C aL ly e x e cu te a
small compute-bound instruction loop waiting for a ready status from
the Z/O d e v ice . Th is ca u s e s the driver routine to spend a
significant portion af CPU execution time looping. To allow other
processes use af the CPU resource during hardware wait periods, the
Concurrent CP/M XZOS must use a system calL, DEV POLL, to place the
palL in g p ro c es s c n t he Po l l L i s t . Af t er t he DE V PDLl c al l , t h e
dispatcher stops the process and calls the XIOS ZO POLI. function
every dispatch until IO POll indicates the hardware is ready. The
dispatcher then restores the polling process to execution and the
process returns from the DEV POZL call. Since the process calling
the DEV POIL function does nct remain in ready state, the CPO
resource becomes available to other processes until tha I/o hardware
i s r e a d y .

Tc do polling, a process executing an XIOS function cal.ls the
Concurrent CP/M DEV Poll system call with a poll device number, T' he
dispatc'her then calls the XIOS ZO POLL functian with the same poll
device number. The example XIOS uses the pall device number to
index into a table of poll routine entry points, calls the
appropriate poll function and returns tha I/O device status to the
d ispat c h e r .

3.6 Interrupt Devices

As in the case of palled I/O devices, an X108 driver handling an
interrupt-driVen I/O deVLCe ShOuld not execute a wait loap or halt
instruction while waiting fax an interrupt to occur.

The Concurrent CP/M XIOS handles interrupt-driven devices by using
DEV WAITPLAG and DEV SETPLAG system calls • A process that needs to
wait for an interrupt to oacur makes a DEV WAITFLAG system call with
a flag number. The system stops this process until the desired XZOS
interrupt handler routine makes a DEV SETPLAG system call with the
same flag number. Tha waiting process then continues execution.
T hs in t e r r up t h a n d l e r f o l l ow s t ' he s t ep s o u t l i n e d b e L ow, e x ec u t i n g a
f er j ump (JNPP) to the Dispatcher entry point. T h e interrupt
handler can also perform an ZRET instruction when it is done.
However, jumping directly to the Dispatcher gives a little faster
response to the process waiting on the f Lag, and is lagically
equivalent to the IRET instruction.

Zf interrupts are enabled within an interrupt routine, a TICK
interrupt can cause the interrupt handler to be dispatched. This
dispatch could make interrupt response time unacceptable. To avoid
this situation, do not re-enab1a interrupts within the interrupt
handlers or only jump to the dispatcher when not in another
interrupt handler routine.

3.6 Xnterrupt Devices

Interrupt handlers under Concurrent CP/E differ froa those in an
8080 environaent dus ta nachins architecture difisrences. Study the
TICK interrupt handler in tha eauapie XIOS'a carefully. During
initial debugging, it is not recoasended that interrupts bs
i|spleasnta4 until after the systes works in a polled environaent.
an XIOS interrupt handler routine aust psrfora the fallowing basic
steps •

CcncurZSnt CP/8 Syetea'S Snide

l. Do a stack swit.ch to a local etac'k. Ths interrupted process
night not have enough stack apace for a context save.

2. Save the register snvironaent of the interrupted process, or at
least the registers that will be used by the interrupt routine.
Usually the registers are saved on the local stack established
in step <1) abave.

3. Satisfy the interrupting condition. This Can inalude resetting
the hardWare and performing a DEV SETPLAS SystesL call tc notify
a process that the interrupt Foz which it was waiting has
aoaurrs4 •

4. Restore the register environaent of the interrupted process •

5. Switch back ta ths original stack.

6. Either a Juap Far (JAP) to the dispatcher or an Interrupt
Saturn (IRET) instruction aust bs ezscutsd to return froa ths
interrupt routine. Hate the abave discussioa on which return
method ta uss for different situations. Usually, when
interrupts ars not re-enable4 within the interrupt handler, a
Jusp Par (JHPF) to ths dispatcher is executed on each systsa
tick snd after a DEV SETPXJLG call is sade. Ot h srwiss, if
interrupts are re-enab1ad an IRET instruction is execute4.

Eotei DEV S ET%as is t h e o n l y Co n current C P/N systea call an
interrupt routine nay call. This is because ths DEV SETPLhG call is
the only systea cell the operating systsa assuass has no process
ccetsxt associated with it. DEV SETPLAG aust enter the operating
systsa through the SUP entry point at SYSM i0000H and cannot uss
IHT 224.

3-16

Concurrent Cp/bl System Guide 3.7 8 0 8 7 Exception Handler

3.7 8 0 8 7 Except ion Handler

The default for the Concurrent CP/M system is to provide no support
far the 6087 co processor. This section explains what muat be dOne
ta pravide support for the 8087 chip. To support the 8087 the XIOS
initialixation code must initialixe some fields in the SYSDAT area.
The XIOS must also contain a default exception handler to handle any
interrupts from the 8067. T h e s ystem is structured so that a
programmer can write an individual exception handier for the 8087.

The XIO6 initialiration code must first check for the presence of
the 8087 chip by using the PHIHIT instruction. If it is present.
the fallowing fields in SYSDAT must be sst up.

SSG 8087,0PF 8087 Must be set to the segment and affect of
the 8087 interrupt vector.

SYS 87 SS ,
SYS 87 OP Bust be set to the segment and offset of

the XIOS default exception 'handler.

Hust be set to 0 to indicate that there
is an 8087 present in the system. The
Default value is FFFPH which indicates
no 8067. FPPPH is put in this field by
the S UP i n i t i a l i r a t ion cade .

owHBR 8087

The 8067 interrupt vector must also be set to the segment and of fact
of the XIOS default exception handler.

Any exception handler far the 8087 must perform its functions in a
certain order tc guarantee program integrity in a multitasking
enviranment. The following is an outline of t' he example default
8087 exception handler. S e e Li s ting 3-3 for the cade of the
example.

3-17

3.7 8 087 Except ion HandlerConcurrent CP/8 Bystaa Quida

l. save the 8086 snvironsent.

3 • Save the 80 87 anvircnasnt.

3. Clear the 8087 IR (status word).

4. Disable 6087 interrupts.

5. Acknowledge the interrupt (hardware dependent).

6 lack at the owner 8087 field, and perfora the desired action.
Nots that 8086 Interrupts are currently off. D o not pa r f o r a
any action that would turn thas back cn yat. T he defau l t
• xcspticn handler uses the OWER 8087 field to taz'ainate the
process cn a s avers a r r o z .

7 • Restore the 8086 envizonaant.

6. Restore tha 8087 anvironman(L with clear statue • This re­
anablsa the 8087 interrupts.

9. Execute an IRET instruction to return and ra-enable the 8086
i nterrupts .

If the 8087 envizonaant is not restored before 8086 interrupts ara
enabled and an interrupt occurs (foz araapla, TICK), s. d if f e r e n t
8087 process can gain control of the 8087 and swap in its 6087
context. On a second interrupt, or on an IRET instruction, the
8086-running process that happened to ba executing ths exception
handler cods will bs brought back into 80S6 context and will writs
over the new 8087 context.

All 8087 processes azs initialixed by the systea with the address of
the default exception handler. If a process wants to uae ita own
exception handler, it aust initially overwrite the 6067 intarrupt
vector with ths address cf its own exception handler. On each
acatsxt switch, ths S087 interrupt vector is saved and restored as
pazt oi the 8087 pzocess's anvironaant.

Tha hardware-dependent address of the 8087 interrupt vector is
provided in the SRG 8087 and OPP S087 fields of the systea data
azea.

An individual exception handler aust follow the saae sequence oi
• vents described for ths default handler. Railura to do ao will
have unpredictable results on the systaa. If possible, sake this
default intszrupt handler rs-entrant.

3-18

3.7 8 0 8 7 Except ion HandlerConourrent CP/N System Guide

ndpint:

e m s s s m s s a e s e s m m a a s s s m

8087 Default Exception Handler

This is the example default exception handler.
It is assumed that if the 8087 prograamer has enabled
8087 interrupts and has specified exception flags in
the control word, then the prcgraamer has also included
an exception handler to take specific actions in
response to these conditions.
This handler ignores non-severe errors (overflow, etc.)
and terminates processes with severe errors (divide by
sero, stack violation).

ROV
mov
mov
ROV
RCV

push

push
push
push
push
push
push
push
push

PNSTESV
PWAIT
PSCLEX
xor
PNDISI

ax

sl

es
mov

cx

ds
ds,sysdat
ndp ssreg,ss
ndp spreg,sp
es,sysdat
sp,offset ndp tos

bx

dx
di

bp

es,sysdat
env 8087

8 ave 8086 r e g i s t e r s

ax,ax

a1,020h
060h,al
al , 020h
058h,al

i n 808 7

Save current data segment
I Get XIOS data segment

Stack switch for 8086 env

ROV
out
slov
out

call

; blow save 8087 env
Save 8087 P1OCess InfO

Clear 8087 interrupt refuel

Disable 8087 interrupts

S end int a r k ' s — 1 for a l a~

1 for master PIC

b x,of f se t e n v 8 0 8 7
b yte pt r 2 [b xT,D

C heck 8087 er ro r c o nd i t i o n
if e r r o r i s s ev e r e ,
process will a bo r t

clear 80 87 s t a t u s w ord
for s n v r e s t o r e

ROV

ROV

Listing 3-3. 8087 Exception Sandier

3-19

Concurrent CP/N System Guide 3 .7 80 8 7 E x c ep t i o n H and l e r

es

si
di
dx

bx

ss,ndp esreg
ep,ndp epreg
env 8057

pop
pop
pop
pop
pop
p'op
pop
pop
mov
mov
FLDERV
FWAIT
pop
i ret

cx

ax

bp
r Restore 8086 env.

Switch to previous stack

Restore 8087 environment
with good status
Restore previous data segment

in 8087:

llov
test
3s
sov
mov
test
]ns

bx,owner 8087
bx,bx
end 87
si,offse't env 8087
ax,stetusw[si]
ax,03eh
end 87
p f l ag (bx] , 080h

r Get the Process Descriptor
Check i f avn e r h a s
already terminated
Xf severe error, terminate
Xf not, return and continue
3A = under/overflow, precision,

and denormal ised operand
i Must be se ro d i v i d e o r i n v a l i d

operation (s t ack e r r o r)
Turn on terminate flag

or

end 87:
ret

(ae = a s s s e a v s cwwws s ea a a s ~ v a s s a s s a s sa

Listing 3-3. (continued)

3.8 EIUS System Calls

Routines in the ÃXOS cannot make system calle in the conventional
manner of executing an XNT 324 instruction. The conventional entry
point ta the SUP does a stack switch to the User Data Area (UDA) of
the current process. The RIOS is considered within the aperating
system, and a process entering the RXOS is already using the UDA
stack. Therefore, a separate entry paint is used for internal
s ystem cal l e .

3-20

Concurrent CP/M System Guide 3.8 XIOS System Calls

Location 0003H of tha SUP code segment is the entry point for
internal system calls. Register usage for system Calls through this
a~try point is similar to tha conventional entry point. They are as
followers

Entry: CX ~ system call number
DX Par a meter
DS S e gment address if DX is an offset to a

ES ~ User D a ta A r e a
s truc t u r e

AX E X = Re t u r n
CX Er r or C o d a
ES = Segment value if system call returns

an offset and segment. Otherwise
ES is unaltered and equals the UDA
u pon re t u r n .

Returnr

DX, SI , D I , BP a r e no t p r ese r v e d .

The only differences between the internal and user entry points ara
the CX and ES registers on entry. Por the internal call, CH must
always be 0. RS must always point to the User Data Area of the
current process. The UDA segment address can be obtained through
the following cade:

org 68H

r w 1 ready list root
in SYSDAT

org (XIOS code segment)

m ov si , r l r
m cv es,lohi s i]

Scte l On entry to the XIOS, ES is equal tO the UDA segment
address. The ES Register must equal tha UDA on return from any XIOS
function called by the XIOS Eh1TRY routine. Interrupt routines must
rastore ES and any other altered registers to their value upon entry
tc the routine, before performing an IRET instruction or a JAP to
t he d i s pa t cher .

E nd of Se c t i o n 3

3-21

Section 4
Character Devices

This sect.ion describes the XIOS functions necessaxy for Character
I/O. Same additional funationa, described in Section 6, are needed
to run DOS programs.

Concurrent CP/M treats all serial I/O deviaes as consoles. Serial
I/O devices are divided into two categories: virtual consoles and
extra I/O devices. Each virtual console is assigned to a specific
physical console or user terminal. Associated with each serial I/O
device (virtual console or extra I/O device) is a Consale Control
Black (CCB). The serial I/O devices and CCBa are numbered relative
to zero. Each process contains, in its Pxocess Descriptor, the
numbex cf its default console. The default console can be either a
virtual. console or an extra serial I/O device.

Concurrent CP/S can be configured in a number of different ways by
changing the CCB tabLm in the XIOS. It can be configured far ane or
more user terminals (physicaL consales), and extra I/O devices. The
number of virtual consoles assigned to each user terminal is set in
the CCB table. Up to 256 aerial I/O deviCes can be implemented,
depending on the specific application.

The XIOS header defines the siae and location of the CCB table. In
the header, the CCB field points tc ths beginning of the CCB table.
The SCCB field contains the number of entries in the CCB table. The
HVCMS field tells how many af the CCBs are virtual consoles. See
"XIOS Header" iu SSCtion 3 far more infcrmatian.

The XIOS might or might nat zaaintain a buffer containing the screen
~t ents and cursor posit.ion far each virtual console, depending on
how the system is to appear to the user. Kaep in aind that this
b uf f e r Can be Over 4K bytea per Virtual cOnaole. P raotical
ceaisiderations of memory space might require keeping the number of
virtual consoles reasonably smaLL if buffars are maintained. Also
note that if the user terminals are connected to serial ports, the
time tc update the screen for a screen switch can ba up to 2
seconds. One example XIOS has eight virtual consoles, divided among
multiple serial terminals.

4-1

4.1 Console Ccntrcl Block

By convention, the first NvcNs serial I/0 devices are the viztual
consoles. The NVCNS parameter is located in the XIOS Header. The
XPCNS field tells how many user terminals there are. XPCN6 must be
less than or equal to NVCHS • XPCH8 does nct include extra I/O
Devices. Consoles beyond the last virtual console represent other
serial I/O devices. Shen a process makes a console I/O cell with a
cxasole number higher than the last virtual console, it references
the Console Contxol Block for the called device number. Thezefore a
CCB for each serial I/O device is absolutely necessary.

List Pevices under Concurrent CP/N are output-only. The xI06 must
reserve and initiallae a List Contxol Block fax each list output
device. Shen a Process makes a list device X108 call, it references
the appropr i a t e LCR •

COncurrent CP/H 6ystem Ouide

4.1 Console Control Block

A console Control Block Table must ba defined in the XIOS. There
must be one CCB for each virtual console and Character I/O device
supported by the XIOS, as indicated by the NCCS variable in the XIO6
Header. The table must begin at the addx'ese indicated by the CCB
variable in the XIOS Header.

CCB 0 (vir tua l c onsole 0)CCB
(XIOS
Need ex)

CCB HVCNS-1 (last virtual console)

(first extra char­
acter I/O device)

CCB NVCNS

(last e x t z a ch ar ­
acter I/O device)

CCB NCCB-1

Pigure 4- 1 . The C CB Table

The number of CCBs used for virtual consoles eguals the NVCNS field
in the XIOS Header. Any additional CCB entries are used fox other
character devices to be supported by the XIO6 • The CCB entries are
numbered starting with aero tc match their logical console device
numbers. Therefore, the last CCB in the CCB Table is the (NCCB-1)th
CCS.

4-2

Concurrent CP /K System Guide

Each CcB corresponding to a virtual console has several fields which
aust be initialized, either when the XZOS is assembled or by the
X IOS ZBIT r o u tine . Th e s e f islds allow you t o c h o ose th e
configuration of the virtual consoles. The PC field indicates the
physical console this virtual console is assigned to. The VC field
is the virtual console number. This number must be unique within
the systsa. Ths LISK field points to the CCB of the next virtual
ccneole assigned to this physical console. The last virtual console
assigned to each physical console should have the LZBK field sst to
zero (000OH) • Pigure 4-2 shows a diagram of the CCBs for a system
with two physical consoles, with three and two virtual consoles
assigned respectivty. Por CCBs outside the virtual console range
corresponding to extra I/O devices, these fields must all be
initial ized to z e r o (O OH), except for the PC field. Also,
initialize to zero (OOH) all fields marked RESERVED in Figure 4-3.

4.l Console Control Block

CCB 0 PC 0 VC 0

I INK

CCB I PC 0 VC 1

LINK

CCB 2 PC 0 VC 2

CCB 3 PC 1 VC 3

Llz(K

CCB 4 PC 1 VC 4

LINK

Pigure 4-2. CCBs for Two Physical Coueolee

4-3

4.1 Console Control SlackConcurrent CP/8 Eyetsa Guide

RESERVEDOO

08h

loh

1 sh

20h

NZNZC

HAXBUFSZEB

PC V C RESERVED STATE

RESERVED

RESERVED

RE SERVED

LINK

Pigure 4-3. Console Ccatrol Block Forest

Table 4-1. Console Control Block Data Pields

D ata Fie l d Explanat ion

OWNER Address of the process Descriptor of the
process that currently owns the virtual console
or character I/O device. This field is used by
the XZOS Statue L i n e F unc t i c n (Z O STATIZNE) t c
find the naae of the current owner. Znitialise
this field display to sero (OOOOH). Zf tha
value in this field is sero when Concurrent
CP/t4 is running, no process owns the device.

This f i e l d i nd i c a t e s wh i ch l i s t d ev i c e re c e iv es
the characters typed on the virtual console
when the CTRL-P coaaand is in effect. MIMIC
suet be initialised to OPFH. Note that this
list device is not necessarily the ease as the
default liat device indicated in the Process
Deaoriptor whose address i • in the OWNER field
Of the CCB. Ccneider the follcwing interaCticn

HZHZC

at t h e c o n s o l e :

4-4

4. l Console Cantrol BLockConcurrent CP/N System Guide

T able 4 - 1 . (continued)

ExplanationD ata F i e l d

The THP's PD has a 0 i n
its LIST field.

Printer echo to li st
device 0 .
The TMP's PD has a 2 i n
its LIST fieLd.

LETTER.PRhl is sent to
list deVice 2 Printer
echo is still going to
list device 0, echoing
the last two commands.

A)printe r

Printe r N u mber = 0
A)"P

A >printer 2

P rinte r N umber ~ 2
A>pip 1st:eletter.p m

The example status l.ine
routine distinguishes
b etween t h e de f a u l t
l i s t d ev i ce and t h e
CTK P l i st device by
d isplay i n g

P rin t e r ~ 2

for the default list
device, a nd

P=O

after the last command
in the illustration
above.

PC Physical console number •

Virtual co n s ole n u m b er . V ir tuel c o nsole
numbers must b s u n i que wi t h i n t h e s y s t em.

VC

4.1 C on s o ls C o n t r a 1 B l o c kConourren't CP/M Sys'tsa Cuide

Table 4-1. (o raLtiuued)

B~lanat icnD ata F i e l d

MAXBUFSIZE

The least significant bit of this field
indiaates the background sade af the virtual
aasale. The XIOS Status Line Punction rautine
uses this information ta display the bac'kgrcund
sade for the current foreground consols. This
bit has the following valussi

0 back g r ound is dy namic
1 back g r ound i s b u f f e r ed

The STATE field can be initialised tc 0 or 1 cn
each virtual consols ta specify the background
node at system startup. The Concurrent Cp/M
VCMOOE utility allows the user ta change the
background soda.

Tha MAXBUFSIZE field indicates the aaxiuuu sine
cf the buffer file used to stars characters
when a ba c kground virtual consol • is in
buffered mode. W h en a virtual console is
placed i n b ac k g r o und a cde b y t he u s e r , a
teaparary fiXe is created on ths tsaporary
drive> containing console output ssht to the
virtual cansale. Th e se files are maned
VOUTx.$$4, where x equals the nuaber cf ths
assoc iated virtual console. The MAXSUPSIZE
fi • 1d is t h s m ax imum siss to w h i ch t h i s f i l e
can grow. If this maximum is reached, the
drive is Read-only, or there is nc aors free
space on ths drive, subsequent console output
causes the background process attached to the
virtual console to be stopped. The MAxBUPSIZE
parameter i • in Ki lobytes and a ust be
initial ised in the XIOS CCB entries • The
Concurrent CP/M VCMODE utility allows the user
ta Change thia Value. The l e gal r ang e f or
NAXQUFSIZE is 1 tc 819 1 de c imal (X PFPH).

Address of the next CCB assigned to the same
gpsical console. Zero (OOOOB) if this is the
last or only virtual consols fcr this physical
console.

LIKE

4-6

Concurrent CP/M System Guide 4.2 Console I/O Funatians

4.2 Console I/O Functions

A major difference between the Concurrent CP/)4 XZOS and the CP/R-86
BIQS drivers is ho» they wait far an event ta occur. In cp/m-86, a
routine typically goes inta a hard loop to wait for a change in
stat~a of a device. or executes a Halt (HLT) instruction to wait for
an interrupt. In Concurrent CP/N, this does not work. Zt can be of
some use t however, during the very early stages of debugging the
XIO8 •

Basically, two ways ta wait far a hardware event are used in the
XIOS. Par noninterrupt-driven devices, use the DEV POLL method.
Por interrupt-driven devices, use the DRV SRTPLAG7DRV PLAGHAIT
method. These are both ways in which a process waiting for an
external event can give up the CPO resource, allowing other
processes to run concurrently, Par detailed explanations of the
BEV POI L, DEV PLAGWAIT and DEV SRTPLAG system calls, see Section 6
of t h e C o n current C P cretin 8 stem Pr rasmer's Reference
Guide.

IO CONST CON S OLE INPOT STATUS

Return the Input Status of the specified
Serial I/O Device.

Entry Parameters:
Register AL : OOH (0)

Serial I/O Device NumberDI:

R eturned Val u e :
Registe r AL: OPFH if character ready

0 i f n o char a c t e r re a d y
Same as AL

DS, 88, SP p r e served
BL:
ES)

The IO CONST routine returns the input status of the specified
character I/O device. This function is only called by the operating
system far console numbers greater than NVCNS-l, in other words,
only for devices which are nat virtual consoles. If the status
returned is OPFS, then one or more characters are available for
input from the specified device,

4-7

Concurrent CP/N System Guide 4 • 2 Console I/O Punctiona

IO CORI'S C OHBOLE IHPtP1'

Return a character from the console
keyboard or a serial I/O device.

Entry Parameters:
Register AI i 01H (I)

Serial I/O Device NumberDL •

R eturned Va l u e :
Registe r AH> DDH if returning

character da ta
character

OPFH if returning a
switch screen request

vir tual console requested

BXI same ae AK in all cases
HS> DS, SS, SP p r ese r v e d

Hecsuee Concurrent CP/N supports the i'ull 8-bit ASCII character set,
the parity bit must he masked off froa input devices which use it.
However, it should not be masked off if valid S-bit characters are
b eing i nput .

You choose the key or combination of keys that represent the virtual
consoles by the implementation of ZO COHZH. One of the example
XZOS's uses the function keys fl through f3 to represent the virtual
ccnsolee assigned tc each user terminal.

ZO COMZÃ must chec'k for PC-NODE. PC-NODE ie enabled whenever DOS
programs are running. Zt ie enabled or disabled by the ZD KEYED
(Function 32) cali. If PC-NODS ia enabled< all function kaya are
passed through to the calling process. If it is disabled, function
maya that do not have an associated XZOS function are usually
ignored on input. Sa e Section 6.2 " Keyboard P unc t i o ne " f or
information on the IQ KEYSD call.

4-8

Concurrent CP/M System Guide 4.2 Console I/O Functions

IO CONOUT CO N SOLE OUTPUT

Display and/a r o u t put a c h a r ac te r t a t he
specified device.

Entry Parametersl
Register A Ll ()28 (2)

Character to se nd
Virtual console to send to

CL:
DL!

Returned Val ue : N ONE

ES, DS, SS, S P pr e s e r ved

The XIOS might or might not buffer background virtual consoles,
depending on the user interface desired, memory constraints, and
methods of updat ing the t e r minals. Thi s sec t i o n d escr ibes how the
example XZOS's handle virtual consoles.

The example X1OS's buffer all virtual consoles. Al l vi rtual
cansoles have a screen image area in RAM. This image reflects the
current contents of the screen, bath characters and attributes.
Each screen image is contained in a separate segment •

Each virtual console also has a Screen Structure associated with it.
This structure contains the segment address of the screen image< the
cursor location (of feet in th e segment), and arly other information
needed for the screen. This structure can be expanded to support
additional hardware requirements, such as color CRTs.

Far a screuri-buffered implementation, when a character is given to
IO CONOUT, it p e r f orms the f o l l owing operat ions:

1. Look up the screen structure far this virtual console and get
the segment address of the screen image.

2. Update the image, including all changes caused by escape
sequences. This cauld involve changes to the characters on the
screen (clear screen), the cursor location (home), or the
attributes of the individual characters (inverse video),

3. If this console is in the foregraund and on a serial terminal,
put the character aut ta the physical terminal. This requires
looking up the true physical console number.

4-9

4.2 Console I/O PunctionsConcurrent CP/X System Guide

When a Process calls this function rith a device number higher than
the last virtual console number, the character should be sent
directly to the serial device that the CCE represents.

lots that fox screen buffering it ia necessary to buffer 25 linea
when in PC-RODE, but only 24 lines other»iee. The PC-MODE flag is
• et hy Punction 32, rhich is described in Section 6.2.

