il
DIGITAL
RESEARCH®

Concurrent CP/M”

Operating System

System Guide




COFYRIGHT

Copyright © 1584 by Digital Research Inc. All
tighta resarved. No part of thia publicaticn may be
reproduced, transmitted; transcribed, stored in a
retrieval systen, or translated into say language or
computer language, in any form oOr by any neans,
slectranic, mechanical, magnetic, aptical, chaxical,
nanupl or otherwise, without the prlor written
perniselon of Digital Research Inc., Post Office Box
579, Pacific Grove, Cmlifornia, 93550,

DISCLAIMER

Digital Reanarch Inc. makem no repregsantetlons or
warranties with raspect to the aontants hareof and
gpacifically dig¢claims any implied varranties of
rerchantability or filtness for any particular
purposs. Further, bigital Regearch Inc. ressrves
the right to reviss this publication and to make
changes frem time to time in the content herecf
without o¢bligation of Digital Research Inc. to
notify any parscn of guch revision or changes.

TRADEMARKS

CP/M, CP/M-86, and Digital Resaarch and its logo are
registerad trademarks of Diglital Ressarch Inc. ASM-
86, Conaurremt CB/M, DOT-86; MP/M-86, BID-86, and
GS8X are trademarks of Digital Reeearch Inc. Intal
is a registered trademark of Intel Corporation. IBM
is u registarsd tradepark of Intarnational Businama
Machinesa. ConpuPro is a reqlstared trademark of

Pro, a Godboyt Company. MNB-DOS ls a trademark
of Microsoft Carporation.

The Concurrent CP/M™ Operating Syatem Systen
Guide was prepared uding the Digital Research
TEX™ Text Formatter and printed in the United States
of Ansrica,

XX RRE R AL R ARk kb kA kAR hE

* First Edition: January 1984 #
EREEERRERREE R Rk kb bk kAR AEh Y



Foreword

Concurrent CP/M™ can be confiqured as a single or multiple user,
maltlitasking, real-time operating system. It is designed for use
with any disk-baged microcomputer using an Intel® 8086, B0B8, or
compatible microprocessor with a real-time clock. Concurrent CP/M
is modular in design, and can be modified tc suit the needs of a
particular installation.

Concurrent CP/M also can support many IBM® Personal Cemputer Disk
Operating System (PC DOS) and M8™ -DOB programs, 1TIn addition, you
can read and write to PC DOS and MS5-DOS disks. 1In this manual, the
term DOS refers to both PC DOS and MS-DOS.

The Iinformation in this manual is arranged in the order needed for
use by the system desgigner. Section 1 provides an overview of the
concurrent CPB/M system. Section 2 describes how to bulld a
Concurrent CP/M system using the GERCCPM utllity. Section 3
containg an overview of the Concurrent CP/M Extended Input/Output
Syatem (XI0S). XIOS Character Devices are covered in Section 4, and
Disk Devices in Section 5. Section 6 describes speclal character
I/0 Eunctions needed to support DOS programs.

A detailed description of the XIOS Timer Interrupt routine is found
in Section 7. Section 8 deals with debugging the XIOS. Section 9
discussea the bootstrap loader program necegsary for loading the
operating system from disk. Section 10 treats the utllities that
the OEM must write in order to have a commercially distributable
system. Section ll covers changes to end-user decumentation which
the OEM must make if certain modifications to Concurrent CP/M are
performed. Appendix A discusses removable media conaiderations, and
Appendix B covers graphics implementation.

Many sectiona of this manual refer to the example XIOS. There are
two examples provided. One 1s a single user system to run on the
IBM Personal Computer, The other is a multi-user ayatem running on
a CompuPro® 86/87 with serial terminals. The single user axample
includes source code for windowing support for a video mapwred
display. However windowing is not required for the system. The
source code for both examples appears on the Concurrent CP/M
distribution disk; we atrongly suggesat assembling the aource files
following the instructions in Bection 2, and referring often to the
assembly listing while reading this manual. Example listings of the
Concurrent CP/M Loader BIDS and Boot Sector can also be found on the
release disk.



pigital Research? supports the aser interface and software intezface

to Cencurrent CP/M, as described in the Concurrent CP ratin
System User's Gulde and the Concurrent Operatin stem

Programmer's Refarencge Guide., respactively. Digital Research does
nat support any a tions or modifigations made to Concurrent CP/M
by the OEM or distributer. Tha OEM or Concurrent CP/M diatributor
must alsc mupport the hardware Iinterfece (XYI0H) for a particular
hardware envircnment,

The Concurrent CP/M Syatem Guide i1s intended for uss by aystem
designers who want tc modify either the user or hardware interface
to Concurrent CE/M. It apaumed you have already implemented & CP/M-
88% 1.0 Baslo Input/Output System (BIQB). prefsrably on the target
Concurrent CP/M machine. It algs assunes you are famillar with
these Four manuals, which document and support Concurrent CP/M:

o The Congurrent CF/M Oparating System User's Guide decumenta the
usar'’a interface to Concurrent CE/M, explaining the various
features used to executep applications programe and Digital
Regearch uvtility programs.

e The Concurrent cp,;u Ouratlng Systam Programper's Refarence
Gulde documents the applicetions programmez's intarface to
Congurrent CP/M, explaining the internal file structure and
systen entry pelnts-—~information esseantial to create
applicatione programs that run in the Concurzrent CP/M
snvirconment,

® The Concurrent CP/¥ Operating Syatem Programmer's Utilities

Guide documents the Digital Reseaareh utllity prograas
programmers usa to write, debug, and verify applications
prograns written for the Concurrent CP/M environment.

e The Concurrent CP/M Operating System Bystem Gulde documents the

internal, hardware-dependant stiuctures of Concurrent CP/M,

Standard ternineclogy 19 uvaed throughout these manualas to refer to
Congurrent CP/M features. Yor exanple, the names of all XIOS
function calls and theilr asscciated code routines begin with IO .
Concurrent CP/M asystem functione available through the logically
invariant softwars interface are called ayatem calls. The names of
all data structures internal to the oparating system or X108 are
capitalized: for example, XIOS Kemder and Diek Parameter Block.
The Concurrent CP/M system data sagment 1B referred to as the SYSDAT
area or gimply S5YSDAT. The fixed structure at the beglnning of the
SYSDAT area, documented in Section 1,10 of this manual, is called
the SYSDAT DATA.

iy




Table of Contents

1l System Overview
1.1 Concurrent CP/M Organization . . « ¢« o « &+ o « « & 1-3
1.2 Memory LAayout « « o o o + v 5 o s v v o » s 5 « o 1-4
1.3 Supervisor . . « 4 ¢ o ¢ 4 0 oo s P 1-4
l.4 Real-time Monitor . . « & « v v v ¢ » v & ¢ *v & &« s 1-6
1.5 Memory Management Module . . « ¢« « = 4« o« o « s & » 1-8
1.6 Character I/OManager . « s+ « « = » « o & o = = « « 1=11
1.7 Basic Diask Operating Byatem . . . . . « o « « « » . 1-11
1.8 Extended I/0Q ByBteM « + + » + » » » « o« & « 2 » « & 1=13
1.9 Reentrancy in the XIOB . . + v &+ « = v » « v« s » » 1-13
1.10 SYSDAT SegMent .+ o o « s« o 5 o s » = = = s« = o « « 1=14

1.1]1 Resident System Processes . . . . . + v v v 5 v s » 1=20

2 Bullding the XIOS
2.1 GERCCPM Operation . . . « « « o o =« s » = s = &+ s 4 2-1
2.2 GENCCPM Main Menu « o+ « « & 2 s o« 5 & « & » o 4 & & 2-2
2.3 Bystem Parameters Menu . . . . ¢ « v + o s « &+ o « 2-5
2.4 Memory Allocation Menu . . « 4 « o 2 2 2 + o + & « 2-10
2,5 GENCCPM RSP List Menu . . . . . « ¢« o 2 o = o =» « . 2=12
2,6 GENCCPM OSLABEL MBnU . . ¢« o « « & = s = « » =« = « 2=13
2.7 GENCCPM Disk Buffering Menu . . . . . . . . . « . . 2-13
2.8 GENCCPM GENSYS Optdon . « « + o ¢ v » s 5 s &« s+ » + 2-15
2.9 GENCCPM Input Piles . . « ¢« ¢« ¢ « ¢« o ¢ « s s« =« o« - 2-16

3 XIOB Overview
3.1 XIOB Header and Parameter Table « + s s o s 5 & » 3-1

3.2 INIT Bntry Pednt . . . . ¢ ¢ & @ v 0 & o @ o v o @ 3-8



5

3.3
1.4
3.5
3.6
3.7
3.8

Table of Contents
(continued)

XKIOS BNTRY « +» v « v 5 » s o & 1 « « 4
Converting the CP/M-86 BIOS . . . «

Polled Devic®8 . . « « o » » o » = &
Interrupt Devices .« « & & = = = 2 2 s «
8087 Bxception Handler . . . . . - . .
XIO3 Bystem CallB » + & = o« = 2 » 5 «

Charactar Devices

4.1
4.2
4.3
4.4
4.5

Disk
5.1
5.2
£.3
5.4
$.5

5.6
5.7

5.8

Conacle Contrel Bloek + + 4 4w v ¢ 4 & &
Coneole I/0 Puncticne . . + & « « « + .

List Pevice Punctiond . + v & + + v » &

Auxiliary Device Punctions . . . . . .
IO POLL Funcktion . o & ¢ s ¢ v « o » .
Devicen

Diak I/0 Functione . , , . . . . « . .
ICPB Dmta Htruckture , o « o o « « o o« .
Multisector Operations on Skewed Dipks

Disk Parameter Head®r « o v « = s v « =

Disk Parameter Block . . + « = = = . 5 .

5,5.1 Diek Parsaeter Block Worksheet ,

5,5.2 Disk Parameter List workeheet . .

Buffer Control Block Data Area . . . .

Memory Disk Application . . . . . . . .

Multiple Medla Bupport . . . . . . . . .

vi

3-13
3-15
3-15
3-17
3-20

-2
-7
4-13
4-15
4-17

5-1
3-9
5-16
5-21
5-27

5-35
5-40

S-41
547
S-350




10

11

Table of Contents
(continued)

PC-MODE Character I/0

6.1 Screen I/O Functions . . « &« & o & v &« 4 «
6.2 Keyboard Functions . . « + ¢ = « = « = s = =
6.3 Egquipment Check « . « « 2 + v &+ « o o a s » &

6.4 PC~MODE IO CONIN < « « o = » 1 o 5 &« » &« & 4
X108 TICK Interrupt BEoutine . . . . . . . . . . .

Debrugging the XIOB
8.1 Running Under CP/M=B6 . . « v « « « « =« « »

Boatstrap
9.1 Components of Track G on the IBM PC . . , . .
9.2 The Bootstrap Processi .+ ¢« « « « = = s = « s &
9.3 The Loader BDOS and Loader BIOS Function Sets
9.4 Track O Constructlon . « « o s 4 ¢ & o 2 &+ &
9.5 Other Bootstrap Methods . . , . . . . . . . .

9.6 Organization of CCPM.8Y8 . . s « 4 &+ & o »

OEM Utilitiex

10.1 Bypasaing the BDOS . . . . ¢ ¢ ¢« v+ = = o o &

10.2 Directory Initialization in the FORMAT Utility

End-user Documsntation . . . « . . . . . . . . . .

vii

10-1
10-11

1l-1



Appendixes

A Removeble Media . . . . . . . « ¢ . . &«

R Graphice Implementation . . . . . ., ., ,

1
Ly A N ~J o0 R
« * = . .

3 11
N -
. =

1
HO@-I U DN

o
WM » &« » & &« &8 & =

uumml.nu-uuuluummtinm L Lo [SH A [l el

5-14.

Tables, Figures, and Listings

Bupervisor System Calls .

Resl-tima Monitor Systsm Calls
Datinitions for Figura 1-3. .,
Menory Manegement 5ystem Calls
Character I1/0 Syatem Callm . .
BDOB EBystem Calls . . . . . .
EYSDAT DATA Data Fields . . .

GENCCPM Main Menu Options . . ., .
Systen Parametéta Many Optione . .

XIDS Header Data Flelds .
XI0B Register Usage . . .
X108 Functions . . . . . .

Conscle Control Block Data Plslés
List Contzol Rlock Data Fialds . .

Extanded Error Codes . , . . + . .
IOPE Data Fielda . . . . . . « .
DOE ICPR Data Fields . ., . . .
Diek Parametasr Header Data rioldu
Disk Paramater Block Data Fialde .
Extended Disk Parametar EBlock Data
BSH and BIM Values . , . « <« « » «
EXM Values . . . . e oaonoa
Dirsctory Entrio- pe: Bloek Size .
ALO, ALI Value® . o + ¢« = s = & »
PEH and PRM Values . . ., . . &+ « .
. Buffer Control Block Hesadar Data Fi
DIRBCB Data Fielda . . . . . . - .
DATHBCE Data Fields P

viii

s 4 s o= M oe s

[T
pr

—
|

e b fur s 8 & on Baomomoaoa

1-4

1-7
1-10
1-10
1-11
1-12
1-16

2-4
2-6

3-2
3-10
3-11

-4
4-14

5-4
5-11
5-13
5-21
5-28
5-32
5-35
5-36
5-37
5-38
5-39
5-42
5-43
3~45



Tables, Figures, and Listings
(continued)

§~1. Alphanumeric Modes . . . « . « . & 1+« @ &+ = . 6-3
6~2. CGraphica Modes . . « + ¢ « o &4 ¢ ¢ o 6 + 2 o s 6-3
6—-3. Keyboard Bhift Status . + + « « s ¢ + s s » + » 6-10
6~4, DOB Equipment Status Bit Map . . . . « « . + + « 6-11
6-5, Keyboard Scan Codes . . « 4« « + » 4 « « 2 » » « 6-12
6-6. Extended Keyboard Codes . . . . « + s = . + . « 6~13

10-1. Directory Label Data Fields . , . . . . . . . . 10-14

1-1. Concurrent CP/M Interfacing . . . « . + « « « . 1-2
1-2. Memory Layout and File Structure . . . . . . . 1-5
1-3. Pinding a Process's MemoIyY . + « « 4+ o 5 + o« a4 & 1-9
1-4, SYSDAT 4 ¢ ¢ ¢ o s » o o ¢ » 3 » s » ¢ v v ¢ & v 1-14
1-5. SYBDAT DATA .+ . « v v o v o » = = s v 5 5 s » 1-15%
2-1., GENCCPM Main MenU « « v o o 5 & & s « 5 & s « 2-2
2-2, GENCCPM Help Punction 8creen 1 . . . . . . « . . 2-3
2-3. GENCCPM Help Function Screen 2 . . . . . « « . . 2-4
2-4, GENCCPM System Parameters Menu e e s e e s a 2-6
2-5. GENCCPM Memory Allocation Sample Session . . . . 2-10
2-6. GBNCCPM RSP List Menu Sample Session . . . . . . 2-12
2-7. GENCCPM Operating System Label Menu . . . . . . 2-13
2-B. GENCCPM Disk Buffering Sample Session . . . . . 2-14
2-9, GENCCPM Bystem Generation Messages . . +» . « . .« 2-16
2-10. Typical GENCCEPM Command File . . . . . « « » o « 2=-17
3-1., XIOS HeadeT . + « « o o + o o » = a 2 = a «a + & 3-2
4—-1. The CCB Tabhle . . + . . . e r e s e e e s 4-2
4~2, CCB's For Two Physical cOnsoles e e e e s 4-3
4-3. Console Control Block Format . . & ¢ « o o » o & 4-4
4-4. The LCB Table . . « ¢ = + &+ « 2 o « o s o = » 2 4-13
4-5. List Control Block (LCB) . ¢ + o« « o « o« » o » . 4-14
5-1. Input/Qutput Parameter Block (ICPB}) . . . . . 5-10

5-2. DOS Input/Output Parameter Block (IOPB) . .
5-3., DMA Address Table for Multisector Operations
5~4. Disk Parameter Header (DPH) . . . . . . .
5~5. DPH Table .. - & = e a e e = o
5~6. Disk Parameter Block Format e e e s
5~7. Bxtended Disk Parameter Block Format ., .
5~8. Buffer Control Block Header . . .
5~9, Directory Buffer Contral Block (DIRBCB)

5-10. Data Buffer Control Block (DATBCB) . . .

T
L I S ]
[

1
[+
3]

ix



Listinge

3--1.
3-2.
3-3.

-1,
LB
5-3.
S5-4.
LELN
5-§.
5-7.
5“3:
5-9.
5-10.
S-11.

10-1.

Tables, Figures and Listings
(continued)

Dabugging Memory Layouf . . ¢« « s « « 1 &+
Debugging CCP/M Under DDY-86 and CP/M-86 . .
Rebugging the XIDHE Under BID-86 and CP/M-B86

Tracgk O on the IBM PC .+ . v ¢« v & & « 3 s &
Loader Organization , . . PRI
Disk Paramster Fleld Initilllzation. PR
Group Leacriptors —~ CCPM.SYS Header Record .
CCPM System Image and the CCPM.8YH File . .

concurcent CP/M Dimk Layout . . . « « . .

Directory Inicialixation without Tixe Etampl
Dirsctory Label Initialization ., . . . . « .
Dixectory Initialisation With Time Stanps .

XI08 Header Definltien e v 4 s s e s e oa
AICE Tunction Table .+ « & . v 5 2 ¢ & 2 o+ &
BOB7 Exception Handler . . . . .+ . &

Multisector Opermtiona
IOPE Definition . . .
Multisector Unskewing
DFE Definition Ve
SELDEK XIOB Function
DPBE pefinition T e w
Extended DPB Definition
BCA Haader Definition .
DIRBCE pDefindtion . . .
DATBCE Definition . . .
Exampls M DIEX Inplenuntatian

Disk Utillty Progrmmming Bxample . . .

8~2
83
8~4

9~-1
9-2
9-5
98
9-9

10-12
10-13
10-13
10-15

3-7
3-12
3-19

5«5
5-13
5-18
5-25
5-36
5-30
3-3¢
5-42
5~44
5-46
5-48

10-3



Section 1
System Overview

Concurrent CP/M fg a multitasking, real-time operating system. It
can be confiqured for cne or more user terminala. Each user
terminal can run multiple tasks simultanecusly on one or more
virtual consoles. Concurrent CP/M supports extended features, such
as intercommunication and synchronization of independently running
processes. It is designed for implementation in a large variety of
hardware environments and as such, you can easlly customize it to
fit a particular hardware environment and/or user's needs.

Concurrent CB/M also supports DOS (PC DOS and MS-DOS) programa and
media. The XIOS support for DOS media ls described in Section 5 of
this manual. DOS character I/0 is described in Section 6.

Concurrent CP/M consiste of three levels of interface: the user
interface, the logically invariant software interface, and the
hardware interface. The user interface, which Digital Research
distributes, is the Resident Syatem Process (RSP} called the
Terminal Message Proceas (TMP). It accepts commands from the user
and either performs thoee commands that are built intc the TMP, or
passes the command to the operating system via the Command Line
Interpreter {P_CLI). The Command Line Interpreter in the operating
system kernel either invokes an RSP or loads a disk file in order to
perform the command.

The logically invariant interface to the operating system consists
of the ayatem calls as degcribed in the Concurrent CP/M COperatin
System Programmer's Reference Guide. The logically invariant
interface alsoc connects transient and resident processes with the
hardware interface.

The physical interface, or XIOS (extended I/0 system), communicates
directly with the particular hardware environment. It is composed
of a set of functions that are called by proceases needing physical
I/0. Sections ¥ through & describe these functions. PFigure 1-1
shows the relationshipa among the three interfaces.

Digyital Research distributes Concurrent CP/M with machine-readable
source code for both the user and example hardware interfaces. You
can write a custom user and/or hardware interface, and incorporate
them by using the system generation utility, GENCCPM. There are twWo
axample XIOS5s supplied with the system. One is written for the IBM
Personal Computer, as a single user system with multiple virtual
consoles. The other XIOS is written for the CompuPro 86/87 with
multiple serial terminals. The example XIOSs are designed to be
examplea and not commercially distributable systema. Wherever a
choice between clarity and efficfency is necessary, the examples are
written for clarity.




Concurrent CP/M Syatem Guide 1 System Overview

Thigs section describes the modules comprising m typical Concurrent
CP/M operating system, It i» important that you understand this
material before you try to customize the operating system for a
particular application.

User

/
User Interface

)

y

Invariant
Interface

(SUP RTM MEM CIO BDOS)

Hardware
Interface
{XIDB)

1
Hardware Environment

Figure 1-1. Concurrent CP/M Interfacing



Concurrent CP/M System Guide 1.1 oOrganization

1.1 Concnrrent CP/M Organization

Concurrent CP/M ia composed of aix baale code modulea. The Real-
time Monitor (RTM) handlea process-related functions, ineluding
diapatching, creation, and termination, as well as the Input/Output
pystem atate logic. The Memory modula (MEM) manages memory and
handles the Memory Allocate (M_ALLOC) and Memory Free (M FREE)
systen calla. The Character I/0 module (CIO) handles all conscle
and list device functions, and the Baaic Disk Operating Sy=stem
(BDOS) managea the file system. These four modules communicate with
the Bupervisor (BUP) and the Extended Input/Output System (X108).

The SUP module manages the interaction between tranaient proceases,
auch as user programsa, and the system modules. All function calls
go through a conmon table-driven interface in S8UF. The SUP module
also contains the Program Load (P_LOAD) and Command Line Interpreter
{P_CLI) system calls.

The XIO8 module handles the physical interface to a particular
hardware environment. Any of the Concurrent CP/M logical code
modules gan call the XIDS to perform specific hardware-depandant
functiona. The names usad in this manual for the XIOS functions
always begin with IO in order to easily distinguish them E£rom
Concurrent CP/M operating ayatem calla.

All operating system code modules, including the SUP and XIO5, ghare
a data segment called the Syatem Data Area {SYBDAT). The beginning
of SYSDAT is the SYSDAT DATA, a well-defined structure containing
public data used by all system code modules. Following this fixed
portion are local data areas belonging to speclfic code modules.
The XI0S area is the laat of these code module areas. Fellowing the
XI08 Area are Table Areas, used for the Process Dercriptors, Queue
Descripters, System Flag Tables, and other operating system tables.
These tables vary in szize depending on options chosen during systen
generation. Bee Section 2, “8yatem Generation.”

The Resident System Processes (RSPe) occupy the area in memory
immedjately following the SYSDAT module. The RSPs you select at
system generation time hecome an integral part of the Concurrent
CP/M operating syatem. For more information on R8Ps, see Section

1.11 of thia manual, and the Concurrent CP/M Operating Syatem

Programmer 's Reference Guide.

Concurrent CP/M loads all transient programs into the Transient
Program Area (TPA). The TPA for a given iImplementation of
Concurrent CP/M is determined at system generation time.



Concurrent CP/M Sveatem Gulda 1.2 Memory Layout

1.2 Mewory Layout

The Concurrent CP/M operating systeam area san exist anywhere in
nemory éxcept over the interrupt vector area. You define the exact
location of Concurrent CP/M during system genaration. The GENCCPM
program determines the memory locatiocnas of the system modules that
make up Concurrent CP/M based upen system genaration parameters and
the size of the nmodules.

The XIO8 must reside within SYSDAT. You must write the XIO8 aAs an
8080 wodel program, with both the code and data segment reglsters
get to the beginning of BY8baT.

Figure 1-~2 shows the relationship of the Concurrent CP/M system
{mage to the CCPM.IYE diek file structurs.

1.3 Buparvisor

The Concurrent CP/M Supervisor (SUP) manages the interface between
aystam and transient processes and the invariant operating system.
All system calls 9o through a common table-driven interface in S(P.
The SUP module also containg ayetem calls that invoke other system

calls, like P_LOAD (Program Load) and P_CLI (Command Line
Interpreter),

Table l-l. B8upervisor System Calls

Syatem Call [ Humber Rex
F_PARSE 152 98
P_CHAIN 47 2F
P_CLI 150 96
P_LOAD 5% aB
P_RPL 151 37
5_BDOSVER 12 oc
8_bioH 50 32
B_OBVER 153 oAl
8S_SYSDAT 154 CEY
§ SERIAL 107 6B
T:SECONDS 155 SB




Cconcurrent CP/M Systam Gulde 1.3 Supervisor

(top of memory)

l/W\’W"J End of file—w

WAYAN R VAV W CCEH.8Y8
Extra Group
TPA (Used to hold
GENCCPM optiong)
w—Pnd of
0.8, Area
Disk Buffers
-—End of 0.8+
ROFs
CCPM . 8Y8B
Table Area Data Group
within
XIOB B4k
SYSDAT DATA
N T QS
BDPCS Code Code & Data
Segnent
CIO Code
MEM Code CCPM.8Y8
Code Group
RTM (Code
3UP Code
“+—Dbeginning—--
of 0.5. area
TPA CCPM .3YS
CMD Format
File Header
AN
PSS N N
{Start of File)
010400H
Interrupt Vectors

0:00008

Figure 1-2. Memory Layout and File Btructuore

1-5



Cancurrent CB/¥ System Gulde 1.4 Resl-time Monitor

l.4 Rsal-time Nonltor

The Resl-time Monitor {RTM) is tha multitasking kernsl &f Concurrant
CP/M. It handles proceas dlspatching, queue and £flag management,
device polling, and system timing tasks. It also manages the
logical interrupt aymtem of Concurcent CP/M. The primary functian
of the RTM i transferring the CPU ressurce from one process to
another, a task scocompliahed by the RT™ dispatcher. At avary
dispatch oparation, the dispatcher stope the currently running
process from exacution and stores lts state in the Procesa
Deapscriptor {FD) and User Data Arsa (UDA) associated with that
process. The dimpatcher then gslects the higheat~-priority process
in the ready state mnd restores it to execution, using the data in
its PD and UDA. A process ig in the ready state if it is walting
for the CPU resource cnly. The nsw procesa wontinues to execute
until it nesds an unavailable resource, a resocurce needed by another
prccess becomes avallable, or an axternal event, such &8 an
Interrupt, occurs. At this time the RTM perfurns another disgatch
cperation, allcwing another process to run.

The Concurrant CP/M RTM dispatcher alse performe device polling. A
procaes waits for a polled device through the RTM DEV_POLL symten
call,

Nhen a process neede to wait for an interrupt, it lusues a
DBV WAITPLAG aystem call on a logioal interrupt devica. When the
appropriate interrupt actually cccurs, the XIOS calls the
DEV_BBTFLAG aystem call, which wakes up the walting procees. The
interrupt routine then performe a Far Jump to the RTM dispatcher,
which reschedules the lntazrupted procesa, ag wall as all other
repdy processes that are not yet on the Ready List. At this point,
tha dispatcher places the process with the highest pricrity inte
exegution. Procesaes that are handling interrupts should run at a
batter priority than noninterrupt-dspandent processes (the lower the
priority number, the better the priority) in order to reapond
quickly to incoming intarruptsa.

The syptem alotk generates inkerrupts, cleck ticks, typlomlly 60
times per second, This allowe Concurrent CP/M to effsct process
tima slicing. Since the cparating aystem walty for the tick flag,
the XIOB TICK Interrupt routine muwt sxecuts a Concurrent CP/M
DEV_BRTPLAG system call at each tick (see Sectiocn 7, "XIQS TICK
Intarrupt Routine”}, then perform a FPaz Jump to the SUP entry point.
At this polnt, procesaes with squal pricrity are achedulsd for the
CPU resource in round-robin fashion unless a better-priority process
is on the Ready List. If no procees is ready to use the CPU,
Concurrent CP/M remaing in the dispatcher until an interrupt accurs,
or a polling process is ready to run.

1-6




Concurrent CP/M System Guide 1.4 Real-time Monitor

The RTM also handlee gueue management. System gqueues are composged
of two parts: the Queue Descriptor, which contains the queve name
and other parametersa, and the Queue Buffer, which can contain a
gpeclfied number of fixed-length messages. Processea read these
messages from the gueuwe on a first-in, first-out baais. A process
can write to or read from a gueue elther conditionally ar
unconditionally. If a process attempts a conditional read from an
empty queue, or & conditional write to a full one, the RTM returns
an ercor code to the calling process. However, an unconditional
read or write attempt in these situations causes the suspension of
tha proceass until the overation can be accomplished. Tha kernel
uges this feature to implement mutual exclusion of processes from
serially reusable syatem resources, such as the disk hardware.

Other functions of the Real-time Moniter are covered in the
Concurrent CP/M Operating System Programmer's Reference Guide under
their individual descriptions.

Table 1-2. Real-time Monitor Syatem Calls

System Call Number Hex
DEV_SETFLAG 133 B5
DEV_WARITFLAG 132 84
DEV_POLL 131 83
P_ABORT 157 aD
P_CREATE 144 90
P_DELAY 141 8D
P_DISFATCH 142 8B
P_PDADR 156 9
P_PRIORITY 145 91
P_TERM 143 8F
P_TERMCEM 0 00
Q_CREAT 138 8a
Q_CWRITE 140 8c
Q_ DELETE 136 88
Q_MARE 134 86
Q_OPEN 135 87
Q READ 137 89
Q_WRITE 139 8B




Congurrent CF/W Bystem Guide 1.5 Memory Managsment Module

1.5 Hamory NMansgemant Modole

The Msmory Management module (MEM) handles all memory fupctions,
Concurrent CP/M mupportk an extended model of memory managemmnt.
Puture raleages of Concurrent CE/M night support different varaions
of the Memory module depending on classes of memory management
hardware that become available.

Tha MEM module deacribes memory partitions internally by Memory
Descriptors (MDs). Concurrcent CB/M initjally places all available
partitionms on the Memory Pree Limt (MFL). Once MEM allocates a
partition (or sat of contiguous partitione), it takes that partition
off the MFL. and places it on the Memcry Allocation List (MAL)}. The
Memory Allogation List gontains descriptiona of contiguous areas of
meniory known as Memory Allocation Unlits (MAUE). WMAUs always contain
cne or more partitions. The MEM moduls manayer tha gpace within an
MAU in the following way: when a proceas reguests sxtra memory, MEM
firat dstermines if the MACG haa snogygh unussd spaca. If it does,
the axtra memory rejuested comes from the process's own partition
flrut,

A process can ofily allocate memory from a MAU in which it alre=ady
owns memory, or from a new MAU created from the MPL. If one process
aharas mamory with another, alther can aliocate aaxcry from the MAU
that contains tha shared menory msgment. The MEM module Keeps a
count of how many processes "own" a particular nemory segment to
engure that it bacomas avalilable within the MAU only when no
processss own 1t. When all of the memcry within an MAD is free, the
gl module 2rees the MAU and returns its nemory partitions to the
rJl

If the msywstem fof which Conourrent CP/M is being implemented
contalns memory management hardware, the XIOS can praotect &
process's memory when it 1s not in context, When the process is
entering the operating system, all memory in the system should be
made Read-Write. When a process ls axiting tha cperating system,
the proceas’s mexory should be made Read-Write, the oparating saysten
menory (from CCPMEEG to INDSEG) nade Read-Only, and all other nemory
made nonexistent, Memory protection can be implemented within the
XI08 by & routine that intercepts the INT 224 entry peint for
Cencurrent CP/M eystem calls, and interrupt routines that handle
attempted memory protectlion violaticna.

Pigure 1-3 shows how to Find a process's Memory.




Concurrent CP/M System Guide 1.5 Memory Management Module
SYSDAT: 688
RLR
O00H , 028 1bH K 18H J0H
T T
PD ? z (MEM) © j}
* |
0OH l ) 02H  O6H . 0BH ) OAH
1 L) I
MSD LINK z} (MAU) o
Next MSD [ALL MSD's pointling to a common

(0 1f none)

MAU are grouped together}

QUH 1

02H

U4H . ObH  OAH

T I
START LENGTH 33
1 L

Figure 1-3. Finding a Process's Memory



Concurrent CP/M Bystem Guide 1.5 Memory Management Module

Yable 1-3. Definitions for Figurs 1-3.

Data Field Explanstion
RLR Ready Liat Rootr points to currently
running process.
PD Process Descriptor; describes a proceszs.
MEM HEM field of Proceas Depcriptor.
M8D ¥emory Segment Descriptorsy describes a

gingle memory allocation. A process may
have many of these in a linked list. The
MBD liet pointed to by the MEM fileld
degcribes all the svccessful memory
allogatione made by tha procems. Also,
many M8Dg may point to the asme MAU. All
MBDm pointing to the same MAU ars grouped
togather.

MAD Maenory Allocatlion Unity dewcribes a2
contiguous area of allocated memory. A
MAU is built from one or meore contiguous
menmory partitions., The START and LENGTH
fields are the starting paragraph and
number of paragraphs, respectively.

Table 1l-4. MNewmory Management Bystem Calls

System Call l Number Hex

M_ALLOC 128, 129 80, Bl
M FREE 130 B2
IE_ABS 54 36
MC ALLFREE L1 ] 3A
MG ALLOG 55 37
MC_ALLOCAES 56 38
MC_FREE 57 39
MC_MAX 53 35

Wote: The MC_ABS, MC_ALLOC, MC ALLOCABS, MC FREE, MC ALLFREE, and
MC_MAX syster calls internally execute the M ALLOC and M_FREE syatem
calls, They are supported for compatibilify with the CP/M-86 and
MP/M-£6™ operating myatems.

1-10




Concurrent CP/M Sysatem Guide 1.6 Character I/0 Manager

1.6 Character I/0 Manager

The Character Input/Output (CI0) module of Concurrent CB/M handles
all conecle and list device I/0, and intexfaces to the XI0S, the FPIN
(Physical Input Process) and the VOUT (Virtual QUTput process).
There is one PIN for each user terminal, and one VOUT for each
virtual console in the system. An overview of the CIO is presented
in the Concurrent CP/M Operating System Programmer's Reference
Guide, and XI0S Character Devices are deacribed in Section 4 6f this
manual. For detalls of the Console Contrel Block (CCBY and List
Contrel Blogk (LCB} data structures, see Sections 4.1 and 4.3
respectively.

Table 1-5. Character I/0 System Calls

Bystem Call Number Hex
C_ASSIGN 149 95
C_ATTACH 146 92
C_CATTACH 162 0A2
C_DELIMIT 110 6B
C_DETACH 147 93
C_GET 153 99
C_MODE 108 6D
C_RAWIO 6 06
C_READ 1 oL
C_READSTR 10 oA
C_SET 148 94
C_STAT 11 B
C_WRITE 2 02
C_WRITEBLK 111 6F
C_WRITESTR 9 0%
L_ATTACH 158 9B
L_CATTACH 161 0al
L_DETACH 159 9F
L _GET 164 0ad
L_SET 160 0AD
L_WRITE 5 05
L_WRITEBLK 112 70

1.7 Basic Diek Operating System

The Basic Disk Operating System {BDOS) handles all file systenm
functions. It is described in detail in the Concurrent CP/M

gErating System Programmer's Reference Guide. Table 1-6 liats the
oncurrent CP/M BDOS systenm calls.

1-11



Concurrent CP/M Byatem Guide 1.7 Basic Disk Operating Systenm

Table 1-6. BDOE System Calls

System Call Number Rax
DRV_ACCESS 38 25
DRV_ALLOCVEC 27 1B
DRV_DFB a1 1r
DRV _FLUEH 48 30
DRV _Gwr 25 19
DRV_GETLABEL 101 (1]
DRV _LOGINVEC 24 18
DRY RESET 37 25
DRV_ROVEC 25 1p
DRV_BET 14 0B
DRV_BNTLAEEL 100 &4
DRV_BETRO 28 1E
DRV_EPACE 46 b1 ]
¥ _ATTRIB it e
F_CLOSE 16 10
F_DELETE 19 13
F_DMABEG 51 33
F_DMAGET 52 34
F_DMACFP 28 1a
F_ERRMODE 45 an
F_LOCK 42 2A
F_MAKE 22 16
F_MULTISEC i c
¥ _OPEN 15 oz
F_PAZSWD 106 EA
ol T 20 14
F_HEADRAND 33 21
F_RANDREC ag 24
F_REHAME 23 19
¥_BPIRST 17 11
F_BIZE 35 23
F_SNEXT 18 12
F_TIMEDATE 102 &5
¥_TRUNCATE 0% [x]
¥_UNLOCK 43 F):|
¥_UBRRNUM 32 a0
F_WRITE 21 15
F_WRITERAND 34 22
F_WRITEX'CE 103 67
F_WRITEZF 40 28
T GET 105 &9
n_BET 104 68

1-12




Concurrent CP/M System Guide 1.8 Extended 1/0 System

1.8 Extended I/D Syetem

Tha Extended Input/Output Syatem (XI0S) handles the physical
interface to Concurrent CP/M. It is asimllar to the CP/M-B§ BIOS
module, but it iz extended in several waya., By modlfying the X108,
you can run Cencurrent CP/M in a large variety of different hardware
enviranments. The XIOS recognizes two basic types of 1/0 devices:
character devices and disk drivea. Character devicea are devices
that handle one character at a time, while diask devices handle
random blocked I/0 using data blocka sized from one physical disk
gector to the number of physical eectors in 16K bytes. Use of
devices that vary from these two models muat be implemented within
the XI0B. In this way, they appear to be standard Concurrent CB/M
I1/0 devices to other aperating aystem modulesa through the XI0S
interface. Sectione 4 through 6 contain detailed descriptions of
the XIOS functiona, and the source code for twa sample
implementationas can he found in machine~readable format on the
Concurtent CBP/M OEM release disk.

