
CP/M-86™
Operating System

System Guide

Copyright © 1981

Digi t a l . Research
P.O. Box 579

801 Ligh thouse Avenue
Pacific Grove, CA 93950

(408) 649-3896
TWX 910 360 5001

All Rights Reserved

COPYRIGHT

Copyright © 1981 by Digital Research. All rights

r eserv ed . No part of this publication may be

reproduced, transmitted, transcribed, s tored i n a

retrieval system, or translated into any language or
computer language, in any form or b y a n y means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior w ri t t e n

permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

DISCLAIMER

Digital Research makes no r e p r e s e n t a t i o ns or

warranties with respect to the contents hereof and
specifically disclaims any impl i ed warranties of
merchantability or fitness for a ny p a r t i cu l a r

purpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without

obligation of Digital Research to notify any person
o f such r e v i s i o n o r ch a nges .

TRADEMARKS

CP/M, CP/M-86, and CP/NET are registered trademarks
of Digital Research. ASM-86, CP/M-80, DDT-86, LINK­

80, MP/M, MP/M-86, and TEX are trademarks of Digital
Research. Intel is a registered trademark of Intel
C orporat i o n .

The CP/M-86 0 eratin S stem S stem Guide was

prepared using the Digital Research TEX Text
Formatter and printed in the United States of

America.

* * * * * * * * * * A* *
* First Edition: June 1981
* S econd Edi t i o n : June 1983 *

* ** * * * * * * A ** * * * * A* * * * * * * * * * A* * * *

Foreword

The CP M-86 0 eratin S stem S stem Guide presents the system
programming aspects of CP M-86 , a single-user operating system for
the Inteltt' 8086 and 8088 16-bit microprocessors. T he di scuss i o n
assumes that you are familiar with CP/M®, the Digital Research 8­
bit operating system. To clarify specific differences with CP/M-86,
this document refers to the 8-bit version of CP/M as CP/M-80™.
Elements common to both systems are simply called CP/M features.

The CP/M-86 package also includes the CP M-86 0 eratin S stem
User's Guide and the CP M-86 0 eratin S stem Pro r ammer's

~ ••

8086 assembler and interactive debugger.

This System Guide presents an overview of the CP/M-86
programming interface conventions. It also describes procedures for
adapting CP/M-86 to a custom hardware environment.

Section 1 gives an overview of CP/M-86 and summarizes its
differences with CP/M-80. Section 2 describes the general execution
environment while Section 3 tells how to generate command files.
Sections 4 and 5 respectively define the programming interfaces to
the Basic Disk Operating System and the Basic Input/Output System.
Section 6 discusses alteration of the BIOS to support custom disk
configurations, and Section 7 describes the loading operation and
the organization of the CP/M-86 system file.

Table of Contents

CP/M-86 System Overview

1.1
1.2

CP/M-86 General Characteristics 1

CP/M-80 and CP/M-86 Differences 3

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Command Setup and Execution Under CP/M-86

CCP Built-in and Transient Commands
Transient Program Execution Models
The 8080 Memory Model
The Small Memory Model
The Compact Memory Model
Base Page I n i t i al i zat i on
Transient Program Load and Exit

7 8

9
10
11
13
14

Command (CND) File Generation

3.1
3.2
3.3
3.4

15
16
19
20

Intel Hex File Format
Operat io n o f G ENCMD
Operat i o n o f LM C MD
Command (CMD) Fi l e F o r mat

Basic Disk Operating System (BDOS) Functions

BDOS Parameters and Function Codes
Simple BDOS Calls
BDOS File Operations
BDOS Memory Management and Load

23
25
30
48

4.1
4.2
4.3
4.4

Basic I/O System (BIOS) Organization

5.1
5.2
5.3
5.4

55
56
57
60

Organization of the BIOS
The BIOS Jump Vector
Simple Peripheral Devices
BIOS Subroutine Entry Points

6.1
6.2
6.3

BIOS Disk Definition Tables

Disk Parameter Table Format
Table Generation Using GENDEF
GRNDEF Output

• • • • • • • • • •
•

• • • • • • • • • • •

67
72
77

• • • • • • •
• • • •

CP/M-86 Bootstrap and Adaptation Procedures

The Cold Start Load Operation 8l

Organization of CPM.SYS
. . . . 84

7.1
7.2

Appendixes

87A Blocking and Deblocking Algorithms

8 Random Access Sample Program

C Listing of the Boot Rom

D L D BIOS Lis t i ng

E BIOS Listing

F C B IOS L is t i ng

95

103

113

121

137

Section 1
CP/M-86 System Overview

1.1 CP/M-86 General Characteristics

CP/M-86 contains all facilities of CP/M-80 with additional
features to account for increased processor address space of up to a
megabyte (1,048,576) of main memory. Further, CP/M-86 maintains
file compatibility with all previous versions of CP/M. The file
structure of version 2 of CP/M is used, allowing as many as sixteen
drives with up to eight megabytes on each drive. Thus, CP/M-80 and
CP/M-86 systems may exchange files without modifying the file
format .

CP/M-86 resides in the file CPM.SYS, which is loaded into
memory by a cold start loader during system initialization. The
cold start loader resides on the first two tracks of the system
disk. CPM.SYS contains three program modules: the Console Command
Processor (CCP), the Basic Disk Operating System (BDOS), and the
user-configurable Basic I/O System (BIOS). The CCP and BDOS
portions occupy approximately 10K bytes, while the size of the BIOS
varies with the implementation. The operating system executes in
any portion of memory above the reserved interrupt locations, while
the remainder of the address space is partitioned into as many as
eight non-contiguous regions, as defined in a BIOS table. Unlike
CP/M-80, the CCP area cannot be used as a data area subsequent to
transient program load; all CP/M-86 modules remain in memory at all
times, and are not reloaded at a warm start.

Similar to CP/M-80, CP/M-86 loads and executes memory image
files from disk. Memory image files are preceded by a "header
record," defined in this document, which provides information
required for proper program loading and execution. Memory image
files under CP/M-86 are identified by a "CMD" file type.

Unlike CP/M-80, CP/N-86 does not use absolute locations for
system entry or default variables. The BDOS entry takes place
through a reserved software interrupt, while entry to the BIOS is
provided by a new BDOS call. Two variables maintained in low memory
under CP/M-80, the default disk number and I/O Byte, are placed in
the CCP and BIOS, respectively. Dependence upon absolute addresses
i s minimi zed i n C P/M-86 by mai n t a i n i n g i ni t i al "ba s e p a ge" v a l u e s <
such as the default FCB and default command buffer, in the transient
p rogram data a r e a .

Utility programs such as ED, PIP, STAT and SUBMIT operate in
the same manner under Cp/M-86 and Cp/M-80. In its operation, DDT-86
resembles DDT supplied with CP/M-80. It allows interactive
debugging of 8086 and 8088 machine code. Similarly, ASM-86 allows
assembly language programming and development for the 8086 and 8088
using Intel-like mnemonics.

1.1 CP/N-86 General CharacteristicsCP/M-86 System Guide

The GENCND (Generate CND) utility replaces the LOAD program of
CP/N-89, and converts the hex files produced by ASM-86 or Intel
utilities into memory image format suitable for execution under
CP/M-86. Further, the LDCOPY (Loader Copy) program replaces SYSGEN,
and is used to copy the cold start loader from a system disk for
replication. In addition, a variation of GENCMD, called LMCMD,
converts output from the Intel LOC86 utility into CND format.
Finally, GENDEF (Generate DISKDEF) is erovided as an aid in
producing custom disk parameter tables. ASM-86, GENCMD, LNCMD, and
GENDEF are also supplied in "COM" file format for cross-development
under CP/M-80.

Several terms used throughout this manual are defined in Table
l - l b e l o w :

Group

Segment

Segment Register

Offset

Nibble

Byte

Word

Double Word

Paragraph

Paragraph Boundary

Term

Table l-l. CP/M-86 Teras

Meaning

4-bit half-byte

8 -bi t va l u e

1 6-bi t va l u e

3 2-bi t va l u e

1 6 cont i g uous b y t e s

An address divisible evenly
by 16 (l o w o r de r n i bb l e 0)

tJp to 64K contiguous bytes

One of CS , DS , ES , o r S S

16-bit displacement from a
segment register

A segment-register-relative
relocatable program unit

The effective memory address
derived from the composition
of a segment register value
with an offset value

Address

A group consists of segments that are loaded into memory as a single
unit. Since a group may consist of more than 64K bytes, it is the
responsibility of the application program to manage segment
registers when code or data beyond the first 64K segment is
accessed.

1.1 CP/M-86 General CharacteristicsCP/M-86 System Guide

CP/M-86 supports eight program groups: the code, data, stack
and extra groups as well as four auxiliary groups. When a code,
data, stack or extra group is loaded, CP/M-86 sets the respective
segment register (CS, DS, SS or ES) to the base of the group. CP/M­
86 can also load four auxiliary groups. A transient program manages
the location of the auxiliary groups using values stored by CP/M-86
i n the u se r s b a s e p a ge .

1.2 CP/M-80 and CP/M-86 Differences

The structure of CP/M-86 is as close to CP/M-80 as possible in
order to provide a familiar programming environment which allows
application programs to be transported to the 8086 and 8088
processors with minimum effort. This section points out the
specific differences between CP/M-80 and CP/M-86 in order to reduce
your time in scanning this manual if you are already familiar with
CP/M-80. The terms and concepts presented in this section are
explained in detail throughout this manual, so you will need to
refer to the Table of Contents to find relevant sections which
p rovide spec i f i c def i ni t i on s a n d i nf o r ma t i o n .

Due to the nature of the 8086 processor, the fundamental
difference between CP/M-80 and CP/M-86 is found in the management of
the various relocatable groups. A lthough CP/M-80 references
absolute memory locations by necessity, CP/M-86 takes advantage of
the static relocation inherent in the 8086 processor. The operating
system itself is usually loaded directly above the interrupt
locations, at location 0400H, and relocatable transient programs
load in the best fit memory region. However, you can load CP/M-86
into any portion of memory without changing the operating system
(thus, there is no MOVCPM utility with CP/M-86), and transient
programs will load and run in any non-reserved region.

Three general memory models are presented below, but if you are
converting 8080 programs to CP/M-86, you can use either the 8080
Model or Small Model and leave the Compact Model for later when your
addressing needs increase. You 11 use GENCMD, described in Section
3.2, to produce an executable program file from a hex file. GENCMD
parameters allow you to specify which memory model your program
r equi res .

CP/M-86 itself is constructed as an 8080 Model. This means
that all the segment registers are placed at the base of CP/M-86,
and your customized BIOS is identical, in most respects, to that of
CP/M-80 (w i t h c h a nges i n i ns t r uc t i o n m nemonics , o f cour s e) . I n
fact, the only additions are found in the SETDMAB, GETSEGB, SETIOB,
and GETIOB entry points in the BIOS. Your warm start subroutine is
simpler since you are not required to reload the CCp and BDOS under
CP/M-86. One other point: if you implement the IOBYTE facility,
you 11 have to define the variable in your BIOS. Taking these
changes into account, you need only perform a simple translation of
your CP/M-80 BIOS into 8086 code in order to implement your 8086
BIOS.

1.2 CP/M-80 and CP/N-86 DifferencesCP/M-86 System Guide

If you ve implemented CP/M-80 Version 2, you already have disk
definition tables which will operate properly with CP/N-86. You may
wish to attach different disk drives, or experiment with sector skew
factors to increase performance. If so, you can use the new GENDEF
utility which performs the same function as the DISKDEF macro used
by MAC under CP/M-80. You ll find, however, that GENDEF provides
you with more information and checks error conditions better than
t he D I SKDEF macr o .

Although generating a CP/M-86 system is generally easier than
generating a CP/M-80 system, complications arise if you are using
single-density floppy disks. CP/M-86 is too Large to fit in the
two-track system area of a single-density disk, so the bootstrap
operation must perform two steps to load CP/M-86: first the
bootstrap must Load the cold start loader, then the cold start
loader loads CP/N-86 from a system file. The cold start loader
includes a LDBIOS which is identical to your CP/M-86 BIOS with the
exception of the INIT entry point. You can simplify the LDBIOS if
you wish because the loader need not write to the disk. If you have
a double-density disk or reserve enough tracks on a single-density
disk, you can load CP/N-86 without a two-step boot.

To make a BDOS system call, use the reserved software interrupt
4244. The jump to the BDOS at location 0005 found in CP/N-80 is not
present in CP/N-86. However, the address field at offset 0006 is
present so that programs which "size" available memory using this
word value will operate without change. CP/M-80 BDOS functions use
certain 8080 registers for entry parameters and returned values.
CP/M-86 BDOS functions use a table of corresponding 8086 registers.
For example, the 8086 registers CH and CL correspond to the 8080
registers B and C. Look through the list of BDOS function numbers
in Table 4-2. and you ll find that functions 0, 27, and 31 have
changed slightly. Several new functions have been added, but they
do not affect existing programs.

One major philosophical difference is that in CP/M-80, all
addresses sent to the BDOS are simply 16-bit values in the range
0000H to OFFFFH. In CP/M-86, however, the addresses are really just
16-bit offsets from the DS (Data Segment) register which is set to
the base of your data area • If you translate an existing CP/N-80
program to the CP/M-86 environment, your data segment wi11 be Less
than 64K bytes. In this case, the DS register need not be changed
following initial load, and thus all CP/M-80 addresses become simple
DS-relative offsets in CP/N-86.

Under CP/M-80, programs terminate in one of three ways: by
returning directly to the CCP, by ca1ling BOOS function 0, or by
transferring control to absolute location 0000H. CP/N-86, however,
supports only the first two methods of program termination. This
has the side effect of not providing the automatic disk system reset
following the jump to 0000H which, instead, is accomplished by
entering a CONTROL-C at the CCP level.

1.2 CP/M-80 and CP/M-86 DifferencesCP/M-86 System Guide

You' ll find many new facilities in CP/M-86 that will simplify
your programming and expand your application programming capability.
But, we' ve designed CP/M-86 to make it easy to get started: in
short, if you are converting from CP/M-80 to CP/M-86, there will be
no major changes beyond the translation to 8086 machine code.
Further, programs you design for CP/M-86 are upward compatible with
MP/M-86™ , our multitasking operating system, as well as CP/NET-86
which provides a distributed operating system in a network
environment .

Section 2
Command Setup and Execution Under CP/M-86

This section discusses the operation of the Console Command
Processor (CCP), the format of transient programs, CP/M-86 memory
models, and memory image formats.

2.l CCP Built-in and Transient Commands

The operation of the CP/M-86 CCP is similar to that of CP/M-80.
Upon initial cold start, the CP/M sign-on message is printed, drive
A is automatically logged in, and the standard prompt is issued at
the console. CP/M-86 then waits for input command lines from the
console, which may include one of the built-in commands

DIR E R A REN TYPE USE R

(note that SAVE is not supported under CP/M-86 since the equivalent
function is performed by DDT-86).

Alternatively, the command line may begin with the name of a
transient program with the assumed file type "CMD" deno t i n g a
"command file." The CMD file type differentiates transient command
files used under CP/M-86 from COM files which operate under CP/M-80.

The CCP allows multiple programs to reside in memory, providing
facilities for background tasks. A transient program such as a
debugger may load additional programs for execution under its own
control. Thus, for example, a background printer spooler could
first be loaded, followed by an execution of DDT-86. DDT-86 may, in
turn< load a test program for a debugging session and transfer
control to the test program between breakpoints. CP/M-86 keeps
account of the order in which programs are loaded and, upon
encountering a CONTROL-C, discontinues execution of the most recent
Program activated at the CCP level. A CONTROL-C at the DDT-86
command level aborts DDT-86 and its test program. A second CONTROL­
C at the CCP level aborts the background printer spooler. A third
CONTROL-C resets the disk system. Note that program abort due to
CONTROL-C does not reset the disk system, as is the case in CP/M-80.
A disk reset does not occur unless the CONTROL-C occurs at the CCP
command input level with no programs residing in memory.

When CP/M-86 receives a request to load a transient program
from the CCP or another transient program, it checks the program s
memory requirements. If sufficient memorv is available, CP/M-86
assigns the required amount of memory to the program and loads the
program. Once loaded, the program can request additional memory
from the BDOS for buffer space. When the program is terminated,
CP/M-86 frees both the program memory area and any additional buffer
space.

2.2 Transient Program Execution ModelsCP/M-86 System Guide

2.2 Transient Program Execution Models

o ne o f t hr ee "memory models" used by the transient program, and
described in the CMD file header. The three memory models are
summarized in Table 2-1 below.

The initial values of the segment registers are determined by

Table 2-1. CP/M-86 Memory Models

Group RelationshipsModel

8080 Model Code and Data Groups Overlap

Small Model Independent Code and Data Groups

Compact Model T hree or More Independent Groups

The 8080 Model supports programs which are directly translated
from CP/M-80 when code and data areas are intermixed. The 8080
model consists of one group which contains all the code, data, and
stack areas. Segment registers are initialized to the starting
address of the region containing this group. The segment registers
can, however, be managed by the application program during execution
so that multiple segments within the code group can be addressed.

The Small Model is similar to that defined by Intel, where the
program consists of an independent code group and a data group. The
Small Model is suitable for use by programs taken from CP/M-80 where
code and data is easily separated. Note again that the code and
data groups often consist of, but are not restricted to, single 64K
byte segments .

auxiliary groups are present in program. Each group may consist of
one or more segments, but if any group exceeds one segment in size,
or if auxiliary groups are present, then the application program
must manage its own segment registers during execution in order to

The Compact Model occurs when any of the extra, s tack , o r

a ddress a l l co d e a n d d a t a a r e a s .

The three models differ primarily in the manner in which
segment registers are initialized upon transient program loading.
The operating system program load function determines the memory
model used by a transient program by examining the program group
usage, as described in the following sections.

2.3 The 8080 Memory ModelCP/M-86 System Guide

2.3 Th e 80 80 Meaory Model

only a code group. In this case, the CS, DS, and ES registers are
initialized to the beginning of the code group, while the SS and SP
registers remain set to a 96-byte stack area in the CCP. The
Instruction Pointer Register (IP) is set to 1008, similar to CP/M­
80g thus allowing base page values at the beginning of the code
group. Following program load, the 8080 Model. appears as shown in
Figure 2-1, where low addresses are shown at the top of the diagram:

The 8080 Model is assumed when the transient program contains

SS:
CCP

CCP StackSS + SP:

CS DS ES:
DS+OOOOH: base

page

CS+0100H: I P = 0 1 0 0 H
code

data

code

data

Figure 2-1. CP/N-86 8080 Neaory Model

The in termixed code and data r e g i ons ar e i n d i s t i n g u i shable . The
"base page" values, described below, are identical to CP/M-80,
allowing simple translation from 8080, 8085, or Z80 code into the
8086 and 8088 environment. The following ASM-86 example shows how
to code an 8080 model transient program.

eseg
org

endcs

100h

(code)
S

offset endcs

(data)

equ
dseg
org

end

2.4 The Small Memory ModelCP/M-86 System Guide

2.4 The Small Memory Model

b oth a co d e a n d d a t a g r ou p . (In ASM-86, all code is generated

following a CSEG directive, while data is defined following a DREG
directive with the origin of the data segment independent of the
code segment.) In this model, CS is set to the beginning of the
code group, the DS and ES are set to the start of the data group,
and the SS and SP registers remain in the CCP s stack area as shown

The Small Model is assumed when the transient program contains

i n F i g ur e 2 - 2 .

SS:
CCP

CCP Stac kSS + SP.

CS: IP = OOOOH
code

base
page

DS ES:

DS+0100H:
data

Figure 2-2. CP/M-86 Small Memory Model

The machine code begins at CS+OOOOH, the "base page" values begin at
DS+OOOOH, and the data area starts at DS+01008. The following ASM­

86 example shows how to code a small model transient orogram.

cseg

(code)

100h

(data)

dseg
org

end

10

CP/M-86 System Guide 2.5 The Compact Memory Model

2.5 The Compact Meaory Model

The Compact Model is assumed when code a nd data g r o up s a re
present, along with one or more of the remaining stack, e xtra , o r
auxiliary groups. In this case, the CS, DS, and ES registers are
set to the base addresses of their r espect i v e a re a s . F i gu r e 2- 3
shows the initial configuration of segment registers in the Compact
Model. The values of the various segment registers can be
programmatically changed during execution by loading from the
initial values placed in base page by the CCP, thus allowing access
to the entire memory space.

If the transient program intends to use the stack group as a
stack area, the SS and SP registers must be set upon entry. The SS
and SP registers remain in the CCP area, even if a stack group is
defined. Although it may appear that the SS and SP registers should
be set to address the stack group, there are two contradictions.
First, the transient program may be using the stack group as a data
area. In that case, the Far Call instruction u sed by t h e CCP t o
transfer control to the transient program could overwrite data in
the stack area. Second, the SS register would logically be set to
the base of the group, while the SP would be set to the offset of
the end of the group. However, if the stack group exceeds 64K the
address range from the base to the end of the group exceeds a 16-bit
offset value.

The following ASM-86 example shows how to code a compact model
transient program.

cseg

(code)

org 100h

(data)

dseg

eseg

(more data)
sseg

(stack a r e a)
end

CP/M-86 System Guide 2.5 The Compact Memory Model

SS:
CCP

SS + SP: CCP Stack

IP = OOOOHCS:

code

DS: base
page

DS+0100H:
data

ES:
data

Figure 2-3. CP/N-86 Coapact Meaory Model

12

2.6 Base Page InitializationCP/M-86 System Guide

2.6 Base Page Initialization

values and locations initialized by the CCP and used by the
transient program. The base page occupies the regions from offset
0000H through OOFFH relative to the DS register. The values i n t he
base page for CP/M-86 include those of CP/M-80, a nd appear i n t h e
same relative positions, as shown in Figure 2-4.

Similar to CP/M-80, the CP/M-86 base page contains default

os + 0000:

DS + 0003:

os + 0006:

oS + 0009:

os + OOOC:

DS + OOOF:

DS + 0012:

DS + 0015:

DS + 0018:

DS + 0018:

DS + 001E:

DS + 0021:

DS + 0024:

os + 0027:

DS + 002A:

Ds + 002D:

os + 0030:

Ds + 005B:

Ds + 005C;

DS + 0080:

DS + 0100:

LCO

BCO

LDO

BDO

LEO

BEO

I,SO

BSO

LXO

BXO

LXO

• • •

BXO

LXO

BXO

LXO

BXO

Not
C urrent l y

Used

Lcl

Bcl

LD1

BD1

LE1

BE1

Lsl

Bsl

LXl

BXl

LXl

BXl

LXl

Bxl

LX1

BX1

LC2

M80

LD2

XXX

LE2

XXX

LS2

XXX

LX2

XXX

LX2

XXX

LX2

XXX

LX2

XXX

D efaul t F C B

Default Buffer

B egin User D a t a

F igure 2 - 4 . CP/ N - 8 6 Base Page Va l u es

13

equal z e ro) .

CP/M-86 System Guide 2.6 Base Page Initialization

Each byte is indexed by 0, 1, and 2, corresponding to the standard
Intel storage convention o f l o w , mi d d l e , and h i gh- o r d e r (m o s t
s ign i f i c a n t) by t e . "xxx" in Figure 2-4 marks unused bytes. LC is

the last code group location (24-bits, where the 4 high-order bits

In the 8080 Model, the low order bytes o f LC (L CO and L C l)
never exceed OFFFFH and the high order byte (LC2) is always zero.
BC is base paragraph address of the code group (16-bits). LD and BD

provide the last position and paragraph base of the data group. The

last position is one byte less than the group length. I t shoul d b e

noted that bytes LDO and LD1 appear in the same relative positions
of the base page in both CP/M-80 and CP/N-86, t hus e a s i n g t he
program translation task. The N80 byte is equal to 1 when the 8080
Memory Model is in use. LE and BE provide the length and paragraph
base of the optional extra group, while LS and BS give the optional
s tack g roup l e n gt h and base . The bytes marked LX and BX co r r e spond
to a set of four optional independent groups which may be required
for programs which execute using the Compact Memory Model. The

initial values for these descriptors are derived from the header

record in the memory image file, described in the following section.

2.7 Transient Program Load and Exit

following the command and places the properly formatted FCB s at
locations 005CH and 006CH in the base page relative to the DS
register. Under CP/N-80, the default DMA address is initialized to
0080H in the base page . Due to the segmented memory of the 8086 and
8088 processors, the DNA address is divided into two parts: the DNA

segment address and the DMA offset. T herefo re , u n de r CP/N- 86 , t h e
default DMA base is initialized to the value of DS, and the default
DMA offset is initialized to 0080H. T hus, CP/M-80 an d C P/N 8 6
operate in the same way: both assume the default DMA buffer
occupies the second half of the base page.

8086 "Far Call." The transient program may choose to use the 96-byte
CCP stack and optionally return directly to the CCP upon program
termination by executing a "Far Return." Program termination also
occurs when BDOS function zero is executed. Note that function zero

can terminate a p r o g ram wi t h ou t r e mov ing t h e p r o g ram f r om memory or
changing the memory allocation state (see Section 4.2). The

operator may terminate program execution by typing a single CONTROL­
C during line edited input which has the same effect as the program
executing BDOS function zero. Unlike the operation of CP/M-80, no
disk reset occurs and the CCp and BDOS modules are not reloaded from
disk upon program termination.

Similar to CP/M-80, t he CCP p a r s e s up to two filenames

The CCP transfers control to the transient program through an

14

Section 3
Command (CMD) File Generation

A s mentioned prev i o u s l y , t w o u t i l i t y pr oq r ams are p r o v i d e d w i t h
CP/M-86, called GENCMD and LMCMD, which a r e us e d t o p r od u c e CMD

memory image files suitable for execution under CP/M-86. GENCMD

accepts Intel 8086 "hex" format files as input, while LMCMD reads
Intel L-module files output from the standard Intel LOC86 Object

Code Locator utility. GENCMD is used to process output from the
Digital Research ASM-86 assembler and Intel s OH86 utility, while
LMCMD is used when Intel compatible developmental software is
available for generation of programs targeted for CP/M-86 operation.

3.1 Intel 8086 Hex Pile Poreat

GENCMD input is in Intel "hex" format produced by both the
Digital Research ASM-86 assembler and the standard Intel OH86

utility program (see Intel document 49800639-03 entitled "MCS-86
Software Development Utitities Operating Instructions for ISIS II
Users"). The CMD file produced by GENCMD contains a header record
which defines the memory model and memory size requirements for

loading and executing the CMD file.

An Intel "hex" file consists of the traditional sequence of
ASCII records in the following format:

1 1 a a a a t t d d d . . . d c c

where the beginning of the record is marked by an ASCII colon, and
each subsequent d i g i t po s i t i on con t a i n s a n A SCI I h e x a dec i mal d i g i t
i n th e r a ng e 0 - 9 o r A- F. The fields are defined in Table 3-1.

15

3.1 Intel Hex File FormatCP/M-86 System Guide

Table 3-1. Intel Hex Field Definitions

Field Contents

aaaa

Record Length 00-FF (0-255 in decimal)

Load Address

Record Type :
00 data record, loaded starting at offset

aaaa f rom cu r r en t b a s e p a r a g r aph
Ol end of file, cc = FF
02 extended address, aaaa i s p a r agraph

b ase fo r s u b sequent d a t a r e c o r d s
03 start address is aaaa (ignored, IP set

according to memory model in use)

The following are output from ASM-86 only:
81 same as 00, data belongs to code segment
82 same as 00, data belongs to data segment
83 same as 00, data belongs to stack segment
84 same as 00, data belongs to extra segment
85 paragraph address for absolute code segment
86 paragraph address for absolute data segment
87 paragraph address for absolute stack segment
88 paragraph address for absolute extra segment

Data Byte

Check Sum (00 — Sum of Previous Digits)CC

All characters preceding the colon for each record ar e i g n ored.
(Additional hex file format information is included in the ASM-86
User s Guide, and in Intel s document 49800821A entitled "MCS-86
Absolute Object File Formats.")

3.2 Operation of GENCND

The GENCMD utility is invoked at the CCP level by typing

GENCMD filename parameter-list

where the filename corresponds to the hex iaput file with ee assumed
(and unspecified) file type of H86. GENCMD accepts optional
parameters to specifically identify the 8080 Memory Model and tc
describe memory requirements of each segment group. The GENCMD
parameters are listed following the filename, as shown i n t he
command line above where the parameter-list consists of a sequence
of keywords and values separated by commas or blanks. The keywords
are:

8080 CODE DATA EXTRA S T ACK Xl X2 X3 X4

16

3.2 O p e r a t i o n o f G ENCMDCP/M-86 System Guide

The 8080 keyword forces a single code group so that the BDOS load
function sets up the 8080 Memory Model for execution, thus allowing
intermixed code and data within a single segment. The form of this
command is

GENCMD filename 8080

The remaining keywords follow the filename or the 8080 option and
define specific memory requirements for e ach segment g r o u p ,
corresponding one-to-one with the segment groups defined in the
previous section. In each case, the values corresponding to each
group are enclosed in square brackets and separated by commas. Fach
value is a hexadecimal number representing a paragraph address or
segment length in paragraph units denoted by hhhh, prefixed by a
single letter which defines the meaning of each value:

Ahhhh Load the group at absolute location hhhh
Bhhhh The group starts at hhhh in the hex file
Mhhhh The group requires a minimum of hhhh * 16 bytes
Xhhhh The group can address a maximum of hhhh * 16 bytes

Generally, the CMD file header values are derived directly from the
hex file and the parameters shown above need not be included. The
following situations, however, require the use of GENCMD parameters.

• The 8080 keyword is included whenever ASM-86 is used in
the conversion of 8080 programs to the 8086/8088
environment when code and data are intermixed within a
single 64K segment, regardless of the use of CSFG and
DSEG directives in the source program.

• An absolute address (A value) must be given for any group
which must be located at an absolute location. N ormall y ,
this value is not specified since CP/M-86 cannot
generally ensure that the required memory region is
available, in which case the CMD file cannot be loaded.

• The B value is used when GENCMD processes a hex file
produced by Intel s OH86, or similar utility program that
contains more than one group. The output from OH86
consists of a seq uence of data records with no
information to identify code, data, extra, s tack , or
auxiliary groups. In this case, the B value marks the
beginning address of the group named by the keyword,
causing GENCMD to load data following this address to the
named group (see the examples below) . Thus, the B value
is normally used to mark the boundary between code and
data segments when no segment information is included in
the hex file. Files produced by ASM-86 do not require
the use of the B value since segment information is
included in the hex file.

