
MAKING SENSE OF MAKEBIOS

r .-..~.....

~~j

One of the nice things about the newest
Heath version of CP/M is the ability to
assemble the BIOS for your system, with
what you need included and what you don't
need left out. The MAKEBIOS program in­
cluded with CP/M makes assembling the BIOS
fairly easy, but the procedure is hard to
understand for some, and it is particular­
ly hard to do on 5.25 inch single sided
single density drives. This article will
present a simple procedure for assembling
the BIOS tha t can be done on two d rives 0 f
any type without disk swaping, and on one
drive with less swaping than with the
standard procedure. I assume that you
have been reading the REMark series on
CP/M and/or the CP/M documentation and
have some idea of what the CP/M programs
MOVCPM and SYSGEN do.

A New MAKEBIOS.SUB

One of the most confusing things about the
BIOS assembly procedure is the SUBMIT file
MAKEBIOS.SUB, because it is hard to decide
which drives to specify as parameters on
the command line, and difficult to figure
out what goes on which disk. The follow­
ing is a replacement SUBMIT file that
requires no parameters. Use an editor to
enter this file, and call it MAKE. SUB (to
set it apart from the original).

MAKEBIOS B:l B:
ASM BIOS.BBZ
REN B:BIOS.HXO=BIOS.HEX
MAKEBIOS B:2 B:
ASM BIOS.BBZ
REN B:BIOS.HXl=BIOS.HEX
STAT B:BIOS.ASM $R/W
ERA B:BIOS.ASM
PREL B:BIOS B:
MAKEBIOS B:3 B:
STAT B:BIOS.SYS $DIR

Assembling the BIOS

To assemble the BIOS, you will need to
prepare two disks. The first is a boot­
able system disk containing the following
files: ASM.COM, MAKEBIOS.COM, our
MAKE. SUB, PIP.COM, PREL.COM, STAT.COM, and
SUBMIT.COM. Any other files that you may
need later, such as SYSGEN.COM, can also
be put on the disk, as long as there is at
least lk free space on the disk. Enter
STAT to see how much space there is. The
easiest way to make this disk is to DUPli­
cate your regular system disk, delete any
·files not needed to make room, and PIP the
files you do need to it. If you have only
one drive, use FORMAT to make a new disk
and SYSGEN to make it a system disk, then
copy the needed files to it. The second
disk you will need should have only
BIOS.ASM on it. Do not use your original

14

BIOS.ASM disk because BIOS.ASM will be
deleted during the procedure. This disk
does not need to be bootable.

After you have prepared the two disks,
boot up on the first one and place the
second one in drive B:. If you have only
one drive, you will be instructed to in­
sert the second disk (disk B) in drive A:
when it is needed, and to replace the
first disk when it is needed. To start
the procedure, enter SUBMIT MAKE and hit
RETURN. If you have two drives, you can
go take a coffee break at this point be­
cause the procedure will take a whiie.
Single drive users will have to stay by
the .computer to swap disks. I'1hen the
procedure is finished, the new BIOS.SYS
will be present on disk B, ready for in­
stallation.

Installing the New BIOS

The first disk you should install the new
BIOS on is the system disk you used for
assembling it, to test it. First, copy
MOVCPMnn (use the appropriate MOVCPM prog­
ram, such as MOVCPMl7.COM for an H17
disk), SYSGEN.COM, CONFIGU-R.COH, and FOR­
MAT.COM to the disk. Delete any files
used in the first step (except STAT or
PIP) to make room. Boot up on the disk
and delete the old BIOS.SYS with the fol­
low ing commands:

STAT BIOS.SYS $R/W
ERA BlOS. SYS

Then copy the new BIOS.SYS (from disk B)
to the system disk and enter

MOVCPMnn -It A:

Again, you would actually enter MOVCPM17
for an H17 disk, etc. When MOVCPM is
finished, run SYSGEN. When it asks for a
source drive, hit RETURN, and when it asks
for a destination, type A and then hit
RETURN. When it prompts for a destination
again, reset the system and re-boot. CON­
FIGUR will run automatically as it always
does when you make a new system with
MOVCPM.

You can use this disk to re-SYSGEN your
other system disks if you wish. Place the
disk you wish to SYSGEN in drive B: (if
you have two dr ives) and enter SYSGEN.
When it asks for a source, enter A and hit
RETURN. When it asks "COpy BIOS.SYS?",
type Y. When it asks for a destination,
enter B if you have two drives, and hit
RETURN. If you have one dr ive, enter A,
insert the disk to be sysgened in the
dr ive, and hit RETURN. You can sysgen as
many disks as you wish, and when you are

J/.·REMark • Issue 26 ·1982

t))

I

I
I
J

=>TRACK 0 SECTOR 11

WRTOSK: MVI C,l ~ -DIRECTORY- WRITE
CALLBIOS DWRITE ~WRITE BUFFER BACK
JMP ENOFIL ;EXIT

I f you have MAC. COM you can mak e the above
patch to the source code and re-assemble.
At the label WRTDSK:, make the following
change (shown in bold type):

then press DELETE and hit RETURN, SDUMP
displays sector 11, not sector 1 as it
should. To correct the problem, make the
following changes to MACRO.LIB, starting
at the label INPUT. .

the L
If it

Our
ver-

H
0562
0000
071B
0042
llBB

DCX
SHLO
CALL
JMP
CALL
LOA

055D
OSSE
0561
0564
0567
056A

-AS57
0557 LXI D,27
OSSA DAD 0
055B MVI C,l
055D NOP

_AC (control-C struck)
>SAVE 18 SOUMP.COM

Make sure that the data shown by
command rna tches that shown above.
does not, do not make the patch.
stock is being updated with later
sions. •

This next patch corrects a problem in the
buffer input funct'ion in MACRO.LIB. In
the current version, if you enter some­
thing, delete part of it, then hit RETURN,
the character count returned reflects the
numbei of characters after the deletions,
but the deleted characters are still in
the buffer. For example, if you enter

finished replace the system disk you
started with (if you removed it) and hit
RETURN in response to the dest ina t ion
prompt. Keep in mind that the new BIOS
will be larger than the old one if you re­
assembled it for two drive types; so you
must have space for it on the disk you are
sysgening. Use STAT BIOS.SYS to see how
big it is, and STAT B:BIOS.SYS to see how
big the old one on other disks is.

Since the purpose of re-assembling the
BIOS is usually to allow a new type of
dr ive to be used, you probably want to
make a system disk for the new dr ive. For
example, suppose you had an H89 with one
H17 type (hard sector) drive and you added
the H37 controller and one or more new
drives. Let's say that up to this point
you have been using CP/M on the hard sec­
tor drive and you want to make a soft
sector system disk. Use the system disk
that you used to make the new BIOS. Boot
up on it, insert a new disk into the soft
sector drive and FORMAT it. Remember that
when you boot from a hard sector drive,
the soft sector drives are labeled D:, E:,
and F:, for units 0, 1, and 2. After the
new disk is formatted, run MOVCPM. Use

. the appropr iate MOVCPM for the new dr ive
type (MOVCPM37 in our example). Then run
SYSGEN and hit RETURN when it prompts for
a source. When it asks for a destination,
enter the appropriate drive letter and hit
RETURN. Hit RETURN again when it asks for
another destination. Then use PIP to copy
all of the files (including the BIOS) to
the new disk as follows:

PIP 0:=*. *[R}

When this is done, you can reset the sys­
- tern and boot up on the new dr ive. It can
- be used to make more system disks of the

same type.

PS:

SDUMP Patches

~ ; BOOS ENTRY
;~RESTORE ADDRESS

~ ;NO CARRY
;~ADD CARRY

;;SET BUFFER DEFAU

; ~ GET NO. OF CHARS
; ~MOVR TO STRING
; ; ADD CNT TO ADDR

Vectored to page 20

A,127
o

D ;;SAVE BUFFER ADDR
NOT NUL BUFLEN
A,BUFLEN ;;SET BUFFER LENG
o

ADDR,BUFLEN
C,lO
NOT NUL AOOR
O,AODR ;;SET BUFFER ADORE

BOOS
D
D
D
D
E
E,A
$+4
D

MACRO
MVI
IF
LXI
ENOIF
PUSH
IF
MVI
STAX
ELSE
MVI
STAX
ENOIF
CALL
.POP
INX
LOAX
INX
ADD
MOV
JNC
INR

INPUT

0001
D,0027
D
H
H

LHLD
LXI
DAD
DCi{
DCX

The following patchs are improvements for
the SDUMP program on HUG disk 885-1213.
The. first patch is for those who do not
have MAC.COM and cannot re-assemble SOUMP.
This patch causes sector patches to be
made as soon as you enter W.RITE instead of
when you access another sector or exit
SOUMP. Make the patch with DDT as follows

. (your entr ies are in bold pr int).