1.9 Reentrancy in the XIO8

Concurcent CP/M allowe multiple processes to use certaln XIDS
functions simultaneously. The system guarantees that only one
process useg a partlcular physical device at any glven time.
However, some XIOS funetions handle more than one physical device,
and thus their interfaces muat be reentrant. An example of this is
the I0_CONOUT Function. The calling proceas passes the virtual
conaocle number to this function. There can be several processes
using the function, each writing a character to a diffarent virtual
console ar character device. However, only one process is actually
outputting a character to a given device at any timae.

I0_S8TATLINE can be called more than once. The CLOCK process calls
the IO _STATLINE function once per second, and the PIN process will
also call it on acreen switches, CTRL~B, CTRL-P, and CTRL-0,

Since the XIOS file functiona, I0 SELDSE, I0_READ, IO WRITE, and
I0 PLUSH are protected by the M¥disk mutual exclueion gueue, only
ane process may access them at a time. None of these XI0S
functions, therefore, need to be reenktrant.

1~13



Concurrent CP/M System Guide 1.10 SYEDAT Sagment

1.10 SYBDAT Bagment

The System Datm Arsa (SYSDAT) is the data megment for all modules of
Concurrent CP/M. The SYSEDAT segment is composed of three main
areas, as shown in Figure 1~4. The first part is the fixed-format
portion, contalning global data used by all modules. Thia ig the
SYSDAT DATA. It containm system varlables, including values set by
GENCCPM and pointars tc the varicus Bystem tebles. The Internal
Data portion containa fielde of data belonging to individual
cperating system modulea. The!XI0S begina at tha end of this second
area of SYSDAT. The third poktion of BYSDAT is the System Table
Area, which 1a generated and initiallzed by the GENCCPM system
generation utility. i t

Figure 1-4 showa tha relatldnshipe among the éarious parts of
SYSDAT.

Table Area
XIo8
COO0H:
Internal Data
OBOH
(BYSDAT DATA}
Q00H:

Figure 1-4. SYSDAY

Figure 1-5 gives the format of the SYSDAT DATA and describes its
data flelds.

1-14




Cancurrent CB/M Byatem Guilde 1.10 SYSDAT Segment

00H 8UP ENTRY RESERVED
—— —
08H RESERVED
—
108 RESERVED .
L 1 L Ll L L
T T T T T T T
188 RESERVED
20K i i ' RESERVED i .
1 n 1 1 L
T T T 1] L
28H X108 ENTRY X108 INIT
L L L L L L
L) T T 13 T T
300 RESERVED
1 1 L i F 1
T T T 1 1] L]
38H DISPATCHER PDISP
L i 1
40E | CCPMSEG RSPSEG ENDSEG  |RESER |NVCNS
. -VED
4n | wLee [NceB | w_ | svs_ MME RESER | DAY
FLAGS | DISE . -VED| FILE
sor | TEMP|TICKS LUL cCB FLAGS
pISK! /8EC
1 'l 1
586 MDUL MFL PUL QUL
608 i T gwAD i
t : ; §
68 RLR DLR DRL PLR
} ; } '
70n | RESERVED | TERDRT QLR MAL
1 1 1Y L
788 | VERSION VERNUM  |CCPMVERNUM | TOD DAY
¥
gon | Top | Too | Top |mcow {NLsT |RmcIO LCB
_Ar | _mIn| _sEc| pEv | DEV | DEV
3
1]
88H | OPEN_FILE [LOCK_{OPEN |OWNER 8087 | RESERVED
MAX | MAx
N 1 yl
L] [ b
908 RESERVED
1 1 L i 1 L
988 " RESERVED ) KPCNS
1 L 1
T T ]
a0x | OFF 8087 |SEG 8087 |SYS 87 OF | S¥s_87_SG

Figure 1-5. SYSDAT DATA

1-15



Concurrent CP/H Bystem Guide 1.10 BYBDAT Hegmenh

Table 1-7. SYSDAT DATA Data Fields

Data Field ] Bxplanation

S0P BNTRY Doubla-word asddresss of the Bupervisor
entry point for intermodule communication.
All internal aystem calls go through this
entry point.

XI08 EWTRY Double—~word address of tha Extended I/0
System entry point for Iintermodule
communication. All XI08 function calls go
through this entry polint.

XIO8 INIT Double-word addresa of the Extended I/0
Eystem Initialization entry point. Bystex
hardwars initialization takes place by a
canll through this entry point.

DIEPATCHER Double«word addrese of the Dispatoher
antry point that handles interrupt
reaturngs. ¥Exscuting a JMPF inetruction to
thiz address is egquivalent to executing an
IRET (Interzrupt Return) instruation. The
Diapatcher routine causes a dlepatoh to
opour and then sesxecutss an Interrupt
Return. All reglatery are preserved and
one level of stack is umed. The address
in thia locatlon can be usad by XIOS
interzupt handlerm for tarainatian instead
of executing an IRET inatruction. 'Tha
PICK inkerrupt handler (I _TICK in the
example XIO8's} ends with a Jump Far
{JMPF) to the address in this location.
Upually, interrupt handlers that maks
DEV_SETFLAG calla end with a jump far to
the addzress stored in the DIBPATCHER
field. Refar to the esxampls XIDSE
interrupt routines and Bections 3.5 and
3.6 for mors destalled Iinformation,.

PDISP Double-word address of tha Dispatcher
entry point that causes a Adispatch ko
occur with all ragisters preserved. Once
the diapatch ia dcone, 2 RETF¥ instruction
is executed, Executing a JMPF PDIBF is
egquivalent to sxecuting a RETF
instruction. This location should be used
as an exlt point whenever the XID8
releases a rescurce that might be wanted
by a waiting proceda.

1-16




Concurrent CP/M Syntem Guide 1.10 BYSDAT Segment

Table 1-7. {continued)

Data Field I Explanation

CCPMSEG Btarting paragraph of the operating system
area. This 18 also the Code Segment of
the Supetvisor Module.

RSPSEG Paragraph Address of the firat RSP in a
linked list of RSP Data Segments., The
firat word of the data segment pointa to
the next RSP in the 1list. Once the system
has been initialized, this field is zero.
Bee the Concurrent CP/M Operating Syatem
Programmer's Reference Guide section on
debugging RSP8 for more Information.

ENDSEG Pirst parsgraph beyond the end of the
operating system area, including any
buffere consisting of uninitislired RAM
allocated to the operating syatem by
GENCCPM. These include the Directory
Haahing, PpPiskx Data, and XIOE ALLOC
buffers. These buffer areas, however, are
not part of the CCPM.3¥8 file.

NVCNS Number of virtual coneoles, copied from
the XIOS Header by GENCCPM.

NLCB Number of List Control Blocks, copied from
the XIOS Header by GENCCPM,

NCCB Number of Character Control Blocks, copled
from the XIOS Header by GENCCPM.

NFLAGS Number of system flags ae specified by
GENCCPM.

8Y3DISK Dafavult system disk, The CLI (Command

Line Interpreter} looks on this disk if it
cannot open the command file on the user's
current defaunlt disk. 9et by GENCCPM.

MMP Maximum memery allowed per procesas. 8et
during GENCCPM.

DAY FILE Day File option. If this Fleld is OFFH,
the operating system dilaplays date and
time information when an RSP or CMD file
is invoked. Bet by GENCCPM.

1-17



Congurrent CP/M Byatem Guide 1.10 8YSDAT HSagment

Table 1-7. ({continved)

Data Field L Explanation

TEME DISK Default temporary dimk. Programs that
create temporary flles should uas thias
disk. Set by GENCCPM.

TICKS/SEC The numbar of ayetem ticke per second,

LUL Locked Unusad Limt. Link list root of
unused Loock liat itema.

ccB Address of the Character Control Block
Table, copled from the XIO8 Hasder by
GENCCPM.,

FLAGS Address of the Flag Table.

MDUL Memory Deascriptor Unused List, Link list
reot of unumed Mamory Descriptors.

MFL Memory Frae Limt, Link lLiet root of free
mamory partitions.

PUL Process Unused Limt, Link list root of
unused Process Deaoriptors,

QUL Queus Unused Ligt. Link list root of
unuasd (Quaue Dagoriptors.

OMAD Queus buffer Menxcry Allocation Unit,

RLR Ready List Root. Linked ligt of PDe that

are ready to run.

DLR Delay Liat Root. GLinked list of ¥De that
are delaying for a specified nunmber of
ayetenm ticks.

DRL Dispatcher Ready List. Temporary helding
place £or Ppe that have just been made
ready to run.

PLR Poll List Root. Linked list of PDs that
are polling on devices.

THRDRT Thread List Root, Linked 1list of all
current PDB on the system. The list is
threaded though the TEREAD field of the PD
ingtead of the LINK fimeld.




Concurrent CP/M System Guide

Tablae 1-7. {continued)

Data Field l

Explanation

QLR

CCPMVERNUM

TOD_DAY

TOD_HR
TOD_MIN
TOD_SEC

NCONDEV

NLSTDEV

NCIODEV

LCB

OPEN_FILE

Queue List Root,
System (ODa.

Linked list of all

“emory Allocation List; link liat of
active memory allocation units. A MAD i=s
created from one oOor more memory
partitions,

Addreas, relative to CCPMBEG, of ABCII
version atring.

Concurrent CP/M version number (returned
by the 8_BDOSVER system call).

Concurrent CP/M veraion number
call 163, § OSVER).

(system

Time of Day. Number cof days gince 1 Jan,
1978,
Pime of Day. Hour of the day.

Time of Day. Minute of the hour.

Time of Day. Becond of the minute,
Number of XIOB consoles, copied from the
XI0S Header by GENCCPM,.

Number af XIOS list devices, copied from
the XI0OS Header by GENCCPM.

Total number of character devices (NCONDEV
+ NLBTDEV).

Offsat of the List Control Block Table,
copied from the XIOS Header by GENCCPM,

Open File Drlve Vector. Designatesa drives
that have open files on them. Each bit of
the word value represents a disk drive;
the leasat significant bit repregents Drive
A; and go on through the most significant
bit, Drive P, Bits which are set indicate
drives containing open files.

1.10 SYSDAT Segment




Congurrent CP/M Bystem Guide 1.10 SYEDAT Segment

Table l~7. (ocontinusd)

Data Pleld I Xxplanaticn

LOCK_MAX Maxinmum number of locked rescords per
progess. Set during GENCCFM.

OPEN_MAX Maximus number of open Aisk files per
procesas. BSst during GENCCPM.

OWNER_8037 Process currently owning the 8087. BSet to
0 if 8087 im not owned. 8et to OFFFFH if
no 8087 present.

XPONS Number of physical consoles.

OFp 8087 Offset of tha 8087 intarrupt vector in low
MEMOTY .

8EG_ 80487 Bagnent of tha 8087 interrupt vaator in
1loWw MEROLY.

BYs B7_OF Offsat cf the default B087 exception
nandler.

8YB_87_8G Segment of the dafault B087 exzception
handler.

1.1l Resldent Aystem Frocesses

Resldent System Protesdes (RAPa) are an integral part of the
Concurrent C¥/M gperating syatem, At system generation, the GENCCPM
REBP Liat menu letsa yvou aelect which RSPs to include in the operating
system. GENCCFM then places all salected RSF8 in a contigucus arsa
of RAM gtarting at the end cof SYBDAT. The main advantage of an RBP
iz that it iz permanently resident within the Operating S8yaten Area,
and does not have to be losded from dimk whanaever it is nesded.

Concurrant CE/M sutomatically allooates a Process Descriptor (FD)
and User Data Area (ODA) for & transient program, but sach RAPF is
responsible for the allocation and initialization of ite own PD and
UDA., Concurrent CP/M uses the PD and QD mtructures Jdsclared within
an RSP Adirectly 1f they fall within 64K of the BYSDAT segment
address. If outside 64K, the RSP's PD and QD are copled to a PD o
QD allocated from the Process Unused List or the Queue Unused List.
In elther case the PD and QD of the R8P lie within 64X of the
beginning of the SYSDAT Segment. This allows REPs to occupy more
area than remainse in the 64K S8YSDAT segnent.

1-20




Concurrent CP/M Bystem Guide 1.11 Resldent System Processea

Further details on the craatlon and uee of R8Ps can be found in the
concurxent CP Operating System Programmer's Reference Guide.

End of Section 1

1-21




Section 2
System Generation

The Concurrent CP/M XI0B ahould be written as an BOBD model (mixed
code and data) program and origined at location OCODH using the
ASMB86 ORG a=msembler directive. Once you have written or modified
the XIOS source for a particular hardware configuration, use the
Digital Research assembler ASM-86" or RASM-BE™ to generate an
XI0H.CON file for ume with GEHCCPM:

A>ABNEB6 XID8 s AsBemble tha XIO0S
A>GERCHND XIOE 8080 : Create XIOS.CMD from XIOS.H86

A>REN XIOB.COW=XIOB.CMPp ; Rename XIOS.CMD to XI0S.CON

Then invoke the GENCCPM program to produce a aystem image in the
CCPM.8YS file by typing the command:

A>GERCCPM + generate system image

2.1 GFEKCCPM Operation

You can generate a Concurrent CP/M system by running the GENCCPM
progream under an exieting CP/M or Concurrent CP/M system. GENCCPM
builds the CCPM.SYS file, which is an image of the Concurrent CB/M
operating system. Then you can use DDT-B86™ or SID-BE™ to place the
CCPM.8YS file in memory for debugging under CP/M-86,

GENCCPM allows the user to define certain hardware-dependent
variahles, the amount of memory to reserve for system data
atrucgtores, the selection and inclusion of Regident System Processes
in the CCPM.SYS file, and other aystem parameters. The first action
GENCCPM performs is to check the current default drive for the files
neceasary to conatruct the operating system image:s

8UP.CON Suparvisor Code Module

RTM.CON Real Time Monitor Ccode Module
MEM.CON Memory Manager Code Module

CIO.CON Character Input/Output Code Module

BDOS.CON Basic Disk Operating System Code Meodule

X105.CON Extended Input/Output System Module

SYSDAT.CON SYSDAT DATA and Internal Data modules of
SYSDAT segment

2-1



Concurrant CP/M System Guide 2.1 GERCCPM Operation

» YOUT.RBP Virtual conadle QUTput procass
® PIN.RBP Phyaical ksyboard INput process
= TMF,REP Terminal Message Frccess

w CLCCKR.RHF CLOCE procesa

¢ DIR.RBP DIRectory procass

o ABORT.RBP ABORT process

Wote: *.R8F - Hesldent System Proceas file. 'The VOUT, PIN, TME,
and CLOCK RSFs are required Jor Concurrent CP/M to run., The R9Ps
listed mre all dietributed with Concurrent CP/M.

If GENCCEM does not find the precediny .CON £ilag on the defaul:
drive, 1t prints an error measage an the conaole:

Can't £ind these modules: <PILESPEC>...{<PILESPEC>]

vwhere FILESPEC im the name of the miemsing file,

2.2 Main Menu

All of the GENCCPM Main Menru optlens have default valuea. When
genarating a ayetem, GENCCPFM assumes the valua ahown in square
brackata, unlese you specify another value. Any menu item that
Iequires a Y& Or no responge represents a Bcolean value, and can be
toggled simply by entering the variable. For example, entering
VERBOSE in response to the GENCCPFM prompt will change the state of
the VERBOBE variable from the default state, (Y], to the opposite
atate.

In the GENCUPM Main Menu illustrated in FPigure 2-1, #ll numeric
valueg are in hexadecimal notatian.

*¥% Congurrent CP/M 3.1 GENCCPM Main Manu * >

help GENCCPM Help
varboes (Y] Mors Verboss GENCCPM Msesages
destdrlve [A:] CCPM.BYS OQuiput To (Destination) Drive
daletenys [N] Delete {instead of rename) old CCPM.8YS file
sysparams Display/Change Bystem Parameters
REemSry Display/Changes Memory Allocation Partiticna
dlakbuffers Display/Change Dimk BuFfer Allocation
oslabel pisplay/Change Qperating Syastem Label
reps Dieplay/Change R8P Tist
genaye I'm £inished changing things, go GEN a S¥Stem
Changea?

Flgure 1-1. GENCCPM Main Henu

2-2




Concurrent CP/M System Guide 2.2 GENCCEM Main Menu

If you type HELP in response to the GENCCPM Main Menu prompt
Changes?, as shown in this example:

Changes? HELP <cr>

the program prints the following message on the Help Function
Screen:

*¥* GENCCPM Help Function *%*

EEEEEESSISSSTTASSSRAEIIIITISSS

GENCCPM lets you edit and generate 3 system image from
operating system modules on the default disk drive. A
detailed explanation of each GENCCPM parameter may be
found in the Concurrent CP/M System Guide, Section 2.

GENCCPM assumez the default values shown within square
brackets. All numbers are in Hexadecimal. To change a
parameter, enter the parameter name followed by "=" and
the new valuye, Type <cr> (carriage czturn) ta enter the
assignment, You can make multiole assignments if you
sebarate them by a space. No spaces are allowed within
an assignment. Example:

Changes? verbose=N sysdrive=A: dpenmax=1A <cr>
Parameter names may be shoirtened to the minimum
combination of latters unique to the currently displayed
menu, BExample:

Changes? v=N dessA: del=Y <cr>

Press RETURN to continue...__

Fiqure 2-2. GENCCPM Help Punction Screen 1



Congurrent CP/M Byatem Guide 2,1 GENCCPFM Malin Menu

Sub-wenus (the lawt few cptione) are accassed by typing
the sub-menu name f£ollovwed by <or>.  You mMay enter
rultiple sub~ menue, in which casea each sub—menu will be
displayed in order. Example:

Changes? help sysparams reps <cr?

Britar <cr> alona to exilt a menu, or w parametar name, “"="
and the nev values tO0 asaign a parameter. MNultiple
apsalgnments may be entered, ag ln respohse to the Main
Menu prompt.

Presm RETURN to gontinue.

Figure 2-3. GENCCFN Help Function Sgreen 2

Table 2-1 describes the remalning GENCCPM Main Menu cptions.

Table 2-1. GRECCPM Main Menu Options

Optien l Explanation

VERBOEE The GENCCPH program mesanges Are noraally
vexboss. However, exparienced pperatora
might wunt to Lisit them i{h the intsceat
of efficiency. Betting VERBOBE to N
{no) limite the length of GENCCPM
repgsages o tha abasclute minimum.

DESTDRIVE The drive upen which the generated
CCPN.8Y8 file ia to resida. If no
Qestinetion dvive is spscified, GRNCCPM
apsumes the currently logged drive as
the defaunlc.

DELETEEYB Delete, ingtead of rename, old CCPM,HYE
file. Normally, GENCCPM renzmes the
previous systed file to COPM.OLD befoze
building the nev system image. By
specifving DELETESYB=Y¥, you caupe
GENCCPM to dslats the old file instead.
This ie useful when dimk space 1is
limited.

HYSPARAMS Typing BYSPARAME «<cx> displays the
GENCCPM Bystem Parametér Menu. Bed
Pigure 2-4 and azcoapanying taxt,

2-4




Conclurrent CP/M System Guide 2.2 GENCCPM Main Menu

Table 2-1. (continued)

Option Explanation

MEMORY Typing MEMORY c<ecr> displays the GENCCPM
Memory Partition Menu. See Figure 2-5
and accompanying text.

DISKBUFFERS Typing DISKBUFFERE <cr> displays the
GENCCPM Diask Buffer Allocation Menu.
See Flgure 2-7 and accompanying text.

OBLABEL Typing OSLABEL <cr> dleplays the GENCCPM
Operating System Label Menu. See Flgure
2-8 and accompanying text.

RBPS Typing R8PS <cr> diaplays the GENCCPM RSP
List Menu. See Figure 2-6 and
acconpanying text.

GENSYS Typling GENSYS8 <er> initiates the
GENeration of the BYStem file. When
using an input file to specify asyatem
parameterg, and the GENSYS command is
not the last line in the input file,
GENCCPM goez into interactive mode and
prompta you for any additional changes.
See Bectlon 2.9, "GENCCPM Input Files,"
for more information.

Note: To create the CCPH.SYS file you must type in the GENSYS
command, or include it in the GENCCPFM input file.
2.3 System Parameters Menu

The GENCMD System Parameters Menu 1is shown in Figure 2-3. You
access this menu by typing SYSPARAMS in reeponse to the Maln Menu.

Note: All GENCCPM parameter values are in hexadecimal.




Qoncurrent CP/M Bystem Guide 2.3 Bystem Parameters Menu

Diaplay/Change Byatem Parameterg Menu

pyadrive [B:] System Drive
tapdrive [B:] Temporary Flle Drive
cmdlogging [N] Command Day/File Logging at Conacle

compatmode [¥] CP/M FCB Compatibility Mode
remmax [4000] Maximum Memory per Process (paragraphs)
openwmax (20] Open Files per FProcess Meximum
lockmax [20] Locked Records par Procesg Maximunm

custart [1008] Starting Paragraph of Oparating Syetem
nopenfilea | 40] Rumber of Open ¥File and Locked Record Entries
npdescs [14] Number of Process Desecriptore
ngchs [20] Number of Queue Control Blocks
gbufeize [ 400] Queue Buffar Totel Size in bytes
nflage [20] Rumber of Systen Flags
Changes?__

Figure 2-4. GENCCFM Byptam Parametars Menu.

Table 2-2. Syatem Parameters Menu Optloas

Option ] Explanation

SYSDRIVE The system &rive where Conourrent CP/M
locka for & traftsient program wimn it is
not found on the current defsult drive.
All the conmanly used translent
procesages can thua bhe pleced on one diak
under Uper Number O and ars not nesded
on every drive and user number. Bee the
Coneurrent CP/M Operating System Duer's
Guide for nforuation on how the
oparating eysten perforas Iile senrches,

TMEDRIVE The drive enterad here is used as the
drive for temporary disk files, This
antry can be accessed in the System Data
S8egment by application programs as the
drive on which to creats temporary
fllea. The tamporary drive should ke
thae fasgteat drive in the system, for
sxample, the Memory Dimk, if
implemented,




Congurrent CP/M System Guide 2.3 System Parameters Menu

Table 2-2. (continued)

Option Explanation

CMDLOGGING Entering the response [Y] causes the
generated Concucrrent CP/M Command Line
Interpreter (CLI) to display the current
time and how the command will be
executed.

COMPATMODE cep/Me PCB Compatibility Mode [Y]. when
the default value [Y] is set; the
operating system rvecognizes the
aompatibility attributes. Setting this
parametecr to [N] makes the generated
system ignore the compatibility
attributes. See the Concurrent CP/M
Operating System Programmer's Reference
&ulde, gection Z.E&, "Compatibllity
Attributes," for more information on
this feature.

MEMMAX Maximuin Paragraphs Per Process [400C). A
process may make Concurrent CP/M memory
allocations. This parameter puts an
upper limit on how much memory any ons
process can obtain, The default shown
here is 256K {(40000H) bytes.

OPENMAX Maximum Open Files per Process [20].
Thias parameter specifies the maximum
number of E£iles that a single process,
usually one program, can open at any
given time. This number can range from
0 to 255 (QFFH) and must be less than or
equal to the total open filea and locked
records for the sysatem. See the
explanation of the NOPENFILES parameter
below.

LOCKMAX Maximum Locked Records per Process [20].
This parameter specifiea the maximum
number of records that a single pracess,
usually ohe program, can lock at any
given time. This number can range from
0 to 255 (0OFFH} and must be less then or
equal to the total open filea and locked
records for the system. See the
explanation of the NOPENFILES parametar
in the SYSPARAMS Menu.




Concurrent CF/M Bystem Guide 2.3 Bystam Faramsters Manu

Table 2-2, (continued)

Option ( Explanation

CBSTART Starking Parmgraph of the operating
system [1008], Ths starting paragraph
iz where the CQPMLDR 1s tc put the
oparating system. Code executlon startas
here, with the C8 regioter amet to thie
velus and the IF reglster sat to 8. The
Duta BSagnent Register is sat to the
BYSDAT segment pmnddress. When firat

1 hringing up and debugging Concurrent

CP/M under CP/M-B6, the anawsr to thle

question should be 8 plus where DDT-B&

running under CP/M-36 reade in the file

using the R command. The DDTEE R

compand almd can bs used to read the

CCPM.SYE fila to a specific mamory 1

laogution. Aftar debugging the esyetem,

you might want to relocmte it to an i

address more appropriate to your

hardware configuration. This loaation
fiaturally depends on wheres the Boot

Sector and Loeder are placed, and how

wuch RAM 4ia umed by ROM monitor or

namory-mapped I/0 devices.

T

KOPENFILES Total Opsn Files in i{ateﬂ [40]. Thim
peramoter wpaolfiss the zotal sime of !
the Bystem Look List, which includes the
toteal number of cpen dlak £ilew pluw the
total number of locked records for all
the proceassas axecuting under Concurrant
CP/M at any given time, This numbar
must be greater than or egual to the
saximum open filew per procass ([the
OPEWMAR parsaster above) and the maximum
looked records par process (the LOCKMAX
paremeter abova). It ls pozsible either
to allew emch progess to uee up the
total System Lock Liet epace, or teo
allow each procesa to only open a
fraction of the syaten total. The firat
technique implies 5 eituation where one
process tan farclbly block osthers
beceuss i1t haas consumed all the
available Lock list items.

-8



Concurrent CP/M System Guide 2,3 Bystem Parameters Menu

Tahlae 2-2. {continued)

Option I Explanation

NPDESCS Number Of Process Degcriptors [14]). For
each memory partition, at least one
translent program can be loaded and run,
If transient programs create child
processes, or if RSP extend past 64K
from the beginning of SYSPAT, extra
Proceaa Descriptors are needed. When
fir=st bringing up and debugging
Concurrent CP/M, the default for this
parameter suffices. After the debug
phase, during system tuning, you can use
the Concurrent CP/M SYBTAT Utility to
monitor the number of processes and
queves in use by the sydtem at any time.

NQCBS Number Of Queue Control Blocka [20]. The
number of Quaue Control Blocka should be
the maximum nunber of gueuesa that may be
created by translent programs or RSPs
outalde of 64k from SYSDAT. The default
value puffices during initial system
debugging.

QBUFSIZRE 8ize Of Queue Buffer Area in Byteg [400T1,
The Queue Buffer Area 18 space reaerved
for Queue Buffers. The size of the
buffer area regquired for a particular
queue i= the message length times the
number of meazages. The Queue Buffer
Area should be the anticipated maximum
that transient programs will need.
Again, the default value will be
adequate for inltial system debugging.
Note that the Queue Buffer Area can be
large encugh (up to OFFFFH)} to extend
past the SYSDAT 64K boundary.

NFLAGS Size of the flag table [20]. Flags are
three-byte semaphores used by interrupt
routines. The number of flage needed
depends on the design of the XIOS. More
Information on uaing £laga for interrupt
deviges can be found in Section 3 under
"Interrupt Devices". See also the
Concurrent CP/M Operating System
Programmer's Guide on Dev_flagset,
Dev_flagwt,




Concurrent CP/M Bystem Guide 2.4 Mewmory Allocaticon Menu

2.4 HNamory Allopation Nanu

The Memory Allocmtion Fartitlonas Menu, shown in Pigure 2-5, is an
interactive menu. When the menu i £firat 4displayed, it lists the
gurrent memory partitions. If none have been specified, the liat
£leld is blank. Yollowing the list is the menu of options
availmble. You may chooe eilther to ADD to the limt of partitions,
or to DELETE one or more partiticna. Partition amsignments must be
made by speclfying sither ADD or DELETE, followed by an equal sign,
the starting addressz and last addresm of the memory region to be
partitioned, and the size, in paragraphs, of each partition. All
values must be in hexadscimal notation and meparsted by commms. An
aaterisk can be used to delets all memory partitions. The Start and
Last valuas are paragraph addregses} multiply them by 16 {(10H) to
obtain abaolute addresses. Bimilarly, partition amizes are in
paragraphs; multiply by 16 (10H) tp obtain size in bytes.

In the eXample below, &ll defasult memcry partitions are firat
deleted (DELETE=*). Then two kinda of memcry partitions are added
to the 1list: 16X (4000h) partitions from address 240030 to 4000:0,
and 3ZK (8000h) partitione from 4000:0 to 800030,

Addresaen Partitions {in paragraphs)
[ 3 Start Laat Size fty
L. 400h §000h 400h 17h

Dlsplny/chnngn Memory Allecapion Partitions
ADD memory partition{s)
dolete DRLETE memory partition (e)

Changas? delete=* add=2400,4000,400 add=4000,6000,800

Addreages Partitlons
$ gtart Last Blze Qty
1. 24000 4000h 400h 7h
2. 4000h 6000h 800h 4h

Diaplay/change Memory Allocation Partitions
ADD memory partition(e)
delutu DELETE memory partition(s)

Changes? <cr>

Figure 2-5. GENCCPM Memory Allocation Bample Bession

2-10




Concurrent CP/M Byatem Guide 2.4 Memery Allocation Menu

Memory partitiona are highly depsndent on the particular hardware
environment, Therefore, you should carafully examine the defaulta
that are given, and change them if they are inapproprilate. The
memory partitions cannot overlap, nor can they overlap the cperating
aystem area. GENCCPM checke and trims memory partitions that
overlap the operating system but does not check for partitions that
rafer to nonexistent system memory. GENCCPM does not size existing
memory because the hardware on which it is running might be
different from the target Concurrent CP/M machine (this might he
done by the XIOS at initialization time). Error messages are
displayed in case of overlapping or incorrectly sized partitions,
but GEHCCPM does not automatically trim overlapping memory
partiticns. GENCCPM does not allow you to exit the Main Menu or the
Memory Alleccation Menu if the memory partiticn list is not valia.

The nature of your applicatlion dictates how you ahould specify the
partition boundaries in your system. The syetem never divides a
single partition among unrelated programs. If any given memory
request requires a memory segment that ia larger than the available
partitiona, the system concatenatea adjoining partitions to form a
aingle contiguous area of memory. The MEM module algorithm that
determines the best f£it for a given memory allocation requeat takes
into account the number of partitions that will be used and the
amount of unused space that will be left in the memory reglon. This
allows you to evaluate the tradeoffs betweaan memory allocaticn
boundary conditions causing internal versus external nemory
fragmentation, as described balow.

External memory fragmentation occcurs when memory is allocated In
small amounts. This can lead to a situation where there is plenty
of memory but no contiguous area lazge enovgh to load a large
program. Internal fragmentation occurs when memctry is divided inte
large partitions, and loading a small program leaves large amounts
of unused memory in the partition. In this case, a large program
can always load 1f a partition is avallable, but the unuaed areas
within the large partitiong cannot be used to lcad small programs if
all partitions are allocated.

wWhen running GENCCPM you can specify a few large partitions, many
small partitions, or any combination of the two. If a particular
environment requires running many small programs frequently and
large programs only occasionally, memory should be divided into
spall partitiona. Thie simulates dynamic memory management as the
partitions become smaller. Large programs are able to load as long
as memory has not become too fragmented. If the environment
conaists of running mostly large programsg or if the programs are run
serially, the large-partition model should be used., The choice {8
not trivial and nright reguire some experimentation before a
satisfactory compramise ia attained. Typical solutions divide
memory Iinto 4K to 16K partitions.

2-11



Concurrent CP/M Byaten Guide 2.5 GENCCPM RAP List Menu

1.5 GERCCPN RSP List Manu
The GENCCPM REF (Resident Syatem Process) List Menu is shown in

Figure 2-56. The axarple sessaicn illustrates excluding ABORT.REP and
MY.REP from the list of REPs to be {ncluded in the system.

REPE to be included arer

PIN.RSF DIR.RSP ABORT .REP TMP.RSP
VOUT.REP CLOCX.REP MY.REP

Display/Change REP Liat

inglude Include REPB
exclude BExclude RSP

Changes?__excludessbort.rap,my.rsp
R8Ps to be included arae;

FIN.REP DIR.REP VOUT.REP CLOCK. REP
TMP . RSP

Changeg?__ <cr»

Figure 2-6, GEEINPM RSP Lis:t Menu Sampls Sesslon

The GEMCCPM R8P Ligk Menu first reads the directory of the current
default disk and liets all .R8F filee present. Responding teo the
GENMCCPM prompt Changes? with aither aa include or exglude command
adits the 1ist of REPm to be made part of the coperating system at
aysten generaxlion time. The wildcard (*;) file specification can be
uzad with the include command to autogatically inglude all .RSP
filee on the disk.

Eote: The PIN, VOUT, and CLOCK RSPa muat he inciuded for Concurrent
CP/M to run.

2-12




Concurrent CP/M Syatem Guide 2.6 GENCCPM DSLABEL Menu

2.6 GENCCPM OSLABEL Menu

If you type OSLABEL in reaponse to the main menu prompt, as shown in
this example:

Changes? OSLABEL

the following screen menu appear on your screeh:

Display/Change Operating System Label
Current message is:
<null>

Add lines to measage. Terminate by entering only RETURN:

Figure 2-7. GBENCCPM Operating System Label Menu

You can type any message at this point. This message is printed on
sach virtual console when the system boots up. Note that if the
message contains a $, GENCCPM accepts it, but it causes the
operating system to terminate the message when 1t is being printed.
This ia because the operating system uses the C_WRITESTR function to
print the meassage, and § ia the default message terminator.

The XIOS might also print its own sign-on message during the INIT
routine. In this case, the XIO8 message appears hefore the message
specified in the GENCCPM OSLABEL Menu.

2.7 GBENCCPM Disk Buffering Menu

Typing DISKBUFFERS in response to the main menu prompt displays the
GENCCPM Disk Buffering Menu. Figure 2-8 shows a sample session:

2-13




Concurcent CP/M Bystem Guide

2.7 GBNCCPM Buffering Menu

*+% pigk Buffering Information *+*

Divr ™Max/Proc Data Max/Proc Hush Spacified
Drv Bufy Dir Bufse Bufs Dat Bufs =ing Buf Pgphs
A: 77 D 27 0 yas 77
B 7 0 7 0 yes (X3
C: 77 ] 77 o} yes 7?
D: 7 0 77 0 yes ??
B 7 0 X 0 yes (X3
M: 27 0 fixed £ixed 7
Total paragraphs allocated to buffars: 0
Drive (<cr> to exit) ? as

Number of directory bufferd, or drive to share with? B
Maximun directory buffers per process [8] 7 4

Number of data buffers, or drive :to share with? 4
Maximum data buffers per procesg [4]? 2

Hashing [yes] ? <cr»>

*%* pigk Buffering Infotmation *¢

Dir Max/Proc Data Max/Proc Hash Spacified
Drv  Bufs Dir Bufs Bufs Dat Buis -ing Buf Pgphs
11 amgE= Ix Bmaa aEaEsnaSt=
A: 8 4 4 2 yas 200
B: P 0 27 0 yas ?e
Ca "7 D 27 0 yes 7
Ds 27 0 27 0 yes 2?
E: ?? 1] 27 1] yes ??
M: 7 0 fixed fized ??

Total paragraphs allocated ta bufferss 200

Drive (<or> to exit) ? *:

Number cf directory buffers, or drive to ahare with? a:
Number of data buffers, or drive to share with? a:

Hashing fves] ? <cr>

*3* pisk Buffering Information tw*

Dir Max/Proc Data Maz/Proc Hash 8pecifiad
Brv  Bufa Dir Bufs Bufs Dat Bufs -ing Buf Pgphe
EERW Bp= SOaSAaA=AXY Aann aSaasEERje=
Al 8 [} 4 F) yea 200
B: shares A: shares A: yeB 80
C: shareg As shareg A: yes 20
De sharea A: shares A: yes 18
B: shares A: sharea A: ves 10
M: shares Ax fixed Eixed 0

Total paragraphs allocated to buffers: 2C8

Drive {(<cr> to exit) 7 <cr>

Flgure 2-8.

GENCCPM Dimk Buffsring Sampls Session



Concurrent CP/M System Guide 2.7 GENCCPM Buffering Menu

In the sample session shown in Figure 2-8, GENCCPM is reading the
DPH addregses from the XIOS Header, and calculating the buffer
parameters hased upon the data in the DPHa and the answerg to its
questions. GENCCPM only asks questions for the relevant fields in
the DPH that you have marked with OFFFFh values. See Section 5.4,
"pDigk Parameter Header," for a detailed explanation of DPH fields
and GENCCPM table generation. An asterigk can be used to specify
all drives, in which case GERCCPM applies your answers to the
following guestiona to all unconfigured drives.

Note that GENCCPM prints out how many bytea of memory must be
allocated to implement your disk buffering requests. You should he
aware that disk buffering decisione can gignificently impact the
performance and efficiency of the system being generated. If
minimizing the amount of memory occupied by the syatem is an
important consideration, you can use the Disk Buffering Menu to
gpecify 2 minimal disk buffer space. We have found, however, that
the amount of Directory Hagshing space allocated hag the moat impact
on gystem performance, followed by the amount of Directory Buffer
epace allocated. As with the trade~cffz in memory partition
allocation discussed above, deciding on the proper ratio of
operating system apace to performance requires sone experimentation.

Note also that if DOS media is supported, directory hashing space
must be allocated for the BO5S file allocatlon table (FAT}. See
Section 5.5.1 for information on allocating enocugh space for the FAT
and the hash tahle.

GENCCPM checks to see that the relevant fields in the DPHg are no
longer set to OFFFFH. GENCCPM does not allow you b0 exlt from the
Main Menu until these fields have been gset using the Disk Buffering
Menu.