IO SWITCH SWI T CH SCREEN

Place the current virtual console into the
background and the specified virtual

console into the foreground.

Entry Parameters~
Register A L:

DL>
07H (7)
Virtual Console 4 to
s vitch t c

Return V a l ues: H ORS

EBg DSg ESCA 8P preserved

When ZO SWZTCH is called, the XZOS copiea the screen image in memory
to the physical screen. It must move the cursor on the physical
screen to the proper position for the ne» foreground console.

ZO SWITCH is responsible for doing a flag»et to restart a background
prOCeea that ia »siting to gO into graphics mode. lf the proCeaa'S
screen ia to be »»itched into the foreground, do a flag»et on the
ilag that raa used by ZO SCREEN to flag»sit the process. Se e
Section S.l for more information on IO SCREEN.

ZO SNITCH rill be implemented differently for machines rith video
RNE (such as the IEE Personal Computer) and aerial terminals. Por
IEW Personal Computers, the screen s»itch can be done by doing a
block save from the screen image to the video Raw, and a physical
cursor positioning. A aerial terminal must be updated by sending a
character at a tiae, rith insertion of escape sequences for the
attribute changes.

4-10

Concurrent CP/N System Guide

Concurrent CP/N calla ZO SWITCH only when there ia no process
currently in the XIOS performing console output to either the
foreground virtual console being switched out, or the background
virtual console being switched into the foreground. Therefore, the
X106 never hea to update a screen while simultaneously switching it
from foreground to background, or vice versa.

One of the example ZO SWITCH routines per fores the following
o perat i c n e i

4,2 Console I/O Punctione

Get the screen structure and image segment for' the new virtual
console.

2 • Pind the physical console number for this virtual console.

3. If thie ia a video-mapped console, save t' he current display by
doing a block move. If it ie a serial terminal, clear the
physical screen and home the cursor.

4. Zf this is a video-mapped display, do a block move of tha naw
screen image to the video RAN, and re-position the cursor. Zf
it is a serial terminal, send each character to the physical
screen. Check each character's attribute byte, and send any
escape sequences necessary to display the characters with the
correct attributes.

ZO STATI INK D I S PLAy STATUS LIRE

Display specified text on the status l,ine

Entry Parameters:
Register AL:

CX:
OSH (8)
if OOOOH, cont i nue t o
update the normal
s tatus l i n e
i f CX ~ o f f s e t , p r i nt
s tr ing a t D X : CX
if QFPPFH, resume normal
status line display
physical console to display
status line on (if CX = 0)
segment address of
optional s t r i n g (i f C X c> 0)

Register DL :

Register DX:

HOSE
B S, DS, SS , S P p r ese r v e d

Return Values:

4-11

Concurrent CP/H Systaa Qufda 4.2 ConeOle I/O Functions

When ZQ STATLZME f • cal l ed wi t h CX ~ 0 , t h s no r a a3 , s t a t u s
fnforaatGOn is displayed by ZO STATIIME cn ths physical console
~f ffad in DJ. The noraal status lfne typically consists of the
foreground virtual console number, the state of the foreground
virtual console, the process that owns the foreground virtual
cxmsole, the rsacvable-aadia drives wf th open files, whether control
P, S, or 0 ara active, and the default printer number. The
ZO STATLIME function in the exaaple XZOS' • display soee af the above
fnForuatfon. Usually when ZQ STATI ZME is called, DL is sat to tha
Physical consols to display the status line on. You aust translate
this to the current (foreground) virtual console beiore getting the
inforaation for the status line (such ae the process owning tha
console). The statue line can be aodf fied, expanded to any siss, or
displayed in a different area than ths status line iapleaentad in
the example xzQs's. A comaon addition to the statue line ie a tfua­
of-day c lack .

A status line is strongly raccamendad. However, if there are only
24 lines on the display device, you sight choose not to faplsmsnt a
status line. Zn this case IO STATLZEK can)ust return when called •

The norsal status 3.ine is updated once per second by the CLOCK RSP.
If there is wore than one user terainal connected to ths systea,
this update occurs once per second on a round-robin basis aaong the
363ysfcal terainals. Thus, if four tarufnals are connected each ona
is updated every four seconds by tha CLOCK.

Ths operating system also reguests normal statue line updates ~
screen switches ars aada and when control P, 8 or 0 change state •
The XZQS wight call ZQ STATLIME frm other routines when soae value
displayed by the status line changes.

Hobea IQ STATLZME' e ra-antrancy depends iu part on having separate
huffers For each physical console.

The IQ sTATLIME routine should not display the status line on a user
tarainal that is in graphics soda. Zt should check the saae
variable as ZQ SCREEN (Functfon 30). ZO SCREEM is described in
Section 6.1 "Screen I/O Functions".

IO STATLZME also Should nct display on a console that is in PC-MODE.
Check the variable set by Function 32 to saa if a console is in PC­
MQDE. Sse Section 6.2 for inforaation on Punction 32.

Mast calls to IQ STATJZME to update ths statue line have DL set to
the physioal terainal that is to be updated • When ZO STATLIHE is
called with CX not ec3ual to 0000H or OPFFPH, then CX is assuaed to
ba the byte offset and DX tha paragraph address of an ASCIZ string
to print on the status line. This special status line rssains on
tha screen until another special status line i • requested, or
ZQ STATLZME is called with CX OFFFPH. While a special status line
is being displayed, calls to IO STATLIME with CX 0000H are ignored.
When IO STATLZSR function is called with CX OFPFFH, the norwal
statue leone is displayed and subsequent calls with CX~00008 cause
the status line to be updated with current inforaation.

4-12

4 • 2 Console I/O Functions

when 10 sTATLINE ie called to display a special status line, DL does
not contain the physical console number. T he phys i ca l co n s o l e
number can be obtained by the following method:

C oncurren t C P/M System Guide

l. Gat tha address of SYSDAT

2. Lack at tha RLR (Ready List Root). The first pracess on the
list is the currant praceee.

3. Look at the Process Descriptor (pointed to by RLR). The p cns

process. See the Concurrent CP M 0 cretin S stem Pro rammer' s
Reference Guide for a deecrrpt on o t e Process Descrrptor.

4. Look up the CCB for this virtual console and find the physical

field contains the virtual console number af the currant

console number in it.

A, process aalling IO STATLINE with a special status line (DXrCX =
address af the etringj must cell IO STATLINE before termination with
CX! OFF''FB. otherwise the noraal status line is never shown again.
There i.s no provision for a process ta find out which statue line is
being di sp layed.

4.3 Liat Device Functions

A List Control Black (LCB), similar to tha CCB, must be defined in
the XIQS for each list output device supported. The number of LCBs
must equal the NLCB variable in tha XIOS Header. Tha LCB Table
begins with LCB sero, and ends with LCB SLCB-1, according ta their
logical list device names.

MB
(XIOS
HEADER)

(LIST DEVICE O)

(LAST LIST DEVICE)

Figure 4-4. The L CB Table

4-13

4.3 1 i s t D e v ice Funct ionaCancurrent CP/N System Guide

R E S E R V E DOQH

OSH RES ER- N­
VED SOU RCE

Figure 4-S. List Control BLock (LCR)

Table 4-2. List Control Block Data Fields

Field

OWblER

Explanat i on

Address oi the PD of the process that currently
awne the List Device. Zf no process currently
owns th e 1, i s t device, then O WHER~O. Zf
OWSER~OPFFFH, this list device ie eimicking a
console device that is in CTRL-P Bode.

Zf OWHER OFPFPH, XSOURCE contains the nuaber of
the con sole d e v i c e th i s l i st d e vice i s
ziaicking1 otherwiee %SOURCE OFP H.

Hates %SOURCE aust be initialised to QPFH. All
other LCB fields suet be initialised to Q.

HSOURCE

IO LSTST LI ST S T ATUS

Return List Output Statue

Entry Paraeeteres
R egister A L s 03H (3)

Z ist Device nuaberDL.

R eturned Val u e :
R egister A L : OFPH if De vice Ready

0 i f Dev i c e H at R eady
Sane as AL

ES, DS, SS, S P pre s erved

4.3 List Device PunctionsConcurrent CP/N System Guide

The IO LSTST function returns the output mtatus of the specif ied
l is t d e v i c e .

IQ LSTOUT LI S T OUTPUT

Output Character to Specified List Device

Entry parameters:
Register A L:

CL!
DL:

04H (4)
Character
List Device number

R eturned Va l u e ; No n e

S S, DS, SS , S P pr eser v e d

The IO LSTOUT function sends a character to the specified List
Device. List device numbers start at 0. It is the responsibility
of the XIOS device driver to zero the parity bit for list devices
that require it.

4.4 Auxiliary Device Punctions

These XIOS functions are accessible only through the Concurrent CPQ
S BIOS system call. Software that uses this call can access the AUX:
device by placing the appropriate parameters in the Bios Descriptor.
Por further information, see the Concurrent CP 0 e r atin S stem
Pr ra r smer's Reference Guide under the S B IOS system c al l .

1'f you choose not to implement the AUX: device then the IO AUXOUT
function Can simply return, while 10 AUXIN should return a CharaCter
26 (1AH), CTRL-S, ind i c a t i ng e nd of f i l e .

4-15

Concurrent CP/M Byatea Guide 4.4 Auxiliary Device Punctiana

ZO AUXZS A UXILIARY IHPUT

Input a character from the Auxiliary Device

Entry Parameteres
Register A I : OSH (5)

R eturned Va l u e l
Register A Ls C h a racter

ES f DS f HS, S P pre aerved

ZO AUXDUT AUX II IARY OUTPUT

Output a. character to the Auxiliary Device

Entry Parameteres
Regieter AL a 06H (6)

C La Charac t e r

Returned V ai ua s Hon e

88, D8, 88 , 8 P p r e served

4-16

4.5 IO POLL FunctionConcurrent CP/Ã System Guide

4.5 IO BKL runoticn

ZO POLL POLL D E VZCB

Poll Specified Device and Return Status

Entry Parameters:
Register AZ".

DL>

R eturned Val u e :
R egiete r A L g

BL:
ESg

ODE (13)
Poll Device Number

OFFH if r e ady
O if not ready

DS, SS, SP p r e s e r ved
Same as AT

The IO POI L function interrogates the status of the device indicated
by the poll device number and returns its current status. It is
called hy the dispatcher.

A process polls a device only if the Concurrent CP/K DEV POLL system
Call baa been made. The pall deVice number ueed aa an argument fOr
the DBV POLL system call is the same number that the IO POLL
function receives as a parameter. Typically only the XIOB uses
DEV POLL. The mapping of poll device numbers to actual physical
devices is maintained by the XIOS. Each polling routine must have a
unique poll device number. For instance, if the console is polled,
it must have different. poll device numbers for console input and
c onsole ou tput .

The sample XIOS's show the ZO POLL function taking the poll device
number as an j.ndax to a table of poll functions. Once the address
of the poll routine is determined, it is called and the return
values are used directly for the return of ths Io pOLL function.

Snd of Sect i on 4

4-l7

Section 5
Disk Dances

In Concurrent CP/M, a disk drive is any I/O device that has a
directory and is capab1e of reading and writing data in 12B-byte
logical sectors. The XZOS can therefore treat a wide variety of
peripherals as disk drives if desired. The logical structure of a
Concurrent CP/M disk drive is presented in detail in Section 10,
'Ol% Utilitiee.' CP/M can also support PC-DOS and MS-DOS disks. The
term DOS refers to both PC-DOS and MS-DOS.

This section discusses the Concurrent CP/M XIOS disk functions,
their input and output parameters, associated data structures, and
calculation of values for the XI08 disk tables.

5 • l Disk I/O Functions

Concurrent CP/M perfOrme DiSk I/O With a Single XZOS Call to the
IO READ or IO WRITE functions. T h e se functions reference disk
parameters contained in an Input/Output Parameter Block (IOPB),
which ie located on the stack, to determine which disk drive to
access, the number of physical sectors to transfer, the track and
sector to read or write, and the DMA offset and segment address
involved in the I/O operation. S e e Section 5 • 2,' IOPB Data
Structure." P r ior to each ZO READ or IO WRITE call, the BDOS
initializee the IOPB.

If a physiCal error OCCure during an IO READ Or IO WRITE Operaticn,
the function routine should per form several retries (10 is
recommended) to attempt to recover from the error before returning
an error condition to the SDOB.

The Disk I/O routine inter faces in the Concurrent CP/M XIOS are
quite different from those in the CP/M-86 BIOS. The SETTRK, 8ETSEC,
SPINA, and SETDMAS XIOS functions no longer exist because IO READ
or IO WRITE haVe abSorbed their functione. WBOOT, HOME, SECTRAH,
GETSEGB, GETIOB, and SETZOB are not used by any routines outside the
I/O system, and so have been dropped. Also, hard loops within the
disk routines must be changed to make either DEV POLL or
DEV WAITFLAG system calls. See Sections 3.5, ' Pol led Devices" ; 4 . 5 ,
"IO POLI Function"; and 3.6, "Interrupt Devices." For initial
debugging, Concurrent CP/M runs with the CP/M-86 BIOS physical
sector read and write routines, with the addition of an IOPB­
referencing routine, multisector read/write capability, and
modification to handle the new DPH and DPB structures. Once the
system rune well, all hard loops should be changed to either
DEV POLL or DEV WAITFLAG system calls. See also the discussion in
Sections 3.5 an3 3.6 of this manual.

5-1

5 • l Disk I/O FunctionsConcurrent CP/M System Guide

IO SELDSK SE L ECT DISK

Select the specified Disk Drive

Entry Parameters~ AL i 0 9 H (9)
CL: D i s k D r i v e Number
DL: (bit 0): 0 if f irst select

AX: o f f s e t cf DP H i f no er r or
AX < OOH ii' invalid drive
BXg Sama ae AX
88, DS, 88, 8P pr e se r v e d

Return Valuees

The IO SELDSK function checks if the specified disk drive is valid
end returns the address of the corresponding Disk parameter Header
if the drive is valid. The specified disk drive number is 0 fox
drive A, 1 for drive B, up to 15 for drive P. On each disk select,
10 SBLDSK must return the offset af the selected drive's Disk
Parameter Header relative to the SYSDAT segment address.

If there is an attempt ta select a nonexistent drive, IO SELDSK
returne DDH in AL ae an Srrar indioator. Althaugh ID SEIDSK muat
return the Disk Parameter Header (DPH) address for tEe specified
drive on each call, pamtpone the actual physical disk select
operation until an I/O function, IO HEAD ar IO WRITE, is performed.
This is dua to the fact that disk select operations can take place
without a subsequent disk operation and thus disk access might be
substantially slower using some disk controllers.

IO SELDISK must return a DPH containing the address of the Disk
P arameter B l eak (DPB) . The DPB must b s p r o per l y f o r mat ted t a
reflect the type af media supported by the selected drive • On a
f i rs t t i m e s e l ect , t h i s f un c t i o n must de termine i f t hi s d i s k i s a
cP/M disk, or a Dos disk. Far cp/M media, return a regular DpB.
For a DO8 disk return an extended DPB. S ee Section 5.5 "Disk
Parameter Block' for more information on the two DPB i'ormats • See
Sect icn 5. 8 ' M u l t i p 3 e Media Support' for more information cn
generating a system that supports both types of disks.

Concurrent CP/N System Guide 5.1 Disk I/O Punctions

On ent~y to IO SELDSK, ycu can determine whether it is the first
time the specified disk has been selected. Register DL, bit 0
(least significant bit), is a sero if the drive has not been
previously selected. This information is of interest in systems
that read configuration information from the disk to dynamically set
up the associated DPH and DPB. See Section 5.8 "Nultiple Media
Support'. If Register DL, bit 0, is a one, IO SELDSK must return a
pointer to the same DPH as it returned on the initial select.

IO READ RE A D SECTOR

Read sector (s) def i n ed by the I O PB

Entry Parameters: IOPB filled in (on stack)
Register AL: O A H (1 0)

Return Values: AI : 0 i f no error
1 i f p h y s i ca l er ro r

OPPH if media density
has changed

AH: E x t e nded er r Or COde

BL: Same as AL
B H: S ame a e AH
EB(Dsp BHg BP p r ese r v e d

(Table 5 -1)

The IO READ Punction transfers data from disk to memory according to
the pa r arne ter s specif ied in the IOPB. T h e disk Input/Output
Parameter Block (IOPS), located on the stack, contains all required
p arameters , i n c l u d i ng d r i v e , m u l t i s e c t o r c o unt , t r ac k , s e c t o r , D NA
offset, and DNA segment, for disk I/O operations. See Section 5 • 2,
'ZOPE Data Structure.' If the multisector count is equal to 1, the
XIOS should attempt a single physical sector read based upon the
parameters in the IOPB. If a p hysical error occurs, the read
function should return a 1 in AL and BL, and the appropriate
extended error cade in AH and BH. The XIOS should attempt several
retries (10 recommended) before giving up and returning an error
condit i on .

Pcr disk drivers with auto density select, IO READ should
immediately return OPPH if the hardware detects a change in media
density. The SDOS then per forms an IO SBLDSK system call for that
drive, reinitialiring the drive's parameter tables in order to avoid
writing erroneous data to d isk .

5-3

concurrent cp/H system Guide 5 .1 D i s k I /O Punctions

If the multisectar count is greater than 1, the Io RBAD routine is
required to read the specified number of physical sectors before
returning to the BDOB. The IO READ routine should attempt to read
as many physical sectors as the specified drive's disk controller
can handle in one operation. Add i tional calls to the disk
controllez are required when the disk controller cannot transfer the
requested number of sectors in a single operation. If a physical
error occurs during a multiesctor read, the read function shauld
return a I in AL and BI and the appzopziate extended error cods in
AH and BH.

If the disk controller hardware can only read one physical sector at
a time, the XIOS disk driver must make the number of single
physical-sector reads defined by the multisectar count. In any
Came, When mare than ane Call ta the contrOller ia made, the XIOS
must increment the sector number and add the number of bytes in each
physical sector ta the DMA address foz each suacessive read. If,
during a multisectcr read, the sector number exceeds the number of
the last physical sector of the current track, the XIOS has ta
increment the track number and reset t' he sector number ta 0. This
concept is illustrated in Listing 5-1, part of a hard disk driver
zoutine.

In this example, if the multisectar caunt is mero, the routine
returns with an error. O th e rwise, it immediately calls the
read/write routine for the present sector and puts the return code
passed from it in AL. If theze is no error, the multisectoz count
is decremented. If the aultiseatar count now equals sero, the read
or writs is finished and the routine returns. If not, the sector to
read or write is incremented. If, however, ths sector number now
exceeds the number of sectors an a track (ÃAXSRC), the track number
is incrementsd and the sector number set to sero. T he rout ine t h e n
performs the number of reads or writes remaining ta equal the
wltisectar count, each time adding the siss of a physical sector to
the DNA offset passed to the disk controller hardware.

Table 5-1 . Hm t ended Hrzar Codes

Heaning

808
408
208
108

88
4H
38
2H
1H

Attachment failed to respond
Seek operation failed
Controller has failed
Bad CRC
DHA overrun
S ector na t f ou n d
Write protect disk error
A ddress mark no t fo u n d
Bad command

5 .1 D i s k I /O PunctionsConcurrent CP/N System Guide

I,isting 5-1 illustrates multisector operations)

• t**tt**tttttttttttt*t***t*t********t***t**********t

)
t common code for hard disk read and write

• 8

.tttttt t t t t t t tt t t t t tt t t tt t t t tt t t t tt t t t t * *t * t* * * * ** tt

h d i o)
push es
cmp ment,D
j e hd e r r

call iohost
mov al , r e t c ode
o r e l , a 1
j nx hd e r r
dec mont
jn re tu rn r w

mov ax,s ecto r
inc ax
c ap ex,saxsec l j b

i nc t r a c k
xor ax,ax

mov sector,ax
add dmaoff, secsis
jmps hdiol

sov a l , l

pop es
ret

h dio l)

s ame trak :

)save UDA
)ii multisector count ~ 0
) return e r r o r

;read/writs physical sector
)get re t urn code
; i f no t 0
; return e r r o r
)decrement multisector count
;if ment e 0 return

; next s e c t o r
same trak) is sector < max sector

no - n ex t t r ack
i ni t i a l i s e s ec tor t o 0

; save se c t o r
)increment dma offset by sector siss
)read/write next sector

;return with error indicator

)restore UD A
;return with error code in AL

h d er r :

r eturn r w)

t*ttt t t t t t t t t t * t t * * tt t t * t * * * * t * * * t * t t t t t t 't't't'tttt*tttt

)* IOHOST performs the physical reads and writes to
rt the physical disk.
) *** t t t t * 'tt t tt t t t t t t t t t t t * t i t t t t i t t

i ohost :

ret

I ist ing 5 - 1 . Mu l t i s e c tor Operat i ons

5-5

5.1 Disk I/O FunctionsConcurrent CP/Ã Syeteia Quids

ZO IMT13 READ RR L D DOS SECTOR

Read DOS sector(e) defined by the ZOPB

Entry Parameters: DOS IOPB filled in (on stack)
Register A4 : 23 H (3 5)

Return Values: AL: 0 if no error
1 if physical error

OFFH if Wadis density
hse changed

AH: Extended error code

BL: S a me ae K L
BHt Sane as AH
BS> D S, SS, SP p r es e r v e d

(Table 5-1)

ZO IHT13 READ emulatee DOS's interrupt 13 read disk operation. Et
reads a DOS disk as specified by the DOS foraet ZOPB. Zt ie used on
DOS esdia only. zt operatse like ro READ except for the different
ZOPB. The DOS ZOPB ie defined in Section 5 • 2

5.1 Disk I/O PunctiansConcurrent CP/N System Guide

ZO WRITE W RI T E SECTOR

Write sector (s) defined by the IOPB

Entry Parameters: ZOPB filled in (on stack)
R egiste r A I : OBE (11)

Return Values: AI: 0 i f no error
1 it physical error
2 if Read/Only Disk

() PPH if med ia density
has changed

A E: E x t e nded e r ro r c o d e

BL< Same as AL
M : Sam e a s A H
ES, DS, SS, S P p r eser v e d

(Table 5 -1)

The ZO WRITE function tranaf • ra data from memory to disk according
to the parameters epecifi.ed in the ZOPE. This function works in
much the same way as the read function, with the addition of a
Read/Only Disk return code. IO WRITE should return this cade
when the specified disk controller detects a write-protected
disk •

5-7

I

Concurrent CP/N systea Guide Disk I/O Punctions

10 ZNT13 WRITE WRITE DOS 8ECTOR

write DOS sector(a) defined by the IOPB

Entry Paraaatersi DOS IOPB filled in (on stack)
Register A l: 2 4 3 (3 6)

Return Values: AZ c 0 if no error
1 if physical error
2 if Rssd/Only Disk

OFPB if Wadis density
hae changed

AH: E x t e nded er r o r co d e

BL: Sass as AI
BH: genie as AH
BS, D8, 88 , 8 P pres e r ved

(Table 5-1)

IO INT13 WRITE is airailar to IO WRITE. It uses a DOS lOPB, and
vr itea to a DOS disk. I t emulates DOS's interrupt 13 write
function. The DOS IOPB is defined in Section 5.2.

5-8

5.1 Disk I/O FunctionsConcur r ent CP/M Sy stemGu ide

IO FLUSH PL USH BUPPERS

Write pending I/O system buffers to disk

Entry P a r ameters : Reg i s t e r A L i O CH (1 2)

Returned Value :
R egiste r A L : 0 i f S o E r r o r

1 if Physical Error
2 if Read-Only Disk
Extended e r r o r code
(Table 5-1)
Same as AI
Same as AH

D S, SS, S P Preserved

BL:
BHi
BSi

The 10 PLUSH function indicatee that all blocking/deblocking buffers
or disk-caching buffers used by the I/0 system should be flushed,
written ta the disk. This dace nat include the LRU buffers that are
managed by the BDOS. This function is called whenever a process
terminates, a file is closed or a disk drive is reset. The XIOS
muet return the error codeS for the IO PIUSH function in regieter
AX, after 10 recovery attempts as descriSed in the IQ READ function.

5.2 IOPB Data Structure

The purpose af this and the follawing sections is ta present the
organisation and canstructian of tables end data structures within
the xlOS that define the characteristics of the Concurrent CP/H disk
system. Since there is no Concurrent CP/N GENDEP utility. you must
code the XZOS DPHs and DPBs by hand, using values calculated from
the information presented below.

5-9

Concurrent CP/X Systss Guide 5.2 ZOPB Data Structure

The disk Input/Output Paraneter Slack (IOPS) contains the necessary
data required for the ZO READ and ZO WRITE functians. ZO ZET13 READ

It is leecrks6 at the end of this section. These parameters are
located on the stack, and appear at the exanple XIO8 IO READ and
IO WRITE function entry points ae described belo». The IOPB exaaple
in this section assuses that the RSTRT routine calle the read or
vzite rautinss through only one level of indireotiony therefore, the
XZOB has placed only only one «ord on the stack. RBTADR is reserved
for this local return address to the EHTRY routine. The XIOS disk
drivers nay index or aodify IOPB paranetere directly on the stack,
since they are resoved by the BOOS uhen the function call returns.
Typically, the ZOPB fields are defined relative ta the SP and SS
registers. The first instruction of the 10 READ and 10 WRITE
xcutines sets the BF register equal to the 8P register for lnZexing
into the ZOPB. Listing 5-2 illustratee this .

and. ZO IBT13 WRZTB use a variation of the ZOPB called the DOS ZOPB.