3.2 Operation of GENCMDCP/M-86 System Guide

The minimum memory value (M value) is included only when
the hex records do not define the minimum memory
requirements for the named group. Generally, the code
group size is determined precisely by the data records
loaded into the area. That is, the total space required
for the group is defined by the range between the lowest
and highest data byte addresses. The data group,
however, may contain uninitialized storage at the end of
the group and thus no data records are present in the hex
file which define the highest referenced data item. The
highest address in the data group can be defined within
the source program by including a "DB 0" as the last data
item. Alternatively, the M value can be included to
allocate the additional space at the end of the group.
Similarly, the stack, extra, and auxiliary group sizes
must be defined using the M value unless the highest
addresses within the groups are implicitly defined by
data records in the hex file.

The maximum memory size, given by the X value, is
generally used when additional free memory may be needed
for such purposes as I/O buffers or symbol tables. If
the data area size is fixed, then the X parameter need
not be included. In this case, the X value is assumed to
be the same as the M value. The value XFFFF allocates
the largest memory region available but, if used, the
transient program must be aware that a three-byte length
field is produced in the base page for this group where
the high order byte may be non-zero. Programs converted
directly from CP/M-80 or programs that use a 2-byte
pointer to address buffers should restrict this value to
XFFF or less, producing a maximum allocation length of
OFFFOH bytes .

The following GENCMD command line transforms the file X.H86
the file X.CMD with the proper header record:

gencmd x code[a40] data[m30,xfff]

into

In this case, the code group is forced to paragraph address 40H, or
equivalently, byte address 400H. The data group requires a minimum
of 300H bytes, but can use up to OFFFOH bytes, if available.

18

3.2 O p e r a t i o n o f G ENCMDCP/M-86 System Guide

Assuming a file Y.H86 exists on drive B containing Intel hex
records with no interspersed segment information, the command

gencmd b: y data[b30,m20] ext r a [b50] s t a ck [m40] x l [m40]

produces the file Y.CMD on drive B by selecting records beginning
a t add r ess 0 0 008 f o r t he co d e segment, with records starting at
300H allocated to the data segment. The extra segment is filled
from records beginning at 500H, while the stack and auxiliary
segment 41 are uninitialized areas r equi r i n g a m in i mum o f 4 0 0 H
bytes each. In this example, the data area requires a minimum of
200H bytes. Note again, that the B value need not be included if
the Digital Research ASM-86 assembler is used.

3.3 Operation of LMCMD

GENCMD, with the exception that LMCMD accepts an Intel L-module
file as input. The primary advantage of the L-module format is
that the file contains internally coded information which defines
values which would otherwise be required as parameters to GENCMD,
such the beginning address of the group s data segment. C urrent l y ,
however, the only language processors which use this format are the
standard Intel development packages, although various independent
vendors will, most likely, take advantage of this format in the

The LMCMD utility operates in exactly the s ame manner a s

f utu re .

19

3.4 Command (CMD) File FormatCP/M-86 System Guide

3.4 Command (CMD) Pile Format

The CMD file produced by GENCMD and LMCND consists of the
128-byte header record followed immediately by the memory image.
Under normal circumstances, the format of the header record is of
no consequence to a programmer. For completeness, however, the
various fields of this record are shown in Figure 3-1.

128 Bytes

GDfl GD42 GD43 GD44 GD45-GD48.

Code,
Data,

Extra ,
Stack,

Auxi l i a ry

Pigure 3-1. CND File Header Format

8-bi t 16- b i t

In Figure 3-1, GD42 through GD48 represent "Group Descriptors."
Each Group Descriptor corresponds to an independently loaded
program unit and has the following fields:

1 6-bit 16-bi t

G-Form G-Length A-Bas e G-Nin G-Nax

where G-Form describes the group format, or has the value zero if
no more descriptors follow. If G-Form is non-zero, then the 8-bit
value is parsed as two fields:

G-Form:
4 -bit 4-bi t

x x x x G- Type

The G-Type field determines the Group Descriptor type. The valid
Group Descriptors have a G-Type in the range 1 through 9, as shown
i n Tabl e 3 - 2 b e lo w .

20

CP/M-86 System Guide 3.4 Command (CND) File Format

Table 3-2. Group Descriptors

Group TypeG-Type

1

8
9

2 3

4 5

6 7

Code Group
Data Group
Extra Group
Stack Group
Auxiliary Group 41
Auxiliary Group 42
Auxiliary Group 43
Auxiliary Group 44
Shared Code Group
Unused, bu t R e s e r v ed
Escape Code for Additional Types

10 — 14
15

All remaining values in the group descriptor are given in
increments of 16-byte paragraph units with an assumed low-order 0
nibble to complete the 20-bit address. G-Length gives the number
of paragraphs in the group. Given a G-length of 0080H, for
example, the size of the group is 00800H = 2048D bytes . A- Ba s e
defines the base paragraph address for a non-relocatable group
while G-Min and G-Max define the minimum and maximum size of the
memory area to allocate to the group. G-Type 9 marks a "pure" code
group for use under NP/M 86 and future versions of CP/M 86.
Presently a Shared Code Group is treated as a non-shared Program
Code Group under CP/M-86.

The memory model described by a header record is implicitly
determined by the Group Descriptors. The 8080 Memory Model is
assumed when only a code group is present, since no independent
data group is named. The Small Model is implied when both a code
and data group are present, but no additional group descriptors
occur. Otherwise, the Compact Model is assumed when the CMD file
i s l o aded .

21

Section 4
Basic Disk Operating System Functions

This section presents the interface conventions which allow
transient program access to CP/M-86 BDOS and BIOS functions. The
BDOS calls correspond closely to CP/N-80 Version 2 in order to
simplify translation of existing CP/M-80 programs for operation
under CP/N-86. BDOS entry and exit conditions are described first,
followed by a presentation of the individual BDOS function calls.

4.1 BDOS Parameters and Function Codes

Entry to the BDOS is accomplished through the 8086 software
interrupt 4224, which is reserved by Intel Corporation for use by
CP/M-86 and MP/M-86. The function code is passed in register CL
with byte parameters in DL and word parameters in DX. Single byte
values are returned in AL, word values in both AX and BX, and double
word values in ES and BX. All segment registers, except ES, are
saved upon entry and restored upon exit from the BDOS (corresponding
to PL/M-86 conventions). Table 4-1 summarizes input and output
parameter passing:

Table 4-1. BDOS Parameter Summary

BDOS Entry Registers

CL F u n c t i o n C o de
DL By t e P a r ameter
DX Word Parameter
DS Dat a Segment

BDOS Return Registers

Byte value returned in AL
Word value returned in both AX and BX
Double-word value returned with

offset in BX and
s egment i n E S

Note that the CP/M-80 BDOS requires an "information address" as
input to various functions. This address usually provides buffer or
File Control Block information used in the system call. In CP/M-86,
however, the information address is derived from the current DS
register combined with the offset given in the DX register. That
is, the DX register in CP/M-86 performs the same function as the DE
pair in CP/N-80, with the assumption that DS is properly set. This
poses no particular problem for programs which use only a single
data segment (as is the case for programs converted from CP/M-80),
but when the data group exceeds a single segment, you must ensure
that the DS register is set to the segment containing the data area
related to the call. It should also be noted that zero values are
returned for function calls which are out-of-range.

23

4.1 BDOS Parameters and Function CodesCP/M-86 System Guide

A list of CP/M-86 calls is given in Table 4-2 with an asterisk
following functions which differ from or are added to the set of
CP/M-80 Version 2 functions.

BDOS Functions

Result

T able 4 -2 . CP/ M - 8 6

Result

0* System Reset
1 Con s o l e I np u t
2 Console Output
3 Rea de r I np u t
4 Pun c h Ou t pu t
5 List Output
6* Direct Console I/O
7 Get I/O Byte
8 Set I/O Byte
9 P rint String
l0 Read Console Buffer
ll Get Console Status
12 Ret u r n V e r s i o n Number
13 Reset Disk System
14 Sel e c t Di sk
15 Op e n F i l e
16 Cl o se F i l e
17 Sea r c h f o r F i r s t
1 8 Sea r c h f o r N e x t
19 Delete File
2 0 Re a d S equent i a l
21 W rite Sequential
22 Ma k e F i l e
2 3 Ren ame F i l e

24
75
26
27*
28
29
30
31*
32
33
34
35
36
37*
40
50*
51*
52*
53*
54*
55*
56*
57*
58*
59*

R eturn Log i n V e c t o r
R eturn Cur r en t D i s k
Set DMA Address
G et Addr (A l l o c)
Write Protect Disk
G et Addr (R/0 V e c t o r)
Set File Attributes
Get Addr (D is k P a rms)
Set/Get User Code
Read Random
Write Random
Compute File Size
Set Random Record
Reset d r i ve
Write Random wit h Z e r o F i l l .
Direct B I OS Cal . l
Set DMA Segment Base
Get DMA Segment Base
Get Max Memory Avail. able
Get Max Mem at Abs Location
Get Memorv Region
Get Absolute Memory Region
F ree memorv r e g i o n
Free all memory
Program l.oad

The individual BDOS functions are described below in three
sections which cover the simple functions, file o perat i o ns , an d
extended operations for memory management and program loading.

24

4.2 Simple BDOS CallsCP/M-86 System Guide

4.2 Simple BDOS Calls

The first set of BDOS functions cover the range 0 through 12,
and perform simple functions such as system reset and single
character I/O.

ReturnEntry

CL: OOH

DL: Abor t
Code

FUNCTION 0

SYSTEM RESET

The system reset function returns control to the CP/M operating
system at the CCP command level. The abort code in DL has two
possible values: if DL = OOH then the currently active program is
terminated and control is returned to the CCP. If DL is a 01H, the
program remains in memory and the memory allocation state remains
unchanged.

ReturnEntry

CL: 01H A L: ASCII Ch ar ac t e rF UNCTION 1

CONSOLE INPUT

The console input function reads the next character from the
logical console device (CONSOLE) to register AL. Graphic
characters, along with carriage return, line feed, and backspace
(CONTROL-H) are echoed to the console. Tab characters (CONTROL-I)
are expanded in columns of eight characters. The BOOS does not
return to the calling program until a character has been typed, thus
suspending execution if a character is not ready.

ReturnEntry

CL: 02H F UNCTION 2

CONSOLE OUTPUTDL: ASCI I
Character

The ASCII character from DL is sent to the logical console.
Tab characters expand in columns of eight characters. In addition,
a check is made for start/stop scroll (CONTROL-S) .

25

CP/M-86 System Guide 4.2 Simple BDOS Calls

Entry

CL: 03H

Return

A L: ASCII Ch ar ac t e rFUNCTION 3

READER INPUT

The geader Input function reads the next character from the
logical reader (READFR) into register AL. Control does not return
until the character has been read.

ReturnEntry

CL: 04H FUNCTION 4

PUNCH OUTPUTDL: ASCI I
Character

The Punch Output function sends the character from register DL
to the logical punch device (PUNCH).

ReturnEntry

CL: 05H F UNCTION 5

LIST OUTPUTDL: ASC I I
Character

The List Output function sends the ASCII character in register
DL to the logical list device (LIST) .

26

4.2 Simple BDOS CallsCP/M-86 System Guide

Entry

C L: 0 6 H

D L: OFFH (i npu t)

O FEH (sta t u s)

c har (o u t p u t)

or

F UNCTION 6

DIRECT CONSOLE I/O

Return

AL: char o r s t at u s

(no val ue)

or

Direct console I/O is supported under CP/M-86 for those
specialized applications where unadorned console input and output is
required. Use of this function should, in general, be avoided since
it bypasses all of CP/M-86's normal control character functions
(e.g. , CONTROL-S and CONTROL-P). P ro g r ams which pe r f o r m d i r e c t I / O
through the BIOS under previous releases of CP/M-80, however, should
be changed to use direct I/O under the BDOS so that they can be
fully supported under future releases of MP/M™ and CP/M.

Upon entry to function 6, register DL either contains (1) a
hexadecimal FF, denoting a CONSOLE input request, or (2) a
hexadecimal FE, denoting a CONSOLE status request, or (3) an ASCII
character to be output to CONSOLE where CONSOLE is the logical
console device. If the input value is FF, then function 6 directly
calls the BIOS console input primitive. The next console input
character is returned in AL. If the input value is FE, then function
6 r e t u r n s A L = 00 if no character is ready and AL = FF o t h e r w i s e .
If the input value in DL is not FE or FF, then function 6 assumes
t ha t D L con t a i n s a val i d AS CI I cha r a c t e r w h i c h i s sent t o t he
console .

Entry

CL: 07H

Return

AL: I/O Byte ValueF UNCTION 7

GET I/O BYTE

The Get I/O Byte function returns the current value of IOBYTE
in register AL. The IOBYTE contains the current assignments for the
logical devices CONSOLE, READER, PUNCH, and LIST provided the IOBYTE
f ac i l i t y i s i mp l e mented i n t he B I O S .

27

4.2 Simple BDOS CallsCP/N-86 System Guide

ReturnEntry

CL: 08H

DL: I/O Byte

F UNCTION 8

SET I/O BYTE
Value

The Set I/O Byte function changes the system IOBYTE value to
that given in register DL. This function allows transient program

access to the IOBYTE in order to modify the current assignments for
the logical devices CONSOLE, READER, PUNCH, and LIST.

ReturnEntry

CL: 09H

D X: St r i n g
Offset

F UNCTION 9

PRINT STRING

The Print String function sends the character string stored in
memory at the location given by DX to the logical console device
{CONSOLE), u n t i l a "$" is encountered in the string. T abs a r e

expanded as in function 2, and checks are made for start/stop scroll
and prin te r echo .

ReturnEntry

CL: OAH

D X: Buf f e r
Offset

FUNCTION 10 C onsole Charac t e r s

i n Buf f e rREAD CONSOLE BUFFER

28

4.2 Simple BDOS CallsCP/M-86 System Guide

The Read Buffer function reads a line of edited console inout into a
buffer addressed by register DX from the logical console device
(CONSOLE) . Console input is terminated when either the input buffer
is filled or when a return (CONTROL-M) or a line feed (CONTROL-J)
character is entered. The input buffer addressed by DX takes the
f orm:

DX: +0 +1 + 2 + 3 + 4 + 5 + 6 + 7 +8 . . . +n

mx nc cl c 2 c 3 c 4 c 5 c6 c 7 . . . 7?

where "mx" is the maximum number of characters which the buffer will
hold, and "nc" is the number of characters placed in the buffer.
The characters entered by the operator follow the "nc" value. The
value "mx" must be set prior to making a function 10 call and may
range in value from 1 to 255. Setting mx to zero is equivalent to
setting mx to one. The value "nc" is returned to the user and may
range from 0 to mx. If nc < mx, then uninitialized positions follow
the last character, denoted by "~?" in the above figure. Note t ha t
a terminating return or line feed character is not placed in the

A number of editing control functions are supported during
console input under function 10. These are summarized in Tab1e 4-3.

buffer and not included in the count "nc".

Table 4-3. Line Editing Controls

ResultKeystroke

rub/del
CONTROL-C
CONTROL-E
CONTROL-H
CONTROL-J
CONTROL-M
CONTROL-R
CONTROL-U
CONTROL-X

removes and echoes the last character
reboots when at the beginning of line
causes physical end of line
backspaces one character position
(l ine f e ed) t er m i n a te s i n p u t l i ne
(return) terminates input line
retypes the current line after new line
removes current line after new line
backspaces to beginning of current line

Certain functions which return the carriage to the leftmost position
(e.g., CONTROL-X) do so only to the column position where the prompt
ended. Th i s convention makes operator data input and line
c orrect ion more l eg i b l e .

29

4.2 Simple BOOS CallsCP/M-86 System Guide

ReturnEntry

CL: OBH A L: Consol e S t a t u sFUNCTION 11

GET CONSOLE STATUS

The Console Status function checks to see if a character has
been typed at the logical console device (CONSOLE) .

I f a c h a r a c t e r

is ready, the value 01H is returned in register AL. Otherwise a OOH

v alue i s r et ur n e d .

ReturnEntry

CL: 0CH BX: Vers i o n NumberFUNCTION 12

RETURN VERSION NUMBER

Funct i o n 1 2 p r ov i d es i n f o r ma t i o n wh i ch al] ow s ve r s i on

independent p r o g ramming. A two-bvte value is returned, with BH = 00

designating the CP/M release (BH = 01 for MP/M), and BL = 00 fo r a l l

r eLeases p r e v i o u s t o 2. 0 . C P/M 2.0 r e t u r n s a hexadecimal 20 in

register BL, with subsequent version 2 releases in the hexadecimal
r ange 21, 22 , t h r o ugh 2F . To prov ide v e r s i o n n umber compat i b i l i t y ,
the initial release of CP/M-86 returns a 2.2.

4.3 BDOS Pile Operations

under CP/M-86. In many of these operations, DX provides the DS­
relative offset to a file control block (FCB) . The File Control

B lock (F CB) da t a a rea c o n s i s t s o f a seq u ence o f 3 3 by t es f o r

s equent ia l ac c e s s , or a sequence of 36 bytes in the case that the
file is accessed randomly. The default file control block normally

located at offset 005CH from the DS register can be used for random
access files, since bytes 0070H, 007EH, and 007FH are available for
this purpose. Here is the FCB format, followed by definitions of

Funct i on s 1 2 t hr o ug h 5 2 a r e related to disk file operations

each of its fields:

30

4.3 BDOS File OperationsCP/M-86 System Guide

dr fl f2 / / f8 tl t2 t3 ex sl s2 rc dO / / dn cr rO rl r2

0 0 01 02 . . . 08 09 10 1 1 1 2 1 3 1 4 1 5 1 6 . . . 31 32 33 3 4 35

where

dr

ex

sl

S2

• • •

drive code (0 — 16)
0 => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P.

fl...f8 contain the file name in ASCII
upper case, with high bit 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 0

tl , t2 , and t3 denote the high
bit of these positions,
t l = 1 => Read/Only file,
t 2 = 1 => SYS file, no DIR list

contains the current extent number,
normally set to 00 by the user, but
in range 0 — 31 during file I/O

reserved for internal system use

reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

record count for extent "ex,"
takes on values from 0 - 128

dO...dn filled-in by CP/M, reserved for

rc

system use

current record to read or write in
a sequential file operation, normally
set to z ero by user

cr

rO,rl,r2 optional random record number in the
r ancre 0-65535, wi t h ove r f l o w t o r 2 ,

with overllow to r2
rQ,rl constitute a 16-bit value with
low byte rO, and high byte rl

For users of earlier versions of CP/M, it should be noted in
passing that both CP/M Version 2 and CP/M-86 perform directory
operations in a reserved area of memory that does not affect write
buffer content, except in the case of Search and Search Next where
the directory record is copied to the current DMA address.

31

4.3 BDOS File Operations

There are three error situations that the BDOS may encounter during
file processing, initiated as a result of a BDOS File I/O function
call. When one of these conditions is detected, the BDOS issues the
following message to the console:

CP/M-86 System Guide

BDOS ERR ON x: e r r o r

where x i s t he dr i ve name of the drive selected w hen t he error

condition is detected, and "error" is one of the three messages:

BAD SECTOR SEL ECT R/0

These error situations are t r a p ped b y t he BD OS, and t h u s t he

executing transient program is temporarily halted when the error is
detected. No indication of the error situation is returned to the
transient program.

condition returned to the BDOS from the BIOS module. The BDOS makes

BIOS sector read and write commands as part of the execution of BDOS
file related system calls. If the BIOS read or write routine

detects a hardware error, it returns an er ro r co d e t o t he BD OS
resulting in this error message. The operator may respond to this

error in two ways: a CONTROL-C terminates the execut in g p r o g r a m,

while a RETURN instructs CP/M-86 to ignore the error and allow the
program to continue execution.

condition returned to the BDOS from the BIOS module. The BDOS makes

a BIOS disk select call prior to issuing any BIOS read or write to a
particular drive. If the selected drive is not supported in the
BIOS module, it returns an error code to the BDOS resulting in this
error message. CP/M-86 terminates the currently running program and
returns to the command level of the CCP following any input from the

The "R/0" message occurs when the BDOS receives a command to
write to a drive that is in read-only status. D rives may be p l a c e d

in read-only status explicitly as the result of a STAT command or
BDOS function call, or implicitly if the BDOS detects that disk
media has been changed without performing a " warm s t a r t . " The

ability to detect changed media is optionally included in the BIOS,
and exists only if a checksum vector is included for the selected
drive. Upon entry of any character at the keyboard, the transient
program is abor ted , and control returns to the CCP.

The "BAD SECTOR" error is issued as the r esul t of an error

The "SELECT" error is also issued as the r esul t of an er r o r

console .

32

4.3 BDOS File OperationsCP/M-86 System Guide

ReturnEntry

CL: ODH FUNCTION 13

RESET DISK SYSTEM

The Reset Disk Function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
(see f u n c t i o n s 2 8 a n d 29) , only d i s k d r i ve A i s selected . Th i s
function can be used, for example, by an application program which
requires disk changes during operation. F unct io n 3 7 (R eset D r i ve)
can also be used for this purpose.

ReturnEntry

CL: OEH

D L: Selec t e d

FUNCTION 14

SELECT DISK
Disk

The Select Disk function designates the disk drive named in
register DL as the default disk for subsequent file operations, with
DL = 0 for drive A, 1 for drive B, and so - f o r t h t hr ou g h 15
corresponding to drive P in a full sixteen drive system. I n
addi t i o n , t he de s i g n a te d d r i v e i s l ogg e d - i n i f i t i s cur r en t l y i n
the reset state. Logging-in a drive places it in "on-line" status
which activates the drive s directory until the next cold start,
warm start, disk system reset, or drive reset operation. FCB s

w hich spec i f y d r i v e c od e z er o (d r = 00H) automatically reference the

currently selected default drive. D rive code v a l u e s b e t ween 1 a n d
1 6, h o w e v er, i g no r e t he selected default drive a nd di r ec t l y
r eference d r i v e s A t h r o ug h P .

ReturnEntry

CL: OFH AL: Retur n CodeFUNCTION 15

OPEN FILEDX: FCB
Offset

The Open File operation is used to activate a FCB specifying a
file which currently exists in the disk directory for the currently
active user number. The BDOS scans the disk directory of the drive
specified by byte 0 of the FCB referenced by DX for a match i n
positions 1 through 12 of t he r e f e r e n ced F CB, w here a n A S CI I
question mark (3FH) matches any directory character in any of these
positions. Normally, no question marks are included and, further,
byte "ex" of the FCB is set to zero before making the open call.

33

4.3 BDOS File OperationsCP/M-86 System Guide

If a directory element is matched, the relevant directory
information is copied into bytes d0 through dn of the FCB, thus
allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed until a
successful open operation is completed. F urther, an FCB not
activated by either an open or make function must not be used in
BDOS read or write commands. Upon return, the open function returns
a "directory code" with the value 0 through 3 if the open was
successful, or OFFH (255 decimal) if the file cannot be found. If
question marks occur in the FCB then the first matching FCB is
activated. Note that the current record ("cr") must be zeroed by
the program if the file is to be accessed sequentially from the
f i r s t r ec o r d .

ReturnEntry

CL: 10H AL: Retur n CodeFUNCTION 16

CLOSE FILEDX: FCB
Offset

The Close File function performs the inverse of the open file
function. Given that the FCB addressed by DX has been previously
activated through an open or make function (see functions 15 and
22), the close function permanently records the new FCB i n t he
referenced disk directory. The FCB matching process for the close
is identical to the open function. The directory code returned for
a successful close operation is 0, 1, 2, or 3, while a OFFH (255
decimal) is returned if the filq name cannot be found in the
directory. A file need not be closed if only read operations have
taken place. If write operations have occurred, however, the close
operation is necessary to permanently record the n ew d i r e c t o r v
i nformat i o n .

34

4.3 BDOS 5'ile OperationsCP/M-86 System Guide

ReturnEntry

CL: 11H

DX: FCB

FUNCTION 17

SEARCH FOR FIRST

A L: D i r e c t o r y
Code

Offset

Search First scans the directory for a match with the file

given by the FCB addressed by DX. The value 255 (hexadecimal FF) is

returned if the file is not found, otherwise 0, 1 , 2 , o r 3 i s

returned indicating the file is present. In the case that the file

is found, the buffer at the current DNA address is filled with the
record containing the directory entry, and its relative starting

position is AL * 32 (i.e., rotate the AL register left 5 bits).
Although not normally required for application programs, the

directory information can be extracted from the buffer at t h i s

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from "fl" through "ex" matches the corresponding field of
any directory entry on the default or auto-selected disk drive.

If

the "dr" field contains an ASCII question mark, then the auto disk
select function is disabled, the default disk is searched, with the
search function returning any matched entry, allocated or free,

belonging to any user number. This latter function is not normally

used by application programs, but does allow complete flexibility to
scan all current directory values. I f t he "dr" field is not a

question mark, the "s2" byte is automatically zeroed.

posit i on .

ReturnEntry

CL: 12H FUNCTION 18

SEARCH FOR NEXT

A L: D i r e c t o r y
Code

The Search Next function is similar to the Search First

function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

In t e r ms

of execut ion s equence, a function 18 call must follow e ithe r a

function 17 or function 18 call with no other intervening BDOS disk
related function calls.

35

4.3 BDOS File OperationsCP/M-86 System Guide

ReturnEntry

C L: 1 3 H AL: Retur n CodeFUNCTION 19

D ELETE FI L EDX: FCB
Offset

The Delete File function removes files which match the FCB
addressed by DX. The filename and type may contain ambiguous
references (i.e., question marks in various positions), but the
drive select code cannot be ambiguous, as in the Search and Search
Next functions. Function 19 returns a OFFH (decimal 255) if the
referenced file or files cannot be found, otherwise a value of zero
i s r e t u r n e d .

ReturnEntry

CL: 14H

DX: FCB

AL: Retur n CodeFUNCTION 20

READ SEQUENTIAL
Offset

Given that the FCB addressed by DX has been activated through
an open or make function (numbers 15 and 22), the Read Sequential
function reads the next 128 byte record from the file into memory at
the current DNA address. The record is read from posit.ion "cr" of
the extent, and the "cr" field is automatically incremented to the
next record position. If the "cr" field overflows then the next

logical extent is automatically opened and the "cr" field is reset
to zero in preparation for the next read operation. The "cr " f i el d
must be set to zero following the open call by the user i f t he
intent is to read sequentially from the beginning of the file. The
value OOH is returned in the AL register if the read operat.ion was
successful, while a value of 01H is returned if no data exists at
the next record position of the file. Normally, the no data
situation is encountered at the end of a file. However, i t can a l so
occur if an attempt is made to read a data block which has not been
previously written, or an extent which has not been created. These
situations are usually restricted to files created or appended by
use of the BDOS Write Random commmand (function 34) .

36

CP/M-86 System Guide 4.3 BDOS File Operations

ReturnEntry

CL: 15H

DX: FCB

AL: Retur n CodeFUNCTION 21

WRITE SEQUENTIAL
Offset

Given that the FCB addressed by DX has been activated through
an open or make function (numbers 15 and 22), the Write Sequential
function writes the 128 byte data record at the current DNA address
to the file named by the FCB. The record is placed at position "cr"
of the file, and the "cr" field is au(omatically incremented to the
next record position. If the "cr" field overflows then the next
logical extent is automatically opened and the "cr" field is reset
to zero in preparation for the next write operation. Write
operations can take place into an existing file, in which case newly
written records overlay those which already exist in the file. The
"cr" field must be set to zero following an open or make call by the
user if the intent is to write sequentially from the beginning of
the file. Register AL = OOH upon return from a successful write
operation, while a non-zero value indicates an unsuccessful write
due to one of the following conditions:

01 No available directory space - This condition occurs when
the write command attempts to create a new extent that
requires a new directory entry and no available directory
entries exist on the selected disk drive.

02 No available data block - This condition is encountered
when the write command attempts to allocate a new data
block to the file and no unallocated data blocks exist on
the selected disk drive.

ReturnEntry

CL: 16H AL: Retur n CodeFUNCTION 22

MAKE FILEDX: FCB
Offset

The Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in the
currently referenced disk directory (i.e., the one named explicitly
by a non-zero "dr" code, or the default disk if "dr" is zero). The
BDOS creates the file and initializes both the directory and main
memory value to an empty file. The programmer must ensure that, no
duplicate file names occur, and a preceding delete operation is
sufficient if there is any possibility of duplication. Upon return,
register A = 0, 1, 2, or 3 if the operation was successful and OFFH
(255 decimal) if no more direCtory space is available. The make
function has the side-effect of activating the FCB and thus a
subsequent open i s no t n ecessary .

37

4.3 BDOS File OperationsCP/M-86 System Guide

ReturnEntry

CL: 17H

DX: FCB

AL: Retur n CodeFUNCTION 23

RENAME FILE
Offset

The Rename function uses the FCB addressed by DX to change all
directory entries of the file specified by the file name in t he

first 16 bytes of the FCB to the file name in the second 16 bytes.
It is the user s responsibility to insure that the file names
specified are valid CP/M unambiguous file names. The dr ive code
"dr" at position 0 is used to select the drive, while the drive code
for the new file name at position 16 of the FCB is ignored. Upon
return, register AL is set to a value of zero if the rename was
successful,.and OFFH (255 decimal) if the first file name could not
be found in the directory scan.

ReturnEntry

C L: 1 8 H

BX: Log i n
Vector

FUNCTION 24

RETURN LOGIN

B X: Logi n V e c t o r

VECTOR

The login vector value returned by CP/M-86 is a 16-bit value in
BX, where the least significant bit corresponds to the first drive
A, and the high order bit corresponds to the sixteenth drive,

labelled P. A "0" bit indicates that the drive is not o n - l i ne ,

while a "1" bit marks an drive that is actively on-line due to an
explicit disk drive selection, or an implicit drive select caused by
a file operation which specified a non-zero "dr" field.

ReturnEntry

CL: 19H A L: Cur r en t D i s kFUNCTION 25

RETURN CURRFNT
DISK

Function 25 returns the currently selected default disk number
i n r eg i s t e r AL . T he d i s k num b e r s r ange f r om 0 t hr ou g h 15
corresponding to drives A through P.