2.8 GENCCPM GEN3YS Option

Finally, specifying the GENSYS option in answer to the main menu
prompt causes GENCCPM to generate the system image on the aspecified
degtination disk drive. During the actual ayatem generation, the
following messagea print ount on the screen:



Concurrent {¥/K #ystem Guide 2.8 GENCCPM GENSYS Option

Generating new SYS file
Ganerating tablem
Appending R8BPa to mystem f£ile
Doing Fixupe
8YB imags load map:r
Code starts at GOGGh
Data =tmcts at HAHBh
Tables start at YIIIh
REPs start at JJJJh
X108 Buffers start at KKKKh
End of OB at LLLLh

Trimming memory partitions. New Limt:s

Addresagn Partitions
{in Paragraphs) Eiza How (only if
[ 3 Btart Lagt (Paras.) Many necessary)
1, AMAARL EBBBh XXXXh th |
2, MMMMh RNNNh 0Qgh Vh
v
Wrapping up

A>

Figure 2-9. GEICCPM Bystem Geoaration Messages

2.9 GERCCPM Input Files

GENCCPM allows you to input all system gensxation ccommarnds from an
input f£ile. You can also redirsct the console output to a disk
fél.é You usa thase GENCCPM features by invoking it with command of
tha form:

GENCOPM <Ifflein >filecut

where filein is the name of the GENCCPFM inhput file. NHote that no
spaces can intervene betwaen the greatar—than or less-than sign and
the file specification. If this condition is not mat, GENCCEM
responds with the meppags:

REDIRECTION ERROR
The format of the input file im mimilar to a BUBMIT file; each
command is entered on a saparate line, followed by a garriage
return, exactly in the order reguired during a manually operated
GENCCFM mession. The last command can be followed by a carriage
return and the command:

A>GERSYE

2-16




Concurrent CP/M System Guide 2.9 GENCCPM TInput Files

to end the command sequence and generate the system. If the GENSYS
command {3 not present, GENCCPM queries the ceonsole for changes.

The following example illustrates the use of the GENCCPM input file.
Agsuming that the input file file specification is GENCCPM.IN, use
the following command to invoke GENCCPM:

A>GENCCEM <GENCCPM.IN

Figure 2-10 shows a typical GENCCPM command file:

VERBQOSE=N DESTDRIVE=D:

SYSPARAMS

OSSTART=4000 NPDESCS=20 QBUFSIZE=4{FF TMPDRIVE=A: CMDLOGGING=Y

<>

MEMORY

DELETE=* ADD=240Q,4000,400 ADD=4000,6000,800

car>

DISKBUFFERS

Ax

8

4

4

2

hashing

L] ; for all remaining drive gquesticns

A: ; share directory buffers with A:
¥

A: share data buffers with A:
hashing hashing on all drives
ar>

OSLABEL

Concurrent CP/M Version 1.2)1 04/15/83
HAardware Configuration:
A: 10 MB Hard Disk
B: 5 MBE Hard Disk
C: Single-density Floppy
Dt Double-density Floppy
M: Memory Disk
<ar>
GENS5YS <Ccr>» ¢—————— Only 1f you do not want to he able
to gpecify additional changes

Figure 2-10. Typical GEMCCPM Comsand File

After reading in the command file and optionally accepting any
additional changes you want to make, GENCCPM builds a system image
in the CCPM.SYS file in the manner desoribed in Section 2.1.

End of Section 2

2-17




Section 3
XI0S Overview

Cancurrent CP/M Version 3.1, as implemented with one of the example
XlJb'a discuased in Section 3.1, 18 configured for operation with
the Compu-Pro with at least two 8-inch floppy dlsk Qrives and at
least 128K of RAM, All hardware dependencies are concentrated in
subroutines collectively referred to aa the Extended Input/Qutput
System, or XIOS. You can modify these subroutines to tailor the
system to almoat any 8086 or BO8B8 disk-basad cperating environmant.
This section praovides an ovarview of the XIOS, and variables and
tables referenced within the XIOS.

The following material agsumes that you are familiar with the CP/M-~
86 BIOS. To use this material £fully, refer frequently to the
example XlU8's found 1n source code form on the Concurrent CP/M
diatribution disk.

Note: Programs that depend upon the interface to the XIOE must
check the version number of the operating syatem before trying
direct acceas to the XI08. Future versions of Concurrent CP/# can
have 4jfferent XI0S jnterfaces, including changas to XI0S function
nurbers and/or parameters pasmad te XIOS routines.

The XIOS nust fit within the 64K Syatem Pata Segment along with
the SYSDAT and Table Area. Concurrent CP/M accesses the XIOS
through the two entry points INIT and ENTRY at offset 0CDOH and
OCO03H, respectively, in the System Data Segment. The INIT entry
point is for system hardware initialization only. The ENTRY entry
point is for all other XI0O8 functions, Because all operating system
routines use a Call Far instruction te access the XIOS through these
two entry points, the XIOE function routines must end with 2 Return
Far instruction. Subsequent sections describe the XIOS entry points
and other fixed data fields.

3.1 XI08 Header
The XIOS Header contains wvariables that GENCCPFM uses when

constructing the CCPM.5YE file and that the operating system uses
when executing. Figure 3-1 illustrates the XIOS header.



Concurrent CP/M System Guide

3.1 XICS Hesder

CO0H lJHP INIT JMP ENTRY SYBDAT
CO8H SUPBR;IBOR TICK | TICKS DOOR | RESER-

_SEC VED
Cl10H NPCNS | NVCHNB NCCB NLCB CICB lalCB
c18H DPH(A) DPH(E) DPH(C) DPE(D)
C20H DP!i(B) DPHJ(F) DPHI(G) DPHI(H)
c288 DPH (1) DPH(3) DPH(K) DPH{L)
c30H np;i(u) DPH(N) DPH(D) DPH(P)
c38H ALLOC

Figure 3-1. XIOS Hsader

Table 3-1. XIOS Header Data Fields

Data Field I

Explanation

JMP INIT

JMP ENTRY

XICE Initialieation Point. At system boot, ths
Superxvisor module esxescutss a CALL FAR
inatzuction to this loomtion in the XIOS (X108
Code Esgrent: OCO0H). Thim call transfars
control to the XIOB INIT routine, which
initializes the XIO8 mnd hardwers, then
oxegutes a RETURN FAR instruction. The JMF
INIT inatruction amust be present in the
XIOB.AB€E file. For daetaills of the INIT routine
usa Esction 3.4, “INIT Entry Polnt."

XIO&8 Entry Point. All access to ths XI08
functions goes through ths XIO8 FEniry Polnt.
The operating wsystem executss a far cell
(CALLF) to thle loaation in the XIOS (XI0B Coda
Ssgment: QOCO3IE) whenever I/0 is needed, This
instruction transfars control to the XIOE XNTRY
routine which calis the appropriata function
within the XIOS. Once the Ifunction is
completa, tha ENTRY routina sxecutes a return
far (RETF) to the oparating systam, The RETF
instruction must ba pressnt in tha XIOH.AB6
file. For details of the ENTRY routins, ses
Saction 3.2, “XI0S ENTRY."




Concurrent CB/M System Guids ' 3.1 XIOS Header

Table 3-1. {continued}

Data Field r Explanation

SYSDAT The gegment address of SYSDAT, It is in the
Code Segment of the XIOS to allow accesa to
data in SYSDAT while in interrupt routinea and
othar areas of code whare the Data Segment is
unknown. For example, the following routine
accessas the current process’'s Process
Deacriptor:

DSEGQ
ORG 68H ; point to RLR field
; of SYSDAT
RLR RW 1 ; does not generata
; a hex value
CBEG ; of XI0S
PUBH DS Save XIOS Data

Segment

Move the H9YHDAT
seguent addresas
into DS

Move the current
process's PD
Addreea into BX
and perform
operation. (See
Fig 1l-5 for expla-
nation of RLR)
Restors the XIOS
Data Begment

MOV DS, CS:SYSDAT

MOV BX,RLR

POP D8

e B ME e e WE g mE RE Mg N W e wE

This variasble is initialized by GENCCPM.

SUPERVIBOR FAR Address (double~word pointer) of the
Supervisor Module entry point. Whenever the
XIOS makes a aystem call, it muat access the
operating system through this entry point.
GENCCPM initializes this field. Section 3.8,
"XI08 Bystem Calls", deacribes XIOS register
usage and restrictions.




Cancurrent CP/M System Guide 3.1 XIQF Haader

Tabla 3-l. {continued}

Data Fileld

Explanation

TICK

TICKS_SEC

DOOR

NPCNE

NVCNS

Set Tick Flag Boolean. The Timer Interrupt
routine uses this variable to determine whathex
the DEV_SETFLAG syetem call should bs called to
set the TICK FLAG, Initialige this variable to
zero (OOH) In the XIOE.COM file. Conourrent
CP/M sets this £field to OFFE whenaver a
process is delayling., The fiasld is reset to
zezo (UOH) when all procomses finish delaving.

Sem the Concurrent CP/M Oporatin% Systeam
Pr%ramnnr 's Reference Guids for details on the

and P_| system calls. BSae
Bection 7 of this manual, *XIOE TICK Interrupt
Routine," for more information on the XIOB
usage of TICK,

Mumbar of Ticka per Second. This field nust be
initialized in the XIO8.CCM file toc be the
number of ticka that mmke up ons sacond as
implensnted by this XIOS. GENCCPM coples this
field into the SYEDAT DATA. Applicaticn
programmara can use TICKE SEC to datermine how
many ticks to delay in order to delay one
second. See Section 7, "XIOS TICK Interrupt
Foutine," for mors information.

Qlobal Door Open Iaterzupt Flag. This f#ield
nuat be set to OFFH by the drive door open
intarrupt handler routine if ths XI0O8 detects
that any drive door has besn copened. The RDOS
checks this fisld before svary disk opsration
to verlify that the media is unchanged. If a
door has been opened, the XIOS muat also set
:h: Madia Flaog in the DPH assoclatsd with tha
rive.

Nurber of Physical Consclea. Injtialixe thie
tield to the number of phyaical consocles, or
user terminals ccnnacted to the systam. This
nomber does not includs extra I/0 devices.
GENCCPM ueer this vmlus, and creates a PIN
process for each physical gonsols., It also
voplea NPCNS into the XPCNS fleld of thae SYSDAT
DATA.

Humber of Virtual Conscles. Initialize this
fiald to tha numbar of virtyal consolas
supported by the XIOB in the XIOB.CON file.
GENCCPM craatss a THP and a VOUT process for
gach virtuaml conmcle. GENCCPM copies NVCHS
into thae NVCHE fiald of the SYSDAT DATA.




Concurrent CB/M System Guide 3.1 XI08 Header

Table 3-1. {continued)

Data Field l Explanation

NCCB Number of Logical Conscles. Initialize thais
field to the number of virtual conscoles plus
the number of character I/0 devicea aupported
by the XIOS. Character 1/0 daviges are deviges
accezaed through the consocle system calls of
Concurrent CP/M (functionas whose mnamonic
begins with C_) but whose conscole numbers are
beyond the range of the virtual consoles.
Applaication programg accegs the character 1/0
devices by setting thair default console number
to the character 1/0 device's console number
and using the regular console system calls of
Conourrent CP/M, Sae the C SET system call as
described 1in the Concurrent CP{M Operating
Syskem Programmer 's Reierence Guide. GENCCPM
copies this Lield into the NMCCB fleld of the
SYSDAT DATA,

NLCB Number of Liat Control Blocks,. Initialize this
field 1n the XIQS.CON file to egqual the number
of List devices supported by the XIOS, A list
device is an output-only device, typically a
printer. GENCCPM copies this field inta the
NLCE field of the SYSDAT DATA.

CCB Offset of the Console Control Block Table.
Initialize thia field in the XIOS.CON file to
be the addreas of the CCB Table in the XI05. A
CCB Entry in the Table must exist for each of
the consoles indicated in NCCB, Each entry in
the CCB Table must be i1nitialized as described
in Section 4.1, "Console Control Block".
GENCCPM copies this field into the CCB field of
the SYSDAT DATA.

LCB Offset of the List Control Block, This field is
initialiged in the XIOS,CON file to be the
addrass of the LCE Table in the XIOS. There
must be an LCB Entry for each of the liat
devices indicated in NLST. Each entry muat be
initi1alized as de=cribsd in Sagtion 4,3, "List
Device Functions." GENCCPM copies this field
into the LCB field of the SYSDAT DATA.




Concurrent CPF/M System Guidas 3.1 XIDS Hesadsr

Tables 3~1. (contioued)

Data Fiald L Explanation

DEE{A)-DPRE(P) Offsat of initial Disk Parameter Header (DPH)
for drivee A through P, respectively., If the
valus of this field im OOCD0OH, the drivae is not
wupported by the XI0S8. GENCCPM uses the DPH
Table to initialicze specific fields in the DFHs
when it automatically creates BCEe and buffars.
If the relevant DPH f£fields ars not initialiged |
ko OFFPFFH, GENUCFM amsunes Lhe BCBs and buffers
are defined by data alrsady initialized in the
XIOS.,

ALLOC This valus is initialized in the XIO8 to the
wize, in paragraphs, ¢f an uninitialized RAM
buffer aresa to be reserved for the XIOBR by
GENCCPM. When GENCCFM cresates the CCPM,.EYE
imaga, 1t setz thim field in tha CCPM.BYSE file
to the starting paragraph (segment valus) of
the XI08 uninitialized buffer area, Thiz valus
may then be used by the XIOS for basad or
indexed addreswing into the bLuffer aresaz.
Typically, the XIOB umas this buffer area for
the vizrtual consgle soresn maps, programmable
function key buffers, and nondisk-related I/0
buffering. GENCCPM allocatem this
uninitialized RAM immediately following the
aystem imags and any syetea diask data or
directory hashing buffere. Becauaa the XIOS
buffer area ia not includad in the CCPM,.8YS
fila, it can be of any desirad sige without
atfecting system load time performance. If the
ALLOC field ia initialized to eero in the
XI08.CON file, GENCCPM allocates no buffer RAM
and leavas ALLOC sat to xerc in the eysteam
inags.




Concurrant CP/M System Guide 3.1 XIOS Header

Iiasting 3-1 illustrates the XIOE Header definition:

:ii*iiiiiiitttt*iiiiiiiiitiiittti*i*iiii*iiii!*iii*t*

4 XI0S Header Definition

’
"it*****k*t***ftﬁti***ti**tiiiiiii*ﬁtiiii*iiiiiii*ii

CBEG
org 0C00h
Jrp init saystem initialization
jmp entry rxloa entry point
sysdat dw 0 ;Byedat Segment
suparvisor rw 2
DBEG
org 0COCh
tick db falsa rtick enable flag
ticks_smec db 60 :# of ticka per second
door db 9] ;global drive door open
H interrupt flag
revd db 0 :rederved for operating
1aysten use
npcns db 4 snumber of physical coneclea
nvcena db 8 ;number of wirtual conscles
nach dab 8 jtotal number of ccbsa
nlat db 1 rnumber of list devices
aabh Aaw offaet cchl :toffset of the firast ccb
lcb dw offset 1lch0 joffaet of firet leb
;disk parameter header offset table
dph_tbl dw offset dphl sdrive A:
dw offset dphl $ By
Aaw 0,0,0 1Ct,D:, B
dw 0,0.,0 :P:,Gz,H:
aw 0,0,0 slt,d:,K:
aw 0 #Ls
aw affset dph2 TM:
dw 0,0,0 ;N:,0:,P:
alloco daw 0

Listing 3-1. XIOS Reader Definition



Concurrent CF/M System Guids 3.4 INIT Entry Point

3.2 INIT Emtry Point

The XIO8 initialigaticon routine entry peint, INIT, 13 at offset
0COOH f£rom the baginning of the XIOS code module, The INIT process
calls the XJOS5 Initialization routine during aystem infitializaticn,
The saguence of avents from the time CCPM.SYS is lcaded into memory
until the REPs ars created is important for understapnding and
Qebugging the XI0S8.

The ioadsr loads CCPM.BYS into nexmory at ths absoclute Code Ssgment
location contained in the CCPM.S5YB file Header, and initializes the
C6 and DS registers to the Bupervisor code ssgmant and the SYSDAT,
reapectively. At this polnt.: the loader eaxecutes a JMPF to offset O
of the CCPM,5Y5 code and begins the initialization code of the
Concurrant CP/M BUPF module as dascribed below. When loading
CCPM.5¥6 under DDT-86 or S§ID-86, use the R command and sst the code
and data segments manually before beginning execution. You cannot
usa the E command becauss it initializes tHe data esegment bass page
to incorrect valuas. See Section 8, "Debuggiang the XIDS.*

l. The first step of initialization in the SUP is to met up the
INIT process. The INIT procees perforws the reat of system
initialization at a priority equal te 1.

2. The INIT process calls the initializmtion routines of sach of
the other modules with a Far Call instruction. The firat
instruction of each code module 18 asgumed t£o be a JMP
instruction te its initialization routine. The XIOS
initialization routine is the lust 6f theae modules called.
Once this call is zade, the XIOS inltialiration code 1o never
used again, Thue, it can be logated in a directory buifer or
other uninitialized data arasa.

3. A mhown in the axample XIOS listing, the initialization
routina must initialize all hardware and interrupt vectora.
Intarrupt 224 is saved by ths HUP module and restored upon
return from the XI0E. Because DDT-26 ueas Interrupte 1, 3, and
225, do not initialize them when debugging the XI0S with DDT-86
running under CP/M-86, Oon each context awitch, interrupt
vectors 0, 1, 3, 4, 224, and 225 arw saved and rsstored as part
of a process's environment.

4, The XIO08 initialization routins can optionally print a msssage
to the console befors it executes a Far Return (RETF)
instruction upen completion. Mote that esmch TMP prints out the
string addresesead by the VERSION variable in the SYSDAT DATA.
Thia string can be changed using the OSLABEL Menu in GENCCPM.

5. Upen return from the XIOS, the SUP Initialization routine,
running under the INIT process, craates soma gueues and sktartsa
up the RSPe., Once thie is done, the INIT process terminatas,



Concurrent CF/M System Guide 3.2 INIT Entry Point

The XICS8 INIT routina should initialize all unuaed interrupta to
vector to an interrupt trap routine that prewvents apurious
interrupts from vectoring to an unknown locatlon. The example XI0S5
handles uninitialized interrupts by printing the name of the process
that caused the interrupt followed by an uninitialized interrupt
error nessage. Then the interrupting procese is unconditionally
terminated.

Concurrent CP/M gaves Interrupt Vector 224 prior to syastem
initialization and restorees it following exscution of the XIOS INIT
routine. However, it doea not store or alter tha Non-Maskable
Interrupt {NMI) wvector, INT 2. Setting KMI is also the
reapongibility of the XICS8. The example XIOS first inltialixes all
the Interrupt Vectors to the uninitialized interrupt trap, then
initializes specifically used interrupts.

Note: when debugging the XIO8 with DDT-86 running under CP/M-86,
do not initialize Interrupt Vectors 1, 3, and 225. The example
Xi08'e have a debug f£lag that is teated by the INIT routine for this
purpose.

3.3 XIOE ENTRY

All accesses to the XIOS after initialization go through the ENTRY
routine. The entry point for this routine is at offeet O0CO3H from
the beginning of the XI0S code module. The operating aystem
accesses the ENTRY routine with a Far Call to the location offeet
0CO3H bytes from the beginning of the SYSDAT Segment, When the XIOS
function is complete, the EMTRY routina returns by executing a Far
Raturn instruction, ae in the example XIOS's. On entry, the AL
register containa the function number of the routine being acceaaed,
and regiaters CX and DX contain arguments passed to that routine.
The XIOS must maintain all segment registers through the call. This
means that the CS5, D8, E3, 58, and SP registers are maintainad by
the functions being cslled.



Concurrent CP/M System Guida 3.3 XI0S ENTRY

Table 3-2. XIOS Registar Usage

Registars on Entry

AL = function number
BX = PC-MODE paramatar
CX = t.rst parameterx
DX » pacond paraneter
D8 = EYSDAT segment

EB = Umer Datya Area

AH, SI, DI, BP, DX, CX are undefined

Registers on Raturn

AX = raturn or XIOS srror cpde
BX = AX

D8 = BYSDAT aegment

ES = Uaer Data Area

81, DI, BP, DX, CX ars undafined

All XIO8 functions, with the exception of digk functions, use the
ragister conventions shown abovae,

The ssgunent registsrs (D3 and EB) must be praserved through the
ENTRY routins. Howsver, when calling the EUP from within tha XIOS,
the E8 Registar must egual the UDA of the running procesas and D8
miat equal tha System Datm Segmaent. Thus, if the XIOE is going to
parfora a string move or othar code using the 58'Registsr, it nuat
preserve ES using the atack az in the following exasple:s

pugh as
mov e8,segment_address
r;ﬁ.lnvuw

pPop e8

In the exampls XI0S8's, the XIS function routinas are accessed
through a function table with the function number being the actual
table entry. Table 3-3 liste the XIOS function numbera and the
carresponding XI0S routines; detalled explanationa of the functiona
appear in the referenced sections of this documant., Listing 3-2 ia
an example XIUS ENTRY Junp Table.



Concurrent CP/M Syatem Guide 3.3 XIDS ENTRY

Table 3-3. XIOES Functiona

Function Number X108 Routine
Console Functions -~ Sectlan 4.2
Funetion 0 I0_CONST CONSOLE STATUS
Fonotion 1 I0_CONIN CONSOLE INPUT
Function 2 ID_CONOUT CONBSOLE OQUTPUT
Function 7 I0 BWITCH BWITCH SCREEN
Function 8 I0 STATLINE DISPLAY STATUS LINE
List Device Functions -- Section 4.3
Function 3 IO L3T8T LIST S8TATUS
Function 4 10_L8TOoUT LIST OUTPUT
Other Character Devices -~ Section 4.4
Function 5§ I0 AUXIN AUXILIARY INPUT
Function 6 I0_AUXQUT AUXILIARY OUTPUT

Poll Device Function —-- Section 4.5

Function 13 10 _POLL POLL DEVICE

Digk Functions —~- S8ection 5.1

Function 9 I10_SELDBR BELECT DISK
Punetion 10 I0_READ READ DISK
Function 11 IC_WRITE WRITE DIBK
Function 12 I0 FLUSH FLUBH EUFFERS
Function 35 I0_INT13 READ READ DOS DISK
Function 36 IO_INT13 WRITE WRITE DOS DISK
PC Mode Character Functions —-- Section &
Function 30 I0_SCREEN GET/SET SCREEN
Function 31 I0_VIDEO VIDED IO
Function 32 IQ_KEYED KEYEBOARD MODE
Function 33 10 SHFT SHIFT STATUS
Function 34 I0_EQCK EQUIPMENT CHECK




Concurrant CB/M

Bystem Guide

Mo

X108 FUNCTICH TABLE

XIOE ENTRY

functab aw io _const : 0 - console status
aw io_conin t 1 - consols input
dw io_conocut ; 2 - console cutput
cdw io_listat r 3 - list etatus
dw io_list r 4 — liat output
dw io_auxin i § - aux in
dw io_auxout P 6 - mux out
dw ic_mswitch i 7 - awltch ecresan
aw io_statline t 8 - display status line
dw io_meldek : 9 - seplect disk
Aw io_read 110 - read sector
aw io_write t11 - write sector
dw io_flushbuf ;12 - £lush buffer
aw io_poll 113 - pbll davite
dw ic_rat 314 - Jummy return
aw io ret ;158 ~ dummy return
dw io_ret ;16 - dibwmwy return
dw io_ret $17 - dusmy retuzn
dw ig_rat $18 - duumy reiurn
G io ret 719 - dummy return
dw io_ret {20 - dummy return
Aaw io_ret 121 - duxmy return
aw ic ret +22 - dummy return
dw io_ret :23 - dummy return
aw io_rat ;24 - dummy return
aw io_ret 125 - dumxty return
daw ic ret 126 - dummy return
dw io_ret ;27 - duemy rsturn
dw ioc_ret $128 - dummy return
dw ic_ret 129 -~ dummy veturn
dw io_ecreen 130 - gat/aat screen mode
dw io video 131 - video 1/0
aw io_keybd 132 - kayboard info
dw io_anft ;33 ~ phift status
dw io_agck 134 - eguipment check
dw lo intld read 135 - read DOS disk
Aaw io intl3 write 36 - write DOE disk

gm— - ———

Listing 3-2. XIO8 Function Table

3-12




Concurrent CP/M Sysatem Guide 3.4 Converting CP/M-86 BIOS

3.4 Converting the CP/M-86 BIOS

The implementation of Concurrent CP/M desgcribed below assumes that
you have written and fully debudqed a CB/M-86 BIOS on the target
Concurrent CP/M machine. This js desirable for the following
reasons:

o The implementation of CP/M-86 on the target Concurreant CP/M
machine greatly asimplifies debugging the XI0O8 uaing DDT-86 or
S1p-86,

® A CP/M-86 or a running Concurrent CP/M system ls required for
the initial generation of the Concurrent CP/M ayetem when using
GENCCPM.

® You can use the CP/M-BG BI0OS as a basls for construction of the
target Concurrent CP/M XIOS.

To transform the CBP/M-86 BIO8 to the Concurrent CP/M X108, you must
make the following principal changes. Details of the changee given
in the following list can he found in the referenced ssctions of
this manual, and in the example XI0S'as found on the Concurrent CB/M
distribution disk. Often it 18 easler to atart with the example
Concurrent CP/M XI0OS and replace the hardware-dependent code with
the carresponding drivers from the existing CP/M-86 BIOS. However,
there are several important changes, also outlined below, that you
mist make to the CP/M-86 dArivers before they work in the Concurrent
CP/M XICS.

l. Change the BIOS Jump Table te use only the two XI0S entry
pelints, INIT and ENTRY. Concurrent CP/M aazumeg these entry
points to be unconditional jump Inastructions to the
caorregponding routinee. The INIT routine takee the place of
the CP/M-86 cald atart entry point and is only invoked once, at
ayatem initialization time. The BENTRY routine Ia the aingle
entcy point indexing into all XTI08 functions and replaces the
BIOS Jump Table. Concurrent CP/M accesses the ENTRY routine
with the XTOS function number in the AL register. The example
XIO08 then uses the value in the AL register as an index into a
function table to obtaln the addreas of the correaponding
function routine.

2. 244 a 8UP module interface routine to enable the XI08 to
eXecute Concurrent CP/M ayatem calla. The XIOS is within the
operating system area and already uses the User Data Area
atack; ther=fore, the XIOS cannot make aystem calls in the
conventicnal manner. See Section 3.8, "XIOS Syestem Calls."

3. Modify the conacle routines to reflect the IC_CONST, IO_CONIN,
IO_CONOUT, IO _LSTST, and 10 LISTOUT specifications. WNote that
the reglster donventiona for Concurrent CP/M are different from
CP/M-86 and MP/M-86.



Concurrent (P/M System Gulde 3.4 Converting CP/M-BE& BIOB

4.

10.

11.

Rewrite the CP/M-86 disk routines to conform to the IO ) BELDEK,
Io _READ, 10 _WRITE, and 10 _FLUSH spacifications.

Change all polled devices to use the Concurrent CP/M DEV_POLL
system call. See Sections 4.5, "Y0 POLL Function": 3.5,
"Polied Devicas”; ard Bection & of the Concurrent CP/M
Operating Syatem Frogrammar ‘s Reference Gulde.

Change all interrupt-driven dJdevige d&rivers to use the
Concurrent CP/M DEV WAITFLAG and DEV AETFLAG systes calls. SHSea
Bactione 3.6, "Intearrupt Devices"y 7, "XIOE Tick Interrupt
Routine™: and Section & of the Ccmourrcnt CP/M Opsrating Systex
Prograsmay's Refersncs Guide.

Changs thae atructure of the Disk Parameter Hesder (DFH) and
Dimk Paramster Block (DFB) data structures refearanted by the
XTOB disk Aariver xoutines. Ses Sections 5.4, “Disk Parmmeter
Haader' and 5.5, "Diak Paramstar Block."

Ramove tha Blocking/Deblocking algorithma from the XIOS disk
drivers. The Conourrent CP/M BDOS now handlas tha
blocking/deblocking function. The XIOS still handlss sector
translation.

Change the disk routines to referance the Input/Quitput
Paramster Block (IOFB) on the stack. Seas Sectlon 5.2, "IOPBR
Data Btructurs." Modify the diak driver rcutine to handle
multissctozr reads and writes.

Rawrits the oconmscle and list driver codae to handls wirtual
consoles and, poasibly; multipie physical consoles. Detmils of
the virtl::‘al consola systen are given in Section 4, "Character
Davices.

Inplesant tha TICK interrupt routine {aaes I_TICK in the erawple
XI08's). This routine ie umed for process dispatching,
maintaining the F DEIAY systam call, and waking up the CLOCX
process RSP. Sae Saction 7, "XIO8 Tick Interxxupt Routine."”

3-14




Concurrent CB/M System Guide 3.5 Polled Devices

3.5 Poalled Davices

Polled I1/0 device drivers in the CP/M-86 BIOS typically execute a
small compute-bound instruction loop waiting for a ready atatus from
the 1/Q device. This ceauaes the driver routine to spend a
aignificant portion of CPU execution time looping. To allow other
proceases use of the CPU'resource during hardware wait perioda, the
Concurrent CP/M XIOS must use a system call, DEV_POLL, to place the
polling process on tha Poll Liat. After the DEV POLL call, the
dispatcher stopa the process and calls the XIOS IG _POLL function
every diapatch until IO POLL indicates the hardware 1s ready., The
dispatcher then restores the polling process to execution and the
process returng from the DEV_POLL call. Since the process calling
the DEV_POLL function does not remain in ready state, the CPU
tesourca becomes available to othar processes until tha I/0 hardwara
ia raady.

To do polling, a procesa executing an XIOS function calls the
Concurrent CP/M DEV_POLL system call with a poll device number, The
dlspatche: then calls the X108 10_POLL functicn with the same poll
device nusber. The example XIOS uses the poll device number to
index into a table of poll routine entry poiats, calls the
appropriate poll function and returns the If0 davice mtatus to the
diapatcher.

3.6 Interrupt Devices

Ag in the case of polied 1/0 devices, an X108 driver handling an
interrupt-driven 1/0 device ahould not execute a walt loop or halt
instruction while waiting for an interrupt to ocour.

The Concurrent CP/M XIOS handles interrupt~driven devicas by using
DEV WAITFLAG and DEV_SETFLAG ayetem calls. A process that needs to
wait for an interrupt to occur makes a DEV_WALTFLAG systam call with
a flag number. The systam stops this process until the desired XIOS
interrupt handler routine makes a DEV_SETPLAG system call with the
eame flag number, The waiting proceas then continues execution.
The interrupt handler follows the steps outlined helow, axacuting a
far jump (JMPF) to the Dispatcher entry point. The interrupt
handler can also perform an IRET instruction when it is done.
Howevex, jumping directly to the Dispatcher givea a little faster
response to the process waiting on the flag, and is logically
agquivalent to the IRET instruction.

If interrupts are enabled within an intarrupt routina, a TICK
interrupt can cause the interrupt handler to be dispatched. Thise
dispatch could make interrupt response time unacceptable. To avold
this situation, do not re-enable interrupts within the interrupt
handlers or only jump ko the dispatcher when not in another
interrupt handler routine.

3-15




Concurrent CP/M Byatsr's duida 3.6 Interrupt Davices

Interrupt handlars under Concurrent CPF/M differ from those in an
808C environment due to machine architecture differancesa. Study the
TICR interrupt handler in the exswple XI08'm carefully. During
initial debugging, it is not recomrended that interrupts be
implexented until after the seystem works in a polled environment.
An XIOS interrupt handler routine must perform the following basic
atepm:

1. Do a stack switch to a local steck. The interruptad process
might not have enough atack apace for a context save.

2. Save the raglstar environment of the interrupted process, or at
least the registers that will be used by the interrupt routine.
Usally the registers are saved cn the lotal stack established
in step {l1) above.

3. Batisfy the interrupting condition. Thia can inglude resetting
the hardware and perforning a DEV SETFLAG systen call to notify
a procvess that the interrupt for which it was waiting has
ocourread.

4. Reatore tha register environment of the interrupted processe.
5. 8witch back to thes original stack.

6., Either a Jump Far (JMPF) to the dispatcher or an Interrupt
Raturn (IRET) instruction must bhe sracnted to rsturn from the
interrupt routine. Note the abova discussion on which return
mathod to use for dAiffersnt aitustions, Usually, when
interrupts are not re-snabled within the interrupt handler, &
Juep Far (JMPF) to the dispaicher is axecuted on each system
tick and after DEV SETFLAG call is =mads. Otherwise, if
interrupts are re-enabled an IRET instruction ie executsd,

Hotes DEV_BETFLAG is the conly Concurrent CP/M aystem call an
intarrupt routine may call. This is becauss the DEV_SETFLAG call is
the only systen call the operating system assumes haa no procesas
context associated with it. DEV_BSBETFLAG must entax the operating
syaten through the BUP entry point at SYSDATI10000H and cannct use
INT 224.

3-16




Concurrent CP/M Systam Guide 3.7 B087 Exception Handler

3.7 8087 Exception Handler

The default for the Concurrent CP/M syatem 1a to provide no support
for the B087 co procemscr. Thias section explains what must be done
to provide support for the 8087 chip. To support the BOB7 the XIOS
initialization code must initialize aome fields in the SYSDAT area.
The XIOS must alaoc contain a default exception handler to handle any
interrupts from the 8087. The system i1g etructurad soc that a
preogrammer can write an individual exception handler for the BO87.

The XIOB initialization code muat first check for the presence of
the 8087 chip by using the FHINIT instruction. If 1t ia present.
the fcllowing fialde in SYSDAT mupt be Eat up:

SEG_B8087,0FF_ 8087 Must be set to the segment and cffset of
the B087 interrupt vector.

SYS_B7_86,

5Ys_B7_OF Must be set to the segment and offset of
the XI0S default exception handler.

OWNER _8087 Mugt be zet to O to indicate that there

ia an 8087 pregent in the system. The
Dafault value 18 PFFFH which indicates
no 8087. FFFPH is put in this field by
the SUP initialization code. '

The 8087 interrupt vector must also be sat to the sagment and cffset
of the XIOS default exception handler.

Any exception handler for the BO87 muat perform ita functions in a
certain order to guarantee program integrity in a multitasking
environment. 7The following is an outline of the example default
8087 exception handler. See Listing 3-3 for the code of the
example.



Concurrent CP/M System Guida 3.7 8087 Excepticn Handlaer

1. Bave tha B086 environment.

2, Save the 8087 snvironment.

3. Clear tha 8087 IR (status word).

4. Dismbla 8087 interrupts.

5. Acknowledga the interrupt (hardware dependent}.

6 Look at the ownasr 8087 field, and periore the deeired action,
Nots that B80B6 interrupis are currently off. Do not parfora
any action that would turn them back on yst. The dafault
exception handler usse the OWNER_B087 fiwld to terainate the
procesa on a Bavers error.

7. Reatore the B0OSS environment.

8. Restora ths 8087 anvironmens with clear atatua. This re-
anables the 8087 interrupts.

9. Bxscuta an IRET instrucstion to return and ra-snabls tha BOBE
intarrupts.

If the 8087 environment is not restored before 8086 ilnterrupts are
enabled and an interrupt occure {for example, TICK), a different
60B7 process can gain control of the 8087 and aswap in ita 8087
context. ©On a second interrupt, or on an IRET instruction; the
8086~running process that happened to ba execsuting the sroeption
handler code will be brought back intc 8086 context and will write
cver the new 8087 context.

All 8087 processes are initialized by the system with the address of
the dasfault exceptiocn handler. If a process wants to ues its own
exception handler, it must initlally cvarwrita the 8087 interrupt
vectar with the address of itas own exception handler. On sach
context switch, the BO87 interrupt vector is paved and restored as
part of the 8087 procesa's environment.

The hardware-cdepeandent address of the 8087 interrupt vector 1s
provided in the SBEG 8087 and OFF 8087 fielde of the syrtem data
araf.

An individual sxception handler mnat follow the same saguence of
events Asscribad for the default handler. Failurs to do so will
have unpradictable results on the system. If possible, aake this
default interrupt handler re-entrant.

3-18




Concurrent CP/M Syatem Guida

ndpint:

8087 Default Exception Handler

ma Ma ME Rn Ra e Am a SRR S MM

push
mnov
mov
mov
mnov
nov
push
push
pugh
push
push
push
pusah
push
mov
FNSTENV
FHAALT
FNCLEX
xor
FNDISI

mov
out
mov
out

call

de

da,;sysdat
ndp_esreg.As
ndp Bpreg,sp
a8, syadat
ap,cffsat ndp tos
ax

bx

cx

dx

dai

|l

bp

es
es,sysdat
env_B0B7

ax,ax

al,020h
C6é0h,al
al,020h
058h,al

1n_8087

bx,cffset env 8087
byta ptr 2[bx],0

3.7

. e =

- e

-

8087 Exception Handler

This is the example default exception handler.

It ie assumed that if the 8087 programmer has enabled
8087 interrupts and has Bpecified exception flags in
the control word, then the programmar haa aleo included
an exception handler to take specific actione in
responsa to these conditions.
This handler ignores non-~severe errors {overflow, aetc.)
and terminates procesees with severe errors (divide by
zero, atack violaticn).

Save current data segment
Get XIOB data segment
Sstack switch for 8086 env

Beve 8086 registers

Now save BOB7 env
Bave BOB?7 Progess Info

Clear 8087 interrupt regue:
Disable 8087 interrupts
Send int ack's - 1 for ala
- 1 for master PIC

Check 8087 error condition
if error ia severe,
proceas will abort

clear BOB7 status word
for env reatore

Listing 3-3. 8087 Exception Handler




Concurrent CP/M Symtem Guide

POP
POP
pop
pop
Pop
pop
pop
pop
mowv
mov
FLDENV
FWAIT
pop
fret

in_8087:

nov
test
ja
nov
mov
tust
inz
ar

end_87:
ret

es

bp

sl

di

dx

cx

bx

ax
ss,ndp_asreg
ap,ndp_spreg
env_B0E7

ds

bx,owner_ 8087
bx,bx

end 87

si,offset eny 8087
ax,statusw[ai]
ax,03ah

end_87
p_flaglbx],080h

HONYAZSIWIEEIINEEE

Listing 3-3.