+14

+12

+10

+8

+6

SECTOR

RETOPP c~ SP va l u e a t XZO S RETRY

c SF value at disk routines

+2

Pigure 8- l . Inlet/Output Par tee BlooL (3QPB)

5-10

5.2 IOPB Data Structureconcurrent Cp /M System Guide

'Table 5«2. IOPE Data Pields

BxplanationData Pield

DRV Logical Drive Number. The Logical Drive
Number speci f i c s t h e l og i a a l d i sk dr i ve
on which to p er form the IO READ or
ZO WRITE function. The drive number aay
range f rom 0 to 15, corresponding to
drives A thraugh P respectively.

Hultiaector Count • To transfer logically
consecutive disk sectors to or from
cont iguous eemcry locations, the BDOS
issues an IO READ ar IO WRITE function
call with the multisector count greater
than 1. Th is a l lows the XIOS to
transfer multiple sectors in a single
disk operation. Th e ma ximum value af
the multisectar count depends on the
physical sector mise, ranging from 128
with 128-byta sectors to 4 with 4096­
byte sectors. Th u s , the X IOS ca n
transfer up to 16K directly ta ar irom
the DNA address in a single operatian.
Por a more coapleta explanation of
multieector operations, along with
example c o d e a n d s ug g e s t i ons f or
implementation within the X IOS, eee
Section 5.3 , "Multiaector Operations on
Skewed Disks."

Logical Track Number. The Track Number
defines the logical track for the
speci f i ed drive to seek. T ' he BDOS
def ines the Track Number relative to 0,
sa for disk hardware which defines track
numbers beginning with a physical track
of 1, the XIOS needs to increment the
track number before passing it to the
disk controller.

5-11

5.2 IOPB Data StructureConcurrent CP/H System Guide

Table 5-2 . (continued)

Data F i e l d Explanation

SECTOR Sector Number. The Sector Number defines
the logical sector for a read or write
operation on the specified drive. The
s ector siss i s d e termined by th e
parameters PSH and PHH defined in the
Disk Parameter Block. See Section 5.5.
The SDOS defines the Sectar Number
relative to Q. For disk hardware that
defines sector numbers beginning with a
p hysical sector o f 1 , t h e X I O8 wi l l n e e d
to increment tha sector number before
passing it to the disk controller. If
the specified drive uses a skewed-sector
format, the XIOS must translate the
sector n u m be r a c c o r d ing t o th e
translation table specified in the Disk
Parameter Header.

DHASEG, DHAOFF DHA Segment and Offset. The DHA offset
and segment define the address of tha
data to transfer for the read or write
operation. This DHA address eay reside
anywhere in the 1-megabyte address space
of the 8086-8088 microprocessor. If the
disk controller for the specified drive
can only transfer data to and from a
restricted address area, the ZO READ and
IO NRITE functions must block move tha
data between the DHA address and this
restricted area before a write or
following a read operation.

RETSEG,RETQFF BDOS Return Segment and Offset. The BDOS
return segment and offset are tha Par
Return address from the XIOS to the
BDO8 •

lceal Return Address. The local return
address returns to the ENTRY routine in
the example XIOS.

RETADR

5-12

5.2 XOPB Data StructureCcncurrent Cp/M System Guide

Lis t i n g 5 - 2 i l l u s t r a t es t he X OPB de f i n i t i on , and h o w t h e XO PB i s
used an the XO READ and XO WBXTE routines:

• t*ttt * t t t t t * t t t t t t t t t t t t t t t t t t t

• t
I

IOPB Defin i t i on
• *I

tt ttt t t t * l * t t t t t tt*t tt t t t t t t ttt
I

Bead and Write disk parameter equates

At the disk read and write function entries,
all disk X/0 parameters are on the stack
and the stack at these entries appears as
follows I

I

SECTOR

DNA 8EG

e14 DBV NCNT Drive and Nuitisector count

+12 TRACK Track number

+10

+8

44

+2

SP+0

RET BEG

DNA OFF

RET OFF

Physical sector numbeL

DNA segment

DNA of feet

BDOS return Segment

BDQS return offset

loca l ENTRY re t u rn a d d r e s S
(assumes one le vel of cal l
from ENTRY routine)

RET ADR

These parameters can be indexed and modified
direc t l y o n the st ac k a n d w i l l be r emo ved
by the BOOS after t' he function is coaplete

drive
ment
track
sector
dmaeeg
dmaoff

byte ptr 1 4 (bpJ
byte pt r 1 5 (.bpj
word pt r 1 2 Lbpg
word ptr 10 (bpj
word ptr 8(.bp]
word p tr e [b p]

equ
equ
equ
equ
equ
equ

t t t t t t I t t t t * *** t t t t t t * ** t t t t t t t t t t t t t t t * t t
I

Listing 5-2 . XO PB Defin i t i rmr

5-13

5.2 ZOPB Data BtructuraConcurrent CP/K Bystea Guide

J CSCIOtM~

IO RRADJ J Function llc Read sector
J ~ ~ M

Reads the sector on the currant disk, track and
sector inta the cuzrent DSS. buffer.

entry : par an e t e r s on s ta ck
exitJ AL ~ 00 if no error occurred

AL ~ 01 i f an e r r o r o c c ur red

mv bp,ap ;set BP far indaxin5 into ZOPB

rst

IO NRZTEJ J Function 12: Write disk

J Write the sector in the current JRL buffer
to the current disk on the currant
track in the current sector.

J entzyJ CL ~ 0 — Defazzed %rites

J

1 — non-deferred wr i t e s
2 — def-JJrt 1st sect unalloc hlk

~ 01H if az zor occurred
J s 028 if read only disk

sxitJ AI OOB i f no error occurred

fact BP for indexing into ZOPBaov hp,sp

ret

Listing 5-2. (oJxJtinned)

5-14

5. 2 ZOPB Data StructureConcurrent CP/N System Guide

Pigure 5-2 shows the DO8 IOPS used by IO IBT13 READ and
ZO ZRT13 WRITE. Zt is similar to the regular ZOPB. The DO8 IOPB
fields are defined in Table 5-3.

t12

t10

+8

+6

TRACK

SECTOR

MCNT

HEAD

00

DlQ SBG

DWAOPP

RBTSBG

c~~ SP value at XIOS ENTRY

c SP v alue et disk routinesSP+ 0

Pigure 5-2. DOS Input/Octput Parameter Block (ZOPB)

Table 5-3. DOS IOPB Data Pields

Data Pie l d Explanat i on

Track or cylinder number. T h is number
m ust be L n t h e r an g e 0 — 3 9 .

Head number. This number must be 0 or l.

Sector number • T hi s nu mber must be i n
the range 1 — 8.

All other DO8 IOPB data fields are the
Same ae the regular Zopa defined in
T able 5- 2 .

SECTOR

5-15

C oncurren t C P/N System Guide 5 .3 N u lt i as c t o r O p er a t i o n s

5.3 Multismctcr Operations cm Skewed Disks

onmany implementations of older Digital Research operating systems,
disk performance is improved through saccoz skewing. This technique
logically numbers the sectors on a track such that they ara not
eequentia l • An ex ample c f t hi s i s t he st a n d a rd Dig i t a l R esearch 8­
inch disk forest, where the sectors are skewed by a factor of 6 •
The following discussion illustratea how to op timiae disk
performance on skewed disks with multisactcr I/O rsguests.

Concurrent CP/M-86 support • multiple-sector read and write
operations at the XIOS level to minimias rotational latency on block
disk Cranafsra • You aust implement the mult i p l e - s e c t c r I / O i ' ac i l i t y
in the XIOS by using the multisector count passed in the IOPB.

When Che d isk fo rmat uses a s k ew t ab le t o m in imize r o t a t i o n a l
latency foz single-record transfers, it ie mora difficult to
Optimiae transier time far SultiaeCCOr Operationa. One methad Of
doing thi s i s t o h av e t h e XIOS read/write function routine translate
sech logical sector number into a physical sector number. Than it
creates a table of DtR addresses with each sector's DNA address
indexed into tha Cable by the physical sactoz number.

As a result, the requested sectors are sorted into the order in
which they physically appear on the track. This allows all of the
required sectors on t' he track to be transferred in aa few disk
rotations as possible. The data fzoa each sector must he separately
trans f sr red to or f roa ite proper DHA address. If dur ing a
multieactcr data transfer the sector number exceeds t' he number of
the last physical sector cf the cuz'rent Crack, the XIOS sill have tc
increment the track number and reset the sector number to 0. It can
then complete the operation for the balance of sectczs specified in
the IO READ or XO WRITE function call. Sea the example accompanying
t he I O READ func t i o n .

PHYS ICAJ ASSOCIATEDSECTOR
INDEXES

00

Ol

lglh ADDRESS

DtQL ADDR 0

DNA ADDR S

Figure 5-9 . lE SA AcMzams Table fo r Eu l t i m actoz Opsraticaas

5-16

Cancurrent CP/N System Guide 5 .3 Kul t i se c t a r O p er a t i o n s

If an error occurs during a multisector transfer, the XIOS should
return the error immediately to terminate the read ar write BDo6
function call.

In Listing 5-3, camman rsad /writs cade fcr an XIOS disk driver, the
routine gets the DPH address by calling the IO SELDBK function. It
checks to verify a nonxero DPH address, and returns if the address
is invalxd (sera). Then the disk parameters are taken from the DPH
and DPB and stored in local variables. Once ths physical record
mixe ie computed from DPB values, the DHA address table can be
initialixed. The INITDHATBL routine fills the DHK address table
wit'h OFFFFH word values. The siss of the DHA. table equals one word
greater than the number of sectors per track, in case the sectors
index relative to l for that particular drive. lf the multisectar
oaunt is sero, the routine returns an error. Otherwise, the sectar
number is compared ta the number of sectors per track to determine

ta sero. If this is the case, the esctars for the current track ars
transferred, and the DHA address table is rsinitialixed before the
next tracks are read or written.

The current sector number is moved inta AX and a check is made an
the translation table offset address. If this value is xerc, nc
translation table exists and translation ie nat performed; The
sector number is translated and used to index into t' he DHA address
table. The current DNA address, incremented by the physical sector
mixe if a multisector operation, is stored in the table far use by
the RW SECTS routine. L o c a l values, beginning with i, are
initialixed for the various parameters needed by the disk hardware,

if the track number shauld be incremsnted and the sector number set

and the dzsk driver routine is called.

Listing 5-3 illustzates multisector unskewing:

5-17

Concurrent CP/K System guide 5.3 Nuitisector operations

• t*1 t ett*ttttt t t t t t t t t ttttt't ttttt et tttet*est test tttttt

• t

DISK I/O EQUATE6
.*
• *tet*t* * * t t t tt t t t* t t tt t* tt t tt l tt t * t t t tt t t t tt * t t tt t ** t
I

xlt
dpb
spt
psh

0
8
0
15

;translation table offset in DPS
;disk parameter block offset in DPB
;sectors per track offset in DPB
;physical shift factor offset in DPS

equ
&gu
4+u
egu

, tt t t t tt t t t t t t it tt t t t t t t tt t t t t t ti t t t t t t i t t * t * * 't * * * * * * *
I

tt DIGK I/O CODE AREA

(ttttt t t t t t t t t t tttt et tt tttt tt t t t t t ttt ttt tt ttttt tt t et t t
I

z sad wzi t a t iunskews and reads or writes aultisectozs
I

dsk ok:

r et e r r o r :

mov maxseci ax

input i SZ ~ read or write routine address
output : AX ~ re t ur n c ode

m ov cl , d r i v e
mov dl, l
c al l e s l d s k
or b x, bx I jnz d sk o k

a ov al , l
ret

mov ax, xltLbx]
mov xl t b l ,a x
mov bx, dpbLbx)
mov ax,sptLbx3

mov cl, psh L br j
mov ax, 128
s hl a x , c l
ecv secsiz~ax
eel 1 in i tdma tbl
cap mont,O
j e re t er r or

;get Dpi i address
; check i f v al i d

i return error if not

;save maximum sector psr track

;save translation table address

;compute physical record size
and save i t

sinitialize dea offset table

Lis t i n g 5 - 3 . Nul t i eec t o r U n skewing

5-18

Concurrent CP/M Systea Guide 5 • 3 Nultisector Operations

rw 11
mov ax,sector
cmp ax,maxsecl jb

cal l r w s e c t s
call inTtdmatbl
i nc t r a c k
xor a x , a x
mov sector , ax

mov bx,xltbl
or bx ,bx l j x no t r ans

x lat a l

bh, bh
bl, al
bx,l
ax,daaoff
dmatbl[bx], ax
ax,emesis
daaof f, ax
sector
sent
rw 1

same trk •

no t ranss
xor
IK7V
ehl
Rov
sov
add
mov
inc
dec
jna

same t rk
;is Se c t c 1 C aa x s e c t o r/ t r ack

no — read/write sectors on tzack
reinitialixe dma offset table
next t r a c k

1 i n i t i a l i se se c t o r t o 0

;get translation table address
;if xlt <1 0

translate sector nuaber

rw sects1

;next sec t o r

;sector 0 is used as the index
into the dma offset table

leave dma oftset in table
linCreaent dma offset by the

physical sector siss

;decrement multisector count
;it' ment c> 0 store next sector dma

;read/write sectors in dma table

; preset e r r o r c o d e
; initialise sector index

rw sl 1

m ov al , l
xor b x , b x

mov digbx
s hl d i , 1
cmp word ptr dmetbl[dif,
j e no rw

push bxl push s i
xov ax,track
m ov i t r a c k , a x
mov ieector,bl
mov ax,dmatbl[dij
aov idmacff,ax
Rov &xydmaeeg
mov idmaseg,ax
c al l s i
pop ail pop bx
or al , a l l j nx er r r e t

;compute index into DNh table
O ff f f h
;nap i f i nva l i d e n tr y
;save index and rout i ne a ddress
;get track 4 from ZOPB

;sector 5 is index value
;get dma offset from table

fget dma segment from ZOPB

fcall read/write routine
;restore routine address and index
; i f e r r o r o c c u r r e d r e t u r n

L ist ing 5 - 3 . (ccs1tinued)

5-19

Concurrent CP/N Systee Snide Multisector Operations

no rw I
inc bx
oep bxgeaxsec
)be rw el

err r a t e

i ni tdeatb l r rinitialiae DNL

<next sector i n d ex
;if not end of table
; go read/write nezt sector

rreturn with error code in AL
of f eet table

Iet

I

eov cxgaazs&c
eOV di,Offset deathl

inc cx
wov ax,Offffh
push es
pugh ds l pop e s
rep s 'tdew
pop es
ret

tlength aarsec + L sectors aay
indsX relative tO 0 or 1

isave UDA

; ini t i al i ee t ab l e to Of f f f h
;restore UDA

i tit t i t i t t t i t t t t t i i t * i t t t t i t t t t t t i t t i t t t t t t t i t t t t t t t t t

tt DESK Z/0 DATA AREA
i i

t
I

dw
dw
dw

0
0
0
50

i tt t i i i t t t t t t t t t i i t t t t t t t t t i i t t t t t t t t t t t t i i i t t t t t t t t tF

x ltb l
eaxsec
secsis
daatbl

I sector s i ae

>translation
gmax sectors

gdaa address

t able a d d r ess
per t r ac k

tablerw

i ieting 5-3. (matinued)

5-20

5.4 D i s k P a rameter HeaderCOncurrent CP/M 8ystem Guide

5 4 Dis k P a rameter Header

Each disk drive has an associated Disk Parameter Hea d er (DP H)
that contains information about the drive and provides a scratchpad
area for certain Basic Disk Operating System (BOOS) operations.

OOH

DBH

10H DATBCB

XLT

DPB

0000

esv

00 NF 0 000

A LV DI RBC B

TBLSEG

Pigure 5-4 • Disk Parameter Header (DPH)

Table 5-4. Disk Parameter Header Data Pields

Field Explanation

XLT Translation Table Address. The Translation
Table Address defines a vector for logical-tc­
physical sector translation. If there is no
sector translation (the physical and logical
sector numbers are the same), set XLT to
OOOOh. Disk drives with identical sector skew
factors can share the saae translation tables.
This address is not referenced by the BOOB and
is only intended for use by the disk driver
routines. Us u a lly the translation table
contains one byte per physical sector. If the
disk has more than 256 sectors per track, the
sector translation must consist of two bytes
p er phy s i cal sec t or . I t i s adv i sab l e,
there f are, to keep the nusber of physi cal
sectors per logical track to a reasonably
mall value to keep the translation table from
becoming too large. In the case of disks with
multiple heads, compute the head number from

address.

Scratch Area. The 5 bytes of merce are a
scratch area which the BDOB uses to maintain
various parameters associated with the drive.
They must be initialised to sero by the IHIT
rout.ine or the load image.

the track address rather than the sector

0000

5-21

5.4 D i s k Pa r a meter HeaderConcurrent CP/M System Guide

Table 5-4 • (co n t i n ued)

Bxplanat ionField

DPB

Media Flag. The BDOS resets MF to aero when
the drive ia logged in. The XIOS aust set
this flag to OFFH if it detects that the
operator has opened the drive door. It must
else set the global door open flag in the XIOS
Header at the same time. If the flag is sst
to OFFB, ths BD08 checks for a media change
before performing the next BD08 file operation
on that drive. Hots that the BDOS only checks
this flag when first making a system call and
not during an operation. Normally, this flag
is only useful in systems that support door
open interrupts. Zf the BDOS determines that
the drive contains a new disk, the BDOS logs
out this drive and resets the MF field to OOH •

Nots~ If this flag is used, removable disk
performance can bs optimiaed as if it were a
permanent drive. Bee the description of the
CRS field in the Section 5.5, "Disk Parameter
Block

Disk Parameter Block address. The DPB field
<stains the address of a Disk Parameter Block
that describes the characteristics oi' tha disk
drive. The Disk Parameter Block itself is
described in 8ection 5.5, The DFS must
describe the type of disk (CP/M or D08). See
IO SBLDSK in Section 5.1, and Section 5.8 for
more information.

Checksum Vector Address. The Checksum Vector
hddrsss defines a scratchpad eras the system
uses for checkeumsing the directory to detect
a media change. T h is ad d ress must be
different for each Disk Parameter Header.
There must be one byte for every 4 directory
entriee (Or 128 bytee of direCtOry). In Other
vorde i Length(CSV) s (D HM/4)+1 • (DHM is a
field in the Disk Parameter Block defined in
Section 5.5.) If CKS in the DPB is OOOOB cr
SOOOB, no storage is reserved, and CSV msy be
sero. Values for DRM and CKS are calculated
as Part of the D1'B Morksheet. If this field
is initialised to OFFFFH, GEMCCPM vill
automatically create the checksum vector and
in i t i a l i a e t h e CSV f i e 1 d i n t h e D PH.

CSV

5-22

Concurrent CP/x 5.4 D i s k Parameter HeaderSystem Guide

Table 5-4 . (continued)

Hxplanat ionField

Allacation Vector Address. T h e A llacatian
Vector address defines a scratchpad area which
the BDOS uses to keep disk storage allocation
information. This address must be different
far each DPH. The Al l acation Vector must
contain two bits for every allocation block
(one byte per 4 allocation blocks j on the
disk. O r , I en gth (ALV) ((DS H/8) +I) '2. The
value af DSN is calculated as pert of the DPB
Wor ksheet. If the cSV f ield is initial ised tc
OFFFFH, GENCCPN automatically creates the
Allacatian Vector in the SXSDAT Table Area,
and sets the ALV field in the DPH.

Directory Buffer contxal Block Header Address.
This field contains the offset address af the
DIRBCB Header. The Directory Buffer Control
Block Header contains the directory buffer
link list root for this drive. See Section
5 .6 , 'Buffer Control Block Data Area." The
BDQS uses directory buffers for all accesses
of the disk directory. Several DPHs can refer
to the same DIRBCB, or each DPH can reference
sn independent DIRBCB. If thi s f ield is
0FFFFH, GENCCPR a utomatically creates the
DIRBcB Header, DIRBCBs, and the Directory
Buffer far the drive, in the SYSDAT Table
Area. GBNCCPN then sets the DIRBCB field ta
point to the DZRBCB Header.

Data Buffer Control Block Header Address.
This field contains the offset address af the
DATBCB Header. The Data Buffer Control Block
Header contains the data buffer link list zoot
for this drive (See Sec t i a n 6 . 6 , "Buffer
Control Black Data area") . The BDOS uses data
buffers to hald physical sectors so that it
can block and d e hlock logical 126-byte
records. If the physical record sire of the
media assaciated with a DPH is 128 bytes, the
DATBCB field af the DPH can be set to 0000H
and no data buffere are allocated. If this
field is OFFFFH, GBNCCPM automatically creates
the DATBCB Header and DATBCBs and ellacates
space far the Data suffers in the area
following the RSPs.

DIRBCH

5-23

Concurrent CP/N System Guide 5.4 Di sk Ps r a aetsr Header

Table 5-4 . (cc aat inued)

E xplanat i o nField

TBLSEG Table Segment • The Table Segment contains the
segment address of a table used for directory
hashing with CP/N disks, and aa a File
i@location Table (FAT) f or DOS disks. For
drives that support both media, it aust be
large enough to hold either cne. Zf this
field is ss t t o OF FF FH, G EN C C PN w i l 1
automatically create the appropriate data
Structuree fOLLoWing the RSP area. The sime
of the table is based on the DRN (Directory
Naximum) field in tha DPB • For support of
both media the DRN field must bs eet tc a
dLmm(y value when GBHCCPN ie run to crests ths
correct siss table. Sss Section 5.5.1 for
information on setting the DRN value. The
BDOS assumes ths table offset to bs sero.

Hashing is optional tcr CP/N disks, but the
table segment must be allocated for DOS media.
Thus for any drive that supports DOS disks,
hashing must bs s pecified in GEHCCFN. Z f
directory hashing ie not used (CP/N media only
used in this drivel), set HSTBL tc sero.
Including a hash table dramatically improves
4).sk performance. Each DPH using hashing must
reference a unigue hash table. If a hash
table is d e sired, length(hash table)
4v(DRN+I) bytes. DRN is computed ae part of
the DPB Wor3csheet. Zn other words, each entry
in the hash table must hold four bytes for
each directory entry of the disk. If this
field is OFFFFH, GEHCCPN will automatically
create the appropriate 4ata s truct u r e s
following the RSP area.

Rkos The data az'sae for the Data Buf fere and
Hash Tables are not made part of t' he CCPN.SYS
file by GEHCCPN.

5.4 D i s k P a rameter HeaderConcurrent CP/M System Guide

l,isting 5-4 illustrates the DPH definition:

• '11**111 * * * 1 1 1 1 t * * tt t t t t t 11 1 1 1 1 1 11

pt
DPH Definition

*
* 111111t111**** * 1 1 * * * * t * 1 1 * 1 1 * t t *

CSV

@it
mf
dpb

alv
d i rb db
datbcb
tblseg

dpbase e gu

dw
db
db
db
ds
dw
dw
dh
dw

egu
equ
equ
sou
equ
egu
egu
egu

word
byte
word
word
word
word
word
word

o ffse t $

x l t0
0,0,0
0
0,0
dpb0
OPPPFH,OPPPFH
OPPPFH
OFFFFH
OFFFFH

p tr 0
p tr 5
ptr 8
p tr 1 0
ptr 12
p tr 1 4
p tr 1 6
p tr 18

;Base of Disk Parameter Healers

>Translate Table
rgcratch Area
>Hedia Plag
;Scratch A r e a
;Dsk Para B lo c k
;Check, PJ.loc Vectors
;Dir Buff cntrl Blk
;Date Buff Cntrl Blk
;Table Segment

dpe0

Lis t i n g 5- 4 . DPH D e f i n i t i on

5-25

5 • 4 Disk Paraeatar HeaderConcurrent CP/I4 Bystsa Guide

Given n die'k drives, the DPHs can ba arranged in a table whose first
row of 20 by t es c o r responds to d r i ve 0 , w i t h t he last row
corresponding to drive n-1. The DPH Table hae the iollowing forests

For autcaatic table generation by QESCCPN,

Y Y T Y Y

set these fields to OFFFFH~
I I I

00 XLTOO 0000H OOOOH OOOOH DPBOO CSVOO ALVOO DZROO DATOO HSTOO

Ol XLT01 OOOOH OOOOH OOOOH DPBOl CSV01 ALVOl DIROO DATOO HSTOl

(and ao fo r t h)

Figure 5-5 D SS Ta b l e

where the label DPH TBL defines the offset of the DPH Table in the
XIOS •

The IO SELDSK Function, defined in Section 5.l, returns the offset
of the DPH froa the beginning of the BYBDAT sagsent for the selected
drive. The sequence oi operatiene in Listing 5-5 returns the table
offset, with a OOOOH returned if the selected drive does not exist.