38

CP/M-86 System Guide 4.3 BDOS File Operations

Entry

CL: 1 AH

DX: DMA

Return

FUNCTION 26

SET DNA
ADDRESSOffset

"DNA" is an acronym for Direct Memory Address, which is often
used in connectidn with disk controllers which directly access the
memory of the mainframe computer to transfer data to and from the
disk subsystem. Although many computer systems use non-DNA access
(i.e., the data is transfered through programmed I/O operations),
the DMA address has, in CP/N, come to mean the address at which the
128 byte data record resides before a disk write and after a disk
read. In the CP/M-86 environment, the Set DMA function is used to
specify the offset of the read or write buffer from the current DNA
base. Therefore, to specify the DNA address, both a function 26
call and a function 51 call are required. Thus, the DNA address
becomes the value specified by DX plus the DNA base value until it
i s changed by a s u b sequent Se t DNA or set DNA base function.

Entry

CL: 1BH FUNCTION 27

GET ADDR(ALLOC)

Return

BX: ALLOC Offset

ES: Segment base

An "allocation vector" is maintained in main memory for each
on-line disk drive. Various system programs use the information
provided by the allocation vector to determine the amount of
remaining storage (see the STAT program). Function 27 returns the
segment base and the offset address of the allocation vector for the
currently selected disk drive. The allocation information may,
however, be invalid if the selected disk has been marked read/only.

Entry

CL: 1CH

Return

FUNCTION 28

WRITE PROTECT DISK

T he d ' i s k write protect function provides temporary write
protection for the currently selected disk. Any attempt to write to
the disk, before the next cold start, warm start, disk system reset,
or drive reset operation produces the message:

Bdos Er r o n d : R /0

39

CP/M-86 System Guide 4 .3 B DOS F i l e O p e r a t io n s

Entry

CL: 1 DH FUNCTION 29

GET READ/ONLY

Return

B X: R/0 Vec to r V a l u e

VECTOR

Function 29 returns a bit vector in register BX which indicates
drives which have the temporary read/onlv bit set. Simila r t o
function 24, the least significant bit corresponds to drive A< while
the most significant bit corresponds to drive P. The R/0 bit is set
either by an explicit call to function 28, or by the automatic
software mechanisms within CP/lf-86 which detect changed disks.

Entry

C L: 1 E H FUNCTION 30

Return

AL: Retur n Code

DX: FCB S ET FI L E
ATTRIBUTESOffset

The Set F ile A t tributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/0, System and Archive attributes (tl , t2 , and
t3) can be set or reset. The DX pair addresses a FCB containing a
file name with the appropriate attributes set or reset. I t i s t he
user s responsibility to insure that an ambiguous file name is not
specified. Function 30 searches the default disk drive directory
area for directory entries that belong to the current user number
and that match the FCB specified name and type fields. All matching
directory entries are updated to contain the selected indicators.
Indicators fl through f4 are not present1y used, but may be useful
for applications programs, since they are not involved in the
matching process during file open and close operations. I ndica t o r s
f 5 t hr o u g h f 8 are reserved for future system expansion . The
currently assigned attributes are defined as follows:

The R/0 attribute indicates if set that the file
is in read/only status. BDOS will not allow write
commands to be issued to files in R/0 status.

The System attribute is referenced by the CP/M DIR
utility. If set, QIR will not display the file in
a di rec tory d isplay.

t2

40

CP/W-86 System Guide 4.3 BnOS File Operations

t3 : The Archive attribute is reserved but not actually
used bv <P/N-86 If set it inRicates that the file
has been written to back up s toraqe b y a user
w ri t t e n ar ch i ve p r og r am . To implement this
facilitv, the archive program sets this attribute
when i t cop i es a f i 1e t o back u p s t or a q e ; anv
programs updatinq or creating files r eset t h i s
attribute. Further, the archive proqram backs up
only those files that have the Archive attribute
reset. Thus, an automatic back up facilitv
restricted to moRified f i l e s c an b e e as i l y
i.mplemented.

Function 30 returns with register AL set to OFFH (255 Recimal)
if the referenced file cannot be found, otherwise a value of zero is
returned .

Entrv

C L: 1 F H FUNCTION 31

GET ADDR
(DISK PARNS)

Return

RX: DPB Of f set

ES: Segment Rase

The offset and the seqment base of. the B10S resident Risk
oarameter block of the currently selected drive are returned in BX
and ES as a result of. this function call. This control. block can be
used for either of. two ourooses. First, the Risk parameter.values
can be extracted for display and space computation purposes, or
t rans i en t p r o g r ams can dynamica l l v c h ange the v a l ues o f c u r r e n t d i . sk
parameters when the disk environment changes, i f r equ i r e d .
Normally, application programs wi11 not require this facility.
Section 6.3 defines the BIOS Risk parameter block.

Entry

C.'L: 2 OH

DL: OFFH(get)

User Code
(set)

FUNCTION 32

SET/GET
USER CODE

AL: Cur r en t C o de
or no v a 1ue

Return

or

An application proqram can change or interrogate the current1y
active user number by callinq function 32. If register DL = OFFH,
then the value of the current user number is returned in register
AL< where the value is in the ranqe 0 to 15. If. register. DL is not
OFFH, then the current user number is changed to the value of DL
(modulo 16) .

41

4.3 BDOS File OperationsCP/M-86 System Guide

Entry

FUNCTION 33

READ RANDOM

Return

AL: Retur n CodeCL: 218

DX: FCB
Offset

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r0 at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits is stored with least significant byte first (r0), middle
byte next (rl), and high byte last (r2). CP/M does not reference
byte r2, except in computing the size of a file (function 35). Byte
r2 must be zero, however, since a non-zero value indicates overflow
past the end of file.

Thus, the r0,rl byte pair is treated as a double-byte, or
"word" value, which contains the record to read. This value ranges
from 0 to 65535, providing access to any particular r ecord o f a n y
size file. In order to access a fileusing t he R e a d R a ndom
function, the base extent (extent 0) must first be opened. Although
the base extent may or may not contain any allocated data, this
ensures that the FCB is properly initialized for subsequent random
access operations. The selected record number is then stored into
the random record field (rO,rl), and the BDOS is called to read the
record. Upon return from the call, register AL either contains an
error code, as listed below, or the value 00 indicating the
operation was successful. In the latter case, the buffer a t t h e
current DNA address contains the randomly accessed record. Note
that contrary to the sequential read operation, the record number is
not advanced. Thus, subsequent random read operations continue to

Upon each random read operation, the logical extent and current
record values are automatically set. Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode
to sequential read, and the last record will be re-written as you
switch to a sequential write operation. You can, of course, simply
advance the random record position following each random read or
write to obtain the effect of a sequential I/O operation.

r ead th e s ame r eco r d .

42

4.3 BDOS File OperationsCP/M-86 System Guide

Error codes returned in register AL following a random read are
listed in Table 4-4, below.

Table 4 -4 . Fun c t i o n 3 3 (R ead Randoa) Er ro r Codes

Code

Ol Reading unwritten data - Th i s er r o r co d e i s r et ur ne d
when a random read operation accesses a data block which
has not been previously written.

Meaning

02 (not returned by the Random Read command)

03 Cannot close current extent ­ This e r r o r c o d e i s
returned when BOOS cannot close the current extent prior
to moving to the new extent containing the record
specified by bytes rO,rl of the FCB. This error can be
caused by an overwritten FCB or a read random operation
on an FCB tha t h a s n o t b e e n o p ened.

04 Seek to unwritten extent — This error code is returned
when a random read operation accesses an extent that has
not been created. This error situation is equivalent to
e rror 0 1 .

05 (not returned by the Random Read command)

06 Random record number out of, range - This error code is
returned whenever byte r2 of the FCB is non-zero.

Normally, non-zero return codes can be treated as missing data, with
zero return codes indicating operation complete.

43

4 .3 B DOS F i l e O p e r a t io n sCP/M-86 System Guide

ReturnEntry

CL: 22H

DX: FCB

AL: Retur n CodeFUNCTION 34

WRITE RANDOM

Offset

The Write Random operation is initiated simi1ar to the Read
Random call, except that data is writren to the disk from the
current DMA address. Further, if the disk extent or data block
which i s t he t ar g e t of t he wr i t e has not yet been allocated, the
allocation is performed before the write operation continues. As in
the Read Random operation, the random record number is not changed
as a result of the write. The logical. extent number and current
record positions of the file control bLock are set to correspond to
the random record which is being written. Sequentia1 read or write
operations can commence following a random write, with the note that
the currently addressed record is either read or rewritten again as
the sequentiaL operation begins. You can also simply advance the
random record position following each write to get the effect of a
sequential write operation. In particul.ar, reading or writing the

last record of an extent in random mode does not cause an automatic
extent switch as it does in sequentia1 mode.

base extent (extent 0) must first be opened. As in t h e R ead Random
function, this ensures that the FCB is properly initialized for
subsequent random access operations. If the file is empty, a Make
File function must be issued for the base extent. Al.though the base
extent may or may not contain any al.located data, this ensures that
the file is properly recorded in the directory, and i s v i s i b L e i n

Upon return from a Write Random cal~, register AL either

contains an error code, as listed in Table 4-5 below, or the vat.ue
00 indicating the operation was successfuL.

In order to access a file using the Write Random function, the

D IR request s .

Table 4-5. Function 34 (WRITE RANDOM) Error Codes

MeaningCode

01 (not returned by the Random Write command)

02 No available data block — This condition is encountered
when the Write Random' command attempts to al.locate a new
data block to the file and no unallocated data b1ocks
exist on the selected disk drive.

44

4.3 BDOS File OperationsCP/M-86 System Guide

Table 4-5. (continued)

Code

03 Cannot close current extent ­ This e r r or code i s
returned when BDOS cannot close the current extent prior
to moving to the new extent containing the record
specified by bytes rO,rl of the FCB. This error can be
caused by an overwritt'n FCB or a write random operation
on an FCB tha t h a s n o t b e e n o p ened.

Meaning

04 (not returned by the Random Write command)

05 No available directory space - This condition occurs
when the write command attempts to create a new extent
that requires a new directory entry and no available
directory entries exist on the selected disk drive.

06 Random record number out of range — This error code is
returned whenever byte r2 of the FCB is non-zero.

ReturnEntry

CL: 23H Random Record
F ield Se t

FUNCTION 35

COMPUTE FILEDX: FCB
SIZEOffset

When computing the size of a file, the DX register addresses an
FCB in random mode format (bytes r0, rl, and r2 are present) . The
FCB contains an unambiguous file name which is used in the directory
scan. Upon return, the random record bytes contain the "virtual"
file size which is, in effect, the record address of the record
following the end of the file. If, following a call to function 35,
the high record byte r2 is 01, then the file contains the maximum
record count 65536. Otherwise, bytes r0 and rl constitute a 16-bit
value (r0 is the least significant byte, as before) which is the
file size.

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of
file, then performing a sequence of random writes starting at the
preset r ecord address.

The virtual size of a file corresponds to the physical size
when the file is written sequentially. If, instead, the file was
created in random mode and "holes" exist in the allocation, then the
file may in fact contain fewer records than the size indicates. If,
for example, a single record with record number 65535 (CP/M s
maximum record number) is written to a file using the Write Random
function, then the virtual size of the file is 65536 records,
although only one block of data is actually allocated.

45

4.3 BDOS File OperationsCP/M-86 System Guide

Entry

CL: .24H

OX: FCB

Return

Random Record
F ield S e t

FUNCTION 36

SET RANDOM
RECORDOffset

The Set Random Record function causes the BDOS to automatically
produce the random record position of the next record to be accessed
from a file which has been r ead o r wr i t t e n sequentially to a

particular point. The function can be useful in two ways.

sequential file to extract the positions of various "kev" fields.
As each key is encountered, function 36 is called to compute the
random record position for the data corresponding to this key. If

the data unit size is 128 bytes, the resulting record position minus
one is placed into a tab).e with the key for l.ater retrieval.

After

scanning the entire file and tabularizing the keys and their record
numbers, you can move instantly to a par t i cu l a r key e d r e c o r d b y

performing a random r ead us ing t h e corresponding r a n d om record

number which was saved earlier. The scheme is easily generalized

when variable record lengths are involved since the program need
only store the buffer-relative byte position along with the key and
record number in order to find the exact starting position of the
keyed data at a later time.

sequential read or write over to random read qr write.
A f i l e i s

sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subsequent random read
and write operations continue from the next record in the file.

First, it is often necessary to initially read and scan a

A second use of. function 36 occurs when swi t c h i n g f r om a

Entry

C L: 2 5 H

DX: Dr ive
Vector

Return

AL: OOHFUNCTION 37

RESET DRIVE

The Reset Drive function is used to programmatically restore
specified drives to the reset state (a reset drive is not logged-in
and is in read/write status). The passed parameter in register DX

is a 16 bit vector o f d r i v e s t o be r eset , w h e r e t he l e a s t

significant bit corresponds to the first drive, A, a nd th e h i g h

order bit corresponds to the sixteenth drive, labell.ed P. Bit

values of "1" indicate that the specified drive is to be reset.

I n orde r t o m a i n ta i n c o mpat i b il i t y wi t h M P /M, CP/M r e t u r n s a
zero value for this function.

46

CP/M-86 System Guide 4.3 BDOS File Operations

ReturnEntrv

CL: 28H

DX: FCB

AL: Retur n CodeFUNCTION 40

WRITE RANDOM
W ITH ZERO FI L LOffset

The Write Random With Zero Fill function is similar to the
Write Random function (function 34) with the exception that a
previousl y u n a l l o c a t e d d a t a b l o c k i s i n i t i al i zed t o r eco r d s f i l l ed
with zeros before the record is written. If this function has been
used to create a file, records accessed by a read random operation
that contain all zeros identify unwritten random record numbers.
Unwritten random records in allocated data blocks of files created
using the Write Random function contain uninitialized data.

ReturnEntry

C L: 3 2 H FUNCTION 50

DIRECT BIOS CALLD X: B I O S
D escrip t o r

Function 50 provides a direct BIOS call and transfers control
through the BDOS to the BIOS. The DX register addresses a five-byte
memory area containing the BIOS call parameters:

8-bit 16-b it 16-bi t

F unc val ue (CX) val ue (D X)

where Func is a BIOS function number, (see Table 5-1), and value(CX)
and value(DX) are the 16-bit values which would normally be passed
directly in the CX and DX registers with the BIOS call. The CX and
DX values are loaded into the 8086 registers before the BIOS call is
i n i t i a t e d .

47

4.3 BDOS File OperationsCP/M-86 System Guide

ReturnEntry

C L: 3 3 H FUNCTION 51

SET DNA BASEDX: Base
Address

Function 51 sets the base r eg i s t e r f o r subsequent D NA
transfers. The word parameter in DX is a paragraph address and is
used with the DMA offset to specify the address of a 128 byte buffer
area to be used in the disk read and write functions. N ote t h a t
upon initial program loading, the defau1t ONA base is set t o t he
address of' the user s data segment (the initial. value of DS) and the
DMA offset is set to 0080H, which provides access to the default
buffer in the base page.

ReturnFntr v

C L: 3 4 H BX: DMA Offset

ES: DNA Seqment

FUNCTION 52

GET DNA BARF

Function 52 returns the current DNA Base Segment address in ES,
with the current DNA Offset in OX.

4.4 BDOS Meaory Management and Load

first is through a static allocation map, located within the BIOS,
that defines the physica1 memory which is available on the host

system. In this way, it is possible to operate CP/N-86 in a memory
configuration which is a mixture of up to eight non-contiguous areas
of RAM or ROM, along with reserved, missing, or faulty memorv

regions. In a simple RAN-based system with contiguous memory, the
static map defines a single region, usually starting at the end of
the BIOS and extending up to the end of available memory.

performs the second level of. dynamic allocation to support transient
program loading and execution. CP/N-86 allows dynamic allocation of
memory into, again, eight regions. A request for allocation takes

p lace e i t her i mp l i c i t l y , through a program load operation, or

explicitly through the BROS calls given in this section. programs
themselves are loaded in two ways: through a command entered at the
CCP level, or through the BDOS Program Load operation (function 59).
Multiple programs can be loaded at the CCP level, as long as each
program executes a System Reset (function 0) and remains in memorV
(DL = 01H). Multiple programs of this type only receive contro1 by
intercepting interrupts, and thus under normal circumstances there

Memory is allocated in two distinct ways under CP/N-86. The

Once memory is physically mapped in this manner, CP/N-86

48

4.4 BDOS Memory Management and Load

i s only one t r a n s i en t p r o gram in memory a t an y g i v e n t i m e . I f ,
however, multiple programs are present in memory, then CONTROL-C
characters entered by the operator delete these programs in the
opposite order in which they were loaded no matter which program is
actively reading the console.

CP/M-86 System Guide

Any given program loaded through a CCP command can, itself,
load additional programs and allocate data areas. S u ppose f o ur
regions of memory are allocated in the following order: a program
is loaded at the CCP level through an operator command. The CMD
file header is read, and the entire memory image consisting of the
program and its data is loaded into region A, and execution beqins.
This program, in turn, calls the BDOS Program Load function (59) to
load another program into region B, and transfers control to the
loaded program. The region B program then allocates an additional
region C, followed by a region D. The order of allocation is shown
in Figure 4-1 be low:

Region A

Region B

Region C

Region D

Figure 4-1.~ BxaIIple Memory Allocation

There is a hierarchical ownership of these regions: the program in
A controls all memory from A through D. The program in B also
controls regions B through D. The program in A can release regions
B through D, if desired, and reload yet another program. DDT-86,

for example, operates in this manner by executing the Free Memory
call (function 57) to release the memory used by the current program
before loading another test program. Further, the program in B can
release regions C and D if required by the application. It must be
noted, however, that if either A or B terminates by a System Reset
(BDOS function 0 with DL = OOH) then all four regions A through D
are re leased.

49

4.4 BOOS Memory Management and LoadCP/N-86 System Guide

A transient program may release a portion of a region, allowing
the released portion to be assigned on the next allocation request.
The released portion must, however, be at the beginning or end of
the region. Suppose, for example, the program in region B above
receives 800H paragraphs at paragraph location 100H following its
first allocation request as shown in Figure 4-2 below.

1000H:

Length =

8000H R eg ion C

Figure 4-2 . E x aaple Neaory Region

Suppose further that region D is then allocated. T he l as t 200 H
paragraphs in region C can be returned without affecting region D by
releasing the 200H paragraphs beginning at paragraph base 700H,
resulting in the memory arrangement shown in Figure 4-3.

1000H:
Length =

6000H R egion C

///////////
///////////

Length = 7000H:
2000H

Figure 4-3. Example Meaory Regions

The region beginning at paragraph address 700H is now available for
allocation in the next request. Note that a memorv request will
fail if eight memory regions have already been allocated. N ormal l y ,
if all program units can reside in a contiguous region, the system
allocates only one region.

50

4.4 BDOS Memory Management and LoadCP/M-86 System Guide

Memory management functions beginning at 53 reference a Memory
Control Block (MCB), defined in the calling program, which takes the
forq:

16-bit 16-b it 8-bit

MCB: M-Base M-Length N-E xt

where M-Base and M-Length are either input or output values
expressed in 16-byte paragraph units, and M-Ext is a returned byte
value, as defined specifically wj.th each function code. A n er ro r
condition is normally flagged with a OFFH returned value in order to
match the file error conventions of CP/M.

ReturnEntry

CL: 35H

DX: Offset
of NCB

FUNCTION 53 AL: Retur n Code

GET MAX NEM

Function 53 finds the largest available memory region which is
less than or equal to N-Length paragraphs. If successful, M-Base is
set to the base paragraph address of the available area, and M­
Length to the paragraph length. AL)as the value OFFH upon return
if no memory is available, and OOH zf the request was successful.
N-Ext is set to 1 if there is additional memory for allocation, and
0 i f n o a d d it i on a l m emory i s ava i l ab l e .

ReturnEntry

CL: 36H

DX: Offset
of NCB

AL: Retur n CodeFUNCTION 54

GET ABS MAX

Function 54 is used to find the largest possible region at the
absolute paragraph boundary given by N-Base, for a maximum of N­
Length paragraphs. N-Le ngth is set to the actual length if
successful. AL has the value OFFH upon r etur n i f no me mor y i s
available at the absolute address, and 00H if the request was
s uccessfu l .

51

4.4 BDOS Memory Management and LoadCP/M-86 System Guide

ReturnEntry

C L: 3 7 H

DX: Offset
of MCB

AL: Retur n CodeFUNCTION 55

ALLOC MEM

The allocate memory function allocates a memory area according
to the MCB addressed by DX. The allocation request size is obtained
from M-Length. Function 55 returns in the u ser s %CB t h e b a s e
paragraph address of the allocated region. Register AL contains a
OOH if the request was successful and a OFFH if the memorv could not
b e al l o c a t e d .

ReturnEntry

CL: 38H

DX: Offset
of MCB

FUNCTION 56 AL: Retur n Code

ALLOC ABS MEM

The allocate absolute memory function allocates a memory area
according to the MCB addressed by DX. The allocation request size
is obtained from M-Length and the absolute base address from N-Base.
Register AL contains a OOH if the request was successful and a OFFH
if the memory could not be allocated.

ReturnFntry

C L: 3 9 H

DX: Offset
of MCB

FUNCTION 57

FREE NEM

Function 57 is used to release memory areas allocated to the
program. The value of the M-Ext field controls the operation of
this function: if N-Ext = OFFH then all memory areas allocated by
the calling program are released. Otherwise, the memory area of
length N-Length at location M-Base given in the MCB addressed by DX
is released (the M-Ext field -should be set to OOH in this case). As

described above, either an entire allocated region must be released,
or the end of a region must be released: the middle section cannot
be re t u r ned u nder CP/N-86 .

52

CP/M-86 System Guide 4.4 BDOS Memory Management and Load

ReturnEntry

CL: 3AH FUNCTION 58

FREE ALL MEM

Function 58 is used to release all memory in the CP/M-86
environment (normally used only by the CCP upon initialization) .

ReturnEntry

CL: 3BH

DX: Offset
of FCB

FUNCTION 59 AX: Return Code/
Base Page Addr

BX: Base Page AddrPROGRAM LOAD

Function 59 loads a CMD file. Upon entry, register.DX contains
the DS relative offset of a successfully opened FCB which names the
input CMD file. AX has the value OFFFFH if the program load was
unsuccessful. Otherwise, AX and BX both contain the paragraph
address of the base page belonging to the loaded program. The base
address and segment length of each segment is stored in the base
page. Note that upon program load at the CCP level, the DMA base
address is initialized to the base page of the loaded program, and
the DMA offset address is initialized to 0080H. H owever, t h i s i s a
function of the CCP, and a function 59 does not establish a default
DMA address. It is the responsibility of the program which executes
function 59 to execute function 5l to set the DMA base and function
26 to set the DMA offset before passing control to the loaded
program.

53

Section 5
Basic I/O System (BIOS) Organization

The distribution version of CP/M-86 is setup for operation with
the Intel SBC 86/12 microcomputer and an Intel 204 diskette
controller. All hardware dependencies are, however, concentrated in
subroutines which are collectively referred to as the Basic I/O
System, or BIOS. A CP/M-86 svstem implementor can modify these
subroutines, as described below, to tailor CP/M-86 to fit nearly any
8086 or 8088 operating environment. This section describes the
actions of each BIOS entry point, and defines variables and tables
referenced within the BIOS. The discussion of Disk Definition
Tables is, however, treated separately in the next section of this
manual.

5.1 Organization of the BIOS

The BIOS portion of CP/M-86 resides in the topmost portion of
the operating system (highest addresses), and takes the general form
s hown in F i g u r e 5 - 1 , bel o w :

CS, DS , Z S , SS :

Console
Command
Processor

and
Basic
Disk
O perat i n g
System

CS + 2500H:

CS + 253FH:

BIOS Jump Vector

BIOS Entry Points

BIOS:
Disk

Parameter
Tables

Uninitialized
Scratch RAM

Figure 5-1. General CP/N-86 Organization

55

5.1 Organization of the BIOSCP/M-86 System Guide

As described in the following sections, the CCP and BDOS are
supplied with CP/M-86 in hex file form as CPM.H86. I n o r de r t o
implement CP/M-86 on non-standard hardware, you must create a BIOS
which performs the functions listed below and concatenate the
resulting hex file to the end of the CPM.H86 file. The GENCMD
utility is then used to produce the CPM.SYS file for subsequent load
by the cold start loader. The cold start loader that loads the
CPM.SYS file into memory contains a simplified form of the BIOS,
called the LDBIOS (Loader BIOS). It loads CPM.SYS into memory at
the location defined in the CPM.SYS header (usually 0400H). The
procedure to follow in construction and execution of the cold start
loader and the CP/M-86 Loader is given in a later s ect i o n .

Appendix D contains a listing of the standard CP/M-86 BIOS for
the Intel SBC 86/12 system using the Intel 204 Controller Board.
Appendix E shows a sample "skeletal" BIOS called CBIOS that contains
the essential elements with the device drivers removed. You may
wish to review these listings in order to determine the overal l
structure of the BIOS.

5.2 The BIOS Jump Vector

Entry to the BIOS is through a "jump vector" located at offset
2500H from the base of the operating system. The jump vector is a
sequence of 21 three-byte jump instructions which transfer program
control to the individual BIOS entry points. Although some non­
essential BIOS subroutines may contain a single retur n (R ET)
instruction, the corresponding jump vector element must be present
in the order shown below in Table 5-1. An example of a BIOS jump
vector may be found in Appendix D, in the standard CP/M-86 BIOS
l i s t i n g.

Parameters for the individual subroutines in the BIOS are
passed in the CX and DX registers, when required. C X recei ves t h e
first parameter; DX is used for a second argument. R eturn v a l u e s
are passed in the registers acco ding to type: Byte v a l u e s a re
returned in AL. Word values (16 bits) are returned in BX. S peci f i c
parameters and returned values are described with each subroutine.

56

5.2 The BIOS Jump VectorCP/N-86 System Guide

BIOS
F4

Table 5-1. BIOS Jump Vector

Suggested
Instruction

J MP INI T
JNP WBOOT
JMP CONST
JMP CONIN
JMP CONOUT
JNP LI ST
.TNP PUNCH
JMP READER
JNP HONE
JNP RELDSK
,TMP SETTRK
JNP SETSEC
JMP. SETDNA
JNP READ
JNP WRITE
JMP LISTST
JMP SECTRAN
JMP SETDMAB
JMP GETSEGB
JMP GETIOB
JKP RETIOB

0 1 2 3 4 5 6 7 8

Offset f r om
Beginning

of BIOS

2500H
2503H
2506H
2509H
250CH
250FH
2512H
2515H
2518H
251BH
251EH
2521H
2524H
2527H
252AH
252DH
2530H
2533H
2536H
2539H
253CH

T here are t h r e e majo r d i v i s i o n s i n t h e B I OS j ump ta b l e : system

(re) in i t i a l i za t i on s u b r o u t in e s , simple character I/O subroutines,

and disk I/O subroutines.

Descrip t i o n

Arr iv e H er e f r o m Co1d Boot
Arrive Here for Warm Start
Check fo r C o n sol e C har R eady
Read Conso1e Charac te r I n
Write Console Character Out
Write Listing Character Out
W rite Char t o P u nc h Dev i c e
R ead Reader Dev i c e
M ove to T r ac k 0 0
Select Disk Drive
Set Tr ack Number
Set Recto r N umber
Set DNA Offset Address
R ead Selec te d Se c t o r
Write Selected Sector
Return List Status
S ector T r a n s l a t e
Set DMA Segment Address
Get NEM DERC Table Offset
Get I/O Napping Byte
Ret I/O Napping Byte

9
10
11
12
13
14
15
16
17
18
19
20

5.3 Simple Peripheral Devices

i n ASCII , u p pe r an d l o wer c a se , w i t h hi q h o r d e r (pa r i t y b i t) set t o
zero. An end-of-file condition for an input device is given by an
ASCII control-z (lAH). Peripheral devices are seen by CP/N-86 as
"logical" devices, and are assigned to physical devices within the
BIOS. Device characteristics are defined in Table 5-2.

All simple character I/O operations are assumed to be performed

57

5 .3 Si m p l e P e r i p h e r a l D e v i c e sCP/M-86 System Guide

Table 5-2. CP/M-86 Logical Device Characteristics

CharacteristicsDevice Name

CONSOLE

LIST

PUNCH

The pr inc ipa1 interactive c onso l e wh i c h
communicates with the operator, accessed through
CONST, CONIN, and CONOUT. Typical.ly, the CONSOLE
is a device such as a CRT or Teletype.

T he pr i n c i pa l l i st i ng d e v i c e , i f i t ex i s t s o n y o u r
system, which is usually a hard-copv device, such
as a printer or Tel.etvpe.

The pri nc i pa l t a p e p u n c h in g d e v i c e , i f. i t ex i st s ,
which is normally a high-speed paper tape ounch or
Teletype .

The p r i n c i p a l . t ape r ead i n q dev i ce , such a s a
simple optical reader or teletype.

READER

Note that a sinql.e peripheral can be assigned as the LIST,
PUNCH, and READER device simultaneously. I f no pe r i o h e ra 1 dev i c e i s
assigned a s t h e L I S T , P UNCH,or READER device, your CBIOS should
qive an appropriate error message so that the svstem does not "hang"
if the device is accessed by PIP or some other transient proqram.
Alternately, the PUNCH and LIST subroutines can just simp1v return,
and the RFMDER subroutine can return with a 1AH (ctl-7) in req A to
i ndicat e i mmediat e e n d - o f - f i l e .

For added f1exibility, you can optional]v implement the
"IOBYTE" function which allows reassignment of physical and logicaL
devices. The IOBYTE function creates a mapoinq of logical to

physical devices which can be altered during CP/M-86 processing (see
the STAT command). The de finition of the IOBYTE function
corresponds to the Inte1 standard as foll.ows: a singl e l . oca t i o n i n
the BIOS is maintained, called IOBYTE, which defines the logical to
p hysical . dev i c e mapp inq wh i c h i s i n ef f ec t at a par t i cul ar t i me .
The mapping is performed by splitting the IOBYTE into four distinct
fields of two bits each, called the CONSOLE, READER, PUNCH, and LIST
fields, as shown below:

LIST

most significant l east s i g n i f i can t

P UNCH READER CONSO L E

bits 6,7 bits 4,5 bits 2,3 b it s 0 , 1

IOBYTE

58

CP/M-86 System Guide 5.3 Simple Peripheral Devices

The value in each field can be in the range 0-3, defining the
assigned source or destination of each logical device. The values
which can be assigned to each field are given in Table 5-3, below.