3.8 X108 Bystem Calls

~

B

3.7 8087 Excepticn Handler

Reatore BGB6 env.

Switch to previous stack

Restore BOB7 environment
with good status
Restore previous data sagment

Get the Process Descriptor

Check if ownar has

already terminated

If severe error, terminate

If not, return and gontinue

3A = under/overflow, precision,
and dencimalized operand

Must be gero divide or invalid

operation (stack error)

Turn on terminate flag

(continued)

Roptinee in the XIOE cannct make Bystem calle in the conventional
manner of executing an INT 224 instruction, The conventional entry
point to the SUP doer 2 stack ewitch to the User Data Area (UDA) of

the current process.

The XIDS iz coneldered within the operating

system, and a procegs entering the XI0S 1s already using the UDA

sta¢ck, Therefore,

ayatem calls.

3-20

a geparate entry point 13 used for internal



Concurrent CP/M System Guide 3.B XIOS System Calle

Location O003H of the SUP code sagment is the entry point for
internal syatem calle. Regiater usage for system calls through this

entry point is similar to the conventional entry point. They are as
followss

Entry: Syatem call number

Parameter

Segment addreas if DX is an offset to a
structure

User Data Area

BX = Return

Error Code

Segment value 1f system call returns
an coffaet and segment. Otherwise

ES ig unaltered and equals the UDA
upon reaturn.

DX, SI, DI, BP are not preserved.

Return:

RREE BEQ

L I |

The only differancea betwaen the internal and user entry points are
the CX and BES regiotera on entry. For the internal call, CH must
always be 0, ES muat always point to the User Data Area of the
ourrent process. The UDA segment addrama can be gbhtained through
the following code:

org 68H
rlr w 1 : ready list root
; in SYSDAT

org (X105 coda segment)

nov si,rlr
mov es,10h(eil

Note: On entry to the XIOS, ES is equal to the UDA sagment
address. The ES Register must equal tha UDA on return from any XIOS
function called by the XIOS ENTRY routine. Interrupt routines must
rastore ES and any other altered registers to their value upon entry
to the routine, befora performing an IRET inatruction or a JMFF to
the dispatcher.

End of Section 3




Section 4
Character Devices

Thiz section describas the XI08 functions nacessary for Character
I/0. Some additional functione, described in Section &, are needed
te run DOS programs.

Concurrent CP/M treats all serial I/0 devicea as congsolas. Serial
I/Q devices are divided into two categories: virtual conasoles and
extra I/0 devices. Bach virtual console ie asmigned to a apecific
physical conaole or user terminal. Associated with each serial I/0
device (virtual conacle or extra 1/0 device) is a Console Control
Block (CCB). The serial 1I/0 devices and CCBa are numbered relative
to zero. Each process containe, in its Process Deecriptor, the
number of its default console. The default consocle can be aither a
virtual console or an extra merial I/0 devica.

Concurrent CP/M can be configured in a number of different ways by
changing the CCB table in the XIOS. It can be configured for one or
more user terminals (physical consclea), and extra I/0 devices. The
mumber of virtual consoles assigned to each user terminal is et in
the CCB table. Up to 256 serial I/O devices can be implementad,
depending on the =pecific application.

The XIOS header definas the sire and location of the CCB table. In
the header, the CCB field points to the beginning of the CCB table.
The NCCE field contains the number of entries in the CCB table. The
NVCNE field tells how many of the CCBas are virtual consclea. See
*XIOSs Header" in Section 3 for more information.

‘The XIOS might or might not maintain a buffer containing the screen
contents and cursor position for each virtual console, depending on
how the system i to appear to the ueer. Keep in mind that this
buffar can be over 4K bhytes per virtual console. Practical
conelderations of memory epace might require keeping the number of
virtual consoles rasasonably small 1f buffers are maintained. Also
note that if the user terminals are connected to serial ports, the
time to update the ecreen for a screen switch can be up to 2
seconds. One axample XIOS has eight virtual consoles, divided among
multiple aeraal terminals.



Concurrant CP/M Bystem Guide 4.1 Conscle Control Block

By convantion, the first NVCNE serial 1/0 devices are tha virtuel
conscles. The NVCNS parameter is located in the X108 Header. The
XPCNE fleld tells how many user terminale there are. XPCNS must be
less than or sgqual to NVCNE, XPCNE dose not include exira I/0
Devicea. Consolex beyond the last virtual conscle represent other
serial I/0 davicas. Wwhen 2 proceazs makes a conscle 1/0 call with a
omsole number higher than the laat virtual consocla, it raferances
the Consols Control Block for the called device number. Therxsfors a
CCB for sach asrial I/0 device ia absclutely necesaaxy.

List Devices under Concurrent CP/M mre cutput-only. The XIOS must
resexve and initialize a List Contzol Elock for each list cutput
device. When a process makes a List device XJOB call, it refsrances
the appropriate LCE.

4.1 Consols Control Elock

A Conaola Control Blotk Table must be defined in the XIOB., Therse
must be one CCB for each virtual conscle and Character I/0 device
supported by the X108, as indicated by tha NCCB variable in the XIOS
Header. The tabla must begin at the address indicated by the CCB
variable ih tha XI0S Header.

ccB CCB O | (virtual console 0)
(X108
Headar) .
CCB NVCNS-1 {last virtual conscle)
CCB NVCHS (first axtra char-

actex I/0Q device])

.

CCE NCCB-1 ] (last extra char-
acter I/0 device)

Figure 4-1. Tha CCE Tabla

The number of CCEs used for virtual consoles egquals the NVCNE £ield
in the XIO8 Header. Any additional CCB entriee are used for cther
character devicea to be supported by the XIOS, The CCB entries are
numbered starting with eerc to match their logical conscle device
nusbers. Thersfore, the last CCB in the CCB Table is the (NCCB-1)th
CCB.




Concurrent CP/M Syatem Gulde 4,1 Conacle Control Bleck

Each CCB correaponding to a virtual ocnaole has saveral fields which
must be initialized, either when the XIOS is assembled or by the
XIO0S INIT routins. These fields allow you to choose tha
configuration of the virtual consoles. The PC field indicates the
physical console this virtual console is assigned to. The VC field
is the virtuwal conacle number. This numbar must be unique within
the ayetem. The LINK field points to the CCB of the next virtual
coneole assigned to thia physical console. The laat virtual console
asaigned to each physical conscle should have the LINK field met to
zoro (DOOOH), Figqure 4-2 shows a diagram of the CCBs for a system
with twe physical consolesa, with three and two virtual consoles
appsigned respectivly. For CCEBa outside the virtual console range
corresponding to extra I/0 devices, these £flelda must all be
initialized to =zero {0CH), except for the PC field. Alaso,
initialize to zero {Q0H) all fielda marked RESERVED in Figure 4-3.

CCBO[PCOIVCD

C'- LINK

CCBIIPCDIVCI

" LINK

CCB2-|PCDIVC2

- LINK
4,
cc53|Pc1|vc3
- LINK
CCB 4 [ PC 1 l Ve 4
of—LINK

Figure 4-2. CCBs for Two Physical Consoles




Concurrent CP/M Eystan Guide 4.1 Conmdle Control Block

00 OWNER RESERVED .
ogh | MIMIC rC ve RESE:RVED s'r.-:ms
1on| maxsursizE 1 1 nnsz:avzn l J
18h j RESERVED . _r 1
20h ' ' REBERVED ' '

1

2g8h LINK RESERVED

Figure 4-3. Consoles Control Block Format

Teble 4-1. Consols Control Blaock Data Fisldas

Data Field l Explanation

OWNER Address ©of the Process Dascriptor af ths
proceas that currantly owns tha virtual conscle
or character I/0 davice. This field is used by
the XIOE Status Line Function (IQ_STATLIHE} to
find the name of the current owner. Initializs
this £ield djisplay to =zerec {0000H). If tha
value in thia fisld is zero when Concurrent
CP/M is running, no process cwns ths device.

MIMIC This fleld indicates which list davice raceives
ths characters typed &n the virtual consola
whan the CTRL-P command ies in effect. MIMIC
nust be initimlized to OFFH. Note that thims
ligt devica is not necessarily the same as the
default list device indlicated in the Process
Dagscriptor whose address is in the QOWNER fiasld
of the CCER. Consider the following intaraction
at the conesole:




Concurrant CP/M Bystem Guide 4,1 Conacle Control Bloek

Table 4-1. (continued)

Data Field Explanation

Arprinter The TMP'e PD has a 0 in
1ts LIST field.
Printer Number = 0

A»"P Printer echo to list
device 0.
Aprinter 2 The TMP's PD hes a 2 in

its LIST field.
Printer Number = 2
Arpip lst:=letter.prn LETTER.PRN ia sent to
list device 2 Printer
echo ia atill going to
l1st device O, echoing
the last two commande.

The axanple atatua lins
routine distinguishesa
between Lthe default
list device and the
CTRL~F list device by
displaying

Printer=2

for the default list
device, and

“P=0

after the last command
in the illustration
above.

BC Physical consocle number,

vc Virtual console nunber. Virtual console
numbers muat be unique within the system.




Concurrent CP/M Systam Guida 4.1 Consols Control Block

Table 4-1. (contizued)

Data Fisld Explanaticn

STATR Tha least significant bit of thia field
indicatea the bhackground mode of the virtual
conecle. The XIOS Btatus Line Punction routine
uses this information to diaplay the background
mxla for the current foreground consola. Thia
bit has the following valuses)

0 background i1s dynamic
1 background is buffared

The STATE field can be initialized to O or 1 on
each virtual conscle to specify ths background
node at system startup, The Cohcutrent CP/M
VCMODRE utility allows thes user to change the
background moda.

MAXBUFBIZE Tha MAXRUFBIZE field indicates the naxinum sire
of the buffer file umad to mtore charagtsrs
whan a background virtual conacle ia in
buffered mode. When a virtuml console la
placed in background mode by the user, a
tenporary file is created on the temporary
drive, containing consola output sant to the
virtual console. These files are named
VOUTx.$68, where x seguala the number cf the
asagciated virtual conacle. The MHAXBUFSIRZE
field is the maximum alze to which this file
can grow. If this maximum ie reached, tha
drive is Read-Only, or there is no mors fres
space Oh the drive, subseguent consocle ocutput
causesa the background process attached to the
virtual conecle to be stopped. Tha MAXBUFSIZE
paramater is in Kilobytesd &and nust be
initialized in the XIO8 CCB antries. The
Concurrant CP/M VCMODE utility allows tha user
to change this wvalue. Tha lagal rangs for
MAXEUFSIZE ls 1 to 8191 decimal {1FFFH).

LINK Addrese of the next CCE assignsd to the same
ghysical conscle. Zero {OD00H) if thie is the
last or only virtual console for this physical
consdle.




Cancurrent CP/M System Guide 4.2 Consaole I/0 Punctlons

£.2 Console I/0 Functions

A major difference batween the Concurrent CP/M XIOS and the CP/M-86
BIOS drivers 1a how they walt for an event to occur. In CP/M~86; a
routine typically goea into a hard loop to wait for a change in
statue of a device, or executes a Halt (HLT) inatruction to walt for
an interrupt. In Concurreant CP/M, this doea not work. It can ba of
gome use, however, during the very early =stages of dehugging the
XIiCB.

Bagically, two ways to walt for a hardware event are used in the
¥I08. Far noninterrupt-driven devicea, uase the DEV POLL method.
For interrupt-driven devices, use the DEV SETFLAG/DEV_FLAGWAIT
method. These are both ways in which a proceas waiting for an
external event can give up the CPU resource, allowing othar
proceases to run concurrently., Por detailed explanations of the
DEV_POLL, DEV_FLAGWAIT and DEV_SETFLAG system calla, se=e Section 6
of the Concurrent CP/M Operating 8ystem Programmer's Reference
Guide.

I0 CONBT CONSOLE INPUT STATUS

Return the Input Status of the specified
Serial I/0 Devica.

Entry Parameters:
Regiater AL: 00H (0)
DL: Serial I/0 Device Number

Returned Value:
Register AL; OFFH if character ready
i] if no character ready
BL: ©Same as AL
EB, D8, £8, BP preserved

The IQ_CONST routine returns the input statua of the specified
character I/0 device. This function is only called by the operating
sydtem for console numbers greater than NVCNS-1, in other words,
only for devices which are not virtual consolea. If the status
returned 1g 0FFH, then one or more characters are avallable for
input from the specified device,



Concurrent Cp/M Bystem Gulde 4.2 Conscle I/0 Punctiocns

I0 CONIN  COWBOLE INPUT

Return a character from the conacle
kayboard or a serial I/0 device,

Entry Parasmetexns:
Regieter AL: O1E (1)
DL: Berilal I/0 Device Number

Reaturned Value:
Register AH: OQO0E Af returning
charactear data
AL: charagter

AH: OFFE If returning a
switch screen reguest
AlL: wvirtuoal consule requested

BX: same 2a AX in all casens
E8, DB, B8, 8P preserved

Becauwe Concurrent CP/M supports the full 8~-bit ASCII character Bat,
the parity bit must be wasked off from input devioea which use it.
However, it ahould not be masked off if valid 8~-bit characters are
being input.

You chocae the key or combination of keys that represent the virtual
consolee by the implementation of IO CONIN. One of the exanmple
XIOB's usss the funciion keya fl through £3 to represent the virtual
canpoles assigned to sach user terminal.

I0_CONIN wmust check for PC-MODE, PC-MODE is anabled whenever DOS
programs are running. It ie enabled or disabled by the IO_KEYED
(Function 32) calli. If PC-MODE is snabled; all functicn keys bra
rasmad through to the calling process. If it is disabled, function
keys that do not have an associated XIOB function ara usually
ignored on input. &Sea Section 6.2 “Kayboard Punctions® for
inforsation on the 10 KEYBD call.

4-8




Concurrent CP/M System Guide 4,2 Console I/0 Functions

10_CoNoUT CONSQLE OuTPUT

Display and/or output a charactaer to the
specified device.

Entry Parameters:
Register AL: 028 (2)
CL: Character to send
DL: Virtual console to egend to

Returned Valua: NONE

ES, DS, 58, SP preserved

The XIOS might or might not buffer background wvirtual conaoles,
depending on the uvaer interface desired, memory constraints, and
metheda of updating the terminals. This sectinn describes how the
example XIOS's handle virtual consclesa.

The example XIOS8's buffer all virtual consoles. All wirtual
conacles have 2 gscreen image area in RAM. This image reflects the
current contents of the acreen, both characters and attributes.
Each acreen image i3 contained in a geparate segment.

Each virtual console also has a Screen Structure associated with it.
This structure contains the segment address of the screen image, the
curgor location {offset in the gegment), and any other information
needed for the screen. This structure can be expanded to support
additional hardware reguirements, such as color CRTs.

For a screun-buffzared implementation, when a character ia given to
I0_CONOUT, 1t performs the following operationa:

l. Look up the acreen structure for this virtual conesole and get
the segment address of the acreen image.

2. Update the image, including all changes causad by escape
seguences. This could involve changes to the characters on the
acreen [clear acreen), the cursor location {home), or the
attributea of the individual characters (inverse videa).

3. If this conzole is in the foreground and on a serial terminal,
put the character ocut to the physical terminal. Thia requires
looking up the true physical console number.



Concurrent CP/M System Guide 4.2 Console I/0 Punctions

When a process calle this function with a device number higher than
the last wirtual consocle number, the character should bs aent
directly to the serial device that the CCB reprasants.

Note that for screen buffering it is nacessary to buffer 25 lines
when in PC-MODE, but only 24 lines otherwisms. The PC-MODE flag is
set by Function 32, which is describhsd in Sectien 6.2.

ID_SWITCH SWITCH BCREEN

Place the current virtual console into the
background and the apescified virtual
congole intd the forsground.

Entrcy Parametars:
Regimter AN: O07E (7)
DL: Virtual Conaocle # to
swltch to

Return Valuea: NOKE
ES8, DE, B85, BP preagsrved

When IO BWITCE is called, the XIOB copies the secreen lmage in memory
to the physical screen. It muet move the cursor on the physical
gcrean to the proper position for the new foreground console.

I0_BWITCE 1s responeible for doing a flagsmet to reatart a backyround
procesa that ig walting ko go into graphica mode. If the proceas's
gcraen ip to be switched into the foreground, do a flagset on the
£lag that was used by IO SCREEN to flagwait the process. Bee
Bection 6.1 for more information on IO _SBCREEN.

I0_SWITCE will be implemented differently for machines with video
RAM (such as the IBM Personal Computer) and serial terminale. Mor
IBM Personal Computars, the screen ewitch can be done by doing a
block move from the screen image to the videc RAM, and a physical
curaor positioning. A serial terminal must be updated by aending a
character at a time, with insertion of escape seguences for the
attribute changes.

i=-10



Concurrent CP/M Systsm Guide 4,2 Console I/0 Punctionsa

Concurrent CP/M calls IO SWITCH only when there ils no process
currently in the XIOS performing conscle output to either the
foraeground virtual conscle being switched out, or the background
virtual console being switched into the foreground. Therefore, the
XIOS naver hag to update a screen while simultanecusly switching it
from foreground to background, or vice veraa.

One of the example 10 SWITCH routines performe the following
oparations:

1. Get the acrean structure and lmage aegment for the new virtual
conaole.

2, Find the phyaical conscle number for thia virtual console.

3. If this is a video-mapped conacle, save the current display by
doing a block move. If it ls a serial terminal, clear the
physaical screen and home the curaor.

4. If this is a video-mapped display, do a block move of the new
acreen lmage to tha vidac RAM, and ra-~-position the cursor. If
it ie a serial terminal, send each character to the physical
acreen. Check each character's attribute byte, and aend any
escapa sagquences necessary to display the characters with the
correct attributes.

I0_STATLINE DISPLAY STATUS LINE

Display specified text oh the status line

Entry Paranetersg:
Regiater AL: 08H (8)
CX: if OOOQOH, continua to
update the normal
status line
if CX = offeet, print
string at DX:CX
if OFFFFH, resume normal
status line diaplay
Ragister DL: yphysical console to diaplay
status line on (if CX = 0)
Register DX: segment address of
optional string (if CX <> 0)

Return Values: NONE
ES, D8, S5, 8P preserved

4-11




Concurrent CP/M Bystem Guids 4.2 Consoles I/0 Functions

When IO BTATLINE 1s called with € = 0, the normal status
information im displayed by IO _STATLINE on the physical conscle
specified in DL. The normal statum line typically consists of the
foreground virtual conscle number, the state of the foreground
vixtual ccnecle, the process that owns the foreground virtual
consols, the remcovable-media drives with open f£iles, whether control
P, B, or O aram active, and the default printer numbsr. The
I0 STATLINE function in the axample XIOS's displuy some of the abova
informat{on, Usually when I0 STATLINE is called, DL is set to the
physical console to display the statue lins on. You must translate
this to the current (foreground) virtual console before getting the
infermation for the status lina (such as the process owning the
ocnsols). Tha status line can be nodified, exzpandad to any sixa, or
displayed in a different area than tha status line implemented in
the exaxples XI05's. A common addition to the status line im a time-
of-day clock.

A atatus line is strongly recommendsd,. Howsver, if there are only
24 lines on the display davice, you might choose not to implement a
status line. In this case IC _STATLINE can just return whan called,

The normal status line is updated once psr second by the CLOCK REP.
If there iz more than ¢cne ueer terminhml connected to tha system,
this update occurs once per second on & round-robin baais among the
Faysical terminala. Thus, if four terminals ara connectsd sach cne
is updated every four secconds by the CLOCK.

Tha oparating systexz als® raguests normal status iine updates when
scrasn switches are mads and when control P, 8 or C change state.
The XI08 might call ID_STATLINE from othear routines whan scme value
displaysd by the status line changes.

Notes IO STATLINE's re-entrancy depsnds in part on having separate
huffers ¥or each physical console.

The 10 BTATLINE routine should not display the status line on a user
terminal that im in graphics moda, It should check the same
variable as ID_B8CREEN (Punction 30). IO BCRREN im damcribed in
Section 6.1 "Screen 1/0 Functions™.

IO STATLINE alao should not display on a console that s in PC-MODE.
Check the variable set by Function 32 to saa if a conscle is in PC-
MODE. £See Section 6.2 for information on Punction 32.

Most calle to I0 BTATLINE to update the status line have DL aest to
the physical tarminal that is to be updated. Whan ID BTATLINE is
callad with CX not equal to OCCOH or OFFFFH, than CX is assumed to
ba the hyta cffget and DX the paragraph address of an ASCII string
to print on the statue lina. This apecial status line ramains on
the woresn until ancther special statue line is requested, or
IO STATLINE is called with CX=0FFFFH. While a special status line
is being displaysd, calls to IO STATLINE with CX=0DOOH are ignored.
Whan IO BTATLINE function is called with CX~0FFFFH, the normal
status line iz displayed and subseguent calls with CX~0000H cause
the status line to be updated with current information.

4-12




Concurrent CP/M Bystem Guide 4.2 Console I/0 Functionsa

When I0_STATLINE ia called to display a special status line, DL dots
not contain the physical console number. The physical conscle
numbet can be obtained by the following method:

l. Get the addrass= of SYSDAT

2. Laok at the RLR (Ready List Root). The firat process on the
list is the currsnt process,

3. Look at the Process Dascriptor (pointed to by RLR}. Ths p cns
field contains the virtusl conscle number of the current
process, Sae the Concurrant CP/M Operating System Programmer's
Reference Guide for a description of the Proceas Deacriptor.

4. Look up the CCB for this virtual console and find the physical
conscle number in it.

A process calling IO STATLINE with a especial statua line {DX:CX =
addreas of the ltringT nuat call 10 STATLINE before termination with
Cx=0FFFFH. Otherwlae the normal status line is never shown again.
There 18 no provision for a proceas to find cut which status line is
being displayed.

4.3 List Device Functions

A List Contrel Block (LCB}, similar to the CCB, must be defined in
the XI08 for each liat output device supported. The number of LCEs
must equal the NLCB variable in the XIO8 Header. The LLB Table
begins with LCB zerc, and ends with LCB NLCB-1, according to their
logical list davice names.

ILCB EE—. ICe O | (LIST DEVICE 0)
{XI1I08
HEADER) .
LCB NLCB-1 | (LAST LIST DEVICE)

Figure 4-4. Tbhe LCB Table

4-13




Concurrent CP/M Bystem Guide 4.3 List Device Functicns

00H OWNER RESERVETD

Q2H | REBER-~ M-
VED S0URCE

Figure 4-5. List Control Block {LCR)

Table 4-2. List Control Block Data Fields

Field I Explanation

OWNER Address of the PD of the procesa that currently
owne ths List Device. If no progese currently
owne the list device, then OWHNER=0. If
OWNER=OFFFFH, thie list device ie mimicking a
coneole device that is in CTRL-P mode.

MSOURCE If ONNMER=0FFFFH, MSOURCE containe thae nuaber of
the console device this list device is
rRimicking; otharwise MSOURCE = QFFH.

Eote: MBOURCE muet be initialized to OFFH. All
other LCB fielde must bae initialized to O.

I0 LETS8T LIST STATUS

Raturn Liet Qutput Status

Entry Parametera:
Register AlL: 0Q3H (3)
DL: List Device number

Returned Value:
Register AL: OFFH if Device Ready
n} if Device Not Ready
BL: Sana az AL

ES, D8, 58, EP prasarved

4-14



Concurrent CP/M Syatem Guide 4.3 List Device Functionsg

The iI0_L3TST function returns the output astatus of the apecified
list device.

10 _LSTOUT LIST OUTPUT

Output Character to Specified List Device

Entry Parameters:
Register AL: 04H (4)
CL: Character
DL: List Device number

Returned Values None

ES, DS, 55, SP preserved

The IO_LSTOUT functicn sends a character to the specified List
Device. List device numbers start at 0., It is the responsibility
of the XIDS device driver to zero the parity bit for list devices
that require it.

4.4 Auxilfary Device Functions

There XI0S functions are accessible only through the Concurrent CP/M
8_BIOS system call. Software that uses this call can access the AUX:
device by placing the appropriate parameters in the Bios Descriptor,
For further informaticn, see the Concurrent CP/M Operating System
Programmer's Reference Guide under the S _RIOS system call.

If you choose not to implement the AUX: device then the I0_AUXOUT
function can simply return, while IO AUXIN should return a character
26 (laH), CTRL-Z, indicating end of file.




Concurrent CP/M Bystem Guide 4.4 Auxiliary Device Punctians

IO _AUXIN  AUXILIARY INPUT

Input a character fros the Auxiliary Davice

Entry Paramaters:
Reglstar AL: OSH {5)

Returnad Value:
Register ALi Character

ES, D8, BB, 5F preasarved

I0_AUXOUT  AUXILIARY OUTPUT

Qutput & character to the Auxiliary Device

Entry Paramsters:
Reglatar AL: D6H (6)
CL: Charactesr
Returned Value: HNona

E8, DB, 88, BF preserved

4-16




Concurrent CP/M System Guide 4.5 IO _POLL Function

4.5 I0 POLL Function

I0 _POLL POLL DEVICE

Poll Specified Device and Return Status

Entry Parameters;
Regiater AL: ODH (12)
DL3: Poll Device Number

Returned Value:
Regigter AL: OFFH if ready
0 if not ready
BL: Same as AL
B8, 08, 85, BP preserved

The IO_POLL function interrogates the status of the device indlcated
by the poll device number and returns its current status. It is
called by the dispatcher.

A proceng polls a device only If the Concurrent CP/M DEV_POLL system
call hae been made. The poll device number ueed as an argument for
the DEV_POLL system call ie the same number that the I10_POLL
function receives ae a parameter. Typically only the XIOE uges
DEV_POLL. The mappring of poll device numbera tc actual physical
devices iz maintained by the XI08. Each polling routine must have a
unique poll device number. For instance, if the console is polled,
it must have different poll device numbers for conscle input and
aconsole cutput.

The sample 2XI08's show the IO_POLL function taking the poll device
nmber a8 an index to a table of poll functions. Once the addreas
of the poll routine is determined, it is called and the return
valuea are used directly for the return of the I0_POLL function.

End of Section ¢



Section 5
Disk Devices

In Concurrent CP/M, a disk drive 1g any I/0 devica that has a
directory and is capable of reading and writing data in 128-byte
logical sectors. The XIDS can therefore treat a wide varilety of
peripherals aa disk drives Lf deaired. The logical atrueture of a
Concurrent CP/M digk drive 1s pregented in detall in S8ection 10,
"OEM Utilities." CP/M can alao support PC-DOS and ME-DOS diska. The
term DOE referm to both PC-DOS and MS-DOS.

Thia section digcusses the Concurrent CP/M X108 dlgk functionsd,
their input and output parametera, assoclated data structures, and
calculation of values for the XIOSJ disk tables,

5.1 Dlsk I/0 Functions

Concurrent CP/M performe Disk I/0 with a single XIOS call to the
I1C_READ or IQ _WRITE functions. Thege functicne reference disk
paTameters contained in an Input/Output Parameter Block (IOPB),
vwhich is Iocated on the stack, to determine which diek drive to
access, the number of physical gectors to tranafer, the track and
aectar to read or write, and the DMA offset and segment addrees
invelved 1in the I/0 operation. See Section 5.2, "IOPB Data
Structure.” Prior to each IDO_READ or IO _WRITE call, the BDOS
initializes the IOPB.

If a phyaical error sccure during an IO_READ or IO_WRITE operation,
the funetion routine should perform several retries (10 is
recommended) to attempt to recover from the error before returning
an error condition to the BDOS.

The Disk 1/0 routine interfaces in the Concurrent CB/M XIQ8 are
quite differant from those in the CP/M-86 BIOS. The SETTRK, BETSEC,
SETDMA, and SETDMAB XIOS functions no longer exist because IO_RERD
or IO_WRITE have ahsorbed their functions. WBOOT, HOME, SECTRAN,
GETSEGB, GETIOB, and SETIOB are not used by any routines outside the
1/0 system, and so have been dropped. Also, hard loops within the
disk routines must be changed to make elther DBV_POLL or
DEV_WAITFLAG system calla. See Sections 3.5, "Polled Devices"; 4.5,
"IO_POLL Punction"; and 3.6, “Interrupt Devicea.,* For initjal
debugging, Concurrent CP/M runa with the CP/M-86 BIOS phyaical
sector read and write roptines, with the addition cf an IOPB-
referencing routine, multisector read/write capability, and
medification to handle the new DPH and DPB atructures. Once the
aystem runs well, all hard loopa should be changed to either
DEV_POLL or DEV_WAITFLAG system calls. See also the discussion in
Sections 3.5 and 3.6 of this manual.




Concurrent CP/M System Guide 5.1 Disk I/0 Functions

I0_8ELDSK SELECT DISK

Select the specified Disk Drive

Entry Paramatars:t AL) 0OSH (9)
CLy Dlek Drive Number
DL: {bit 0): 0 if first melect

Return Values: AX: offpet of DPE if no error
AX; O0H if invalid drive
BX: Same as AX
E8, DS, 88, 8F presderved

The IO SELDSK function checks 1f the specified disk drive 1s valld
and returns the address of the corresponding Disk Parameter Header
1f the drive is vallid. 'The aspecifisd diek drive number i 0 for
drive 3, 1 for drive B, up to 15 for drive P. On each &#isk malect,
I0 SPLDSK muat return the offast of the selected drive'as Disk
Parameter Header relative to the SYSDAT segment addressa.

If there 1s an attempt to select a nonexistent drive, IQ SELDSK
returng DOB in AL aw an error indicator. Although ID SELIBR muat
return the Diek Parameter Header (DFH) addrese for the specified
drive on esach call, pomtpone the actual physical disk eelact
operation until an X/0 function, IO READ or 10 WRITE, ls performed.
This 18 dua to the fact that disk Belect operations can take place
without a subpequent dimk operation and thus disk access might be
subetantially slower using some disk controllers.

IO_SELDISK must return a2 DPE ceontaining the address of the Disk
Parame¢ter Block (DPB). The DPB must be properly formatted to
reflect the type of media supported by the Belected drive. On a
first time select, this function must determine if this diek is a
CP/M diak, or a DOS disk. Por CP/M media, return a regular DPFE.
Far a DO8 diek return an extendsd DFB. See Section 5.5 "Disk
Parametar Elock”™ for more information on the two DPB focrmats., Bee
Section 5.8 "Multiple Media Support® for more infermaticen on
generating a system that supperts both types of disks.

5-2




Concurrent CP/M Syatem Guide 5.1 Disk I/0 Functions

On entry to I0_SELDSK, you can determine whether it ie the first
time the specifjed disk has been aelected. Regleter DL, bit 0
{least significant bit), is a zero if the drive has not been
previouely selected. This information is of intereat in ayatems
that read configuration information from the disk to dynamically get
up the agsocilated DPE and DPB. See Section 5.8 “"Multiple Media
Bupport™. If Reglster DL, bit G, is a cne, 10 SELDSR must return m
polnter to the same DPH as it returned on the initial select.

I0_READ READ SECTOR

Read gector {3) defined by the ICPB

Entry Parametera: IOPB filled in (con stack)
Regigter AL: O0OAH (l0)

Return Valuem: AL: 0 if no error
1 if phyeical error
O0FFH if media density
has changed

AH:; Extended error code

(Takle 5-1)

BL: BSame as AL

BH: 5Same as AH
ES, D8, 58, 5P preaserved

The I0 READ Function transfers data from disk to memory according to
the parameters specified in the IOPB. The disk Input/Output
Parameter Block (IOPB)}, located on the atack, contains all required
parameters, including drive, multisector count, track, sector, DMA
offaet, and DMA gegment, for disk I/0 operations. 8ee Section 5.2,
"IOPE Data Structure.® If the multisector count is egual to 1, the
XI0S should attenpt a single physical sector read based upon the
parameters in the ICOPB. If a physical error occura, the read
function should return a 1 in AL and BL, and the appropriate
extended error code in AH and BH. The XIOS8 should attempt several
retries {10 recommended) before glving up and returning an error
condition.

For disk drivers with auto density select, IO_READ should
Immediately xetuxn OFFH if the hardware detects a change in media
density. The BDOS then performs an I0Q_SELDSK system call for that
drive, reinitializing the drive's parameter tables in order to avoid
wrlting ercroneous data to disk.



Conturrent CP/M Eystem Guide 5.1 Diak I1I/0 Functions

If the multisector count is greazter than 1, the 10 READ routine is
reqguired to read the specified number of physical sectors before
returning to the BDOS. The IO_READ routine should ettempt to read
an many phys!.cnl ssctors as the spacified drive's disk controllar
can handle in cha oparation. Additional calles to tha disk
controllar ara raquired when the diak controller cannot transfer the
reguested number of sectors in a single operation. If m phymsical
error occurs during a multimector read, the read function ashould
raturn a 1 in AL and BL and the appropriate sxtendad error code in
AH and BH.

If the diaX contxoller hardware can only read one physical sector at
a time, the XI08 Aimk driver must make the nuxber of single
physical-sector reades defined by the multissctor count. In any
cams, Whan mora than one call to the controllar is made, the XIOB
nust lncrement the ssactor number and add the nuzber of bytes in each
physical sector to the DMA addresa for each muccesslve read. If,
during a multisector read, the sactor numbar sxcesds the numbar of
tha last physical sector of the current track, the XIO8 has to
increment the track number and reaset the mactor number to 0. This
cone:pt is illustrated in Listing 5-1, part of a hard disk driver
routine.

In thie azampla, if the smultisector count is zerc, the routine
raturna with an error. Otherwise, it immediately calla the
rsad/writa routine for the pressent asctor and puts the return code
pasased from it in AL. If thers is no error, the multisector count
is decremanted. If the multigesctor count now aguala werp, the read
or write is finished and the routine returns., If not, the sactor to
raad or write is incrementsd, If, howaver, the s&ctor numbar now
exceada tha number of sactore on a track (MAXSEC), the track number
is incremented and the sector numbar sat to zero. The routine then
performs ths nusber of reads or writes remaining tc equal the
multimector count, each time adding tha size of a physical sector to
the DMA offset paased to the aisk controller hardware.

Table 5-1. Extended Error Codas

Code Meaning

80H Attachment failed to respond
401 Seek operation failsd

20H Contraollsr has failed

108 Bad CRC

8H DMA overrun

4H Sector not found

3H Write protect disk errar

2H Addreaz mark not found

1H Bad command




Concurrent CP/M Syastem Guide 5.1 bisk I/0 Punctions
Listing 5-1 illuastrates multisactor apaerationas:
=***i*i****iiitt*it***********t*t*tt*******t*******t

i * commeon code for hard diek read and write

’
;!t*iiittitttttttiiitiiiiiittti*i*t*i***ﬁ**!***i***i

hd _lo:
push as sgave UDA
cmp mcnt, 0 :1f multisector count = O
je ha_err txatuxn error
haiol:s
call ichost :read/write physical aector
nov al,retccde :rget return code
or al,al 3if not O
inz hd_arr ;return error
dec ment ;decrement multisector count
j= return rw :if nent = 0 return
mov ax, sector
inc ax :next sector
cup ax,maxsecl jb same trak ;is asctor < max sector
inc track ; no - next track
XOr ax.ax : initialize sector to 0
sams_ trak:
ROV Bector,ax ;save sector #
add dmaoff, seceilyz sinerement dma offset by sector size
jmpas hdiol :read/write next sector
hd _err:
mov al,l jreturn with error indieator
return rw:
pop as irestore UDA
rat sreturn with error code in AL

;i*ii*ti*iiititt**********fiii**i*i*tti**t*t****l**ti*

;* IOHOST performs the phyaical reada and writes to *
;¥ the phyaical disk. *
'i*i?*****R**Qﬁ***Iﬂ'iii#t*i*ift***ititﬁtﬂiii**iiii*ii

ichosat:

ret

Listing 5-1. Multissctor Opsrations

5-5




Concurrent CP/M System Guide 5.1 Disk I/0 Functlons

IO_INT13_READ READ DOS SECTOR

Read DOS sector(s) defined by the IOPB

Entry Parametera: ©DOS IOPB filled in (on etack)
Register Al: 23H (35)

Return Values: AL: 0 if no arror
1 if phyaical errocr
DFPH if medim denslty
has changed

AH: Extended arror code

{Table 5-1)

Bl.; Same as AL

BH: Fame a2 AH
ES, D&, 8BS, 8P preserved

IO _INT13 READ emulates DOS's Ilnterrupt 13 read disk operatlon. It
reads a DOB disk as specified by the DOS format IOPB. It im used on
DJE media only. It opsrates llke I0_READ axcept for the different
ICPB. The DOB IOPBE iu defined in Secticn 5.2



Concurrent CP/M 8ystem Guide 5.1 Ddisk I/0 Functions

I0_WRITE WRITE SECTOR

Write sector(s) defined by the IOPR

Entry Parameters: IOPB filled in (on atack)
Register AL: OBH (1ll)

Return Values: AL: 0 if no error
1l i€ physical error
2 1f Read/Only bisk
OFFE if media density
has changed

AE: Extended error code

(Table 5~1)

BL: Same as AL

BH: Same as AH
B3, DS, 55, S5F preserved

The IO_WRITE functicn transfers data from memory to disk according
to the parameters apeclfied in the IOPB. This function worka in
much the same way as the read function, with the addition of a
Read/Only biak return code. IO WRITE should return this ceode
when the specified disk controller detects a write-protected
diak,



Concurrent éP/H System Guide

5.1 pisk I/0 Functiona

I0_INT13_WRITE

WRITE DOS BECTOR

Write DOB secteor (a)

deafined by the IOFB

Entry Parametera: DOS
Regleter AL:

Retucn Values: ALz

AH:

BL¢
BH:
BS,

IOPE £filled in {on stack)
248 (386)

Q if no erxor
1 if physeical error
2 if Read/Only Dilsk

OPPH if madia denaity

has changed
Extended arror code
{Table 5-1)
Bame as AL
Same ae AH
DB, 88, SFP presarved

function.