) t t t t t t t t t i t t t t i t t t t t t t t t t t t t 't t 't t t t t t t t t t t t t 't t

t DISK IO CODE AREA

• t t
I

t
• t tttttttt t t * tt t t t tt t t t tt t t t* t tt * t * tt tt t t t tt t tI

K R R R K K K m W

I

IO 8EI DSK:
% R RK Q m R & &

entry'

Olh if disk has been previously selected

~ of fast of DPH relative froa

Function 7s Select Disk

CL d isk to be selected
DL w ODh ii disk has not been previously selected

AX ~ 0 i t i l l ega l di sk

XI08 Data Sageent

c r i t :

List ing 5-5 . 8EU R X X H % F cnct i on

5-26

5.4 D i s k P a r amete r H eaderConcurrent CP/M System Guide

x cr bx , b x
cmp cl , 15
j a sa l r at

mov Sl , c l
shl b x , l
mov bx,dph t b l g b x]

o r d l , d l
j nx ss l r et

mov cK, 0
mov s i > cx
shl a i , l
call wordptr sal tbl

Get ready f o r er r or
Za it a valid drive
Zf nct just exit

Z ndax i n t o t h a D p h ' s
Z get DPH address from table

in XZOS Header
Frrst tiae select7
No, exi t
Yes, se t u p D PH

[si]
sel z e t >

mov ax > bx
rat

Z isting 5 - 5 . (acmtinued)

The Translation Vectors> XLTOO through XLTn-l, whose of fasts are
can ta ined in the DPH Table as shown in F rgure 5-5, are located
elsewhere in the XXOS, and correspond one-for-one with the logical
sector ~umbers raro through the sector count-l •

5 • 5 Disk Parameter Block

Tha Disk Parameter Block (DPB) contains parameters that define the
characteristics of each disk drive. The Disk Paraaster Header (DPH)
points to a DPB thereby giving the BDOS necessary information on how
to access a disk. Several DPHs can address the sama DPB if their
drive characteristics are identical.

When a drive supports both CP/M and DOS media, the ZO SELDSK routine
must deteraine the type of media currently in the drive and return a
DPH with a pointer to a DPB with tha correct values. Tha standard
CP/M DPB is shown in Figure 5-6. For DOS media, the standard DPB is
extended as shown in Figure 5-7 . Each field of the standard DPB is
described in Table 5-5. The extended DPB is described in Table 5-6.
A worksheet is included to help you calculate tha value for each
f laid >

5-27

5.5 D i sk Pa ~ easte r Bl o c kConcurrent CP/N System Guide

SPT BBH BIs l EZN DRM. • aOOH

08H • . DRN

l OH PR M

A LO A L l OPP PSH

Figure 5W . Di sk P ar t er Bl o k Form at

Table 5-5. Disk Parameter Block Data Fields

Pield Explanation

Sectors Per Track. The number of 8ectors Per
Track equals the total number of physical
• actors psr track. Physical sector siss is
defined by PSH and PHN.

Allocation Block 8hift Factor. This value i •
used by the BDO8 to easily calculate a block
number, given a logical record number, by
shifting the record number BSH bits to the
right. BSH is determined by the allocation
block siee chosen for the disk drive.

Allocation Bloc'k Nas'k. This value is used by
the BDOR to easily calculate a logical record
offset Within a given blcok thcugh masking a
logical record number with BLM. The BM is
determined by the allocation block siss.

Extent Mask. The Extent Mask determines the
maximum number of 16K logical extents contained
in a single directory entry. It i • determined
by the allocation block siae and ths nuebar of
blocks.

Disk Storage Maximum. The Disk Btorage Maximum
defines the total storage capacity of the disk
drive. T h i s equals the total number of
allocation blocks for the drive, ainus l. DSM
aust be less than or equal to 7PPPH. If the
disk uses 1024-byte blocks (BSH 3, azaC=V) DSM
aust be less than or equal to 255.

5.5 Disk Parameter BlockConcurrent CP/N System Guide

Table 5-5 . (ccsttinued)

E xplanat i o nField

Directory Naximum. Th e D i r ectory Naximum
defines the total number of directory entries
on t h i s di s k dr i ve . Thi s eq ua ls th e t ot a l
number of directory entries that can be kept in
the allocation b l o ck s r e s erved far th e
directory, ainus l. Each directory entry is 32
bytes long. The maximum number of blocks that
cen be allocated to the directory is L6, which
determines the maximum number of dizectozy
antriss allowed on the disk drive. At system
generation time DEN aust be sat to allow enough
space in TBLSEG for both the hsah table and tha
PAT i f b o t h C P/N and DOS media can bs used in
the drive. Sss Section 5.5.1 Disk Parameter
Bloc'k Worksheet" for information on how to
calculate the value for system generation.

ALO, ALl Di rectory Allocation Vector. The Directory
Allocation Vector is a bit map that is used to
quickly i n i t i a l i s a t h e f i r st 16 b i t s of t he
All,ocation Vector that is built when a disk
drive is logged in. Each bit, starting with
the high-order bit of ALO, zepzeeents an
allocation block being used for the directory.
AM and AIl determine ths amount of disk space
allocated for the directory.

Checksum Vector Siss. The Checksua Vector Siae
determines the required length, in bytes, of
the directory checksum vector addressed in the
Disk Parameter Header . Eac h b yte of the
checksum vector is the checksum of 4 directory
entries or 128 bytes. A checksum vector is
required foz removable media in order to insure
the integrity of the drive. The high-order bit
in the CKS field indicates a permanent drive
and allows far better performance by delaying
writes. Typically, hard disk systems have the
value 80008, indicating no checksuaming and
p ermanent media . On m a ch i nes t h a t o a n d e t e c t
the door open for removable media, a special
case occurs where checksumming is only done
when the Nedia Plag (NP) byte in the DPH is set
to OFPH. Sozmally, the disk is treated like a
permanent drive, allowing acre optimal uss. In
this case, adding 8 0 00H t o the CKE value
indicated a permanent drive with checksusming.

5-29

Concurrent CP/M Systea Ouide 5.5 D i sk Para«ster B l ack

Table 5-5. (ac xatinned)

E zplanat i a nField

Track Offset. The Track Ofiset is the nu«her
of reserved tracks at the beginning af the
disk. OFF is egual to the sera-relative track
nu«her On whiCh the direntory starts. It ie
through this field that sore than one logical
disk drive can be «apped outa a single physica1.
drive. Each logical drive has a different
Track Offset end all drives can use the saxe
physical C lisk dr i v e r s .

Physical Record Shiit Factor. The Physical
Record Shift Factor is used by the SDOS to
quickly calculate the physical record nu«her
fro« the logical record nu«ber. The logical
reacrd nu«ther is shifted PSH bits tc the right
to calculate the physiaal record.

Rates Zn this context, physical record and
physical sector are equivalent ter«s.

Physical Record Sask. The Physical Record Sask
is used by the BDOS to quickly calculate the
logical record offset within a physical record
by «asking the lagical record nu«ber with the

PSH

PRN value.

t tt t t t t t t t t t t t t t t t t t tI

I* D P S Definition
I

t1
, • tttttt t t t t t t t t t t • ttt t tt t t t t t t
I

spt
bsh
blm

ds«
dr«
alO
a1.1
eke
cff
psh
pr«

w ord pt r 0
'byte p tr 2
b yte pt r 3
byte ptr 4
word pt r 5
w ord pt r 7
b yte pt r 9
b yte pt r 1 0
word pt r 11
w ord pt r 1 3
byte pt r 1 5
b yte pt r 1 6

cpu
• gu
• qu
equ
• gu
• qu
• gu
ecpl
equ
• IPl
sou
• QQ

Listing 5-6. Dpa Definition

5-30

5.5 Disk Parameter BlockConcurrent CP/N 8ystem Guide

offse t
26
3
7
0
242
63
192
0
16
2
0
0

;Disk Parameter Black
; Sector s Pe r T r a c k
;Block Shi ft
;alack Nask
;Extnt Nask
;Disk Baze - 1
iD iree tory Nax
;All oc0
; Al l oc l
; Check Sime
; Off s e t
>Phys Sec Shi f t
;Phys Rec Neck

dpbO equ
dw
db
db
db
dw
dw
db
db
dw
dw
db
db

Lis t i ng 5 - 6 . (cant i nued)

Pigure 5-7 shows the extended DPB; Table 5-6 describes its fields,

BXTFLAG

CLSIZS

OOH

08N

1OH

18H . .CK S

FATADD

DSN DRN ALO

OFF PSH PHN

NFATS NFATR ECS

SPT

NCLSTRB

ALl CKS . a I

Figure 5-7. Extended Disk Parameter Block Format

5-31

5, 5 Disk Par ameter BlockConcurrent CP/N System Guide

Table 5-6 • Extended Disk Parameter Block Data Fields

'P jsld

EXTFLAG

E xplanat i o n

NFATS

CLSZZE

FATADD

NCISTRS

NPATRECS

Extended DPB Flag. The extended DPB flag is
used tc determine the media format currently in
the drive. Zf EXTPIAG is est to CPPPPH the
drive contains DOS media. Pcr CP/N media, the
first field in the DPB ia SPT (Sectors Per
Track) and the DPB is not extended.

Number of wile Allocation Tables. This is the
number of file allocation tables contained on
the DOS disk. Multiple copiee of the FAT can
be kept on the disk as a backup if a read or
write e r ro r o ccurs .

Number of Pile Allocation Table Records. The
number of ph ysical sectors in the file
allocation table.

Number of Clusters. The number of clusters on
the DOS disk. C l uster 2 is the first data
cluster to bs a l located following the
directory, and cluster NCLSTRS — 1 is the last
available cluster on the disk •

Cluster Bise • The number cf bytes per data
cluster. T his must be a multiple of the
physical sector siss •

Pile Allocation Table Address. The physical
record number of the first file allocation
table cn the DOS disk.

Sectors Per Track. Same as CP/N (Table 5-5) •

Allocation Block Shift Pacior. Same as CP/N.
Vsed with BLN and DSN to define media capacity
to CP/N. S se T s h l s 5- 5 .

Allocation Block Mask. Ses BSB.

Extent Naak. Must be sero (ODB) for DOS media.

Dick Storage NaXimum. See BSH.

BLN

EXN

DSN

5« 32

5.5 Disk Parameter BlockConcurrent CP/N System Guide

Table 5-6 • (e a t i n u s d)

Explanat i onField

Directory Maximum. The number of entries - 1
in the root directory. At system generation
time DRlC must be sst to allow enough spa'cs in
TBL886 for both the hash table and the FAT if
both CP/M and DOS media can be used in the
drive. Sse Section 5.5.1 "Disk Parameter Block
Worksheet" for information on hens to calculate
the value for system generation.

ALQ, ALl Sot used. for DOS media.

Checksum Vector Siss. Same as CP/S (Table 5-5).

Track Offset. Same ae CP/N (Tab1e 5-5) •

Physical Record Shift Factor. S ame ae CP/N
(Table 5- 5) .

Physical Record Mask. Same as CP/Ni (Table 5­
s).

PSB

5-33

5.5 Di s k P araseter B la ckConcurrent CP/M Systea Ouide

Listing 5-7 illuetratse the extended DPB definiticnr

t e 4 4 l l l e 4 t e**t* t e e e e e e t e *e 0* t tr

Extended DPB Ds f i n i t i a n

* t***** * t e k e k t t e t t t t t t t t t o o t t e

extf lag
nfats
n fat r ece
n cls t l s
c ls i se
f a tadd
spt
bsh
bls

dse
drtr
a10
sl l
cks
off
psh
pre

dpb

egu
• re
srlu
egu
equ
erfu
equ
equ
egu
equ
egu
equ
egu
egu
equ
equ
cpu
• Qu

0 sou
dw
dw
dw
dw
dw
dw
dw
db
db
db
dw
dw
db
db
dw
dw
db
db

ward
word
ward
ward
ward
ward
ward
byte
byte
byte
word
waz'd
byte
byte
word
word
byte
byte

o'f f se't
OFFFFh
2
6
500
1024
1
26
3
7
0
499
67
0
0
17
0
0
D

ptr 0
ptr 2
ptr 4
p tr 6
p tr 8
ptz 10
ptr 1 2
p tr 1 4
p tr 1 5
p tr 16
p tr 1 7
p tr 1 9
p tr 2 1
p tr 22
p tr 2 3
p tr 2 5
p tr 2 7
ptr 28

r Disk Parameter Black
rDoe media - e x te nded DPB
tHusber af F AT S
t Susber FAT s e c t o r s
r Huaber of c l u s t e r s
rCluster B i s e
tSecta r a d d r e s s af FAT
rsectars Per T r ack
;Block Shift
rBl.aCk Mask
rExtnt Mask
t Disk Siss - 1
tDirectory Max
; All oc0
r All ocl
;Check Siss
roffset
;Phys Sec Sh i f t
;Phys Rec Mask

List i r tg 5 - 7 . B xtettded DPB tte f i n i t i cs r

5-34

Concurrent CP/N System Guide 5.5 Disk Parameter Block

5 5.1 Disk Par~t e r Black Waxksheet

This worksheet ie intended to help yau create a Disk Parameter Block
containing the epacificatione for the particular disk hardware you
are implementing. After calculating the disk parameters according
to the directions given below, enter the value inta the disk
parameter list. fallowing the Barksheet. That way, all the values
yau have calculated wi11 be in one place for a convenient reference.
The fallowing steps, which result in values ta be placed in the DPBr
are labeled 'field in Disk Parameter Black".

In this workeheet, the fields common to both DPBe are calculated
first, then the fields far the extended (DOS) DPB.

cA» Allocation Block Siss

Concurrent CP/M allocates disk space in a unit known as an
allocation block. This ie the minimum allacatian of disk space
given to a file. This value may be 1024, 2048, 4096, 8192, or
16384 decimal bytes, or 400a, 8008, 10008, 2000H, or 4000H
bytes, respectively. Values far DOS disks might differ from
this range, Choosing a large allocation block size allows more
efficient usage af directory space for large files end allows a
greater number of dzcectary entries. Qn the other hand, a
large allocatian block cise increases the average wasted space
psr disk file. This ie the allocated disk space beyond the
logical end of a disk file. Alma, choosing a smaller block
size increases the size af the allocation vectors because there
is a greater number of smaller blocks on the same size disk.
Several restrictions an the block size exist. Zf the block
size ie 1024 bytes, there cannot be mare than 255 blocks
present on a logical drive. In other wards, if the disk is
larger than 256K bytes, it is necessary to ues at least 2048­
byte b lacks .

Black Shift field in Disk Parameter Block
Black Mask field in Disk Parameter Black

cB» B S B
cC> BL M

Determine the values af BSH and BLN from the following table
g iven the v a l u e cA>.

Table 5 -7 . BS B and BLN Values

cA>

1,024
2,048
4,096
8,192

16,384

BLN

7
15
31
63

127

BSH

5-35

5 • 5 Disk Parameter BlockConcurrent CP/K System Guide

Notes Values for DOS disks might extend beyond this range.

<D> Total Allocation Blocks

Determine the tatal number of allocatian blocks an the disk
dr ive. The total available space on the drive, in bytes, is
calculated by multiplying the total number of tracks on the
disk, minus reserved operating system tracks, by the number of
sectors per track and the physical sector size. This figure is
then divided by the allocation block size determined in aA»
above. This latter value, rounded down to the neat lowest
integer value, is the Total Allocation Blocks for the drive.

 DS N Disk Size %ax field in Disk Parameter Block

The value af DSN sr(uals the maximum number of allocaticn blocks
that this particular drive supports, minus 1.

Mote: Th e product (Allocaticn Black Size)a(DSM+1) ie the
total number of bytes the drive holds and must be within the
capacity of the physical disk, nat counting the reserved
operating system tracks.

Extent Sack field in Disk Parameter BlaCk<P> BXN

For CP/s(, obtain the value of EXN from the following table,
using the values o f <A> and <E>. (M / A no t ava i l a b l e) . Fo r
DOS, EXM must be zero.

Table 5-9 • BE N Values

(A> Z f as> i s
less than 256

rf aB> is greater than or
e gual t o 2 5 6

1,024
2g048
4,096
8,192

16, 384

0 1 3
N/A

0
1
3
7

7
15

<Q> Directory Blocks

Determine the number of allocation Blocks reserved for the
directory. This value must be between 1 and 16.

5-36

Concurrent CP/M System Guide 5.S Disk Parameter Block

«E> Directory Bntrias per Block

From the following table, determine the number of directory
entries per Directory Block, given the Allocation Block siam,
«A) .

Table S-9. Directory Bntries per Block Si*e

«A>

lg024
2,048
4,096
8,192

16 r384

8 entries

32
64
128
256
512

«Ii Total directory entries

Determine the total number of Directory Entries by multiplying
«G> by «B>.

«J> DBN Dire c tory Nas field in Disk Parameter Block

D etermine DR@ by subtract ing 1 f r o m « I > . Th i s i s t he v a lu e
that must be in the DRN field at run time.

T' he DRN field is also used by GENCCPN to allocate the hash
table for Cp/m or the FAT for DOS. If both types of media are
allowed in the drive, DR@ must be set to allocate the space
needed for the largest of the hash table or the FAT. The value
(I-L) calculated above will allocate the correct amount of
space for the CP/N hash table. The value to allocate space for
the FAT ie CalCulated by:

DRM :~ (NFATRECS e 2 " P S H a L 28) / 4

The values for this eguation can he found in «Ta, and «P>
calculated below. Set DRM to the largest of the two Values for
system generation. Set it to I - 1 at run time.

«x> Ar.0, Ar 1 Directory Allocation vector 0, l
field in Disk Parameter Block

For CP/M disks determine Ai 0 and Ar.l from the following table,
given the number of Directory Blocks, «G>. DOS disks da not
use these fields.

5-37

5 • 5 Disk Parameter Blockconcurrent cP/l4 Bystaa Guide

'Table 5-10 • AZIQ, S51 Valaes

«6» AI 0 hL l <0» A L O lkLl

1 BOB 0OE 9
2 D COH 0O E 10

OBOE D OH 11
4 O F OH DO H 12
5 O F BH DO E 13
6 D FC B DO E 14
7 D PE H OO E 15
5 OF F H OOH 16

OFFH B DE
OPFH OCOH
OPFE OHDE
OFFH OFDE
OPFH OPBE
OPPH OPCE
DPFH OPHH
OPFE OFFE

«t» CKS Cbec ksua field in Disk Paraaetex Elock

Determine ths Bise of the Checksus Vector. If the disk drive
aedia is perzLanent, then the value should be BOOOE. If the
disk drive media is removable, ths value should be ((«I»­
1)/4)+l. If the dink driVe media ia reSOVab1s end the Eedia
tlag is isplsssnted (door open can be detected through
i nterruPt) , c x B s hould egual (((« Z»-1)/4)+1)+ BOODH. T h e
Checksum Vector should be CES bytes long and addressed in the
OPHI

Offset field in Disk Peraaster Blcok

Ths OFF field deteraines tbe nuaber oi tracks that are skipped
at the beginning of ths physical diak • The HDQRS autcsatioally
adds this to the value of TEAK in the IopB and can be used es
a zachanism for skipping reserved operating systea tracks, or
for partitioning a large disk into sasller logical drives.

«H> Size oi hllocation Vector

In the DPH, the Allocation Vector is addressed by the ALV
field. The size of this vector ie deterainsd by the nuaber of
hllocaticn Blocks. Hach byte in tha vector represents four
blocks, or Size of lllocetion Vector ~ ((«E»/8)+1)*2 •

P bysical Secto r S i z e

Specify ths Physical Sector Size oR the Disk Drive. Hate that
the Physical Sector Siss suet be greater than or egual to 128
snd lese than 4096 ox the Allocation Block Size, shichever is
ssallex. This value is typically the saallaet unit that can be
read ox written ta the disk. This field aust be filled in for
PC-NODS.

5-35

C encurrent CP/E Syatem Guide 5.5 Disk Parameter Black

«P> PSE
«go PEM

Physical record SBift field in Diak Parameter Bleok
Physical Record Mask in Disk Parameter Black

Determine the values of PSH and PRM from the following table
given the Physical Sector Sise. These fields «ust be filled in
for PC-MODE •

Table 5-11. P EE and PRM Values

«07

128
256
512

1024
2048
4096

PSH

1 3

0

2
15
31

EETFLIS DPE Ex t e n ded Flag

lf this is the DPB for a DOS disk, the DPB is an extended DPB
and this field must be OPFFPH.

«E> EFATE Eumher of Pile Allocatien Tables

This field must be set to the number of file allocation tables
on the disk currently in the drive.

EFATEECS Eu mber of FAT Records

This iield is the number cf Physical sectors in the file
allocation table. This value can be calculated from the number
of clusters «0> and the Physical sector size «Oi using the
folloeing formula­

« T> := (« Dv+ 1 . 5 + < O > — 1) / (0>

«IP EC I STRS E umber of C l u s t e r s

This field is the number of clusters on the DOS disk.

CLSXEE Clust e r S i se

This field is the number of bytes per cluster. Clusters are
similar tc CP/M allocation blocks. See «A> above.

5-39

5.5 Disk Parameter BlcokConcurrent CP/K Bystss Guide

clA FBBADD File Allccaticm Tlble Address

This i i e ld i s th e p h y s i ca l se c t o r n u aber o f t he f i r st f i l e
allocation table on the DOB disk.

5.5.2 Disk Paraaeter List Woxksheet

CA.> Allocation Block Bise

in Disk Paraaater BlockcB) BBH f i el d

<C> BLN f i e l d in Disk Paraaeter Block

cD> Total Allocation Blocks

in Disk Paraaeter Blockcubi DBN f ie l d

in Disk Parasatsr BlockcPi ma l f i el d

c GI D i re c t o r y B l o c k s

cH) Directory Bntries per Block

cZ) Total directory entries

in Disk Parameter Block«Ji D RM f i e l d

(Xi ALO,ALl fields in Disk Parameter Bloc'k

CZ 0 CKB i i e l d in Disk Parameter Block

<Ni aF F f i el d in Disk Paranetez Block

<Si Bise of hllocation Vector

<a> Physical Sector Bise

in Disk Paraseter Mock<P> PB K i i e l d

5-40

5.5 Disk Parameter BlockC oncurrent C P/N System Guide

in Disk Parameter Block«0» PRN f i e l d

«R) EXTFLJLG f is ld in Extended Disk Parsee ter Block

«S» RFATS field in Ex te n ded Disk Parameter Block

«T» HFATRECS field in Extended Disk Parameter Block

<D) SCLSTRS field in E x tended Disk Parameter Block

<V» CL8LZE field in E x tended Disk Parameter Block

in Extended Disk Parameter Block«W» FATADD field

5.6 Heifer Control Black Data Area

The Buffer COntrcl BlOCke (BCBs) locate physical record buf fera far
the BDOS • BCBs are usually generated automatically by GENCCPN. The
BDOS uses the BCB to manage the physical record buf f ere during
praceeexng. Nore than one Disk Parameter Header (DPH) can specify
the same list of BcBs. The BDos distinguiehee between two kinds of
BCBe, directory buf fere, referenced by the DIRBCB field of the DPH,
and data buf fees, referenced by DATBCB field of the DPH.

The OZRBCB and DATBCB fields each contain the offset address of a
Buffer control Black Header. The BCB Header contains the offset cf
the first BCB in a linked list af BCBe. Bach BCB has a LINK field
containing the address of the next BCB in the list, or 0000H if it
ie the laet BCB. All BCB Headere and BCBS muet reeide Within the
SYSDAT segment .

BCBLR NBCBP

Figure 5-$. Buffer Control Block Header

5-4l

5. 6 Buf f er Control BlockConcurrent. CP/N System Suade

Ta'bls 5-11. Buffer Coatrol Block Header Data Eislds

P1eld Explanation

BCBLR Buf f sr Control Block List Root. T hs Su f fer
Control Black List Boat points to the first
SCS in a linked list cf SCB's •

Naximum BCB's per Process. The N BCBP i • the
maximum number of BCB's that the BOOB can
allocate to any single process at one time.
If the number of BCB' • required by a process
is greater than NBCBP, the BDOS reuses BCS's
previ ously allocated to this process on a
least-recently-used <LRUj basis •

NSCBP

Listing 5-8 illuetratee the BOR Seeder definitioni

(tttt t t t t t t t t t * t t t t* ttt * t t t t t

rt BCB Header Definition
*

• t

• ****t*t*t****t*t***ttt**tats
I

I

bcblr sou
m bcbp e q u

w ord pt r 0
byte ptr 2

d i r bc b dw
db

dirbcbO
4

; BCB Lis t H e a d
;Nax 6 BCB's/Process

Listing 5-S. BCB Reader Qef imiticm

Picture 5-9 shows the fOrmat af the Directory Buffer Control Slocki

OQH I DRV

OSH <

RECORD NELS SE Q T RACK

BUEOPP LINK POADRSECTOR

Fi9ure 5-9. Directory Buffer ~troi Block (DIEHCB)

5-42

S.6 Buffer Control BlockConcurrent CP/N System Guide

Table 5-13. DZRBCB Data Fields

Pield

DRV

E xplanat i o n

LOgiCal Drive Number. The Logical Drive Number
identifies the disk drive associated with the
physical sector contained in the buffer. The
ini t i a l v a l u e Of t h e DRV f i e l d must b e QFFH, Zf
DRV = QFPh then the RDOS considers that the
buffer contains no data and is available for

TRACK

RECORD

use •

Record Number. The Record Number identifies the
logical re c o rd p o s i t i o n o f t he cur r e n t b uf f er
f or t h e s pec i f i e d d r i v e . The recor d n u mber i s
r ela t i v e t o t he be g in n i n g o f t he l og i c a l d i s k ,
where the f irst record of the directory is
logical record number zero.

Write Pending Flag. Th e BDOS sets the Write
Pending Flag to OFPH to indicate that the buffer'

written to the disk, the BOOS sets the WFLG to
zero to indicate that the buffer is no longer
d ir t y .

Sequential Access Counter. The BDOS uses the
S equent ia l A c c ess Counte r d u r i n g b l o c k i n g a n d
deblock ing t o d e t ec t w h e t he r t h e b u f f e r i s be i ng
accessed sequentially o r r a n d o m ly . Zf
sequential access is used, the BDOS allows reuse
o f t h e b uf f e r t o a vo i d co ns u mpt io n o f al l
bu f f e r s d ur i ng sequential I/O.