,. -DDT SOOMP. COM
NEXT PC

: :1280 0100
-LSS4

0554 ­
0557
0'55A

-~:055B

:·"055C
-~ - -:. : .. ,=-. ~ •

.y.·REMark • Issue 26 • 1982 15

Dear HUG,

We are starting to use MBASIC to organize
·-.~'c.some of our officer personnel records.
~~~Since we are still using a single sided
,.," 40 track single drive disk system, we

have implemented a method to maximize
free space on our program and data disks.

1. SET HDOS STAND-ALONE on all system
disks (REMark 12, page 13).

2. SYSGEN a system disk and delete
enough unnecessary files to free
the 80 sectors required for
MBASIC. Copy MBASIC onto this
disk.

3.' Initialize two disks, labeling
one MBASIC PROGRAMS and the other
MBASIC DATA FILES. Copy only
the following files onto each

disk.

PIP.ASS
SYSCHD.SYS

4. Using an editor (or HDOS) create
the file MBASIC.DOC as follows:

** When instructed to "Please Replace
Diskette in Drive SYO:"

If for any reason you must return to HDOS
while either the -PROGRAM or -DATA disks
are mounted, the MBASIC program on each
disk will reset the drive, load and reset
MBASIC to allow another disk to be
inserted in the drive.

Since we use many different programs with
the same datasets, this method has been
very effective.

Sincerely,

Charles F. Santose
HQ 3/107th ACR
4630 Allen Road
Stow, OH 44224

Dear HUG,

Thanks for the "MBASIC to Machine Code
Link Revisited" in REMark 21. I had
long been planning to-road-all my favorite
programs from an elegant menu as a mixture
of .ABS and .BAS files and this article
combined with the "MenU-Driven Demo
Program" article of REMark 19 and the
"Screen Formatting in :-BASIC" article of
REMark 12 certainly eased the task.

o·

S. Using SUBMIT (HUG 885-1060)
create the .ASS file below:

NOTE: In step 5 you must use the HDOS
Reset command. The normally preferred
.Safe Disk Reset -- R.ABS" (REMark 12)
will dismount and remount the same disk,
rather than allowing the disk to be
changed (when used by SUBMIT).

TYPE MBASIC.DOC
RESET SYO:
MBASIC/F:5 [I of files optional]
RESET "SYO:" [Note difference from

previous RESET)
6. Copy the files from steps 4 and 5

to each of the disks created in step
3.

.:.~~~
~;-:,t

Replace the
with a disk
The disk will
loaded, and
allow insertion

disk in the drive
containing MBASIC.
be mounted, MBASIC
the drive reset to
of another disk. **

As fully explained in REMark 21, the
MBASIC to-Machine Code program actually
begins the loading of the machine code
program with the stack at 042176A. While
this is "safe" and usually caused no
problems I did find that "SPACE PIRATES"
from the Software Toolworks would not
execute from a "menu" because of this.
The fix was simple ••. just change the last
data entry in line 2170 from &0200 to
&0202. This caused all machine code
programs to begin at the "normal" USRFWA
of 042200A, casued no problems with any
other programs that I tried, and best
of all made it possible to load "SPACE
PIRATES" from my menu.

Truly yours,

Joseph E. McGlone
155 Lynn Drive
Mansfield, OH 44906

. }..~

To use the system: Vectored from page 15

1. Boot (or reset) to the MBASIC MASTER
disk. Run MBASIC.

XRA
STAX
ENDM

A
D

::CLEAR A
: :TERKINATE ENTRY

2. Reset "SYO:", insert MBASIC PROGRAMS
disk. LOAD desired program.

3. Reset ·SYO:" [our programs do this
for us!] and insert MBASIC DATA disk.
Run the program.

20

This patch causes the entry to be termi­
nated with a null, which SDUMP will recog­
ni~e as the end of the entry.

PS:

*REMark • Issue 26 • 1982

(



larger than 32767. In line 2080·, we want to multiply the high byte of the string
address by 256 and add the low byte to produce the complete address. If the result
of the multiplication is greater than 32767, something is flagged internally that
causes MBASIC to refuse to assign the value to USRO (line 2090). But if we AND
off the high bit before the multiplication and OR it back afterwards, MBASIC thinks
everything is OK.

In line 2110, the file name descriptor to be used by .LINK is a string argument
of USRO. MBASIC enters the USR code with the DE registers pointing to three bytes
containing the character count and address of the string. Below is an assembly
listing of the USR code that shows how this information is used.

00001 • THIS ROUTINE IS A USR PROGRAM THAT CAN BE
00002 • INCORPORATED INTO AN HDOS MBASIC PROGRAM TO
00003 • CAUSE A LINK TO A MACHINE LANGUAGE PROGRAM.
00004 • BY G. CHANDLER, HEATH CO.
00005

000.040 00006 .LINK EQU 40Q
042.200 376 003 00007 MLINK CPI 3 IS DATA TYPE STRING?
042.202 300 00008 RNZ RETURN IF NOT
042.203 353 00009 XCHG PUT STRING PARAM ADDR IN HL
042.204 043 00010 INX H SKIP OVER STRING LENGTH
042.205 176 00011 MOV A,M GET STRING ADDRESS LOW
042.206 043 00012 INX H
042.207 146 00013 MOV H,M GET STRING ADDRESS HIGH
042.210 157 00014 MOV L,A HL = STRING ADDRESS
042.211 353 00015 XCHG SAVE ADDRESS IN DE
042.212 041 000 000 00016 LXI H,O
042.215 071 00017 DAD SP LOCATE CURRENT STACK
042.216 061 200 042 00018 LXI SP,42200A SET STACK TO DEFAULT LOCATION
042.221 345 00019 PUSH H SAVE OLD STACK
042.222 353 00020 XCHG HL = STRING ADDRESS
042.223 377 040 00021 SCALL .LINK TRY TO LINK TO NEW PROGRAM

... ,. 042.225 341 00022 POP H LINK FAILED, GET OLD STACK
.' ;'~ 042.226 371 00023 SPHL SET IT

'.:'.~~:

\iJ 042.227 311 00024 RET AND RETURN TO MBASIC
042.230 000 00025 END MLINK

Note that the program first checks to see if the A register contains the number
3. This is to make sure that the argument to USRO was a string. Then the address
of the string is extracted and saved in DE. Next, the stack pointer is located
and its value is saved, and the stack is reset to the default HDOS value, 42200A.
The old stack value is pushed onto the new stack, which means that the new program
is actually entered with the stack at 042176, but that is still a safe location.
The address of the file name is returned to HL, and .LINK is called. If the link
is successful, the rest of the code is not used, but if it is not successful the
old stack is retrieved and reset and the program returns to MBASIC. NOTE: If you
use B H BASIC and want to link to a machine code program, you don't have to bother
with the above. To link to SEABATTL.ABS, as in the MBASIC example, use UNFREEZE
"SYO:SEABATTL.ABS".

PART TWO -- CP/M

In CP/M there is no .LINK system call for loaaing and executing one program from
another one, but there is a way to simulate it. You can insert a command line into
the CCP's (Console Command Processor) command buffer, and then jump directly to
the CCP. This method was shown to us by HUG member Marvin Fichter. In assembly,
it looks like this:

;THIS ROUTINE CAN BE USED TO LOAD AND EXECUTE A
;MACHINE LANGUAGE PROGRAM FROM ANOTHER ONE.

0000 3A0200
0003 D616
0005 67
0006 2EOO
0008 E5
0009 EB
OOOA lE07

*RENtark • Issue 21·1981

LINK:
LDA
SUI
MOV
MVI
PUSH
XCHG
MVI

2
16H
H,A
L,O
H

E,7

;GET BIOS PAGE
;FIND CCP PAGE

;HL = CCP START
;SAVE IT

iDE = COMMAND BUFFER

9

------------- -------



.~.

OOOC 212500 LXI a, COMMAND iPOINT TO COMMAND
OOOF OE13 MVI C,{COMEND-CO~~ND) AND OFFH
0011 7E LOOP: MOV A,M iGET A CHARACTER
0012 12 STAX D iSTORE IT

t>0013 23 INX' H
0014 13 INX D iINCREMENT POINTERS
0015 00 OCR C
0016 C21100 JNZ LOOP iLOOP UNTIL FINISHED
0019 El POP H iGET CCP ADDR
OOlA E5 PUSH H iSAVE AGAIN
OOlB 2E88 MVI L,88H iHL = COMMAND POINTER
0010 3608 MVI M,8 iSET IT
OOlF El POP H iGET CCP ADDR
0020 3A0400 LDA 4 iGET CURRENT DISK
0023 4F MOV C,A iPUT IT IN C
0024 E9 PCHL iJUMP TO CCP

0025 11 COHMAND:DB (COMEND-COMMAND-2) AND OFFH
0026 4042415349 DB 'MBASlC STARTREK',O
0036 = COMEND: EQU $

0036 END

The first thing this program does is locate the CCP page address by subtracting
l6H from the BIOS (Basic 1/0 System) page address. This makes this method possibly
version dependent, because the size of the CCP may be different for different
versions of CP/M. The value 16H may be valid only for Heath/Zenith CP/M version
2.2.02. If you are using Magnolia or DG CP/M, consult your documentation for the
size of the CCP and its distance from the BIOS. After the program gets the address
of the CCP, it adds 7 to it to get the address of the command buffer. Into this
buffer it places the character count of the command, the command line itself, and
a trailing zero. Then the program adds 88H to the CCP address to locate the command
pointer. It inserts an 8 here indicating that the first command character starts
8 bytes after the start of the CCP. Then the program gets a number representing
the current default system disk from location 4 in low memory and puts it in the
C register. If we did not do this, CP/M would assume that the default system disk
is the hardware system disk. Finally, control is transferred to the CCP, which
processes the command line that was inserted and executes the new program.

A machine program can be run from MBASIC in CP/M using the same method. Below is
a routine that will do it.

THESE LINES CAN BE PLACED IN A CP/M MBASIC
PROGRAM TO CAUSE IT TO LINK TO A MACHINE
LANGUAGE PROGRAM

2000 '
2010 '
2020 '
2030 '
2040 CCP=PEEK(2)-&H16:'
2050 BUF=CCP*256+7:'
2060 COM$="STAT *.*"+CHR$(O):'
2070 POKE BUF,LEN(COM$)-l:'
2080 FOR 1=1 TO LEN(COM$)
2090 POKE BUF+I,ASC(MID$(COM$,I,l»:'
2100 NEXT I
2110 PTR=CCP*256+&H88:'
2120 POKE PTR,8:'
2130 IF CCP>127 THEN

CCP=«127 AND CCP) *256) OR &H8000
ELSE CCP=CCP*256:'

2140 DEF USRO=CCP:'
2150 CCP=USRO(O):'

GET CCP. PAGE ADDRESS
GET ADDRESS OF COr1MAND BUFFER
THIS IS WHAT WE'RE LINKING TO
PUT COMMAND LENGTH INTO BUFFER

PUT CO~.MAND INTO BUFFER

GET ADDRESS OF COMMAND POINTER
SET IT

GET CCP ADDRESS
SET USRO TO CCP ADDRESS
EXIT TO CCP

Note that the MBASIC routine does not set up the C register with the default system
drive as with the assembly program. This means that you must leave the hardware
sy~tem drive a~ t~e defaul~ system drive. You can still link to programs on other
dr1.ves by speclfylng them 1n the command line •. To run STAT from drive B: in our
example, use B:STAT in line 2060. The MBASIC routine follows the assembly routine
closely, and does not need more explanation than the comments included. We used
the same trick in line 2130 that was used in the HDOS version in case the CCP
address is above 32767. If the attempt to link fails, control i~ returned to CP/M
instead of to the MBASIC program, as with the HDOS version.

10 ,*REMark -Issue 21-1981



CP1M Part III

".~~-,

In last October and November issues of REMark,
Issues 21 and 22, we started a series of articles
on CP/M for the beginner. This issue will continue
with the series and is intended to get you up and
running with CP/M.

In the last issue, we discussed the four
subsections of CP/M. The Console Command Processor
(CCP), which is the interface between the computer
and the user. The Basic Input/Output System
(BIOS), which handles the input and output
operations between the computer and any
peripherals. The file management controller of
CP/M is called the Basic Disk Operating System
(BOOS). And lastly, the Transient Program Area
(TPA) , which is the area in memory that is reserved
for user selected programs.

We briefly touched on the "cold" and "warm" boot
procedures. Also, we defined ambiguous and
unambiguous file names and file extensions. This
brings us to the point where we can

Bootup CP/M.

Let's beginl

First, it must be assumed that you have made the
necessary hardware changes, i.e. the Extended
Configuration or "Org 0" Modification, as explained
in issue 21. You must have purchased either the
5 1/4" or 8" CP/M operating system, as detailed
in the same issue. For ease of teaching, we will
assume the 5 1/4" system.

Having done these steps, we are ready to turn on
the computer and "cold boot" the system.

Turn on your computer and any/all disk drives that
may be part of your system. Insert your CP/M
Distribution Disk I in your primary drive, which
is called drive A:.

For the H-89 users, do a "SYSTEM RESET" by pressing
the SHIFT and RESET keys on your keyboard. Type
a "B" for "Bootstrap" at the "H:" prompt that
appears on the screen. Your system will respond
With the word "BOOT". Type a Carriage Return,
<CR>, and you will be off and running.

The system will display a message on the screen
that will say:

"32 K HEATH/ZENITH CP/M 2.2.XX"

where the "XX" is the current version of the CP/M
operating system.

The "cold boot" procedure was pointed out in "the
diagram that was pictured in issue 22. The
"Bootstrap" routine from Track 0, Sector 1 is being
read into low RAM and will execute causing the
CP/M Monitor to be loaded into High Memory. That
will cause the screen to display the first series
of messages of the CP/M "First Time" bootup
routins. See -Display 1ft • (We'll continue with

*REMark • Issue 25 • 1982

tha t short ly. )

For the H-8 users, do a "System Reset" by
simUltaneously depressing the "0" and "RST/O" keys
on the front panel of the H-8, and then press the
the number "l" or "4" key, on the front panel,
and you wi~l be • • well, almost off and running.
This will need some explanation.

Your screen will also display the "32K HEATH/ZENITH
CP/M 2.2.XX" message as explained above. At that