IO_INT13 WRITE is similar to IO_WRITE.
writes to a DO8 disk,

It emulates

The DOS IOPB ia defined in Section 5.2.

It udes a DOS IOPB,
DOS'a intarrupt 13 write

and



Concurrent

CP/M Syatem Guide

5.1 Disk I/0 Functions

10_FLUSH

FLUSH BUFFERS

Write pending I/0

system bufferz to disk

Entry Parameters:

Returned Value:
Register AL;

Reglister AL: OCH (12)

0 if No Error

1 1f Physical Error
2 1f Read-Only Diak

AH: Extended error code
{rable 5-1)

BL: Same as AL

BH: BSame as AH

ES, D3, 85, SP preaerved

The I0_FLUBH function indicates that all blocking/deblocking buffers
or disk~-caching buffers used by the XI/0 system should be flumhed,
written to the disk. This does not include the LRU buffers that are
managaed by the BDOS8. This function isa called whenever a process
terminatea, a file is closed or a disk drive is reset, The XIOB
mugt return the error codes for the I0 PLUSH function in regilster
AX, after 10 recovery attempts as described in the I0_READ function.

5.2 IXIOPB Data Structure

The purpose of this and the following sectlons ls to present the
organization and construction of tables and data structures within
the X108 that define the characteristica of the Concurrent CP/M disk
system. Since there iz no Concorrent CP/M GENDEP utility, you must
code the XIOS DPHs and DPBas by hand, usipng valuea calculated from
tha information presented below.



Concurrent CP/M Systam Guide 5.2 IOPE Data £tructure

The disk Input/Output Paramster Block {IOPB} contains tha nacessary
data requirad for the IO _READ and IO WRITE functiona. IO INT13_READ
and IO INTL3 WRITE use a variaticn of the I0PE called the DO8 IOPB.
It iz AaescriBad at the ehd of this section. Thess parnmsters are
located on the atack, and appbar at the example XIOS IO READ and
10 WRITE function antry points as described below. The IOFE sxampls
in this ssction assusss that the ENTEY routine calls the read or
writa routinas through only one laval of indiractiony therefcrs, the
XI0H haw placed cnly only one word on the stack. RETADR is raasrved
for this local return address to tha ENTRY routine. The XIOS disk
drivers may index or modify IOPBE paramstars directly on the stack,
eince they are removed by the BDOS when the function call returns.
Typically, the IOPE fields axe defined relative to the BP mnd 88
reagisters, The first instruction of the I0 RRAD and IO WRITE
routines sats the EP registex equal to the EP xegister for indexing
into the ICPE. Liating 5-2 illuastrates thias.

+14 DRV MCKT

+12 TRIA.CK

+10 SECTOR

+8 M_ISIG

+6 DMAOFF

+ RETSEG

+2 RBTE)!F == ZP valus at XIOE ENTRY
EP40 R.E'I';\DR <mm SP valua at disk routinas

Figure 5-1. Input/Output Parsmeatsar Block (IOFB)

5-10




Concurrent CP/M System Guide 5.2 IOPE Data Structure

Table 5~2. IOPB Data Fields

Data Field Explanation

DRV Logical Drive Number. The Logical Drive
Number specifies the logical disk drive
on which to perform the IO_READ or
I0_WRITE funetion. The drive number may
ranga from 0 to 15, corrasponding to
drives A through P resapactively.

MCNT Multisector Count. To transfer logleally
cansecutive disk sectore to or from
contiguoua memory locationa, tha BDOS
issues an IO_READ or I0O_WRITE function
call with the multisector count greatar
than 1. This allowe the XI0& to
transfer multiple sectorms in a single
disk operaticn. The maxlizum value of
the nultisector count depsnda on the
physical sector sige, ranging from 128
with 128-byte sectors to 4 with 4096-
byte ssctors. Thus, the XIOS can
transfer up to 16K directly to or from
the DMA address in a single opsration.
For a nore complete explanation of
nultiesector operationa, along with
axanpla code and suggesticns for
implementation within the XIOE, maa
S8ection 5.3, "Multieector Operations on
Skawsed Diske."

TRACK Logical Track Number. The Track Number
defines the logical track for the
spacified drive to aesk, The BDROS
deflines the Track Mumber relative to 0O,
80 for disk hardware which definaes track
minbere beginning with a phyaical track
of 1, the XIOS needs to increment the
track number before passing it to the
disk controller.




Concurrent CP/M System Guide 5.2 10PB Data Structure

Table 5~2. (continued)

Data Field Explanation

SECTOR Sector Numbar, The Sector Number defines
the logical sector for a read or write
operation on the specified drive. The
sector sixe 1s determined by the
paramateras PSH and PHM defined in the
Dipk Parameter Block., See Section 5.5.
The BDOS AdAefines the Empctor Eumnbar
raelative to 0. For disk hardware that
defines sector numbers beginning with a
physical asctor of 1, the XI08 will nesd
to increment the ssctor nushar before
passing 1t to the disk controller. If
the apecified drive uges a skewad-gactor
format, the XIO& must kcranslate the
#ector number according to the
translation table specified in the Disk
Parametear Headsr.

DMASEG, DMAOFF DMA Sagmant and Offeet. The DMA offamst
and segment define tha addrees of the
data to transfer for the read or write
cperation., This DMA address may reside
anywhere in the l-megabyte address space
of the 808B6-8B088 microprocesssr. I1f the
digk controller for the specified drive
can only transfar data to and from a
restricted addrass area, the I0_READ and
I0_WRITE functions must block meve the
data betwean the DMA address and thia
regkricted area bLHefore a write or
following a read operation.

RRETBEG, RETOFF BDOS Return Segment and Offeet. The BDOB
return segrent and offset ars the Far
Return address from the XIOS to the
BROE.

RETADR Local Return Addrese. The local return
addreaes returna to the ENTRY routine in
the example XIOS.




Concurrent CP/M System Guide 5.2 IOPB Data Structure

Limting 5~2 illustrates the IOPB definition, and how the IOPB is
used in the I0 READ and IO _WRITE routines:

R TEE RNk ke wkdb bbb bdhrbkrd
i

.k

R

* TOPB Definition

21224242222 4222222222212 2R 2]

+14
+12
+10
+8
+6
+4
+2

8P+0

Ml e Ne Ne NE s s e e mE mR mE ma mp My e WA ma Mg MA WA wa wm s Re A we My N A

drive equ
mcnt egu
track equ
gector equ
dmasgseg equ
dmaoff equ

Read and Write diask parameter eguates

At the digk read and write function entries,
all disk I/0 parameters are on the stack
and the stack at these entries appears as
follows:

DRV MCNT Drive and Multiesctor count
TRACK Track number
SECTOR Physical sector number
DMA_SEG DMA segment
DMA_OFF DMA ocffset
RET SEG BDOS return segment
RET_OFF BDOE return cffset
RET ADR Local ENTRY yeturn addresa

byte ptr
byte ptr
word ptr
word ptr
word ptr
word ptr

(assumes one level of call
from ENTRY routine)

These parameters can be indexed and modified
directly on tha stack and will be removed
by the BDOB after the function is complete

14(bpl
15(bp]
12[bp]
10{bp]l
8[bp]
6[ bp]

7t***t*i**#iii**t!!tf******i#tfit*fitt*i*tl

Listing 5-2. YOPB Definition




Concurrent CP/M Bystem Guide 5.2 IOPE Data Structurs

]m
I0_READ: ! Function ll:¢ Read pector
’—-—_ﬂ
Reads the seactor on the current disk, track and
sector into the current DMA buffer.

entry: paraneters on stack

axit: AL = Q0 if nc error occurrad

Al = Q) if an error occurred

.y me e e N

wov bp,sp ssat BP for indexing into IOPB
ret

; CEaseene=

ID WRITE: ;s Function 12: Write disk

—_—-

y Write the sector in the ourrent DMA buffar
1 to the current disk on the current
¢t track in the current sector.
T antryr CL = Q - Daferred Writes
H 1l - non-desferred writes
2 - def-wrt lept mact unalloc blk
exita AL = 00H if no error occcurred
= D1H 1f error ocrurred
= 02H if read only disk

~e o~y

mov bp,ap iaat BP for indezing into IOFB

ret

Listing 5-2. {(oontinued)

5-14




Concurrent CP/M 8ystem Gulde 5.2 I0PB Data S8tructure

Figure 5-2 phows the DOB IOPB used by YO _INT13_READ and
IO_INT13 WRITE. It is similar to the regular IOPE. The D03 IOPB
fields are defined in Table 5-3.

+14 DRV MCNT

+12 TRACK HEAD

+10 SECTOR oo

+8 DMASEG

+6 nm;orr

+4 m:-:!sze

+2 'nmforr <== SP value at XI0S ENTRY
3p+0 RE%ADR <== GP value a} disk routines

Figure 5-2, DOS Input/Output Parameter Block (IOPB)

Table 5-3. DOS IOFB Datm Fielda

Data Field Explanation
TRACK Track or cylinder number., This number
must be in the range 0 - 39.
HRAD Bead number. This number must be 0 or 1,
SECTOR Sector number. Thia number must be in

the range 1 - 8.

All other DOS IOPB data flelds are the
game a8 the regular ICPB defined in
Table 5-2.




Concurrant CP/M Symstem Guilds 5.3 Multimector Operations

5.3 MNultizector Oparations on Skawsd Dizks

Onmany implexentations of older Digital Ressarch operating systams,
disk performance ls improved through ssctor skewing. This technique
logically numbere the sectore con a track such that thay are not
eequential. An exampile of thia is the atandard Digital Ressarch 8-
inch disk format, whare the pectors are skewsd by a factor of 6.
The following diacussion illustrates how to optimize disk
performance on skewed disks with multisector 1/O regussts.

Concurrent CP/M-86 supports multiple-sactor read and write
cperations at the XIO5 level to minimize rotaticnal latency on blogk
disk tranafers. You must implement the multiple-saector 1/0 facility
in the XIOS by using the multisector count passed in the IOPB.

When the disk Iormat uses a skew table to minixize rotational
latency for mingle-record transfers, it is wore difficult to
optimize transfer time for multisector operatione. One method of
doing this 13 to have the XIO0S read/write function routine translate
each loglcal sector number intc a phymical smsctor number. Then it
creates a table of DMA addresasss with each sector's DMA addrsss
indexad inte the table by the phyeical sector number.

Az a result, the requasted sectors are sorted into tha order in
which they physically appsar on the track., This allows all of the
requirad sectors on the tragk to be transferred in as few diek
rotations as poasible. The data from each sactor must be separately
transferred to or from its proper DMA addrass. If during a
multisector data tranafsr the seckor number exceads the numbar of
the last physical sector of the current track, tha XIO§ will have to
increpent the track nuzber and rasat the sactor number to 0. It can
then complste the operation for tha balance of Eectors specified in
the I0 READ or 10 WRITE function call. Sees the example acccmpanying
the I{ READ function.

SECTCR PHYS ICAL ASSOCIATED
INDEXES QMA ADDRESS

00 DMA_ADDR_O

o1 DMA_ADDR_1

N Lm_mnn_n

Pigure 5-3. DMA Address Table for Multisector Operations

5-16




Concurrent CP/M Syastem Guide 5.3 Multisector Oparations

If an error occurs durlng a multisector tranafer, the ¥IOS should
return the error immediately to terminate the read or write BDOS
function call.

In Listing 5-3, common read/write code for an XIOS diak drivar, the
routine gets the DPH address by calling the IO SELDSK funciion. It
checks to verify a nongero DPH addreesa, and returns 1if the address
is invalid (zerc). Then the disk parameters are taken from the DPH
and DPB and stored in local variablee. Once the physical racord
gize is computed from DPB values, the DMA address table can be
initialized. The INITDMATBL routine f£ills the DMA addreas table
with OFFFFH word valuea. The siza of the DMA table aquals ons word
greater than the numbar of sectora per track, in case the sectora
index relative to 1 for that particular drive. If the multisector
ocount is zero, the routine returne an error, Otherwlse, the sector
nunder is compared to the number of sectora per track toc determine
if the track number should be incremented and the pector number set
to zero. If thias is the casse, the sectors for the current track are
transferred, and the DMA address table is reinitialized before the
next tracks are read or written,

The current gsector number is moved into AX and a check is made on
the translation table offaet addresa. 1f this value is zero, no
translation table exists and translation is not performed; The
gector number ia translated and used to index into the DMA address
table. The current DMA address, incremented by the physical sector
aize 1if a multisector operation, is stored in the table for use by
the RW_SECTS routine, Local values, beginning with i, are
initialized for the various parameters needed by the disk hardware,
and the disk driver routine 1s called.

Limting 5-3 illustrates multisector unakewing:

5-17




Concurrent CP/M System Guide 5.3 Multisector Cperatiocns

’********f't't"!itl!ti**it”*i*ﬁ*l!*'!l’tti*t:”i!tii
o
'

* DISK 1/0 EQUATEE

R

;t*it*****tiiitiit*ittti*ttitiitii*!tti*iiii**i***tatﬂ

xlt equ 0 jtranslation table offamet in DPFH
dpb equ 8 ;disk parametgr block offpet in DPH
spt sgu 0 ;sectore per track offset in DPB
peh equ 15 :physical ehift factor ofifset in DPB
;tt*ttiiiitttitiit*tit**iititi*ii*i*t***it*****tt*t*t*

.k

i DISK I/0 CODE AREA

s X

;i*iiitii*ii*iitiii*iiiiiiiiitiiiiiii!!i*i*i**i*iiti**

¥

raad writa: tunskews and reads or writea multisectors

! input: SI = read or write routine address

! output: AX = return code

mov ¢l,drive

nov dl, 1l
call seldek rget DPH addreas
or bx,bx! jnz dak ok rcheck if valid
ret_error:
eov 81,1 1 return error if not
ret

dek_ok:
mov ax,xltfbx]
mov xltbl,ax ;save translation tabla address
nov bx.dpblbx]
mov ax,sptibx]

mov NAXSEC,ax ;save maximum sector per Ltrack
mov cl, psh[bx]

nov ax,128

ehl ax,cl ;jcompute phyaical recaord siza
nov seceiz,ax ; and save it

call initdmatbl sinitialize dma offset table
cmp ment, 0

Je ret error

Listing 5-3. Multissctor Unskewing




Concurrent CP/M S8ystem Guide

rw_1:
nov
onp

ax,aector
ax,maxsec! jb

call rw sects
call inTtadmatbl
inc track

XOr ax,ax

nov sector,ax

same trks
OV

or bx,bx! jz no trans

bx,xltbl

xlat al

no tranacs
x0r
nov
shl
v
mov
add
nov
ine
dec
in=

Iw_sactas

bh,bh

bl,al

bx,1
ax,dunaclf
dmatbl[bx],ax
ax, sacaixz
amaotf,ax
aactor

nent

w_1

mov al,l
xor bx,bx

Iw_al:

mov di,bx
shl 4ai,1
cmp word ptr dmatbl[di],0ffffh

je& no

xw

push bx! push &l

oV
mov

nov
mov

ax, trxack
itrack,ax
isector,bl
ax,dmatblidai]l
idmaocff,ax
ax,dmaseg
idmasag,ax

call ai

pop

si!l pop bx

5.3 Multlisectoxr Operations

1is eactor < max sector/track

same trk

no - read/write sectors on track
reinitialize dma offsat table
next track

; initialize ssctor to O

rget translation table addrasa
;if xlt <> 0
; tranalate sector number

;sector # i8 used as the index
;3 into the adma off=et table

rmave dma offamst in table
;increxent dma pffaet by ths
; physical sector aize

shaxt sector

idecramant muitissctor count
t1if mont <> 0 store next sector dma

iread/write sectora in dma table
jpreset error code

;initialize msector indsx
rcompute index into DMA table
inop if invalid entry

;eeve index and routine addraas

rget track # from IOPR

;raactor # is index value
rget dma offget from table

;get dma segment from IOPB

scall read/writs routina
:restore routine address and index

or al,all jnz err ret ;if error occurred return

Listing 5-3. (continued)

5-19



Concurrent CP/M Eyatem Guide 5,3 Multisector Cperations

no_rw:

inc bx mext sector index

bx,maxsec 11f not snd of table

Jee rw_sl ; go read/wzite next sector
arr_reti

ret sraturn with error coda in AL
initdmatbly rinitialize DMA offeet table

mov di,poffset dmatbl

HOV X, mEXSec rlength = maxsec + 1 gactora may

ing ex ¢ index relative to O or 1

wov ax,0ff£fh

push es raava UDA

push dsl pop es

rep stomw ;lnitializs table to DEffEfh

rPop a8 trrastore UDA

rat

r*ittiiieiiiiti**i*ttt!!iittiitiiiiiii*ttiititiiittiii
-t

]

¥ DISK I/0 DATA AREA

L

;i*ttiii*iiiiiiiii*i*iiiiiiii*iiEi**ti**ii**tiiiiiitti

zltbl daw o] rtranslation table addrese
mnaxgec dw 0 ;max sectors per track
secaiz dw 0 1aactor aiza

dmatbhl xw 50 tdma addxass table

Listing 5~3. {continned)

5-20




Concurrant CP/M Bystem Guide 5.4 Diask Parameter Header

5.4 Disk Parameter Header

Each disk drive has an associated Diak Parametar Hesader (DPH)
that containa information about ths dArive and provides a scratchpad
area for certain Basic Diak Operating Syatem (BDOS) operationa.

00H XLT 0000 00 ue 0000
T T
D8H DPB csv ALV DIRBCR
43—
10H DATBCE TBLSEG

Pigure 5-4. Disk Parameter Header (DFH)

Table 5-4. Disk Parameter Header Data Fields

Field Explanation

XLT Translation Table Address. The Translation
Table Address defines a vector for logical-to-
physical esector translation. If there is no
sector tranelation (the physical and logical
sector numbsers are the same), sat XLT to
0000h. Disk drives with identical sector akew
factors can share the same translation tablea.
This address is not referenced by the BDOS and
is only intended for use by the disgk driver
rautines. Ugually the translation table
containa one byte per physical asctor. IEf the
disk has more than 256 sectors per track, the
sector translation muet consist of two bytes
par physical asector. It is advisablae,
therafore, to keap the number of phyaical
sectors per loglcal track to a reaaonably
small value to keep the translation table from
becoming too large. In the caas of disks with
multiple heade, compute the head nurber £rom
the track addreas rathsr than the sector
address.

0000 Scratch Area. The 5 bytes of zeros are a
acratch area which the BDOS uses to malintain
various parameters associated with the drive.
They must be initialized to zero by the INIT
routine or the load image.




Concurrent CP/M System Guide 5.4 Disk Parameter Header

Table 5-4, (continued)

Fleld Explanation

MF Media Flag. The BDOS resets MF to zero when
the drive is logged in. The XIOE must set
this flag to 0FFH {f it detacts that the
cperator has opened the drive door. It mupk
alac set the global door open flag in the XIOB
Hesder at the same time. If the flag is et
to OFFH, the BDOB checks for a media chiange
before perforaing the next BDOB f£ile operaticn
on that driva, Note that the BDOS only chacks
thie flag when first making a aystem call and
not during an operation. Normally, thie flay
i only useful in pystems that support door
open interrupte. If the BDOS determines that
tha drive contmins a new disk, the EDOS loga
out thie drive and resets the MF field to 00H.

Note: If thie flag i» umad, removable disk
pecformanca can be optimized as if it were 2
permanent drive. BSee the description of the
CRE fiﬁ}d in the Bection 5.5, "Disk Parameter
Block.

DPRB Disk Paramater Blogk Address. The DFB fisld
containg the addresa of a Diak Parametsr Elock
that describes the characteristics of the disk
drive. Tha Disk Parametar Rlook itsslf is
deperibed in Bection 5.5, The DPB must
fdesoribe the type of disk (CP/M or DO#). BSee
I0 BELDSK in Section 5.1, and Section 5.8 for
more information.

csv Checksum Vector Address. The Checksum Vector
addrear defines a soratchpad area the syetem
vees for checksumming the diragtory to detect
a media change. Thim address wuat be
different for each Digk Parameter Header.
There must be one byte for avery 4 dirasctory
sntries (or 128 bytes of directory). In othar
worde, Length(C8V) = (DRM/4)+1. (DR ias a2
£ield in the Disgk Parameter Block defined in
dectlion 5.5.) If CE8 in the DPB is Q000H or
8000H, no storage is reserved, and CSV may be
zero. Values for DRM and CKS are calculakad
ag part of the DPR Worksheet. If this fleld
ie ilnitialized to OFFFFPH, GENCCPM will
automatically create the checksum vector and
initialize the C5V field in the DPH,

5-22



Concurrent CP/M Byatem Gulde 5.4 Disk Parameter Header

Table S-4. (continued)

Field Explanation

ALV Allocation Vector Address. The Allccation
Vector address dafines a geratchpad area which
the BDOS uses to keep disk atorage allocation
information. This address must be different
for each DPH. The Allocation Vector must
cantaln two bits for every allocation block
(one byte per 4 allocation blccka) on the
dipk. Or, Length(ALV} = ((D8M/8)+1)*2, The
value of DEM is calculated as part of the DPB
worksheet. If the C8Y fleld is initlalized to
OFFFFH, GENCCPM automatically coreates the
Allocation Vector in the SYSDAT Tahble Area,
and sets the ALV field in the DPH.

DIRBCE Directory Buffer Control Block Header Addreas,
This fileld containe the offmet address of the
DIRBCB Header. The Directory Buffer Control
Block Header containg the directery buffer
link liat root for thls drive. See Section
5,6, "Buffer Control Block Data Arsa.™ The
BDOS uses directory buffers for all accesses
of the diak directory. Several DPHs can refer
to the same DIRBCE, or each DPFH can reference
an {independent DIRBCB. If this field 1is
0FFFFH, GENCCPM automatically creates the
DIRBCB Header, DIRBCBa, and the Directory
Buffer for the drive, in the SYSDAT Table
Area. GENCCPM then Bets the DIRBCB field to
point to the DIRBCB Header.

DATBCB Data Buffer Control Block Header Address.
This field contains the offset address of the
DATBCR Header. The Data Buffer control Block
Header contalns the data buffer link 1ist root
for this drive (see Sectien 5.6, "Buffer
Control Block Data Area*). The BDOS uses data
buffers to hold physical sectors 80 that it
can block and deblock loglical 12B-byte
recorda. If the physical record size of the
media assoclated with a DPH is 128 bytes, the
DATBCB field of the DPH can be set to 0000H
and no data buffers are allocated., If this
field ia OFFFFH, GENCCPM automatically creates
the DATECE Header ané DATBCBs and allocates
space for the Data Buffers in the area
following the RSPs.




Concurrant CP/M System Guide 5.4 Diskx Paramster Header

Table $-4. (cootinued)

Fisla [ Bxplanation

TBLSEG Table Sagnent. The Table Segment containe the
asgment address of a table used for directory
hashing with CP/M disks, and ae a File
Allocation Table (FAT) for DOS disks. For
drives thet muppert both media, it must be
large enough to hold aither one. If thim
field 1is mat tc OFPFFPH, GENCCPM will
automatically create ths appropriate data
structures following the R5P area. The size
of the table is based cn the DRM (Directory
Maximumw) field in the DPB. For support of
poth mediam the DRM £leld must be est to 2
dumsy values when GENCCPM ia run to creaztae Lthe
correct wsize tabla. Eae Bection 5.5.1 for
information on eetting the DRM value. The
BDOS aasume= the table offeet to be zero,

Hashing is optional for CP/M diske, but the
tabla segment must be allocated for DO3S media.
Thus for any drive that supporte DOS dieks,
heshing xust be spacified in GENCCEM. If
dirsctory haahing is not used (CP/M media only
ussd in this drive!), ast HETBL to =zeroc.
Including a hash table drapatically improves
diak performence. Each DPE using heshing must
refarence a unigque hash tabla. If & hash
tablea is desired, Length{hash_table) =
4*{DRM+1) bytsa. DRM is computed as part of
the DPE Worksheet. In other words, each entry
in the hash table xust hold four bytes for
sach directory sntry of the disk. If thiwm
field ils OFFFFH, GENCCPM will automatically
create the appropriate data strugtures
following the RSF area.

Motsx Tha date areas for the Data Buffers snd
Hash Tables are not pade part ¢of the CCPM,.BYE
file by GENCCPM.

5-24




Concurrent CP/M System Guide 5.4 Diak Parameter Header
Listing 5-4 illustratea the DPH definition:

) (3 I3 XTI XIS 2 8 2 2 2 1 22 )})
,l‘
¥ DPH Definition

3
;***iiitttiii*i***t******a***i**t*

xlt agu word ptr O
mE agqu byte ptr 5
dpb egu word ptr 8
cav equ word ptr 10
alv aqu word ptr 12
dirbdb equ word ptr 14
datbcbh egu word ptr 16
thleey equ word ptr 18
dpbass agu offset & 1Base of Dizk Paraxeter Headers
dpal dw xlto 1Translate Table
db 0,0,0 iBoratch Area
an Q tMedia Flag
db 0,0 1Scratch Area
dw dph0 ;iDsk Parm Block
daw OFFFFH, OFFFFH :Check, Alloc Vectors
aw OFFFFH 1Dir Buff Cntrl Blk
dw OFFFFH ;:Data Buff Cntrl Blk
dw OFFFFH ;Table Segmant

Listing 5-4. DPH Definition

5-25



Concurrent CP/M System Guids 5.¢ Disk Faramater Hsader

Given n Alsk drives, the DPHs can bs arranged in a tahle whoae first
row of 20 bytss corrasponds to drive 0, with tha last row
correapending to driva n~l. The DPH Table has the following format:

For mutomatlc table ganeration by GENCCEM,
set these fioldllto DF!;P!‘H: | |
|

DPH_TBL3 Y Y Y Y Y

00 | XLTO0O |0000H |0000H |0000H |DPBOO |CEVOC| ALVOO | DIR0C | DATOC {HETOO

0L | XLTO1 | 0000H | 0000H (0000H |PPBOL |CEVOL[ ALVO1 { DIR0O | DATQO |HSTO1

(and sc forth)

Figurs 35-5. DPFH Tabla

where the label DPH TEL defines the offsat of the DPH Tabla in the
XJ08.

The IO SELDSK Punction, defined ipn Baction 5.1, returna the offaet
of the DPH from the baginning of tha SYSDAT sagment for the selactad
driva. The seguence of cperatione in Listing 5-5 returns tha table
offeset, with a 0000H returned if the selscted drive does not exiat.

’*l't*i'iiI'titiititi**#*iit'!!ﬁ‘i'i****i*fit*i*!

-l *
Pl DISX I0 CODE AREA *
r* N

'-ill'l"l'!ittit******i'i"l‘tii#ii’!**il‘l‘.*t*****tii**

;--H.S--BH
10_SELDSK: ; Function 7v Belect Diak
I EEEESDEREN
entry: CL = disk to be malacted
DL = O0Oh if disk has not besn previcusly selected

Oih if disk has bsen previocusly selected
0 1f illegal &iak
offset of DPH relative from

XI08 Data Begment

[ |

exit: AX

L T R

Listing 5~5. SELDSK XTO8 Nunction




Concurrent CP/M Sysatem Guilcde 5.4 Disk Parameter Header

xor bx,bx Get ready for error

cmp cl,15 » Is it a valid drive
ja =el ret 7 If not just exit
mov Bl,cl
ghl bx,1 Index intoc the Dph'a

mov bx,dph_tbl[bx] get DPH addresa from table

in X108 Header

me wp =g wy Ny -

or dl,dl Firet time melect?
jnz =sl_ret No, exit
mov ch,0 Yes, sat up DPH
mov Bi,cx
ahl ai,l
call wordptr mel tbl(si]
nel_ret:
mov ax,bx
rat

Listing 5-5. (continuea)

Tha Translation Vectors, XLTOO through XLTn-1, whose offsets are
cantained in the DPH Table as shown in Figure 5-5, are located
elsewhere in the XI08, and correspond one-for-ocne with the logical
sector numbers zero through the sector count-1.

5.5 Disk Paraxeter Block

The Disk Parameter Block {DPB) contains paramstera that define the
characteristics of sach diek drive. Tha Disk Parameter Header {DFH)
pointe to a DPB thereby giving the BDOB necessary information on how
to accese a 4isk, Several DPHs can address the same DPB if their
drive characteristics are identical,

When a drive supports both CP/M and DOS media, the IO SELDSK routine
must detexmine the type of media currently in the drive and return a
DPH with a polnter to a DPB with the correct values. The standard
CP/M DPB is shown in Figure 5-6. For DOS media, the atandard DPB is
extended as shown in Figure 5-7, Each field of the standard DPE is
described in Table 5-5. The axtanded DPB is described in Table 5-6.
? worksheet is included to help you calculata the value for each
ield.



Concurrent CP/M System Guide 5.5 Disk Paramatsr Block

00H I SPT BSH BLM EXM DEM DRM, ..
1

O8H ..DRM | ALD | ALL CKB OFF PBH

10H | PRM

Figura 5-6. Disk Paramatsr Block Format

Table 5-5. Disk Paramster Block Data Fields

Fleld Explanation

8pPT Bectors Per Track. The nusber of S8ectors Per
Track esguala the total number of physical
ssctore per track. Physical sector size is
defined by PBH and PHM.

BSH Allocation Block Shift Factor. Thie value is
Ueed by the BDOB to seasily calculate a black
nusbar, given a logical record number, hy
shifting the record number RBSH bits to the
right. BSH is determined by the allocation
block size chosen for tha diek drive.

BLM Allocation Block Mask, This value is used by
the BDOS to easily calculate a logical record
vifset within a given block though masking a
logical readord number with BLM. The BLM ia
determined Ly the allocation block size.

EXM Extent Mask. The Extent Magk determines tha
maximuw nuxbar of 18K logical extents contained
in a single directory entry. It is determined
by tl}‘o allocation block size and ths numbar of
blocks.

DEM Disk Storage Mazximug. The Disk Storage Maximum
dsfines the total storage capacity of tha disk
drive. Thia equals the total nuamber of
allocation blocks for the drive, minus 1. »HEM
nust be leas than or egual to 7FFFH. If the
disk user 1024-~byte blocke (BSH=3, BRLM=7) D&M
must he lass than or equal to 255.

5-28



Concurrant CP/M Systam Guide §.5 Disk Parameter Block

Table 5-5. {continued)

Field Explanation

DRM Dirsctory Maximum. The Dirsctory Maximum
defines the total number of directory entries
on this diek drive. This equala the total
number of directory entries that can be kept in
the allogmtion blocke resarved for the
directory, minues 1. Each dirsctory entry is 32
bytes long. The maximum number of hlocks that
can be allocated to the directory im 16, which
determineg the maximum number of directory
entries allowed con the disk drive. At eystem
generation time DRM must be set to allow enocugh
spaca in TBLSEG for both the hash takle and the
FAT if both CP/M and DOS mediam can be used in
the drive. Ses Sectlon 5.5.1 "Disk Patrameter
Block Workaheet" for information on how to
calgulate the value for system generation.

ALQ, ALL Dirsctory Allocatlion Vector. The Directory
Allocation Vector 18 a bit map that i used to
gulckly initialize the first 16 bits of the
Allocation Vector that ia built when a disrk
drive is logged in. Each bit, starting with
the high-order kit of ALO, represents an
allocation block bsing used for the directory.
AL and ALl dstermine the amount of disk space
allccated for the directory.

CKS Checksum Vector S8ize. The Chackasum Vector Size
determinea the raguired length, in bytes, of
the directory checksum vector addressed in the
Diak Parameter Hesader. Each byta of the
checksum vector is the checksum of 4 directory
entries or 128 bytes. A checkepum vector is
required for removable media in order to insure
the integrity of the drive., The high-order bit
in the CKS field indicates a permanent drive
and allowa far better performance by delaying
writes. Typically, hard disk systems have the
value B000H, indicating no checksumming and
permanent media, On machines that can detect
the door open for removable media, » spacial
case occurs where checksumming ia only done
when the Media Flag (MF} byte in the DPH ia set
to OFFH. Normally, the disk is treatsd like a
permanent drive, allowing mora optimal uee. In
thizs case, adding BOOOE to the CKS value
indicated a permanent drive with checksumming.

5-29




Concurxent CF/M Bystem Guide 5.% Diak Paramstar Block

Table 5-5. (continued)

Field 1 Ezplanation

QFF Track Offmet. Tha Track Offset is the number
of remarved tracks at the beginning of the
disk. OFF is egual to the zero-relative track
number on which the diractory atarts. It is
through this field that more than ons logical
disk drive can be mapped onto & single ghysical
drive. Rach loglical drive hua & different
Track Offset and all drives can use the same
physical dilsk drivars,

PBH Fhysical Record Shift Pactor, The FPhywsical
Record Shift Factor jis usad by the BDOE to
guickly calculste the physical record nusbar
fron tha loyical record numbar. The loglcal
reccord number is shifted P8H bits to the right
to calaulats tha physical racord.

FNote: In this context, phyeical recoxrd and
physical sector are equivalent terms.

FRM Physical Record Mask. The Fhysical Record Mask
is used by the BDOS to guickly calculata the
logical record ocffeet within a physical record
by masking the logical record number with the
PBEM valus.

e e L e L T L L
’.*

1% DPBE Definition

o

:
‘.Iii*i**iit*iiiiii‘i!‘.i‘**iiiii

apt equ word ptr O
beh agqu byts ptr 2
blm sgu byte ptr 3
arm aqu bytas ptr 4
dom equ word ptr 5
drm agqu word ptr 7
all agu byte ptr §
ail ey byte ptr 10
cks egu word ptr 11
off sgu word ptr 13
psh aqu byte ptr 15
Prm »gu byte ptr 16

Listing 5-6. DPB Definition

5-30




Concurrent CP/M System Guide 5.5 Disk Parameter Block

dpb0 aqu offaet § ;Disk Parameteyr Block
Aaw 26 1Sectora Per Track
ab 3 1Block Bhift
db 7 :Block Mask
db ] ;Extnt Mask
dw 242 1Diak Size - 1
dw 63 jDirectory Max
db 192 :AllocO
db o] iAlloecl
Aaw 16 ;Check Size
dw 2 10Dffeat
db 0 jPhye Sec Shift
db [s] ;Phya Rec Mask

F o i g e o o s ey O T T TEUEASIRSRSF VY Y

Listing 5-6. (comtinued}

Figure 5~7 showe the extanded DPB; Table 5-6 describea its fislda.

COH EXTFLAG NFATS NFATRECS NCLSTRS
08H CLBIZE FATADD 8PT BBH | BLM
L0H EXM DSM DRM ALOD ALLl [ CKS...
T
18H . .CKS OFF ESH | PHM
Pilgure 5~7, Extended Disk Paramster Block Format

5-31



Concurrent CP/M System Guide 5.% Disk Parameter Block

Table 5-6. Extended Disgk Parametear Block Data Flelds

Field l Explanation

EXTFLAG Extended DFB Flag. The extended TPE flag is
usad to determine the media format currently in
the drive. If EXTFPLAG {s =et to OFFFFH the
drive contains DOE media. For CP/M media, the
first field in the DPB is 8PT (Sectora Par
Track) and the DPB is not extended.

NFATS Number of File Rllocetion Tablea. This is the
number of file allccation tablea contalned on
the DOS disk. Multiple copies of the FAT can
be kept on the disk as a backup if a read or
write error occurs.

NPATRECES HNumber of File Allocation Table Recordam. The
number of physical sectors in the Eile
allccation table.

NCLSTRS Number of Clumters. The number of clusters on
the DOS disk. Cluster 2 is the first data
cluster to be allocated following the
directory, and cluster NCLETRS — 1 is the last
available cluster on the disk,

CLSIZE Cluster Size. The number of bytes per data
cluster. Thia must ba a multiple of the
physical esctor size.

FATADD File Allocation Table Addreams. The physical
record number of the Flrat flle allocation
table on the DO8 disk.

SpT Sectors Per Track. Bame as CP/M (Tabla 5-5).
BSH Allocation Block 8Shift Pactor. Bame as CP/M.

Ueed with BLM and DEM to define media capacity
to CP/M. See Table 5-5.

BLM Allocation Block Mask. BSee BSH.
EXM Bxtent Mask. Must be zero {00H) for DOS media.
D8N Digk Storage Maximum. See BSH,

5-32




Concurrent CP/M System Guide 5.5 Disk Parameter Block

Table 5-6. (continued)

Field Explanation

DRM Diresctory Maximum, The number of entries - 1
in the root directory. At system ganeration
time DRM must be set to allow enough mspace in
TBLSEG@ for both the hash table and the FAT if
both CP/M and DOS media can be used in the
drive. See Section 5.5.1 "Diek Parametar Block
Worksheet" for information on how to calculate
the value for system generation.

ALO, ALL Not used for DOS media.

CK8 Checksun Vector Size. Same as CP/M (Table 5-5).

OFF Track Offmet. Same as CP/M (Table 5-5).

PBH Physical Record Bhift Factor, BSame as CP/M
({Tabla 5-~5]).