Logical Track Number. The TRACK is the logical
track number for the current buffer.

Physical Sector Number. SECTOR is the logical

contains unwritten data. W h e n the data are

SECTOR

LINK

BUFOPP

sector number for the current buffer.

Bu f f er Of f set. Por DIRBCBs, this f ield equal s
the offset address of the buffer within SYSDAT.

Link to next DIRBCB. The Link field contains
the Offset address of the next BCB in the linked
list, Or OOOOH, if this is the last BCB in ths
l i nked 1 i st .

Process DescriptOr Address. The BDOS uses the
Process D e s c r i p t o r Add r es s t o i dent i fy t he
process which owns tha current buffer.

PDADR

5-43

5 • 6 Buffer Control BlockConcurrent CP/M Systse Quads

The buf fsr associated «ith the BCB aust bs large enough to
aceoaaodate the largest physical record (equivalent to physical
sector) associated «xth any DPH referencing the BCBs. The initial
value of the DRV field aust be OFPH. When the DRV field contains
OFFH, ths BDQB considers that the buf fer contains no data and ie
available fox uss. When WFM equals DPPH, the buffer contains data
tha C the BDOB has to wr ite to the disk before the buf fer is
available fcr other data.

Directory BCBs never have the BCB WFlrG paraeetsr sst to DPPH because
directory buffsrs ars al w ays written ieeediately. Th e B D06
pcetpoces only data buffer writs operations. Thus, only data BCBs
can have dirty buffers.

Ths data and directory BCBs eust be separate. Th is is to ensure
that a buffer with a clear WPIAi is available when the BDOS verifies
the directory. If all the buffers contain new data (WPLG eet to
0FFE), ths BDOB has tc perfcra a write bsfOrs it Can verify that ths
disk aedia has changed. This could result in data hsing written on
the «rong disk inadvertently. The following listing illustrates the
DIRBCB definition<

t tt t t i t t t t t t t t i t t i t t i t t t t t t t t t t

y* D I RBCB Definition

t ttttttitit t t t tt t t tit it tit it tt it

drv
record
wflg
esq
track
sector
bufof f
l ink
pdadr

byte
byte
byte
byte
word
«ord
word
word
word

ptz 0
p tr 1
p tr 4
ptr 5
ptr 6
p tr 8
p tr 1 0
ptr 1 2
p tr 1 4

aqu
equ
equ
equ
equ
squ
equ
equ
equ

di rbcb0 db
rb
rb

dw
dw

Offh
3
2
2
d irbuf 0
d i rbcb l
l

;Drive
gRecord
>Pending, Bequsnce
; Track, Bec to r
;Buffer Offset
; I in'k
;PD Address

rw

I is t i n g 5 - 9 . QZB BCB Def i ni t i c a

C oncurren t C P/N System Guide 5.6 Buf f er Control Block

Figure 5-10 shows the format of the Data Buff er Control Block
(DATBCB):

QOH: DRV

08Hs SEC TO R BUPSE G

RECORD WPLG S EQ T RA CK

PDADRLINK

Pigure 5-10. Data Bnifmr Cantrol Block. (DATBCB)

The DATSCB is identical to the DIRBCB, except for the SUPSEG Pie&
descr i bed i n T a b l e 5- 14 .

Table 5-14. D A TBCB Data Pields

Field E xplanat i o n

BUPSEG Buffer Segment. F o r B C Bs describing data
buffere, this field equals the segment address
of the Data Buffer. The offset address of the
buffer is assumed to be aero. The actual
buffer can be anywhere rn memory on a paragraph
boundary that is not in the system TPA.

5.6 Buifsr Control BlackConcurrent CP/8 System Guide

Listing 5-10 illuetratea ths QhTBCB daf initiout

l k*stetleeeeeteetsteteeeetsteeee

g4
r • DATBCB Definition

et*e**se**e*eeee% • %***ise**II**
I

drv
record
wflg
eeq
t rack
sector
bufeeg
l i nk
pdadr

detbcbD

e q'u
• qu
equ
equ
squ
&qu
equ
• qu
equ

db
rb
rb

dw
dw
rw

byte
byte
byte
byte
ward
word
word
ward
word

Of fh
3
2
2
d(Kbuf 0
dirbcbl
1

ptr 0
ptr 1
ptr 4
ptr 5
ptr 6
ptr 8
p tr 10
p tr 1 2
p tr 1 4

;Drive
>Record
;Pending, Sequence
rTrack. Secto r
>Buffer Segment
;Link
gPD address

Meting 5-10. QLPBCS Deiinition

5-46

Concurrent CP /M System guide

5.7 Memory Disk Appl.icatlcn

A memory disk or M disk is a prime example cf the ability of the
Basic Disk Operating System to interface to a vide variety of disk
drives. A memory disk uses an area of RAM to simulate a small.
capacity disk drive, making a very fast temporary disk. The M disk
can be specified by GERCCPM as the temporary drive. The example
7CIOS implements an M disk for the IBM PC. Thi • section discussee a
similar M disk implementation as shown in Listing 5-11.

In Listing 5-11, the M disk memory space begins at the OCOOOH
paragraph boundary and extends for 128 Kbytas, through ths ODPPPH
paragraph. It is a s s umed tha XIOS I@IT routine call • tha
IMIT M DSK~ code, which initialires the directory area of the M
disk, t h e f i r s t 16 Kb y t e s, t o OE 5 8.

Bath the M disk READ and WRITE routines first call tha MDISK CALC:
routine. This code calculates the paragraph address cf tha current
sector in memory, and the number of words of data to read or write.
Tha number of sectors par track for the M di sk is set to 8,
simplifying the calculation of the sector address to s simple ehift­
and-add operation. The suit i sector count i s multiplied by the
length of a sector to give the nuaber of words tc transfer.

The READ M DISKs routine gets the current DMA address frOm the IOPB
on the static, and using the parameters returned by the MDISK CALC:
routine, block-moves the requested data to the DMA buf far. Tha
WRITE M DI6K: routine is similar except for the direction of data
t ransf e r .

A Disk Parameter Block for the M disk, illustrated at tha end of the
example, is provided fcr reference. A hash table ie provided in
order to increase per'foraance to the maximum. However, this iield
can be sat to sero if directory hashing is not desirable due to
space limitations.

5.7 Memory Disk Application

5-47

Concurrent CP/N System Guide 5.7 memory Disk Applicatian

Listing 5 ll illustratea an M disk iapleaentatian~

ttttt t t t t t t t t t t * t * t t t t t t t t t t t t t t t
I

H DISK EQUATES
g t*ttt t t t t t t * * t 't't'tt*tt*tt * * * t t t tt * t t tt * t * ** t t* * t * t t * * t

adiskbase OCOOOh ;base paragraph
;address o f e di s k

eqc

i tttt***t t t t * * t t * t * t t t*** **t tt* **t t*tt* t * t t t*tt t * t t t t *

DISK ZNITIALIZATIOH
• * t *t t t * t t 't t t t t t t t t 't * * t

k nit m d s k :
mov cx,adiskbase
push es ! ao v e s , c x
x or d i , d i
mov ax,Oe5e5h ;check i f al r ea d y i ni t i a l i se d
cmp ea:Ldi] ,ax l) e m d isk end

aov cx,2000h r Tni t i a l i a e 1 6 K by t e s
rsp stoa ax ;of N disk directory to DE5h's

a diak e nd :

ret
pop es

• t t t t t t t t t t t t t t * t * t t t t 'I t t 1 t * t t t t t t t t t t t t t t * t t t t i t t t t I t
I

K DISK CODE
• t I t t i t t i t t t t t * * t t

- Function ll: Read sector
1

IO BBADt

Reads the sector on the current disk, track and
sector into the currant DNA buffer.

I entry' parameters on stack

7 A L 01 i f an er r or occ u r r e d

read m dsk i

exit: A L 00 if no error occurred

call adisk calc
push es
l es d i , d a r d p t r
x or s i , s i
push ds
eov ds,bx
rep aovsw
pop de
pop ee
xor ax,ax
ret

;calculate byte address
;save VDA

;setup source DMA address
; save cur r en t D S
;load painter tc sector in seaory
: execute e ave o f 1 2 8 b y te s
lthen restore user DS register
; restore UDA
;return sith good return code

daaoff ;load destination DMA address

Listing 5-11. Example)I disk ijspleaentaticm

5-48

Concurrent CP/N Systea Guide 5.7 hfemory Disk Application

ZO WRZTE: P unction 12o Wri t e d i s k

Write t' he sector in tha current Dma buffer
to the current disk on the current
track in the current sector.

t entry> CL = 0 — Deferred Writes
l — nandeferrad writes
2 — def-wrt 1st sect unalloc blk

= 018 i f e r r or oc c urred
= 02H if read only disk

exit : PJ = OOH if no error occurred

write m dsk­

call mdisk calc
push es
mov ea,bx
xar ai , d i
push de
lds si ,dwor4 ptr
rep movsw
pop ds
pop ea
xor ax,ax
ret

m diak ca l o '

;calculate byte address
;save UDA
;setup dest i n a t i o n Ditch, a44resa

;save user segment register

;move from user ta disk in memory
; restore user segment painter
;restore UD A
>return no e r r o r

dmaoff ;Load source DHK address

I

ZOPB variables on the stack
BX sect o r pa r a graph address
CX l e ngth in words to transfer

entry :
ex it :

mov bx,t rack
mov clg3

shl b x , c l
mov cx,sector
add bx,cx
mav cl,3

a hl bx , c l
add bx,mdiakbaae

mov cx,64

mov al,ment
xor ah,ah
mul cx
mOV Cxgax
cl d
ie t

;pickup t rack number
;times eight for relative

of sector start

; plus base ad4reas of d i s k

;length in words for move
in memory

of 1 se c tor

sector number

;plus sector
;gives relative sector number
;times eight for paragraph

;length e multiaactor count

Listing 5-11. (continued)

5-49

Concurrent CP/H Systes Guide 5.7 Hsmozy Disk Ayylication

offset $
8
3
7
0
126
31
l28
0
0
0
0
0

N DESK DI SK PA R ANBTER BLOCK

el+i
dw
db
db
db
dw
dw
db
db
dw
dw
db
db

cpu
equ
equ
equ

0
let f
0
(32 t 4)

t't 't t 't tt ttt**t t ttt ttttt t t t te 't 't't tt 't 't * ' t t *e a**et t t*'t t t t 'et

) t i t

dp'b0

t t t t t t t t t t • t t t t t t t t t t t t * t t t t t t t t t t l t * * t t t t t t t t t t *t

;Disk Parameter Block
;Sectors Pez Track
;Block Shift
;Block Nask
;Bxtnt Hask
gbisk Sia • — 1
;Directory Hax
; Al l c c O
; Al l o c l
;Check Siss
tOf fsst
;Phys Sec Sh i f t
;Phys Ssc Sask

r Ho Trans l a t e T a b l e
;Allocation Vector Siss
t Check Vactoz B i s e
; Hash Table S i s s

e l t 5
als5
css5
hss5

Listing 5-11. (continued)

5.8 Nn i t f p ie ifedia auyyort

Di sk access is contraled by a nusLbez cf data structures, that
describe various psraaeters of the disk. Some of these parameters
aze set in the cade of the XIOS, others are filled in by GBSCCPH.
when a particular disk dzive can have maze than ons type of disk in
it (fcr emample different densities ar cP/N and Pc Dos disks) some
of these yarametszs must be set at zun time. This section erylsins
how these pazaaeters are set up, and which ones must be changed at
r un t i a e .

Each disk drive is described by a disk parameter header (DPB) that
gives addresses for several data structures needed in using the
disk, including the Disk Parameter Block (DPB). The DPB describes
the disk in more detail, such as the siss of the dizectozy and the
total storage cayacity of the drive. The information in the DPB
will be different if a different density or format disk is used.

5-50

Cancurrent CP/M System Guide

The DPH is l.acated by the DPH(A) through DPH(P) pointers in the XIOS
header. See Section 3.1 "XIOS Header" fcr mare information on these
painters. The fields in the DPH can be filled in by hard coding t' he
values in the XIO8 or i f they are set ta QPPFPH, GEHCCpM will
calculate and fi!,l in the vat.ues. GENCCPM also alLacates space far
the needed buf f er e and vec ter s.

If a drive supports mare than one type of media, the buffsrs
allocated must be large enough to hold the information needed for
any of the possible media. This aay require creating a dummy DPH
and DPB for GEHCCPM to cee while allocating the buffers. Par DOS
and CP/M disks, the same table area (pointed to by TBLSEG in the
IKH) is used fo r t h e hash t a b l e (CP/M) and the FAT (DOS). T h e s pecs
GEHCCPM allocates fcr this is based on the DRM value in the DPB.
See Section 5.5.1 far information an setting DRM.

Auto Density Support is the ability ta support different types of
media an the same drive. Some fLoppy disk drives can read many
di,fferent disk formats. Auto Density Support enables the XIOS ta
determine the density of the diskette when the IO SELDSK function is
called, and ta detect a. change in density when the IO READ ar
IO WRITE functions are cal.led.

Ta implement Auto Density Suppart ar support for both CP/M acd DOS
media, the XIO8 disk driver must include a DPB for each disk format
expected, or routines ta generate proper DPB values automatically in
real time. It must a1sa be able to determine the type and format af
the disk when the IO SELDSK function is called for the first time,
set the DPH to address the DPB that describes the media, and return
the address of the DPH ta the BOOS. If unabl.e to determine the
format, the IO SELDSK function can return a sera, indicating that
t he se l ec t opera t ion was nat successful�. On all subsequent
IO SEL DSK calls, the XIO8 must continue to return the address af the
same OPH; a return value of zero is only allowed an the initial

5.8 Multiple Media Support

r O SELDSK ca l l .

Once the IO SELDSK routine has determined the format of the disk,
the IO READ and IO WRITE routines assume this format is correct
until an error is detected. If an XIOS function encounters an error
and determines that the aedia has been changed to another format, it
m us t abandon t h e ape rat ion and return OPFH ta t he BDOS. Thi s
prompts the BDOS to make another i nit i al IO SELDSK call to
reestablish the media type. XI OS routines aust not modify the
drive' s DPH or DPB until the IO SELDSK call is made. T h i s ie
because the BDOS can also determine that the media has changed, and
can make an initial IO SELDSK call even though the XIOS routines
have not d e t ec ted any change.

E nd cf S e c t i o n 5

5-51

Section 6
PC-MODE Character i/0

This section describse functions that must be implemented in ths
XIOS to support PC-HDDK. Th ese functions emulate some of ths PC
interrupts, allowing DOS programs to run.

There are seven functions that must be added to the XIOS to support
PC-RODE. These are functions 30 through 36. This chapter describes
functions 30 through 34, that are used for character I/O. Functions
35 and 36 ars for disk I/O, and are described in Section 5. Rote
that the XIOS function table must be extended for these functions.
See Section 3.3 "XIOS ENTRY" for more information on ths function
tab1e.

Implementing these functions requires data structures similar to
those used in screen buffering. See Section 4.2 "Console I/O
Punctions" for more inforaation on screen buffering. S creen
buffering ie assuaed in the descriptions of all the routines in this
chapter .

6 .1 S cr I /O Puncticms

Punction 30, IO SCREES either returns the currant screen mode, or
sets the screen to a certain mode. The mode tells whether the
screen is displaying text or graphics, and the screen siss.
Function 31, IO VIDEO, provides functions for getting and setting
the cursor positron and attributes, as well as scrolling the screen
and writing characters. This function emulates E of the 16
subfunctions cf DOS's interrupt 10.

6-1

Concurrent CP/6 System Guide 6. 1 6czean Z/0 Punct ions

Zo SCREEN G E T / BET SCREEN

Ost or Sat the Currant Bcrsan

Entry pazamatsrsi
Registe r A L i

Cl:
DL c

R eturned Val u e :
Register AX<

CH<
1EN (Eo)
0 ~ Bati 1 ~ Gat
M ade if CH ~ 0 (6 e t)
Virtual consols number

AX i
M ode if CH ~ 1 (Ge t)
PPPPH ii aods not supported
(Hat)
PFFBE if bad parameters
(Bet)
OOOOH if SucCessful (Sat)

D6, SS, SP p re se r v e dES>

ZQ SCREEN can ba called to either return ths current screen soda
(Gat) cr to set th e sc r ee n t O a cer ta i n mo de (S e t) . Sst i s
indicated by a sero in CH, Get is indicated by a 1 in CH. ZQ BCRESS
is called to operate on a virtual console, indicated by DI" The
sample XIQS's keep a record of the made of each virtual console in
the screen structure. The screen soda aust be initialimad to a
nonssro value shan the system is initiaiised. This function is also
used foz GSX support. Sae Appendix B.

Mhan ZO SCREEE is called to set the sczasn soda (CH 0), C L
contains the soda in the following farsLat:

CL

008 x

where y indicates the alphanuaaric sodas and x indicates graphics
modes. Either x or y will have a value, the other will ba sero.
The alphanumeric mades (values for y) are shown in Table 6-1. The
graphics sxx(ss (values for x) are shown in Table 5-2. Tha value 1
(general alphanuaeric or general graphic mode) ccmss fzcm the GBX
graphiCS Syetea' • GZQB tO indiCata a acda Switoh. The GIOB dcae 1te
own hardware init ial isation.

6 2

6.1 Screen I/O PunctiasmConcurrent CP/N System Guide

zf the calling process is in the background and »ants to aet its
mode to graphics, 10 SCREWS must flag»ait the process. The
corresponding flagset takes place in the XO 8WZTCH routine, when the
process ' • virtual console is switched ta the foreground. Par
i'urthez information an the ZO HWZTCH routine, see Section 4.2
"Console I/O Puncticna' •

Set a'hould initialiae t' he hard»are if necessary.

When ZO SCKEN ia called»ith CH ~ 1 (get) it returns the scrssn
made (Zzam the screen structure) in the folic»ing format:

Cols X

»here 6 Cola is the number of columns on the screen, x ia the
graphics mode (Table 6-2), and y ia the alphanumeric made (Table 6­
1) •

Table s-l. Alpbamlmeric Nodes

Y Value Meaning

1
2
3
4
5

6 - 8
9

General alphanumeric mode
40 x 25 monochrome
40 x 2 5 c o l o r
80 x 25 monochrome
8 0 x 25 c o l o r
Reserved
80 x 25 monochrome card
Reserved1 0 - 1 5

Table 6-2. Graphics Mades

MeaningX Value

1

3 4

General graphics made
3 20 x 200 c o l o r
320 x 200 monochrome
640 x 200 monochrome
Reserved5 15

6-3

6. 1 Screen I/O PunctionaConcurrent cP/k System j-uida

zo vzDR0 (Punction 31) enulataa 8 of the 16 subfunctions oi Dos's
interrupt 10. Zt will set and read the cursor position, scroll the
• Creen, aat and read attributee, and Write CharaCtera tc the eCraaa.

ZO VIDEO V ID E O I@PUT/OQTPDT

Sjanipulate the Video Screen

Entry Paramateraj
R eSister AL j

SLs
CXs

DXj

1PB (31)
Sub Function
Input parameter
(aee below)
Input parameter
(see below)

Returned Val ues
See below.
preserved

Depends on subfunct ion .
Bs, DS, SS. SP

The IO VIDEO function must implement at least 8 cf the 16
aubfunctions of DOS's interrupt 10 • All 16 can be implemented if
dea i red s and if the hardware aupparts tham. Tha 9 required
subfunctiona are described balcv.

SIT CORSOR PQSITI K (RL ~ 1)

CS row
CX c o l umn
K ~ virtual console number

entry:

exits none

This function sets the cursor poaition to the specified rcw and
column. It updates tha cursor position in the screen structure Eur
tha specified virtual console. lt also updates the physical screen
if this virtual console is in the foregrounds

6-4

canc urrent cP/K system Guide 6.1 Screen I/O Functions

R EAD CURSOR POSXTXOB (BL ~ 3)

entry: DL v i r tual console number
exit : AH = row

AL ~ co l u mn

This functian returns the current cursor position for the virtual
consols f rom the screen s t r ucture .

S CROLL UP (BL ~ 6)

entry' CX se gment of aaremeter structure
DH = affect af parameter structure

e xit : non e

Thi.s function eaceseee the parameter structure and scrolls up the
specified window an the virtual conaale. The window is specified by
giving the raw and column af the upper left and lower right corners
of the rectangle. If the number of lines to scroll ie U, the window
should be cleared. The parameter structure is as follows:

OI

21 B RSVD

(row) C (c o l)

(row) D (c ol)

Bs

= nueber o f l i neswhere­
S = attribute of bien'k linea
C = row, column of upper left
D = row, column of lower right
VC = virtual console number

Xf screen buffering is implemented. scrolling must take place in the
screen buffer. If the virtual console is in the foreground, and the
physical console is a serial terminal> the display must also be
updated. Parameter 8 contains the attributes desired for the new
blank lines to be added in the window. The method of displaying the
scrolled window on the physical console depends on the hardware.

6-5

6. 1 Screen I/O FunctionsConcurrent CP/K System Guide

SCJKILL ROIS' (EL ~ 7)

entry: CX seg m ent of parameter structure
DX ~ offset of parameter structure

exit s none

This function accesses the parameter structure and scrolls down the
specified window on the virtual console, similar to the previous
subfunction. The parameter structure ie ae follows~

Ds

6 RBVD

(row) C (c o l)

(row) D (c o l)6r

8I VC

wherss A ~ number of lines
B att zibute of blank lines
C zo w , column of uppez left
D ~ zow, column of lower right
VC ~ Virtual console number'

Refer to scroll up above for more information.

RRAD ATl'RXRDTR/CSARACIMlR (RL ~ 8)

entzys DL m virtual console nuaber
exit r AB at t r i but e

AL ~ char'ac'tez

This function accesses ths screen structure for the virtual amma. •
and returns the character and the attribute byte fcr the currant
curacz p osition.
In the example XIO6' s, thi • subiunction involves I 1) Using ths
virtual console number to look up the screen structure. 2) Gst the
• creen buffer address and cursor position fzoa the screen structure.
3) Look up the screen buffer, and uee the cursor position as an
ofiset to get the current character and attribute byte.

6-6

Concurrent CP/li System GuMe 6. l Screen I/O Functions

BRITB MTRIBDTE/clfAIQCTSR [BL ~ 9)

entry: CX ~ segment of parameter structure
DX > offset of parameter structure

exit : none

This function writes a character and an attribute byte to a screen
image. The new character and attribute are written at the current
cursor position, and the cursor position moved to the new character •
This may involve handling an end of line or end of screen condition.
Any number of the same character and attributes can be written by
specifying the co u nt i n CX. I f th i s vi r t ual con s ole l s i n t he
foreground, and the physical console is a serial terminal, it must
be updated with the new characters and attributea. The parameter
structure is as follows:

RSVD A

2l

6: RESERVRD

VC

where: A = character
S = attributes
C = number of characters to repeat
VC ~ virtual console number

l BGTB CEARACTBR (BL ~ 1 0)

entry: CX = segment of parameter structure
DX O f f set of parameter structure

exit : none

This function writes a character to the screen buf fer at the current
cursor pos i t i o n , wi t h t he sa me a t t r i bu t e (s) as t he p rev i o u s
character • The character can be repeated by specifying a count in
C. Zf the virtual console is in the foreground, and the physical
eonso Le is a ser i al terminal, it aust a Lso be updated. T h e
parameter structure is as foLLows:

6-7

Concurrent CP/N 8ystem Guide 6.l 8creen I/O Functions

RESERVBD

RESERVED

where: A e ch a r ac te r
C n umber of characters to repeat
VC ~ virtual console number

% RXTE 8%GAI Cl ihRSCTER (EL ~ 1 4)

CL ~ character
DK v irtual console number
none

entry|

exit :

This function writes a character to the screen image at the current
cursor position, and to the physical screen if the virtual console
ie in the foreground. Zt functions similarly to write character
(above) but does not allow repeated characters. This is a teletype
write, and does not allow escape sequences.

6-8

6.2 K e y b oard P u n c t i o n sConcurrent C P/M System Guide

6.2 K e y b o ard Fu nct ions

These two functions are used for handling function keys and tha
shift status Of the keybOard When running in PC-MODE.

IO KEYBD KEYB O ARD MODE

Enable/Disable PC-NODE

E ntry Pa rameters :
R egiste r A L i

CLt
20H (32)
1 ~ Enab l e
2 = Di s ab l e
Virtual Console NumberDL:

Returned Val ue >
R egiste r A X > O i f O K

P PPPH if e r r o r
DS, SS, SP pr e s e rved

IO KSYBO is a signal to tell whether PC-NODE is active or not. When
it is enabled, ths console is running a PC program, and several
iunctions must behave differently. These differences have to do
with tha function keys on tha keyboard, snd tha 25th line on the
screen.

Enabling or disabling IO KEYBD tells IO CONIN (See Section 4.2)
whether to pass tunction keys to the caller or not. N o rmally
(disabled) all function keys not used by the XIOS (those that do not
have an associated function, such ss screen switch) are ignored on
input. Z f IO KEYBD is enabled, ZO CONIM must pass all 16 bit
function key codes to the caller. Sse Section 6.4.

Many PC applications use the 25th line of the display. Thus when
you are in PC-MODE, IO STATJ INE must not display. See section 4.2
for more information on IO STATLINE.

This variable can also be used in the KIOS for any other functions
that need to know if a console is in PC-NOM. For example, it could
be used to indicate if 24 or 25 lines need to bs buffered.