Table 5-3. IOBYTE Field Definitions

CONSOLE field (bits 0,1)
0 — conso1e is assigned to the console printer (TTY:)
1 — console is assigned to the CRT device (CRT:)
2 — batch mode: use the READER as the CONSOLE input,

and the LIST device as the CONSOLE output (BAT:)
3 — user defi.ned console device (UC1:)

RFADER field (bits 2,3)
0 — READER is the Teletype device (TTY:)
1 — READFR is the high-speed reader device (RDR:)
2 — user de f i n e d r e a de r 4 1 (U R 1 :)
3 — user de f i n e d r e a de r 4 2 (U R 2 :)

PUNCH field (bits 4,5)
0 — PUNCH is the Teletype device (TTY:)
1 — PUNCH is the high speed punch device (PUN:)
2 — user de f i n e d p unch 4 1 (U P 1 :)
3 — user de f i n e d p unch 4 2 (U P 2 :)

LIST f i e l d (b i t s 6 , 7)
0 — LIST i s t h e T e le t y p e d e v i c e (T T Y ;)
1 — LIST i s t h e CRT dev i c e (C RT:)
2 — LIST i s t h e l i ne p r i nt e r dev i c e (L P T :)
3 — user de f i n e d l i s t dev i c e (U L 1 :)

Rote again that the imp1ementation of the IOBYTE is optional,
and affects only the organization of your CBIOS. N o CP/M-86
utilities use the IOBYTE except for PIP which „allows access to the
physical devices, and STAT which allows logical-physical assignments
to be made and displayed. In any case, you should omit the IOBYTE
implementation until your basic CBIOS is fully implemented and
tested, then add the IOBYTE to increase your facilities.

59

CP/N-86 System Guide 5.4 BIOS Subroutine Fntry Points

5.4 BIOS Subroutine Entry Points

The actions which must take place upon entrv to each BIOS
subroutine are given below. It should be noted that disk I/O is
always performed through a sequence of calls on the various disk
access s u b r o u t i n es . These setup the disk number to access, the
track and sector on a particular di.sk, and the direct memorv access
(DMA) offset and segment addresses involved in the I/O operation.
After all these parameters have been setup, a ca11 is made to the
READ or WRITE function to perform the actual I/O operation. Mote
that there is often a single call to SELDSK to select a disk drive i

followed by a number of read or write operations to the selected
disk before selecting another drive for s ubsequent o p e r a t i o n s .
Similarly, there may be a call to set the DMA segment base and a
call to set the DMA offset followed bv several calls which read or
write from the selected DMA address before t he DMA address i s
changed. The track and sector subroutines are always called before
the READ or WRITE operations are performed.

The READ and WRITE subroutines should perform several retries
(10 is standard) before reporting the error condition to the BDOS.
The HOME subroutine mav or may not actually perform the track 00
seek, depending upon your controLler characteristics; the important
point is that track 00 has been selected for the next operation, and
is often treated in exactly the same manner as SETTRK with a
parameter o f 00 .

Table 5-4. BIOS Subroutine Summary

S ubrout i n e D escrip t i o n

INIT

WBOOT

This subroutine is called directly bv the CP/M-86
loader after the CPM.SYS file has been read into
memory. The procedure is responsible for any
hardware initialization not performed by the
bootstrap loader, setting initial values for RIOR
v ariab le s (i n c lu d i n g I OBYTE), p r i nt i n g a s i gn - o n
message, and initializing the interrupt vector to
point to the BDOS offset (OB11H) and base. When
this routine completes, it jumps t o t h e C C P
offset (OH). All segment registers s hould b e
initialized at this time to contain the base of
the operating system.

This subroutine is called whenever a program
terminates by performing a BDOS function i)0 call.
Rome re-initiaLization of the hardware or
s of t war e m a y occ u r her e . When this routine
completes, it jumps directLv to the warm start
entry point of the CCP (06H).

Sample the status of the currently assigned
console device and return OFFH in register AL if
a character is ready to read, and 00H in register
AL if no console characters are ready.

COMST

60

CP/M-86 System Guide 5.4 BIOS Subroutine Entry Points

T able 5- 4 . (continued)

D escrip t i o nSubrout i ne

CONIN

LIST

PUNCH

CONOUT

READER

Read the next console character into register AL,
and set. the pa r i t y b i t (h i g h o r de r b i t) t o zer o .
If no console character is ready, wait until a
character is tvped before returning.

Send the character from register CL to the
console output device. The characte r i s i n
ASCII, with high order parity bit set to zero.
You may want to include a time-out on a line feed
or carriage return, if your c onsole d e v i c e
requires some time interval at the end of t he
line (such as a TI Silent 700 terminal) . You
can, if you wish, filter out control characters
which have undesirable effects on the console
device.

Send the character from register CL to the
currently assigned listing device. The character
is in ASCII with zero parity.

Send the character from register CL to the
currently assigned punch device. The characte r
is in ASCII with zero parity.

Read the next character from t he c u r r e n t l y
assigned reader device into register AL with zero
parity (high order bit must be zero). An end of
file condition is reported by returning an ASCII
CONTROL-Z (1AH) .

Return the disk head of the currently selected
disk to the track 00 position. I f you r
controller does not have a special feature for
finding track 00, you can translate the call into
a call to SETTRK with a parameter of 0.

HOME

61

5.4 BIOS Subroutine Entry PointsCP/s-86 System Guide

Table 5-4 . (continued)

D escrip t i o nSubrout i ne

SELDSK

SETTRK

S el.ect t h e d i s k d r i v e g i v e n b y re g i s t e r C L F o r
turther operations, where register CL contains 0
for drive A, l for drive B, and so on up to 15
f or d r i v e P (t he st a n dard CP/M-86 d i s t r i b u ti o n
version supports two drives). On each disk
select, SELDSK must return in BX the base address
of the selected drive s Disk Parameter Header.
For standard floppy disk drives, the content of
the header and associated tabl.es does not change.
The sample BIOS included with CP/8-86 callecl
CBIOS contains an example program segment that
performs the SELDSK function. If. there is an
attempt to select a non-existent drive, SELDSK
r eturns BX=OOOOH as an error indicator. Although
SELDSK must return the header address on each
call, it is advisabl.e to postpone the actual
physical disk sel.ect operation until. an I/O
function (seek, read or write) is performed.
This is due t o th e fact t hat d isk select
operations may take place without a subsequent
disk operation and thus disk access may be
substantiall.y sl.ower using some disk control.Lers.
On entry to SELDSK it is possible to determine
whether it is the first time the specified disk
has been selected. Register DL, bit 0 (l.east
s igni f i c an t b i t) i s a zer o i f t he dr i ve h a s n o t
been previously selected. This information is of.
interest in systems which read configuration
information from the disk in order to set up a
d ynamic d i s k de f i n i t i on t ab l. e .

Register CX contains the track number for
subsequent disk accesses on the currentlv
selected drive. You can choose to seek the
selected track at this time, or delay the seek
until the next read or write actuall.y occurs.
Register CX can take on values in the range 0-76
corresponding to valid track numbers for standard
floppy disk drives, and 0-65535 for non-standard
disk subsystems.

Register CX contains the translated sector number
for subsequent disk accesses on the currently
selected drive (see SEC'TRAN, bel.ow) . You can
choose to send this information to the controlLer
at this point, or instead delay sector selection
until. a read or write operation occurs.

SETSEC

CP/M-86 System Guide 5.4 BIOS Subroutine Entry Points

T able 5- 4 . (continued)

D escrip t i o nSubrout i ne

SETDMA

READ

WRITE

Register CX contains the DMA (disk memory access)
offset for subsequent read or write operations.
For example, if CX = 80H when SETDMA is calledg
then all subsequent read operations read their
data into 80H through OFFH offset from the
current DMA segment base, and all subsequent
write operations get their data from that
address, until the next calls to SETDMA and
SETDMAB occur. Note that the controller need not
actually support direct memory access. If, for
example, all data is received and sent through
I/O ports, the CBIOS which you construct will use
the 128 byte area starting at the selected DMA
offset and base for the memory buffer during the
following read or write operations.

Assuming the drive has been selected, the track
has been set, the sector has been set, and the
DMA offset and segment base have been specified,
the READ subroutine attempts to read one sector
based upon these parameters, and returns the
following error codes in register AL:

0 no er r o r s o c c u r r e d
1 non-recoverable error condition occurred

Currently, CP/M-86 responds only to a zero or
non-zero value as the return code. That is, if
the value in register AL is 0 then CP/M-86
assumes that the disk operation completed
properly. If an error occurs, however, the CBIOS
should attempt at least 10 retries to see if the
error is recoverable. When an error is reported
the BDOS will print the message "BDOS ERR ON x:
BAD SECTOR". The operator then has the option of
typing RETURN to i g nore t h e e r r o r , or C ONTROL-C
t o abor t .

Write the data from the currently selected DMA
buffer to the currently selected drive, track,
and sector. The data should be marked as "non­
deleted data" to maintain compatibility with
other CP/M systems. The error codes given in the
READ command are returned in register AL, with
error recovery attempts as described above.

Return the ready status of the list device. The
value 00 is returned in AL if the list device is
not ready to accept a character, and OFFH if a
character can be sent to the printer.

LISTST

63

CP/N-86 System Guide 5.4 BIOS Subroutine Entry Points

T able 5- 4 . (continued)

D escrip t i o nSubrout i ne

SECTRAN

SETDMAB

Performs logical to physical sector translation
to improve the overall response of CP/N-86.
Standard CP/N-86 systems are shipped with a "skew
factor" of 6, where five physical sectors are
skipped between sequential read or write
operations. This skew factor allows enough time
between sectors for most programs to l.oad their
buffers without missing the next sector. In
computer systems that use fast processors,. memory
a nd d i s k subsystems, the skew factor may be
changed to improve overall response. 'Mote,
however, that you shoul.d maintain a single
density IBM compatibl.e version of CP/N-86 for
information transfer into and out of your
computer system, using a skew factor of 6. In
general, SECTRAN receives a logical sector number
in CX. This logical sector number may range from
0 to the number of sectors - 1 . Sec t r a n al so
receives a translate table offset. in DX. The
sector number is used as an index into the
translate table, with the resulting physical
sector number in BX. For standard systems, the
tables and indexing code is provided in the CBIOS
and need n o t be cha n ged . I f DX = 0000H no
transl.ation takes place, and CX is simply copied
to B X b e f o r e r e t u r n i ng . Ot he r wi se , SEC TRAN
computes and returns the translated sector number
in BX. Note that SECTRAM is called when no
transl.ation is specified in the Disk Parameter
Header.

Register CX contains the seqment base for
subsequent DNA read or write operations. The
BIOS will use the 128 byte buffer at the memorv
address determined by the DNA base and the DNA
offset during read and write operations.

Retur ns the address of. the Memory Region Table
(NRT) in BX. The returned value is the offset of
the table rel.ative to the start of the operating
system. Th e table defines the location and
extent of physical memory which is available for
transient programs.

GETSEQB

64

CP/N-86 System Guide 5.4 BIOS Subroutine Entry Points

Table 5-4 . (continued)

D escrip t i o nSubrout i ne

Nemory areas reserved for interrupt vectors and
the CP/N-86 operating system are not included in
the NRT. The Nemory Region Table takes the form:

8-bit

%RT;

0 •

R-Cnt

R-Base R-Length

R-LengthR-Base

n: R-Base

16-bi t

R-Length

16-bit

GETIOB

where R-Cnt is the number o f Nemory Reg ion
Oescriptors (equal. to n+1 in the diagram above),
while R-Base and R-Length give the paragraph base
and length of each physically contiguous area of
memory. Again, the reserved interrupt locations,
normally 0-3FFH, and the CP/N-86 operating system
are not included in this map, because the map
contains regions available to transient programs.
I~ all memory is contiguous, the R-Cnt field is 1
a nd n = 0, with only a single Nemory Region
Descriptor which detines the region.

Returns the current value of the logical to
physical input/output device byte (IOBVTE) in AL.
Th'is eight-bit value is used to associate
physical devices with CP/N-86 s four logical
devices.

Use the value in CL to set the value of the
IOBYTE stored in the BIOS.

SETIOB

The following section describes the exact layout and
construction of the disk parameter tables referenced by various
subroutines in the BIOS.

65

Section 6
BIOS Disk Definition Tabbies

Similar to CP/M-80, CP/M-86 is a tabl.e-driven operating system
with a separate field-conf igurable Basic I/O System (BIOS) . By
altering soecific subroutines in the RIOR presented in the previous
section, CP/M-86 can be customized for operation on any RAN-based
8086 or 8088 mic roprocessor s v s t em.

The purpose of this section is to present the orqanization and
construction o f tabt es within the B IO S th a t de f ine the
characteristics of a particular disk system used with CP/M-86.
These tables can be either hand-coded or automatical.ly generated
usinq the QFNDFF utility orovided with CP/I-86. The elements of
these tables are presented below.

6.1 Disk Parameter Table Format

In general, each disk drive has an associated (16-bvte) disk
parameter header which both contains information about the disk
drive and provides a scratchpad area for certain BDOS operations.
The format of the disk parameter header for each drive is shown
below.

XLT

1. 6b

0000

16b

Disk

0000 DIRBUF

16b

P arameter Hea d e r

0000

16b 16b

CSV

16b

ALV

16b16b

where each element is a word (16-bit) value. The meaning of each
Disk Parameter Header (DPH) element is qiven in Table 6-1.

Table 6-1. Disk Parameter Header Elements

ELement D escrip t i o n

XLT Offset of the l.ogical to physical translation vector,
if used for this particular drive, or the value OOOOH
if. no sector translation takes place (i.e, the
phvsical and Logical sector numbers are the same) .
Disk drives with identical sector skew factors share
the same translate tables.

Rcratchpad values for use within the BDOS (initial
value is unimportant) .

0000

67

CP/M-86 System Guide 6. 1 Disk Parameter Table Format

Table 6-1 . (continued)

D escrip t i o n

csv

DPB

Element

DIRBUF Off set of a 128 byte scratchpad area for directory
operations within BDOS. All DPH s address the same
scratchpad area .

Offset of a disk parameter block for t his d r i v» .
Drives with identical disk characteristics address the
same disk parameter block.

Offset of a scratchpad area used for software check for
changed disks. This oftset is different for each DPH.

Offset of a scratchpad area used bv the BDOS to keep
disk storage allocation information. This offset is
different for each DPH.

ALV

Given n disk drives, the DPH s are arranqed in a table whose tirst
r ow o f 16 by t es co r r es p o n ds to drive 0, with the last row
corresponding to drive n-1. The table thus appears as

DPBASE

00

01

XLT 00

XLT 01

0000

0000

0000

0000

0000

0000

(and so- f o r t h t hr o ugh)

DIRBUF DBP 00

DBP 01

CSV 00

CSV 01

ALV 00

ALV 01DIRBUF

n -1 XLTn- 1 00 00 0 000 0 00 0 D1 R BUF DBPn-1 CSVn-1 ALVn- 1

where the label DPBASE defines the offset of the DPH table reLative
to the beginninq of the operating system.

A responsibility of the SELDSK subroutine, defined in the
previous section, is to return the offset of the DPH from the
beginning of the operating system for the selected d r i v e . The
followinq sequence of operations returns the table offset, with a
OOOOH returned if the selected drive does not exist.

68

CP/M-86 System Guide 6.1 Disk Parameter Table Format

NDISKS EOU 4 ;NUMBER OF DISK DRIVES

SELDSK:
• • • • • •

;SELECT DISK N GIVEN BY CI
NOV BX, O OOOH ;READY FOR ERR

J NB RETU RN ;RETURN IF SO
;0 <= N < N D I SKS

CI„NDISKS ;N BEYOND MAX DISKSV

MOV
NOV
MOV
SHL
MOV
ADD

R ETURN: R E T

CH,0 ;DOUBLE (N)
BXpCX ; BX = N
CL,4 ; READY FOR * 1 6
BX,CL ;N = N * 1 6
CX,OFFSET T)PBASE
BX,CX ;DPBASE + N * 16

;BX - .DPH (N)

The translation vectors (XLT 00 t hr o ugh XLTn-1) a re l oca t e d
elsewhere in the BIOS, and simply correspond one-for-one with the
logical sector numbers zero through the sector count-1. The Disk
Parameter Block (DPB) for each drive is more complex. A part i c u l a r
DPB, which is addressed by one or more DPH's, takes the general
form:

SPT BSH B L M EXN DSM DRN A LO AL 1 CKS OFF

16b 8b 8b 8b 16b 16b 8b 8b 16b 16b

w here each i s a b y t e o r w o r d v a l u e , a s shown by th e " 8 b " o r " 16 b "
indicator below the field. The fields are defined in Table 6-2.

Table 6-2. Disk Parameter Block Fields

Field D efin i t i o n

SPT

EXM

DSM

BSH

is the total number of sectors per track

is the data allocation block shift factor, determined
by the data block allocation size.

is the bl ock mask which is also determined by the data
block allocation size.

is the extent mask, determined by the data block
allocation size and the number of disk blocks.

determines the total storage capacity of the disk drive

determines the total number of directory entries which
can be stored on this drive

DRN

69

6.1 Disk Parameter Table FormatCP/M-86 System Guide

Table 6-2 . (continued)

D efin i t i o nF iel d

ALO,AL1 determine reserved directorv blocks.

CZS is the size of the directory check vector

is the number of reserved tracks at the beginning of
the (logical) disk.

Although these table values are produced automatically by GENDEF, it
is worthwhile reviewing the derivation of each field so that the
values may be cross-checked when necessary. The values of BSH and
BLM determine (implicitly) the data allocation size BLS, which is
not an entry in the disk parameter block. Given that you have
selected a value for BLS, the values of BSH and BLM are shown in
Table 6-3 below, where all values are in decimal.

Table 6-3. BSH and BLN Values for Selected BLS

BSH BLM

7
15
31
63

127

BLS

1,024
2,048
4,096
8,192

16,384

The value of EXM depends upon both the BLS and whether the DSM value
is less than 256 or greater than 255, as shown in the following
t ab l e .

BLS

1,024
2,048
4,096
8,192

16,384

0 1 3 7

Table 6-4 . Ma x imum EXM Values

DSM < 256 DSM > 25 5

N/A
0
1
3
715

The value of DSM is the maximum data block number supported by
this particular drive, measured in BLS units. The product BLS times
(DSM+1) is the total number of bytes held by the drive and, o f
course, must be within the capacity of the physical disk, not
counting the reserved operating system tracks.

70

CP/M-86 System Guide 6. 1 Disk Parameter Table Format

The DRM entry is one less than the total number o f d i r e c t o r y
entries, which can take on a 16-bit value. The values of ALO and
ALl, however, are determined by DRM. The two values ALO and Arl can
together be considered a string of 16-bits, as shown below.

ALO AL1

0 0 01 02 03 04 05 06 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 1 5

where position 00 corresponds to the high order bit of the byte
labeled ALO, and 15 corresponds to the Low order bit of the byte
labeled ALl. Each bit position reserves a data block for a number
of directory entries, thus allowing a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at 00 and
filled to the right until oosition 15). Each directorv entry
occupies 32 bytes, as shown in Table 6-5.

Table 6-5. BLS and Number of Directory Entries

BLS

1,024
2,048
4,096
8,192

16,384

D irectorv E n t r i e s

32 times 4 bits
64 times (I bits
128 times 4 bits
256 times 0 bits
512 times 0 bits

Thus, i f DRM = 127 (128 directory entries), and BLS = 1024 , t h en
there are 32 directory entries per block, r equi r i n g 4 r ese r v ed
blocks. In this case, the 4 high order bitso f ALO ar e s e t ,
resulting in the values ALO = OFOH and AL1 = OOH.

The CKS value is determined as follows: if the disk drive
media is removable, then CKS = (DRM+1) /4, where DRM is the last
directory entrv number. If the media is fixed, then set CKS = 0 (no
directory records are checked in this case).

Finally, the OFF field determines the number of tracks which
are skipped at the beginning of the physical disk. This value is
automatically added whenever SETTRK is called, and can be used as a
mechanism for skipping reserved operating system tracks, or for
partitioning a large disk into smaller segmented sections.

To complete the discussion of the DPB, recall that several
DPH s can address the same DPB if their drive characteristics are
identical. Further, the DPB can be dvnamicallv changed when a new
drive is addressed by simply changing the pointer in the DPH since
the BDOS copies the DPB values to a local area whenever the SELDSK
f unct ion i s i nv o ked .

71

6.1 Disk Parameter Table FormatCP/N-86 System Guide

Returning back to the DPH for a particular drive, note that the
two address values CSV and ALV remain. Both addresses reference an
area of uninitialized memory foll. owing the BIOS. The areas must be
unique for each drive, and the size of each area is determined by
the values in the DPB •

The size of the area addressed by CSV is CKS bytes, which is
sufficient to hold the directory check information for this
particular drive. If CKS = (DR<+1) /4, then you must reserve
(DRN+1) /4 bytes for directory check use. If CKS = 0 , t h en no
s torage i s r e s e r v ed .

The size of the area addressed by ALV is determined by the
maximum number of data blocks allowed for this particular disk, and
is computed as (DSM/8) +l.

The BIOS shown in Appendix D demonstrates an instance of these
tables for standard 8" single density drives. It may be useful to
examine this program, and compare the tabular values with the
defin i t i o n s g i v e n above.

6.2 Table Generation Using GENDEF

The GENDEF utility supplied with CP/N-86 greatly simplifies the
table construction process. GENDEF reads a file

x.DFF

containing the disk definition statements, and produces an output
f i l e

x .L I B

containing assembly language statements which define the tabLes
necessary to support a particular drive configuration. The form of
the GENDEF command is:

GENDEF. x parameter list

where x has an assumed (and unspecified) filetype of DEF. The
parameter list may contain zero or more of the symbols defined in
T able 6 - 6 .

Table 6-6. GENDEF Optional Parameters

EffectParameter

8c
SO
SZ
$COZ

Generate Disk Parameter Comments
Generate DPBASE OFFSET $
Z 80, 8080, 8 085 Over r i d e
(Any of t h e Above)

72

CP/M-86 System Guide 6.2 Table Generation Using GENDEF

The C parameter causes GENDEF to produce an accompanying
comment line, similar to the output from the "STAT DSK:" utility
which describes the characteristics of each defined disk. Normally ,
the DPBASE is defined as

DPBASE EQU $

which requires a MOV CX,OFFSET DPBASE in the SELDSK subroutine shown
above. For convenience, the $0 parameter produces the definition

DPBASE EQU O F FSET $

allowing a MOV CX,DPBASE in SELDSK, in order to match your
particular programming practices. The $Z parameter is included to
override the standard 8086/8088 mode in order to generate tables
acceptable for operation with Z80, 8080, and 8085 assemblers.

T he disk def i n i t i o n c on t a i ned wi t h i n x . DEF is composed with t h e
CP/M text editor, and consists of disk definition statements
identical to those accepted by the DISKDEF macro supplied with CP/M­
80 Version 2. A BIOS disk definition consists of the following
sequence of statements:

DISKS n
DISKDEF 0 , . . .
DISKDEF 1 , • . .

DISKDEF n - 1
• • • • • •

• • • • • •

ENDEF

Each statement is placed on a single line, with optional embedded
comments between the keywords, numbers, and delimiters.

configured with your system, where n is an integer in the range 1
through 16. A series of DISKDEF statements then follow which define
the character istics of each logical disk, 0 through n-l ,
corresponding to lqgical drives A through P. Note that the DISKS
and DISKDEF statements generate the in-) ine fixed data tables
described in the previous section, and thus must be placed in a non­
executable portion of your BIOS, typically at the end of your BIOS,
before the start of uninitialized RAM.

unini t i a l i z e d RAM areas which are l o c a ted beyond i n i t i al i z e d RAN in

The DISKS statement defines the number of drives to be

The ENDEF (End of Diskdef) statement generates the necessary

your BIOS.

73

6.2 Table Generation Using GENDEFCP/M-86 System Guide

The form of the DISKDEF statement is

DISKDEF dn,fsc,lsc,[skf],bl s,dks,dir,cks,ofs,[0]

where

dn
fsc
lsc
skf
bls
dks
d l r
cks
ofs
[0]

is the logical disk number, 0 to n-1
is the first physical sector number (0 or 1)
is the last sector number
is the optional sector skew factor
is the data allocation block size
is the disk size in bls units
is the number of directory entries
is the number of "checked" directory entries
is the track offset to logical track 00
is an optional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDHF
statement. The " fsc" p a r ameter accounts for differing sector
numbering systems, and is usually 0 or 1. The "lsc" is the last
numbered sector on a track. When present, the "skf " p a r ameter
defines the sector skew factor which is used to create a sector
translation table according to the skew. If the number of sectors
is less than 256, a single-byte table is created, otherwise each
translation table element occupies two bytes • No translation table
is created if the skf parameter is omitted or equal to 0.

The "bls" parameter specifies the number of bytes allocated to
each data block, and takes on the values 1024, 2048, 4096, 8192, or
16384. Generally, performance increases with larger data block
sizes because there are fewer directory references. Also, Logically
connected data records are physically close on the disk. Further,
each directory entry addresses more data and the amount of BIOS work
space is reduced. The "dks" specifies the total disk size in "bls"
units. That is, if the bls = 2048 and d k s = 1000, then the total
disk capacity is 2,048,000 bytes. If dks is greater than 255, then
the block size parameter bls must be greater than 1024. The value
of "dir" is the total number of. directory entries which may exceed
2 55, i f de s i r e d .

The "cks" parameter determines the number of directory items to
check on each directory scan, and is used internally t o d e t e c t
changed disks during system operation, where an intervening cold
start or system reset has not occurred (when this situation is
detected, CP/M-86 automatically marks the disk read/only so that
data is not subsequently destroyed). As stated in the previous
section, the value of cks = dir when the media is easily changed, as
is the case with a floppy disk subsystem. If the disk is
permanently mounted, then the value of cks is typically 0, since the
probability of changing disks without a restart is quite Low.

74

CP/M-86 System Guide 6.2 Table Generation Using GFNDEF

The "ofs" value determines the number of tracks to skip when
this particular drive is addressed, w hich can be u sed t o r e s e r v e
additional operating system space or to simulate several logical
drives on a single large capacity physical drive. Final l y , t h e [0]
parameter is included when file compatibility is r equired w i t h
versions of CP/M-80, version 1 • 4 which have been modified for higher
density disks (typically double density). This parameter ensures
that no directory compression takes place, w hich would c a u s e
i ncompat i b i l i t i es with these non-standard CP/M 1.4 versions.
Normally, this parameter is not included.

For convenience and economy of table space, the special form

DISKDEF i , j

gives disk i the same characteristics as a previously defined drive
j. A standard four-drive single density system, which is compatible
with CP/M-80 Version 1.4, and upwardly compatible with CP/M-80
Version 2 implementations, i s d e f i n e d us i ng t he f o l l owi ng
statements:

4
0,1,26,6 ,1024,243,64, l
1,0
2,0
3,0

DISKS
DISKDEF
DISKDEF
DISKDEF
DISKDEF
ENDEF

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with a skew of 6 between sequential
accesses, 1024 bytes per data block, 243 data blocks for a total of
243K byte disk capacity, 64 checked directory entries, and two
operating system tracks.

The DISKS statement generates n Disk Parameter Headers (DPH s),
starting at the DPH table address OPBASE generated by the statement.
Each disk header block contains sixteen bytes, as described above,
and corresponds one-for-one to each of the defined drives. I n t h e
f our d r i ve st and a r d system, for example, the DISKS statement
generates a table of the form;

DPBASE EQU $
DPEO DW XL TOg 0 000H~OOOOH~0000HgDIRBUF~DPBOpCSVOgALVO
DPEl DW XLT Og 0000Hp0000Hg0000HgDIRBUFgDPBOgCSVlgALV1
DPE2 DW XL TO~ OOOOHp0000H~0000HgDIRBUFgDPBO~CSV2JALV2
DPE3 DW XLT OgOOOOHgOOOOHgOOOOHgDIRBUFgDPBOgCSV3pALV3

where the DPH labels are included for reference purposes to show the
beginning table addresses for each drive 0 through 3. The values
contained within the disk parameter header are described in detail
earlier in this section. The check and allocation vector addresses
are generated by the ENDEF statement for inclusion in the RAM area
following the BIOS code and tables.

75

6.2 Table Generation Using G'ENDEFCP/N-86 System Guide

Note that if the "skf" (skew factor) parameter is omitted (or
equal to 0), the translation table is omitted, and a OOOOH value is
inserted in the XLT position of the disk parameter header for the
disk. In a subsequent call to perform the logical to physical
translation, SECTRAN receives a translation table address of DX =

OOOOH, and simply returns the original logical sector from CX in the
BX register. A tr anslate table isconstructed when the skf
parameter is present, and the (non-zero) table address is placed
into the corresponding DPH s. The table shown below, for example,
is constructed when the standard skew factor skf = 6 is spec i f i e d i n
the DISKDEF statement call:

X LTO EQU OFFS E T $
D'B l g7 J 1 3 J 1 9 (25J5 l l g l 7 g23 g3 p 9 J 1 5 g 2 1
DB 2 J8g14)2 0 2 6 (6 g1 2 g 1 8 24 4 g10 ~1 6 (2 2

Following the ENDEF statement, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS
which is loaded upon cold start, but must be available between the
BIOS and the end of operating system memory. The s i z e o f t he
uninitialized RAM area is determined by EQU statements generated by
the ENDEF statement. For a standard four-drive system, the ENDEF
statement might produce

BEGDAT EQU OFFSET $
(data areas)
ENDDAT EQU OFFSET $
DATSIZ EQU OFFSET $-BEGDAT

1C72

1DBO
013C =

which indicates that uninitialized RAN begins at offset 1C72H, ends
at 1DBOH-l, and occupies 013CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

After modification, you can use the STAT program to check your
drive characteristics, since STAT uses the disk parameter block to
decode the drive information. The comment included in the LIB file
by the $C parameter to GENCMD will match the output from STAT. The
STAT command form

STAT d:DSK:

decodes the disk parameter block for drive d (d =A,. . . , P) and

displays the values shown below:

r : 128 Byte
k : K i l o b y t e
d : 32 B y te
c: Checked
e: Records/
b: Records/
s : Sector s /
t : Reserved

Record Capaci t y
D rive C a pac i t y
D irectory En t r i e s
Directory Entries

Block
Track
Tracks

Extent

76

CP/M-86 System Guide 6.3 GENDEF Output

6.3 GENDEF Output

GENDEF produces a Listing of the statements included in the DEF
file at the user console (CONTROL-P can be used to obtain a printed
listing, if desired). Each source line is numbered, and any errors
are shown below the line in error, with a "?" beneath the item which
caused the condition. The source errors produced by GENCMD are
listed in Table 6-7, followed by errors t hat c a n o c cu r w h en
producing input and output files in Table 6-8.