PRM g’t)lysica.l Record Mask. Same as CP/M (Table 5-

5-33



Concurceant CP/M System Guide 5.5 Diakx Paravetsr Block

Listing 5-7 illustrates the extended DEB dafinitions

PR A AR R RN EARARRNRR LS
i *

t® Extended DPB Definition

*

!
EERREARA SRR RN R TR IINER

extflag equ word ptr 0

nfats agu word ptr 2

nfatrecs equ word ptr 4

ncletrs egu word ptr &

claizae Bgu word ptr 8

fatadd sgu word ptr 10

apt agu word ptr 13

bsh equ byte ptr 14

bl agu byte ptr 15

exm agu byt# ptr 1&

dam agu word ptr 17

darm agu word ptr 19

all agqu byts ptr 21

all sgu byte ptr 22

cka aqu word ptr 23

off egqu word ptr 25

pah asgqu byte ptr 27

prm agu byte ptr 28

dpb0 sgu offzet § :Disk Pmrameter Blook
daw OFFFFh rDos media - extended DPB
dw 2 tNumber of FATS
aw L] ;Nunber FAT sasctora
dw 500 rHuabay Of clusters
aw 1024 tClustar Size
aw b ;8actor addreae of FAT
aw 26 ;Sectors Par Track
db 3 :Block Shift
db 7 tBlock Mask
ap 0 rBztnt Mask
dw 499 :Disk Size ~ 1
aw 67 sDirectory Max
ab 0 iAllocO
ab o} rAllecl
dw r7 :Check Size
dw 0 1offaat
ab Q ;Phys Bec Bhift
ab o :Phys Rec MaeXk

Listing 5-7. Extendad DPE Definitiom

5-34




Concurrent CP/M Syatem Guide 5.5 Disk Parameter Block

5.5.1 Disk Parametsr Block Worksheet

This worksheet ia intended to help you create a Disk Parameter Block
contalning the specifications for the particular diak hardware you
ara implementing. After calculating the disk parameters according
toe the directions given below, enter the wvalue into the dimk
parameter llat following the Worksheet. That way, all the values
you have calculated will be in one place for a convenient reference.
The following steps, which result in values to be placed in the DPB,
are labeled "field in Diak Parameter Block"®.

In this worksheet, the fields common to¢ both DPBa are calculated
firat, then the flelds for the extended (DOS) DPB.

<A> Allocation Block S8ixze

Concurrent CP/M allocatea disk space in a unit known ag an
allocation block. This ias the minimum allocation of diak space
given to a file. This value may be 1024, 2048, 4096, 8192, or
16384 desimal bytes, or 4008, 800H, 10008, 2000H, or 4000H
bytes, reapectively. Valuea for DOS dlsks might dlffer from
thie range, Chooging a large allocation block size allows more
efficlent umage of directory space for large files and allowa a
greater number of diréctory entries. On the other hand, a
large allocation block size increases the average wasted space
per disk f£ile. This is the allocated disk space beyond the
logical end of a disk file. Also, choosing a smaller bloek
glze increases the size of the allocation vectors because there
is a greater number of smaller blocks on the same aize diak.
Several reatrictions on the block slze exist. If the block
slze is 1024 bytes, there cannot be more than 255 blooks
present on a logical drive. 1In other words, if the disk i=
larger than 256K bytes, it is neceasary to use at leagt 2048~
byte blocka.

<B> BHH Block S8hift field in Disk Parameter Block

<C> BLM Block Mask fileld in Disk Parameter Blook
Determine the valuem of BSH and BLM from the following table
given the value <A>»,

Table 5-7. BSH and BLM Values

<A> BSH BLM
1,024 3 7
2,048 4 15
4,096 5 31
8,192 6 63
16,384 7 127




concurrent CP/M Syatem Guide 5.5 Disk Parametar Block

Wote:

<pD>

<B>

<BF>

<G>

Values for DOS disks might extend beyond this range.

Total Allocation Blocks

Deteérmine the total number of allocation blocks on the disk
drive. fThe total avallable space on the drive, in bytes, is
calculated by multiplying the total number of tracks on the
diek, minus reserved operating system tracks, by the number of
sactors per track and the physical sector size. This figure is
then divided by the allocation bleck size determined in <aA»>
above, This latter value, vounded down to the nekt lowest
intager value, is the Total Allocation Blocks Eor the drive,

DEM Disk Size Max field in Disk Parameter Block

The value of DEM eguals the maximum number of allocation blocks
that this particular drive supports, minus 1.

Note: The product (Allocation Block Size}*(DSM+1) is the
total number of bytes the drive holda and must be within the
capacity of the physical disk, not counting the reserved
operating system tracks.

BXM Extent Maak field ir Dimk Paraseter Block
®or CP/M, obtain the value of EXN from the following table,

uging the values of <A> and <E>. (N/A = not amvailable). For
D05, EXM muet be zaero.

‘Table 5-8. EIM Values

<A> If <BE> isg If <B> ig greater than or
less than 256 agual to 256

1,024 0 N/A

z,048 1 0

4,096 3 1

8,192 7 3

15,384 15 2

Directory Blocks

Determine the number of Allocation Blocks reserved for the
directory. This value nust be between 1 and 16.




Concurrent CP/M Syaten Guide 5.5 Disk Parameter Block

<H>

<I>

<J>

<K>

Directory Entries per Block
From the following table, determine the number of directoery

entries per Directory Block, given the Allocation Block size,
<A>.

Table 5-9. Directory Entries per Black Size

<A> $ entries
1,024 32
2,048 64
4,096 128
B,192 2356
16,384 512

Tatal directory entries

Determine the total number of Directory Entries by multiplying
<G> by <H>,

DRM Directory Max field in Disk Parameter Block

Determine DRM by aubtracting 1 from <I>. Thia is the value
that muat be in the DRM field at run time.

The DRM field is also used by GENCCPM to allocate the hash
table for CP/M or the FAT for DOS. If both types of media are
allowed in the drive, DRM muat be set to allocate the agpace
needed for the largest of the hash table or the FAT. The value
(I-1) calculated above will allocate the correct amount of
space for the CP/M haah table. The value to allocate space for
the FAT is calculated by:

DRM := (NFATRECS * 2 ~ pgH * 128} / 4

The values for this equation can be found in <T>, and <P>
calculated below. Set DRM to the largesat of the two values for
gystem generation. Set it to I - 1 at run tlme.

ALO, ALl Directory Allocation vector 0, 1
field in Disk Parameter Block

For CP/M dlaks determine ALO and AL) frem the fallowing table,
given the number of Directory Blocks, <@>. DOS disks do not
use thege fields.



Concurrent CP/M Bvatem Gulda 5.5 Dimk Parameter Blook

<hL>

<R>

Table 5-10, ALO, ALl Valuss

«G> | ALOD ALl <G>{ ALD | Arl
1 80B = 9 OFFH 80N
2 0COH JQE 10 OFFE 0OCOH
3 DEOH [t]o)]| 11 orrH ORCH
i 0POE 00H 12 OFFE OFDE
5 or8e 00H 13 OFFd QFBH
& oFCH 00H 14 OFFR OFCH
7 OFEH 00H 15 0FFE OFFH
B 1):3 3 00R 16 OFFE OFPH
Cx8 Checksum field in Diesk Farameter Block

Determine the Sixe of the Checksum Vactor. If the digk drive
nedia ia permanent, *hen the value should be 8000H. If the
diek drive medim is removable, the value should be ({<I>-
1}/4)+1. If the disk drive media iz removable and the Media
Flag is implesmentad (door open can ba detected through
interrupt), CXB ghould equal (((<I>-1)/4)+1l)+ BOOOH. The
Checkeum Vector should be CK8 bytes long and addremwsed in the
DPH.

arr Offust fileld in Disk Paraweter Block

The OFF field determinsa the number of tracka that are skipped
at the beginning of the physical dimk, The BDOS automatically
adde this to the value of TRACK in the IOFB and can ba used =as
a mechaniem for skipping reserved oparating system tracke, or
for partitcioning a large 4isk into smaller logical drives.

8ize of Allocation Vectar

In the DPH, the Allocation Vector ie addreseed by the ALV
field. The size of this vector is determined by the number of
Allocation Blocks. Each byta in the vector reprements four
blocka, or Sizse of Allocation Vector = ((<E>/B)+l)*2.

Physical Sector Size

Epecify the Physical Sector 8izxe of the Disk Drive. Note thmt
the Physical Sector Size must be gresater than or egual to 128
and laas than 4096 or the Allocation Block Sizxe, whichaver is
smaller. This value is typically tha smallast unit that can be
read or written to the disk. This fiald must be filied in for
PC-MODE.

5-38



Concurrent CBP/M System Guide 5.5 Dilak Parameter Block

<P> WHH Phyaical record BHift field in Disk Paramster Bloack
<Q> PR Physical Record Magk in Disk Parameter Block

<R>

<>

Determine the values of PSH and PRM from the following tabla

given the Phyaical Sector 8ize. These fields muast be filled in
for PC-MQDE,

Table 5-11. PBSH and PRM Values

<0 | PSH I FRM

128 0 o

256 1 1

512 2 3
1024 3 ?
2048 4 15
4096 5 31l

EXTFLAG DPR Extended Flag

If this is the DPB for a DOS disk, the DPB is an extended DPB
and this field must be OFFFFE.

NFATS Humber of File Allocation Tablea

This fleld must be aet to the number of file ailocation tables
on the disk currently in the drive,

REATRECS Number of FAT Records

This field is the number of physical sectors in the file
allocation tabla. Thim value can be calculated from the number
af clusters <0> and the physical aector siza <0>» using the
following formula:

«T> 3= (<«O>* 1.5 % <0> - 1) / <O»

NRCLETRS NHumber of Clusters

This field ia the number of cluaterms on the DO5S disk.

CILSYZIE Cluster Size

Thie field ig the numbher of bytes par clumter. Clusters are
aimilar to CP/M allocation blocks. See <A> above.



Concurrent CF/M Bystem Guide

<

FATADD File Allocation Tubie Address
Thie field is the physical sector nuxbar of the

allocation tabls on the DOS Aimk,

5.5.2 Disk Paranetsr List Worksheet

<A

B>

[{d ]

<D>

3.4

<F»

Gr

(43 1

<I>

oI

<K»

<L»

<M

<H>

Q>

<p>

Allocation Block Biza

B8H field in Disk Parametsr
BLM field in Disk Pnrameter
Total Allocation Blocks

D8M field in Diek Paramater
EXM field in Diek Parameter
Directory Blocks

Directory Entrias par Block

Total directory antries

DRM field in Disk Paramater
ALO,ALl fielda in Disk Parametsr
CKB fiald in Disk Paramatar
OFF field in Disk Paramata:r

Biege of Allocation Vecter

Physical SBeactor EBize

FEH fiald in Diskx Parameter

5-40

5.5 Disk Parsmeter Block

Block

Block

Block

Block

Bleock

Block

Block

Block

Block

first f£ile

——— ——

e ———

o e e



Concurrent CP/M System Guida 5.5 Disk Parameter Block

<Q> PRM field in Disk Parameter Block

<R> EXTFLAG field in Extended Disk Parameter Block

¢S» NFATS field in Extended Disk Parameter Block

<T> MNFATRECS field in Extended Riek Parameter Block

<U» MNCLSTRB field in Extended Diek Parameter Block

<Y> CLSIZE field in Extended Diek Parametsr Block
<H> FATADD field in Extended Plak Parameter Block

5.6 Buffer Control Block Data Area

The Buffer Contrel Blocka {BCBs) locate physical rscord buffers for
the BDOS, BCBEa are usually generated automatically by GENCCFM., The
BDOS usaegs the BCE to manage the physical record buffera during
processing. More than one Disk Parameter Header {DPH) can specify
the same liat of BCBa, The BDOS distinguiahea between two kinds of
BCBs, directory buffers, referenced by the DIRBCB field of the DPH,
and data bufferas, referenced by DATBCR fiaeld of the DPH.

The DIRBCB and DATBCB fields each contain the ocffaset address of a
Buffer Control Block Header. The BCB Headar contains the cffset af
the firat BCB in a linked list of BCBs. EBEach BCE has a LINK field
containing the address of the next BCB in the list, or QO000H if it
ia the laat BCB. All BCB Headerse and BCBs must raaide within the
SYSDAT aegment.

BCBLR | MBCBP |

Figure 5-8. Buffer Control Block Headsr

5-4)



Concurrent CP/M System Guide 5.6 Buffer Control Block

Tabla 5-12, Buffer Control Block Hsader Data Fialds

Fiald ] Explanation

BCBLR Buffar Control Block Liat Raoot. Tha Buffer
Control Block List Root paoints to the firat
BCB in a linked list of BCB'a,

MRCEP Maxinum BCE's per Process. The MECBP is the
maxigum number of BCB's that thas BDOE can
allocate to any mingle process at cae time.
If the number of BCB's reguired by a proceas
is greanter than MBCEP, the BDOS reuses BCR's
previcusly allocated to this process on a
least-recently-used {LRU) hagls.

Limting 5-8 illustrates the BCE Header definition:

,t******i**it***fi***Qt*ttiii
;*

r¥ BCB Header Definiltion

%

I
;*******tt#***i*f****tf*****i

beble agu word ptr O
wbobp agu byte ptr 2
dirbch dw Airbch0 :BCE Limt Head
db 4 tMax # BCB's/Process

e ————— o e e e e ok o e e

Listing 5-8. BCE BReader Definition

Figure 5~9 shows the format of tha Directory Buffar Control Block:

OOH: DRV RECORD WFLG | BEQ TRACK

N T
DBH: SECTOR BUFQFF LINK PDADR

Pigure 5-9. Directory Buffer Coatrol Block (DIRBCRH)

5-42



Concurrent CP/M Systam Guida 5.6 Buffer Control Bleck

Table 5~13. DIRBCB Data Flslds

Field i Explanation

DRV Logical Drive Number. The Logical Drive Number
identifies the diask drive associated with the
phyaical sector contained in the buffer. The
initial value of the DRV field must be OFFH, If
DRV = {FFh then the BDOS considare that the
puffer containe no data and is available for
use,

RECORD Racord Number. The Record Number identifies the
logical record poeltion of thea current buffer
for the gpecified driva. The record numbar is
relative to the beginning of the logical diak,
where the first racord of the directory ia
logical record number zero.

WFLG Write Pending Flag. The BDOS sets the Write
Panding Flag to OFFH to i1ndicate that the buifer
containa unwritten data. When the data are
written to the disk, the BDOS sets the WFLG to
zgero to indicate that the buffer is no longer
dirty.

8EQ Sequential Acceas Counter. The BDOS uses ths
8equential Access Counter during blocking and
deblocking to detect whether the buffer 18 being
accegaed aequentially or randcmly. If
sequential access is used, the BDOS allows reuse
of the buffer to avoid consumption of all
buffers during sequential 1/0.

TRACK Logical Track Number. The TRACK ia the logical
traek number for the current buffer.

SECTOR Physical Sector Number. SECIOR is the logiecal
sector number for the current buffer.

BUFOFF Buffer Offset, PFor DIRBCBs, this field equals
the offsat addreas of the buffer within SYSDAT.

LINK Link to next DIRBCB, The Link field contains
the offsat addraas of the next BCB in the linked
1iat, or 0000H, if this is the last BCB in the
linked liet.

PDADR Process Descriptor Address. The BDOS uses the
Proceas Deacriptor Addrasa to identify the
process which owna the currant buffer.

5-43



Concurrent CP/M System Guide 5.6 Buffer Contzol Block

The huffer asascciated with the EBECB wust be larga enocugh to
accommodata the largest physical racord (equivalent to physical
sector) associated with any DPH raferencing the BCBs. The initial
valus of the DRV field muat bhe JFFH., When thas DRV field containms
OFFH, the BDOS coneiders that the buffer gontains no data and is
available for usz. Whan WFL3 eguals OFFH, the buffer contains data
that the BDOS has to write tc tha dlsk befora the bhuffer is
available for other data.

Directory BCEe nevar have the BCB WFLG paranster set to OFFH because
directory buffera ara always written immediately. The EBDOS
postpones only data buffer write operations. Thus, only data BCBa
can have dirty buffers.

The data and directory BCEs musk be separata. This is to snsure
that a buffar with a clear WFLG la available when the BDOS varifies
the directory. If all the tuffers contain new data (WFLG sat to
OFFt}, tha BDOS has to perform a writa before it can varify that the
disk mecia has changed. This could resualt in data being written on
the wrong disk inedvertently. The following listing illustrates the
DIRBCB definition:

:iii.iiitiiitit.ii*ttt*tiitii*i*
:I'
:* DIRBCB Definition

¢
;*tttt*ttii*i#ti*tttt*iitiiittii

arv agu byte ptr 0

record aqu bytea ptr 1

wEilg agu byts ptr 4

Bag agu byte ptr 5

track egu word ptr &

sactar agu word ptr 8

bufoff equ word ptr 10

link equ word ptr 12

pdedr  egu word ptr i4

dirbcb0 db Dffh tDrive
rb 3 tRecord
b 2 tFanding, Sequence
rew 2 :Track, Bector
dw dirbufl tBuffer Ofiset
dw dirbebl ;Link
rw 3 +PD Address

[

Listing 5-9. DIRECE Definition



Concurrent CEB/M System Guide 5.6 Buffer Contraol Block

Figure 5-10 showa the format of the Data Buffer Contreol Block
{DATBCE):

QO0H: DRV RECORD WFLG SEQ TRACK

O8H1 SECTOR BUFSEG LINK PDADR

Figuras 5-10. Data Buffer Control Block (DATBCR)

The DATBCB is identical to the DIRBCB, except for the BUFSEG Field
deecribed in Table 5-14.

Tabla 5-14. DATBCB Data Fielda

Field [ Explanatieon

BUFSEG Buffar Segment. For BCBa deecribing data
buffers, this field eguals the segment address
of the Data Buffer. The offset address of the
buffer is assumed to be £ero. The actual
buffer can bes anywhare 1n memory on a paragraph
poundary that ia not in the syatem TPA.

5-45




Concurrant CP/M System Guide 5.6 Buffer Control Block

Listing 5-)0 illustrates the DATBCB definition:

t (T2 IIYY SIS TR ISR 1)
'i

(A DATECE Definition

i

'-ii*ittt'ﬁiitii**ti****ti***i***

drv asgu byte ptr ©

record agu byte ptr 1

wilg agu byts ptr 4

seq equ byte ptr §

track equ word ptr 6

sgctor agu word ptr 8

buiseg equ word ptr 10

link aqu word ptr 12

pdedr egu word ptr 14

datbebl db OEfh 1Drive
rb 3 sRecord
rb 2 ;Fanding, Seaguesnce
w 2 rTrack, Sector
aw di rbufd yBuffer Gegment
dw dirbcbl :Link
rv 1 1PD Addreas

Listing 5-10. DAYBCB Definition

5-46



Concurrent CP/M Syatem duide 5.7 Menory Disk Application

5.7 Memory Dizk Application

A memory diak or M diak ia a prime example of the ability of the
Baglc Disx Operating Bystem to interface to 2 wide variety of dilsk
Adrives, A memory dlsk uses an area of RAM to simulate a esmall
capacity disk drives, making a very fast temporary diek. The M disk
can be specified by GENCCPM as the tesporary drive. The example
XI08 implements an M disk for the IBM PC. This aection discuassas 2
aimilar M disk implementation as shown in Listing 5-11.

In Listing 5-11, the M disk meamory space begins at the 0COOOH
paragraph boundary and axtends for 128 Kbytea, through the CDFFFH
paragraph. It is assuwed the XIOS INIT routines calls the
INIT_M DSKr code, which initialiges the directory area of the M
disk, the firat 16 Kbytea, to OE5H,

Both the M diak READ and WRITE routines first call the MDISK CALC:
routine. This cods calculatea the paragraph address of the current
ssctor in memory, and the number of words of data to read or write,
The number of sectors per track for the M disk is set to B8,
almplifying the calculation of the sector address to a simple ahift-
and-add operatien., The multisector count is multiplied by the
length of a sector to give the number of worda to transfer.

The READ M DISK: routine gets the current DMA addreas from the IOPB
on the stack, and using the parameters raturned by the MDISK CALC:
routine, block-moves the requested data to the DMA buffer, The
WRITE_M DISK: routine iz similar except for the direction of data
transfer.

A Diak Parameter Block for the M diak, illustrated at the end of the
example, is provided for reference. A hash table is provided in
order to increase paerformance to the maximnum. Howevez, this field
can be set to zero if directory hashing is not desirable due to
space limitations,




Concuxrent CP/M System Guide 5.7 Memory Disk Application

Listing 5~11 illustrates an M disk implamentstion:

adkddRekbwkdbr bkt ATt b NEb b AR b IO R PRSI IR TN SRR I
v

? M DISK EQUATES
L et e e e e e e L L T P T T T L)

ndiekbase sgu 0CO0Ch ;bass paragraph
;address of mdisk

'*!li***t’ii**i**i*iii*****t********i**fititiii**iifi*

M DISK INITIALIZATION
.***i****iiit**ii*i****ti*i*itiiititi*ttiiiti*iiiiiiit
inzt _m dek:

wov cx.mdiskbase

push &=a | mov es,cx

xor d1,di
mov ax,De5e5h ;eheck if already initialized
cmp ea:[dil,ax | Je mdiek end
mov ©x,2000h rinitializa 16X bytes
rep stos ax ;of M disk directory te DESh's
mdisk_end:
Pop o3
ret

LR ii 222222222 122 Rl d2ad il iadiidRiti Attt Rl sl sl ]

¥ DISK CODE
T Y Y I S L I I T S e e T RS LRI LS

Io RBAD: s Function 11: Rsad sactor

H Rcuds ths sactor on the current diek, track and
; sactor into the current DMA buffer.

1 entry: paramelers on stack

H exit: AL = 00 if no error occurraed

1 AL = 01l if an error occurred

call mdigk_calc ;calculate byte addraas

push &aa ;save UDA

les 4i,dword ptr dmaoff :load destination DMA address
xor 8i,si ;satup sourca DMA addrese

push ds ;save currsnt DS

rov ds,bx :load pointer to sector in memory
rep mOvVEW ;execute move of 128 bytes....
pop ds tthen reatore user DS regleter
pop es sreatore UDA

XOr ax,ax jreturn with good return code
rat

Listing 5-11. Example M disk implementation

5-48



Concurrent CP/M Syatam Guide

O_WRITE:

Function 12: Write disk

Write the sector in the current Dma buffer
to the current diak on the curzeat
track 1in the current sector.

5.7 Memory Disk Application

me g ma wg s wp me s omp v o e

write m dsk:

entrys

exit:

CL = 0 -~ Deferred Writes

1l - nondeferred writea

2 - def-wrt lat sect unalloc blk
0CH if no error occurred

01H if error occurred

D2H if read only disk

AL

H K

call mdisk calc

;jcalculate byte address

bush as 18ave UDA

mov &s,bx ;satup destination DMA addresa
xor ai,di

push da ;save user pegment register

lds si,dword ptr dmmcff ;load source DMA addreas

rep mOvVEwW tmove from user to disk in memory
pop ds ;reatore user sagment pointer

pop €8 ;restore UDA

XOr ax,ax ;return no errox

ret

mdisk_cale:

[T T -

H antry: IOPB variables on the stack
H exit: BX = gpectopr paragraph addresas
H CX = length in words to transfer
mov bx, track ;pickup track number
mov cl,3 :timea eight for relative
H sector number
shl bx,cl
mov ©x,8ector ;plua Bector
add bx,cx tgives ralative sector number
mov cl,3 itimes eight for paragraph
; of sector start
shl bx,cl
add bx,mdiskbase -plua base address of diak

mov
xor
mul
mov
cld
rat

in memory
-length in words for mova
: of 1 amctor

H

cx, 64

al,ment
ah,ah
cx
cx,;ax

1length * multisector count

Listing 5-11. ({continued)

5-49




Concurrent CP/M Bystem Guide 5.7 Mamory Disk Application

’ti*t&*ttt***tfit*ti***tQt*f*ti*Qti***tt'****tt**titti

7 M DIBEK - DISK PARAMETER BLOCK
JRARREER RS LR AR b b b kbbb kbbb R R bbb RNk bhd bk x®

dpbho agu offeet % ;Disk Parameter Block

daw 8 :Sectors Per Track

db 3 1Block Shift

db 7 ;Block Mask

an Q jExtnt Mask

dw 126 ;Digk Bize - 1

dw 31 ;Directory Max

ap 128 1AlloeQ

db o] 1Allocl

dw o] :Chack Size

aw D 10ffent

Aab 0 ;Phys Sec Shift

db 1] ;Phya Bec Musk
xlt5 agu ] tNo Translate Table
alss equ 16%2 ;Allocation Veckor Size
cass agu 0 1Check Vector Bize
hsab aqu {3z * 4) tHmah Table Size

f— ko e - ——

~»

Listing 5~11. {coutinned)

5.8 Multiple Melis Support

Disk access is controled by a number of data structuras, that
deacribe various paramsters of the disk. BSome of theea paramatars
are ast in the code of the XI0S, othara are filled in by GENCCPM.
when a particular disk drive can have more than one type of disk in
it (for sxample diffasrent densitiss or CP/M and PC-DOS dlaks) zoxs
of thass paramotars muat be set &t run time. This sectiocn explains
how these parametara ars set up, and which onea must be changed at
run time.

Each diek drivs iz described by a dismk paramater header (DPH) that
gives addresses for several data structures needed in uming the
disk, incloeding the Disk Parameter Block (DPB). The DPB describaes
the disk in more detail, such as the sice of the directory and the
total storage capacity of the drive. The information in the DPB
will be different if a dlfferent density or format disk is used.




Cencurrent CB/M System Guide 5.8 Multiple Madia Support

The DPY is located by the DPH(A) through DPH(FP) pointers in the XIOS
header. See Ssction 3.1 "XI0S Header" for more information an thess
pointers. The flelds in the DPH can be filled in by hard acoding the
values in the XI08 or if they are set to OFFFFH, GENCCPM will
caleulate and fill in the values, GENCCPM alao allocatea space for
the nesded hufferse and vectors.

If a drive supports more than one type of media, the buffers
allocatad must be large sncugh to hold the information needed for
any of the poasible media. This may require creating a dummy DPH
and DPBR for GENCCEM to use while allocating the buffers, For DOS
and CP/H diska, the same table area {pointed to by TBLSEG in the
DPH) is used for the hash table (CP/M) and the FAT {DOS). The space
BENCCPM allocates for thia ia based on the DRM value in the DPE.
Sea Section 5.5.1 for information on astting DRM.

Auto Denaity Support ia the abllity to aupport different types of
nedia on the sape drive., Soma floppy disk drivss can read many
different disk formata. Autc Density Support snablas the XIOS to
determine ths density of the diskette when the I0 SELDSK function ia
called, and to detect a change In denaity when the IO READ ar
I0 WRITE functicne are called.

To implement Auto Density Support or support for both CP/M and DOS
media, the XIOS8 diak driver muet include a DPB for each disk format
axpected, or routines to generate proper DPB values automatically in
real tima. It must also be able to determine the type and format of
the disk when the 10 SELDEK function is called for the first time,
get the DPH to address the DPB that desacribes the media, and return
the address of the DPH to the BDOS, If unable to determina the
format, the I0_SELDSK function can return a zero, indicating that
the nglact operation was not sucecessful. On all aubaeguent
15 SELDSK calls, the XIOS must continue to return the addreas of the
same DPH; a return value of zero is only allowed on the initial
I'O_SELDSK call.

Once the 10 _SELDSK routine has detsrmined the format of the disk,
the IO READ and IO WRITE routinse assume this format is correct
until an error is detected. If an XIOS5 functicn encounters an error
ardd determines that the madia has been changed to another format, it
musat abandon the oparation and return OFFH to the BDOS. This
prompte the BDOS tc make another initial I0 SELPSK call to
reestablish the media typa. XIO§ routines muat not modify tha
drive's DPH or DPE until the 10 SELDSK call is made. Thisa ia
bacause the BDOS can also determine that ths media haa changed, and
can make an initial IO_SELDSK call even though the XIDE routines
have not detected any change.

End of Section 5

5-51




Section 6
PC-MODE Character [/O

Thia sectlon deascribese functions that must be implemented in the
XIOS to support PC-MODE. Theas functiona smulate soms of the PC
interruptas, fllowing DOE programs to run.

There are seven functions that must be added to the XIDS to support
PC-MODE. These are functions 30 through 36. Thie chapier describaa
functions 30 through 34, that are used for character I/0. Functione
35 and 36 are for disk I/0, and are deacribed in Sectlon 5. MNote
that the XIO8 function table muast be oxtended for theae functiona.
Sea Section 3.3 "XIOS ENTRY" for more information on the function
table.

Implenenting theae functions requires data structures similar to
thaoaee ueed in acreen buffering. See Section 4.2 "Conasole I/0
Functions" for more information on screen huffering. Screen
buffering is assumed in the descriptions of all the routines in this
chapter.

6.1 Scresn I/O0 Functions

Function 30, IO_SCREEN either returne the current scresn mode, or
sets the scresn to a certaln mode. The mode tells whether the
screen is displaying text or graphics, and the screen size.
Function 31, IO VIDED, provides functions for getting and setting
the cursor position and attributes, as well as scrolling the scresn
and writing characters. This function emulates 8 of the 16
subfunctions of DOS's interrupt 10.



Concurrent TP/ Syates Guide 6.1 BScreen I/0 Functions

IO SCREEN GET/SET SCREEN

Gat or Set the Currsnt Screen

Entry Parametsrsi
Ragister AL:r LEH (30)
CHiI O = Het, 1 = Gat
CL: Mode if CH = 0 {8et)
DL: Virtual consola numbar

Returned Value:
Register AX: Mode if CH = 1 (Qet)

AY: FFFFH if modm not aupported
[Bet)
FFFBH 1f bad paramsters
{8at)
DO00OH 1f succeseful (Set)

ES, DB, &8, 6P presearved

IO ECREEN can ba called to either return the curraat screen mode
{Get) ox to met the acreen to a certain mode (Set). Sat ia
indicated by a zero in CH, Get is indicated by a 1 in CH. LO_BCREEN
is callad to oparate on a virtual conaole, indicatad by DL, The
sample XINE's keep a record of the mode of each virtual console in
the screen atructure. The screen mode muadt be initialized to a
nongero value when the ayaten is initialized. This function is also
used for G8X support. &See Appendix B.

When IO SCREEN ie called to set the screen mode (CH = 0), CL
containe the wode in the following format:

CH CL
o [ []

where y indicates the alphanurmeric modes and x indicates graphics
nodes. Either x or y will have a values, the other will be zero.
The alphanumeric ncdes (values for y) are shown in Table 6-1. The
graghics wodes (valuas for x) are ahown in Table 6-2. The value 1
(general alphanumeric or general graphic mode) comes from the GSX
graphics aysten's GIOS to indicate & wode Bwitsh. The GIOS does [te
own hardware initislization.




Conecurrant CP/M Syatem Guide 6,1 S§oreen I/0 Functions

If the calling proceas 1a in the background and wante to set its
xode to graphics, IO SCHEEN must flagwalt the procass. The
nurruponding flagset takes place in the IO _SWITCH routine, when the
pracess's virtual conscle is switched to the foreground. For
furthezr information on the I0_SWITCH routine, gee Section 4.2
"Console I/O Punctions®.

Sat shcould initjalize the hardware i1f nacesmary.
When IO SCREEN iz callad with CH = 1 {get) it returne the scresn

mode {from the mcreen atructura) in the following format:

CH CL

# Cols % Y

where 4 Cols is the nuaber of celumns on the screen, x 18 the
graphices node (Table 6-2), and y is the alphanumeric mode (Table &—

Table 6—-1. Alphammeric Modes

Y Value l Meaning

1 General alphanumeric mode
40 x 25 monochrome
4D x 25 color
80 x 25 monochrome
80 x 25 color
8 Reserved
80 x 25 monochrome card
15 Regerved

1091 hwh

10

Table 6-2. Graphics Modes

X Value l Meaning

General graphica mode

320 x 200 color

320 x 200 monochrome

640 x 200 monochroma
15 Reaerved

T wae -~




Concurrent CP/M Bystem Guide 6.1 BHcreen I/0 Functicns

10_VIDED (Function 31) emulates 8 of the 16 Bubfuncticone of DOS's
interxupt 10. It will set and read the cursor positicn, scroll the
scxesn, zet and read attributes, and write charsctere to the ecraan.

I0_VIDEO VIDEO INPUT/OUTPUT

Manipulate the Vidao Screen

Entry Parameters:
Regiater AL: 1¥H (31)
Blis Bub Punction
CX: TInput parameter
{ss® below)
DX: Input parameter
{see below)

Returned Value:
Depanda on subfunction. See baslow.
E8, D3, 88, BP vpreserved

The IO_VIDEC function must implement at leamt 8 of the 16 .
aubfunotions of DOS's interrupt 10, All 16 can be implementad |f
desired, =znd if the hardware aupports them, The 8 raguired
subfunctions are deacribed belaw.

EEY CURSOR POSITION (BL = 2)

entry: CH = row

CL = golumn

DL = virtual conmole numbar
exits none

This function sets the cursor position to the speclfied row and
column. It updates the curser poeition in the screen structure for
the specified virtual congole. It almo updates the physical acreen
if this virtual consols i8 in the foreground.

64




Concucrrent CP/M System Guide 6.1 Screen 1/0 Functions

READ CURSOR PCATITION (BL = 3)

entry: DL = virtual console number
exlt: AH = row
AL = column

This function returns the c¢urrent curmor poeition for the virtual
consale from the screen atructure.

SCROLL UP {BL = &)

entry: CX = segment of parameter structure
DX = ogffset of parameter structure
exlt: none

This function accessas tha parameter structure and scrolls up ths
gpacified window on tha virtual conscle. The window ia specifled by
giving the row and column of the upper left and lower right cornezs
of the rectangle. If the number of lines to scroll 1a 0, the window
should be cleared. The parameter structure 1as aa follows:

G A

23 B RSVD

4;: (row) C {col)

% (row) D (col)

1 1] vC

whare: A = numbar of lines

B = attribute of blank lines
¢ = row, column of upper left
D = row, column of lower right
VC = virtual conscle number

If screen buffering is implemented, scrolling must take place in the
screen buffer, If the virtual consele is in the foreground, and the
physical console is a gerial terminal, the dlsplay muat also be
updated. Parameter B containa the attributes desired for the new
blank lines to be added in the window. The method of displaying the
scralled window on the physical conscle depends on the hardware.



Concurrent CP/M Eysmten Guide &.1 Screan 1/0 Functions

SCROLL DOWR (BL = 7)

antry: CX = segmsnt of parameter structure
DX = cffset of parameter structure
axit: nona

This function accessaa the parameter structure and sorolls down the
specifiad window on the virtusl consols, similar to the previous
subfunction. The parameter gtructurs ls as follows:

O A

2 B REVD

LY (row) © ({col)

-1 {row) D (ool)

B: vC

whera: A = numbar of lines

B = attribute of blank lines
C = ros, column Oof upper laft
D = row, column of lower right
VC = wirtual console numbaer

Refer to scroll up ahova for more information.
READ ATTRIBUTE/CHARACYER (BL = 8)

entry: BRBL = virtual console nunber
oxits AH = attributs
AL = charactar

This function accesses the ecraen structuxe ior the virtual conscle
and returns the character and tha attribute byte for the current
cursor position.

In the exampla XIOE's, this subfunction involves: 1) Using the
virtual conscle number to look up the screen structure. 2) Gat the
aczesn buffer addrass and curesor position from the screen structure.
3) Look up the screen buffer, and use the cursor position am an
offeet to get the current character and attribute byte.



Concurrent CP/M Symtem Gulde 6.1 Screen I/0 Functions
WRITE ATTRIBUTE/CHARACTER (BL = 9)

entry: CX = gagment of parameter atructure
DX = offaet of parameter atructure
axit: none

Thias function writes a character and an attribute byte to & soreen
image. The new character and attribute are written at the current
curpor position, and the curacr position moved to the new character.
This may involve handling an end of line or end of screen condition.
Any number of the same character and attributes can be written by
apecifying the count in CX. If this virtnal console is in the
fareground, and the physical console ig a serial terminal, it must
be updated with the new charactexs and attributes. The parameter
atructure is ag follows:

0: RSVD A
21 RSVD B
4: [
01 RESERVED
8: vC
where: A = character
B = attributes
C = number of charactera to repeat

VC = virtual console number

WRITE CHARACTER (BL = 10)

entry: CX = segment of parameter structure
DX = Offset of parameter atructure
exit: none

This function writes a character to the acraen buffer at the current
cursor position, with the aame attribute{as) aa the previous
character., The character can be repeated by specifying a count in
8. 1If the virtual conaole is in the foreground, and the physical
conedle is a serial terminal, it aust also be updated. The
paramneter structure is as follows:

6-7




Congurrent CP/M System Gulde 6.1 B8creen I/0 Functlons
Q: REVD A
2: RESERVED
4: é
62 RESERVED
B vc

WRITE FERIAL CHARACTER

wheret A = character
C = number of characters to repeat
VQ = virtual console number

(BL, = 14}

antrys CL = character

DL = virtual goneole number

exit: none

This function writes a character tc the poreen image at the current
curaor position, and to the physical screen {f the virtual conscle

ia in the foreground.

It functions similarly to write character

(above) but doea not allcw repeated characters. This is a telatype
write, and does not allow eacape eequencen.