6 • 3 Keyboard yuncticnsConcurrent CP/X Syates Guide

XQ SHPT SHI F T STATUS

Return Shift Status

Rn'try Paraustsra i
Register AL~ 31 H (3 3)

DK ~ Virtual Console Husber

Returned V a luate
Register iG,< Shift Statue

HS< DS< 88, SP p r e s e rved

XO SHPT aaulates PC interrupt 16 subfunction Z. Xt returns a bit
sap shoeing the status cf certain keys on the keyboard. Ths bi t s ap
i a ahcwn in Table 6- 3 .

Table 6-3 • Keyboard Shift Status

Sit Heaning

Insert state is ackive
Caps lock state haa been toggled
Hus lock state haa been toggled
Scroll lock state hss bean toggled
alternate shift ksy depressed
control shift ksy depresed
Left shift key depressed
Right shift ksy depressed

6-10

6,3 E q u ipment CheckCOnCurrent CP/M Syetem Guide

6. 3 E qui nt Chec k

ZO EQCR EQUI PMENT CHECR

Return Equipment Status

Entry Parameters :
R egister AL c 2 2 8 (3 4)

Returned Val u e r
Register AX: DOS bit map (Table 6-3)

E S~ DS~ SS~ SP pr es e r v e d

ID EQCK emulatee D08's interrupt 11. It returns a subset of DOS's
standard bit map that describes the state of the equipment. This
bit map is shown in table 6-3.

Table 6-4. D08 Equipment 8tatus Bit Map

Bit

14, 15
13
12
11 — 9
()
7, 6
5, 4
3 g 2
1
0

Meaning

Number of printera attaChed
Not used
Game I/O attached
Number of RS232 cards attached
Not used
Number of floppy disk drives
In i t i a l v i d e o made
Planar RAN s i z e
Not used
IPL from floppy

6 4 Pc- I S N)E IQ ex%IN

When a virtual console is in PC-MODE (See ZO KEYED in Section 6.2)
ZO CMIN must return extended cades for certain functian keys. Most
characters are returned as their ASCII cade in AL, and their scan
code in AH • The sean codes for all keys are shown in Table 6-5.
Ertended keye are returned as a nul (OOB) in AI and an eatended code
in AH. The extended keys and the value ta ba returned in AB are
shown i n T a b l e 6 - 6.

6-11

Canaurrent CP/N System Guide 6.4 PC R ode ZO COHZS

Table 6 5 . Key board Sosn Codes

Scan Code Scan Cade

0 P

U V

J

T

8 Z

0 R 8

8 C 0

1 (i>
2 (e)
3 (9>
4 (6>
5 (\)
6 ()
7 (6>
8 (e)
9 (()
0 ())
- ()
- (+)
(: (()
3 ())
i (i)I (1)

()
I<)

. I i)
/ (?)
i (I)

47
17
45
21

30
48
46
32
18
33
34
35
23
36
37
38
39
49
24
25
16
19
31
20

Bec
Ctrl
Shif t (l ef t)
S hift (r i g h t)
Alt
Caps Lock
ELm lock
Scrol l L o ck
Return
Tab
backspace

Hueeric Keypadi

Hose (7)
cursor up <8)
Pg Up (9)
cursor l e f t (4)
(5)
cursor r i g h t (6)
End (1)
cursor dorm (2)
PSDn (3)
Zns (0)
Qel (.)

(PztSc)

71
72
73
75
76
77
79
80
81
82
83
55
74
78

44 2 3 4 5 6 7 8 9

Pl
P2
P3
P4
P5
P6
P7
P8
P9
P10

Punction Keys s

59
60
61
62
63
64
65
66
67
68

1
29
42
54
56
58
69
70
28
15
14

10
11
12
13
26
27
39
40
41
51
52
53
54

6-12

Concurrent CP/M System Guide 6.4 P C Node ZO COHXN

Ins
Del

(­

Table 6-6 •

Character

c tr l 3
/c­

I

3 15
82
83
72
75
77
80
71
119
115
116
81
118
73
132
79
117
114
59
60
61
62
63
64
65
66
67
68
84
85
86
87
88
89
90
91
92
93

extended teyboard Codes

Function

Hul character
Reverse tab
Insert
Delete
Cursor up
C ursor l e f t
C ursor r i g h t
Cursor down
Cursor home
Control home
Reverse word
AdvanCe WOrd
Page down
Contrl page down
Page up
Contral page up
and
Control end
Print sc reen
Punation key Pl
P unct ion ke y P 2
F unction ke y P 3
Function key P4
Function key P5
Punction Rey F6
Function Rey F7
Function key PB
Punction key P9
Punction key P la
Function key P11
Function key F12
Function key P13
Function key P14
Function key P15
Function key P1.6
F unct io n k e y P 1 7
Function key P18
Punction key F19
Function key F20

home
ctr l h o me
ctr l
c tr l — >
Pg Dn
ctr l Pg Dn
Pg UP
c tr l P g D p
End
c tr l End
c tr l P r t Sc
Pl
F2
F3
P4
P5
F6
P7
PB
P9
P10
s hif t P l
s hif t P 2
s hif t F 3
s hif t P 4
s hif t P 5
s hif t P 6
s hif t P 7
s hif t P B
s hif t P 9
s hif t F 1 0

6-13

6.4 r c mode zo COSIHConcurrent CP/M 8yatan Quide

table 6 6 • (continued)

FunctionCharacter

ctr l Fl
c tr l F 2
ctr l F3
ctr l Pi
ctrl F5
ctr l F6
c tr l F7
ctr l FS
ctr l F9
ctr l r l O
alt r i
alt F 2
alt F 3
alt r 4
a lt F 5
alt 'F6
alt r 7
a lt P S
alt P 9
alt r l O
alt A
alt B
a lt C
alt D
alt 8
alt r
alt 8
a lt 8
alt 3
a lt J
alt K
a lt T
a lt 8
alt '8
alt 0
alt r
alt g
a lt R
alt 6
alt T
alt U
a l t V
a lt 8
a lt X
a lt Y
a lt ?

94
95
96
97
98
99
100
101
102
103
104
105
106
107
iDS
1D9
l l O
111
112
113
30
4S
46
32
16
33
34
35
23
36
37
36
5D
49
24
25
16
19
31
20
22
47
17
45
21
44

Function
Function
Function
runction
Function
Function
Function
Punction
Function
Function
runCtioh
Function
Function
Function
Fuhotion
Function
Punction
Funct ion
rune'tion
Funct ion
hit h
Alt 8
A lt C
A lt D
Alt 8
Alt P
hit 8
Alt 8
Alt I
A lt J
Alt E
A lt L
Alt 8
hit N
A lt 0
Alt P
Alt Q
Alt R
Alt 8
Alt T
A lt U
Alt V
hlt 8
Alt X
Alt Y
Alt 9

key F21
key F22
key r23
key F24
key P25
key P26
kay P27
key P28
kay P29
kay P3D
kay F31
key P32
key P33
key P34
kay F35
key F36
kay F37
key r38
key F39
key F40

6-14

6.4 PC Mode IO COHIHConcurrent CP/M System Guide

Table 6-6 • (continued)

F unct i o nChar aeter AH

120
121
122
123
124
125
126
127
128
129
130
131

A lt 1
A lt 2
Alt 3
A lt 4
A lt 5
Alt 6
A lt 7
A lt 8
Alt 9
A lt 0
A lt ­
h lt ~

a lt 1
a lt 2
a lt 3
a lt 4
a lt 5
a lt 6
a lt 7
a lt 6
a lt 9
a lt 0
a lt ­
alt

Bnd of Sect ion 6

6-15

Sectfon 7
XIOS 'I|ek Interrupt Routine

The XIOS must continually perform tva DEV 9BTpLAG system calla.
Once every system tick the system tick flag must be set if the TICK
Boolean in the XIOS Header is CFPH. Once every second, the second
flag must be set. This requires the XIOS to contain an interrupt­
driven tick routine that uses a hardware timer to count the time
intervals between successive system ticks and seconds.

The recaamended tick unit is a period af 16.67 mi11iseconds,
corresponding ta a frequency af 60 Bs. when operating on 50 Hs
paver, use a 20-millisecond period • The system tick frequency
determines the dispatch rate far compuie-bound processes. If the
frequency is toa high, an excessive number of dispatches occurs,
creating a significant amount of additional system overhead. If the
frequency is 'taa lov, compute-bound pracessea monopalise the Cpu
resource for l o nger per iods.

CanCurrent Cp/K ueee plag 42 to maintain the system time and day in
the TOD Struature in SYSDAT. T h e C LOCK PraCeee Performs a
'DEV WA,ITPLAG system call on Plag f2, and thus wakes up once per
second ta update the TOD structure. The CLOCK process also calls
the IO STATLIWE XIOB function tc update the status line once per
second. If the system has mare than one physical console, one
physical console is updated each second. Thus if four physical
cansalee are connected, each one vill be updated ance every faur
seconds.

The CI OCX process is an RSP and the source code is distributed in
the OEM kit. Any functions needing to be performed on a per-secand
basis can simply be added to the CLOCK.RSP.

After performing the DEV SETPLAG calls described above, the XIOS
TICK Interrupt routine must perfarm a Jump Par ta the dispatcher
entry point. This farces a dispatch ta occur and is the mechanism
by which Concurrent CP/N effeats process dispatching. The double­
word pointer ta the dispatcher entry used by the TICK interrupt is
located at 00388 in the SYSDAT DATA. P lease see Section 3.6,
"Interrupt Devices,' for more information on vriting XIOS interrupt
routines.

End of Sec t ion 7

7-1

Section 8
Debugging the XOS

This s e c t i an suggest • a method ai debugging Concurrent CP/M,
requiring CP/M-86 running on the target machine, and a remote
cansale. Hardware-dependent debugging techniques (RQC manitar, in­
circuit emulator) available to the XIOS implementor can certainly be
used but are not described in this manual.

Implement the first cut af the XIOS using all polled I/O devices,
all interrupts disabled including the system TICK, and Interrupt
Veatars 1, 3, mn d 2 2 5, WhiCh are used by DDT-86 and SID-S6,
uninitialised. once the xIDs functions are implemented as polling
devices, change thee to interrupt-driven I/O devices and test them
ane at a time. The TICK interrupt routine is usually tHe last X?OS
routine to be implemented.

The initial system can run without a TICK interrupt, hut has na way
of forcing CPU-bound tasks to dispatch. However, without the TICK
interrupt, console and disk I/O routines are much easier to debug.
In fact, if other problems are encountered after the TICK interrupt
is implemented, it is often helpful ta disable the effects cf the
TICK interrupt t o s i mpl i f y t h e env i ronment. T h i s i s a ccompl ished by
changing the TICK routine to execute an IRKT instead af]umping to
the dispatcher and nat allowing the TICK rautine ta per fare flag set
system calls.

%hen a routine must delay for a specific amount af time, the XIOS
usually makes a P DBLAY system call. An example is the delay
required after the disk motor is turned on unti1 the disk reaches
operat i o na l s p e ed . U n t i l t he T I CK i n t e r r u p t i s i m p l e mented, P DREAY
cannot be called and an assembly language time-out loop is needed.
TO imprOVe per farmanCe, replaCe these time-Outa with P DELAY Syatem
calls after the tick routine is implemented and debugged. See the
MOTOR ON: ro u t i n e i n t he exa mpl e X I OS fo r mo r e de t a i l s .

8. l Ru n n i ng Under CP/R-86

Ta debug Concurrent CP/M under CP/M-86, CP/H-86 must use a console
separate from the console used by Concurrent Cp/M. U sually a
terminal is connected ta a serial port and the console input,
consale output and console status routines in the CP/M-86 BIOS are
modified to use the serial port, The serial port thus becomes the
CP/N-86 console. Load DDT-86 under CP/M-86 using the remote consol,e
and read the CCPM.SYS image into memory using DDT-86. T h e
Cancurrent CP/M XIOS must not reinitialise or use the serial port
h ardware t ha t C P/ M-86 i s u s i n g .

It is somewhat difficult ta use DDT-86 to debug an interrupt — driven
virtual console handler. Because the DDT-86 debugger operates with
interrupts left enabled, unpredictable results can occur.

8-1

8.1 R unning Under CP/M-86concurrent cP/M system Guide

Values in the CP/M-86 BIGS memory segment table must not overlap
memory represented by the Concurrent CP/M memory partitions
allocated by GEMCCPM. CP/M-86, in order to read the Concurrent CP/Ã
system image under DDT-86, must have in its segment tables the area
of RAM that the Concurrent CP/M system is configured to occupy. See
F igure 8-1 .

CCP/M transient
program area
defined by
GEHCCPM

CP/M tranaient
area described
, in BIOS

CCPM.SXS

DDT86

CPM.SYS

~CCP/M 0 • S. image

~CP/M 0.8. image

memory address Os Interrupt Veutcrs

Figure 8-1. Debugging Mmmory buyout

Any hardware that is shared by both systems ie usually not
accessible to cP/M-86 after the concurrent cP/M initialiaaticn code
has executed. Typically, this prevents ycu from getting cut cf DDT­
86 and back to CP/M-86, or executing any disk I/O under DDT-86.

The technigue for debugging an XIOS with DDT-86 running under CP/M­
86 is outlined in the fo11cwing etepsi

l. Run DDT-86 cn the CP/Ã-86 system.

2. Load tha CCPM.SYS file under DDT-86 using the R command and the
segment address of ths Concurrent CP/M ayatam minus 8 (the
length in paragraphs of the cMD file header). Tha segment
address is specified to GEHCCPM with the OSSTART option. Set
up the CS and DS registers with the A-BASE values found in the
CMD file Header Record. See the Concurrent CP 0 erarin
S stem Pr rammer'a Reference Guide deecr ption of the CMD ale

ea er.

3. The addresses for the XIOS BBTRY and IBIT routines can be found
in the BYSDAT DATA at offsets 28B for ENTRY and 2CH for INIT.
These routines will be at oifset OC03H and OCOOH relative to
the data segment in DS.

i. Begin execution of the CCPM.SYS file at oftset OOOOH in the
code segment. Breakpoints can than be set within the XIOS for
debugging.

8-2

8.1 R u nning Under CP/M-86Concurrent CP/N System Guide

In the following figure, DDT-86 is invoked under CP/N-86 and the
Pile ccpN.BYS is read inta memory starting at paragraph 10008 • The
oSBTART command in GENCCPM was specified with a paragraph address of
1008H when the CCPM.BYS file was generated. Using the DDT-86 D(ump)
command the CMD header of the CCPM.SYS file is displayed. As shown,
the A-BASE fields are used for the initial CS and DS segment
register values. The fallowing lines printed by GENCCpN also show
the in i t i a l CS and DS values~

C ode starts a t 1 0 08
Data starts at 161A

Two G(o) commands with breakpoints are shown, one at the beginning
of the XIOS INIT routine and the other at the beginning af the ENTRY
routine. These routines can now be stepped through using the the
DDT-B6 T(race) command. See the Pr rammer's Utilities Guide for
more information on DDT — 86.

Aiddt86
DDTB 6
-rccpm.sys,lOOO:0

START END
1000:0000 1000:ED7F
-d0
1000:0000 01 12 06 OB 10 12 06 00 00 02 B9 08 1A 16 B9 08 •

CS 0000 1008
DS 0000 16la
BS 0051 •
-ldsrcOD
161A: OCDO JNP 1E2E
161A:OC03 JNP OC38

-g,de:OCDO
*161A! OCOO

> set a b r eak po in t a t XI O S I N I T
>the INIT routine may naw be degugged

-g ids: OC03
4161A: OC03

>set a break paint at XIOS ENTRY
;the XIOB function being called is
)AL

Figure 8-2. Debugging CCP/M under DDT-86 and CP/N-86

8-3

B.l Run n i ng V nder CP/8-8 6Concurrent cP/N System Guide

When using SID-86 and symbols to debug the XZOS, extend the COPE.Sys
file to include unitialised data area not in the file • This ensures
the symbols ar • not written over while in the debugging session.
Assuming the same CCPt4 • SYS file as the preceding, use the following
commands to extend the file.

START ESD

SZDB6
8rccpm.sys,lGOO:0

START END
lOOOs0000 1000:ED7F
ixcs
CS 0000 1008
DS 0000 16lc
SS 0051
isw48
161C:0044 XXXX
6
iwccpm.sys, i 000:O,XXXX:0
ie
6 rccpm- sys, 1000 I 0

LOOOiOOOO YYYY:ZKZZ
leexioe
S YI4BOLS
6

;release memory
Iread in larger file

>EHDSEG value from SVSDAT DATA

~get XIOS.SYN file

Pigure 8-3. Debugging tba EZOS Under SXD-16 end CP/86-86

The preceding procedure to extend the file only needs to be
performed once after the CCPK.SYS file is generated by GENCCPW.

E nd of Sec t i o n 8

8-4

SectIon 9
Bootstrap Adaptatlon

Thie SeatiOn diSCueaes the S Xample bOOtetrap pracedure far
concurrent cP/M an the IBM Personal computer • This example is
intended to serve as a basis far customisatian ta different hardware'
environments.

9.1 Cl i e n t s of Tr a ck 0 oa the IBM PC

Bath ConCurr en t C P/N and CP/M-B6 for the IBM PerSOnal Computer
reserve track 0 af the 5 1/4 inch floppy disk for ths bootstrap
routines. The rest of the tracks are reserved far directory and
file data. Track 0 is divided into two areas, sector 1 which
acatains the Baot Sector and sectors 2-8 which contain ths Loader.
Pigure 9-1 shows the layout of track 0 of a Concurrent CP/M boot
disk for the IBM Personal Computer.

Sector 1 Boot Sector

LoaderSeator

Sector 8

Figure 9-1. Track 0 on the IBM PC

The Boot Sector i • brOught inta memory an reset or power-on by the
IBM PC's BCN monitor. The Boat Sector then reads in all of trac'k 0
and transfers control to the Loader.

The Laader is a simple version of Concurrent CP/M that contains
sufficient file processing capability to read the CCPH.SYS filej
which contains the operating system image, from the boot disk to
memory. When ths LOader completes its operation, the operating
system image receives control and Concurrent CP/M begins execution.

9-1

9.1 T ra ck 0 an t h e I B M PCConcurrent CP/N System Guide

The Ioader consists of three modules! the Loader BDOS, the I oadar
Program, and t h e L a ader B I OS . The I aad e r B D OS is a n i nv a r i a n t
module used by the Loader Program to open and read the system image
file from the boot disk. The loader Program is a variant module
that opens and reads the CCPK.SYS file, prints the Loader sign-an
message and transfers control ta the system image. The Loader BIOS
handles the variant disk I/O functions for the Loader BDOS. The
tera variant indicates that the module is implementation-specific.
The layout af the Loader BOOS, the Loader Program, and the Loader
BIOS is shown in figure 9-2. The three-entry jump table at 0900H is
used by the Loader BDOS to pass control to the I.oader Program and
the Loader B I O S .

Notes T h e Loader for the IBR PC example begins in sector 2 cf
track 0, and continues up to sactar 8 slang with the rest of the
Loader BOOS, the Laader Prcgram and the I ceder BIOS.

offsets from
Loader BDOS

I aadsr B I OS

Loader Program

0909R!
0906H!
0903H!
0900H!

JNP LOADP
JNP ENTRY
Jmp INIT

Loader BDOS

0000H!

Figure 9-2. Loader Organization
(Hectors 2 th r o ugh 8. T r a ck 0 o n I B N PC)

9.2 Tba Boot!strap Process

The sequence af events in the IBR PC after paver-on is discussed in
this section. Except for the functiana that are performed by the
IRE ROM monitor, the fallowing process can be generalized ta other
8086/8088 machines.

9-2

Concurrent CP/K System Guide 9.2 T h a B o o t s t r a p Pr o cess

First the ROM monitor reads sector 1, track 0 an drive A: ta memory
location 0000:7COOH an power-on or reset. The RON then transfers
control tc location 0000>7COOH by a JAP (jump far) inatzuction.
The Boot' Sector program uses the RON monitor to check for at least
16DK af msxmry contiguous from 0. Tha RON monitor is then used ta
read in the remainder af track 0 to memory location 2600sOOOOH
(3,52K). control is transferred to lacation 2620c00008, which is the
beginning of the second sactaz af track 0 end tha beginning af the
Loader. (Bach sector is 512 bytes, or 20H paragraphs lang.) The
source code for the Boot Sector program can be found in the file
BOOT.AS6 on the Cancurrent CP/ N di s t r i b u t i o n d i sk .

The exact location in msaary of the Boot Sector and tha Laader
depend on the hardware environment and the system implementar.
However, the Boot Sectoz must transfer control to the Loader BDQS
with a JNPP (jump far) instruction, with the CS register set to
paragraph a4dzaes of the Loader BDOS and tha IP register sat to 0.
'Ihus the Loader BDOS must be placed an a paragraph boundary. In the
example Loader, tha Loader BDOS begins sxacutian with a CS register
set to 2620H an4 the IP register set to 00008.

Tha Loader BDQS sets the DS, 8S, and ES registers equal ta tha CS
register and eats up 64-level stack (128 bytes). The three Laa4er
modulea, the Loader BOOS, Program and BIOS, execute using an 8080
mo4el (mixed code and data). It is assumed that the Loader BDos,
the Lander Progrea and the Loader BIOS will not require ears than 64
levels of stack. If this is not true then the Loader Program and/or
the Zoadez BIOS must perform a stack switah when necessary. The
jump table at 0900H is an invariant part of the Loader, though the
destination offsets of the jump instructions may vary.

After setting up the segment registers and the stack, the Loa4er
BDOS performs a CALIZ (call faz) to the JMP ISZT instruction at
CS:900H. The ISIT entry is for the loader BIOS to par'farm any
hardware initialization needed to read the CCPN.SYS file. Note that
the Loader BDOS does not turn interrupts on or off, so if they are
needed by the Loader, they must be turned on by the Boot Sector or
the Loader BIOS. The example Loader BIOS executes an STI (Set
Interrupt Enable Flag) instruction in the Loader dios 1ÃIT routine.

The Loader BIOS returns ta the Loader BDOS by executing a RHTF
(Return P a r ') i nst r u ct i o n • T he Load er BD OS next i n i t i a l i me a
intsrzupt vector 224 (OEDH) and transfers control to the JNP LOADP
instruction at 0906H, ta start execution of the Loader Program.

The Lander Prcgram Opens and reads the CCPN.SYS file using the
Concurrent CP/N system calls supported by the Loader BDOS. The
Loader Program transfers cantrol to Concurrent CP / N t h r o ugh t he
"JNPP ccPN' (Jump Per) instruction et the end the Loader Program,
thus caapleting the loader sequence. The following sections discuss
the organization of the CCPN. SYS file and the memory image of
Concurrent CP/N .

9-3

9.3 Lo a der Funct ion BetsConcurrent CP/E System Guide

9.3 The Loader EMS amd Loader EIOE Function Sets

Tha Loader BOOB has a minimum set of functiOns recKulrsd to open the
system image file and transfer it to memory. These functions are
invoked as under Concurrent CP/N by executing a ZÃT 224 (00EOH) and
are documented in the Concurrent CP Pr rammer's Reference Guide.
The functions implements by the Loader EDOS are n t s fol owing
liat. Any other function, if called, will return a OFFFFh error
code in regi s t ers AX and BX.

Function Same

S elect D i s k
Open Pile
Read Sequential
Sst DNA Offset
Set/Get Ussr Eumber
Set Multieector Count
Set DNA Segment

Punch CL

1 4 OE h
1 5 O F h
2 0 14} 1
26 l Ah
32 20h
4 4 Q C h
51 33h

Blocking/Dsblccking has been implemented in the Loader BDOS, as well
as multisector disk I/O. This simplifieswri t i n g and debugging t he
loader BIOS and improves the system load time. File KBDOS.H86
includea ths Loader BDOS •

The Loader BIOS muat implement ths minimum Set Of funCtions required
by the Loader BDOS to read a file.

Function Hams

9 09H Z O SELDSE (select d i s k)
1 0 OA H Ko READ (read physical s ec to rs)

Puncf AL

To invoke KO SELDSX or ZO READ in the Loader BKOS, tha Loader BDoS
performs a CALLF (Call Par) instruction to the jump instruction at
EHTBZ (0903H) .

The Loader BIOS functions are implemented in the same way aa the
corresponding xzos functions. Therefore the cods used for the
Loader B108 may, with a few exceptions, be a subset of the system
XZOS code. F o r example, the Loader BIOS does not use tha
DEV WAZTFLAQ or DKI' POLL Concurrent Cp/)4 system functions. Certain
fields in the Disk Parameter Headers and Dick Parameter Blocks can
be initialixed to 0, as in Figur • 9-3:

9-4

9.3 Ioader Function SetsConcurrent CP/N System Guide

Disk Parameter Header

00H

08H

10H

XLT 0000

DPB 0000

DATBCB 0000

00 00 000 0

0000 DIRBCB

Disk Parameter Block

00H SPT BSH B L N EXN DSN DR%...

OSH ..DRN

l OH PH N

00 00 0000 OFF PSH

tigure 9-3 • Disk Parameter tield Initialisation

The Leader Program and Loader BIOS mey be written ae Separate
modules, or combined in a s i n g l e module as in t h e e xample I,ceder •
The size of these twc modules can vary as dictated by the hardware
e nvironment and the preference of the system implementer. T h e
LOAD.A86 f lie con ta inc the Loader P rogram and the Loader BIOS.
IOAD.A86 appears on the Concurrent CP/N release disk, and may be
assembled and listed for reference purposes.