point, your system will appear to stop. You will
need to type the space bar a few times and then
the CP/M Monitor will be loaded into Hiih Memory.
The screen will display the first series of
messages of the CP/M "First Time" bootup routine.

Why is typing the space bar necessary with the
H-87 With the H-89, CP/M assumes a default BAUD
rate value of 9600 BAUD. (BAUD is the rate at
which the CRT (or your screen) can communicate
with the microprocessor.) Therefore, the
"Bootstrap" routine automatically loads the CP/M
Monitor into High Memory. However, with the H-8,
CP/M does not assume any value for the BAUD rate
of the CRT. This is because there are a couple
of possible CRT's available that can run with the
H-8. (The H-89 has only one, the built in H-19
terminal.) Thus the need for typing the space
bar to determine the BAUD rate of the CRT.

(Just a small. note; CP/M, with the H-B, does not
know whethar the system has the H8-5 or the H8-4
SERIAL I/O card. By typing spaces, the system
determines the baud rate and also which SERIAL
I/O card is used.)

Let's look more closely at this

"First Time Bootup Routine".

CP/M does some hardware checking, of your entire
system, each time it is called upon to do so.
This "First Time Bootup Routine" does this checking
automatically and displays the results on your
screen. This gives you the opportunity to verify
that you and CP/M agree on what your hardware
system consists of. "

The "First Time Bootup Routine" is actually a
transient program of CP/M, called CONFIGUR. On
your "Distribution Disk I", the first thing that
appears on your screen is the results of entering
this program, CONFIGUR. So, it is actually
CONFIGUR that does the hardware checking. (We
will talk about CONFIGUR later in the article.)

Looking at "Display I", we see that the "Bootup
Routine" or CONFIGUR starts by indicating the basic
but important verification data. It displays the
version number and your serial number or the CP/M
system that you have purchased. It then lets you
know that its purpose is to configure "the CP/M
operating system to a particular hardware
env1ronment".

27



- ,m

CONFIGUR then displays your hardware environment
as it determines it to be. If the information
given is not what you feel your system consists
of, check any connectors for proper connection.
Once you agree with CP/M, you are ready to
continue.

Do you recall the first line that CP/M places On
the screen when the Distribution Disk I is booted
up? "32K HEATH/ZENITH CP/M 2.2.XX". The 32K is
not a value that is pUlled from the air, nor is
it the amount of memory in my computer. My H8g
has 48K of memory. (Refer to "Display lit.)

o
Your Distribution Disk I, disk "A:", is write
protected, which will not allow you to make any
changes to it. So, at the "STANDARD SYSTEM (y
OR N)?" question, a "Y" or <CR> is sufficient for­
a response. This will cause the "A>" prompt to
appear on the screen, meaning, you are now at the
CP/M command level.

Now that you have reached the command level of
CP/M, you are ready to begin the first steps to
creating your own SYSTEM disk. Let's look at a
brief outline of the next steps that you will need
to take.

CP/M has the ability to be configured for any sized
memory computer •• AND it can be reconfigured
for any memory size on any particular machine,
up to the maximum amount of memory of the system.
CP/M is shipped with the system configured at 32K,
because most systems have at least 32K of memory.

This means that even though my computer has 48K
of memory, CP/M only recognizes 32K, until it is
told that the system has more memory. MOVCPM5
(or MOVCPM8 for 8" disks) is the program that
reconfigures the CP/M system to a particular ~emory

size.

After this point, you will be ready to go on and
explore CP/M.

First, let's take a more detailed look at how to
go about creating a SYSTEM disk.

FORMAT "blanks" the disk by placing the byte E5H
in each byte location of a sector on a disk. The
disk may then be used as a data disk under CP/M
or it may be made into a system disk by running
HOVCPM5 and SYSGEN.

~
\ti;J1

After you have FORMATted a disk for your new SYSTEM
disk, place the Distribution Disk I into A: and
type "MOVCPM5" (or MOVCPM8 for an 8 1t system).
MOVCPM5 will determine the amount of memory and
construct the new CP/M system "image" for the new
memory size and return to the command level.

With MOVCPM5 you have created a new system image
IN MEMORY, it has not been stored on the disk.
You now need to store this to your SYSTEM disk.
To copy the system image from memory to disk (or
from disk to disk), CP/M has the transient program

SYSGEN copies the system image from a source, be
it memory or another disk, to a destination disk.

SYSGEN.

To do this, enter "SYSGEN" at the A> prompt. The
next question will ask for "SOURCE DRIVE NAME (OR
RETURN TO SKIP): It, enter a Rf;TURN (at this time).
For "DESTINATION DRIVE", choose whatever is
appropriate for your system and place the FORMATted
disk in same. Then enter a RETURN and the new
system image will be copied to your formatted disk.

You have just created a SYSGENed disk under CP/M,
which is configured for the memory size of your
system. SYSGEN does not place or copy any of the
transient programs from the Distribution Disk to
the SYSTEM disk.

One important note: You will need to reboot the
syste~ after the SYSGEN procedure, if you have
created a new memory size image. (You will really
have no choice, as the system stops.) .

There is only one more step to complete in order
to finish your SYSTEM disk. Your first SYSTEM
disk should contain all the transient programs
or "files" of the Distribution Disk I. To copy
the files from the Distribution Disk I to your
SYSTEM disk, you will need to use the transient
utility pr~gram called

FORMAT a-disk
MOVCPM5 (create a system image)
SYSGEN (write the system image)
PIP -.- (copy the transient files)
DUP (option of two disk system)
REBOOT SYSTEM disk
CONFIGUR the SYSTEM disk

I.
II.
III.
IV.
V.
VI.
VII.

In order to run this initialization, at the "A>"
command prompt, enter "FORMAT" and answer the
questions appropriately. The instructions of
FORMAT are contained in your CP/M Manual and will
not be detailed here. The important thing to
remember for single drive users is that you will
always be using drive A:. For the others, choose
an appropriate drive.

When you receive a diskette (disk) from a
manufacturer of said product, the disk will not
be in the proper format for use with the CP/M
operating system. That means the disk will not
be recognizable by the system and will be rejected
as a bad disk.

In order for CP/M to recognize any disk, it needs
to be initialized or formatted. The transient
program which accomplishes this procedure is called
FORMAT. (For HDOS users, this is equivalent to
INIT.) FORMAT is also used to reinitialize used
CP/M disks.

", -~-

' ... ~ -.

HOVCPM5

Host HDOS users are probably asking "what is
HOVCPM5?" This is the first transient command
that does not relate to any commands of HDOS.

m·
Peripheral Interchange frogram (PIP) is the CP/M
utility which will copy or move one/anY/All files
from one disk to another. If your system eontains

o
28 .y.·RE,\1drk • 1\\0(' 25 • 1982



a printer, PIP will be your media for making a
hardcopy of your disk files. This will be one
of your most widely used utilities.

DUP is the utility program, which creates a
duplicate copy of one disk onto another. The only
stipUlation is that the disks must be the same
size and same density.

PIP is not limited to unambiguous filenames. The
wild cards "1" or "-" may be used to transfer any
combination of ambiguous filenames. (To any HDOS
users, PIP can be considered an "old friend".)

You are now ready to copy the Distribution Disk
files to your SYSTEM disk. The following is the
command line for invoking PIP for any number of
drives, including a single drive:

A>PIP B::·.·[R]

(The [Rl is a "flag" that will allow PIP to copy
Read Only (R/O) files.)

DUP, as noted above, will only copy from "physical"
drive to "physical" drive. It does not "map" to
a "logical" drive. It is for this reason, that
single drive systems cannot use DUP, and bypass
the aforementioned steps.

To make a· copy with DUP, reboot with the
Distribution Disk I in A: and a blank disk in B:.
(Please note: You do not need to FORMAT a disk,
before using DUP.) Enter "DUP" at the command
prompt A> and follow through the menu. (For
detailed instructions, refer to your CP/M Users
Manual. )

2) The DUP utility (which has not been mentioned
up to this point) can only copy to "physically"
separate disks. It does not "map" to drive A:.

For a two or three drive system, you will insert
the Distribution Disk I in A: and your SYSTEM disk
in B:. Very straight forward. For a single drive
system this will need an explanation.

1) For a single drive system this process is
extremely slow and tedious. For each file on the
disk, it will take at least two disk swaps (one
for the fila name and one or more for the file).

The BIOS of CP/M creates three "logical" disk
drives, even when you have only one "physical"
drive. The "logical" drives are "mapped" or
rerouted to your "physical" drive, drive A:. For
example, if you call for "TYPE B:SAMPLE.DOC" at
the command prompt A>, CP/M will prompt you to
"Put disk B in 5.25 inch drive 0 and press
RETURN". Then it will begin displaying the file
SAMPLE. DOC on the screen.

Now that you have completed your SYSTEM disk, let's
take a look how to set up the disk for normal
operations of CP/M by looking closer at the
transient program

CONFIGUR.

You will now have a SYSTEM disk indentical to the
SYSTEM disk described above after using FORMAT,
MOVCPM5, SYSGEN, and PIP.

Be sure to make a copy of your CP/M Distribution
Disk II. The Distribution Disk II does not need
to be a SYSGENed disk, therefore, you need only
FORMAT a data disk and PIP the files to the data
disk. You can then put your CP/M Distribution
Disks away in a safe, cool, dry storage area.

Your CP/M Users Manual has the details on the
complete. list of available menus for CONFIGUR,
so we will not go into great detail here. We will
point out to you a few of the basic settings, that
will help you get started.

At the conclusion of DUP, your SYSTEM disk will
be a duplicate of the Distribution Disk I,
including the 32K memory image size. Enter
"MOVCPM5" to construct a new memory image. Run
"SYSGEN" to copy the system image from memory to
your SYSTEM disk on B:.

exactly what happens with
CP/M will prompt you to
DESTINATION disks at the

Two NOTES at this time:

When using PIP, this is
a single drive system.
replace your SOURCE and
appropriate times.

~)

At the conclusion of PIP, you will have completed
your SYSTEM disk, which will now be indentical
to your Distribution Disk I, with the exception
that your SYSTEM disk will be configured for the
amount of memory of your computer. The important
point is that the SYSTEM disk will contain all
the transient programs of the Distribution Disk.

NOTE:. The order of execution of FORMAT, MOVCPMS,
SYSGEN, and PIP may vary slightly. FORMAT must
be run first, however PIP may precede MOVCPMS and
SYSGEN.

This completes the process of creating a SYSTEM
disk. No matter how many drives your system has,
you will need to know the above steps. However,
for computer systems that have more than one drive,
FORMAT and PIP can be "bypassed" by using the CP/M
transient program

DUP.

As explained earlier, CONFIGUR does the hardware
checking when you first bootup on your Distribution
Disk I. CONFIGUR is much more than a "hardware
checking" utility.

CONFIGUR is the utility that allows the user to
customize his system in any number of ways and,
after execution, the CP/M BIOS will recognize any
hardware environment that is specified. (For HDOS
users, this is similar to the device drivers and
their subsequent SET commands.) CONFIGUR does
the configuring of the BIOS for any/all
peripherals.

CONFIGUR may be run from the command level at any
time, and can be considered one of the most
important transient programs of CP/M. Your system,
even a very simply one, has many different settings
that can be user customized by reCONFIGURing the
CP/M BIOS.

*REMark • Issue 25 • 1982 29

~~----------_.. -------



****************************************** *****.****.*******.*****~••••••*•••*••*•••

G"* * • *
* 321 IlEATH/Z£lllTH CP/K 2.2.U * * CPIK COMFlCllftATION *
* * * *NutH/ZENITH CONFIGURATION PROCRAM A SE't TER>UNAI. AND PRINTE:R OUUcn:USTIC3
* VElISION 2.2.XX * * B SET DISI fARAHETERS *
• SERIlI. NUHIlE:R: tlY-nut * * C CIlAHGE THE: DEFlUI.T 1/0 COIWICURATION *D AUTOHATIC PROCRAM CONTROl.
* tliIS PROCrwt CONFICIIRES tHE CP/K OPERATINC SISTEK TO .l • * *
• PARTlCUl.AR ILl/UlNARE: £lIVIRONI1ENT. * • r CONFICURE, HAlING CHANCOS TO KEilORt O!lLt *t CONFICURE, HAlING CIlAHCES TO B011I tlDlORI AIID DISI
* Pl.E.lSE VUT DURINC IIARDVARE 'ERIFlCATION••• * * 1 QUIT, HAUNC NO CIIANCOS *
* * * *1/189 VITH 181 or 1Wl00l1 ACCOSS KEIlOR! (JAM) SEl.ECTIOH:

* 01 HIVlfl.OPPI DRIVE(SI * * *
* CRT BAUD RATE IS 9600 * * *
*

0) ADDnIONlI. SERIlI. PORTS FOUND