Table 6-7 . G ENDEF Source Error Messages

Message

Bad Val

Convert

Meaning

Delimit

Duplic

Fxtra

Length

Missing

No Disk

More than 16 disks defined in DISKS statement.

Number cannot be converted, must be constant
in binary, octaL, decimal, or hexadecimal as
in ASM-86.

Missing delimiter between parameters.

Duplicate d e f i n i t i o n f o r a d i sk dr i ve.

Extra parameters occur at the end of line.

Keyword or data item is too Long.

Parameter required in this position.

Referenced disk not previously defined.

Statement keyword not recognized.

Number requi red i n t h i s p o s it i on

Number in this position is out of range.

Not enough parameters provided.

Missing end quote on current line.

No Stmt

Numeric

Range

Too Few

Quote

77

CP/M-86 System Guide 6.3 GENDEF Output

Table 6-8. GBNDBP Input and Output Brror MesSages

Message Meaning

Cannot Close ".LIB" File

"LIB" Disk Full

No Input File Present

No ".L IB" D i r e c t o r y Space

LIB file close operatian
unsuccessful, usually due
to hardware write protect.

No space for LIB file.

Specified DEF file not
found.

Cannot create LIB file due
to too manv files on LIB
disk.

Fnd of DEF file encountered
u nexpectedly .

Premature End-of-File

Given the file TWO.DEF containing the following statements

d isks 2
diskdef 0 , 1 , 2 6 , 6 , 2048,256,128,128,2
d iskdef 1 , 1 , 5 8 , , 2048,1024,300,0 ,2
endef

the command

gencmd two Sc

produces the console output

DISKDEF Tabl e
1
2
3
4
No Error (s)

G enerator , V er s 1 . 0
DISKS 2
DISKDEF Og l g 5 8 g g 2 0 4 8 g 2 5 6 g l2 8 gl 2 8 g2
DISKDEF 1 f 1 J 58 / 2048 g 1024 / 300 g 0 J 2
ENDEF

The resulting TWO.LIB file is brought into the following skeletal
assembly language program, using the ASM-86 INCLUDE directive. The
ASM-86 output listing is truncated on the right, but can be easily
reproduced us ing GENDEF and ASM-86.

78

CP/M-86 System Guide 6.3 GENDEF Output

Sample Pr o g ra m I n c l u d i n g T WO.LI
I

SELDSK:
• • • •

0000 B9 03 00 MOV CX,OFFSET DPBASE
• • • •

INCLUDE

0003
0003 32
0007 00
OOOB 5B
OOOF FB

= 0013 00
0017 00
001B 5B
001F 9B

0023
0023 1A
0025 04
0026 OF
0027 01
0028 FF
002A 7F
002C CO
002D 00
002E 20
0030 02

0032
0032 01
0036 19
003A 17
003E 15
0042 14
0046 12
004A 10

0020
0020

00
00

00

00
00

07 OD 13
05 OB 11
03 09 OF
02 08 OE
1A 06 OC
18 04 OA
16

00 00 00
00 00 00
00 23 00
00 DB 00
00 00 00
00 00 00
00 4C 00
01 1B 01

I

als0
cssO

xl t0

dobO

dpel

dpbase
dpeO

equ
dw
db
db
db
dw
dw
db
db
dw
dw
equ
db
db
db
db
db
db
db
equ
equ

equ
dw
dw
dw
dw
dw
dw
dw
dw

Disk 0
4096:
512:
128:
128:
256:
16
26:

2 •
6:

TWO.LIB
DISKS 2
S ;Base o
x l t 0 , 0 0 0 0h ;Transl
0000h,0000h ;Scratc
d irbuf , dpbO ; Dir B u
csvO,alvO ;Check,
x l t l , 0 0 00h ;Transl
0000h,0000h ;Scratc
d irbuf , dpbl ; Dir B u
c svl , a l v l ;Check,
D ISKDEF 0, 1 , 2 6 , 6 , 2 0 4 8 , 2

is CP/M 1.4 Single Densi
128 Byte Record Capaci t
Kilobyte Drive Capacit
32 Byte Directorv Fntri
Checked Direc to ry E n t r i
R ecords / F x t e n t
R ecords / B l o c k
Sectors / T rac k
R eserved T r a c k s
S ector S k ew Fa c t o r

o ffset $
26
4
15
1
255
127
192
0
32
2
o ffset S
1 ,7gl 3 , 1 9
2 5,5, 1 1 , 1 7
2 3,3 , 9 , 1 5
2 1,2, 8 , 1 4
2 0,26, 6 , 1 2
18,24,4,10
16,22
32
32
D ISKDEF 1, 1 , 5 8

;Disk P
;Sector
;Block
;Block
;Extnt
;Disk S
• Direct
; Al l o c O
• Allocl
Check

;Offse t
;Transl

;Al loca
;Check

, ,2048 , 10

Disk 1 is CP/M 1.4 Single Densi
1 6384: 1 28 B y te R e c o r d C a o ac i t

79

6.3 GFNDEF OutoutCP/M-86 System Guide

004C
004C 3A 00

= 004E 04
004F OF

~ 0050 00
0051 FF 03
0053 2B 01
0055 F8

~ 0056 00
= 0057 00 00

0059 02 00
0000
0080
0000

N

I

I

I

I

I

I

I

xl t 1
alsl
cssl

2048 •
300:

0 •
128:
16:
58:

2 •

dpbl equ
dw
db
db
db
dw
dw
db
db
dw
dw
equ
equ
equ

Kilobyte Drive Capacit
3 2 Byte Di r e c t or y E n t r i
C hecked Direc tor y En t r i
R ecords / E x t e n t
R ecords / B l o c k
S ectors / T ra c k
R eserved T r a c k s

o ffset $
58
4
15
0
1023
299
248
0
0
2
0
128
0
ENDEF

;Disk P
;Sector
;Block
;Block
;Extnt
;Disk S
;Direct
;AllocO
;Alloc l
;Check
;Offset
;No Tra
;Al loca
;Check

I I

I I

005B
005B
OODB
OOFB
011B
019B

019B
0140

019B 00

begdat
dirbuf
alvO
csvO
alvl
csvl
enddat
datsiz

equ o ffset $
128
als0
cssO
alsl
cssl
o ffset $
offset $-beqdat
0

Unini t i a l i z e d Sc r a tch Memory Fo

;Star t
;Direct
;Alloc
;Check
;Alloc
;Check
• End of
;Size o
;Marks

rs
rs
rs
rs
rs
equ
equ
db
END

80

Section 7
CP/M-86 Bootstrap and Adaption Procedures

This section describes the components of the standard CP/M-86
distr ibution disk, the operation of each component, and the
procedures to follow in adapting CP/M-86 to non-standard hardware.

CP/M-86 is distributed on a single-density IBN compatible 8"
diskette using a file format which is compatible with all previous
CP/N-80 operating systems. In particular, the first two tracks are
reserved for operating system and bootstrap programs, while the
remainder of the diskette contains directory information which leads
to program and data files. CP/N-86 is distributed for operation
with the Intel SBC 86/12 single-board computer connected to floppy
disks through an Intel 204 Controller. The operation of CP/M-86 on
this configuration serves as a model for other 8086 and 8088
environments, and is presented below.

The principal components of. the distribution system are listed
below:

• The 86/12 Bootstrap RON (BOOT ROM)
• The Cold Start Loader (LOADER)
• The CP/N-86 System (CPN. SY S)

When installed in the SBC 86/12, the BOOT ROM becomes a part of
the memory address space, beginning at byte location OFFOOOH, and
receives control when the system reset button is depressed. In a
non-standard environment, the BOOT ROM is replaced by an equivalent
initial loader and, therefore, the RON itself is not included with
CP/M-86. The BOOT ROM can be obtained from Digital Research or,
alternatively, it can be programmed from the listing given in
Appendix C or directly from the source file which is included on the
distribution disk as BOOT.A86. The responsibility of the BOOT ROM
is to read the LOADER from the first two system tracks into memory
and pass program control to the LOADER for execution.

7.1 The Cold Start Load Operation

The LOADER program is a simple version of CP/M-86 that contains
sufficient file processing capability to read CPN.SYS from the
system disk to memory. When LOADER completes its operation, the
CPN.SYS program receives control and proceeds to process operator
input commands.

Both the LOADER and CPM.SYS programs are preceded by the
standard CMD header record. The 128-byte LOADER header record
contains the following single group descriptor.

81

CP/M-86 System Guide 7.1 The Cold Start Load Operation

G-Form A-Base G-Min G-MaxG-Length

xxxxxxxxx xxxxxxx0400

16b 16b 16b

xxxxxxx

8b 16b

where G-Form = 1 deno te s a c o d e g r o u p , "x" fields are ignored, and
A-Base defines the paragraph address where the BOOT ROM begins
filling memory (A-Base is the word value which is offset three bytes
from the beginning of the header) . Mote that since only a code
group is present, an 8080 memory model is assumed. Further,
although the A-Base defines the base paragraph address for LOADER
(byte address 04000H), the LOADER can, in fact be loaded and
executed at any paragraph boundary that does not overlap CP/M-86 or
the BOOT ROM.

The LOADER itself consists of three parts: t h e Load CPM
program (LDCPM), the Loader Basic disk System (LDBDOS), and the
Loader Basic I/O System (LDBIOS) . Although the LOADER is setup to
initialize CP/M-86 using the Intel 86/12 configuration, the LDBIOS
can be field-altered to account for non-standard hardware using the
same entry points described in a previous section for BIOS
modification. The organization of LOADER is shown in Figure 7-1
below:

GD41 o /////////////

JMP 1200HCS DS ES SS OOOOH:

(LDCPM)

JNPF CPM

0400H:
(LDBDOS)

1200H: JMP INIT
• • • • • • •

JMP SETIOB

I NIT : . . J M P 0 0 0 3H

(LDBIOS)

1700H:

Figure 7-1. LOADER Organization

82

CP/M-86 System Guide 7.1 The Cold Start Load Operation

Byte offsets from the base registers are shown at the left of the
diagram. GDfl is the Group Descriptor for the LOADER code group
described above, followed immediately by a "0" group terminator.
The entire LOADER program is read by the BOOT ROM, e xcluding t h e

header record, starting at byte location 04000H as given by the A­
Field. Upon completion of the read, the BOOT ROM passes control to
location 04000H where the LOADER program commences execution. The

JMP 1200H instruction at the base of LDCPM transfers control to the
beginning of the LDBIOS where control then transfers to the INIT
s ubrout i n e . The subroutine starting at INIT performs device

initialization, prints a sign-on message, and transfers back to the
LDCPM program at byte offset 0003H. The LDCPM module opens the

CPM.SYS file, loads the CP/M-86 system into memory and transfers
control to CP/M-86 through the JMPF CPM instruction at the end of
LDCPM execution, thus completing the cold start sequence.

that you can append your own modified LDBIOS in the construction of
a customized loader. In fact, BIOS.A86 contains a conditional

assembly switch, called "loader bios," which, when enabled, produces
the distributed LDBIOS. The INIT subroutine portion of LDBIOS is

listed in Appendix C for reference purposes. To construct a custom

LDBIOS, modify your standard BIOS to start the code at offset 1200H,
a nd change you r i ni t i al i zat i o n subrout ine b e g i n n ing a t I NI T t o
p erform d is k and dev i c e i ni t i al i za t i o n . Include a JMP to offset

0003H at the end of your INIT subroutine. Use ASM-86 to assemble

your LDBIOS.A86 program:

The files LDCPM.H86 and LDBDOS • H86 are included with CP/M-86 so

ASM86 LDBIOS

to produce the LDBIOS.H86 machine code file. Concatenate the three

LOADER modules using PIP:

PIP LOADER.H86=LDCPM.H86,LDBDOS.H86,LDBIOS.H86

to produce the machine code file for the LOADER program. Although

the standard LOADER program ends at offset 1700H, your modified

LDBIOS may differ from this last address with the restriction that
the LOADER must fit within the first two tracks a nd not o v e r l a p

CP/M-86 areas. Generate the command (CMD) file for LOADER using the
GENCMD utility:

GENCMD LOADER 8080 CODE[A400]

resulting in the file LOADER.CMD with a header record defining the
8080 Memory Model with an absolute paragraph address of 400H, or

byte address 4000H. Use DDT to read LOADER.CMD to location 900H in
your 8 080 sy s t em. Then use the 8080 utility SYSGEN to copy t he

loader to the first two tracks of a disk.

83

CP/M-86 System Guide 7.1 The Cold Start Load Operation

A) DDT
- ILOADBR. CND
-R800
-"C
A)SYSGBN
SOURCE DRIVE NAME (o r r e t u r n t o sk i p) <c r >
DESTINATION DRIVE NAME (or r e t u r n t o sk i p) B

Alternatively, if you have access to an operational CP/N-86 system,
the command

LDCOPY LOADER

copies LOADFR to the system tracks. You now have a diskette with a
L OADER program which i n c o r pora tes y o u r custom LDBIOS capable of
reading the CPN.SYS file into memory. For standardization, we
assume LOADER executes at location 4000H. LOADFR is staticallv
relocatable, however, and its operating address is determined onlv
by the value of A-Base in the header record.

You must, of course, perform the same function as the BOOT ROM
to get LOADER into memory. T h e boot operat i o n i s usu a 11v
accomplished in one of two ways. First , y o u ca n p r o g ram your own
RON (or PRON) to perform a function similar to the BOOT ROM when
your computer s reset button is pushed. As an alternative, most
controllers provide a power-on "boot" operation that reads the first
disk sector into memory. This one-sector program, in turn, reads
the LOADER from the remaining sectors and transfers to LOADER upon
completion, thereby performing the same actions as the BOOT ROM.
Either of these alternatives is hardware-specific, so you 11 need to
be familiar with the operating environment.

7.2 Organization of CPM.SYS

The CPM.SYS file, read by the LOADER program, consists of the
CCP, BDOS, and BIOS in CMD file format, with a 1 2 8 - byt e h e ader
record s i m i l a r t o t he L OADER program:

G-Form G-Length

XXXXXXXXX

A-Base

040

G-Min

xxxxxxx

G-Max

xxxxxxx

8b 16b 16b 16b 16b

where, instead, the A-Base load address is paragraph 040H, or byte
address 0400H, immediately following the 8086 interrupt locations.
The entire CPM.SYS file appears on disk as shown in Figure 7-2.

84

7.2 Organization of CPM.SYSCP/M-86 System Guide

GD41 0 /////////////

(0040:0) CS DS ES SS OOOOH:

(CCP and BDOS)

JMP INIT(0040:) 2500H:
• • • • • • •

JMP SETIOB

(BIOS)

INIT: . . J M P OOOOH

(0040:) 2AOOH:

Pigure 7-2. CPM.SYS Pile Organization

where GD41 is the Group Descriptor containing the A-Base value
followed by a "0" terminator. The distributed 86/12 BIOS is listed
i n Appendi x D, wi t h an "include" statement that reads the
S INGLES.LIB f i l e cont a i n i n g t he d i sk def i n i t i on t abl e s . The
SINGLES.LIB file is c reated by GENDEF using the SINGLES.DEF
statements shown below:

disks 2
d iskdef 0 , 1 , 2 6 , 6 , 1024,243,64,64,2
d iskdef 1 , 0
endef

The CPM.SYS file is read by the LOADER program beginning at the
address given by A-Base (byte address 0400H), and control is passed
to the INIT entry point at offset address 25008. Any additional

initialization, not performed by LOADER, takes place in the INIT
subroutine and, upon completion, INIT executes a JMP OOOOH to begin
execution of the CCP. The actual load address of CPM SYS i s
determined entirely by the address given in the A-Base field which
can be changed if you wish to execute CP/M-86 in another region of
memory. Note that the region occupied by the operating system must
be excluded from the BIOS memory region table.

altering either the BIOS.A86 or skeletal CBIOS.A86 assembly language
files which are included on your source disk. In either case,
create a customized BIOS which includes your specialized I/O
drivers, and assemble using ASM-86:

Similar to the LOADER program, you can modify the BIOS by

ASM86 BIOS

to produce the file BIOS.H86 containing your BIOS machine code.

85

CP/N-86 System Guide 7.2 Organization of CPM.SYS

Concatenate this new BIOS to the CPN.H86 file on your distribution
disk:

PIP CPNX.H86 = CPN.H86,BIOS.H86

The resulting CPNX hex file is then converted to CND file format by
e xecut i n g

GENCND CPNX 8080 CODE[A40]

in order to produce the CND memory image with A-Base = 40H.
Finally, rename the CPMX file using the command

REN CPN.SYS = CPNX.CND

and place this file on your 8086 system disk. Now the tailoring
process is complete: you have replaced the BOOT RON by either your
own customized BOOT RON, or a one-sector cold start loader which
brings the LOADER program, with your custom LDBIOS, into memory at
byte location 04000H. T h e LOADER program, in turn, r eads t he
CPN.SYS file, with your custom BIOS, into memory at byte location
0400H. Control transfers to CP/M-86, and you are up and operating.
CP/N-86 remains in memory until the next cold start operation takes
p lace .

You can avoid the two-step boot operation if you construct a
non-standard disk with sufficient space to hold the entire CPM.SYS
file on the system tracks. In this case, the cold start brings the
CP/N-86 memory image into memory at the location given by A-Base,
and control transfers to the INIT entry point at offset 2500H.
Thus, the intermediate LOADER program is eliminated entirely,
although the initialization found in the LDBIOS must, o f c o u r s e ,
take place instead within the BIOS.

Since ASN-86, GENCMD and GENDEF are provided ~in both COM and
CND formats, either CP/M-80 or CP/N-86 can be u sed t o a i d t he
customizing process. If CP/N-80 or CP/M-86 is not available, but
you have minimal editing and debugging tools, you can write
special ized disk I/O routines to read and write the system tracks,
as well as the CPM.SYS file.

The two system tracks are simple to access, but the CPN.SYS
file is somewhat more difficult to read. CPM.SYS is the first file
on the disk and thus it appears immediately following the directory
on the diskette. The directory begins on the third track, and
occupies the first sixteen logical sectors of the diskette, whil e
the CPM.SYS is found starting at the seventeenth sector. Sectors
are "skewed" by a factor of six beginning with the directory track
(the system tracks are sequential), so that you must load every
sixth sector in reading the CPN.SYS file. Clearly, it is worth the
time and effort to use an existing CP/N system to aid the conversion
process .

86

Appendix A
Sector Blocking and Deblocking

Upon each call to the BIOS WRITE entry point, the CP/M-86 BDOS
includes information that alLcws effective sector blocking and
deblocking where the host disk subsystem has a sector size which is
a multiple of the basic 128-byte unit. This appendix presents a
general-purpose algorithm that can be included within your BIOS and
that uses th e BDOS i nformation to perform the operations
automatically.

Upon each call to WRITE, the BDOS provides the following
information in register CL:

normal sector write
write to directory sector
write to the first sector
o f a n e w d a t a b l o c k

0 l 2

Condition 0 occurs whenever the next write operati.on is into a
previously written area, such as a random mode record update, when
the write is to other than the first sector of an unallocated block,
or when the write is not into the directorv area . Cond i t i o n 1
occurs when a write into the directory area is performed. C ondi t i o n
2 occurs when the first record (onLy) of a newly allocated data
block is written. In most cases, application programs read or write
multiple 128-byte sectors in sequence, and thus there is 1itt1e
overhead involved in either operation when blocking and deblockinq
records since pre-read operations can be avoided when writing
r ecords .

This appendix lists the blocking and deblocking algorithm in
skeleta1 form (the f ile is included on your CP/M-86 disk) .
4enerally, the algorithms map a11 CP/M sector read operations onto
the host disk through an intermediate buffer which is the size of
the host disk sector. Throughout the program, values and variables
which relate to the CP/M sector involved in a seek ope r a t i o n a r e
prefixed by "sek," while those related to the host disk system are
prefixed by "hst." The equate statements beginning on line 24 of
Appendix F define the mapping between CP/M and the host system, and
must be changed if other than the sample host system is involved •

The SELDSK entry point clears the host buffer flag whenever a
new disk is logged-in. Note that although the SELDSK entry point
computes and returns the Disk Parameter Header address, it does not
physically select the host disk at this point (it is selected Later
at READHST or WRITEHST) • Further, SETTRK, SETSEC, and SETDMA simplv
store the values, but do not take any other action at this point.
SECTRAN performs a trivia1 function of returning the physical sector
number.

87

CP/M-86 System Guide Appendix A Blocking and Deblocking

The principal entry points are READ and WRITE. These
subroutines take the place of your previous READ and WRITE
operat i ons .

The actual physical read or write takes place at either
WRITEHST or READHST, where all values have been prepared: hstdsk is
the host disk number, hsttrk is the host track number, and hstsec is
the host sector number (which may require translation to a physical
sector number) . You must insert code at this point which performs.
the full host sector read or write into, or out of, the buffer at
hstbuf of length hstsiz. All other mapping functions are performed
by the algorithms.

2 • • *
3 • • * Sector Blocking / Deblocking

5: ;* This algorithm is a direct translati.on of the *
6: ;* CP/M-80 Version, and is included here for refer­ *
7: ;* ence purposes only. The file DEBLOCK.LIB is in­ *
8: ;* eluded on your CP/M-86 disk, and should be used *
9: ;* for actual applications. You may wish to contact *
10: ;* Digital Research for notices of updates.

]2 • • * *** 4* I * 4 * * 4* * * * * * ++
] 3 • •

]4 o e** * * * A* * * * * * %* * * * * %* * * * * * %* *
15 • • *
16 • • * CP/M to host disk constants
17 • • *

18: ;* (This example is setup for CP/M block size of 16K *
19: ;* with a host sector size of 512 bytes, and 12 sec­ *
20: ;~ tors per track. Blksiz, hstsiz, hstspt, hstblk *
21: ;* and secshf may change for different hardware.) *
22 • • * *** 0* * * * * * * 0* 00* * * * *

23: una e qu by t e pt r (BX] ;name for byte at BX
24:
2 5: b l k s i z ;CP/M allocation size
2 6: hst s i z ;host disk sector size
27: hstspt ;host disk sectors/trk
2 8: hstb l k ;CP/M sects/host buff
29:
30 e • * * A * * * + *

3] o • *

32: ;* secshf is log2(hstblk), and is listed below for *
33: ;* values of hstsiz up to 2048.

35 • • 4 hstsi z secshf
36 • • * 256 1
37 • • * 512 2
38 • :* 1024 3
39 o • * 2048 4 *
4Q • • *

]] • *

34 • • *

4 • • *

equ
equ
equ
equ

16384
512
12
hstsi z / 1 28

hstblk
2
4
8

16

• * *** * * * * * * * * * * * A' * * * * * * * * I * * * * * * * * * * * A* * * * * * * * * * * * * 4 t *
*
*
*

*
*

*
*
*

*

*
*
*
*
*

*

88

Appendix A Blocking and DeblockingCP/M-86 System Guide

41:
42:
43:
44 •
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57 •
58:
59:
60:
61:
62:
63!
64:
65:
66:
67:
68:
69:
70:
71:
720
7 3 •
74:
75:
76:
7 7 •
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:

• * **** * * 0 * %A *

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

home:

homed:

select :

s ett r k :

setsec:

wral l equ 0
wrdi r equ 1
wrual equ 2

secshf e qu 2
cpmspt equ hstblk * hstspt
secmsk eq u hst bl k- 1

• **** * * %* * * A%*** * * * * * * * * * * * * * * * *
• *
• *
• *
• *
• **+** * * * * * k *

seldsk:

• **** *
• *
• *
• *
• *%**** *

BDOS constants on entry to write

;set track given by registers CX
mov sekt r k , CX ; track t o s e e k
ret

The BIOS entry points given below show the
code which is relevant to deblocking only.

;home the selected disk
mov al,hstwrt
test al,al
jnz homed
m ov hstact , 0

mov cx,0 ; now, set t r a c k z e r o
(continue HOME rout i ne)
ret

; select d i s k
;is this the first activation of the drive?
t est D L , 1 ; lsb ~ 0 7
jnz se l se t
;this is the first activation, clear host buff
m ov hstact , 0
mov unacnt ,0

mov al,cl t cbw
mov sekdsk,al
mov c1,4 l shl al,cl
add ax,o f f se t d p base
mov bx,ax
ret

; put i n A X
;seek d isk number
; t imes 16

; log 2 (hstblk)
;CP/M sectors/track
;sector mask

;write to allocated
;write to directory
;write to unallocated

* * * * * * k* * * * * * A* kt * * * * *

* * * * * * * * * * * At * * * * * * * * *

* A** * * A * * * * * * * * A* % ** * *

;clear host active flag

;check for pending write

;set sector given by register cl
mov seksec,c l ; sector t o s e e k

89

Appendix A Blocking and Deb1ockingCP/M-86 System Guide

96:
97:
98 •
99:

100'
101.
102:
103:
104 •
105:
106:
107:
108 •
109:
110:
111.
112:
113:
114 •
115:
116:
117:
118.
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140 •
141.
142:
143:
144.
145.
146.
147:
148.
149:
150 •

I

I

I

I

read:

w ri t e :

setdma:

chkuna:

setdmab:

sectran:

no t ran :

ret

ret

; read the s e l e c t ed
mov unacnt ,O
mov readop,l
mov rsflag,l
mov wrtype,wrual
jmp rwoper

;set dma address g i ven by CX
mov dma off,CX

;set segment address given by CX
mov dma seg,CX
ret

;write the selected
mov readop,O
mov wrtype,c l
cmp cl ,wrual
jnz chkuna

write to unallocated, set parameters

mov unacnt,(blksiz/128)
mov al, sekdsk
mov unadsk,al
m ov ax,sekt r k
mov unatrk , ax
mov al , seksec
mov unasec,al

;translate sector number CX with table at [DX]
t est D X , DX ;test f o r h a r d s k ewed
j z no t r a n ;(blocked must be har d s kewed)
mov BX,CX
add BX,DX
mov BL,[BX]
ret

;hard skewed di sk , o h y s i c a l . = logical sector
mov BX,CX
ret

CP/N sector

c.'P/M sector

; next una l l o c r e c s
; disk t o s e e k
;unadsk = sekdsk

; unatr k = sek t r k

;unasec = seksec

;write operation

;write unallocated~
; check fo r u n a l l o c

;clear unallocated counter
; read operat i o n
; must read da t a
;treat as unalloc
;to perform the read

;check for write to unallocated sector

mov bx,offset unacnt ;point "UNA" at UNACNT
mov al,una ! test al,al ;any unalloc remain?

90

CP/M-86 System Guide Appendix A Blocking and Deb).ocking

151:
152:
153:
154:
155:
156:
157:
158:
159:
160 •
161.
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177 •
178:
179:
180:
181:
182:
183:
184 •
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:

I

I

I

I

I

I

noovf:

a lloc :

• * Common code for READ and WRITE follows

• * *** A t * * * * * * * * * * * * %A* *
• * *

*
• * *
• *** * * A *

rwoper:

j z a l l o c

more unallocated records
dec al
mov una,al
mov al , sekdsk
mov BX,offset unadsk
cmp al ,una
j nz a l l o c

disks are t h e s ame
m ov AX, unat r k
c mp AX, sekt r k
j nz a l l o c

tracks are t h e s ame
mov al, seksec

mov BX,offset unasec ;point una a t u n asec

cmp al ,una
j nz a l l o c

match, move to
inc una
mov al ,una
cmp al,cpmspt
jb noovf

overflow to next track
mov una,O
i nc unat r k

;match found, mark as unnecessarv read
m ov rsf l a g , 0 ; rs f l a g = 0

jmps rwoper ;to perform the write

;not an unallocated record, requires pre-read
mov unacnt ,O ;unacnt = 0
mov rsflag,l ; rsf l a g = 1

next sector For future ref
;unasec = unasec+1
; end of t r a c k ?
;count CP/M sectors
; skip i f bel o w

;skip if not

; same sector?

;unasec = 0

; unat r k = unatr k + 1

;seksec = unasec?
; skip i f no t

; skip i f not

remain
;unacnt = unacnt - 1

;same disk?

;sekdsk = unadsk?
;skip if not

;drop t h r ough t o r woper

;enter here to perform the read/write
m ov erf l a g , 0 ; no er r or s (y e t)
mov al , s e k sec ;compute host sector
mov cl , s e c sh f
s hr a l , c l

91

Appendix A Blocking and DeblockingCP/M-86 System Guide

206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233'
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:

I

I

I

I

match:

f i l h s t :

nomatch:

f i l h s t l :
m ov hstwr t , 0

;may have to fill the host buffer
mov al,sekdsk t mov hstdsk,al
mov ax,sektrk ! mov hsttrk,ax
mov al,sekhst (mov hstsec,al
mov al,rsflag
test al,al ; need to r e ad?
jz filhstl

cal l r e a dhst
(check er ror s h e r e)

mov sekhst ,a l

active host sector?
mov al , l
xchg al , h s t ac t
test al,al
jz filhst

host buffer active, same as seek buffer?
mov al , sekdsk
cmp al ,hs tdsk
jnz nomatch

same disk, same track?
mov ax,hsttrk
cmp ax,sekt r k
jnz nomatch

same disk, same track, same buffer?
mov al , sekhst
cmp al ,hs t sec
jz match

; proper d i sk , b u t n o t
m ov al , h s t w r t
test al,al
jz filhst
call writehst
(check er ror s h e r e)

• yes, i f 1

;always becomes 1
;was i t a l re a dy?
;fill host if not

;sekdsk = hstd s k ?