The loader Program and the Loader BIOS are in a contiguous section
of the Loader to reduce the size of the Loader image. Grouping the
variant code portions of the Loader into a single module, allows the
implementation of ncnfile-related functions in the most size­
efficient manners The example loader BIOS implements the IO CONOUT
function in addition to IO SBLDSK and IO READ. This Loader BIOS can
be expanded to support keyboard input to allow the loader Program to
prompt for user options at boot time. However, the only I nader BIOS
functions inVOked by the I nader BDOS are IO SELDSK and IO READ, any
other Loader BIOS functions must be invoked di~ectly by the roader
Program.

9 .4 T r ac k 0 Const r uc t i o n

Track 0 for the exemple IBN PC bootstrap is constructed using the
following procedure: The Boot Sector is 02008 (512) bytes long and
is assembled with the command:

A>ASN86 BOOT

This results in the file BOOT.H86, which becomes a binary CND file
with the commands

9-5

9 .4 T r ac k 0 Cons t r uc t i o nConcurrent CP/M System Guide

A>QEHCMD HOOT 8080

The IOAD.A86 file, COntaining the the Laader Program and the Loader
BIOS p is assembled using the command:

A>ASM86 LOAD

The Loader BDOS starts a 0000H and ends at 0900H. The lOAD module
starts at 0900H and ends at OEOOH • This eguals the mixe of the 7
sectors remaining after the Soot Sector. The IBM PC disk format hae
eight 0200H-byte (512-byte) sectors, or 10008 (4K) bytes per tracks
Subtracting 0200H, the length cf the Boot Sector> we get OEOOH. The
LOADER.H86 filmy containing the Loader BIOSp Loader Program and
Loader BIOS, is constructed using the command:

AiPIP LOADER.H86~LBDOH.HSS,LOAD.H86

Next a binary CMD file is created from LOADER.H86 with GEHCMD:

A>GEHCMD LOADER 8080

This results in the file LOADER.CMD with a header record defining
the 8080 Model. Note this CMD file ie nct directly executable under
any CP/M operating system, but can be debugged ae outlined below.
Next the BOOT.CMD and LOADER.CMD files are combined into a track
image. Uxe DDT-86 or SID-86 to do this:

or SID86

aaaa ie paragraph where DDT86
; places BOOT.CMD

create the 4K file, TRACKO, without
a CMD header
read the 4K TRACED file into memory

r TBACKO starts at paragraph bbhb
read LOADER.CMD to anOther area of
memory
LOADER.CMD starts at paragraph xxxx
move the I ceder to where sector 2
starts in the track image

r write the track image to the file
TRACED

A>DDT86
-rboot. cmd

START EHD
aaaa:0000 aaaa:027P
-wtrmck0,80,107f

- r t r ack0
START EHD

-bbbbI0000 bbbbsOPFF
-r loader .cmd

START END
-xxxx30000 xxxxgOE7H
-mxxxxrSO,OE7F~bbbb:0200

-wtrackOrhbbb: 0 wOHE8'

The final step is to place the contents of TRACKO onto track 0. The
TCOPY example program accomplishes this with the fol'owing command:

A>TCOPT THACHO

9-6

9.4 T r ack 0 Construct ionConcurrent CP/M System Guide

Scratch diskettes should be used for testing the Boot Sector and
Loader. TCOPY is included as the source file TCOPY.A86, and needs
to be modified to ran in hardware environments other than the IBM
pC. TC O P Y o nly runs under Cp/M-86 and cannot be used unde<
Concurrent CP/M.

The Loader can be debugged separately from the Boot sector under
DDT-86 or s I D - 86 , u s i ng t h e f o l l o wing commands:

A>ODT86
-rloader .cmd

START END
aaaa:0000 aaaa:OE7F
-haaaa,8
Yyyy i ««
mes

-1900

or SID86

aaaa i.s paragraph where DDT86
places the Loader
Add 8 paragraphs to s k i p over CND
header, aaaa + 8 YYYY

set CB fo r d ebugging
IP is set to 0 by DDT86 or SID86

CS o000 YYYY

• •

The 1900 command lists the jumps to INIT, ENTRY and LOADP to verify
the Loader Program and the loader BIOS are at the correct offsets.
Breakpoints can now be set in the Loader Program and Loader BIOS.
The Boot Sector can be debugged in a similar manner, but sectors 2
through S need tc contain the Ioader image if the JMPF IOADER
instruction in the Boot Sector is to be executed.

9.5 Other Bootstrap Methods

The preceding three sections outline the operation and steps for
constructing a bootstrap loader for Concurrent CP/M on the IBM PC.
Many departures from this scheme are possible and they depend on the
hardware environment and the goals of the implementor. The Boot
Sector can be eliminated if the system ROM (or PROM) can read in the
entire Loader at reset. T h e L oader can be eliminated if the
CCPN • SYS file is placed on system tracks and the ROM can read in
these system tracks at reset. However, this scheme usually requires
too many system tracks to be practical. Alternatively, the Loader
can be placed into a PROM and copied to RAN at reset, eliminating
the need for any system tracks. If the Boot Sector and the Loader
are e l i minated, any i n i t i a l i z a t ion normally performed by the two
modules must be performed in the XIOS initialization routine.

9-7

Concurrent CP/N 8ystea Guide 9.6 Organisation oi CCPN.SYS

9 • 6 Orgaaixat i cn of CCR%.NTS

Ths CCPN.SYS file, generated by GESCCPN and read by the Loader,
consists of the seven *.COB files and any included +.RSP files. The
CCPN.SYS file is prefixed by a 128-byte CND Eeader Record, which
contains the following two Group Descriptors~

G-NinG -Form 0- Len g t h A-Base G-Nex

01h XXXX 1008h XXXX

02h XXXX (varies) XXXX XXXX

Figure 9-4. Group Qescriptora — CCPN.SYB Header Record

The f'irat Group DeeCriptcr repreeenta the 0.8. Cade GrOup Of the
CCPN.8Y8 file and the second represents the nsta. The preceding
Cade Group nescriptor has an A-Base load address at paragraph 10088,
or 'paragraph>byte' address of 01008i00008. The A-Base value in the
Data Group Descriptor varies according to the nodules included in
this group by GENCCPN. The load address value shown above is only
an eXaaple. The CCPN.SY8 file can be loaded and executed at any
address where there is sufficient aencry space. The entire CCPN.SY8
iile appears on disk ae shown in Figure 9-5.

9-8

Concurrent CP/M System Guide 9N6 Organi ea t i On o f CCPH.SYS

Image in Hemory

(High Memory)

Image i u CCPH.SYS

ENGSEG

Disk B uf f e r s
(End of Pi l e)

RSPe
(including THP, CLOCK)

ONS • Table Space
CCPH. SYS

DATA
GROUPSystem

Data
Area

XIOS Code and Data

~ DC00 H ~
(XIOS)

O.S. Data

~ X I US ~
(CS: NDS:)

GSSEG

O.S. Code
CCPN.SYS

CODE
GROUP

CCPH.SYS
HEADERLcw l4emcry

(Start of Pile)

tigure 9-5 • CCPH System Image and the CCPH.SYS tile

The CCPH.SYS file is read into memory by the Loader beginning at the
address given by Cade Group h-Base (in the example shown above,
paragraph address 1008H), and control is passed to the Supervisor
IHIT function when the Loader Program executes a JHPP instruction
(Jump Par) to 1008:0000H. The Supervisor IMIT must be entered with
CS set to the value found in the A-BASE field of the cade Group
Daecriptor, the IP register equal to 0 and the DS register equal to
A-BASE value found in the data Group Descriptor.

End of Sect ion 9

9-9

Becloud lo
OEM Utilities

B cosuaercially viable concurrent cp/N system requires DEÃ-supported
capabilities. These capabilities include methods for formatting
disk and image backups of disks. Typically, an OEN supplies the
following utilities:

• Disk Formatting Utility iPORMRT CMD)
• Disk Copy Utility (DCOPY.CND)

These utilitiea are usually hardware-specific and either make direct
XIOS calls or go directly tc the hardware.

10 • 1 Bypassing the BI|OS

When special OEN utilities bypass the BDOS by making direct XIOS
calls or going directly to the hardware, several programming
precautions are necessary to prevent conflicts due to the Concurrent
CP/M multitasking environment. The following steps must be taken to
prevent other processes from accessing the disk system:

1. Mam the user. This program bypasses the operating system. No
other programs should be running while this program is being
used.

2. Check f' or Version 2 or 3.1 of Concurrent CP/ N th rough t h a
S OSVER function. The following steps are specific to these
versions of Concurrent Cp/N. They do not work in previous
Digital Research operating systems, nor are t'hey guaranteed to
work in future Digital Research operating systems.

3 . Set t he pr o c es s pr iority to 150 or be tter through the
P PRIORITY function. If another program is running on a
background console, it cannot obtain the CPU resou~ce while
this program needs it.

4. Set the P KEEP flag in the Process Descriptor to prevent
termination of the operation without proper cleanup.

5. M ake sure t he p r o g r am ie r u n n i .ng in t h e f o r e g r o und and that t h e
console is in DYNAMIC mode. Then lock the console into the
foreground by setting the NOSWITCH flag in the CCB. This
prevents the user from initiating e program on another virtual
console while this program is running in the background.
Because the file system is locked, a program cannot load from
disk.

6 • Make sure there are no open files in the system. This also
deteCta background virtual Consoles in BUFYERED mode.

10-1

10.1 Bypassing the BOOSConcurrent CP/M System Guide

7 • LaCk the SDQS by reading the KXdiak gusue message.

8. Yca can now safely perform the FDRHAT and DcoPY operations an
the disk system, independent of the BOOS •

9. Once the operations are complete, allow the disk system to be
reset by setting the logan sexxuencs number in each affected DPH
tc 0. When the dink Syatam ia react, theae driVSS are react
even if they are permanent. The login sequence field is 06h
bytea from the beginning of the DPH •

10. Releaae the BDOS by Writing the NXdisk queue meaaage,

11. Reset the Disk System with the DRV RLLRBSBT function,

12. Unlock the console system allowing console switching by
unsetting the NOBWZTCH bit of the CCB FLAG field in the CCB.

13. Reset the P BBBP flag in the Process Descxiptor.

14. Terminate .

Listing 10-1 illustxates these steps and shows how to make direct
XTOS calls to access the disk system. The routines corresponding to
the steps axe labeled for crass-reference purposes.

10-2

10.1 Bypassing the BDQSConcurrent CP/M System Guide

80PAGEKIDTH

t titt i i i t t t t t t *t t i i t t t t t t t t tit * t * t i t t t t t *t * t * i * i t * i * i
I
yt

• *
PSYBICAL. A86

Bample Program Illustrating Direct Calls to
I

yt the Disk Routines in the XIOB.
it

yt
g • '

y t*tt t*'t**t'tt**tt i***i it**i*t 'it**i*t t*titt***t t it'i*it t

true
false

I'his program will lock ths console and disk
systems, read s physical sector 'into meeory
and gracefully terminate.

equ 0 f f ffh
squ 0

equ Odh
equ Oah

equ 224
e qu 01420 8

cr
lf

ccpmidt
copmver2

XIOB functions

io seldsk
io read
i o wr i t e

equ 09h
equ Oah
equ Obh

8YSDAT Offsets

equ 028h
equ 047h
squ 0 54h
equ 088h

P rocess Descr f p t c r

sy sentry
sy nvcns
sy cch
s y openfi l e

squ w ord pt r 0 6 h
equ w ord pt r 0 1 0 h
equ 00002h

Console Control Block
ccb si ze equ 02ch
c cb sta t e equ word pt r Oeh
c f bu f f e r e d equ 00001h
c f background eq u 00002h
cf noswi tc h eq u 00008h

p f l ag
p ude
pf keep

Listing l0-l. Disk Utility ProgramingExample

10-3

C oncurren t C P/8 Systea Guile 10.1 B y p ass ing t h e EDOS

Disk Paraas te r Header

equ b yte p t r 06 hdph l s eg

drvvec b i t s

aalu 00001h
e gu 00002 h
sou 00004h

drivea
driveb
drivec

***illktk**itlssts*sss4 ktsw ts st%sf s s Rt s*sss*ksttsssss
, s
I

;* CODE SEGEEET

. *itt*t t*s11issts stvs*s* * * s t * I *'Ittts'ttt%t %s%sts*st tv%%J

CSEG
ORG 0

Switch Stacks to nake sure we have enough.
This i a d one w i t h i n t e r r u p t s o f f .

I Old 8086'a and 8088' s will allow 'an
interrupt between SS and SP setting.

p ushf I po p b x
cli
mdiv ax,ds I aov ss ,a x
SOv ap,cf feet tas
push bx I p opf

r Step 1 • - Kern t h e u s e r .

sov dx,warning I call c writebuf

Step 2 . — Check fo r C oncur r en t C P/N V3.1

call s o s var
a nd ax,Qf f f o h
cap ax,ccpaver2 I j s goo d v e r s i o n

j ap bad vers ion
g ood vers i o n i

Step 3 - Sst priority to 150

aov d1,150
call p riority
call get osvaluss

: prio r i t y 150

; get OS va l ues

Listing l0-1 (csmtinoed)

10-4

10.1 B y passing the BDQSConcurrent CP/l4 System Guide

Step 4 - Set the P KEEP flag in PD

call no terminate

Step 5 - L ock t h e console

c al l l oc k c an

Htsp 6 and 7 - Lo c k t h e BDQS,

; set p k eep f l ag

; lack conso l es

make sure there are no open files

call lock disk

Step 8 - Perform the Operation

call aperatian

jmp terminate

tlock bdos

; do operat i o n

;terminate

a peret i an :

Do our disk operations. lf we make changes to a
disk, make sure to set the appropriate bit in the
drvvec variable to force the BDOS to reinitialixe
the drive. Xn this example are anly going to
read a physical sector from disk.

2

Lets read Track 2 Sector 2 of drive B
with DNA set to sectorbuf
SetuP far Direct XQ READ call with
2QPB on Stack .

;save fo r DNA seg

do the r e ad

mav &xgds
p ush es ! p u s h d s
mov es,udaseg
mov ds,sysdat
mov ch,l ; mscnt 1
mov cl , 1 1 p ush cx ;dr i ve ~ B
mov cx,2 ! pu sh cx ; track 2
mov cx,2 I pu s h c x i isec'tor
push ax ;DNA Seg ~
mov cx,offset sectarbuf
push cx)DMA Ofst
mov ax.io re ad

calif dword ptr .sy xentry
a dd sp , l 0
pop ds l pop as
cmp al,0 I je success

call c writebuf

2 Our DS

mov dx,offset physerr

Listing 10-1. (continued)

10-5

lc.l Bypassing the BDOSConcurrent CP/K Bystem Guide

success
farce a keystroke to allow testing
of locking mechanisms

jmp c r e ad

get osvalues:

t get system addresses for later uae
I

Get System Data Area Segment
push es
call s sy s dat
mov sysdat ,ee

Get Process Descriptor Address
call p pdadr
mov pdaddr,bx

Get User Data Area 8egment for
X I08 ca l l s

mov ax,asap uda(bx)
mcv udaaeg>ax
pop es
ret

no terminates

r Set the pf keep i'lag. re cannot be terminated.

mcv bx,pdaddr
push ds I mov ds ,sysdat
or p flag[bx],pf keep
pop Ks
ret

Lock disk :

Lock the BDO8 • No BDQS calla rill be allowed in
the system until we unlock it.

i get currently logged in drives
y for later reset

call drv loqinvec
mov drvvec y&K

mov dx,offset mxdiskqpb I cell q open
mov dx,offset mxdiskqpb l call q read

>read mxdisk queue message

>turn on bdoelock flag for
p terminate

m ov bdoslock, t r ue

X isting 10-1. (con t inued)

10-6

Concurrent CP~ System Guide 10.1 B ypass ing t he BD08

Jverify no open files. This will
; also check background coneolee i n
;buffered mode since they have open
;fi,les when active.

cmp word ptr .sy openfile,0
pop de
j e l c kb

push de l mov ds , s ysdat

JError , o p e n f i l es
jmp opanf

l ckb : r et

M cs u n l o c k :
J

unlock the BDOS. Beset all logged in drives to
make sure BDOB reinitializes them internally.

Jreset all loggedin drives as well
;ae drives we have played with.

xor cx,ox
mov ax,drvvec

rasatd: cmp cx,l6 l j • rdcne
test ax,l l jz nextdrv

J we have a l ogged i n d r i v e ,
; get DPH address from XIOS

push cx l p u sh a x
push es l p u sh d e
mov es,udaseg
mov ds,syedat
mov ax, io s e l d s k
mov dx,0
calif dword ptr .ey xentry

J if legal drive, set
l ogin sequence 4 t o 0 .

xret :

nod iek: pop da l pop es
pop ax l p o p c x

cmp bx,0 l j e no d i s k
m ov dph l seq [bx j , 0

J t ry another d r i ve
inc cx
ehr ax,l
imps resetd

nextdrv

J all drives can be reset,
write mxdiek queue message

J reset ail drives
rdone: mov dx,offset mxdiskqpb

call q write
jmp drv reeetall

Listing 10-1. (continued)

3,0-7

Concurrent CP/K System acids 10.1 B y p ass ing t h e BDOS

lack con:
1

Lock the console system

call g e t ccbadr
mov bx,ccbadr
push ds [mov d s , s y s ds t
p ush f L c l i

m ake sure our console i s
i fo reground, dynamic

cmp ccb state [bx],0 I je foreg
p opf I p o p d s
jmp in back

foreg:
r set console to NOSWZTCH

or ccb state[bx] <cf noswitch
PoPf [poP ds

turn on conlock flag for
terminate

mov conlock, t r ue
ret

con unlock:

g Set console to switchable.
I

mov bx,ccbadr
push ds [mov ds , sysdat
and ccb etate[bx],not cf noswitch
pop ds
ret

getccbadr :

Calculate the CCB address fcr this console.

call c gatnum
xor ah,ah
mov cx,cob eisa I mul cx
push ds i mov de,sysdat
add ax,.sy ccb
pop ds
mov ccbadr,ax
ret

bad vers ion :
I

mov dx,offset wrong version
jmps er rou t

L ist i ng 10- 1 . [continued)

10-8

Concurrent CP/!4 8ystem Guide 10.1 Bypassing the BDOS

in back: mov dx, of feet in b

ackground
j ape er r ou t

openf:
I

mov dx,o f f s e t o p e n f i l ee

call o |rritebuf
e rrou t r

terminater

Step 9,10,11 Clean up the file system

crap bdoelock,false ! je t01
cell bdos un lock

Step 12 — Unlock the console system

t01: c m p conlcck,false ! je t02
call cc n un lock

I step 13 — Unset the P KEEP flag in PD

mov bx,pdaddr
push ds ! rsov ds,syedat
and p flag[bx],not. pf keep
pcp ds

; Step 14 - Terminate

jmp p te rmcpe

t02:

QS functions

c getnum:
c read:
c wr i t e b u f :
drv l c g i n vecr
d rv r eeet a l l :
p pbadrr
p pr i o r i t y :
p termcpm:
q openr
q read:
q wri t e :

s eyedet:
ccpm

mov c1,153 I j mps ccpm
mov cl,l I jmpe ccpm
mov cl,9 ! jmpe ccpm
mov cl ,24 I j mps ccpm
mov cl,13 I jmps ccpm
mov cl , l 5 6 ! j m pe ccpm
mov cl,145 I jmps ccpm
mov c1,0 I j a p e c c pm
mov cl, 135 ! jmps ccpm
mov c1,137 ! j mps ccpm
rsov cl,l39 I jmps ccpm
mov c1,163 I j mpe ccpm
rsov c1,154 I j mps ceps
int ccpmint

e Qsver:

ret

r isting 10-1. (continued)

10-9

Concurrent CP/B Byates Guide 10 • 1 Bypassing the BDOS

) t**t t t t t t t t t * t t t * tt t t * t * * * t t * ** t t t t t t t t t t t t t t t tt t t t t t

I* DATA SEGMENT

~ ttttt t tt tttett t t * tt t t t tt t t t t t t t t tt tt t t t* t t t t t tt * t t t t*

DSBG
ORG

aysdat
pdaddr
udaseg
ccbadr
drvvsc
bdcslock
conlock

axdiskqpb

0100H

dw
dw
dw
dw
dw
db
db

dw
db

0 0

0 0 0 f alse

false

0,0,0,0
'MXdisk

'ERROR MESSAGES

war ning

open fi l es

physerr

wrong version

in background

db
db
db
db
db
db

4b
db
db

db
db
db

db
db
db
db
db
4b
db
db

db
db

'PRYSICM s T his p r o g r a m
'bypasses the operat inc
' eystee. ' , c r , l f
'Make sure no o ther
' programs are running. '
c r, l f

'PKYSICAI s must bs run
' in the foreground, in'

DYNAMIC mode. ',cr , l f , ' 0 '

' PHYSICAI" runs only o n
'Concurrent CP/M Version 2'
c rg l f g 6

'PHYSICAL: cannot r u n '
'while there are open files.'
c r (i f
'If any virtual consolee are'

in BUPFERED soda (I fc r / i f
'Use the VCMODE D coeeand to'

aet a virtual console to
' DYNAMIC node. ', c r, l f

'Physical E r ro r o n Read. '
c l t l f r ' 0

1024sectorbuf

Listing 10-1. (continued)

Concurrent CP/W System Cuide 10 • 1 Bypass ing the BUDS

Lots of stack. Bottom prefilled with Occh
(INT 3 instruction) to see if we are
overrunning the e t ack . Al s o i f we
accidently execute it under DDTB6,
a breakpoint o c c u r s .

DW
DW
DW
DW
DW

DW
DW

OCCCCH,OCCCCH,OCCCCH
OCCCCH,OCCCCH,OCCCCH
OCCCCH,OCCCCH,OCCCCH
OCCCCH,OCCCCH,OCCCCH
OCCCCH,OCCCCH,OCCCCH
OCCCCHrOCCCCHrOCCCCH
OCCCCH,OCCCCH,OCCCCH
OCCCCH,OCCCCH,OCCCCH

01008
OCCCCH Dw at end o f DATA SEC

to make sure HEX i s
gene;ated.

END i End of PHYSICAL.A86

Iaisting 10-1. (c ontinued)

10.2 Directory Initialisation in the 70REAT Utility

The FORWAT utility initialises i'rash disk aedia for use with
Concu rr ant CP/W. It is wr it ten by the OEE and packaged with
Concurrent CP/W as a system utility. The physical formatting of a
disk is hardware-dependent and therefore is not discussed here.
This section discusses initialisation of the directory area of a nev
disk.

The PDREAT program can initialixe the directory with or without time
and date stamping enabled. 'fhis can be a user option in the PORWAT
program. If time and date stamps are not initialised, the user can
independently enable this feature through the IEITDIR and BHT
utilities.

It is highly recommended that the OEM supports the advanced features
of concurrent cP/w including time and date stamping in the PDRNAT
program. Th is allows the user to use these features in their
default disk format. Otherwise, the user must first learn that date
stamps are possible and then must use the IWITOIR and SET utilities
to allow the use of this feature. If the disk directory is too
c lose t c being f ull, the lMITDIR program will not allow the
restructuring of the directory that is necessary tc include SFCB's.

10-11

Concurrent CP/M Syetea Guide

The coat of enabling the tiae and date staap feature on a given disk
is 25% of its total directory space. This space is used to store
the tine and date inforaation in special directory sntzias called
SFCBe. For tiae and date etaapingi every fourth directory entry
aust be an SZCB. E ach SFCB ie logically an extension of the
previous three directory entries. This aethcd of storing date-stasp
inforaation allows efficient update of date staaps since all of the
directory inforaatian for a given file resides within a single 128­
byte logical disk reccrd.

A, disk under Concurrent Cp/M ie divided into three areas, the
reserved tracks, the directory arse and the data area. The slee of
the directory and reserved areas ie deterained by the Disk Paraaeter
Block, described in Section 5.5. The data area starts on the first
disk allocation block boundary following ths directory area.

10.2 D ir ec t o r y Z n it i el i sat i on

Eeserved Tracks

Directory Area

Data Area

Figure 10-1. Concurrent CP/5 Disk layout

The reserved area and the data area do not need to be initialieeC tc
any particular value before use ae a Concurrent CP/N disk. The
directory area, on the other hand, aust, be initialieed ta indicate
Mat no files are on the disk. Also, as discussed below, the FOHQT
pragraa ran reeerVe spare for tiae and date inforaatian and
initialise the disk to enable this feature.

The directory area is divided into 32-byte structures called
Dirsctary Entries. The first byte of a Directory Entry dsteraines
the type and usage of that entry. For the purposes of directory
initialisation, there are three types of Directory Entries that are
of. concernc the unused Directory Entry, ths SFCB Directory Entry
and the Directory Label.

A disk directory initialised without tiae and date etaaps hae only
the unused type of Directory Entry. An unused Directory Entry ie
indicated by a OE5H in its first byte. Ths remaining 31 bytes in a
Directory Entry ars undefined and can be any value.

10-12

Concurrent CP/N System Guide 10.2 Directory Initialisation

OH 18

entry 0 OE5H
1 OE5 8
2 Q E5H

208

undefined

n OE5 8 undef i ned

Pignre 10-2. Directory Initialisation Hithont Time Stamps

A disk d i r e c t o ry i n i t i al i ze d t o en a b le t i m e and date s t a mps must
have BPc8's as every fourth Directory Entry. An BPGB has a 021H in
the f irst byte and all other bytes must be QH. Also a directory
label must be included in the directory. This is usually the first
Direc t o r y En t r y o n t he d i sk . Th e d i r ect o r y l abe l mu s t be
i ni t i a l i s ed ae shan i n P i g ure 10-3 .