* * *

* * * *DRIVI A DISI U VRlTE PROTECTED.
* IlllDUIClTIOILS NIl.L NOT 8£ HADE to T1l£ DISI FOR TII13 COIIFICUI RUII. * * *
* * * *
* STAIIOARD SISTElI II OR NI1 <1>:_ * * ** * * *
*****.***•••**••••****.**.*****.**.**.**** .

.*•••******.*.**.*********••**.****.**.***

DISPLAY I

For example, in "Display I", the output is all
upper case characters. CP/M is configured to
"force" all lower case to upper case on output.
This is just one simple, but important modification
that we will change through CONFIGUR.

BAUD rates, PORT values, Nulls after <CR>, Disk
Step rate, Error messages, Peripheral Defaults,
and Automatic Execution of the Command Line are
all options that can be modified through CONFIGUR.
Making modifications will give you the opportunity
to become more familiar with the menu levels of
the CP/M CONFIGUR.

Notice that "Display II" is toe main menu of
CONFIGUR. From this menu, you can choose an option
by selecting the appropriate letter.

NOTE: It is possible to leave CONFIGUR, without
making any changes to the BIOS, by entering a HZ".
"X" makes the changes in memory, but, upon reboot,
no changes will have been made to the BIOS on the
disk.

To get started, bootup on your SYSTEM disk, and
this time, enter an "N" at the "STANDARD SYSTEM
(y OR N)~" question. Th~t will bring you to the
"CP/M CONFIGURATION" or main menu of CONFIGUR as
shown in "Display II".

We have three changes that we want to make to the
BIOS at this time. 1) We do not want to have lower
case letters forced to upper case. 2) When
pressing the DELETE key, we want it to "backspace"
rather than echo the character. 3) We no longer
want to "default" into executing CONFIGUR at
bootup.

From the main menu, enter an "A", which will bring
up the menu for setting the terminal parameters.
At this point, by entering an "F", it will "FORCE
OUTPUT TO UPPER CASE ON CRT: FALSE". Then enter

30

DISPLAY II

an "L" and CONFIGUR will "ECHO ON DELETE: FALSE".

Enter a "Y" as your choice for "FINISHED, MAKE
CHANGES AND RETURN TO MAIN MENU". At the main
menu, enter a liD" to go to the menu that controls
the automatic bootup execution. Enter an "A" and
you will set "RUN AUTOMATIC COMMAND LINE ON COLD
BOOT: FALSE".

NOTE: When entering a selection, a single
keystroke is all that is reqUired. In our
examples, the selected letters, "F", "L", and "D"
from their respective menus, will change the value
of "TRUE" to "FALSE". (The RETURN key will NOT
be pressed to complete execution of a selection.)

Now, enter a "Y"to return to the main menu. Enter
a "Y" and the changes will be stored in memory
and on the disk. Reboot your SYSTEM disk and you
are ready to start using your CP/M operating
system.

We have come to a point where you will have to
begin to use and play with CP/M on your own. This
article has covered many points to get you started.

It should be noted again, that these series of
articles are not intended to replace the CP/M
Users' Manual and Users I Guide. The approach is
one in which the steps of operations are explained
in the order of proper execution. You will need

.to refer to your CP/M Users' Manual for details
to any of the information that is supplied in this
series.

It is not necessary for the next few series of
articles to have a set pattern. Each issue will
bring more helpful information for aiding you in
your use of CP/M.

<TLJ>

*REMark • Issue 25 • 1982

"G .~ .• :,.
.:;. ~ .::••• ".. -.; , t :::'.



",-,'.

0177 363A
0179 23
017A 23
017B 23
017C 363A
017E E1
017F E5

MVI
INX
INX
INX
MVI
POP
PUSH

M '.', .
H
H
H
M, , • ,

H
H

:REPLACE WITH COLON

:MOVE TO SECOND DELIMITER
:REPLACE WITH COLON
:RESTORE TIME ADDRESS
:SAVE AGAIN

CHECK IF ENTRY IS GOOD

0180 OE08
0182 7E
0183 FE30
0185 DMBOl
0188 FE3B
018A D2ABOl
0180 23
018E 00
018F C28201

CHLP
MVI
MOV
CPI
JC
CPI
JNC
INX
OCR
JNZ

C,8
A,M
'0 '
GETNEW
': '+1
GETNEW
H
C
CHLP

:CHECK 8 CHARACTERS

:LESS THAN ZERO?
:BAD ENTRY
;MORE THAN ":"?
;BAD ENTRY

:DONE?
;IF NOT, CONTINUE

SET TIME IN BIOS.SYS

.. ~.•
.~

0192 2ADIOO
0195 114007
0198 19
0199 01
019A OE08
019C F3
0190 lA
019E 77
019F 13
OlAD 23
OlAl 00
01A2 C29DOl
01A5 FB
OlM 2ADIOl
01A9 F9
OlM C9
OlAB El
OlAC C34COl

LHLD
LXI
DAD
POP
MVI
01

MOVLP LDAX
MOV
INX
INX
OCR
JNZ
EI

EXIT LHLD
SPHL
RET

GETNEW POP
JMP

1
D,TIMADR
o
o
c,8

D
M,A
D
H
C
MOVLP

OLDSP

H
GETIME

;GET BIOS ADDRESS
;AND TIME ADDRESS
;FIND TIME IN MEMORY
;GET TIME ENTERED ADDRESS
:MOVE 8 CHARACTERS
:DISABLE INTERRUPTS FOR MOVE
;GET A CHARACTER
;PUT IT IN MEMORY

:INCREMENT POINTERS
;DONE?
:IF NOT, CONTINUE
:RESTORE INTERRUPTS
;GET OLD STACK POINTER
:SET IT
;RETURN TO CP/M
; FIX STA.CK

OlAF
0101
0103
0200

OlDD

oDOM 56 E7 4ENTER
OLDSP

OA0030303ABUFFER
STACK

DB
OS
DB
EQU

END

ODH,OAH,'Enter current time
2
10,0, '00:00:00'
$+100H

(HH-MM-SS) :

PS:

, , , $ ,

Continuing In CP 1M

Last issue of REMark, we began the first in a series of articles on how to use the
CP/M operating system. We briefly covered the history and basics of an.operating
system. It was pointed out that both of the Heath 8-bit computers, the H8 and H89,
need the Extended Configuration Option in order to run CP/M. We advised purchasing
additional material for learning CP/M because most beginners have found that the
documentation supplied with CP/M is difficult to understand. That primarily brings
us to where we can begi~

"Getting Started in CP/M".

The first step in starting to use CP/M will be for us to introduce the basics of
the CP/M operating system. This must be done before we even turn on the computer.
If you understand the basics, then when you sit down at the terminal, you will find
your mind clear of uncertainties about the operating system and the functions
available to you. .

*REMark· Issue 22' 1981 11



What can CP/M do? As explained in the last issue, CP/M is able to load and allow
execution of user programs. It is able to handle all input and output (I/O) to
any peripheral devices. Most important to a programmer, is the file management
handling of CP/M. That is all CP/M can do, but we will see in a short while, how
powerful these three functions actually are.

In order for CP/M to accomplish these three functions, it has been divided into
four subsections. The segments consist of the CCP, the BIOS, the BOOS, and the
TPA.

Console Command Processor

The Console Command Processor (CCP) is the portion of CP/M which is directly used
by the operator of CP/M. This is what you will see on the terminal as you use
CP/M. The CCP controls the interface between the operator and the CPU through the
"command" mode of operation.

The commands of the CCP are of two levels: the built-in commands and the transient
commands. Both levels are used to do the "housekeeping" functions of CP/M, whi~h

perform the creating, handling, listing, deleting, loading and running of any
programs or files. The built-in or resident commands are permanently part of the
CCP and may be accessed at any time from the command mode. The transient commands
are those commands that are stored on disk and must be loaded from the disk and
executed. The transient commands will be discussed at a later time.

The five built-in or resident commands are:

DIR
TYPE
ERA
SAVE
REN

List the file names in a directory
Type the contents of a file
Erase or delete a specified file
Save what is in memory to a file
Rename a specified file.

\

These resident commands are interpreted and executed immediately by the Console
Command Processor when entered on the terminal.

Also available through the CCP, are the line editing functions it allows as input,
while typing command lines. The editing options are executed by certain control-key
sequences. These line editing functions are defined in the CP/M manual and will
not be listed here.

Basic Input/Output System

The Basic Input/Output System (BIOS) handles all the input/output of the peripheral
devices. Thus the BIOS is the only subsection of CP/M that is machine-dependent.

Accessing of the disk drives and other standard peripherals are the operations that
the BIOS provides. The BIOS is the portion of CP/M that can be patched for any
particular hardware environment. This is the advantage that was mentioned last
issue; the ability for CP/M to be adapted to most any micro-system.

When you purchase the CP/M software package from Heath/Zenith, you will find that
the BIOS has already been modified to operate on your Heath computer. No change
is necessary. However, should you need to make any patches on your own, the CP/M
package provides the standard BIOS and gives steps to modifying the BIOS.

In a future issue of REMark, maybe we will be able to examine the BIOS more closely
and make a few modifications. As for now, it is good to know that all necessary
changes have been made to the BIOS to operate on your Heath system.

Basic Disk Operating System

The Basic Disk Operating System (BOOS), sometimes referred to as the heart of CP/M,
is the file management controller. The BOOS operations are completely independent
and unseen by the user and/or programmer. Thus the programmer is free to deal with
the pertinent matters of his duties.

The BOOS handles the b~sic disk file ope~ations, such as the reading and writing
of a record to/from a disk. It controls the "dynamic" allocation of the disk file
construction, i.e. the BOOS will store a file in any available location(s) on the
disk and remember where the entire file has been placed, for retrieval upon request.

12 *REMarl< -Issue 22 - 1981 -.



At "power-up" the Z-80 or 8080
directs the ROM to load, from disk,
the Bootstrap routine from Track
0, Sector 1 into low RAM. When
executed, the Bootstrap loads the
CP/M monitor into High Memory.

{
BIOS

BOOS

CCP

- -

TPA (RAM)

--- (Memory after
CP/M is Loaded)

-
- -

OOH
Reserved

01
Bootstrap

(Memory at
Power-up)

:\
1...--- --'~ OOOOH

", tCP/M Disk

)~ J

.." ...•.

Blank Memory
(RAM)

Top of r1emory

-
Diagram I

--_Transient Program Area

The Transient Program Area (TPA) is the segment that is not directly part of CP/M.
The TPA is a term used to identify the area in memory, where user programs are
stored and executed under CP/M. Any program loaded by CP/M is located at a starting
address of OlOOH and is stored upward in memory, filling bytes until the program
is loaded or the system is out of memory.

- - - - . - - - - --. -- - - - ~ - -
With CP/M, when a program is loaded into the TPA, the CCP can be overwritten by
the TPA, if the program is of sufficient ~ize. A program will actually wrjte right

__ over the top of the CCP_ It is even possible to overwrite the BOOS and BIOS, which
means, a program can use virtually all memory for execution (with the exception
of the addresses below OlOOH). At the conclusion of the program, when control is

~ooe retu rned to the CCP, it is necessary to reload the CCP by a "warm boot", if
just the CCP has been overlapped. A _,~cQld boot'~ must be done if the BIOS has been
overwritten. -

A general review, at this point, will -show us ~t-hat the CP/M -nionitor consists of
the CCP, the BIOS, and the BOOS, which are located in high memory at bootup. The
TPA is the memory area that user program& are loaded into and executed from. Please
note the memory map layout for CP/M, see Oiagra~ I.

"'-- c _"Now it is-time to move on-with other basics of-the CpiM-operating system.
~----_. __ • _~M __ ~_~ •• ~~~~~~_

*REMark o Issue 22 0 1981 13 '.



:,' ,'"

Bootup Procedure of CP/M

Most of you by now are familiar with the term "Boot". Just as HDOS has a "cold"
and "warm" boot, so does CP/M. The bootup procedure is the same as for HDOS. The
Monitor or ROM of the 8080 or Z80 (PAM-8 for the H8 and MTR-88 for the H89,
respectively), directs the loading of the "bootstrap" program from off the disk
into RAM. Then the "bootstrap" loader directs the loading, from disk, of the C.P/M
monitor into high memory, as indicated in Diagram I.

The process of loading the operating system into memory from powerup is referred
to as, doing a "cold boot". When a program has finished and the command is to be
transfered b~ck to the CCP, a "warm boot" may be necessary if the program has

over-written the CCP. (A "warm boot" may be executed at anytime by entering the
control sequence, CTRL-C.)

As stated in our last issue, Heath/Zenith supports either the 5 1/4" or 8" disk
. versions of CP/M. Drives of either system are identified by the letters of the
alphabet. For the CP/M system, the drives are identified by A:, B:, C:, D: ag,d
E:, depending on which drive, the 5" or 8", is the bootup drive. In order to bootup
on your computer, you will need at least one disk drive. No matter which disk
version of CP/M you have, the bootup drive will always be drive A:.

CP/M File Handling

When dealing with the CP/M file handling abilities of the CCP, we must become
familiar with some of the definitions. Most of you are already familiar with the
file handling of HDOS, CP/M is virtually identical. However, some of us have never
been confronted by the terms before.

Filenames of CP/M are referenced by an eight character "filename" and its three