Concurrent CP/M System Guide 6.2 Keyboard Functions

6.2 Keyboard Functions

Thess two functions are used for handling Tunction kays and the
shift statua of the keyboard when running in PC-MODE,

10 KEYBD KEYBOARD MODE

Enable/Disable PC-~MODE

Entry Parameters:
Register AL: 20H (32)
CL: 1 = Enable
2 = Dismable
DL: Virtwual Console Number

Raturned Valua:
Reglster AX: O if OK
FFFFH if erxror
ES, D8, 88, 8P preserved

IO KEYED is a signal tc tell whather PC-MODE is active or not. When
it i= enabled, the console ies running a PC program, and several
functiona muat behave differently. These differencea have to do
with tha function keys on the keyboard, and the 25th line on the
acreen.

Enabling or disabling IO_KEYBD tells IO _CONIN (See Section 4.2)
whether to pass function keys to the callar or not. HNormally
(disabled) all function keys not used by the X108 (thoee that do not
have an associated function, auch as mcreen switch) are ignored on
input. If XO_KEYBD is enabled, IO CONIN must pass all 16 bit
function key codes to the caller. B8ee Section 6.4.

Many PC applications use the 25th line of the diaplay. Thus when
you are in PC-MODE, IO STATLINE must not dimplay. See section 4.2

for more information on IO STATLINE.

Thias variable can alao be used in the XI08 for any other functionas
that need to know if a conaole ia in PC-MODE. For example, it could
be used to indicata if 24 or 25 lines need to bs buffered.



Concurrent CP/M Bystem Guids 6.2 Xeybomnrd Functions

I0_SHFT SHIFT 8TATUB

Return 8hift Status

Entry Parameters:
Register AL: 218 (33)
DLs Virtual Conaole Number

Raturned Value:
Regieter ALt Shife EBtatue
8, D3, BB, BP pramerved

I0_OEPT emulates PC interrupt 16 mubfunction 2. It returns a bit
rap showing the status of certain kays on the keyboard. The bit map
is eghown in Table §-3.

Table 6-3. Keyborrd Bhift Status

Bit ] Meaning

Inasrt state ism acztive

Caps lock wtate has been toggled
Num logk etate haz been toggled
Scroll lock smtate has been toggled
Alternats shif: key depressed
control shift key depresed

Left shift key depressed

Right shift key depressad

DN M~ S




Concurrant CB/M System Guide 6,3 Eguipment Check

6.3 Equipment Check

I0_EQCK EQUIFPMENT CHECK

Return Equipment Status

Entry Parameters:
Regimter ALt 22H (34)

Returned Value:
Regieter AX: DOS bit map (Table 6-3)
E5, DS, 8S, SP preaerved

ID_EQCE emulates DOS's interrupt 1l. It returns a subset of DOE's
standard bit map that describes the state of the equipment. Thia
bit map 18 shown 1ln Table 6-3,

Table 6-4. DOS Edquipment Status Bit Map

Bit Meanling

14, 15 Number of printers attached
13 Not uased

12 Gama I/0 attached

11 -9 Humber of RS232 cards attached
g Hot uged

7, & Number of f£leoppy disk drives
5, 4 Initial video moda

3, 2 Planar RAM size

1 Not used

+ IPL from floppy

6.4 PC-MODE IO CONIN

When a virtual conscle is in PC-MODE (See IO KEYED in Section 6.2)
IO _CONIN muat return extended codes for certain function keys. Most
characters ars returned as their ASCII code in AL, and thelr acan
code in AH. The scan codes for all keye are shown in Table 6-5.
Extended keys are raturned as a nul (DOH) in AL and an extended code
in AH, The extended keys and the value to be returned in AH are
shown in Table 6-6.



Conourxrent CP/M System Guide 6.4 PC Mode IO_CONIN

Table 6-5. Keyboard Ecan Codas

Key 8can Code Rey I Span Code
A 30 Est 1
B 48 Ctrl 29
c 46 Shift (left) 42
o] 3z Shift {right) 54
| 18 Alt 56
P 33 Capa Lack 58
G 34 Num Lock 69
H 35 Scroll Lock 70
I 23 Returcn 28
J 36 Tab 15
K 37 backspaca 14
L 38
M 3g Numeric Keypad:

b | 49

Q 24 Homa (7) 71
B 25 cursor up (8) 72
a 16 Pg Up (9} 73
R 19 cursor latt (4) 75
g 31 (5) 76
T 20 cursor right (6) rxi
u 22 Fnd (1) 79
v 47 curscx down {(2) 80
W 17 Pgbn (3) B1
X 45 Inse (O) B2
Y 21 bDal (.) 83
Zz 44 * (prige) 55
1 (1) 2 - 74
2 (8) 3 + 7B
3 (#) 4

4 (§) 5 Function Keys:

5 (%} 6

6 (*) 7 Fl 59
7 (&) 8 F2 60
8 (*) 9 F3 61
9 ({) 10 ¥4 62
0 ()) 11 F5 63
- () 12 ¥ 64
= (¥) 13 r7 65
L (f) 26 2] 66
11 27 ¥9 67

r (0} 39 Fl0 68
") 40
™) 41
: (€} 51
LD 52
/ (2) 53
A (D 54

612




Concurrent CP/M Systam Guide

6.4 PC Mode IO CONIN

Table 6-6. Extended Keyboard Codes
Character I AR [ Function
otrl 3 3 Nul character

o 15 Reverae tab
Ina 82 Insert
Del 83 Delete
i 72 Curmor up
&— 75 Cursor left
— 77 Cursor right
| 80 Cursor down
home 71 Cursor home
ctrl home 119 Control home
ctrl <— 115 Reverae word
ctrl —> 116 Advanca word
Pg Dn 8l Page down
etrl Pg Dn 118 Contrl page down
Py OUp 73 Fage up
ctrl Pg Up 132 Contral page up
End 79 End
ctrl End 117 Control end
ctrl PrtSc 114 Print screen
Fl 59 Function key Fl1
F2 &0 Function key F2
F3 61 Function key F3
F4 62 Function key Fé
F5 63 Function key F5
F6 64 Function kay Fé
7 65 Function key F7
F8 66 Function key F8
P9 a7 Function key F9
710 68 Function key F10
shift F1l 84 Function key Fl1l
ahift F2 8BS Function key F12
shift ¥3 86 Function key P13
shift 74 87 Function key Fl4
shift P5 88 Punction key Fl5
shift 76 B9 Punction key F16
shift ¥7 90 Function key Fl7
shift F8 91 Function key F18
shift P9 92 Punction key P19
shift F10 23 Function key F20

6-13



Concurrsnt CF/M Eystem Guide 6.4 PC Mode IO _CONIN

Table 6~6. (continued)

Character I AH l Function
ctrl Fl 94 Function key ¥21
ckrl P2 95 Punction key F22
gtrl F3 96 Function key P23
otrl Pd 97 Function key ¥24
ctrl K5 98 Punction key P25
otrl Fé 99 Function kKey ¥26
ctrl ¥7? 100 Function key ¥27
ctrl ¥8 101 Function key P28
ctrl F9 102 Function key F29
ctrl Fl0 103 Punction key F30D
alt rl 104 Functioh key F3l
nlt F2 105 Function key F32
alt F3 106 Function key F33
alt P4 107 Function key F34
alt »5 108 Function key F35
alt 76 109 Function key F36
alt ¥7 110 Function kay F37
alt ¥8 111 Function key F38
alt ¥ 112 Function key F39
alt ?10 113 Function key Fi0
alt A 30 Alt A

alt B 48 Alt B

alt C 46 Alt C

alt D 32 Alt D

alt E 18 Alt E

alt ¥ 33 AL F

alt @ 3¢ Alt @

alt B 35 Alt H

alt I 23 Alt I

alt J 36 Alt J

alt X 37 Alt K

alt L 38 Alt L

alt M 50 Alt M

alt N 43 Alt N

alt ¢ 24 Alt ©

alt P 25 Alt P

alt @ 16 Al Q

alt R 1% Alt R

alt 8 3l Alt 8

alt T 2Q Alt T

alt U 22 Alt U

alt v 47 Alx ¥

alt W 17 aAlt w

alt X 45 Alt X

alt ¥ 21 Alt ¥

alt 2 a4 Alt 2

6-14




Concuxrent CP/M System Guide

6.4 PC Mode I0_CONIN

rable 6-6. (continued)
Character l AH [ Function
alt 1 120 Alt 1
alt 2 121 Alt 2
alt 3 122 Alt 3
alt 4 123 Alt 4
alt 5 124 Alt S5
alt 6 125 ALt 6
alt 7 126 Alt 7
alt 8 127 Alt 8
alt 9 128 Alt 9
alt 0 129 Alt O
alt - 130 Alt ~
alt = 131 Alt =

End of Section &

6-15



Section 7
XIOS Tick Interrupt Routine

The XIOS must continually perform two DEV_SETFLAG syatem calla.
Once avery mystem tick the system tick flag muat be set 1f the TICK
Boalean in the XIOS Header ig OFFH. Once every Becond, the second
£lag muat be set. This requirea the XIOS to contain an interrupt-
driven tick routine that uaes a hardware timer to count the time
intervals between succesalve system ticka and geconds.

The recommended tick unit im a period of 16.67 millisaconds,
corresponding to a frequency of 60 Hz. When operating on 50 Hz
power, use a 20-millisecond period. The aystem tick frequency
determines the dispatch rate for compute-bound processes. If the
frequency 1=z too high, an exceaaive number of dispatchea occurs,
creating a significant amount of additional ayatenm overhead. If the
frequency is too low, compute-bound procesaes monopolize the CPU
reagurce for longer periods.

Concurrent CP/M uses Flag #2 to maintain the syatem time and day in
the TOD structure in S¥YSDAT. The CLOCK procesa performs a
DEV_WAITFLAG system call on Flag #2, and thus wakea up once per
aecand to update the TOD structure. The CLOCK process also calls
the IO STATLINE XI08 function to update the status line once per
mecond. If the aystem has more than one phyaical conscle, one
phyaical console is updated each second. Thua if four phyaical
consolea are connected, each one will be updated once every four
seconds.

The CLOCK process is an RSP and the source code is distributed in
the OEM kit. Any functiona needing to be performed on a per-second
baals ecan simply be added to the CLOCK.RSP.

After performing the DEV_SETFLAG calls described above, the XIOS
TICK Interrupt routine must parform a Jump Par to the dispatcher
entry point. Thie forcea a dispatch to occur and ia the mechaniam
by which Concurrent CP/M effects process dispatching. The double-
word polnter to the diapatcher entry used by the TICK interrupt is
located at 0038F in the SYSDAT DATA. Please see Section 3.6,
"Interrupt Devices," for more information on writing XIOS interrupt
routines.

End of Section 7




Section 8
Debugging the XIOS

Thim saction suggests a mathod of Z2ebugging Concurrent CB/M,
ragquiring CP/M-86 running on the target machina, and a re=mote
onacle. Hardware-dependent debugging techniques {ROM monitor, in-
circuit emulator) availablae to the XIO5 implementor can certainly be
ussd but are not described in this manual,

Implement the firet cut of the XI0§ using all polled I/0 devices,
all interrupts disabled including the aystem TICK, and Interrupt
Vectors 1, 3, and 225, which are used by DDT-86 and E&ID-86,
uninitlialized. Once the XIDOB functiona are lmplemented as polling
deviced, change them to intecrupt-driven I/0 devices and test them
one at a time. The TICK interrupt routine is usually the laat X108
routine to ba implemented.

The initial ayatem can run without a TICK Interrupt, but haa no way
of foreing CPU-bound taepks to dispatch. However, without the TICK
interrupt, coneole and disk 1/0 routines are much eapier to debug.
In fact, 1f other problems are encountered after the TICK lnterrupt
is implemented, it is often helpful to dlsable the effects of the
TICK interrupt to simplify the environment. Thie is accompliashed by
changing the TICK routine to exagute an TRET instead of jumping to
the dispatcher and not allowing the TICK rontine to perform flag set
syatem calls,

When a routine must delay for a specific amount of time, tha XIOS
GBvally nakes a P _DELAY system call. An example ia the delay
required after the disk motor is turned on until the disk reaches
cperational spsed. Until the TICK interrupt is tmplemented P_DELAY
cannot be called and an assembly language time-cut loop is needed.
To improve performance, replace thease time-outs with P DELAY aystem
calls after the tick routine i{s implemented and debugged. See the
MOTOR_ON: routine in the example XIOS for more detalls.

8.1 Running Under CP/M-86

To debug Concurrent CP/M under CP/M—86, CP/M-86 must use a console
separate from the console uaed by Concurreat CP/M. Usually a
tetminal is connected to a serial port and the console input,
console output and console atatus routlinea in the CP/M-86 BIOS are
modified to use the serial port, The serial port thus becomes the
CP/M-36 console. Load DDT-86 under CP/M-86 using the remote console
and read the CCPM.B5YS image Into memory using DDT-86. The
Concurrent CP/M XIOS muast not reinitialize or use the serial port
hardware that CP/M-86 is using.

It 1s aomewhat difficult to use DDT~86 to debug an interrupt-driven

virtual console handler. Because the DDT-86 debugger operates with
interrupts left enahbled, unpredictable results can occur.

8-1



Concurrent CP/M System Guide 8.1 Running Under CP/M-B6

Valuea in the CP/M-86 BIDS memory segment table must not overlap
memory repragented by the Concurrent CP/M memory partitions
allocated by GENCCPM. CP/M~B6, in order to read the Concurrent CP/M
systen inmage under DDT-86, must have in its megment tablee the area
of RAM that the Concurrent CP/M system is configured to occupy. See
Figure 8-1.

CCP/M tranpient
program area

defined by

GENCCPM

CP/M tranglent CCPM,5Y8 »CCP/M 0.B. image
area described

in BIOE DDT26

CPM.SYS5 »CF/M 0.8, image

memory addregs 01 | Interrupt Vectors

Figure 8-1. Debugging Memory Layout

Any hardware that is shared by both systems is usually not
acceaslible to CP/M-86 after the Concurrent CP/M Initialization code
han executed. Typically, this prevente you from getting out of DDT-
86 and back to CP/M-86, or executing any disk I/0 under DDT-86,

The technique for debugging an X105 with DDT-86 running under CP/M-—
86 im outlined in the following atapm

1. Run DDT~86 on the CP/M-88 mystem.

2. Load tha CCPM.S5Y5 fila under DDT-86 uslng the R command and the
segrent address of the Concurrant CP/M system minus 8 (the
length in paragraphs of the CMD file header). The aegment
address is specified to GENCCPM with the OSSTART option. Set
up the C3 and DS ragisterse with the A-BABE values found in the

CMD file Header Record. See the Concurrent CP/M Operacing
System Programmer's Reference Guide description of the CMD file
eader.

3. The addresaes for the XI0OS ENTRY and INIT routines can be found
in the BYSDAT DATA at offsets 28H for ENTRY and 2CH for INIT,
These routines will be at offget OCO3H and OCOOH relative to
the data segment in DB.

4. Begin executlon of the CCPM.5Y¥S file at offset 0000H in the
code gegment. Breakpoints can then be set within the X108 for
debugging.




Cancurrent CP/M Syatem Guide 8.1 Running Under CP/M-86

In the following figure, DDT-88 1= invoked under CP/M~86 and the
file CCPM.BYS is read into memory atarting at paragraph 1000d. The
OBITART command in GENCCPM was apecifled with a paragraph addreaa of
1008H when the CCPM.8Y3 file was generatad, Using the DDT-86 D (ump)}
command the CMD header of the CCPM.SYS file is displayed. Aa shown,
the A-BASE fields are used for the initial C5 and DS saegment
regiater values. The following lines printed by GENCCPM also show
the initial €5 and DS valuea:

Code astarts at 1008
Data starts at 161A

Two G{a) commande with breakpoints are shown, one at the beginning
of the XIOS INIT routine and the other at the beginning of the ENTRY
rautine. These routines can now be atepped through using the the
DPDT-B86 T(race) command. See the Programmer's Utilitles Guide for
more information on DDT-86.

A>3dtE6

DppTa&

-rccpm.ays,1000:0
START END

1000:0000 1000:ED7F

-dd

1000:0C000 0L 12 06 08 10 12 06 00 00 02 B2 08 1A 16 B9 08 .,,....,
L

-xey

8 0000 1008
DS 0000 l6la =
88 Qo051 .,
-l1ds:cDO
161a:0C00 JMP 1E2E
161a-0C03 JMP 0C3B

—q,da:0C00 19et a break point at XI0OS INIT
*161A:0C00 sthe INIT routine may now be degugged
-g,da:0C03 yset a break point at XIOS ENTRY
*161A:0C03 ;the X108 function being called is

- 1AL

Pigure 8-2, Debugging CCP/M under DOT-86 and CP/M-86




Concurrent CP/M System Guide B.l Running Under CF/M-86

When using 8Ip-86 and symbols to debug the XI0S, extend the CCPM.3YsS
File to include unitialized daia area not in the f£ile. This ensures
the aymbola arm not written over while in the debugging seszicn.
Agdguming the same CCPM.SYS file as the preceding, use the followlng
commands to extend the file.

SIDBS

drccpm.sys ,1000:0
START END

1000s0000 1000:ED7F

{xca

€S 0000 1008

DS 0000 1l6lc

§8 Q051
jawdd
:61C=0044 XXXX tENDEEE value from SYSDAT DATAR
fwccpm.8ys,1000:0,XXXX:0
{e ;releass memory
frocpm.ays,1000:0 tread in larger file
START END
10QQ:0000 YYYY:ZZZZ
tetxios yget XIOS.BYM file
SYMBOLS
{

Figure 8-3. Dabugging the XIOS Under BID-86 and CP/M-36

The preceding procedure to extend the file only needs tec he
performed once after the CCPM.BYS file is generated by GENCCEM.

2nd of Bection 8




Sectlon 9
Bootstrap Adaptation

This section discusaes the example bootstrap procsdurs for
Concurrent CP/M on the IBM Personal Computer. This sxample ia
intended to aserve as a basis for customnization to different hardwere
environments.

9.1 Components af Track 0 on the IBM PC

Bath Concurrent CP/M and CP/M-86 for tha IBM Perscnal Conputsr
resarve track 0 of the 5-1/4 inch floppy disk for ths bootstrap
routines. The reet cf the tracks are reserved for directory and
file data. Track O is divided into two areas, sector 1 which
containa the Boot Sector and sactors 2-8 which contain the Loader.
Figure 9-1 shows the layout of track 0 of a Concurrent CP/M boot
diek for the IBM Personal Computer,

Sector 1 Boot Sector
Sesctor 2 Loader
Sector 8 .

Figura 9-1. Track 0 on the IBM BC

The Boot Sactor im brought into temory on regset or power-on by the
IBM PC's ROM monitor. The Boot Bector then reads in all of track 0
and transfers control te the Loader.

The Laader is a simple version of Concurrsnt CP/M that contains
sufficient file procassing capability to read the CCPM.8YS file,
which contalns the operating system image, from the boot disk to
mnemory. When the Loader completes its operation, the operating
aystem image recelves control and Concurrent CP/M begine execution.

9-1




Concurrent CP/M System Guide 9.1 Track 0 on the IBM PC

The Loader conaists of three nodules:s the Loader BDOS,; the Loader
Program, and the Loader BIOS. The Loader BDOS is an invariant
module used by the Loader Program to open and reead the system image
E{le from the boot disk. The Loader Program ia a variant mcdule
that openg and reads the CCPM.8YS8 file, prints the Loader sign-on
message and transfers conttol to the system image. The Loader BIQS
handles the variant disk I/0 functions for the Loader BDOB. The
term variant indicates that the module is jimplementation-epecific.
The layout of the Loader BDOS,; the Loader Program, and the Loader
BIOS is shown in Fiqure 3-2. The three-entry jump table at 0900R is
uged by the Loader BDDS to pass control to the Loader Program and
the l'ocadear BIOS.

Note: The Loader for the IBM PC example begins in sector 2 of
track 0, and contlnues up to sector 8 along with the rest of the
Loader BDOS, the Loader Program and the Loader BIOS.

offsets from
Loader BDOS

Loader BIOS

Loader Program

0909H:
0S90BH: JMP LOADP
0903H: JMP ENTRY
0900H: JMP INIT

Loader BDOS

DOQDH:

Figure 9-2. Loader Organization
{(Bectors 2 through 8, Track O on IBM PC}

9.2 The Bootstrap Process

The sequence of events in the IBM PC after power-on is discusased in
this section. Except for the functions that are performed by the
IBM ROM monitor, the following process can be generalized to other
8086/8088 machines.




Concurrent CP/M Syatem Guide 9.2 Tha Bootatrap Proceas

Plrst the ROM monitor reads sector 1, track 0 on drive A: to memory
lacation D000:7CO0H on power-on Or reast. The ROM than transfers
control tc location 0000:7C00H by a JMPP (Jump far) inatruction.
The Boot Sector program uses the ROM monitor to check for at least
160K of memory contiguous from 0. The ROM monitor ie then used to
read in tha remainder cof track 0 to memory locatlon 2600:;0000H
(152K). Control ip traneferred to location 2620:0000H, which ims the
beginning of the second ssctor of track 0 and the haginning of the
Loader., (Bach sector is 512 bytes, or 20H paragraphe long.) The
aource code for the Boot Sector program can be found in the fils
BOOT.AB6 on the Concurrant CP/M diatribution disk.

The exact location in memory of the Boot Sector and tha Loader
despend on the hardware environment and the sysatem inplementer.
However, the Boot Sector must transfer control to the Loader BDOS
with a GMPP (jump far) instruction, with the C3 register set to
paragraph addreas of the Loadsr BDOB and tha IP regiatar set to O.
Thue the Loader BDOS must be placed on a paragraph boundary. In the
axanple Loader, the Loader BEDOS begina mxecution with a C8 regiater
a6t to 2620H and the IP regigter sat to CODOH.

The Loader BDOS aets the DS, 88, and ES regietara sgual to tha CS5
regiatar and sets up é4-lavael stack (128 bytes), The thzrese Laoadar
wmrjulea, the Loader BDOS, Prograr and BIOS, execute using an 8080
nodel {mixed code and dAata). It ia assumed that the Loader BDOS,
the Loader Program and the Loader BIOS will not require more than 64
lavels of stack. If thia is not true then the Loader Program and/or
the Loader BIOS must perform a atack awltch when necessary. The
jump table at 0900H is an invariant part of the Loadar, though the
destination offaets of the jump instructions may vary.

After setting up the segpant regiasters and the atack, the Loader
BDOS performa a CALLF (call far} to the JMP INIT inatruction at
CB8:200H. The INMIT entry is for the Loader BIOS to perform any
hardwara initialization needed to read the CCPM,.SYS fila., Note that
the Loader BDOS does not turn interrupts on or off, so if they are
needed by the Loader, they muat be turned on by the Boot Sactor or
the Loader BIOS. The axample Loader BIOS executes an STI (Set
Interrupt Enable Flag) instruction in the Loader aI0S INIT routine.

The Loader BIO8 returne to the Loader BDOS by executing a RETP
(Returan Far) instruction. The Loader BDO8 next initializas
interrupt vector 224 (OECH) and transfers control to the JMP LOADP
inatruction at 0906H, to start execution of the Loader Program.

The Loader Program opena and reads the CCPM.3YS file using the
Concurrent CP/M gystem calls supported by the Loader BDOS. The
Loader Program transfers control to Concurrent CP/M through the
"JMPF CCPM" (Jump Far) instruction at the end the Loader Progran,
thue completing the lcader sequence. The following sections discuss
the organization of the CCPM,8YS file and the memory image of
Concurrent CP/M.



Concurrent CP/M Eystem Guida 9.3 Loader Function Hetm

9.3 The Loadar BDDB and Loader BICE Function Setas

The Loader BDOS has & mininum set of functiona required to open the
system image file and transfer it to menory. 'These functions are
invoked ae under Concurrent CP/M by executing a INT 224 {QO0EQH) and
are documented in the Concurrent CP/M Programmer'e Reference Guide.
The functions lmplemented by the Loader BDOS are in the following
list. Any other funcetlon, if called, will return a O0FFFFh error
code in registers AX and BX.

Funcé CL Function Name

14 0Eh Select Diask

15 OFh Opean File

20 14h Read Seguential

26 1ah Set DMA Offaet

32 20h Sat/Gat Daer Number
44 aCh Sat Multissctor Count
51 33h Set DMA Bagment

Blocking/Deblocking has besan implemented in the Loader BDOS, as wall
as multimector digk T/0. This mimplifies writing and debugging the
loader Bi08 and improves the ayetem load time. ¥File LBDOS.HB6
includes the Loader BDOSB.

The oader BIOB must implement the minimum set of functiona reguired
by the Loader BDUB to read a file.

Funcé AL ¥Function Name
] 098 IO_SELDBK (seleot disk)
10 DAR IC_READ (read phyeical aegtors)

To invcke IO_BRLDAX or IO_READ in the Losder BI08, the Loader BDPOS
performa a CALLF (Call Far) inatruction to the jump instruction at
ENTRY (0903H).

The Loader BIOS functione are implemented in the game way as the
corresponding XI0S functions. Therefora the code used for the
Loader BIOS may, with a few exceptions, be a subset of the system
XI08 code. Fox example, the Loader BIOS doces not use the
DEV_WAITFLAG or DEV_POLL Concurrent CP/M system functions. Certain
flalds in the Disk Parameter Headers and Disk Parameter Blocks can
be initialized to 0, es in Pigure 9-3:

-4




Qoncurrent CP/M Syatem Guide 9.2 Loader Function Seta

Diak Parameter Header

0oH XLT 0000 o0 | oo | o000
1 L A

08 DEB 0000 0000 DIRBCE
. Il

108 | paTBCB 0000

Disk Parameter Block

ooal 8pT BsH | BIM | ExM DSM DRM. .,
L

0BE ..DRM | 00 | 00 0000 OFF #sH

10K BHM

Figure 9-3. Disk Parameter Field Initialization

The Loader Program and Loader HIOS may be written as separate
modulea,; or combined in a single module as in the example Loader.
The size of these two modules can vary as dictated by the hardware
environment and the preference of the ayatem implementor. The
LOAD.AE6 file contains the Loader Program and the Loader BIDS.
LOAD.A86 appears on the Concurrent CP/M release disk, and may be
aagsembled and liated for reference purposes.

The Loader Program and the Loader BIOS are in a contiguous section
of the Loader to reduce the size of the Loader image. Grouping the
variant code portiond of the Loader into a single module, allowa the
implenmentation of nonfile-related functions 1in the most size-
efficient manner. The example Loader BIOS implements the I0_CONOCUT
function in addition to IO _SELDSK and IO_READ. This Loader BIOS can
be expanded te support keyboard input to allow the Loader Ftogram to
prompt for user optiona at boot time. However, the only Load=r BIOS
functions invoked by the Loader BDOS are IO SELDSK and IO _READ, any
other Loader BIOS functions must be invoked directly by the Loader
Program.

9.4 Track 0 Construction

Track 0 for the example IEM PC hootstrap is constructed waing the
Following procedure: The Boot Sector ia 0200H (512) bytea long and
iz assembled with the command:

A>ASMB6 BOOT

This results in the €ile BOOT.HB6, which becomes a binary CMD file
with the command:



Concurrent CP/M System Guide 9.4 Track 0 Construction

A>GENCMD BOOT B080

The LOAD.A86 file, containing the the Loader Program and the Loader
BI08, is assembled using the command:

A>AEMB6 LOAD

The Loader BDOS atartas a 0000H and ends at 0900H. The LOAD module
atarte at 0900H and ends at OEOOH. This equals the size of the 7
eactors remaining after the Boot Bector. The IBM PC disk format hae
aight Q200E-byte (512-byte) eectors, or 1000H (4K} bytes per track.
Subtracting 0200H, the length of the Boot Sector, we get DEQOOH. The
LOADER.HBE file, containing the Loader BIOS, Loader Program and
Loader BIOS, is constructed using the command:

A>PIP LOADER.H86=LEDOS .HAE ,LOAD.HBE
Next a2 binary CMD file ia created Erom LOADER.H86 with CGENCMD:
A>GENCND LOADER B80BO
Thle results In the file LOADER.CMD with a header record deflining
the 8080 Medel. Wote this CMD file la not directly executable under
any CP/M operating syetem, but can be desbugged as outlined below.

Next the BOOT.CMD and LOADER.CMD flles are combingd into a track
image. UOss DDT-BE or S5ID-86 to do thiam:

A>DDTE6 t or SIDB6
~rboot.omd
8TART END aaaa is paragraph where DDT86

amnaz: 0000 aaaa:027P places BOOT.CMD

[
,
-wtrack0,80,107f ; create the 4K file, TRACKOD, without
; a CMD header
-rtrack0 ) read the 4K TRACKO file into memory
BTART END
~bbbhz0000 bbbb:0rFF 3 TRACX0 starts at paragraph bbbb
-~rloader.ced + read LOADER.CMD to ancther area of
START END } memory
-2zx32310000 zxxX:10K7F 3 LOADER.CMD starts at paragraph zzzz
-mxzxxt80,0R7F,bbhb: 0200 } move the Loader %o where mector 2
1 atartg ln the track image
-wtrack0,bbbb: 0, 0Fry t weite the track image to the file
3 TRACKO

The final step is to place the contents of TRACKO onto track 0, The
TCOPY example program accomplishes this with the following command:

A>TCOPY TRACKO




Concurrent CP/M Syetem Guide 9.4 Track 0 Construction

8cratch diskettes should be used for teating the Boot S8ector and
Loader. TCORPY is inocluded as the scurce flle TCOPY.AB6, and neads
toc be modified to run in hardware environments other than the IBM
PC. TCOPY only rung under CP/M-B6 and cannot be used under
Concuxrent CP/M.

Thae Loader can ba debugged separately from the Boot Sector under
DDT-86 or S5ID-86, uming the following commands:

A>DDT86 ; or SID8G
~rloader .cmd
START END ; aaaa is peragraph where DDT86
amaaa:0000 aama:0B7F ; Places the Loader
~haaaa,8 ¢ Add B paragraphs to skip over CMD
YYYY 2222 ; header, aaaa + B = yyyy
~%xcs
C3 0000 yyyy ; set C8 for debugging
-1900 7 IP is set to 0 by DDT8E& or SIDB6

The 1900 command ligta the jumpa to INIT, ENTRY and LOADP to verify
the Loader Program and the Loader BIOS are at the gorrect offsets,
Breakpeintg can now be set in the Loader Program and Loader BIOS.
The Boot Sector can be debugged in a similar mannar, but sectors 2
through 8 need to contain the Loader image 1f the JMPF LOADER
instruction in the Boot Sector {s to be executed.

9.5 Other Bootstrap Methods

The preceding three gections outline the oparation and stepa for
conetructing a bootstrap loadet for Concurrent CR/M on the IBM EBC.
Many depaxtures from this scheme are possible and they depend on the
hardware environment and the goals of the implementor. The Boot
Sector can be eliminated if the system ROM (or EROM} can read in the
entire Loader at reset. The Loader can be eliminated 1if the
CCPM.5YS file is placed on system tracks and the ROM can read in
these system tracks at reset. However, thia scheme usually requires
too many system tracks to be practical. Alternatively, the Loader
can be placed intc a PROM and copied to RAM at reset, eliminating
the need for any system tracks. IFf the Boot Sector and the Loader
are eliminated, any initiallization normally performed by the two
modules must be performed in the XICS initialization routine.



Congurrent CP/N Bystem Guille 9.6 Organixzaticn of CCPM.BYS

9.6 Organixzation of CCPN.EYS

Tha CCPM.BYS file, generated by GERCCPM and read by the Loader,
conuiste of the seven *.CON files and any included *.RSF files. The
CCPM.5YS file im prefixed by a 128-byte CMD Header Record, which
contains the following two Group Deacriptors:

G-Form G-Length A-Basa G-Min G-Max
0lh XREX 1008h xxxX XXX

T T 1 T
02h x2XX (varias) XXX ARRK

Yigure 9-4, Group Descriptore - CCPM.ZYB Header Record

The first Group Deecriptor represents the 0.B. Code Group of the
CCPM.BY8 file and the second represants the Data. The preceding
Cods Group Descriptor has an A-Baese load address at paragraph 1008E,
or "paragraph:byte” addreas of 01008:10000E. The A-Bape value in the
Data Group Descriptor varies according to the modules included in
thim group by GENCCPM. The load mddress value shown above 1g only
an exanple. The CCPH.8Y5 file can be loaded and executed at any
address where there 18 sufficient memory space. The entire CCPM.SYS
f£ille appears on disk ae shown in ¥Figure 9-5.

9-8




Conourrent CB/M Byptam Guide 9,6 Organization of CCPM.B8YS

Image in Memory Image in CCPM,.8YS
{High Memory)

ENDSEG ———»
Diak Buffers
(End of Flle)
RSPe
(including TMP, CLOCK)
RBPSEG »-
0.5. Table Space
CCPM.8Y8
DATA
Systen GROUP
Data X108 Code and Data
Area
e JCOOH —=
(XI08)
0.8. Data
X108
(CS:,DS:} CCPM.BYE
0.8. Code CODE
GROUP
OB8SEC
CCPM.SYS
Low Memory HEADER

(8tart of File)

Figure 9-5. CCPM Systeam Image and the CCPM.SYS File

The CCPM.SYS file is read into memory by the Loader beginning at the
address given by Code Group A-Basa (in the example shown above,
paragraph addreass 1008H), and control is passzed to the Superviacr
INIT function when the Leoader Program executes a JMPF instruction
(Jump Far) te 1008:0000H, The Supervisor INIT must be entered with
C8 set to the value found in the A-BASE field of the code Group
Descriptor, the 1P register equal to 0 and the DS reglater equal to
A-BASE value found in the data Group Descriptor,

End of Section 9

9-9



Section 10
OEM Utllities

A comdMerclally viable Concurrent CP/M system requires OEM-~aupported
capebllitiea, These capabilities include methods for formatting
disk and image backups of diska. Typlcally, an OEM suppliea the
following utilities:

a Disk Formatting Utility (FORMAT.CMD)
e Dlsk Copy Dtility (DCOPY.CMD)

These utllitiea are ugually hardware-specific and either make direct
XI0S8 calle or go directly to the hardware.

10.1 Bypassing the BDOH

When special OEM utilities bypasm the BDOS by making direct XIDE
calls or golng directly to the hardware, several programming
precauticna are necessary to prevent conflicta due to the Concurrzent
CP/M multitasking enviromment. The following steps muat be taken to
prevent other processes from accessing the disk asystem:

1. Warn the user. This program bypasses the operating system. No
other programs should be running while this program ia baing
used.

2. Check for Veraion 2 or 3.1 of Concurrent CP/M through tha
& OSVER function. Thea following stepa are apecific to these
versions of Concurrent CB/M. They do not work in previous
Digital Research operating systems, nor are they guaranteed to
work in future Digital Rasearch operating syatens.

3. 8et the processa priority to 150 or better through the
P_PRIORITY function. If another program is running on a
background console, it cannot obtain the CPU resource while
this program needs it.

4. Set the P_KEBP flag in the Procesa Descriptor to prevent
termination of the operation without proper cleanup.

5. Make sure the program ie running in the foreqround and that the
congole ig in DYNAMIC mode. Then lock the console into the
foreground by satting the NOSWITCH flag in the CCB. This
prevents the user from initiating a program on another virtual
console while this program is running in the backgsound.
Because the file ayatem ie locked, a program cannot load from
disk.

6. Make sure there are no open files in the aystem. This also
detecta background virtual conaoles in BUFFERED mode.

10-1



Congurrent CP/M System Guide 10.1 Bypassing the BDUE8

10.
11.
1z2.

13.
14,

Lock the BDOB by reading the MXdisk gueus measaga.

You can now safely perform the FORMAT and DCOPY opsratlions on
the diesk system, indepandent of the BDROS.

Once the operations are complete, allcw the diek system to ba
reset by satting the login seguence number in each affected DPH
te 0. Wwhen the dipgk msystem is ressit, theae drivas are reset
even if they mxe permanent. The login sequence fleld is D6h
bytes from the beginning of the DPH.

Release the BDOS by writing the MXdisk queue message.

Reget the Disk System with the DRV ALLRESET function.

Unlock the console system allowing console switching by
unsetting the NOBWITCH bit of the CCB_FLAG field in the CCB.

Reset the P KEEP flag in the Process Descriptor.

Terminata.

Listing 10-1 illuetrates these steps and shows how to make direct
RICS calls to access the disk system. The routines corresponding to
the steps are labmsled for crose-referance purposes.




Cancurrent CP/M System Guide - 10.1 Bypasaing the BDOS

PAGENIDTH 80

H
;i**i**iii*t*iiit*ti*t*iiittti*****tiiii****t**tii****

ol PHYSICAL.ABS
;*

* Sample Program Illuatrating Direct Calla to
1% the Disk Routinea in the XIOS.

’I'

I This pregram will lock the conacle and disk
¥ aystema, read a physlcal sacter into memory
1L and gracefully terminate.

*
:t**t***t**ittttt*t*t*ti*ttatt*ittttt*!t:ltttiattttttt
true equ OFEfffh
falae Bgu Q
cr equ 0ah
1£ equ Oah
ecpnint equ 224
cepnver 2 aqu Ql420d

3} XIDB functionm

io aeldak equ Q9h
io _read egqu 0ah
lo_write equ 0bh

; BYSDAT Offaeta

EY_xentry equ 028h
=y_nvcns equ 047h
ey_ccb -egu 054h
By_openfile equ 088h

;s Procems Descriptor
p €lag agu word ptr 06h
p_uda equ word ptr 010h
pE_keep equ 00002h

3 Console Control Block
cch_size equ 02ch
ccbh_atate equ word ptr Oeh
cf_buffered equ 00001h
cf_backgraund equ 00002h
cf_noswitch equ 00008h

Listing 10-1. Disk Utility Programming Example

10-3



Concurrent CP/M System Guide 10.1 Bypassing the BDOS

; Digk Parammter Header
dph_lseq agu byte ptr O6h

; drvvec bita

drivea equ 00001k
drived sgu 00002h
drivec equ 00004h

;*i*t*itiit***iiiii*t**itt#i!it!tttﬁ*tiiiitt'kiiittﬁtt

3% CODE SEGMENT

;iiiitiiiitii’t!!*tt******tt*t*#*'ttlfl#*!*i*iitifiiii

CSEG
ORG 0

; Switch Stacke to make eure we have enough.
t This is done with interrupts off.