OH 18 OCH Q DH OEH OPH 108

DATA 0 0 8 OOH 008

10H 118 1 28 13H 14H 15H 168 17H 18H

20H 208 208 208 208 20H 208 20H

188 198 1AH 1BH 1CH l DH 1EH 1FH 208

008 O OH QQH 008 0 08 008 008 008

Figure 10-3. Directory Label Initialization

10-13

Concurrent Cp/I Systsn guide 10.2 Directory rnitialixation

TSMe lO-l. Directory Label Data Fields

Pield

NAÃE A n 11 byte field containing an ASCII narxe for the
drive. Vnused bytes should be initialised to
blanks (208) .

zxplanat ion

DATA A bit fie l d t hat t ells the S D OS g eneral
characteristics af files on the disk. The DATA
field can assune the following values:

e 060S enables date of last jscdificaticn snd date
af last access to be updated when appropriate.

• 0308 enables date of last modification and date
of creation ta be updated when appropriate •

The ~ pro graa should ask the user fcr the nane of the disk and
whether ta use the date of last access or the date of creation fax'
files on this disk. The date af last ncdiiicatian should always be
used. rf ths DATA field is Oa ar if the Directory r abel does nat
exist, the tisLe and date feature is not enabled. The DATA Plaid
aust be OH if SPCB's are not initialised in the directory.

10-14

Concurrent CP/K Systest Uuide 10.2 Directory XnitialisatiOn

entry 0

5 6

1 2 3 4

OH l a

0208
OsSa
OESH
021H
OHSH
Ossa
085H
021H

HANS r DATA
undefined
undefined
HULLS
undefined
undefined
undeiined
HULLS

20a

(Directory Label)
(Unused)
(Unused)
(SPCB)
(Unused)
(Unused)
(Unused)
(SIC B)7

OSSa
OSSH
OESH

n 02l H

undefined (Unused)
undefined (Unused)
undefined (Unused)
H ULLS (SFCB)

Hi@are 19-4. Directory Xnitialisaticn With Tile dtaaps

snd of sec t i o n 10

10-15

Section 11
End-user Documentation

OEMs must ba aware that the docussntstian supplied by Digital
Research for the generic release of Concurrent CP/M describes only
the example XIOS implementation. If ths OEM decides to change,
enhance, or eliminate a function which impacts the Concurrent CP/5
operator interface, he must eisa issue documentation describing the
new implementation. This is beat done by purchasing reorint rights
ta the Concurrent CP/M system publications, rewriting them ta
reflect the changes, and distributing them along with the OEM­
modified system.

One area that is highly susceptible to modification by the OEM is
the Status Line XIOS functian. Depending upon the implementation,
it might be dssirabls ta display different, mors, or even no status
parameters • The documentation supplied with Concurrent CP/Ã,
however, assumes that the Status Line function is implemented
exactly like the example EIUS presented herein.

Another area which the OEM might want to change is the default login
disk. At system boot time, the default system disk as specified in
the system GEECCPE session is automatically lagged-in and displayed
in the first system prompt. However, a startup command file,
BTARTtP.S, where E is the Virtual Console number, can be implemented
far each Virtual Console. This file can switch the default logged­
in disk drive to any drive desired. However, the Concurrent CP N

ratin 6 stem User'e Guide assumes that the prompt ri 1 s ow t e
system sk. Por more nf ormaticn on star tup files, see the
Concurrent CP 0 eratin 8 stem User's Guide and the Concurrent
CP M 0 ratin S stem Pr rammer • s Reference Guide.

The Concurrent CP/N system prompt is similar to the CP/M 3 prompt in
that the User Eumber is nct displayed for User 0. If the user
changes to a higher User Number, then the User Eumber is displayed
as the first character of the prompt, for example 5A~. If the OEM
wants to change this, or any other function cf the user interface,
such as implementing Programmable Function Keys, he can rewrite the
TMP module source code included with the system. However,
documenting these changes is entirely the OEM's responsibility.

End of Sec t i o n 11

11-1

Appendix A
Removable Media
b

All disk dr fvae are classif fed under Concurrent CP/8 as having
either permanent or removable media. Remcvabls-media dr ives support
media changes' permanent drives do nct. Ssttfng the high-order bit
of ths CKS field cf the drive's DPB marks the drive as a permanent­
media drive. See Section 5.5> Disk parameter Block.

The BOOS file system makes twc important distinctions between
permanent and removable-media drives. Tf a drive is permanent, the
BD08 always accepts the contents cf physical record buffsrs as
valid. It also accepts the results of hash table searches on the
drive.

BDOS handlfng of removable-media drives is more complex, Because
the disk media can be changed at any time, the BoOS discards
directory bufiers before performing most system calla involvfng
directory searches. By rereading the disk directory, the BDOS can
detect media changes. When the BDOS reads a directory record, it
computes a checksum fcr the record snd ccmpares it tc the current
value in the drive's checksum vector. Zf the values do not match/
the BDOS assumes the media has been changed, aborts the system call
routine, and returns an error code to the calif ng process.
Similarly, the BDOS must verify an unsuccessful hash table search
for a removable-media drive by accessing the directory. The point
to note ie that the BOOS can only detect a media change by reading
the dfrectory.

Because of the freguent necessity of directory access on removable­
media drives, there is a considerable performance overhead on these
drives compared tc permanent drives. Another disadvantage is that,
since the BDOS can detect media removal only by a directory access,
inadvertently changing media during a disk write operation results
in writing erroneous data onto the disk.

If, however, the disk drive and controller hardware can generate an
interrupt when the drive door is opened, another option for
preventing media change errors becomes available. By using the
following pzccedure, the performance penalty for removable-media
drives is practically elfmfnated.

1- mark the drive as permanent by setting the value of the cKB
field in the drive's DPB to 8000H plus the total number cf
directory entries divided by 4. Por example, you would set the
CXS for a disk vfth 96 directory entries to 001BH.

2 • Write a Door Open Interrupt routine that sets the DOOR field fn
the XIOS Header and the DPE media Slag for any drive signalling
an open door condit ion.

Removable MediaConcurrent CP/8 System Guide

The BDOS checks the XIOS Header DOOR flag on entry to all di.sk­
related XIOS function calls. If the DOOR flag is not set, the BDOS
assumes that the removable media has not been changed. If the DDDR
flag is set (OFPE), the SDOB checks the Media Flag in the DPH of
each currently logged-in drive. It then reads the entire directory
of the drive ta determine whether the media has been changed before
performing any operations an the drive. The BDOS also temporarily
reclassifies the drive as a removable-media drive, and discards all
directory buf fera ta force all subsequent directory-related
operations ta access the drive.

In sunwaary, using the DOOR and Media Flag facilities with remavable­
media drives offers two important benefits. First, performance af
removable-media drives ia enhanced. Second, the integrity of the
disk system is greatly improved because changing media can at na
time result in a write error.

End of Appendix A

Appendix B
Graphics implementation

Conaurrent CF/R can support graphics an any virtual console assigned
to a physiaal insole that has graphics aapabilities. 8uppart is
provided in the operating system fcr OSX, that has its own separate
I/O system f GZDS • The ADIOS does i ts own hardware initia 1 f sation to
put a physical console in graphics mode. A graphics process that is
in qraphics mode can not run on a background console, because this
would cause the foreground consols to change to graphics made.
Also, whenever the foreground console is initialired for graphics,
you cannot switch the screen to another vir tuel console. The
foUcwing points need to be kept in mind when writing an XZOS for a
system that wi l l s u ppor t g r aphics •

• ZO SCEEEH (Punction 30) will be called by the GZOS when it
wants to change a virtual console to graphics or aiphanumeric
Node. If the virtual console is in the background and graphics
ie requeeted, ZO SCEEEE suet flagWait the prcceee. If the
virtual console is in the foreground, ahange the screen mode
and allow the process to continue. You must reserve at least
one flag for each virtual consols for this purpose. See
Section 6.1 "Screen I/O Functions for more information on
IO SCREEN.

• ZO SWITCH (Punction 7) must flagset any process that was
flagwaited by IO SCREEN when its virtual console is switched to
the foreground. When a foreground console is in graphics mode,
ZO SWITCH will not be called, because PZH calls Function 30
(get), ignoring the switch key if the screen is in graphics
made. Thus while a graphics process is running in graphics
Node in the foreground, it is not possible to switch screens.
Por Nore information on ZO SWITCH eee Section 4.2 "Console I/O
P unct icns ' .

• IO STATLZHE (Function 8) must not display the status line on a
console that is in graphics mode. This can be done by checking
the same variable in the screen structure that Function 30
returns as th e sc r e en No d e. For mor e in f o r mation on
IO STATLIN3 see Section 4.2 "Console I/O Functions'.

End cf Appendix B

Index

8

Background made, 4-6
Basic Disk Operating System,

& DO&. 1-3 « l - l 1
BDO8 system calls, 1-11
BDOB . CQM, 2 2
BIO& Conversion to XZO&, 3-14
QIOB Jump Table, 3-13
Blocking/Deblocking Buf f ers,

Blacking/Deblocking
C hanges f ram CP/N-&6, 3 - 1 4

b reakpain t s , 8- 2
Bypassing the BOO&, 10-1

ABORT.REPS 2 2
Allocation Vector Address, 5-23
A LV, 5 - 2 3
Auto density support, 5-50
Auxiliary input, 4-15
Auxiliary output, 4-16

1-3

5-9

1-3 I 1 - 1 1

Data Suffer Control Block
Header Address, 5 - 23

C«BQ'ATNODB, 2-7
c oE fixes, 2 - 2
Concurrent CP/N Argani sat i an,

Concurrent CP/N
features, l-l
levels of interfacing, l-l
System Overview, l-l
XIO8) I 1

Console Control Black, 4-1, 4-2
Cansole i n p u t , 4- 8
Console input status, 4 7
C onsole output , 4 - 9
Cansole switahing keys, 4-8
consoles, 4 - 1
CEV, 5-22
CTRL-O, l - l . 3
CTKr Pp 1 1 3 ~ 4 4
C TRL-&, 1- 1 3

1-11

CLOCE'.R&P, 2-2

C CB, 1 - 1 8 (4 - 1) 4 - 2
CCB initialization, 4-3
cCB table, 4- l
CCPM.BYS, 2 - 1 , 3 - 8 , 8 - 2
C CPN.&Y8 Header Record, 9 - 8
CCPNLOR, 3- 8
C CPNBEG, 1- 1 7
CCPNVERGVN, 1-19
Character Control Bloak,

Character I/O, 4-1, 6-1
Character I / O Nanager, 1 - 1 1
Character I/O Nodule, 1-3
Checksum Vector A d d re ss, 5 - 22
CIA I 1 - 3
C ZO m«xlule, l - l 1
CZO system cal l s , l - l l
C ZO.COB, 2 - 2
Clock, 3- 1 4

cL&xzE, 5 -3 2
«34D fi l e He a d e r, 8- 2
CNDLOGGZEG, 2-7

Address, 5 - 2 3

DATBCB, 5 -2 3
D AY PILE, 1 - 1 7
Device Polling, l-6
Device p c 1 1 i ng , 4- 16
Dev f l a g s s t , 2- 9
DElf FLAGWAIT p 4-7
D ev flagwt, 2 - 9
DEV POLL, 4- 7 , 4- 16
DEl/ POLL system call, 1« 6
D Elf &ETPLAG, 4- 7
DEV BETPLAG sys t sa ca 11 , 1 - 6
DEV WAITPLAG sys tem ca 11 , 1- 6
D ZR.R&P, 2 - 2
D ZRcB, 5- 2 3
Directory Buffer Control Black

Directory buffer space, 2-15
D irectory 'hashing, 2 - 1 5
Director y h a s h i ng sp a ce, 2 - 15
Disk buffering, 2-15
Disk def i n i t i o n tab l e s , 5- 9
Disk Er r o r s , 5- 17
Disk I/O Functions, 5-1
D isk I / O

Nulti sector, 5-11
Disk Parameter Blocl«Address,

5-22

Index-1

Disk Parameter Block Norksheet,

Disk Parameter Header ,

disk p erformancet radeof fs ,

Diepatc'har, 1- 6
DISPATCHER, 1-16
Display status line, 4-11
DLR, 1-18
IB4AOPP, 5-12
DNASEG, 5-1 2
DOS disk er r o r s , 5 -4
DOS disks, 5 - 1
DOS DPB, 5 - 3 1
DOS IOPB, 5 15
D OS sector r e ad , 5 - 6
DOS sector write, 5-8
D PB, 5 - 2 2
OPB Wozkeheet , 5- 35
DPB

Changes from CP/M-86, 3-14
DPBASE, 5-26
DPH, 5-21
OPH a nd GENCCPM, 2-1 5
D PH Table, 5 - 2 6
DPH

C hanges f rom CP/N-86, 3 - 1 4
ORL, 1-18
ORV r 5-11

5-35

5-2, 5 - 2 1

2-15

2 13

S ession, 2 - 1 4

c ommand, 2- 5

2 -2, 2 - 1 1

PLAGE, 1-18, 2- 6 , 2- 9
Plagset, 2- 9
Plagwai t , 2- 9
PLUSH BUPPEREg 5-9
Pragmentation memory, 2-11

GESCCPM, 1-1 , 1 - 1 .4 , 1 -2 1 , 2- 1
GESCCPM Boolean values, 2-2
GESCCPN command file

example, 2 - 1 7
QEBCCPM defaults, 2-2
G ESCCPN DELETESYS command, 2- 4
QESCCPM OESTDRIVE coaaand, 2-4
GESCCPN Dis'k Buffering Menu,

QESCCPM Disk Buifering 8ample

2-4

2-10

QERCCPN OZSKBUPFERS Menu

GERCCPM error messages,

GESCCPN GEHSYB command, 2-15
QEBCCP!4 GEMSYS Option, 2-15
GESCCPN HELP, 2-2
GESCCPN Help Punction Bcreens,

GEBCCPM Input Piles, 2-16
GEBCCPM Main Menu, 2-2
G EBCCPM Main Menu. options , 2 - 4
GEBCCPM Memory Allocation Manu,

GESCCPM Memcry Allocaticn
S ample Session , 2 - 1 0

ESDSEG, 1-17
ESTRY, 3-9 , 8 - 2
E guipment check , 6 - 1 1
B rror Handl i n g

D isk I / O , 5 - 1 7
E xtended disk e r r o r s , 5 -4
Extended DPB, 5 - 3 1
Extended I /O System, 1-13
Extended I npu t /Output System,

external memory iragaantation,

EXTPLAG, 5-32

1-3

2-11

Par Call , 3- 8
Par R eturn, 3 - 8
PAT, 5 - 2 4
PATADD, 5-32
Pile Allocation Table, 5-24
fixed-partition memory. 1-8

2-5

2-16

S ession, 2 - 1 2

GESCCPM MEMORY Menu command., 2-5
GEBCCPM memory parti.tions, 2-11
GESCCPM Operation, 2-1
GEllCCPN OSLABEJ Manu, 2-13
GEWCCPM OSLABEL Menu command,

GEBCCPM output redireoticn,

GEBCCPM prompt, 2-2
GEBCCPN RSP J ist Menu, 2-12
GEBCCPM RSP List Menu Sample

GESCCPN R SP Menu, 1 - 2 0
GESCCPM RBPs Menu command, 2-5
GESCCPN SYBPARAMS Menu command,

GESCCPJ4 Syetes Generation

GBBCCPN Syetaa Parameters Menu,

2-4

Messages, 2-16

2-5

Index-2

GENCCPM VERBOSE comaand, 2-4
GENDER, 5 -9
Get/set screen, 6-2
Get / Bet Bc r sen Mode, 6 - 1
Graphics implementation, B-l

Keyboard mode, 6 - 9

Hardware interface, l-l
H ash Table Segment , 5 - 2 4

ZNIT, 3 - 8 , 8 - 2
Znternal memory fragmentation,

Internal system calls, 3-21
i n t e r r u p t 1 ,0 , 6 - 1 , 6- 4
I nte r r up t 1 1 , 6 -1 1
Inter rup t 13 , 5 - 6
I nter r up t 1 6 , 6 -1 0
I nte r r u p t 2- 2 4 , 3- 9
Interrupt Handler, 3-16
Interrupt-drivsn daviaae, 3-15
Interrupt-driven Devices

Changes from CP/M-86, 3-1,4
Interrupt-driven I/O, 8-1
I nter r up t s

s purious , 3 - 9
Z OPB, 5 4 , 5 1 . 0

Changes from CP/M-86, 3-14
DOS, 5- 15

Z O , 1 - 3
Z O AUXISg 4 - 1 5
ZO AUXOUT, 4 1 6
XO COMZM, 4- S i 6 - 9
ZO CQSKXIT, 4- 9
ZO CQMBTg 4-7
IO EQCK, 6- 11
ZO PLUSH, 1- 13 , 5- 7
Z O ZMT13 READ, 5 - 6
ZO ZMT13 WRITE, 5-8
I O KEYBD, 4 -8 , 6- 9
I O LSTOUT, 4 - 1 5
IO 1 STET, 4 - 14 , 4- 15
Z O POLL, 4 - 1 6
I O READ, 1- 13 , 5 - 4
ZO SCREES i 4 1 0 i 6 2 g B 1
ZO SELDSK, 1 - 13 , 5 -2
ZO BHPT, 6 - 10
IO STATLXME i 1 13 i 4 4 i 4 6 •

ZO SWITCH, 4 - 10 , 1 3 -1
IO VIDEO I 6 4
ZO WRITE, 1 - 1 3 , 5- 7

2 l l

1~1

2-11

1-8

1-8

2-l l

LCB, 1- 19 , 4 - 2) 4 1 3
LZMK, 4-6
List Cantral Block, 4-2, 4-13
L iat d ev i c es , 4 - 2
List output, 4-1,5
LZBT OUTPUT g 4-15
I ist status, 4-14
L IST STATUS, 4 - 1 5
Locked r e c o rd s , 2- 7
LOCKMAXg 2-7
LOCK8EG, 1-18
L OCK MAX, 1 - 2 0
Logically invariant interface,

M disk i 5 47
M d rive, 5 - 4 7
M AL, 1- 1 9
M AXBUPBIEE, 4 6
MDUL, 1-18
M edia Plag , 5 - 2 2
Media type selection, 5-3
MEM, 1-3 g 1 - 8
M EM modu1.e 1 -8 , 2 -1 1
MEM, COB, 2-2
MEMMAX, 2 -7
Memory allocation, 2-11
Memory allocation defaults,

Memory Allocation List (MAL),

Memory Allocation Unit (MAU),

Memory Descriptor (ND), 1-8
Memory disk. 5 -4 7
Memory fragmentation tradeoffs,

Memory Prea List (MFL), 1-8
M emory Layout , 1 - 4
Memory management, 1-8
M eaory mapped X/0, 4 - 10
Memory Module, 1-3
Memory partitions, 2-10, 2-11
MP, 5-22
MPL, 1 - 1 8
M IMIC, 4 - 4
MMP, 1 -1 7

4-11, 4- 1 3 , 6- 9 , B- 1

Inder 3

RECIT g 5-11
NBOURCE, 4-14
Multiple media support, 5-50
Multiple-sector disk I/O, 5-4

Kultisector disk I/O
Changes from CP/M-86, 3-14

M Xdisk gueue, 1 - 13

Multisector Count, 5-11

4-1

Polled I/O, 8-1
PrOCees DeeCriptOr, 1-6, 1-21,

P UL, 1 - 1 8

QBUPSZSEg 2-9
Q LR, 1 1 9
QMAU, 1-18
Queue Control Block, 2-9
Queue

Mutual exclus iong 1-13
MXdisk, 1-1 3

Queues, 1-7
Conditional read/write, 1-7
Unconditional read/writs, 1-7

QUI g 1-18

I CCB, 1 - 1 7
ICCB f i e l d , 4- 1
ICIODEVg 1- 19
ICLSTRS g 5-32
ICOIDEVg 1-19
IPATRECBg 5-32
R PATS, 5 3 2
KFLASS g 1-17 g 2 -9
SLCB g 1-17
ILSTDEVg 1-19
NOPEHPZLES, 2-8
IPDESCB, 2- 9
IQCBSg 2-9
IVCHS, 1-1 7
IVCIB field, 4-1

OPP 8 087g 1 2 0
Open files, 2-7
OPESNAXg 2-7
O PER PILE, 1 -1 9
Q PEI NAXg 1 2 0
Operating System brea, 1-4
OBSTART, 2-8
O MSERg 4-4, 4 - 1 4
OWHER 8087g 1- 20

1 -21, 2 - 1

1 -3, 1 - 20

Read attri'bute/character, 6-6
Read cursor p o s i t i o n , 6- 5
Read DOS sector , 5 - 6
READ SECTOR, 5-4
Real-ties Monitor, 1-3, 1-6
Real-Tins Manitor, 4-16
R eentrant X ICS cods, 1 - 1 3
Register us age, 3 - 1 0
Resident System Process,

Resident Byetee Processes,

RLR, 1 1 8
R SP, 1-3 , 1 - 2 0
R BP Data S t r u c t u r es , 1 - 2 0
RSP f i l e s , 2- 2
RBP

PD and UDA, 1- 20
relative tO SXSDAT, 1-20

RSPSEG g 1-17
RTNg 1- 3 g 1 - 6
RTN process s chedul in g, 1 - 6
R TN Queue manageaentg 1 - 7
RTN system calls, 1-7
R TM.COIg 2- 2

Partitions
memory, 2-11

PC, 4-5
PC-NODBg 4-8 , 6- 1 , 6 - 9
PDIBP, 1-16
Physical console number, 4-5
P hysical consoles, 4 - 1
PZS.RSP, 2 - 2
PLR, 1-18
P OLL DEVICE, 4 - 16
Poll Device Iumber. 4-16
Polled Device Changes from

Polled dev ices, 3 - 1 5

Screen
screen
Screen
Screen
Screen
Scrol l

buffe r i n g , 4 - 1 , 4- 9
b uffe r i ng , 4 - 1 0
N ode, 6 - 1
m ode, 6 - 2
s tructure , 4 - 9
down, 6-6

CP/M-86g 3-14

Index-4

F unction, 5 - 2 7

S croll up, 6 - 5
S ECTOR, 5 1 2
Sectoz' Translation

C hanges from CP/N-86, 3 - 1 4
S EG 8087, 1 - 2 0
B ELDSK DPBASE Address Retur n

S ELECT DISK, 5 - 2
Semaphores, 2-9
Serial I/O, 4-10
Serial I/O devices, 4-1
Sst cursor position, 6-4
S hared code, 1 - 8
Shift statue, 6-10
Skew Table, 5 - 1 6
spurious interrupts, 3-9
STATE, 4"6
Status line, 4-4, 4-6, 4-11

u pda t ing, 4 - 1 2
BUP, 1-4
SUP ENTRY, 1-16
SUP Module, 1 - 3
SUP system calls, 1-4
SUP.COM, 2-2
S upervisor Nodule, 1 - 4
S witch scr een , 4 -1 0
SYSDAT, 1- 3 , 1- 21 , 5- 2
S YSDAT DATA, 1 - 3
SYBDAT segment, 1 - 1 4
SYSDAT Table Area , 1 - 3
SYSDAT • CQM, 2 2
SYSDZSK. 1-17
S YSDRIVE, 2 - 6
System calls

P CLZ, 1 - 3
P LOAD, 1-3

S ystem Clock, 3 - 14
System configuration, 4-1
B ystem Data Area, 1 - 3 , 1 - 1 4
S ystem Table Area , 1 - 1 4
SYS 87 OP, 1 - 2 0

TOD SEC, 1-19
TPA, 1-3
TRACK, 5-11
Transient Program Area, 1 - 3
Translation Table, 5-21

VC, 4-5
VERBOSE, 2-2
VERBUM, 1-19
VERSION p 1 "19
Video input/output, 6-4
Video IO , 6 - 1
Virtual console number, 4-5
Virtual consoles, 4- 1
VOUT • RSP g 2-2

UDA, 1-21
Unintialised interrupts, 3-9
U nused interrupts, 3 - 9
U ser Data Area , 1 - 2 1
User in t e r f a ce, 1- 1

Wozksheet
DPB, 5-35

Write attribute/ character , 6 - 7
Write character, 6-7
WRITE DISK S 5-7
Write DOS sector, 5-8
Write serial chazacter, 6-8

TEMP DISK, 1 - 1 8
Terminal Message Process, 1-1
T HRDRT, 1- 1 8
T ICKS/SEC, 1 1 8
T MP, 1- 1
THP. RSP, 2- 2
TMPDRIVE, 2- 6
T OD DAY, 1- 1 9
TOD HR, 1-19
T OD MIM, 1 - 1 9

3-13

3-13

XIOS, 1 -3 , 1- 13
XIOS Build System Requirements.

XIOS Building from CP/M-86 BIOS,

X I08 Clock, 3 - 1 4
X Ios Data Area, 1 - 4 , 1 - 1 4
XIOS ENTRY, 1-1 6 , 3- 9
XZOS Entry Points, 3-13
XIOS Function names, 1-3
XIOS IMIT , 1 - 16
XIOS Interrupt-driven Devices,

XZOS list Device Functions,

XIOS Segment Address, 1-4

3-15

4-13

Indez-5

XIQB
8 080 l4o4el , 1 - 4
c iebugging, 8 - 1
r eentrant c o da , 1 - 1 3
relationehip to CCPX.SYS

f i l e , 1- 4
eyurioua interrupt handling,

3-9

X IJl, 5 -2 1
XPCHS, 1- 20 , 4- 2

XIQSeCOMg 2-2

Index-6

NOTES