character extension or "file type". The filename is generally a brief description
of the file it is naming, making it easily recogizable. The file extension in CP/M
is used to aid the user and/or programmer in avoiding confusion when identifying
the file type. Some of the common CP/M file extensions are:

.ASM

.COB
• FOR
.$$$

Assembly source code
COBOL source code
FORTRAN source code
ED or PIP temporary file

.BAS

.DAT

.SUB

BASIC source code
ASCII Data file
SUBMIT command file

These file types or extensions are suggested as a standard guide for naming all
files. By maintaining the "filename" as a general description and by staying with
the standard "file type" format, distinguishing files will be an easy task for
yourself and other users •

.Unambiguous filenames: Filenames that reference one and only one CP/M file.

Examples: STAT. COM, TEST.ASM, PIP.ASM, ANYTHING. BAS

Wild cards: The characters "*" and "?", which are used to match any character
in a particular location of a filename.

Ambiguous filenames: Filenames that referen~e, by use of wild cards, more
than one CP/M file.

Examples: T??T.ASM, ANY?????BAS, *.BAS, TEST.*

The use of ambiguous files are for directory search and pattern matching, which
allows you to reference similiar type files or programs in one command.

Rapping this Up

In the last issue of REMark, I stated, that in this issue, we would explain the
set up procedure for CONFIGURing CP/M to your computer. In my continued study of
CP/M, I felt that the basic facts and functions shown in this issue needed to be
dealt with first. It appears from my vantage point, that we should be able to begin
using CP/M in the next issue. .

Vectored to page 29

14 *REMark -Issue 22· 1981



'...

-.,

Vectored from 15

of the .BIN extension file and executes
it into machine code. It must be present
during run time, and has an overhead of
3 to 8 K bytes, depending on the length
and complexity of the program. I do not
want to go to deep into this and confuse
you, I just wanted you to know basically
how it worked.

Any program logic errors must then be
corrected by going back to the text editor
and again compiling the program before
it can be run. Like any compiler, it's
a bit more of a hassle than an interpreter
such as BASIC, but once the debugged
program is finished, the results are well
worth it.

Any serious individual wanting to learn
Pascal will not learn it by reading this
column. I recommend several learning
aids. I have the Heath Pascal programming
course, which is a good start. Two books
I highly recommend are PASCAL PRIMER
by David Fox and Mitchell Warte~publlshed
by Howard Sams & Co. Inc., and PASCAL,
by Paul M. Chirlian, published by Matrlx
publishers, Portland Oregon. I obtained
both of these from my local Heath store.
Keep in mind you cannot effectively learn
any language by reading. You must set
up your system and try the examples and
read the books and try some more. Until
you begin to write and debug, you will
know very little. This column is just
to introduce you to the language and give
you a push.

Now to get into the meat of things. The
steps to produce a good Pascal program
are outlined below. Define exactly what
you want your program to do. Get straight
what will be input and output, and the
format. Write out the program flow in
English, by breaking your program into
sections, each which performs an
individual task, each of which can be
individually designed and debugged. These
will be your modules. Continue to use
plain English and break your parts down
into sub parts, until each section will
be easy to write and debug on its own.
This is the basis of structured
programming. Now translate the small
English modules into Pascal code,
debugging each subsection before
continuing on to the next. Go through
each section mentally and ask yourself-­
is this what I want it to do? Will this
give me the desired result? If not, redo
it, or you'll end up doing it over and
having to re-compile it later.

Now begin to put all the small pieces
together into a main program, calling
each module (think of this as a subroutine
in BASIC) as you need it. Remember, each
variable, constant, or procedure must

,*REMlrk • Issue 22·1981

be defined BEFORE you use it. This keeps
things straight and makes you think more
about what you are attempting to do.

The general Pascal program has the
following format:

Program title and declaration of files
used.
Declaration of constants.
Declaration of special variable types.
Declaration of the variables themselves.

Procedure heading I
Declaration of any local constants or
variables
Procedure body

Procedure heading II

Function Heading
Declaration and function body similar
to that of procedures

MAIN program body
End

Just like BASIC, there are reserved
KEYWORDS that cannot be used for anything
like variables or constants, but I'll
cover these as we use them.

I'll end here for the month. That will
give you a chance to get your reading
materials, Pascal if you don't have it,
and start studying. W~ll meet next month
and start with some simple programs.
See you then.

EOF

Vectored from 14

We will show examples of some of the basic
commands of the CCP to get you started
in using CP/M for yourself. We will
briefly study the system initialization
programs, FORMAT, SYSGEN, and MOVCPM,
which are part of the transient programs
that come "in the CP/M software package.

As for this issue, I feel that you should
be beginning to feel more comfortable
with CP/M, after studying this article.
For those of you who are beginning in
computers, this article should be of help
in understanding the CP/M operating
system. For any HDOS users, much of this
is "old hat" and needs very little study.
If anything, it should be a plain good

,review of how an operating system works,
be it HDOS or CP/M.

<TLJ>

29

----------_.



Getting Started with CP1M Part 4
William N. Campbell, M.D.

855 Smithbridge Road
Glen Mills, PA 19342

Copyright (c) February 1982 by William N.
Campbell, M.D.

(Note: Any members of HUG and/or users of
Heath/Zenith equipment may copy this mate­
rial, if desired, for their own use. The
reason for the "Copyright" is that I may
use this material along with my previous
articles in REMark (after converting all
to CP/M) in a CP/M and MBASIC vers 5.x
"course" in the future. Thank you.)

Terry Jensen has eloquently covered the
basics of getting Heath's implementation
of CP/M booted and configured and has
correctly pointed out that it is extremely
important that the user should read the
documentation. I should like to point out
that (in my opinion) the new user should
ONLY read Heath's documentation (which is
in the front of the supplied manual) and
should totally disregard any and all cur­
rently supplied documentation written by
Digital Research which makes up the bulk
of the manual. The foregoing statement
applies only to the newcomer to computers
and to the "first time user" of CP/M. It
has been pointed out that Digital Re­
search's documentation is intended only
for the programmer, and not the end user.
It is written in a fashion such that the
end user may only become horribly con­
fused. IF you understand and are conver­
sant with CP/M, THEN you may read their
documentation. So you ask, "How am I going
to learn CP/M?". Heath offers a "CP/M
Course" (EC-1120 $99.95). I have no per­
sonal experience with this course, al­
though Heath's educational courses are
usually excellent. On the other hand,
there are currently available four reason­
ably priced "paperback" gUides to CP/M. I
have read them all. I strongly suggest
that you purchase one of them, and I will
indicate my personal preferences.

Osborne CP/M User Guide by Thorn Hogan
Publisher: OSBORNE/McGraw-Hill
630 Bancroft Way
Berkeley, CA 94710
Cost: $12.99 plus postage

This book is the most comprehensive
"guide" available at this time; my number
one recommendation, excellent in all
respects. Chapter 8 should be required
reading for every actual or potentiai
computer user. This guide is worth twice
the costl Summing it up, .Hogan's User
Guide is III

CP/M Primer by Murtha and Waite

*REMark • Issue 27 • 1982

Publisher: Howard W. Sams & Co., Inc.
4300 W. 62nd Street
Indianapolis, IN 46268
Cost: $14.95 plus postage

The above Primer is well written, a good
text, but lacks discussion of some impor­
tant details and has no discussion at all
of the "SUBMIT" program usually distri­
buted with CP/H.

Using CP/M by Fernandez and Ashley
Publisher: John Wiley & Sons, Inc.
605 Third Avenue
New York, NY 10158
Cost: $8.95 plus postage

This is a "self-teaching" guide and is
very well done. Some may prefer this self­
teaching method of presentation.

CP/M Handbook with MP/M by Rodnay Zaks
Publisher: Sybex
2344 Sixth Street
Berkeley, CA 94710
Cost: $13.95 plus postage

I do not recommend Zaks' text as it con­
tains too many errors.

After purchasing one or more of the above,
you can sit down at your computer and
explore the use of CP/M. There is still
one remaining problem, however. CP/M has
certain poorly documented flaws. Once you
are aware of them, you can usually work
around them without much diffiCUlty. In
many instances, you won't even notice them
because you will give up trying to make a
certain CP/M supplied program work as you
think it should, and will erroneously have
concluded that YOU were doing something
incorrectly.

with the above in mind, I will try to help
you get started with CP/M and give some
illustrations that hopefully will aid you
in exploring CP/M. I will go into some
detail of certain aspects that are not
fully explained elsewhere. Also, I will
try to explain things that most confused
me when I began using CP/M.

. THE MOST HIPORTANT THING I CAN TELL YOU IS
TO LEARN THE CP/M OPERATING SYSTEM BEFORE
YOU INVESTIGATE MBASIC, ASSEMBLY LANGUAGE
PROGRAMING, OR SIMPLY "PLAY GAMES". OTHER­
WISE YOU WILL WASTE MUCH TIME!!

ANOTHER VERY IMPORTANT ITEM IS TO ALWAYS
USE A DUPLICATE DISK WHEN YOU ARE LEARNING
ANY OPERATING SYSTEM. IF SOMETHING UN-

5



FORTUNATE HAPPENS, THEN SIMPLY COpy A NEW
DISK FROM THE ORIGINAL AND START OVER.

_--NOTE THAT THE BEGINNER CAN ONLY LEARN THE
_-2"CP/M SYSTEM (or any other operating sys­

tem) BY ACTUALLY SITTING DOWN AT A COMPU­
TER AND TYPING IN THE VARIOUS COMMANDS,
AND TRYING OUT THE VARIOUS PROGRAMS!

SINCE YOU COMMUNICATE WITH THE COMPUTER
THROUGH A TYPEWRITER-LIKE KEYBOARD, YOU
SHOULD BE A FAIRLY GOOD TOUCH TYPIST. THIS
SAVES YOU MUCH TIME. If you need to brush
up on your "typing", I recommend "Touch
Typist", for CP/M systems, from Newline
Software, P.O. Box 402, Littleton MA
01460. Cost $29.95. This is a program that
uses your computer to teach you how to
"touch type" (or sharpen your skills).

PRELIMINARY CONSIDERATIONS

The features discussed in this article
apply to CP/M version 2.0 and above.

WHENEVER YOU ARE RUNNING CP/M, AND FOR
SOME REASON REMOVE A DISK FROM A DRIVE AND
INSERT ANOTHER DISK, ALWAYS DO A "CTRL-C".
THIS IS KNOWN AS A WARM BOOT, AND UNLESS
YOU DO THIS AFTER SWITCHING A DISK, CP/M
WILL NOT KNOW YOU HAVE CHANGED DISKS!
Always do this! (Note that if you are in
MBASIC always do (or have your program do)
a RESET - this will accomplish the same
thing. )

FILE NAME AND EXTENSION CONVENTIONS

A complete file name including extension
consists of one to eight alphanumeric
characters, followed by a period (.), fol­
lowed by a 1 to 3 character alphanumeric
extension (Example: FILENOl.TXT). No
spaces are allowed. You do NOT have to
include the per iod (.) or extension (ext.)
UNLESS the file is 6f a special type~ or
you wish to distinguish it from a file of
the same name. Here are some of the
special file types used:

n;.:~_,-,

COMMANDS-AND COMMONLY USED
CP/M UTILITY PROGRAMS

Other than the "special types", most of
the files that you create yourself may
have, or may not have a pe r iod (.) and a 1
to 3 character extension AS YOU DESIRE.
For example, here are some valid file
names that you might create: THISFILE.TXT,
THISFILE.DAT, THISFILE.PGM, THISFILE,
FILEl, FILE2, FILE.123, FILE24. All of
these files could reside on one disk at
the same time, since they are ALL differ­
ent, one from the other! You will usually
create text files using an editor, and
programs and/or files using a BASIC lan­
guage interpreter.

All of these commands and programs are
executed from the monitor prompt (A».
Note that our default drive is the A:
drive, and you do NOT have to explicitly
type A: if the drive involved is the A:
drive. If you are logged on to drive B:,
then B: is the default that you need not
explicitly type, but you must specify all

-others, including A:. There are times,
however, when you do need to type the ~,
default drive name. (See below under PIP (.1
examples.) \...

You will communicate with your computer by
entering certain information and/or com­
mands at the keyboard of your terminal,
AND many times you will execute the com­
mands by hitting the Return key on your
keyboard. Throughout this article <cr>
means hit the Return key. I will repeat
this for emphasis. IF YOU SEE "<cr>" IN
THIS ARTICLE, IT MEANS YOU HIT THE RETURN