+ Old BOBG's and B0B8's will allow an

; interrupt between SB and BF setting.

pushf | pop bx

cli

mov ax,ds | mov sg,ax
wov ep,offset tos
push bz | popi

7 Step 1. - Warn the uaar.
®ov dx.warning |l call c_writebuf
s+ Step 2. ~ Check for Concurrent CP/M V3.1
call a_osver
and ax,QfffCh
cxp ax,ccpmver2 | je good_veraion
Jmp bad vereion
good _version:

1 Step 3 -~ Set priority to 150

nov dl,150
call p priority spriority = 150
call get_oavaluga ;get OS valuas

Listing 10-1. (continuea)

10-4




Concurrent CP/H System Guide 10.1 Bypaseing the BLOS

¢ Step 4 - Set the P_KEEP flag in PD
call no_terminate iset p_keep flag

;3 Btep 5 - Lock the conaole

call lock_con :lock coneolan

¢ Atep 6 and 7 - Lock the BpPOS,

3 make sure there are no open filea
call lock_disk 11lock bdoa

: Step 8 -~ Perform the Operation

call operation ;do operatlon
imp terminate tterminate
aperation:

B ot Yt et

rd

;7 Do our disk operations., If we make changes to a
3 disk, make sure to set the appropriate bhit in the
3 drvver variable to force the BDOE to reinitlalize
; the drive. In this example are only going to

1 read a physical sector from diak.

;7 Lets read Track 2 Bector 2 of drive B
¢+ with DMA set to mectorbuf

; B8etup for Direct I0_RBAD call with

; IOPR on Stack.

mov ax,ds :19ave for DMA geq
push es ! puah ds

mov es,udasgeg

mov ds,syadat

mov ch,l smacnt ~ 1

mov cl,l | push cx sdrive = B

rmov ox,2 | push cx strack = 2

nov cx,2 ! push cx :1sactor = 2

push ax sDMA Seg = Qur DB
mov cx,o0ffset sectorbuf

push cx 1DMA Ofst

mov ax.lo_read
¢+ do the read

callf dword ptr .sy_xentry
add sp,10
pop da | pop es8
onp al,0 ! je succesas

mov dx,offaet physerr

call c_writebuf

Listing 10-1. ({continued}

10-5




Concurrent CP/M Syxtem Guida 10,1 Bypassing the BROS

BLucCess:
: force = keystroke to allow testing
y of lotking mechanlans
jmp c_read

get osvaluesd:

;1 Get SBystem Data Area Segnent
push es
call s syadat
mov ayedat,es

; Get Proceps Descriptor Addregs
call p_pdadr
mov pdaddr,bx

1 Get Usar Data Area Begment for
} XIOS calls

mov ax,es1p_uda(bx)

mov udaaeg,ax

pop &8
ret

no_terminates

mov bx,pdaddy

pugh de | mov da,sysdat
or p Elag([bx] ,pf keep
pop ds

ret

lock_diak:
; Iock the BDOS. Ko BDOS cmlls will be allowed in
f the system until we unlock it,

1get currently logged in drives
yfor later reset

call drv_loginvec

mov drvvec,ax
jread mxdisk gueua message

mov dx,offset mxdiskgpb | call q open

mov dx,offset mxdiskgpb ! call g read
sturn on bdomlock flag for
jterminate

mov bdoslock, true

Listing 1D-1. {continued)

10-6




Concurrent CP/M Syatam Gulde 10.1 Bypasaing the BDOS

jverify no open filea., This will
;alaso check background conaclea in
sbuffered mode slnce they have open
t1files whan active.

push ds | mov da,ayadat

cmp word ptr .sy_openfile,0

pop 48

je lckb
jError, open files

imp openf
1ckb: ret

bdas_unlock:

¢ make sure BDOB reinitializes them internally.

jteget all loggedin drivea as wall
sas drives we have played with.
®xOr oxX,Cx
mov ax,drvvec
resetd: cmp ox,16 | je rdone
teat ax,l | Jjz nextdrv
7 we have a logged in drive,
7 get DPR address from XI0B
pueh cx | push ax
pugh es | push ds
mov e, udaseg
mov ds,syadat
mov ax,io seidsk
mov dx,0
, callf dword ptr .sy xXentry
1+ Lf lagal drive, met
t+ login saguence ¥ to 0.

Rret: cmp bx,0 1 je nodisk
mov dph lseq[bx]},0
nodlak: pop da 1 pop eA

pop ax ] pop cx
;try anather drive
nextdrv: inc cox
ahr ax,l
jmpa resetd
y all drives can be reaset,
: write mxdisk qusue message
; reset all drives
rdone: mov dx,offset mxdiskgpb
call q write
jop drv_resetall

Listing 10-1., (continued)

10-7




Concurrent CP/M Syatenm Guide 10.1

lock_con:

t Lock the coneole system

call getccbadr
mov bx,ccbadr
push ds | mov ds,sysdat
pushf | cli
+ make sure our conscle is
} foreground, dynamic
cmp cch state(bx],0 | je foreg
popf | pop ds
jmp in_back

foreg:

; set console to NOSWITCH

or ccb_state[bx],cf_noawltch

popf | pop da
 turn on conlock flag for
1 terminate

mov conlock,true

rat

con _unlock:

mov bx.cchadr
push ds | mov ds,sysdat
and ccb_state[bx),not cf_noswitch

pop ds
rat

getccbadr:

o ———

t Calculate the CCB address for this conaole.

call c_getnum

xor ah,ah

mov ¢x,ccb pize | mul ox
push dg | mov ds,sysdat
add ax,.sy_ccb

pop da
aov cchadr,ax

cet
bad_version:

mov dx,cffset wrong_version
jmps errout

Listing 10-1l. (continued)

10-8

Eypassing the BDOS



Concurtent CF/M 8yeten Guide 10.1 Bypamsing the BDOS

in_back:

-

mov dx,offset in_background
jmps erront

opent
) mov dx,offset cpenfiles
arraut:
call ¢ writebuf
terminata:
§o——mmm—m
7 Step 9,10,11 Clean up the file syamtem
cmp bdoslock,false ! je t0l1
call bdos_unlock
t Step 131 - Unlock tha console system
t01: cnp conlock,falae | Je td2

call con_unlock

3 Step 13 - Unaet thes P_KEEP flag in PD
t02: mov bx,pdaddr

push da ! mov da,sysdat

and p_flag[bx] ,not pf_keep

pop ds

; Step 14 ~ Terminate

jmp p_tarmcpm

B e e e e e e et 8 e

c_getnum: mov cl,153 | jmpa copm
c_reads mov ¢l,1 ! jmpa ccpm
a_writebuf: mov cl,9 | jmnpa ccpm

drv_leginvaec: mov cl,24 | jmps ccpm
drv_resetall: mav cl,13 1 jmps copm

p_pdadr; mov cl,156 ! jmps ccpm
p_pricrity: mov cl, 145 | jmpa ccpm
p_termcpm: mov cl,0 1 jmps ccpm
g_opens: mov cl,135 ! jmps copm
q_read: mov cl,137 ! jmps ccpm
g write: mov ¢l,139 | jmpa ccpm
5_o8ver: mov cl.163 | jmpa ccpm
8_sysdat: mov ¢l , 154 | jmpa cecpm
ccpm: int ccpmint
ret

Listing 10-1. (continued)

10-8



Concurrant CF/H Byaten Guide 10.1 Bypassing the BDOB

EETE I LT Pt e AL eI LS e LA b AT L E e AL s
*

P> DATA SEGMENT

1

'*****t****fl******ti!it?f’*,*!!tftf‘k********* LR X 23 & 4

DSEG

ORG 0looH
sysdat daw 0
pdaddr dw o
udaseg dw a
ccbadr dw 0
dryvec dw 1]
bdoslock db falae
conlock db falpa
nxdiskqpb dw 0,0,0,0

an "MXdigk !
t ERRQR MESSAGES

warning db TPHYSICAL: This program '
db 'bypaddes the operating !
db 'system.',or,1f
db "Make aure no other !
db 'programe are running.’'
db cr,l1£,'§$!
in_background db 'PHYSICAL: must ba run '
db 'in the EForeground, in'
db ! DYNAMIC mode.',cr,.lf,'§!
wrong_version dh TPHYSICAL: runs only on !
db Concurrent CP/M Veraion 2°
db cr;lf,'s!
open_files dab 'PEYBICAL: cannot run'
éb 'while there are open files.'
ab cr,lif
db 'If any virtuel consoles are’
db ' in SUFFERED mode,',cr.,1f
ab ‘Ues the VCMODE D command to*!
db ' mat a virtual conaole to '
db 'DYNAMIC mode.',cr,1f,'$"'
physerr db 'Physaical Error on Read.'
an er,lf,'§’
sectorbuf rb 1024

Listing 10-1. (continued)

10--10




Concurrent CP/M Byatem Guide 10.1 B&ypassling the BDOS

; Lota of Stack. Bottom prefilled with Occh
1 (INT 3 inatruection} to see Lf we are

t overrunning the atack. Also 1if we

¢ accidently execute it under DDTES,

t a breakpo!nt occura.

DW 0CCCCH,0CCCCH , 0CCCCH
Dw 0CCCCH, 0CCCCH , 0CCCCH
oW 0CCCCH, 0CCCCH , 0CCCCH
oW 0CCCCH, 0CCCCH, 0COCCH
DW O0CCCCH, 0CCCCH, 0CCOCH
oo 0CCCCH, 0CCCCH , 0CCCCH
DW 0CCCCH, 0CCCCH , 0CCCCH
DW 0CCCCH, 0cCcCH, 0CCeCH
RW 0100
toa oW occecH ; DN at end of DATA 8EG

} to make pure HEX 1B
) gene;ated.

3ND ! End of PHYSICAL.ABS

Liating 10-1. (continued)

10.2 Directory Initialization in the FOBXAT Utility

Tha FORMAT utility initializes fresh disk nedia for use with
Concurrant CP/M, It is written by the OEM and packaged with
Concurtent CP/M ag a system utility. The phyaical formatting of a
disk is hardware-dependent and therefore is not discussed here.
This section discuases initialication of the directory area of a new
diek.

The FORMAT program can initialize the directory with or without time
and date stamping enabled. This can be a vaer option in the FORMAT
program. If time and date stamps are not initialized, the user can
indefendently enable this feature through the INITDIR and SET
utilities.

It is highly recommended that the OEM supports the advanced featuresa
of Concurrent CP/M including time and date dtamping in the FORMAT
program. This allewa the user to use these features in their
default diak format. Otherwise, the user pust firat learn that date
stamps are pogsible and then must use the INITDIR and SET utilities
to allow the use of this feature. If the disk directory ia too
close ta being full, the INITDIR program will not allow the
reatructuring of the directory that i¢ necessary t¢ include SPCE's,

10-11



Concurrent CP/M Eystasm Guide 10.2 Directory Initislization

The coat Of anabling the time and date atamp featurs on a glven disk
is 25% of its total dirsctory space. This apaca is used to store
the time and date information in special directory entries called
SFCBa. For time and date stamping, every fourth diractory entry
nust be an BFCB. Each 8FCB is Jlogically an extension of the
previous three directory entries. Thia method of storing date-stamp
information aliows efficient update of date stamps since all of the
dirsctory information for m given file resides within & singlae 128-
byte loglcal disk record.

A disk under Concurzent CP/M is divided into three areas, the
reserved tracks, tha directory area and the data area. The eize of
the directory and reserved az8ad 14 determined by the Disk Parameter
Block, described in Becticon 5.5. The data area starts on the first
disx mllocation block boundary following the dirsctory area.

Reserved Tracks

Directory Area

Data Area

Figure 10-1. Concurrent CE/M Disk Iayout

The reasrved area and the data area do not need to be initialized to
any particular valua befores use as a Concurrent CP/M disk. The
directory area, on the other hand, must be initialized to indicate
that no files are on the dizk. Also, as discussed balow, tha FORMAT
program can resetve space for time und date information and
initialize the disk to enable this featura.

The directory arse is divided into 32-byte structurss callad
Diractory Entries. The f£irst byte of a Directory Entry dsterxines
the typs and usage of that antry. For the purposes of directory
initimlization, there are thras types of Dirsctory Entrigs that are
of concern: the unused Diractory Entry, the EFCB Directory Entry
and the Dirsctory Iabal.

A Jdisk directory initialized without time and date stamps has only
the unused type of Directory Entry. An unusad Dirsctory Entry ie
indicated by a OE5SH in ita first byte. The remaining 21 bytss in a
Dirmsctory BEntry are undefined and can be any valus.

10-12




Concurrant CP/M System Guide 10,2 Directory Inltialization

oH 1H 20H

entry 0 undefined
L
2

n OE5H J undef ined

Plgnxe 10-2. Directory Initialization without Time Stamps

A disk directory initialized to enable time and date stamps nust
have SFCR'es as every fourth Directory Entry. An SFCB has a Q31lH in
the firat byte and all other bytes nust be 0H. Also a directory
label muat be included in the directory. This is usually the firat
Directory Entry on the disk. The directory label muat be
initiallzed as shown in Figure 10-3.

0B 18 OCH OpH OB OFH 10H
[_205 l NAME é 2 ] DATA[ 00 | 00H | 00H ]

10H 11H 12H 13H 14H 151 léH 174 18H

20H 20H 20H 208 20H J 20 2018 I 204

18K 190 1AH 1BH 1CH 1DH 1EH 1F¥RB 20H

[ 00H | 00H | 00K [ 00r [7005 J 00w I oo | 008 I

Figure 10-3. Directory Label Initialization

10-13



Concurrant CP/M System Guide 10.2 Directory Initialization

Table 10-1. Directory Label Data Fialds
rield ] Explanation

NAME An 11 byte f£ield containing an ASCII name for the
drive. unused bytez ashould ba initialized to
blanks (20H).

DATA A bit field that tells the BDO8 genaral
characteristics of files on the disk. The DATA
field can assume the follewling values:

@ 060E enmbles date of last modification and date
of last access to be updated when approprlate.

e 030H enables date of last modifigation and date
of creation to be updated whan appropriate.

The FORMAT program should ask the uger for the name of the dlak and
whather o usa the date of last acceas or the date of creation for
files on this diek, The date of last modification should always be
umed. If the DATA fleld 1s DB or if the Directory Labsl doss not
exiat, the time and date feature 1a not enabled. The DATA Field
must ba OH if SPCB'm are not initialized in the directory.

10-14




Concurrent CP/M Bystem Guide 10.2 Dpirectory Initialization

0H 18 200
entry 0 02080 WAME,DATA (Directory Label)
1 OESH undefined (Unused}
2 0E5H undefined (Unused)
k] 021E NULLS (8¥eB)
[ OER5H undefined (Unused)
5 OE5E undefined (Dnuged)
6 CE5H undefined (Unused)
7 0218 NULLS (8¥CB)
B T T TV L W B W WV e P W P DL P W
N N N N NN N N N NN NSNS N
0ESH undefined (Unuased)
0BSH undefined (Unusad)
0BESH undefined (Unused)
n 021K WOLLS (BFCB)

Figure 10-4. Directory Initialization with Time Stamps

End of Section 10

10-15




Section 11
End-user Documentation

OEMe must be mware that the documentation supplied by pigical
Reasarch for tha deneric release of Concurrent CP/M deacribes only
the example XI0Sf Iimplementation. If the CEM decides to change,
enhance, or eliminate a function which impacts the Concurreant CR/M
operatar interface, he mumst alsc issue documentation deperibing the
new implepentation. This is beat done by purchasing reorint rights
to the Concurrent CP/M pystem publications, rewriting them to
reflect the changes, and distributing them along with the OEM-
modified systsm.

One area that ig highly susceptible to medification by the OEM ie
the Btatus Line XIO8 function. Depending upon the implementation,
it might be desirable to display different, more, or even no atatus
parameters. The decumentation supplied with Concuccent CP/M,
however, amsumes that the Status Line function 1 implemented
axactly like the example XIOS presented herein.

Another area which the OEM might want to change ia the default login
diak. At sydatem boot time, the default system disk as apecified in
the system GENCCPM session iz automatically logged-in and displayed
in the firat msystem prompt. However, a startup command file,
STARTUP.N, where K is the Virtual Conacle number, can be implemented
far each Virtual Conaole. Thia file can switch the default logged-
in dlak drive to any drive desired. However, the Concurrent CPEH
Oparating System User’s Guide assumes that the prompt will show the
syatem disk. For more Information on startup f£flles, see the

Concurrent CP Operating Syatem Daer's Guide and the Concurrent
CP/M Operating System Programmer's Reference Guide,

The Concurrent CP/M system prompt is similar to the CP/M 3 prompt in
that the User Mumber ia not displayed for User 0. If the uaer
changesa to a higher Jser Number, then the User Number is dieplayed
an the first character of the prompt, for example 53>, If the OEM
wanta to change this, or any other function of the usar interface,
such as implementing Programmable Function Keys, he can rawrite the

TMP module source cofde included with the system. Aowever,
documenting these changes is entirely the OEM'a reaponaibility.

End of Section 11

11-1



Appendix A
Removable Media

All dilak drivea are classified under Concorrent CP/M as having
aither permanent or rexovable media. Removable-media dr ives support
medie changes) permanent drives do not. 8etting the high-order bit
af the CKS field of the Arive's DPR marks the drive me a permanent-
madia drive. See Section 5.5, "Dimk Parameter Block.™

The BDOS file asystem makes two important diatinctione between
permanent and removable-media drives. I1f a drive is permanent, the
BDOH always accepts the contents of phyaical record buffers as
valid. 1t also accepts the reaults of haash table asearchea oen the
drive,

EpOS handling of removable~media drives ls more complax., Becauge
the dAdisk medla can be changed at any time, the BDOS diacards
directory buffers before performing most syatem calls invelving
directory searches. By rereading the dAisk directory, the BDOS can
detect media changes., When the BDOS reads a directery record, it
computen a checkaum for the record and compares it to tha current
value in the drive's checksum vector., If the valuea do not match,
the BDOS assumes the media has been changed, aborts the ayatem call
routine, and returng an error code to the calling proceas.
B8imilarly, the BDOS muat verify an unsuccessful haah table aearch
for a removable-medis drive by acceasing the directory. The point
to note Is that the BDOY can only detect a media change by reading
the directory.

Because of the frequent necemaity of directory access on removable~
media Arivea, there ia a conaiderable performance overhead on these
drives compared to permanent drives. Another diasadvantage is that,
since the BDOS can detect media removal anly by a directory access,
inadvertantly changing medla during a disk write operation results
in writing erronecus data onto the dlak.

If, however, the disk drive and controller hardware can generate an
interrupt when the Arive door is opened, ancther option for
preventing media change errors hecomes available. By using the
following procedure, the performance penalty for removable-media
drives is practically eliminated.

1. Mark the drive as permanent by setting the value of the CX8
fiald in the drive's DPB to 8000H plus the total number of
directory entries divided by 4. PFor example, you would get the
CXS for a diak with 96 directory entries to 8018H.

2, Write a Door Open Interrupt routine that seta the DOOR field in
the XIOS Header and the DPH Media FPlag for any drilve signalling
an open door cendition.




Concurrent CP/M Syatem Guide A Rexovabla Media

The BDOS chacke the XIOS Header DOOR flag on entry to all diek-
related X105 function callas. If the DOOR flag ie not set, the BDOS
aapumes that the removable medla has not been changed. If the DOOR
flag is set (0FFH), the BDOS checks the Msdia Flag in the DPH of
each currently logged-in drive. It then reads the entire directory
of the drive to determine whether the nedia has been changed hefore
performing any operations on the drive. The BDOS alac temporarily
reclassifies the drive ag a removable-media drive, and discards all
directory buffers to force all subseguent directory-related
cperaticns to mcceas the drive.

In summary, using the DOOR and Media Flag facilities with removable-
media drives offers two important benefite., PFirst, performance of
removable-madia drives ig enhanced. Second, the integrity of the
diek system s greatly improved because changing media can at no
time result in a write error.

End of Appendix A

A-2




Appendix B
Graphics Implementation

Conourrent CP/N can aupport graphics on any virtusl console agaigned
to a phyaical console that has graphica capabllitiea. Support is
provided in the cperating ayetem for GEX, that has its own saparate
I/0 ayatem, GIDA. The GIOR doss ite own hardware {nitialimation to
put & physical eonsole in graphics mode. A graphies procesa that ise
in gqraphics mods can not run on a background ceonacle, because thle
would ceume the foreground consols to change to graphlice mode.
Aleo, whenever the foreground conscle la initializred for graphica,
you cannot owitch the acreen to another virtual conaole. The
following points need to be kept 1a mind when writing an XIOB for a
syatem that will support graphics,

® IO_SCREEN (Function 30) will be called by the GIOS when it
wants to change a virtual console to graphics or alphanumeric
mode. If the virtual console im in the background and graphics
La reguepted, IQ SCREEN wmuat flagwait the process. If the
virtual console ia in the foreground, change the screen mode
and allow the process to continue. You must reserve at least
one flag for each virtual console for this purpose. See
Saction 6.1 "“Screen I/0 Functiona™ for more information on
IO_SCREEN.

e I0_BWITCH (Functlon 7) muat flageet any procesa that was
flagwaited by I0 SCREEN when its virtual consacle ig awitched to
the foreground. When a foreground conacle is in graphics moda,
IO _SWITCH will not he called, because PIN callas Function 30
(get), ignoring the switch key if the acreen ia in graphics
mode. Thua while a graphlcas procesa is runnlng in graphies
mode in the foreground, it 1is not possihle to ewltch screens.
Por more Information on X0_SWITCH see Saction 4.2 "Console 1/0
Functionsg™.

® IO STATLINE (Function 8) nust not display the status line on a
conacle that Iis in graphics mode. This can be done by checking
the same varisble in the screen structure that Function 30
returns as the screan mods. For more information on
IO STATLINE @ee S8ection 4.2 “Conaole I/C Functione®.

End of Appendix B

B-1




Index

A

ABORT ,RBP, 2-2

Allocation Vector Addraps,
ALV, 5-23

Anto denaity support, 5-50
Auxiliary input, 4-15
Auxiliary output, 4-16

5-23

Background mode, 4~6

Bamic Dimk Cperating Bystam,
1~-3, 1~11

BpC8, 1~3, l~11

BDOS system callm, l-11

BDOS.CON, 2«2

BIO8 Conversion to XIOS,

BIOB Jump Table, 3-13

Elocking/Deblocking Buffera,
5-8

Blocking/Dehlocking

Changas from CP/M-86, 3-14
braeakpoints, 8-2
Bypagsing the BDOS, 1D-1

3~14

c

CCB, 1-18, 4-1, 4-2

CCR initialiration, 4-3

OCB tabla, 4-1

CCPM.5YS, 2-1, 3-8, 8-2

CCPM.HBYS Header Record, 9-8

CCPMLDR, 3-8

CCPMSEG, 1-17

CCPMVERNUM, 1-~1%

Charactar Contrel Blook,
1-11

Character I/0, 4-1, &-1

Character I/0 Manager, 1-11

Character I/0 Modula, 1-3

Checksum Vector Addreas, 5-22

cIlo, 1-3

CI0O aodule, 1-11

CIO system callse. 1-11

CIO.CON, 2-2

Clack, 3~14

CLOCK.RSP, 2-2

CLSIZE, 5-32

CMD file Header, 8-2

CMDIOGGING, 2-7

COMPATMODE, 2-7
CON fileam, 2-2
Concurxent CP/M Organization,
1-3
Concurrent CP/M
faatures, 1~-1
lavele of intarfacing, 1-1
Bystem Ovarviaw, 1-1
XIo8, 1-1
Console Control Rlock, 4-1, 4-2
Conmole input, 4-8
Consola input atatum, 4-7
Conscle output, 4-9
Conmcle ewitching keys, 4-8
conscles, 4-1
c8v, 5-22
CTRL-0, 1-13
CTRL~P, 1-13, 4-4¢
CTRL-8, 1-13

Data Buffar Caontrol Block
Header Addreas, 5-23

DATBCH, 5-23

DAY FILE, 1-17

Davice Polling, 1-6

Davice polling, 4-16

Deav_flagsat, 2-9

DEV_ FLAGWAIT, 4-7

Dev_flagwt, 2-9

DEV PDLL, 4-7, 4-16

DEV POLL system call, 1-6

DEV_SETFLAG, 4-~7

DEV SETFLAG sysatem call, 1-6

DEV WAITFLAG system call, 1-6

DIR.RSP, 2-2

DIRCB, 5~23

Directory Buffer Control Block
Address, 5-23

Directory buffer mpace, 2-15

Directory hashing, 2~13

Directory hashing space, 2-15

Digk buffering, 2-15

Disk definition tables, 5-9

Disk Errors, 5-17

Disk I/0 Functiona, 5-1

Disk I/0

Multisectaor, 5-11

Disk Parameter Block Address,

5-22

Index-1



Disk Parameter Block Worksheet,
5-35

Dlsx Parametar Haadsr,
5-2, 5-21

disk performance tradecffs,
2-15

Dispatcher, 1l-6

DISPATCHER, 1-1b

Dlaplay estatus linea, 4-11

DLR, 1-18B

DMAOFF, S5-12

DMABEG, 5-12

DOS disk errore, 5-4

DOS diasks, 5~1

Dos DPB, 5-31

DoS 10PB, 5-15

DO8 aector read, 5-6

DOS sector write, 5-B

DPB, 5-22

DPB Workmheet, 5-35

DpPB

Changes from CP/M~B6, 3-14

DPBASE, 5-26

DPH, 5-21

DPH and GERCCPM, 2-15

DPH Table, 5-26

DPH

Changes frow CP/M-B6, 3-14
DRL: 1_18
DRV, 3-11

ENDSEG, 1-17

ENTRY, 3-9, 8-2

Equipnent check, 6-11

EBrror Handling

Diask /0, 5-17

Exterided diask errors, 5-4

Extended DPFB, 5-31

Exterded I/O Eystem, 1-13

Extsnded Input/Output System,
i-3

axtarnal memory fragmentation,
2-11

BXTFLAG, 5-32

F

Far Call, 3-8

Far Return, 3-8

FAT, 5-24

FATADD, 5-32

File Allocation Table, 5-~24
fixed-partition memery, 1-8

FLAGS, 1-18, 2-6, 2-9
Flagzet, 2-9

Flagwait, 2-9

FLUSH BUFFERS, 5-9
Fragmentation memory. 2-ll

G

GENCCPM, 1-1, 1-14, 1-21, 2-1

GENCCPM Boolsan values, 2-2

GENCCPM command file
example, 2-17

GENCCPM dafaults, 2-2

GENCCPM DELETESYS command, 2-4

GENCCPM DESTDRIVE command, 1-4

GENCCPM Diak Buffaring Menu,
2-12

GENCCPM Disk Buffering Sample
Seseion, 2-14

GEHCCPM DISKHUFFERS Menu
compand, 2«5

GENCCPM arror messages,
3-2; 2-11

BENCCPM GENSYE command, 2-15

GENCCPM GENSYS Option, 2-15

GENCCPM HELF, 2~2

GENCCPM Halp Function 8¢reens,
2-4

GENCCPM Input Flles, 2-16

GENCCPM Mpin Mani, 2-2

GENCCPM Main Menu optiona, 2-4

GEHCCP?OMnnory Allocation Menu,
2~

GENCCPM Mamory Allocation
Sampla Sassion, 2-10

GENCCPM MEMORY Manu command, 2-5

GENCCPM memory partitions, 2-11

GENCCPM Opsration, 2-1

GENCCPM OSLAHEL Menu, 2-13

GENCCPM OBLABEL Menu coxmand,
2-5

GENCCPM cutput redirection,
2-16

GENCCPM prompt, 2-2

GENCCPM RSP List Menu, 2-12

GENCCPM RSP List Menu Sampie
Sassion, 2-12

GEMCCFM RBF Msnu, 1-20

GENCCPM RSPe Manu command, 2-5

GENCCFM G5YSBPARAMS Menu conmand,
2-4

GEHCCFM Byetem Ganeratlon
Messagea, 2-16

GENCCFM System Parameters Menu,
2-5

Index-2




GEMCCPM VERBOSE command, i-4
GENDEF, 5-9

Gat/sat dcreen, &-2

Gat/Bet Scresn Mods, 6-1
drephica implementation, B-1

H

Hiardware interfage, L-1
Hagh Table Sagment, 5-24

1

INIT, 3-8, 8-2
Intarnal memory fra.gmenta.tion,
2-11
Internal myatem calls, 3-21
Interrupt 10, 6-1, 6-4
Interrupt 11, 6-11
Intarrupt 13, 5-6
Interrupt 16, 6-10
Intarrupt 2-24, 3-9
Interrupt Handlar, 3-16
Interrupt~driven deviceas, 3-15
Intarrupt—driven Davicas
Changes from CP/M-86, 3-14
Interrupt-driven I/0, 8-1
Interrupta
spurious, 3-9
IOPB, 5-4, 5-10
Changea from CP/M-86, 3-14
DOSs, S-15
10, 1-3
ID_AUXIN, 4-15
I0 AUXOUT, 4-16
10 CONIN, 4-8, 6-9
I0 COMOUT, 4-9
IO CONBT, 4-7
IO EQCK, 6-11
IO _FLUSH, 1-13, 5-7
10 _INT13 READ, 5-6
I0_INT13 WRITE, 5-8
I0 RFYBD, 4-8, 6-9
I0 LSTOUT, 4-15
I0 LSTST, 4-14, 4-15
Io POLL, 4-16
10 READ, 1-13, 5-4
I0 SCREEN, 4-10, &-2, B-~1
I0_SBELDSK, 1-13, 5-2
ID”SHFT, 6-10
IO STATLINE, 1-13, 4-4, 4-6,
- 4“"111 4"13: 6"‘9: B"l
I0 SWITCH, 4-10, 13-1
I0_VIDED, 6-4
I0_WRITE, 1-13, 5-7

]

K
Keyboard node, 6-9
L

ICB, 1-19, 4-2, 4-13

LINK, 4-6

List Control Block, 4-2, 4-13

List devices, 4-2

List output, 4-15

LI8T QUTPUT, 4-15

Liat atatus, 4-14

LIST STATUS, 4~15

Lockad recorda, 2-7

LOCKMAX, 2-7

LOCKSEG, 1~18

LOCK_MAX, 1-20

Logleally invariant interface,
1~1

M disk, 5-47

M driva, 5-47

MAL, 1-19

MAXBUFSBIZE, 4-6

MDUL, 1-18

Media Flag, 5-22

Media type =electicn, 5-~3

MEM, 1~3, 1-8

MEM module, 1-8, 2-11

MEM,CON, 2-2

MEMMAX, 2-7

Memory allocation, 2-11

Memory allocation dafaults,
2-11

Memory Allocation List (MAL),
1-8

Memory Allocation Unit (MAU),
1-~8

Memory Descriptor (MD), 1-8

Mexory Aisk, 5-47

Mamory fragmentation tradeofis,
2-11

Manory Free Liat (MFL), 1-8

Memory Layout, 1-4

Memory managemnent, 1-8

Memory mapped L/0, 4-10

Memory Module, 1-3

Memory partitions, 2-10, 2-1l

MF, 5-22

MFL, 1-18

MIMIC, 4-4

MMP, 1-17

Index-3



MSCNT, 5--11
MEOURCE, 4-14
Multiple media asupport, 5-50
Multiple-sector disk I/0, 5-4
Multisactor Count, 5-11
Multisector disk 1/0

Changes from CP/M-B6, 3-14
MXdiek gueus, 1-13

NCCB, 1-17

NccB field, 4-1
NCICDEV, 1-~19
NCLETRS, 5-32
NCCHNDEV, 1-19
NFATRECE, 5-32
HFATS, 5-32
NPLAGS, 1-17, 2-9
ELce, 1-17
NLSTDEV, 1-19
NQFENFILES, 2-8
NPDESCE, 2-9
NQCBE, 2~
NVCHB, 1-17
NVCNE8 fisld, 4-1

(+]

QFF_8087, 1-20

Open files, 2-7

CPRNMAX, 2-7

QPEN FILE, 1-19

OPEN”MAX, 1-20

Cparating System Area, 1l-4
QSSTART, 2-8

OWNER, 4-4, 4-14

OWNER 8087, 1-20

Partitions
mepory, 2-11

PC, 4-5

PC-MODE, 4-8, 6-1, 6-9

PDISP, 1-16

Physical conecle number, 4-5

Phyeical consolas., 4-1

PIN.RBP, 2-2

PLR, 1-18

POLL DEVICE, 4-16

Poll Device Nuwmber, 4-18&

Pollasd Device Changes from
CP/M-86, 3-14

Polled devices, 3-15

Polled 1/0, 8-1

Procees Deecriptor, 1-6, 1-21,
41

PUL, 1-18

QBUFBIZE, 2-%
QLR, 1-19
QMAL, 1-18B
Queue Control Block, 2-9
Quaue
Mutual exclusion, 1-13
MXdiek, 1-~13
Quaues, 1-7
Conditional read/write, 1-7
Unconditional resd/write, 1-7
QUL, 1-18

Read attribute/character, &-&

Raead cursor posltion, 6-5

Raad DOB sactor, 5-6

READ SECTOR, 5-4

Real-tima Monitor, 1-3, 1-6

Real-Tims Monitor, 4-16

Resntrant XIOE8 code, 1-13

Reglstar usage, 3-10

Rasidsnt System Proceas,
1-31, 2-1

Reaidant Byatems Procasses,
1-3, 1-20

RLR, 1~18

RSP, 1-3, 1-20

REP Data Structures, 1-20

RSP files, 2-2

REP

PD and UDA, 1-20
relative to S¥YSDAT, 1-20

REPSEG, 1-17

RTM, 1-3, 1-6

RTM process scheduling, 1-6&

RTM (ueus management, 1-7

RTM system calls, 1-7

RTM.CON, 2-2

Screen buffering, 4-1, 4-9
scresn buffering, 4-10
Ecreen Mode, 6-]

Screen mode, 6-2

Screen structure, 4-9
Scroll down, €-6

Index-4




Scroll up, 6~5
SECTOR, 5-12
Sector Translation
Changes from CP/M~86, 3-14
SEG_B0B7, 1-20
SELDSK DPBASE Addrsas Return
Function, 5-27
SELECT DISK, 5-2
Semaphoree, 2-9
Serial I/0, 4-10
Barial I/D davices, 4-1
8at cursor position, 6-4
Shared cods, 1-B
ghift statua, 6-10
Skew Tabie, 5-16
Spuriocus interrupts, 3-9
BTATE, 4-6
Status line, 4-4, 4-6, 4-11
updating, 4-12
8suUp, 1-4¢
SUP ENTRY, 1-18
EUP Module, 1-3
8UP ayatem calls, 1-4
SUP.CON, 2-2
Bypervisor Modules, 1-4
8witch acrasen, 4-10
SYSDAT, 1-3, 1-21, 5-2
S8YSBDAT DATA, 1-3
BYSDAT segment, 1-14
SYSDAT Table Area, 1-3
SYSDAT.CON, 2-2
8YSDISK, 1-17
SYSDRIVE, 2-6
System calls
P CLI, 1-3
F_LOAD, 1-3
Syatam Clock, 3-14
System configuration, 4-1
Syatem Data Area, 1~-3, 1-14
Syatem Tabla Area, 1l-l4
8YS_87_OF, 1-20

TEMP DISK, 1-18

Terminal Measage Frocesas, l-1

THRDRT, 1-18
TICKS/SEC, 1-18
™P, 1~1

TMP, RSP, 2-2
TMPDRIVE, 2-6
TOD_DAY, 1-19
TOD_HR, 1-19
TOD_MIN, 1-19

TOD_88C, 1-19

TRA, 1-3

TRACK, 5-11

Transient Program Area, 1-3
Tranalation Tabla, 5-21

U

UBDA, 1-21

Unintialized interrupts, 3-9
Unused interrupts, 3-9

Uz=er Data Ares, 1-21

Uper intarfmcs, 1I-1

v

VC' 4"5

VERBOSE, 2-2

VERNUM, 1-19

VERSION, 1~-19

Video input/output, 6-4
Video 10, 6-1

Virtual console number, 4-5
Virtual conaolee, 4-1
VOUT.RSP, 2-2

Workaheat
DPB, 5-35
Write attxibute/character, 6-7
Write character, 6-7
WRITE DISK, 5-7
Write DOS sector, 5-B
Write marial character, &-8

X

X108, 1-3, 1-13

XIO8 Build Bystem Requirements,
3-13

XIOS Building from CP/M-E6 BIOS,
3-13

XI08 Clock, 3-14

XIOS Data Arema, 1-4, 1-14

XI0§ ENTRY, l1-16, 3-9

XIO8 Entry Points, 3-13

XI08 Function names, 1-3

X108 INIT, 1-16

¥XIOS Interrupt-driven Devicea,
3-15

XI08 Liat Device Functions,
4-13

XIOS8 Segment Address, l1l-4

Index-5



X108
8080 Model, 1-4
debugging, 8-1
raantrant code, 1l-13
relaticnship to CCPH.S5YS
file, 1-4
apurious interrupt handling.
3-9
XIi0s,C0N, 23-2
XLT, $-21
XPCNS, l=-20, 42

Index-6




NOTES