;sekhst = hst s e c ?
;skip if match

; no pending wr i t e

; host sec to r t o s e e k

c orrect s e c t o r

;"dirty" buffer ?
;no, don t need to write
;yes, clear host buff

buffer d epending on " r e adop"
;mask buffer number
;least signif bits are masked
;shift left 7 (* 128 2**7)

;host track same as seek track

;copy data to or from
mov al , seksec
and ax,secmsk
mov cl, 7 (shl ax,cl

ax has relative host buffer offset

add ax,offset hstbuf ; ax has buffer address
mov si , ax ;put in source index register

92

CP/M-86 System Guide Appendix A Blocking and Deblocking

261:
262:
263:
264:
265:
266:
267:
268:
269:
270:
271:
272:
273:
274:
275:
276:
277;
278:
279:
280:
281:
282:
283:
284:
285:
286:
287:
288:
289:
290:
291:
292:
293:
294:
295:
296:
297:
298:
299:
300:
301:
302:
303:
304:
305:
306:
307:
308:
309:
310:
311:
312:
313:
314:
315:

I

I

I

I

I

I

I

I

I

rwmove:

readhst :

r eturn r w :
ret

ret

mov cx,128/2
mov al , r eadop
test al,al
jnz rwmove

write operation,
mov hstwrt,l
x chg s i , d i
mov ax,DS
mov ES,ax
mov DS,dma seg

mov di,dma off

push DS l p ush ES

mov ES,dma seg

cld I r e p movs AX,AX
pop ES) pop DS

data has been moved
cmp wrtype,wrd i r
mov al,erflag
j nz re t u r n r w

clear host buffer for
test al,al
j nz re t u r n r w
m ov hstwr t , 0
call writehst
mov al,erflag

*
• * *
• *******k**%******+****%**********i****%A*************

w ritehst :
ret

;* WRITEHST performs the physical write to the host *
;* disk, while READHST reads the physical disk.

;* Use the GENDEF utility to create disk def tables *
• *
.***%*A******A*********************%At*t**************

• ***A* * * * * * A* %* * * * %* * * * * * * * * * * *
• * *

• *** * * * ' 0 * ** * * ' 0 * ** * * * * * ' k * * * * * lk 'k * * * * * * * * 'k* * * * 'k * ' k * * * * * * * *
• * *

mark and switch direction

to/from host buffer

; in case o f e rr o r s
;no fu r t he r p r o cess i ng

directory w r i t e
;errors?
; skip i f so
;buffer written

;setup DS,ES for write

;write type to directory?

; move as 16 b i t w o r d s
;restore segment registers

;hstwrt = 1 (dirty buffer now)
;source/dest i n dex swap

;user buffer is dest if readop

;save segment registers

;set destseg to the users seg
;SI/DI and DS/ES is swapped
;if write op
;length of move in words

;which way?
; skip i f r ea d

d pbase e q u o ffset $

93

Appendix A Blocking and De block i ngCP/M-86 System Guide

316:
317:
318:
319:
320:
321:
322'
323'
324:
325:
326:
3270
328:
329:
330:
331:
3320
333:
334:
335:
336:
337
338:
339:
340:
341:
342:
343:
344:
345:
346:
347:
348:

I

I

t

I

I

I

I

sek hst r b 1
hst ac t rb 1
hst wr t rb 1

disk parameter tables go here

s ek dsk r b 1 ;seek d isk number
s ek t r k r w 1 ;seek t r ack number
s ek sec r b 1 ;seek secto r number

h st dsk r b 1 ;host d i s k number
hst t r k r w 1 ;host t r a c k number
hst sec r b 1 ;host sec to r n umber

;seek shr s ecshf
;host active flag
;host written flag

una cnt rb 1 ; unal loc r e c c n t
una dsk r b 1 ;last unalloc disk
u na tr k r w 1 ;last unalloc track
u na sec r b 1 ;last unalloc sector

erf la g r b 1
r sf la g r b 1
r eadop r b 1
wrtype r b 1
dma seg rw 1
d ma off r w 1
hstbuf rb hstsiz

• * **** I *
• 'k *

;* Uninitialized RAM areas follow, including the *

;* areas created by the GENDEF utility listed above. *
• * *
• ****A* * * * * * * * * * * * * * * * * * * A A * * * * ** *

; error r e p o r t i n g
; read secto r f l ag
;1 if read operation
;write operation type
;last dma segment
;last dma offset
; host bu f f e r

end

94

Appendix B
Sample Random Access Program

This appendix contains a rather extensive and complete example
of random access operation. The program listed here performs the
simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file 1abelled RANDOM.CMD, the CCP level.
command:

RANDOM X.DAT

starts the test program. The program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt
the console for input. If not found, the fi1e is created before the
prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nW n R Q

where n is an integer value in the ranqe 0 to 65535, and W, R, and O
are simple command characters corresponding to random write, random
read, and quit processing, respectively. If the W command is
issued, the RANDOM program issues the prompt

t ype data :

The operator then responds by typinq up to 127 characters, folLowed
by a carriaqe return. RANDOM then wri.tes the character strinq into
the X.DAT file at record n. If the R command is issued, RANDOM
reads record number n and displ.ays the string value at the console.
If the Q command is issued, the X.DAT file is closed, and the
program returns to the consoLe command processor. The onlv error
message is

e rror , t r y a g a i n

The program begins with an initialization section where the
input file is opened or created, fo1lowed by a continuous loop at
the label "ready" where the individuaL commands are interpreted.
The default file control block at offset 005CH and the default
buffer at offset 0080H are used in a11 disk operations. The uti.litv
subroutines then follow, which contain the principal input Line
p rocessor , cal l ed "readc • " This particular proqram shows the
elements of random access processinq, and can be used as the basis
for further proqram development • In fact, with some work, thi.s
program could evolve into a simple data base management svstem.

95

CP/M-86 System Guide Appendix B Sample Random Access Program

One could, for example, assume a standard record size of 128
bytes, consisting of arbitrary fields within the record. A program,
called GETKEY, could be developed which first reads a sequential
file and extracts a specific field defined by the operator. For
example, the command

GETKEY NAMES.DAT L A STNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract
the "LASTNAME" field from each record, starting at position 10 and
ending at character 20. GETKEY builds a table in memory consisting
of each particular LASTNAME field, along with its 16-bit record
number location within the file. The GETKEY program then sorts this
list, and writes a new file, called LASTNAME.KEY, which is an
alphabetical list of LASTNAME fields with their corresponding record
numbers. (This list is called an "inverted index" in information
retrieval parlance.)

Rename the program shown above as QUERY, and enhance it a bit
so that it reads a sorted key file into memory. The command line
m ight appear as :

QUERY NAMES.DAT LASTNAME.KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string which is a particular key to find in the NAMES.OAT data base.
Since the LASTNAME.KEY list is sorted, you can find a particular
entry quite rapidly by performing a "binary search," similar to
looking up a name in the telephone book. That is, starting at both
ends of the list, you examine the entry halfway in between and, if
not matched, split either the upper half or the lower half for the
next search. You 11 quickly reach the item you re looking for (in
log2(n) steps) where you 11 find the corresponding record number.
Fetch and display this record at the console, just as we have done
in the p r ogram shown above.

At this point you re just getting started. With a little more
work, you can allow a fixed grouping size which differs from the 128
byte record shown above. This is accomplished by keeping track of
the record number as well as the byte offset within the record.
Knowing the group size, you randomly access the record containing
the proper group, offset to the beginning of the group within the
record read sequentially until the group size has been exhausted.

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and an
AGE less than 45. Display all the records which fit this
description. Finally, if your lists are getting too big to fit into
memory, randomly access your key files from the disk as well.

96

Appendix B Random Access Sample ProgramCP/N-86 System Guide

I
1 2:

I

3 •
4 •
5 •
6:
7 •
8:
9 •

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
220
230
24:
25:
26:
27:
28:
29:
30:
31:
321
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49 •
50:
51:
52:
53:
54.
55:

I

I

I

I

t

I

I

I

I

I

I

I

I

1

I

I

I

cr
lf

conout
coninp

pstr i ng
r st r i n g
version
openf
closef
makef
readr
wri te r

versok:

• **** * * *
• *
• *
• *
• *** 'k ** '0

I

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

mov
call
cmp
jnb

mov
call
jmp

cseg
pushf
pop
cl i
mov
mov
mov

BDOS Functions

1 2

9
10
12
15
16
22
33
34

ax

ax

bx,ds
ssgbx
sp,of f se t

load SP, ready file for random access

Sample Random Access Program for CP/N-86

;console input function
;console output function
;print string until '$
; read console bu f f e r
;return v e r s i o n number
;file open function
;close function
;make file function
;read random
;write r a ndom

Equates for non graphic characters
equ Odh ; carr i age r e t u r n
equ Oah ; l ine f e ed

push
popf

CP/M-86 initial release returns the file
system version number of 2.2: check is
shown below for illustration purposes.

* ** % * * A * * * * *A * * * *
*

c l ,ver s i o n
bdos
a1,20h
versok
bad vers i on , message and go back
dx,of f se t b adver
print
abort

stack ; f or 8088 8

; version 2 . 0 o r l at er ?

;push flags in CCP stack
; save f l ag s i n A X
;disable interrupts
;set SS register to base
;set SS, SP with interru

;restore the flags

correct version for random access
mov cl ,openf ;open defau1t fct
mov dx,offset fcb
cal l bdos

97

CP/M-86 System Guide Appendix B Random Access Sample Program

56:
57:
58:
59:
60:
61:
62:
63:
64.
65 •
66:
67:
68:
69:
70:
71:
72'
73
74:
75:
76:
77:
78:
79 •
80:
81 •
82:
83:
84:
85 •
86:
87:
88:
89:
90 •
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:
104 •
105:
106:
107:
108:
109:
110:

I

I

I

I

I

I

notq:

loop

ready:

end

inc
jnz

call
mov
mov
cmp
jnz

quit
mov
mov
call
inc
jz
jmps

of quit command, process write

file is ready for processing

c l , c l o se f
dx,offset fcb
bdos
al
error
abort

readcom
ranrec,dx
ranovf,Oh
a l, Q
notq

processing, close file

cannot
mov
mov
call
inc
)nz

cannot create file, directory full
mov dx,offset nospace
call print
j mp abo r t ; back to c c p

back to "ready" after each command

al
ready

open file, so create it
cl,makef
dx,offset fcb
bdos
al
ready

not the quit command, random write?
cmp al , W
jnz notw

this is a random write, fill buffer until cr
mov dx,offset datmsg
call print ;data prompt
mov cx,127 ; up to 127 charac t e r s
mov bx ,offset buff ; dest ina t i o n
;read next character to buff
push cx ; save loop connt r o l
push bx ;next destination
cal l get chr ; character t o A L
pop bx ;restore destination
pop cx ; restore counter
cmp al ,c r ; end of l i ne ?

;err 255 becomes 0
; error message, r e t r y
; back to c c p

;err 255 becomes zero

;err 255 becomes zero

;read next command
; store i n pu t r e c o r d s
;clear high byte if set
;qui t ?

r loop:

98

Appendix 8 Random Access Sample ProgramCP/N-86 8ystem Guide

111 •
112:
113:
114 •
115 •
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129 •
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144 •
145 •
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156.
157:
158:
159 •
160:
161:
162:
163:
164 •
165:

I

I

I

I

I

I

I

notw:

erloop:

wloop:

skipw:

readok:

wloopl :

ranread:

e nd of wr i

mov
mov
call
or
j z
jmps

mov
mov
call
or

CX

si

error

al,
sk ipw
putchr

error

crl f
cx,128
si,offset buff

al.
a1,07fh
wloopl
ready

not a write command, read record?
cmp al , R
jz ranread
jmps erro r ; sk i p i f not

read random record

cl , r eadr
dx,offset fcb
bdos
al,a l
readok

te command, process r ead

jz
jmps

read was successful, write to console

call
mov
mov

lods
and
jnz
jmp

push
push
cmp
1b
call

jz erloop
not end, s t o r e c h a rac t e r
mov byte ptr [bx],al
i nc bx ;next to fiLL
l oop r Loo p ;decrement cx ..Loop if

e nd of r ead l o op , s t o r e 0 0
mov by t e pt r [bx] , 0 h

write the record to seLected record number
c l , w r i t er
dx,offset fcb
bdos
al,a l
ready ; fo r a n o t h e r r eco r d

;message if not

; re t u r n c o d e 0 0 ?

; error c ode ze ro?

new Li ne
; max 128 characte r s
; next t o g e t

;next charac te r
; mask par i t y

;for another command if.

;save counter
; save next t o g e t
;graphic~
;skip output if not grap
; outpu t c h a r a c t e r

sl

99

CP/M-86 System Guide Appendix B Random Access Sample Program

166 •
167:
168:
169:
170:
171:
172:
173:
174
175:
176:
177:
178:
179:
180:
181:
182:
183:
184 •
185:
186:
187:
188:
189:
190:
191:
192:
193 •
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:

I

I

I

I

I

c rl f :

bdos:

p rin t :

abort :

e rror :

putchr :

mov

mov
;send

call
mov
call
ret

;prin t
push
call
pop

call
ret

i n t 224
ret

pop cx
l oop wl oop
j mp ready

mov dx ,offset errmsg
call print
j mp r eady

BDOS entry subroutine

utility subroutines for console i/o

getchr :
;read next console character to a
mov c l ,con inp
cal l bdos
ret

end of read command, all errors end-up here

;write character from a to console
mov cl ,conout
mov dl , al
cal l bdos
ret

carriage return line feed
al,c r ; carr i age r e t u r n
putchr
a l , l f ; l ine f e ed
putchr

the buffer addressed by dx until $
dx
crl f
dx ; new l i ne
c l ,ps t r i n g
bdos

mov c1,0
cal l bdos ;use function 0 to end e

; re t u r n t o CC P

;print the strzng

; character t o s e n d
;send characte r

;decrement CX and check

;entry to BDOS if by INT

readcom:

100

Appendix B Random Access Sample ProgramCP/M-86 System Guide

221:
222:
223'
224:
225:
226:
227'
228:
229:
230:
231:
232
233:
234:
235:
236:
2370
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:
261:
262:
263:
264:
265:
266:
267:
268:
269:
270:
271:
272'
2730
274:
275:

I

I

I

I

I

I

I

readc:

endrd:

getnum:

t ransl :

badver
nospace
datmsg
errmsg
prompt

fcb
ranrec
ranovf
buff

str ing

rw

ret

mov

mov
mov
cmp
jnb

and
ret

ret

dseg
org
rb

rb
rb

data area
db
db
db
db
db

; Template for Page 0 of Data Group

05ch
33
1
1
128

fixed and variable data area

Contains default FCB and DMA buffer

; read the next command line to the conbuf
mov dx ,offset prompt
call print ;command?
mov c l , r s t r i n g
mov dx ,offset conbuf
cal l bdos ;read command line
command line is present, scan it
mov ax,0 ;start with 0000
mov bx ,offset conlin
mov dl , [bx l ;next command character
i nc bx ;to next command positio
mov dh , 0 ; zero h igh by t e f o r a d d
or d l , d l ;check for end of comman
j nz get num

not zero , n umer i c?

sub
cmp
jnb

mul
add
jmps

end of

d l , 0
d l ,10
endrd
c1,10
cl
ax,dx

readc

read, restore value in a and return value
dx,ax ; return v a l u e i n DX
a l , - l [b x)
a l, a ; check fo r l o wer c a se
transl

a1,5fH ;translate to upper case

for console messages
s orry , yo u need cp/m vers ion 2 $
no di rec t or y s p ace$
t ype data : $
e rror , t r y a g a i n . $
next command? $

;carry if numeric

;multipy accumulator by
• +digit
; for another c h a r

;default file control bl
; random record pos i t i o n
; high order (o v e r f l ow) b
;default DNA buffer

I

101

CP/M-86 System Guide Appendix B Random Access Sample Program

276:
277:
278:
279:
280:
281:
282:
283$
284:

conbuf db
c onsiz r s
c onli n r s
conlen equ

conlen
1
32
offset

31
1
0

;length of console buffer
;resulting size after read
;length 32 buffer

$ — offset consiz

; 16 leve l s ta c k

;end by t e f or G E NCND

rs
s tack r b

db
end

102

Appendix C
Listing of the Boot ROM

* xx* *

* Thi s i s t h e o r i g i n a l BOOT ROM di s tr i b ut e d w i t h C P / M *

* for the SBC 86/12 and 204 Controller. Th l i s t i ng *

* is truncated on the right, but can be reproduced by *
* assembling ROM.A86 from the distribution disk. Note *
* that the distributed source file should always be *
* referenced for the latest version *

I

ROM bootstrap for CP/M-86 on an iSBC86/12

Intel SBC 204 Floppy Disk Controller
with t h e

Copyright (C) 1 9 80 ,1981
Digital Research, Inc.
B ox 579 , P a c i f i c (: r o v e
California, 93950

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
• *
• *
• *
• *
• *
I
• *
• *
• *
I

• *
• *
• *
• *
• *
• *
• *
• *
• *
• *
• *
• *
• *
• *
• *
• *
• *
• *
• *
• *
• *
• *

This i s t h e B OOT ROM which i s i n i t i a t ed *

by a system reset. First, the ROM moves *
a copy of its data area to RAM at loca­ *

tion 00000H, then initializes the segment*
registers and the stack pointer. The *

various peripheral interface chips on the*
SBC 86/12 are initialized. The 8251 *

serial interface is configured for a 9600*
baud asynchronous terminal, and the in­ *

terrupt controller is setup for inter­
rupts 1 0 H- 17H (v e c t o r s at 0 0 04 0 H- 0005FH) *
and edge-triggered auto-EOI (end of in­ *

terrupt) mode with all interrupt levels *

masked-off. Next, the SBC 204 Diskette *

controller is initialized, and track 1 *

sector 1 is read to determine the target *
paragraph address for LOADER. Finallv, *

the LOADER on track 0 sectors 2-26 and
track 1 sectors 1-26 is read into the *

target address. Control then transfers *

to LOADER. This program resides in two *

2716 EPROM s (2K each) at location
OFFOOOH on the SBC 86/12 CPU board. ROM *
0 contains the even memory locations, and*
ROM 1 contains the odd addresses. BOOT *

ROM uses RAM between 00000H and OOOFFH *

(absolute) for a scratch area, along with*
the sector 1 buffer.

*

* *A* * * * * * * * * * * * * * * * * A* A ' * * ** * * * * * * * * * * * * * * * +
I

103

Guide Append ix C Listing of the BOOT ROMCP/M-86 System

OOFF
FFOO

OOFF

true equ
false equ

debug equ t r ue
;debug = true indicates bootstrap is in same roms
;with SBC 957 "Execution Vehicle" monitor
;at FEOO:0 instead of FFOO:0

cr 13
l f 10

OOOD
OOOA

I

Offh
not t r u e

equ
equ

I

disk ports and commands
I

OOAO
OOAO
OOAO
OOA1
OOA1
OOA2
OOA4
OOA5
OOA6
OOA7
OOA8
OOA8
OOA9
OOAA
OOAF

2580

0008

OODA
OOD8

OODO
OOD2
00D4
OOD6

OOCO
OOC2

I

I

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

equ
equ

equ
equ
equ
equ

base204 OaOh
fdccom base204+0
f dcst a t base204+0
fdcparm base204+1
fdcrs l t base204+1
fdcrst base204+2
dmacadr base204+4
dmaccont base204+5
dmacscan base204+6
dmacsadr base204+7
dmacmode base204+8
dmacstat base204+8
fdcsel base204+9
fdcsegment base204+10
reset204 base204+15

;actual console baud rate
baud rate equ 9600
;value fo r 8 253 baud counter
baud equ 768/ (ba u d r a t e / 1 00)

csts ODAh
cdata OD8h

tchO ODOh
tchl tchO+2
tch2 tch0+4
tcmd tchO+6

OCOh
OC2h

;i8251 status port
data por t

; 8253 PIC c h a nne l 0
; ch 1 por t
; ch 2 por t
;8253 command port

icpl
icp2

IF NOT DEBUG
ROMSEG EQU OFFOOH ;normal

ENDIF

IF DEBUG ; share prom with SB
FEOO ROMSEG OFEOOHEOU

ENDIF

104

CP/M-86 System Guide Appendix C Listing of the BOOT ROM

This l ong j u mp
cseg Offffh
JMP F BOT TOM
E A 00 00 0 0 F F

EVEN PROM
7F8 — EA
7F9 — 00
7FA — FF

ODD PRON
7F8 — 00
7F9 — 00

prom d i n b y h a nd
; reset goes t o h e r e
;boot is at bottom
;cs = bottom of pro

ip = 0

; thi s i s n o t d o n e i

FE00
I

c seg roms e g

move our data area into RAM at 0000:0200; Firs t ,

0000 SCCS
0002 SEDS
0004 BE3F01
0007 BF0002
OOOA B80000
OOOD SECO
OOOF B9E600
0012 F3A4

0014 B80000
0017 8EDS
0019 8EDO
001B BC2A03
001E FC

mov ax,cs
mov ds,ax ;point DS to CS for source
mov Sl,drombegin ;start of data
mov DI,offset ram start ;offset of destinat
mov ax,O
mov es,ax ;destination segment is 000
mov CX,data length ;how much to move i
r ep movs a l , a l ;move out of eprom

mov ax,O
mov ds,ax ;data segment now in RAN

;Initialize stack s
;clear t h e d i r e c t i o

I

I

;Now,

mov ss,ax
mov sp,stack offset
cld

IF NOT DEBUG

initialize the console USART and baud rate

mov al ,OEh
o ut cs t s , a l
mov al ,40h
o ut cs t s , a l
mov a1,4Eh
o ut cs t s , a l
mov a1,37h
o ut cs t s , a l
mov al ,OB6h
out tcmd,al
mov ax,baud
out t c h 2 ,a l
mov al ,ah
out t c h 2 ,a l

ENDIF

;give 8251 dummy mode

;reset 8251 to accept mode

;normal 8 bit asynch mode,

; enable Tx 6 Rx

;8253 ch.2 square wave mode

;low of the baud rate

;high of the baud rate

;Setup the 8259 Programmable Interrupt Controller
I

001F B013
0021 E6CO
0023 B010

mov a1,13h
out icpl,al
mov a1,10h

;8259a ICW 1 8 086 mode

105

CP/M-86 System Guide Appendix C Listing of the BOOT ROM

0025 E6C2
0027 B01F
0029 E6C2
002B BOFF
002D E6C2

0082

002F E6AF
0031 B001
0033 E6A2
0035 BOOO
0037 E6A2
0039 BB1502
003C E8E100
003F BB1B02
0042 E8DBOO
0045 BB2102
0048 E8D500
004B BB1002
004E E85800

0051 BB2A03
0054 B80000
0057 8ECO
0059 E8A700

005C BB0202
005F E84700

0062 8E062D03
0066 BBOOOO
0069 E89700

006C BB0602
006F E83700
0072 BBOB02
0075 E83100

0078

007C C706E6020000

8C06E802

I

I

homer:

out i c p 2 , a l
m ov al , l F h
out i c p 2 , a l
mov al , OFFh
out i c p 2 , a l

; 8259a ICW 2 v e c t o r 0 4 0 - 5

;8259a ICW 4 auto EOI mast

;8259a OCW 1 mask all leve

;Reset and initialize the iSBC 204 Diskette Interfa

r estar t : ;also come back here on fatal error
out reset204,AL ;reset iSBC 204 logic and
mov AL,1
o ut f d c r s t , A L ;give 8 27 1 F DC
mov a1,0
out f d c r s t ,A L ; a reset command
mov BX,offset specsl
CALL sendcom ;program
mov BX,offset specs2
CALL sendcom ; S hugart SA-800 dr i v e
mov BX,offset specs3
cal l s e ndcom ; characteristics
mov BX,offset home
C ALL execut e ; home drive 0

mov bx,sector l
mov ax,O
mov es,ax
call setup dma

mov bx,offset readO
call e x ecute ; get T O S l

mov es ,ABS
mov bx,O ;get l o ader l o a d address
call setup dma ;setup DMA to read loader

mov bx,offset readl
call e x ecute ; read t r ack 0
mov bx,offset read2
ca11 execute ; read t r ack 1

mov leap segment,ES
setup far jump vector
mov leap offset,0

enter L OADER
jmpf dword ptr leap offset

;offset for first sector DN

;segment "

FF2EE602

pmsg:
0086 8AOF
0088 84C9
008A 7476
008C E80400
008F 43
0090 E9F3FF

mov cl , [BX]
test cl,cl
j z r e t u r n
cal l c o nout
inc BX
jmp pmsg

106

CP/M-86 Appendix C Listing of the BOOT ROMSystem Guide

conout:
0093 E4DA
0095 A801
0097 74FA
0099 8AC1
009B E6D8
009D C3

i n a l , c s t s
t est al , l
jz conout
mov al , c l
o ut c d a t a , a l
ret

I

conin:
009E E4DA
OOAO A802
OOA2 74FA
OOA4 E4D8
OOA6 247F
OOA8 C3

i n a l , c st s
t est a 1, 2
j z con i n
i n a l , c da t a
and a1,7Fh
ret

execute:

OOA9

OOAD E87000

891E0002 mov

c al l sendco m

OOBO 8B1E0002
OOB4 8A4701
OOB7 243F
OOB9 B90008
OOBC 3C2C
OOBE 720B
OOCO B98080
OOC3 240F
OOC5 3COC
OOC7 BOOO
OOC9 7737

I

retry :

mov BX,la stcom
m ov AL, 1 [B X)
and AL , 3f h
m ov CX, 080 0 h
cmp AL, 2ch
jb execpoll
m ov CX, 80 80 h
and AL , Of h
cmp AL , Och
mov AL,O
j a r e t u r n

;execute command string 9 [BX]
;<BX> points to Length,
;followed by Command byte
;followed by length-1 oarameter bvt

Lastcom,BX ;remember what it w
;retrv if. not ready
;execute the comman
;now, le t s s e e wha
;of status poll was
;for that command t
;point to command s
; get c ommand op c o d
;drop d r i v e co d e b i
;mask if it wilL be
;see if interrupt t

;else we u s e " n o t c
;unless
; ther e i s n t

;any r e s u l t at aL L

b, toggled with cexecpol l : ;polL for hi t in
OOCB E4AO
OOCD 22C5
OOCF 32C174F8

OOD3 E4A1
OOD5 241E
OOD7 7429

00D9
OODB

OODD BB1302
OOEO E83DOO

3C10
7513

in AL ,FDCSTAT
and AL,CH
x or AL ,CL ! J Z e xe c p o l l

in AL,fdc r s l t
and AL , l e h
7z r etu r n

cmp a1,10h
jne fatal

mov bx,offset rdstat
cal l s e ndcom

;get result registe
; Look only a t r e s u L
; zero means i t w a s

;if other than "Not

;perform read statu

107

CP/M-86 Appendix C L i st i nq o f t h e BOOT R04tSystem Guide

r d pol l :
OOE3 F4AO
OOE5 ASSO
OOE7 75FA
OOE9 8B1E0002
OOED E9BDFF

in al,fdc stat
test a 1 , 80h
j nz rd p o l l
mov bx, l as t corn
j mp ret r y

OOFO B400
OOF2 8BDS
OOF4 8B9F2702

OOFS ESSBFF
OOFB ESAOFF
OOFE 58
OOFF E92DFF

I

f ata l :
mov ah,0
mov bx,ax
mov bx,errtbl[BX]
p rin t a ppropr i a t e
call pmsg
c all c o n i n
pop ax
jmp restart

error message

;wait for command n

;recover last attem
; and t r y i t ov e r a g

f ata l e r r o r

; make 16 b i t s

;wait for key strik
; discard unused i t e
;then start all ove

I

return :
;re t u r n f r om EXECUT0102 C3

setupdma:
0103 B004
0105 E6AS
0107 BOOO
0109 E6A5
010B B040
010D E6A5
010F 8CCO
0111 E6AA
0113 8AC4
0115 E6AA
0117 SBC3
0119 E6A4
011B 8AC4
011D E6A4
011F C3

mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
RET

ALi04h
dmacmode,AL
al,o
dmaccont,AL
AL,40h
dmaccont,AL
AX,ES
fdcsegment,AL
AL,AH
fdcsegment,AL
AX,BX
dmacadr,AL
AL,AH
dmacadr,AL

;enable dmac

;set f i r st (d ummy)

; force r ead data mo

I

I

sendcom: to send a command string t
0120 E4AO
0122 2480
0124 75FA
0126 8AOF
0128 43
0129 8A07
012B E6AO

012D FEC9
012F 74D1
0131 43

0132 E4AO
0134 2420
0136 75FA

parmloop:

parmpoll :

; rout i ne
in AL,fdcstat
and AL,SOh
jnz sendcom
mov CL,[BX]
inc BX
mov al , [BX]
out f dccom,AL

dec CL
j z r e t u r n
inc BX

in AL,fdcstat
and AL,20h
jnz parmpoll

;insure command not busy
;get count

;point to and fetch command
;send command

;see i f a n y (more) p a ramete
;point to next parameter

;loop until parm not full

108

CP/M-86 System Guide C Listing of the BOOT ROMAppendix

0138 8A07
013A E6A1
013C E9EEFF

mov AL,[BX]
out f dcparm,AL
jmp parmloop

;output next parameter
;go see about another

I

I

Image of data to be moved to RANI

I

013F

013F 0000

0141 03
0142 52
0143 00
0144 01

0145
0146
0147
0148
0149

014A 04
014B 53
014C 01
014D 01
014E 1A

014F 026900
0152 016C
0154 05350D
0157 0808E9
015A 053510
015D FFFFFF
0160 053518
0163 FFFFFF

0166 4702
0168 4702
016A 4702
016C 4702
016E 5702
0170 6502
0172 7002
0174 7F02
0176 9002
0178 A202
017A B202
017C C502
017E D302
0180 4702
0182 4702
0184 4702