KEY ON YOUR KEYBOARD!

.,.'::.,,-

'::?~ CP/M uses A: as name of 1st drive, B: as
, -- name of 2nd drive, C: as name of 3rd

dr ive, etc ••

Throughout, I assume you are "logged on"
dr ive A: (the dr ive you booted from), and
have the A> prompt showing. If you have
mor e than one dr i ve it iss imple to log on
to another drive. For example if the A>
prompt is displayed, and you wish to move
to a second drive (B:) simply type B:<cr>,
and there you are with the B> prompt show­
ing. To get back to A:, just type A:<cr>
and you are back with the A> showing.
(Note that drive B: must contain a disk,
and drive A: must always contain a SYS­
GENed disk.)

If you try any of the examples in this
article, you must have on your disk the
files required for it. For example, if you
are using the PIP command, you MUST have
PIP.COM on your disk: if you are using
SUBMIT and XSUB programs, then you MUST
have SUBMIT.COM and XSUB.COM on your disk.

Many operations require the use of Control
characters. They are all performed by
holding down the CTRL key, and then ALSO
depressing the appropr iate desired "char­
acter". To do a CTRL C, for example, hold
down the CTRL key, and while it is held
down, also depress the C key. You may use
upper or lower case "characters", inci­
dentally.

• COM
.ASM

.LIB

.PRN

.SUB

.BAS

Any machine language program.
Any assembly language program
you may create using an editor.
Any text file you create with an
editor for use with ED's "R~

command.
A "listing" which the assembler
creates for 'you if you want it.
A file which you create with an
editor for use with SUBMIT (see
SUBMIT).
This is an extension which the
MBASIC interpreter puts on for
you if you "SAVE" a program from
MBASIC. )

6 *REMark • Issue 27 • 1982



Note also that when we refer to a "file"
we usually are referring to "contents of
the file", not just the name we (or some­
one else) has named any given file.

The CTRL-P Toggle

Although this is not a "command" it is a
most useful feature of CP/M, if you have a
printer! If you do a CTRL-P (hold down the
Control key and then, while the Control
key is held down, depress the P key) then
everything carried out on the screen of
your terminal is simultaneously (practi­
cally) printed on your printer (echoed)!
Doing a second CTRL-P turns off the fea­
ture. This is an especially nice feature
when you are learning the various CP/M
commands since it gives you hard copy of
what you did, especially if you made an
error. You can see precisely what you
typed, and have a permanent record of it.
This feature also works nicely in CP/M'S
editor, ED (although it will not work with
many editors). Just be sure and toggle
CTRL P on BEFORE you invoke ED (see ED).
(This "toggle" does NOT work with SUBMIT
or MBASIC, but it does work with BASIC-E
Jtype CTRL-P before you RUN a program).
In HUG's editor (885-12l0), it works while
you are IN the editor.}

OIR

Entering OIR<cr> at the monitor prompt
displays the directory of files currently
on the diskette, UNLESS a particular file
has been set to "SYS" using the STAT com­
mand (see STAT), in which case that file
will NOT be displayed. Examples:

OIR<cr> displays files on disk in arive A:
(defaul t) •

OIR B:<cr> displays files on disk in drive
B:. If you have only one drive and your
Heath/Zenith CP/M is configured for one
drive, you will be asked to place disk B:
in drive A: and hit RETURN. If you access
the system again (type another command),
you will be prompted to replace disk A:.

The display invoked with the DIR command
simply lists the files and does NOT show
the period (.) that actually exists be­
tween the file name and its extension (if
there is an extension). For example, the
file ED.COM is displayed as ED COM.

Note that SOME files may NOT be listed
with the DIR command. (ALL files WILL be
listed if you execute the STAT *.*<cr>
command - see STAT below.)

STAT

This is used in several different ways and
displays certain information about your
disk files. STAT also allows you to change
certain ·file attributes". Examples:

*REMark • Issue 27 • 1982

STAT<cr> shows the amount of unused disk
space on your disk. STAT B:<cr> shows the
amount of unused disk space on disk in
drive B:.

STAT *.*<cr> shows an alphabetical listing
of ALL files on disk in drive A: (if the
default is A:). Any file set to "SYS" is
enclosed in parentheses. Such a file (if
set to SYS) would look like (ED.COM) in
the listing, assuming we had set ED. COM to
SYS. Any R/O (read only) files are so
noted, as are the R/W (read/write) files.
STAT B:*.*<cr> does the same thing for
drive B:.

STAT filename.ext $R/O<cr> will make file­
name.ext a "read only" file. This means
that you will not be able to "write" that
file. For example, if you were editing
that file, you would NOT be able to write
the edited version to disk using the same
file name. In my illustration here "file­
name.ext" means the exact file name that
you are setting to read only. For example,
STAT B:THISFILE.TXT $R/O<cr> would set
file by the name of THISFILE.TXT which is
on disk in drive B: to a read only status.

STAT filename.ext $R/W<cr> is exactly the
same as above, except it sets the file to
a "read-write" stat.us. Most of your files
usually are of this type to begin with.
So, the main use of this form of STAT
command is to change a ~reexisting "read­
only" file to a "read-write" file.

STAT filename.ext $SYS<cr> will fix the
file name so that it does NOT show up when
you request a listing of all files with
the OIR command. Note that a file set this
way can NOT be copied by PIP unless you
use PIP's "R" switch which you tack on the
end of PIP's command line. The R is en­
closed in square brackets, like this: {R}.

STAT filename.ext $OIR<cr> will restore
the file so that it DOES show up in the
listing of the the OIR command.

(Editor's Note: This discussion does not
cover all of the uses of STAT, such as
displaying disk parameters and displaying
and setting I/O device assignments.)

PIP

This is the copy command. PIP means Peri­
pheral Interchange Program.

Note that, in all uses of the PIP command,
the original file (the file to be copied)
is left unchanged, unless you are using
PIP to concatenate several files, and the
new ·combined" file has same name as one
of the "subfiles".

NOTE THAT THE 01 RECTION OF THE COPYING IS
ALWAYS FROM THE FILE INDICATED TO THE
RIGHT OF THE "=", TO THE FILE NAMED ON THE
LEFT OF THE "=". In other words, the com-

7



mand always contains an "=". The file to
the left of the "=" is the file that is
being CREATED, while the file to the right

/. of the "=" is the file that is being
··,·copied. Another way of remembering this:

TO = FROM! Of course, you can copy from
disk in drive A: to disk in drive B: OR
you can copy from disk in drive B: to disk
in drive A:. Here are some examples that
may clarify this for you.

PIP ABC.TXT=B:XYZ<cr> will copy the con­
tents of file named XYZ FROM disk in drive
B: TO the disk in default drive (A:) and
give it the name ABC.TXT. Note again that
the file on the right side of the "=" in
this illustration is copied to the file
named on the left side of the "=", e.g.
from RIGHT TO LEFT (TO = FROM)! If you
have only one drive, you will be prompted
to swap disks (if you have Heath/Zenith
CP/M) at the appropriate times (see DIR).

PIP B:ABC.TXT=XYZ<cr> copies the contents
of a file named XYZ FROM disk in drive A:
TO disk in drive B: and gives file the
name ABC. TXT.

(You don't have to say "A:" in the above 2
examples, as PIP interprets the ABSENCE of
any drive specification as a default, and
assumes you mean drive A: which is normal­
ly the default dr ive.)

PIP C:DRIVE3.ABC=B:HOHOHO.XYZ<cr> will
copy file HOHOHO.XYZ from disk in drive B:

'. and place it on disk in drive C: and give
the copied file the name of DRlVE3.ABC.

PIP NUNAME=OLDFILE<cr> copies file OLDFILE
on disk A: (default) to a file called
NUNAME on disk A:. The contents of the
files are identical. Both files are on the
disk after the copy command is carried
out.

PIP B:=THISFILE<cr> copies a file called
THISFILE from disk in drive A: (or the
defaul t dr ive) to disk in dr ive B: AND
gives it same name as the original file on
disk in A:, in this case THISFILE.

r PIP A:=B: ..... <cr> copies ALL files (file
names and the contents of the named files)
from disk in drive B: to disk in drive A:.

PIP BIGFILE=FILEl,FILE2,FILE3<cr> combines
(concatenates) FILEI and FILE2 and FILE3
into ONE file named BIGFILE. In this exam­
ple, all files are on disk in A:.

PIP LST:=THISFILE<cr> will print out on
your printer the contents of a file named
THISFILE (FROM disk in drive A: TO your
"LST:" device - your printer.)

PIP also has some very useful "switches".
"Switches" means that in addition to the
fundamental copying that is done, certain
other things can also be simultaneously
carried out. They are all implemented by

8

typing the "switch", enclosed in square
brackets ([), immediately after the de­
sired PIP command (NO space typed), just
before the <cr> which executes the PIP
command. Examples:

PIP B:=THISFILE.TXT[V) <cr> will copy THIS­
FILE.TXT from disk in drive A: (default)
to disk in drive B: and give it same name,
and THEN will compare the two files
(V=Ver ify) and make sure they are identi­
cal. The switch used here is the "V"
switch.

PIP THISFILE.TXT=B:THISFILE.TXT[L]<cr>
copies the file named THISFILE.TXT which
resides on disk in B: to a file named
THISFILE.TXT on disk in A: (default) AND
s imul taneously changes any upper case
letters in original file to lower case
(The new file on drive A: will be entirely
lower case). Note that this has nothing to
do with the NAMES of the file being in
upper or lower case. You can always enter
the file na~es in EITHER upper or lower
case when you are typing from the key­
board. Note that nothing is changed in the
original file, just in the new file
created.

PIP B:UPPER.TXT=LO~'1ER.TXT(U)<cr> copies
contents of file named LOWER.TXT on disk
in A: to disk in B: and names it UP­
PER.TXT, AND also changes. any lower case
letters to upper case in the contents of
the new file, while doing so. The contents
of the new file UPPER. TXT will be entirely
upper case!

PIP LST:=THISFILE[N] <cr> prints the con­
tents of file named THISFILE on your prin­
ter and puts a line number in front of
each line. Also, try the "N2" sw itch.

PIP LST:=THISFILE[T8]<cr> prints the con­
tents of the file THISFILE on your printer
and expands tabs to spaces. The 8 means
that tabs are assumed to be at every 8
columns, which is normal. This switch
MUST be used if you PIP files to a printer
that cannot handle tabs.

PIP LST:=THISFILE[NT8] <cr> prints THISFILE
with both the Nand T switches set. Any
number of switches can be combined in this
way.

There are many more nice switches, or
"parameters" that you may wish to investi­
gate. (Editor's Note: I suggest that you
read pages 18 through 25 in An Introduc­
tion to CP/M Features and Facilities, one
of the manuals provided with CP/M, then
read pages 8 and 9 in CP/M 2.0 User's
Guide !.£!. CP/~ 1.4 Q~ners-:--This Is-the
only way to· fUlly learn the power of PIP,
and will introduce you to the "dreaded"
Dig i tal Research manuals. -- PS:)

ERA

*REMark • Issue 27 • 1982

I
I

I
I

ct·~'····· '\
~. '.

I
I
i



This command deletes files. Note that you
CAN delete a file with the SYS attribute
set (see STAT), but that you can NOT erase
a file with the R/O (read only) attribute
set (see STAT). Examples:

intends to write and use assembly language
code. The use of this command therefore
will not be covered here. It is nicely
covered in Hogan's book and pages 9 and 10
of An Introduction to CP/~ Features and
Facilities.

ERA FINISHED.TXT<cr> will erase from disk
in dr ive A:, a file named "FINISHED.TXT". ED

REN

Most of the time the average user will not
use this command. He WILL use it if he

TYPE EDITED.TXT<cr> will display on your
screen the contents of a file named EDIT­
ED.TXT.

This command will rename a file on disk.
Note that the file on the right side of
the = is renamed to that on the left side
of the =. Examples:

Our file contents (contents of "THIS­
FILE.TXT") are NOT yet in ED'S buffer
memory. If. there was no file named THIS­
FILE.TXT, then ED informs us of this fact
-- NEW FILE is displayed -- and we are

After you invoke the editor, ED responds
with its prompt (*). (ONCE YOU ARE IN ED,
YOU WILL SOON LEARN THAT THERE ARE 2 POS­
SIBLE "MODES" THAT YOU MAY BE IN -- IF
YOUR CURSOR IS PRESENT JUST AFTER AN AS­
TERISK PROMPT (*), THIS MEANS YOU ARE IN
ED'S COHMAND MODE. YOU ENTER ALL OF ED'S
SINGLE LETTER COMMANDS IN THIS COMMAND
MODE. THE OTHER MODE IS THE "INSERT" MODE,
AND IT IS THIS MODE -- WITHOUT ED'S PROMPT
(*) -- IN WHICH YOU ENTER YOUR TEXT. THIS
WILL BECOME SELF EVIDENT AS YOU PROCEEDl)

ED is the text editor supplied with CP/M.
It is very similar to .two editors offered
by HUG, one for use with HDOS, and one for
use with CP/M. ED is a "character" editor
and uses an invisible pointer. "Screen"
oriented editors are easier for begin­
ners to use. Nevertheless, I advise get­
ting acquainted with this CP/M supplied
editor as there are some things you just
can not do with many other editors. If you
are familiar with HUG's ED.ABS, then you
will have no trouble learning how ~o use
this ED.COM, supplied with CP/M. If you
are not familiar with HUG's ED, then I
refer you to an article "Getting Started
with a Text Editor" which I wrote and
which is in REMark issue 11. I used HUG's
ED as an example. There are some differ­
ences, however, and the following lists
what you should do using CP/M'S ED.COM. (I
assume you have "Getting Started with a
Text Editor" handy.) You invoke the editor
in exactly the same way. An example:

ED THISFILE.TXT B:<cr>. This command loads
ED.COM into memory, and tells ED that we
are go.ing to be editing THISFILE.TXT, and
that we wish the edited file (when we are
through editing) to be placed under same
name on drive B:. (ED will do all this for
us and when we terminate our editing ses­
sion, ED will rename the original file to
THISFILE.BAK and leave it for us unchanged
on disk in drive A:.) Now, the B: in this
example is entirely optional and if B: is
left off the command line that we used to
invoke ED, then ED puts the edited file
back on disk in drive A:, but still re­
names the original file to THISFILE.BAK.
This is one difference between ED and the
HUG editors, which always put the output
file on the same disk as the input file,
unless you specify differently.

File named OLD­
is renamed to

SAVE

REN NEWNAME=OLDNAME<cr>.
·NAME on disk in dr lve A:
NEWNAME.

REN B:THATFILE=B:THISFILE<cr> The file
named THISFILE on disk in drive B: is
renamed to THATFILE. The second B: is not
required (you could say REN B:THAT­
FILE=THISFILE).

ERA B:*.*<cr> erases all files on disk in
drive B:. This is a MOST DANGEROUS com­
mandl Because of this, you are asked if
you really want to do it, and must answer
Y (for Yes) to complete the command.

Note that here, as elsewhere in CP/M, you
may temporarily halt the scrolling of the
file by typing a CTRL S (hold down the
control key and simultaneously hit the "5"
key). This is actually a "toggle". Do it
once and scrolling is stopped. Do it
again, and scrolling starts again, etc.

Allows you to display on your terminal
screen, the contents of files which con­
tain ASCII characters (alphanumeric char­
acters such as are on your keyboard -­
files created with ED, for example). Note
that files with the extension .COM are in
machine language and only display "gibber­
ish" if you try to TYPE them. (Try it and
see.) Example:

The "ERA" command actually removes the
file name from the directory, rather than
erasing the contents of the file. However,

.the net result is the same! The contents
of the file with its file name removed
from the directory is no longer accessible
to the user. Note that there are ways to
recover from this if you have the neces­
sary knowledge and special programs (such
as SDUMP on HUG disk 885-1213).

TYPE

I,.

*REMark • Issue 27 • 1982 9



- , -- . -

ED has many pow'e-r'{u"l' featur-es .. Here is
~_one.,~Youcwill:-have,noticed-bi·qpw,:.tnat ED'

has 'ana'u'tomatic "line number iog feature.

congratulations, you have just written a
file using ED.COH. Use DIR<cr> to note
that,! t is indeed on disk. Us.e TYPE new­
file.txt<cr> to see,the disk contents'of
that file. . '

With the above in mind, and re.ferring to
"Getting Started with a Text .. Ed~tor", I
hope ~ou aie able to master ED.COM. Just
learn the essential basic commands that I
covered in that article, and this should
give' 'yo'li a 'good. start in 'using CP/M'S
ED. COM.

i
I
!

.j

I~
I

,

'I l
. . ~""-:-{
"-- -.". !

C'':I '

are
and
We

*REMark • Issue 27 • 1982

-..~;:-IN.9w, ~ assume we
_ "finished with file

.. ~ ~ , ' . " ~ , d e.s ire.. toe x it.
type e'for End.]

e<cr.>

Now, type t<cr> and ED will type the first'
line for you. Now, just hit the RETURN key
and ED will type the second line•.If you
had more lines in your file, just hitting
the RETURN key would display each succeed­
ing .line. ,(The, invisible POINTER also
moves down one line each time you hit
Return J<,ey.), , ' ..

Why we use lower case.for ED'S command~ -~ .. ,

CP/M'S ED"as ;uppiied has the "u" switch
set to minus. (-u). ,This means that you'can
insert material into a file using lower
case;-and -also; us.fog the search and 'r'e-"
place command, you can insert lower case
material. What is not yet welL documented
is the,fact that if, the respective ~om~­

mands are entered in upper case', then
(even though the printed material is dis­
played on your terminal in lower. case) the'
inserted material .that..goe-s· 7into ED's'
memory buffer is"t~anslated into UPPER
CASE •••even though 'the "un switch is set
for lower case! So, ALWAYS USE'LOWER CASE,
WHEN, ,ENTERING ED'S. ,CQ!'1MANDSL .:" 7'S ~ .~ ' .. _'C

·into memory and will
respond NEW FILE and

,then its prompt (*)]
i<cr> ., [you type i and hit

... RETURN]
This is first line of file.<cr>

.[you type this line
and hit RETURN]

This i 13 "last line of newfile.txt.<cr>
[you type RETURN and a
CTRLz. This term­
inates the insertion.
Now type following:]

bit<cr> [you type b#t and hit
Return. b=go to begin­
ning, #t=type all. ED

.. responds by pr inting
.,out the 2 lines we
inserted. The pointer
~sstill at the begin-

, .. ning.] •

ED newfile.txt<cr> [this is how you in­
voke ED; material to

- , right of the space
after ED is called a

-=- .• - "command line"]
- , . - " _. ['EO ' w111 . be r 0 ade d '

10

Now, lets summarize the differences be­
tween HUG's ED (one referred to in Getting
Started with a Text Editor) and CP/M'S ED:

With HUG's ED you hit the ESC key one time
as a delimiter, and you hit the ESC key 2
times to terminate an insertion, and hit
the ESC key 2 times to execute a command
(or ser ies of commands). On the other
hand, with CP/M's ED, you type a CTRL z as
a delimiter, and a CTRL z to terminate an
insertion, and hit the RETURN key to exe­
cute a command or series of commands. And,
when you use CP/M's ED, always use lower
case when you type the commands.

Other·than the above differences' the·two ,,'
Editors are used in much the same way.

Here is an example of how to create:a
short file using CP/M's ED - (Note that
the text within square brackets [text]
tell!3 you what YOU do.)

From the monitor prompt (A» you type:

To get preexisting contents of file into
buffer memory you type #a<cr>. This ap­
pends (puts all of preexisting file into
buffer memory) ALL into memory, if it will
fit. Otherwise, it NEARLY fills available
memory, then stops. (See below.)

The invisible pointer is at the beginning
of the file. (Note that if you are working
with an extremely LARGE file, and buffer
memory is not large enough to hold the
entire file, then the invisible pointer is
at the END of the partially appended file,
and you must put it at the beginning using
the command b<cr>.) When you are finished
editing this first "append", then type
tw<cr> (writes buffer memory to disk),
then type #a<cr> to append the next por­
tion of the large file so you can edit
it. )

ready to start inserting text with the
Insert command.

All ED commands should be entered in lower
"'ase. (I will explain why later.) Thus,
che "insert" command should be "i" rather
than "I".

The Insert command (i) in ED.COM is used
by 'simply typing i <cr> and then you start
typing the text you want to insert. You
finish the insertion by typing a CTRL-Z
(hold down the CTRL key and depress the z
key).

",,':\ CTRL-Z is also used as a delimiter in
,,'·the "search and replace" command feature.

~,..



(If you do NOT want this feature simply
type, at ED's asterisk prompt, -v<cr>.
This turns this feature off.) The automat-

(
ic line numbering is a very nice feature.

, ~If you have some text in memory that you
',' are editing, and you desire to move the

invisible pointer to any given line, sim-
ply type the line number, a colon (:), and
<cr>. Done!

(Note: these line numbers are NOT part of
YOUR text. They are simply a feature pro­
vided by ED. If you want hard copy (copy
provided by your printer) of any given
text file, just do a CTRL-P BEFORE you
invoke ED! Then, get your text into memory
with #a<cr>, then type it all out to your
screen using the IIt<cr> command. You will
get hard copy containing line numbers at
the same time!)

Here is an example of how to move the
pointer to a line number. Let's pick line
number 123. From ED's prompt (*) you sim­
ply type

123: <cr>

and there you are. Just type t<cr> to see
line 123. (You can, of course, combine
these 2 commands as l23:t<cr> and accom­
plish the same thing.)

Another remarkable feature of ED, and one
that is often overlooked, is its ability
to include pre-existing files (pre-exist­
ing on disk) into a file that you are
presently editing. The file on disk MUST
have an extension of ".LIB", and it MUST
reside on the same disk as the file to be
edited (can NOT be on disk B: if file to
be edited is on A:). The ED command that
carries this out is:

rfilename<cr>

What happens is that whatever text "file­
name.lib" contains is inserted into what­
ever text you are editing, just before the
current location of the invisible pointer.
Here is how to try this out:

Using ED, create a file called XYZ.LIB.
Just insert (i<cr» 2 or 3 lides into the
file, then CTRL Z to stop the insertion,
type e<cr> to exit ED. You now have on
disk a file called XYZ.LIB.

Now, go into ED with another filename
given when you invoke ED, insert several
lines, terminate insertion with CTRL z, go
to beginning of file with b<cr>. Next, hit
return key 2 or 3 times (assuming you put
a half dozen lines in with the insertion),
type rxyz<cr>. You have just inserted the
contents of file xyz, just before the
invisible pointer (which was at the begin­
ning of the last line displayed before you
typed the rxyz<cr>.) To prove this, sim­
ply type blt<cr> and the present contents
of your current file are'displayed. Note

*REMark • Issue 27 • 1982

that it includes the contents of xyz.lib
file! Type e<cr> to exit ED.

The "h" command. This is a very nice com­
mand that can save the user many head­
aches! If you type h<cr> {from ED's aster­
isk prompt), ED writes your total file to
disk, and THEN automatically opens same
file and returns you to ED. When you see
the asterisk prompt, just #a<cr> and your
edited file is back in memory. You should
make frequent use of this command when you
are doing extensive editing. This way IF
something untoward happens, you have the
partially edited file on disk, rather than
just in memory.

The "n" command. Here is another frequent­
ly overlooked command. It is somewhat
similar to the Iff" (find) command. You may
think of "n" as meaning "next". Su!?pose
you have a VERY long file, one that is too
large to fit in memory with one append.
Suppose that you desire to find some
"unique word(s)" somewhere towards the
middle or end of the file. You invoke ED
in the usual way, but you do NOT have to
use the "a" (append) command. From the
asterisk prompt, type:

nunique wordsAzOlt<cr>

Let's examine that command since there are
several different commands that are all
lumped together. We typed n (which is the
"next" command), then immediately typed
our unique word or words, then terminated
the "words we are trying to find" with a
CTRL-Z (hold down CTRL key and also de­
press Z key), then we entered Olt which is
a zero and the letter 1 (which means "go
to the beginning of the line"), and t for
type (see below for more on "Olt"). Then
we hit Return key. ED will automatically
append (and also write if necessary) until
it finds a "match" for the unique word (s)
entered. It stops, and then Olt moves the
pointer to the beginning of that line, and
ED types out the line for you. Now, you
can do whatever editing you want in this
area of the file, then simply e<cr>. There
are other ways you can use this command,
so experiment with it.

The "x" command is a very useful command
which allows you to move "blocks" of text
around. It is nicely covered in Hogan's
Guide, and a good explanation is also
found in Appendix A of ED: A Context
Editor for the CP/!:! Disk SyStem -(One-of
the Digital Research manuals) .

Last, before leaving this section on the
use of ED.COM, I repeat something from the
article in REM issue 11 -

If you are ever in doubt as to the loca­
tion of the "invisible pointer" while you
are editing a file with ED, simply type
Olt<cr> (zeroLT<cr» and the pointer will
be just BEFORE the first character of the

11

....



.a. -=- ~ - =:.. _- ~ - - - • - ~ ,'7". - - : - - __ ' ." - -::: .:::.?"-? "': ~ -= .-..-
A>SAVE 5 SUBMIT.COM<cr>

line just displayed for you by ED.

DDT

Congratulations! You have just patched a
machine language file. What went on in the
above was that you used DDT's L (LIST)
command to type out 11 lines beginning
with memory location 441. After checking
listing you used DDT's S (SHOW) command to
display contents of memory at HEX address
442. It showed a 61. Then you changed it
to 41, ended the S command with a period
C.) and used the "GO" command to exit DDT.
YQU simply changed one byte in SUBMIT.COM
in .memory. Next, you used the SAVE command
t;.Q~write_the program from.memory to disk
L~e _"S".io the SJ}VE.cQ~,!nand_is il-,d,e.cJ.;n.a).
___ • - __ - _.~ __ 0 __ -

number indicating that there were 5
256-byte "pages" saved. Done!

SUBMIT

SUBMIT ABCD<cr>

Heri is how you use SUBMIT with this il­
lustration. From the monitor prompt (A»
type:

Note: When you use the SUBM IT and the XSUB
programs, be sure you are logged in on the
A: drive, and ensure that SUBMIT.COM,
XSUB.COM, (ED.COM if your procedure in­
volves ED editor and any .LIB files), and
any .SUB files ALL are present on the disk
in drive A:. Any other utility programs
such as PIP.COM should also be on this
disk if your .SUB file references them!

SUBMIT is CP/M'S version of a "batch pro­
cessor". What this means is that you will
be able to put together (using an editor)
a list of commands that you might wish to
carry out on more than one occasi~n. For
example, suppose that one daily routine at
present consists of booting up CP/M, load­
ing MBASIC and running a program called
THIS.BAS. After you are finished with this
program you desire to copy a file called
IMP.DAT from your "boot disk" in dr ive A:
to a backup disk in B:, then you wish to
have the DIR of B: displayed. You simply
create (using an editor) the list of com­
mands that you would ordinarily carry out.
And, the file that you create MUST have an
extension called ".SUB". Let us say that
you desire to call this ".SUB" file
ABCD.SUB. Using ED, Y9u would (from the
monitor prompt. A» type ED ABCD.SUB. Then,
when ED gave you its asterisk (*) prompt,
you would type i<cr> and then type the
following cOlumands:

MBASIC THIS<cr>
PIP B:=IMP.DAT<cr>
DIR B:
Now you type a CTRL-Z, type, e<cr> and ED
puts on disk a file called ABCD.SUB.

SUBMIT will execute your first command
which loads MBASIC and runs your program
called THIS.BAS. If the last logical
~tatement in your program is SYSTEM (or if
program ends, and you type SYSTEM<cr> to
exit MBASIC), you can just si~ back and
watch SUBMIT automatically copy your file
and then display the DIR of disk in drive
B:. Now, this was an extremely simple
illustration. SUBMIT is capable of han­
dling many more commands. All you have to
do is have them in a file created by an
editOr, and remember the file name must
have the extension ".SUB". Also note that
ALL COMMANDS GIVEN IN THE FILE CREATED BY
ED WERE -IN UP.PER CASE. This· is really NOT
necessary as SUBMIT converts all lower
case commands to upper case, but serves as
a reminder to user -of the following pecu­
l.~it..y~ of?SqBMIT...Not--oely .are. your com-

[you type DDT SUB-
MIT.COM and hit the
RETURN key]
[DDT displays these
three lines and its

. prompt (-).]
[You type L441 and hit
RETURN. DDT will dis­
play these 10 lines.
If the number to the
right of SUI is 41,
then the patch has
already been made. Do
a CTRL-C to exit•. -If
your screen does not
match these lines, do
not continue.]

[Type a period, <cr>.]
. [Letter G and zero.] .

61
OE7D
C,A
A,19
C
0456
B,019D
02A7
045E
OE7D

DDT SUBMIT.COM<cr>

DDT is the "debugger" which is primarily
used in checking any assembly language
programs you may write. I will not go into
detail about this use. DDT can also be
used to patch a machine language file. I
will give below a patch which you SHOULD
make to the CP/M file SUBMIT.COM, IF you
have CP/M vers 2.202 from Heath. Please
note that SUBMIT.COM in version 2.203 from
Heath has ALREADY BEEN PATCHED for you and
you do NOT have to make the following
patch. It is not difficult to make the
patch to vers 2.202. The material in
square brackets to the right of the actual
"patch" are not a part of the "patch" but
merely some of my notes to help you under­
stand what is going on. This "patch" fixes
SUBMIT.COM so that it will understand and
act upon a CTRL-Z. The CTRL-Z would be
entered as an up arrow followed by a Z
("Z). You may have use for this if you are
using SUBMIT when doing some editing. Do
NOT patch your distribution disk. Copy
SUBMIT.COM and DDT.COM to another "bootup"
disk and carry out the following proce­
d~re. ~his patch was obtained from Digital
Research. What you type is shown in bold
print. From the A> prompt:

DDT VERS 2.2
NEXT PC
0600 0100
-L441<cr>

0441 SUI
-0443 STA
~0446 MOV
0447 MVI

.:0449 CMP
'044A JNC
-04-40 . LXI
-0450 . CALL
~0453 JMP
0456 LOA

-S442<cr>
'6442 61 41<cr>
<5443 32 .<cr>

-GO

*REMark • Issue 27 • 1982



/ -~ ... -

I(~,

mands converted to upper case, but also,
if you are doing some editing with ED
using SUBMIT, and are using the "F" (find)
command, or the "s" (search and replace)
command, SUBMIT also translates the
"string to be searched for" to upper case,
even though you entered it as lower case.
Hence, the "search" will fail! You can NOT
use some features of ED, with SUBMIT,
unless you are aware of this "flaw". RE­
MEMBER, SUBMIT will translate all entries
into UPPER CASE with ED. (SUBMIT will copy
files using' PIP, however, WITHOUT any
lower case conversion.) If you wished to
have ED edit a file and wish to insert one
or more short lines, here is how you do it
(I am indebted to Curt Geske of Digital
Research for this information). You do NOT
use a <cr> after the Insert command (i),
and you use a CTRL-L (entered as A L)
INSTEAD OF a <cr> after each short line,
and you use a CTRL-Z to stop the inser­
tion. All of this is entered on one line.
Suppose I wished to add 3 short lines to a
preexisting text file. Here is what I
might have in my .SUB file:

XSUB
ED THISFILE
fA
2L
ITHIS IS ADDEDALTHIS TOOALAND THISALAZ
E

Each CTRL-L (entered as AL) in the above
file, is interpreted by ED as a carriage
return/line feed. The CTRL-Z (entered as
A Z) ends the insertion.

If the above was in a file named XYZ.SUB,
and there was a preexisting file named
THISFILE, and from the monitor prompt we
entered

SUBMIT XYZ<cr>

then SUBMIT would insert 3 lines into
THISFILE, just above the third line of the
original contents of THISFILE. Try it!

Please note, however, that the insertion
(if entered as lower case in the above
.SUB file) would still be translated into
upper case by SUBMIT. There just is NO way
at present of inserting lower case mate­
rial using ED with SUBMITl Sorry!

You can also. insert material as follows.
You can insert a ".LIB" file into a pro­
gram being edited by SUBMIT using the "R"
command, BUT if the .LIB file contained
lower case material, SUBMIT would trans­
late it to UPPER CASE. Sorry again, but
that is just the way SUBMIT works.

Here are 2 items that can NOT be in the
list of commands/programs that you put.
into a ".SUB" file. You can NOT put in a
CTRL C (even though entered as AC). You
can NOT put a <cr> on a line by itself (to
use just a <cr> as a "keyboard response"

*REMark • Issue 27 • 1982

when using XSUB -- see below) 1 You can,
however, put comments in a SUBMIT file.
Just introduce the comment line with a
semicolon (;) in the first column, as in
this example:

XSUB
;THIS LINE IS A COMMENT
ED TESTFILE
ITHIS LINE IS INSERTEDAZ
E

Comments should not be used within ED or
other programs, but can be used any time
the command is for CP/M itself, because it
is the CCP (Console Command Processor) in
CP/M that allows this, and it has nothing
to do with SUBMIT. You can even put
escape sequences to control your terminal
(such as ESC-E' to clear the screen), in
comment lines as long as the argu~ent is
upper case.

Note that if you desire to use SUBMIT with
any program that ordinarily requires you
to do something from the keyboard, and you
wished to put the entries into your .SUB
file, then the first entry in your ".SUB"
file MUST be XSUB. (XSUB is another CP/M
program that allows you to put the desired
"keyboard respon~es", in advance, into
your .SUB file.) SUBMIT works with DDT,
and with your assembler (ASM.COM). It does
NOT work with some advanced word proces­
sors; and it does NOT allow you to put
"keyboard actions" into your .SUB file
when you are using MBASIC. (Example: Your
MBASIC program stops and asks you for the
date. You could NOT put the date in the
.SUB file. MBASIC requires your personal
attention to such matters.) Be sure to
remember to "patch" SUBMIT to allow CTRL Z
action (see above under DDT) if you have
CP/M vers 2.202 as mentioned above. Also
remember that if you are using ED with
SUBMIT, it really doesn't help you UNLESS
your file to be edited is all UPPER CASEI
Incidentally, you enter a CTRL-Z as A Z (up
arrow z) in your .SUB file if you need to
enter it for LATER execution.

Finally, SUBMIT has an extremely handy
feature. Suppose that you did not know in
advance, certain items such as "filename",
which drive you would be using, etc. SUB­
MIT allows you to use variables in your
.SUB file - $1, $2, $3, $4, etc., if
needed. You put these into your .SUB file.
In our example given above, your file
ABCD.SUB could look like this:

MBASIC THIS
PIP $1=$2
OIR $3

With ~hls example you might enter the
following command line to start SUBMIT:

SUBMIT ABCD B: IMP.DAT A:<cr>

Note the spaces separating the 3 items

\.13



AFTER the name of the .SUB file. What
happens is that SUBMIT plugs in the first
item (B:) where $1 was in the ABCD.SUB
file, substitutes the second item for $2
and the third item for $3. So, when SUBMIT
plays out this scenario, what happens is:

MBASIC THIS
PIP B:=:IMP.DAT
DIR A:

Note also that you could have $1, and/or
$2, and/or $3 in more than one of the
commands in any given .SUB file.

MBASIC

I will cover MBASIC vers 5.2 in another
article. I do vish to mention here (and
will repeat this in that article) the only
"flaw" in MBASIC vers 5.2 that I know of.
When you "SAVE" a program from MBASIC to
disk, using CP/M, always use UPPER CASE
for the file name. For example -

SAVE "MYPGM<cr> and not SAVE "mypgm<cr>.

What happens is that the program IS saved
. and the program name IS put into the dir­
ectory, if the program name was entered in
lower case, BUT the program name is also
put into the directory IN LOWER CASE.
Microsoft apparently forgot to "mask" the
lower case to UPPER CASE before sending it
to the DIRectory. If your program name was
saved in lower case, a DIR<cr> listing
would show it as mypgm.BAS.

A listing such as mypgm.BAS can NOT be
erased from the directory using ERA my­
pgm.BAS<cr>. (You CAN delete it .from the
directory by going into MBASIC and enter­
ing: KILL "mypgm.BAS"<cr>.)

Also, you would only be able to load this
program into memory by entering - LOAD
"mypgm<cr>. The MBASIC command LOAD
"MYPGM<cr> would fail.

Of course, you can easily work around this
potential problem. All you have to do is
to ALWAYS "save" your programs using UPPER
CASEI

Also, ALWAYS enter filename in UPPER CASE
when you use the LOAD command! If the file
exists in the DIRectory in UPPER CASE, and
you enter filename in lower case in LOAD
command, then you get error (file not
found. )

The same problem is present when you
"Open" files. ALWAYS use UPPER CASE when
entering file names!

Now, the good points of MBASIC vers 5.2
are too numerous to mention here. Suffice
it to say that "random file" handling is
much easier with this version of MBASIC
than in HDOS's version of MBASIC. I will
cover all this in the next article.

Last, I would like to thank all the folks
at HUG, and Barry Watzman, who have
"proofed" this article and corrected er-
rors in context. Any remaining errors are (."~
entirely mine. ..'..,.}

CP/M is a registered trademark of Digital
Research. MBASIC refers to "Microsoft
BASIC-80", a produc,t of Microsoft, Inc.

EOF

Local HUG News

Ted Benglen, II announces the formation
of a Northern Colorado Heath Users' Group,
FT.HUG (Fort HUG). They will meet at
least once a month in the Ft. Collins
area, and serve users in the Loveland,
Greeley, Longmont and Boulder areas.'
Anyone wishing additional information
may contact Ted Benglen, II at 822 E.
County Road 30, Ft. Collins, CO 80525.
(303) 669-4116

The Naval Postgraduate School Hobby
Computer Club would like to invite all
Heath users in the Monterey area to attend
one of their meetings. They have regular
meetings on the first Thursday of each
month at 7:00 p.m. in Room 100, Spanagel
Hall, Naval Postgraduate School, Monterey
CA. There is an informal Heath Users I

Group there with members of varied
backgrounds. For addition information
Heath users may contact: Tom McNair, NPS
Hobby Computer Club, Rec. Services, NPS,
Monterey, CA 93940.

The PNHUG (Pacific-Northwest HUG) was
inadvertently left off the list of local
HUG groups in Issue 25 of REMark. They
meet the second Tuesday of odd months
from 7:00-9:00 p.m. at the Tukwila, WA
Heathkit Center and even months they meet
the first Monday from 7:00-9:00 .p.m. at
the Seattle, WA Heathkit Center. Their
contact person is Nathan Hall at 10553
41st Pl. NE, Seattle WA 98125 phone:
(206) 363-3927. Mailing address for the
club is: PNHUG (Pacific-Northwest HUG),
c/o Jan Johnson, PO Box 993, Bellevue
WA 98009. They also have a 24 hour ( .
Bulletin Board at the Tukwila Heathkit "'-- a
Center (206) 246-4468. Presently there "
are 150 in their group.

14 *REMark • Issue 27 • 1982

_~.,:;':' i·
.. .-~ ..