0186

04
53
00
02
19

I

I

I

I

I

1

ce

chomeO
crdstatO
cspecsl

cspecs 2

cspecs3

creadtrkO

creadtrk l

r r tb l d w
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

CerO db

c readst r i n g

drombegin equ offset $

clastcom dw

db
db
db
db

db
db
db
db
db

db
db
db
db
db

db
db
db
db
db
db
db
db

offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset

cr,lf, Null Error 77 ,0

0000h ;last command

3
52h
0
1

4
53h
0
2
25

4
53h
1
1
26

2,69h,O
1,6ch
5,35h,Odh
08h,08h,Oe9h
5,35h,lOh
255,255,255
5,35h,18h
255,255,255

er0
erl
er2
er3
er4
er5
er6
er7
er8
er9
erA
erB
erC
erD
erE
erF

; track 1
; sectors 1
; through 26

;read multiple
; track 0
;sectors 2
; through 26

; length
; read func t i o n c ode
;track 4
; sector I

ODOA4E756C6C

109

CP/M-86 System Guide Appendix C Listing of the BOOT ROM

204572726F72
203F3FOO

0186 Cerl
0186 Cer2
0186 Cer3

0196 ODOA436C6F63 Cer4

cerO
cerO
cerO
c r, l f , C lo c k E r r o r ,0

equ
equ
equ
db

6B204572726F
7200

20444D4100

524320457272
6F7200

204352432045
72726F7200

65204E6F7420
526561647900

652050726F74
65637400

3030204E6F74
20466F756E64
00

65204661756C
7400

6F72204E6F74
20466F756E64
00

0186
0186
0186

0225

OOE6

01A4 ODOA4C617465 Cer5

01AF ODOA49442043 Cer6

01BE ODOA44617461 Cer7

01CF ODOA44726976 Cer8

01E1 ODOA57726974 Cer9

01Fl ODOA54726B20 CerA

0204 ODOA57726974 CerB

0212 ODOA53656374 CerC

I

CerD equ
CerE equ
CerF equ

db

db

db

db

db

db

db

db

cerO
cerO
cerO

dromend equ offset $

data leng th equ dromend-dr ombeg in

cr,lf, Write Fault ,0

cr,lf, Late DMA ,0

c r , l f , I D C R C E r r o r , 0

cr,lf,'Write Protect ,0

c r, l f , D a t a CRC Erro r , 0

cr,lf, Drive Not Ready ,0

c r, l f , T r k 0 0 No t F ound , 0

cr,lf, Sector Not Found ,0

I

0000

reserve space in RAM for data area
(no hex records generated he re)

dseg
org

0
0200h

I

0200
0200
0202
0206
020B
0210
0213
0215

ram star t
lastcom
read0
readl
read2
home
rdstat
specsl

equ
rw
rb
rb
rb
rb
rb
rb

command
t rack 0 s ec t o
TO S2-26
Tl S l - 2 6
drive 0
status

; last
;read
;read
;read
;home
;read

110

Appendix C Listing of the BOOT ROMCP/M-86 System Guide

021B
0221
0227
0247

0247
0247
0247

0257
0265
0270
027F
0290
02A2
02B2
02C5
02D3

0247
0247
0247

02E6
02E8

specs2
specs3
errtb l
erO
erl
er2
er3
er4
er5
er6
er7
er8
er9
erA
erB
erC
erD
erE
erF

leap offset
leap segment

rw

rb
rb

rb
equ
equ
equ
rb
rb
rb
rb
rb
rb
rb
rb
rb
equ
equ
equ

6
6
16
l ength ce r O
erO
erO
erO
l ength ce r 4
l ength ce r 5
l ength ce r 6
l ength ce r 7
l ength ce r 8
l ength ce r 9
length ce r A
length ce rB
length ce r C
erO
erO
erO

;14
;11
;15
;17
;18
;16
;19
;14
;19

16

rw
rw

02EA
032A

rw
equ

T O Sl read i n h e r e
e qu of f se t $

rb

032A

032A
032B
032n
032F
0331

I

I

sector 1

Ty
Len
Abs
Min
Max

I

stack offset

rw
rw
rw
rw
end

32 ; local s t a c k
offset S;stack from here do

; ABS is a l l w e c a r e

111

Appendix D
LDBIOS Listing

* * * * * * * % ** * * * * * * * * * * * * * * * At * * * * * * * * * * * * * * * * * * A* * * * *
* *

* This the the LOADER BIOS, derived from the BIOS *
* program by enabling the " loader b i os " c o nd i ­
* tional assembly switch. The listing has been *

* edited to remove portions which are duplicated *

* in the BIOS listing which appears in Appendix D *
* where elipses "..." denote the deleted portions *
* (the listing is truncated on the right, but can *
* be reproduced by assembling the BIOS.A86 file *

* provided with CP/M-86)
* *
t * * * * * * * * * * * A* * A* * * * * * * * * * * * * %* * * * A* * * * * * * * * * * * * * * *

• **** * * * * * * 4 * * * * * * * + *** * ** + * p **** * * * * * * * * * * * * *
• * *
I

I

• *

;* Basic Input/Output System (BIOS) for
;* CP/M-86 Configured for iSBC 86/12 with *

;* the iSBC 204 Floppy Disk Controller

;* (Note: this file contains both embedded *

;* tabs and blanks to minimize the list file *
;* width for printing purposes. You may wish*
;* to expand the blanks before performing
; * major e d i t i n g .)

I

• *** * * * * * * * * A* * * * * * * * * * A* * * * * A* * * A* * * * A* * * * * * *
I

Copyr ight (C) 1 9 80, 1981
D igi ta l R esearch , I n c .
Box 579, Pacific Grove
California, 93950

(Permission is herebv granted to use
or abstract the following program in
the implementation of CP/M, MP/M or
CP/NET for the 8086 or 8088 Micro­
processor)

true
false

equ -1
e qu not t r u e

FFFF
0000

113

CP/M-86 System Guide Append i x D LDBIOS Listing

• *** * * * * * * * * * * * * * A* A* * * * * *
• *
I

I

;* Loader bios is true if assembling the
;~ LOADER BIOS, otherwise BIOS is for the *
;* CPM.SYS file. Blc list is true if we *
;* have a serial printer attached to BLC8538 *
;* Bdos int is interrupt used for earlier *
; * ver s i o ns .
I

*
• * *
• *** * * * * * * * * * * * * %* * * * * * * * * * * * * * * A* * * * %* A * * * * * *
I

FFFF
FFFF
OOEO

l oader b i o s
blc l i st
bdos in t

equ t rue
equ t rue
equ 224 ;reserved BDOS Interrupt

n ot l oader b i o sIF

ENDIF ; not l o ader b i o s

IF l oader b i o s

1200
0003
0406

bios code
:I
ccp of f s e t
bdos ofs t
I

equ 1200h ;start of LDBIOS
equ 0003h ; b a s e o f C P MLOADER
equ 0406h ;stripped BDOS entr

ENDIF ; loader b i o s
• • •

cseg
org ccpof f set

org bi os code
ccp o

I
• *** * * * * * * * * * * %* * * * * * * * * * * * * * * * %* * * * * * * * * * * * * A
• * *
I

;* BIOS Jump Vector for Individual Routines *

1200 E93COO
1203 E96100

1239 E96400
123C E96400

I

I

j mp IN I T
jmp WBOOT

jmp GETIOBF
jmp SETIOBF

• * *
• *** * A * A* * * * * * * * * * * * * * * *

;Enter from BOOT ROM or LOADER
;Arrive here from BDOS call 0

;return I/O map byte (IOBYTE)
;set I / O map byte (I OBYTE)

• • •

114

Appendix D LDB I O S L i st i n gCP/M-86 System Guide

I

I
• *** * A * * * * * * * * * * A* * * * A* * * * * * * * * * * * A* * * * * * * * * * A
• * *

;* INIT Entry Point, Differs for LDBIOS and *

;* BIOS, according to "Loader Bios" value
I * *

• *%******A***A%****************%***%****A*****
I

INIT: ;print signon message and initialize hardwa
mov ax,cs ;we entered with a JMPF so
mov ss,ax CS: as the initial value
mov ds,ax DS:,
mov es,ax and ES:
;use local stack during initialization
mov sp,offset stkbase
cld ;set forward direction

IF n ot l oader b i o s

123F SCCS
1241 SEDO
1243 8EDS
1245 SECO

1247 BCA916
124A FC

This is a BIOS for the CPM.SYS file.
I• • •

ENDIF ; not l o ader b i o s

IF l oader b i o s

; This is a BIOS for the LOADER
push ds ;save data segment
mov ax,O
mov ds,ax ;point to segment zero
;BDOS interrupt offset
mov bdos offset,bdos ofst
mov bdos segment,CS ;bdos interrupt segment
pop ds ;restore data segment

l

124B 1E
124C B80000
124F SEDS

1251 C70680030604
1257 SCOE8203
125B 1F

ENDIF ; loader b i o s

mov bx,offset signon
call pmsg ;print signon message
mov c1,0 ;default to dr A: on coldst
jmp ccp ;jump to cold start entry o

WBOOT: jmp ccp+6 ;direct entry to CCP at corn

125C BB1514
125F E85AOO
1262 B100
1264 E99CED

1267 E99FED

IF n ot l oader b i o s

ENDIF ; not l o ader b i o s

115

CP/N-86 System Guide Appendix D LDB I OS L i st i ng

• *** * A * * * * * * * * * * * * A ' * ** A
• * *I

;* CP/8 Character I/O Interface Routines *
;* Console i s U s ar t (i 82 5 1a) on i SBC 86/12 *
; * at po r t s D 8 / DA *
• * *
• *** * * * * * * * * * * * * * * * * A* A* *

CONST: ; console s t a t u s
126A E4DA i n a l , c s t s

• • •

1272 C3
c onst r e t :

ret

CONIN:

;Receiver Data Available

; console i n put
1273 E8F4FF cal l c o ns t

• • •

CONOUT: ;console ou tput
127D E4DA i n a l , c s t s

LISTOUT: ;list device output

IF blc list

1288 E80700 cal.l L I S TST

ENDIF ; blc l i s t

1291 C3 ret

LISTST: ;poll list status

IF blc l i st

1292 E441 in al,lsts

ENDIF ; blc l i st

ret129C C3

PUNCH: ; not i mplemented i n t h i s c o n f i g u r a t i o n
READER:

129D B01A
129F C3

m ov al , l a h
ret ; return EOF fo r n o w

116

Appendix D LDBIOS ListingCP/M-86 System Guide

GETIOBF:
12AO BOOO
12A2 C3

• TTY: for c o n s i s t e ncy
;IOBYTE not implemented

mov a1,0
ret

SETIOBF:
12A3 C3 ret ;iobyte not implemented

z ero re t :
12A4 2400
12A6 C3

and a1,0
ret

Routine to get and echo a console character

;return zero in AL and flag

and shift it to upper case

uconecho:
12A7 E8C9FF call CONIN ; get a c onsole c harac te r

• **** * * * * * * * * * * * * * * * * +* * * * * A * ** * * * * * * * * A * ** * * *
• * *
I

I

• * Disk Input/Output Routines
• * *
• **** * * * %* A * *
I

I

SELDSK: ;select disk given by register CL
12CA BBOOOO mov bx,0000h

HOME: ;move selected disk to home position (Track
m ov trk , O ;set disk i/o to track zero12EB C606311500

SETTRK: ; set t r ac k address g i ven by CX
1300 880E3115
1304 C3

m ov trk , c l ;we only use 8 bits of trac
ret

SETSEC: ;set sector number given by cx
1305 880E3215
1309 C3

mov sect , c l ;we only use 8 bits of sect
ret

SECTRAN: ;translate sector CX using table at [DX]
130A 8BD9 mov bx,cx

SETDMA: ;set DMA offset given by CX
1311 890E2A15
1315 C3

mov dma adr,CX
ret

SETDMAB: ;set DMA segment given by CX
1316 890E2C15
131A C3

mov dma seg,CX
ret

I

GETSEGT: ;return address of physical memory table
131B BB3815
131E C3

mov bx,offset seg table
ret

117

CP/M-86 System Guide Appendix D LDB I OS L i st i ng

• **** % * * * ** * * * * * * *
• * *
I

I

;* All disk I/O parameters are setup: the *
;* Read and Write entry points transfer one *
;* sector of 128 bytes to/from the current *

;* DMA address using the current disk drive *
I
• * *
• *** * A * * * * * * * * * * A* A* * * * *
I

READ:
131F B012
1321 EB02

mov a1,12h ;basic read sector command
jmps r w common

WRITE:
1323 BOOA mov al ,Oah ;basic write sector command

r w common:
1325 BB2F15 mov bx,offset io corn ;point to command stri

I

• *** * % * A* * * * * * * * %* * * A*
• * *

*• * Data Areas
• *
• **** *
I

1415 data offset equ offset $

dseg
org data offset

IF l oader b i o s

;contiguous with co

I

1415 ODOAODOA
1419 43502F4D2D38

362056657273
696F6E20322E
320DOAOO

:I
s ignon d b

db
cr,lf,cr,lf
CP/M-86 Version 2.2 ,cr,lf,O

ENDIF ; loader b i o s

IF n ot l oader b i o s

ENDIF ; not l o ader b i o s

142F ODOA486F6D65 bad h orn db cr , l f , Ho me Error , cr , l f , O
• • •

i nclude s i n g l e s . l i b ; r e a d i n di s k d e f i ni t i o
DISKS 2

118

Appendix D LDB I OS L i st i ngCP/M-86 System Guide

1541

=1668 00

d pbase e q u

db

;Base of D i s k Param

;Marks End of Modul
• • •

loc stk rw 32 ;local stack for initialization
stkEase equ offset $

1669
16A9

• • •

db 0 ;fill last address for GENCMD16A9 00

I

I

• *** * * * * * * A* * * * A* A* * * * * * %*
• * *
• * Dummy Data Section *
• * *

• *** * * * * * * * * * * * * * * At * * k* * * * * * A* * * * * A* * * * * * * * * *
I

dseg 0 ;absolute low memory
org 0 ;(interrupt vectors)

0000

• • •

END

119

Appendix E
BIOS Listing

* *A%**A* * * * * A* * A* * * * * * * * * * * * * * * * * * %* * * * * * * * * * * * * * * *

* This is the CP/M-86 BIOS, derived from the BIOS *
* program by disabling the "loader bios" condi­ *

* tional assembly switch. The listing has been *

* truncated on the right, but can be reproduced *

* by assembling the BIOS.A86 file provided with *

* CP/M-86. This BIOS allows CP/M-86 operation *

* with the Intel SBC 86/12 with the SBC 204 con­ *

* troller. Use this BIOS, or the skeletal CBIOS *

* listed in Appendix E, as the basis for a cus­ *

* tomized implementation of CP/M-86.
* prov ided w i t h CP/M-86) *

• *** * * * * * * * * %* A ' * ** * * * * * * * * *
• 0 *
I

I

;* Basic Input/Output System (BIOS) for *

;* CP/M-86 Configured for iSBC 86/12 with *

;* the iSBC 204 Floppy Disk Controller

;* (Note: this file contains both embedded *

;* tabs and blanks to minimize the list file *
;* width for printing purposes. You may wish*
;* to expand the blanks before performing
; * major e d i t i n g .)

*

• * *
t

. * * * * * * * * * * * * * * * %A * * * * * A* * * * * * * t * * * * * * * * * * * * * *
I

Copyright (C) 1 9 80 ,1981
Digital Research, Inc.
Box 579, Pacific Grove
Calif o r n i a , 9 3 950

(Permission is hereby granted to use
or abstract the following program in
the implementation of CP/M, MP/M or
CP/NET for the 8086 or 8088 Micro­
processor)

FFFF
0000

true
false

equ -1
e qu not t r u e

121

CP/M-86 System Guide Appendix E B I OS L i st i ng

• *** %* * * * * * * A* * * * * * * * * *
• * 1L'
I

;* Loader bios is true if assembling the *
;* LOADER BIOS, otherwise BIOS is for the *
;* CPM.SYS file. Blc list is true if. we *
;* have a serial printer attached to BLC8538 *
; * Bdos int is interrupt used for earlier *
; * ver s i ons .

0000
FFFF
OOEO

I

*
• * *
• *** * * * * * * * * * * +* * * * * * * * * * * * * * * * A* * * * * * * * * * * * * *

l oader b i o s
blc l i st
b dos i n t

equ fa l se
equ t rue
equ 224 ;reserved BDOS Interrupt

n ot l oader b i o sIF
I

2500
0000
OB06

bios code
ccp of f s e t
bdos ofs t

equ 2500h
equ 0000h
equ 0106h ;BDOS entry point

ENDIF ; not l o ader b i o s

IF l oader b i o s
I

bios code
ccp of f s e t
bdos ofs t
I

equ 1200h ;start of LDBIOS
equ 0003h ; b a s e o f C P MLOADER
equ 0406h ;stripped BDOS entr

I

ENDIF ; loader b i o s

00DA
OOD8

csts
cdata

equ ODAh ;i8251 status port
equ OD8h

;

" data por t

IF blc list
I

:1
0041
0040
0060

ls t s
ldata
b lc r eset
:l

equ 41h ;2651 No. 0 o n BLC8538 stat
equ 40h ff II I I II II

equ 60h ; r e se t s e l e c ted USAR'TS on B

ENDIF ; blc l i st

• *** * * * A* * * * * A* k* * * * * * * * * * * * * * * %* * * * * * * * * * * * * *
• * *
I

;* Int el iSBC 204 Disk Controller Ports *
• * *
• *** * * * * A* * * * * * * * %* * * * * * * * A* * * * * * * * * * * * * A* * * * *
I

I

122

Guide A ppendix E BI O S L i s t i n gCP/M-86 System

OOAO

OOAO
OOAO
OOA1
OOA1
OOA2
OOA4
OOA5
OOA6
OOA7
OOA8
OOA8
OOA9
OOAA
OOAF

OOOA

OOOD
OOOA

base204

fdc corn
fdc s t a t
fdc parm
f dc r s l t
f dc r s t
dmac adr
dmac cont
dmac scan
dmac sadr
dmac mode
dmac stat
fdc sel
fdc segment
r eset 2 0 4

m ax ret r i e s

equ OaOh

equ base204+0
equ base204+0
equ base204+1
equ base204+1
equ base204+2
equ base204+4
equ base204+5
equ base204+6
equ base204+7
equ base204+8
equ base204+8
equ base204+9
equ base204+10
equ base204+15

equ 10

equ Odh
equ Oah

;SBC204 assigned ad

;8271 FDC out c o mma
; 8271 i n st a t us
;8271 out p a rameter
; 8271 i n r es u l t
; 8271 out r e s e t
; 8257 DMA base ad d r
; 8257 ou t c on t r o l
;8257 out s can cont
;8257 out s can addr
;8257 out mode
; 8257 in s t a t u s
; FDC select p or t (n
;segment address re
;reset entire inter

;max retries on dis
; before perm er r o r
; carr i age r e t u r n
; l ine f e ed

cr
l f

cseg
org

org

ccpoffset

bios code
ccp;

I

I

• *** k k * * * k* %1L** * * * * * * * kk* A*
• * *

;* BIOS Jump Vector for Individual Routines
*

2500 E93COO
2503 E98400
2506 E99000
2509 E99600
250C E99DOO
250F E9A500
2512 E9B700
2515 E9B400
2518 E9FFOO
251B E9DBOO
251E E90E01
2521 E91001
2524 E91901
2527 F92401
252A E92501
252D E99100
2530 E90601
2533 E90F01
2536 E91101
2539 E99300
253C E99300

I

I

• * *

• *** * * * * * * * * * @*A ** * * * * * * * * * * * * * * 0* * * * * k* * * k* * *

;Enter from BOOT ROM or LOADFR
;Arrive here from BDOS call 0
;return console keyboard status
; return console k eyboard char
;write char to console device
;write character to list device
;write character to punch device
;return char from reader device
; move to t r k 0 0 o n c u r s et d r i v e
;select disk for next rd/write
;set track for next rd/write
; set sec to r f or next rd/write
;set off.set for user buff (DMA)
; read a 128 byt e s e c t o r
;write a 128 byte sector
;return list status
;xlate logical->physical sector
;set seg base for buff (DMA)
;return offset of. Mem Desc Table
;return I / O map byt e (I OBYTE)
;set I/O map byte (IOBYTE)

jmp INIT
jmp WBOOT
jmp CONST
jmp CONIN
jmp CONOUT
jmp LISTOUT
jmp PUNCH
jmp READER
jmp HOME
jmp SELDSK
jmp SETTRK
jmp SETSEC
jmp SETDMA
jmp READ
jmp WRITE
jmp LISTST
jmp SECTRAN
jmp SETDMAB
jmp GFTSEGT
jmp GETIOBF
jmp SETIOBF

123

Appendix E BIOS ListingCP/N-86 System Guide

• **** t A * A * * * * *
• * *
I

I

;~ INIT Entry Point, Differs for LDBIOS and *

;* BIOS, according to "Loader Bios" value *
• * *
• *** * * * * * * * * * * * * * * A% * * * * * A* * * * * * * * * * * * * * %i ' 4 * * *
I

I

INIT: ;print signon message and initialize hardwa
mov ax,cs ;we entered wi t h a J NPF so
mov ss,ax CS: as the initial value
mov ds,ax DS: i

mov es,ax and FS:
;use local stack during initialization
mov sp,offset stkbase
cld ;set forward direction

IF n ot l oader b i o s

253F 8CC8
2541 8EDO
2543 8ED8
2545 8ECO

2547 BCE429
254A FC

; This is a BIOS for the CPM.SYS file.
Setup all interrupt vectors in low

; memory to address trap

push ds
mov ax,O
mov ds,ax
mov es,ax ; set FS and DS to z e r o
;setup interrupt 0 to address trap routine
mov intO offset, offset int trap
mov int0 segment,CS
mov di , 4
mov si , O ;then propagate
mov cx,510 ; trap vec to r t o
rep movs ax,ax ;all 256 interrupts
;BDOS offset to proper interrupt
mov bdos offset,bdos ofst
pop ds ;restore the DS register

; save the DS reg i s t e r254B lE
254C B80000
254F BEDS
2551 8ECO

2553 C70600008D25
2559 8COE0200
255D BF0400
2560 BEOOOO
2563 B9FE01
2566 F3A5

2568 C7068003060B
256E 1F

• **** * * * * * * * * A * ** * * * * * * * * * % * * * ** * * * * * * * * * * * * * *
• 0 *
I

I

;* National "BLC 8538" Channel 0 for a serial*
;* 9600 baud printer — this board uses 8 Sig-*
;* netics 2651 Usarts which have on-chip baud*
; * r a t e g enera to r s .
• * *
• %***** * * * A * * * * * * * * * * % * A* * * * ** * * * * * * * * * * * * * * * *
I

I

256F BOFF
2571 E660
2573 B04E
2575 E642
2577 B03E
2579 E642
257B B037
257D E643

mov al ,OFFh
out blc reset,al ;reset all usarts on 8538
mov al ,XFh
out ldata+2,al ;set usart 0 in async 8 bit
mov a1,3Eh
out ldata+2,al ;set usart 0 to 9600 baud
mov a1,37h
out ldata+3,al ;enable Tx/Rx, and set up R

124

Appendix E BI OS L i st i ngCP/M-86 System Guide

I

ENDIF ; not l o ader b i o s

IF l oader b i o s

;This is a BIOS for the LOADER
push ds ;save data segment
mov ax,0
mov ds,ax ;point to segment zero
;BDOS interrupt offset
mov bdos offset,bdos ofst
mov bdos segment,CS ;bdos interrupt segment
pop ds ;restore data segment

257F BB4427
2582 E86600
2585 B100
2587 E976DA

258A E979DA

ENDIF ; loader b i o s

mov bx,offset signon
call pmsg ;print signon message
mov c1,0 ;default to dr A: on coldst
jmp ccp ;jump to cold start entry o

;direct entry to CCP at cornWBOOT: jmp ccp+6

IF n ot l oader b i o s

258D FA
258E 8CC8
2590 8ED8
2592 BB7927
2595 E85300
2598 F4

i nt t r a p :
cl i
mov ax,cs
mov ds,ax
mov bx,of
cal l pmsg
hit

fset int trp

;block interrupts

;get our data segment

;hardstop

ENDIF ; not l o ader b i o s

• **** * * * * * % * * * %* * * %*A** *
• * *
I

I

;* CP/M Character I/O Interface Routines *
;* Console is tJsart (i8251a) on iSBC 86/12 *
; * at por t s D 8 / DA *
• * *
• *** * * * * * * * * * * A* A* * * * * * * * * * * A* * * * * * * * kA* k * * % * *
I

I

CONST: ; console s t a t u s
2599 E4DA
259B 2402
259D 7402
259F OCFF

25A1 C3

i n a l , c s t s
and a1,2
j z const r e t
or a1,255 ; return non-zero i f R DA

;Receiver Data Available
c onst r e t :

ret

125

Appendix E BI OS Li s t i ngCP/M-86 System Guide

CONIN:
call c o ns t
jz CONIN
i n a l , c da t a
and a1,7fh
ret

;console i n pu t

; wai t f o r RD A

;read data and remove parit

25A2 E8F4FF
25A5 74FB
25A7 E4D8
25A9 247F
25AB C3

CONOUT: ;console ou tput
25AC E4DA
25AE 2401
25BO 74FA
25B2 8AC1
25B4 E6D8
25B6 C3

i n a l , c s t s
a nd al , l
jz CONOUT
mov al , c l
out cdata , a l
ret

;get console status
; wai t f o r TBE

;Transmitter Buffer Empty
; then re t u r n d a t a

;list device outputLISTOUT:

I F b l c l i s t

25B7 E80700
25BA 74FB
25BC 8AC1
25BE E640

cal l L I S T ST
jz L I STOUT
mov al , c l
out ldata,al

;wait for printer not busy

; send char t o T I 81 0

ENDIF ; blc l i st

25CO C3 ret

;poll list statusLISTST:

blc l i stIF

25C1 E441
25C3 2481
25C5 3C81
25C7 750A
25C9 OCFF

in al,lsts
and al , 81h
cmp a1,81h
j nz zero r e t
or a1,255

; look a t bo t h Tx RDX and DTR

;either false, printer is b
; both t r ue , LPT i s r e a dy

FNDIF ; blc l i s t

25CB C3 ret

PUNCH: ; not i mplemented i n t h i s c o n f i g u r a t i o n
READER:

25CC B01A
25CE C3

m ov al , l a h
ret ; return EOF fo r n o w

GETIOBF:
mov a1,0
ret

; TTY: for c o n s i s t e ncy
;IOBYTE not implemented

25CF BOOO
25D1 C3

126

A ppendix E BI O S L i s t i n gCP/N-86 System Guide

SETIOBF:
ret

z ero re t :

;iobyte not implemented25D2 C3

25D3
25D5

2400
C3

and a1,0
;return zero in AL and flagret

Routine to get and echo a console character
and shift it to upper case

uconecho:
call CONIN
push ax
mov cl , a l
call CONOUT
pop ax
c mp al , ' a
jb ure t
c mp al , ' z
ja ure t
sub al , a - ' A'

; get a c onsole c harac t e r

;save and

;echo to c onsole

; less t h an a ' i s o k

; greater t h a n z ' i s o k

;else shift to caps

25D6 E8C9FF
25D9 50
25DA 8AC8
25DC E8CDFF
25DF 58
25EO 3C61
25E2 7206
25E4 3C7A
25E6 7702
25E8 2C20

25EA C3
uret :

ret

utility subroutine to print messages

pmsg:
25EB 8A07
25ED 84CO
25EF 7428
25F1 8AC8
25F3 E8B6FF
25F6 43
25F7 EBF2

I

I

SELDSK: ;select
mov bx,0000h
cmp c1,2
j nb re t u r n
m ov al , 8 0 h
cmp c1,0
jne se l l
m ov al , 4 0 h

mov al [B X)
test al,al
jz return
mov CL,AL
call CONOUT
inc BX
jmps pmsg

;get next char from message

; i f z e r o r e t u r n

;prin t i t

; next charac te r and l o o p

• *** * * * * * * * * * A* A* * % * ** % A* * ** * * * * A* * * * * * * * * * * * %
• * *

• * Disk Input/Output Routines
• * *

• ***A***%**A**********A*********%***%**%%A**t*

disk given by register CL

;this BIOS only supports 2
;return w/ 0000 in BX if ba

25F9 BB0000
25FC 80F902
25FF 7318
2601 B080
2603 80F900
2606 7502
2608 B040
260A A26928

260D B500
260F 8BD9
2611 B104

sell: mov sel mask,al

;drive 1 if not zero
;else d r i v e i s 0
;save drive select mask
;now, we need d i sk p a ramete

;BX = word (CL)

*

mov ch,0
mov bx,cx
mov c1,4

127

Appendix E BIOS ListingCP/M-86 System Guide

2613 D3E3

2615 81C37C28

2619 C3
return :

s hl bx , c l ;multiply drive code * 16
;create offset from Disk Parameter Base
add bx,o f f se t d p b a se

HOME:

ret

;move selected disk to home position (Track
m ov trk , 0 ;set disk i/o to track zero
mov bx,offset horn corn
call e x ecute
j z r e t u r n ;home drive and return if 0
mov bx,offset bad horn ; else p r i n t
call pmsg ; "Home Error "
jmps home ; and re t r y

261A C6066C2800
261F BB6E28
2622 E83500
2625 74F2
2627 BB6A27
262A E8BEFF
262D EBEB

SETTRK: ; set t r ac k address g i ven by CX
262F 880E6C28
2633 C3

m ov trk , c l ;we only use 8 bits of trac
ret

SETSEC: ;set sector number given by cx
2634 880E6D28
2638 C3

m ov sect , c l ;we only use 8 bits of sect
ret

2639 8BD9
263B 03DA
263D 8AlF
263F C3

mov bx,cx
add bx,dx
mov bl, [bx]

SECTRAN: ;translate sector CX using table at [DX]

;add sector to tran table a
;get logical sector

ret

SETDMA: ;set DMA offset given by CX
2640 890E6528
2644 C3

mov dma adr,CX
ret

SETDNAB: ;set DMA segment given by CX
2645 890E6728
2649 C3

mov dma seg,CX
ret

GETSEGT: ;return address of physical memory table
264A BB7328
264D C3

mov bx,offset seg table
ret

• **** * * * * * * * * * * * * * * * * * * % * * * ** * * * * * * * * * * * * * * * 4 *
• *
I

I

;* All disk I/O parameters are setup: the *
;* Read and Write entry points transfer one *
;* sector of 128 bytes to/from the current *

;* DMA address using the current disk drive *
I
• * *
• * **** * * * * * * * * * * * * A* * * * * * * * * * * * * * * * * * %* * * * * * * *
I

READ:
264E B012
2650 EB02

mov a1,12h ;basic read sector command
jmps r w common

WRITE:

128

CP/N-86 System Guide Appendix E BIOS Listing

2652 BOOA mov al ,Oah ;basic wr i t e s e c to r c ommand

r w common:
2654 BB6A28
2657 884701

mov bx,offset io corn ;point to command stri
mov byte ptr 1[BX],al ;put command into str
fall into execute and return

execute: ;execute command string.
;[BX] points to length,

265A 891E6328

266A 8B1E6328
266E 8A4701
2671 B90008
2674 3C2C
2676 720B
2678 B98080
267B 240F
267D 3COC
267F BOOO
2681 7736

265E C60662280A

2663 8B1E6328
2667 E88900

retry :

outer r e t r y :

followed by Command byte,
followed by length-1 parameter byte

mov last corn,BX ;save command address for r

;allow some retrying
mov rtr y c n t , max r e t r i e s

mov BX,last corn
call s end corn ;transmit command to i8271
check status poll

mov BX,last corn
mov al,l[bxT
mov cx,0800h
cmp a1,2ch
j b exec po l l
mov cx,8080h
and al , Ofh
cmp a1,0ch
mov a1,0
j a exec ex i t

2683 E4AO
2685 22C5
2687 32C1
2689 74F8

e xec pol l :

in al,fdc stat
a nd al , c h
x or a l , c l
j z exec~ o i l

; ge t command op code
;mask if it wi11 be "int re

;ok if it (s an interrupt t
;else we use "not command b

;unless there isn t

any resul t
;poll for bits in CH,

toggled with bits in CL

; read s t a t u s

268B E4A1
268D 241E
268F 7428

2691 3C10
2693 7425

2695 FEOE6228
2699 75C8

d r rdy :

in al,fdc rslt
a nd al , l e h
j z exec ex i t

cmp a1,10h
j e dr n r d y

then we j u s t
d ec r t r y c n t
j nz r e t r y

;no,

isolate what we want to
;and loop until it is done

;Operation complete,
see if result code indica

; no er ror , t h e n e x i t
; some type o f e r r o r o c c u r r e

;was it a not ready drive ?

retry r ead o r w r i t e

up to 10 times

retries do not recover from the
hard er ro r

mov ah,O269B B400

129

Cp/M-86 A ppendix E BI O S L i s t i n gSystem Guide

269D 8BDS
269F 8B9F9127
26A3 E845FF
26A6 E4DS
26A8 E82BFF
26AB 3C43
26AD 7425
26AF 3C52
26B1 74AB
26B3 3C49
26B5 741A
26B7 OCFF

26B9 C3

mov bx,ax
m ov bx,er r t b l [B X
call pmsg
i n a l , c da t a
cal l u c onecho
cmp al , C
je wboot 1
c mp al , R '
j e oute r r e t r y
cmp al, Y
j e z r e t
or a1,255

ret

;make erro r c ode 16 b i t s
]
;print appropriate message
;flush usart receiver buffe
; read upper case console c h

;cancel

;retry 10 more times

; ignore e r r o r
;set code for permanent err

e xec ex i t :

d r nrdy : ;here to wait for drive ready
26BA E81AOO
26BD 75A4
26BF E81500
26C2 759F
26C4 BB0228
26C7 E821FF

26CA ESOAOO
26CD 74FB
26CF EB92

26D1 2400
26D3 C3

zret :

nrdy01:

call test ready
j nz r e t r y ;if it s ready now we are d
call test ready
j nz re t r y ;if not ready twice in row,
mov bx,offset nrdymsg
call pmsg ;"Drive Not Ready"

call test ready
jz nrdy01 ;now loop until drive ready
j mps re t r y ;then go retry without deer

and a1,0
ret ; return w i t h n o e r r o r c o d e

;can t make it w/ a short 1wboot 1:
26D4 E9B3FE jmp WBOOT

• *** * * * * * A* * * * * * * * * * * A* *
• * *
I

;* The i8271 requires a read status command *
;* to reset a drive-not-ready after the *

;* dr i ve b e comes ready *
• * *
• *** *
I

test r e ady :
26D7
26D9
26DE
26EO

26E2
26E5

26ES E4AO
26EA A880
26EC 75FA
26EE E4A1
26FO 84C6

BB7128
ESOBOO

B640
F606692880
7502
B604

nrdy2:

d r po l l :

m ov dh, 4 0 h ;proper mask i f dr 1
test sel mask,80h
jnz nrdyX
mov dh, 04h

mov bx,offset rds corn
cal l s end corn

in al,fdc stat ; get s t a t u s w o r d
t est a 1, 8 0 h
j nz dr p o l l
in al,fdc rslt
t est al ,d h

;mask for dr 0 status bit

;wait for not command busy
;get "special result"
;look at bit for this drive

130

26F2

CP/M-86 System Guide

ret

Appendix E BI OS L i st i ng

;return status of readyC3

I

I

I

I

• ***
• *
• 'k

• *
• *
• *
• 'k

• ***

Send corn sends a command and parameters
to the i8271: BX addresses parameters.
The DMA controller is also initialized
if this is a read or write

I

I

send corn:
26F3 E4AO
26F5 A880
26F7 75FA

26F9 8A4701
26FC 3C12
26FE 7504
2700 B140
2702 EB06

2704
2706
2708

3COA
7520
B180

ini t d ma:

write maybe:

in al,fdc stat
t est a l , 8 0 h
jnz send corn

;see if we have to initialize for a DMA ope

m ov al , l [b x]
c mp al , l 2 h
j ne wr i t e maybe ; i f n o t a re a d i t cou l d b e
mov cl , 40E
jmps init dma ;is a read command, go set

cmp al ,Oah
jne dma exit ;leave DMA alone if not rea
mov c1,80h ; we have wr i t e , not read

;we have a read or write operation, s etup DMA cont r

;get command byte

;insure command not busy
;loop until ready

270A B004
270C E6A8
270E BOOO
2710 E6A5
2712 8AC1
2714 E6A5
2716 A16528
2719 E6A4
271B 8AC4
271D E6A4
271F A16728
2722 E6AA
2724 8AC4
2726 E6AA

2728 8AOF
272A 43
272B 8A07
272D OA066928
2731 E6AO

2733 FEC9
2735 7482
2737 43

dma ex i t :

parm loop:

(CL contains p r oper d i r e c t i o n b i t)
mov a1,04h
out dmac mode, al; enable dmac
mov a1,00
out dmac cont,al
m ov al , c l
out dmac cont,al ;load direction register
mov ax,dma adr
out dmac adr,al ;send low byte of DMA
mov al ,ah
out dmac adr , a l
mov ax,dma seg
out fdc segment,al ;send low byte of segmen
mov al ,ah
out fdc segment,al ;then high segment addre

mov cl,[BX] ;get count
i nc BX
mov al,[BX] ;get command
or al,sel mask ;merge command and drive co
out fdc corn,al ;send command byte

jz exec exit ;n o (more) parameters,retu

inc BX ;point t o (n e x t) p a r ameter

; send high by t e

;send first byte to con

dec cl

p arm pol l :

131

CP/M-86 System Guide Appendix E BI OS L i st i ng

2738 E4AO
273A A820
273C 75FA
273E 8A07
2740 E6A1
2742 EBEF

xn al, fdc stat
test a 1 , 20h
jnz parm pol l
mov al , [BX]
out fdc~arm,al
jmps parm loop

;test "parameter register f
;idle until parm reg not fu

;send next p a rameter
;go see if there are more p

I

I

• * Data Areas

• *** A* * * * % A * ** * * * * * * A*
• * *

*
• * *
• **%** * * * * * * * * * * * * A* A* * * * *
I

2744 data offset equ offset $

dseg
org data offset

IF l oader b i o s

;contiguous with co

:I
s ignon d b

db
cr,lf,cr,lf
CP/M-86 Version 2.2 ,cr,lf,O

ENDIF ; loader b i o s

IF n ot l oader b i o s
I

2744 ODOAODOA signon db
2748 202053797374 db

cr,lf,cr,lf
System Generated — 11 Jan 81 , c

656D2047656E
657261746564
20202D203131
204A616E2038
310DOAOO

ENDIF ; not l o ader b i o s

276A ODOA486F6D65
204572726F72
ODOAOO

727275707420
547261702048
616C740DOAOO

2791 B127B127B127

2799 C127D127DE27

27A1 022816282828

27A9 4D28B127B127

2779 ODOA496E7465 i nt t r p d b

errtbl dw erO,erl,er2,er3

d w er4,er5 , e r 6 , e r 7

dw er8,er9 ,e rA ,e rB

dw erC,erD,erE,erF

b ad horn db c r , l f , Hom e Er r o r , cr , l f , O

cr,lf, Interrupt Trap Halt ,cr,lf,O

B127

EF27

3D28

132

Appendix E BI OS L i st i ngCP/M-86 System Guide

B127

27B1 ODOA4E756C6C er0 db cr,lf,'Null Frror ?? ,0
204572726F72
203F3FOO

27B1 erl
27B1 er2
27B1 er3

27C1 ODOA436C6F63 er4

equ erO
equ er0
equ er0
db c r , l f , Cl o c k F r r o r : , 0

2 7D1 ODOA4C617465 e r 5

2 7DE ODOA49442043 e r 6

2 7EF ODOA44617461 e r 7

2802 ODOA44726976 er8

2816 ODOA57726974 er9

2828 ODOA54726B20 er A

2 84D ODOA53656374 e r C

283D ODOA57726974 erB

6B204572726F
72203AOO

20444D41203A
00

524320457272
6F72203AOO

204352432045
72726F72203A
00

65204E6F7420
526561647920
3AOO

652050726F74
656374203AOO

3030204F6F74
20466F756E64
203AOO

65204661756C
74203AOO

6F72204E6F74
20466F756E64
203AOO

db cr,lf, Late DMA : ,0

db cr,lf., Write Fault : ,0

db c r , l f , I D C R C F r r o r : ,0

db cr,lf, Write Protect : ,0

d b cr , l f , Dat a C R C E r r o r : ,0

db cr,lf, Drive Not Ready :',0

db c r , l f , ~ r k 0 0 N ot Fo u n d : , 0

db cr,lf, Sector Not Found : ,0

27B1
27B1
27B1
2802

2862 00
2863 0000
2865 0000
2867 0000
2869 40

erD equ er 0
erE equ er O
erF equ er O
nrdymsg equ er8

r t r y c n t d b 0
last corn dw 0
d ma adr d w 0
d ma seg d w 0
sel mask db 40h

; disk e r ro r r et r y c o u n t e r
;address of last command string
;dma offset stored here
;dma segment stored here
; selec t m a sk , 4 0 h o r 80h

Various command strings for i8271

286A 03
286B 00
286C 00

i o corn d b 3
rd wr db 0
t r k d b 0

; lengt h
;read/write function code
; t r ac k ¹

133

CP/M-86 System Guide Appendix E BIOS Listing

286D 00 sect

289C

=289E 03
=289F 07
=28AO 00
=28A1 F200
=28A3 3FOO
=28A5 CO
=28A6 00
=28A7 1000
=28A9 0200

=289C 1AOO

287C

28AB

001F
0010

289C
001F
0010
28AB

2873 02
2874 DF02
2876 2105
2878 0020
287A 0020

286E 022900
2871 012C

=287C AB280000
=2880 00000000
=2884 C5289C28
=2888 64294529
=288C AB280000
=2890 00000000
=2894 C5289C28
=2898 93297429

=28AH 01070D13
=28AF 19050B11
=28B3 1703090F
=28B7 1502080E
=28BB 141A060C
=28BF 1218040A
=28C3 1016

I

I

I

dpbo

dpel

x l t 0

als0
cssO

dpbl
alsl
cssl
x l t l

dpbase
dpeO

horn corn
rds corn

segtable

equ
dw
dw
dw
dw
dw
dw
dw
dw

equ
dw
db
db
db
dw
dw
db
db
dw
dw
equ
db
db
db
db
db
db
db
equ
equ

equ
equ
equ
equ

db 0 ;sector

db 2,29h,O
db 1,2ch

System Memory Segment Table

db 2 ;2
dw tpa seg
d w tpa l e n
dw 2000h
dw 2000h

include

$
x l t 0 , 0 0 0 0h
0000h,0000h
dirbuf , dpbO
csvO,alvO
x l t 1 , 0 0 00h
0000h,0000h
dirbuf , dpbl
c svl , a l v l
D ISKDEF 0, 1 , 2
o ffset $
26
3
7
0
242
63
192
0
16
2
o ffset $
1 ,7,1 3 , 1 9
2 5,5,1 1 , 1 7
2 3,3, 9 , 1 5
2 1,2,8 , 1 4
2 0,26, 6 , 1 2
1 8,24, 4 , 1 0
16,22
31
16
DIRKDEF 1,0
dpbo
alsO
cssO
x l t O
ENDEF

singles.lib
D1SKS 2

segments

;home drive command
;read status command

;1st seg starts after R1OS
;and extends t o 0 8 000
; second i s 2 0 000 ­
;3FFFF (128k)

read in disk definitio

;Base of D i s k Param
;Translate Tab1e
;Scratch Area
; Dir B u f f , Pa r m B l o
; Check, A l l o c Vec t o
;Translate 'Table
;Scratch Area
;Dir Buff, Parm Blo
; Check, A l l oc Ve c t o

6 (6J 1 0 2 4 (2 4 3 ~ 6 4 (6 4 (2
;Disk Parameter Blo
;Sectors Per T r ack
;Block Shift
;Block Mask
; Extn t M a s k
;Disk S ize — 1
;Directory Max
;Al l .oc0
; Al l o c l
;Check Size
;Offse t
; Transl .ate T a b l e

;Allocation Vector
;Check Vec t o r Si ze

;Equivalent Paramet
;Same Allocation Ve
;Same Checksum Vect
; Same Trans l a t e T a b

I

I

28C5
I Uninitialized Scratch Memory Follows:

equ o ffset $;Start of Scratch Abegdat

134

Appendix F. BIOS ListingCP/M-86 System Guide

=28C5
=2945
=2964
=2974
=2993

29A3
OODE

=29A3 00

dirbu f r s
alv0 r s
csvO r s
alv l r s
csvl r s
e nddat e q u
datsi z equ

db

128
als0
cssO
alsl
cssl
offset
offset
0

;Directory Buffer
; Al lo c V e c t o r
;Check Vector
; Al lo c V e c t o r
;Check Vector

$;End o f S c ra t c h A re
$-begdat ;Size of Scratch Ar

;Marks End of Modul

loc stk rw 32 ;local stack for initialization
stkbase equ offset $

lastoff equ offset $i
tpa seg equ (lastoff+0400h+15) / 16
tpa len equ 0800h — tpa seg

29A4
29E4

29E4
02DF
0521

29E4 00 db 0 ;Kill last address for GENCMD

I

I
• **** *
• * *

*
• '0 *
• *** * * * * * * * %* * * * * * A* *

• * Dummy Data Section

I

0000 dseg 0 ;absolute low memory
org 0 ;(interrupt vectors)

intO offset rw 1
intO segment rw 1

0000
0002

pad to system call vector
rw 2 * (bdos i n t - 1)0004

0380
0382

bdos of f se t r w 1
bdos segment r w 1

END

135

Appendix F
CBIOS Listing

* ** * * * * * * * * A %** * * * ** *

* This is the listing of the skeletal CBIOS which *
* you can use as the basis for a customized BIOS
* fo r n o n - s t andard hardware. T he essent ia l p o r ­ *
* tions of the BIOS remain, with "rs" statements *
* marking the routines to be inserted. *

* * * * * * * * * * * * * * * * A* t *

• **** * * * * * A *
• * *
I

I

;* This Customized BIOS adapts CP/M-86 to *
;* the following hardware configuration
• * Processor:
• * Brand:
; * Cont rol l er :

*
*
*
*

• * *
• *
I

I

I

;* Pr ogr a mmer:
• * Revisions

*
*

• * *
• *** * A'** * * * * * * * * * * * * * %* *
I

FFFF
0000
000D
000A

true
false

lf

equ -1
e qu not t r u e
e qu Odh ;car r i age r e t u r n
equ Oah ;line feed

cr

• **** * * * * * * * * * * * A '*4 * * * ** *
• * *
I

;* Loader bios is true if assembling the *

;* LOADER BIOS, otherwise BIOS is for the *

;* CPM.SYS file. *
• * *
• * *** * * * * * * * * * * A* * * A' * * * A* *
I

0000
OOEO

l oader b i o s
bdos in t

e qu fa l se
equ 224 ;reserved BDOS interrupt

n ot l oader b i o sIF
I

2500
0000
OB06

bios code
ccp of f s e t
bdos ofs t

equ 2500h
equ 0000h
equ OB06h ;BDOS entry point

I

137

CP/M-86 System Guide Appendix F CBIOS Listing

ENDIF ; not l oa d e r b i o s

IF 1 oader b i o s

bios code
ccp of f s e t
b dos o f s t

equ 1200h
equ 0003h
equ 0406h

;start of. LDBIOS
;base of . CPMLOADER
;stripped BDOS entr

ENDIF ; loader b i o s

cseg
org ccpof f set

org b i os code
ccp o

2500 E93COO
2503 E97900
2506 E98500
2509 E98DOO
250C E99AOO
250F E9A200
2512 E9B500
2515 E9BDOO
2518 E9F600
251B E9D900
251E E90101
2521 E90301
2524 E90C01
2527 E91701
252A E94701
252D E98FOO
2530 E9F900
2533 E90201
2536 E90401
2539 E9A400
253C E9A500

I

I

I

• *** * A * A* * *
• * *
;* BIOS Jump Vector for Individual Routines *

• *** *

j mp IN I T
jmp WBOOT
jmp CONST
jmp CONIN
jmp CONOUT
jmp LISTOUT
jmp PUNCH
jmp READER
jmp HOME
jmp SELDSK
jmp SETTRK
jmp SETSEC
jmp SETDMA
jmp READ
jmp WRITE
jmp LISTST
jmp SECTRAN
jmp SETDMAB
jmp GETSEGT
jmp GETIOBF
jmp SETIOBF

• *** *
• * *
;* INIT Entry Point, Differs For LDBIOS and *
; * B I OS, a ccording t o " L o ader B i o s " va1ue *

• * *

;Fnter from BOOT ROM or LOADER
;Arrive here from BDOS call 0
;return console keyboard status
; return console keyboard char
;write char to console devi.ce
;write character to list device
;write character to punch device
;return char from reader device
; move to t r k 0 0 o n c u r s el d r i v e
;select disk for next rd/write
;set track for next rd/write
;set sector for next rd/write
;set offset for user buff (DMA)
; read a 128 byt e s e c t o r
;write a 128 byte sector
;retur~n list status
;xlate logical->physical sector
;set seg base for buff (nMA)
;return offset of Mem Desc Table
;return I/O map byte (IOBYTF)
;set I/O map byte (IORYTF)

I

I
• * *
• *** *

I NIT : ;pr in t s i g non message and i n i t i al i ze h a r dwa
mov ax,cs ;we entered with a TMPF so253F 8CC8

138

Appendix F CBIOS ListingCP/M-86 System Guide

2541 8EDO
2543 8ED8
2545 8ECO

2547 BC5928
254A FC

mov ss,ax ;CS: as the initial value o
mov ds,ax ;DS:,
mov es,ax ;and ES:
;use local stack during initialization
mov sp,offset stkbase
cld ;set forward direction

IF n ot l oader b i o s

254B 1E
254C C606A72600
2551 B80000
2554 8ED8
2556 8ECO

2558 C70600008225
255E 8COE0200
2562 BF0400
2565 BE0000
2568 B9FE01
256B F3A5

256D C7068003060B
2573 1F

This is a BIOS for the CPM.SYS file.
Setup all interrupt vectors in low
memory to address trap

push ds
mov IOBYTF.,O
mov ax,O
mov ds,ax
mov es,ax ; set E S an d D S t o zer o
;setup interrupt 0 to address trap routine
mov intO offset, offset int trap
mov intO segment,CS
mov di , 4
mov si , O ;then propagate
mov cx,510 ; trap vec to r t o
rep movs ax ,ax ;all 256 interrupts
;BDOS offset to proper interrupt
mov bdos offset,bdos ofst
pop ds ;restore the DS register

(addit i ona l CP/M-86 i n i t i al i za t i o n)
1

; save the DS reg i s t e r
;clea r I O BYTE

ENDIF ; not l o ader b i o s

IF l oader b i o s

;This i s a BI O S f o r t he L O ADER
push ds ;save data segment
mov ax,O
mov ds,ax ;point to segment zero
;BDOS interrupt offset
mov bdos offset,bdos ofst
mov bdos segment,CS ;bdos interrupt segment
(addit i ona l LOADFR in i t i a l i za t i o n)
pop ds ;restore data segment

FNDIF ; loader b i o s

mov bx,offset signon
call pmsg ;print signon message
mov c1,0 ;default to dr A: on coldst
jmp ccp ; jump to cold start entry o

2574 BBB126
2577 E86FOO
257A B100
257C E981DA

139

CP/M-86 System Guide A ppendix F C B I OS L i s t i n g

257F E984DA ;direct entry to CCP at cornWBOOT: jmp ccp+6

n ot l oader b i o sIF

2582 FA
2583 8CC8
2585 8ED8
2587 BBD126
258A E85COO
258D F4

I
i nt t r a p :

cl i
mov ax,cs
mov ds,ax
mov bx,offset
call pmsg
hit

; b1ock i n t e r r u p t s

;get our data segment
i nt t r p

;hardstop

ENDIF ; not l o ader b i o s

• **** * * * * * * * * * * * A * %*A** * * ** * * * * * * * * * * * * * * i ' * * * *
• * *
I

I

;* CP/N Character I/O Interface Routines *
• * *
• **** *
I

I

CONST:
258E
2598 C3

; console s t a t u s
10 ; (f i l l - i n)rs

ret

CONIN:
2599 E8F2FF
259C 74FB
259E
25A8 C3

;console i n pu t

;wait f o r R DA
; (f i l l - i n)

cal l CONST
jz CONIN
r s 10
ret

CONOUT:
25A9
25B3 C3

rs
ret

;console ou tput
10 ; (f i l l - i n)

25B4
25BE C3

LISTOUT:
10

; then re t u r n d a t a

;list device output
; (f i l l - i n)rs

ret

LISTST:
25BF
25C9 C3

10
;poll list status
; (f i l l - i n)rs

ret

PUNCH:
25CA
25D4 C3

; write punch dev i c e
10 ; (f i l l - i n)rs

ret

READER:
25D5
25DF C3

10 ; (f i l l - i n)rs
ret

GETIOBF:
25EO AOA726 mov al , I O BYTE

140

Appendix F CBI O S L i s t i ngCP/M-86 System Guide

25E3 C3 ret

SETIOBF:
25E4
25E8

880EA726
C3

mov IOBYTE,cl ; set i o b y t e
ret ;iobyte not imolemented

pmsg:
25E9 8A07
25EB 84CO
25ED 7421
25EF 8AC8
25F1 E8BSFF
25F4 43
25F5 EBF2

mov al , [BX]
test al,al
j z r e t u r n
mov CL,AL
cal l C ONOUT
inc BX
jmps pmsg

;get next char from message

; i f z e r o r e t u r n

;prin t i t

; next charac te r and l o o p

I

• *** * * * * * * * * * k * * * * * * * * * * * * * * * * * * * k* * * * * * * * * * * *
• * *

*• * Disk Input/Output Routines
• *
• **** * * * * * * * A ' *

0002
25F7 880EA826
25FB BB0000
25FE 80F902
2601 730D
2603 B500
2605 8BD9
2607 B104
2609 D3E3
260B B9F126
260E 03D9
2610 C3

SELDSK:
ndisks equ 2 ;number of disks (up to 16)

mov disk , c l ;save d isk number
mov bx,0000h ; ready fo r e rr o r r et u r n
c mp cl ,nd i s ks ;n beyond max d i sks?
j nb re t u r n ; return i f so
mov ch,0 ;double(n)
mov bx,cx ; bx = n
mov c1,4 ; ready fo r *16
s hl bx , c l ; n = n ~ 16
mov cx,offset dpbase
add bx,cx ;dpbase + n * 16
ret ;bx = .dph

;move selected disk to home position (Track
m ov trk , 0 ;set disk i/o to track zero
rs 10 • (fi l l - i n)
ret

return :

HOME:

;select disk given by register CL

2611 C706A9260000
2617
2621 C3

SETTRK: ; set t r a c k address g i ven by CX
2622 890EA926
2626 C3

m ov t r k , C X
ret

SETSEC: ;set sector number given by cx
2627 890EAB26
262B C3

mov sect ,CX
ret

SECTRAN: ; transla t e
mov bx,cx
a dd bx , d x
m ov bl , [b x]

sector CX using table at [DX]

;add sector to tran table a
;get logical sector

262C 8BD9
262E 03DA
2630 8A1F
2632 C3 ret

SETDMA: ;set DMA offset given by CX

141

CP/N-86 System Guide Appendix F CBI O S L i s t i ng

2633 890EAD26
2637 C3

m ov dma ad r , C X
ret

SETDNAB: ;set DMA segment given by CX
2638 890EAF26
263C C3

mov dma seg,CX
ret

I

GETSEGT: ;return address of physical memory table
263D BBE826
2640 C3

mov bx,offset seg table
ret

• *** RA* * * * * * * * * * * * A* * * * * * *
• *
I

; All disk I/O parameters are setup:
DISK is disk number (SELDSK) *
TRK is t r ack number (SETTRK) *
SFCT i s sec t o r num b er (SETSEC) *
DMA ADR is the DNA offset (SFTDMA) *
DMA SEG is the DMA segment (SETDMAB)*

;* READ reads the selected sector to the DNA*
;* address, and WRITF. writes the data from *
;* the DMA address to the selected sector *
;* (return 00 if successful, 01 if perm err)*
• * *
• **A'** * * * * * * * * * * * * * * A* k t * * * * * * A* * * * * * * * * * * * * * *
I

READ:
2641
2673 C3

50 ; f i l l - i nrs
ret

WRITE:
2674
26A6 C3

50 ; (f i l l - i n)rs
ret

I

I

• * D ata Ar e a s

• *** I *
• * *

*
• * *
• ***A* * * A ** * * * * * * * * * %* * * * * * * * * A* * * * * * * * * * * * * * *
I

26A7 data offset equ offset $

26A7 00
26A8 00
26A9 0000
26AB 0000
26AD 0000
26AF 0000

d seg
org

I OBYTE d b
disk db
t r k dw
sect dw
d ma adr d w
dma seg dw

data offset
0
0
0
0
0
0

l oader b i o s

;glisk n umber
;t rack number
;sector number
;DMA offset from DS
;DNA Base Segment

;contiguous with co

IF

s ignon d b cr,lf,cr,lf

142

Appendix F CBIOS ListingCP/M-86 System Guide

db CP/M-86 Version 1.0 ,cr,lf,O

I

FNDIF ; loader b i o s

IF n ot l oader b i o s
I

26B1
26B5

26CE

ODOAODOA
53797374656D
2047656E6572
617465642030
302F30302F30
30
ODOAOO

signon db
db

db

cr,lf,cr,lf
System Generated 00/00/00

c r, l f , O

I

26Dl
26D3

ODOA
496E74657272
757074205472
61702048616C
74
ODOA26E6

db

ENDIF ; not l o ader b i o s

dbi nt t r p c r, l f
Interrupt Trap Halt

26F1
=26F1
=26F5
=26F9
=26FD
=2701
=2705
=2709
=270D

2711
=2711
=2713
=2714
=2715
=2716
=2718
=271A
=271B

26E8 02
26E9 C602
26EB 3A05
26ED 0020
26EF 0020

20270000
00000000
3A271127
D927BA27
20270000
00000000
3A271127
0828E927

I

I

dpbO

dpel

dpbase
dpeO

seg table

equ
dw
dw
dw
dw
dw
dw
dw
dw

equ
dw
db
db
db
dw
dw
db
db

DISKS 2

segments

db c r, l f

System Memory Segment Table

db 2 • 2
dw tpa seg
d w tpa l e n
dw 2000h
dw 2000h

include singles.lib ;read in disk definitio

S ;Base of D i s k Param
xlt0 , 0000h ; Translate Tab l e
0000h,0000h ;Scratch Area
dirbuf , dpbO ;Dir Buff, Parm Blo
csvO,alvO ; Check, A l l o c V e c to
x l t 1 , 0 0 0 0h Translate Tabl e
0000h,0000h ;Scratch Area
dirbuf , dpbl ;Dir Buff, Parm Blo
c svl , a l v l ;Check, A l l o c Vec t o
DISKDEF O J 1~26 / 6 J 1 0 2 4 J 2 4 3 / 64 J 6 4 ~ 2
o ffset S ;Disk Parameter Blo
26 ;Sectors Per T r ack
3 ;Block Shift
7 ;Block Mask
0 ; Extn t M a s k
242 ; Disk S i z e — 1
63 ; Direc t o r y M a x
192 ;AllocO
0 ;Al loc i

;1st seg starts after BIOS
;and extends t o 0 8 000
;second i s 2 0 000
;3FFFF (128k)

1AOO
03
07
00
F200
3F00
CO
00

143

CP/M-86 System Guide A ppendix F C B I OS L i s t i n g

2720

001F
0010

2711
001F
0010
2720

=271C 1000
=271E 0200

=2720 01070D13
=2724 19050B11
=2728 1703090F
=272C 1502080E
=2730 141A060C
=2734 1218040A
=2738 1016

I

x l t O

alsO
cssO

dpbl
alsl
cssl
x lt l

dw
dw
equ
db
db
db
db
db
db
db
equ
equ

equ
equ
equ
equ

16
2
o ffset $
1,7,13,19
25,5,11,17
23,3,9,15
21,2,8,14
20,26,6,12
18,24,4,10
16,22
31
16
DISKDEF 1,0
dpbO
alsO
cssO
x l t 0
ENDEF

;Check Size
;Offset
; Translate Tab l e

;Allocation Vector
; Check Vector S i z e

;Equivalent Par amet
;Same Allocation Ve
;Same Checksum Vect
;Same Translate Tab

I I I

273A
=273A
=27BA
=27D9
=27E9
=2808

2818
OODE

=2818 00

begda t
dirbuf
alv0
csvO
alv 1
csvl
enddat
datsiz

o ffset $
128
als0
cssO
alsl
cssl
o ffset $
offset $-begdat
0

Uninitialized Scratch Memory Follows:

equ
rs
rs
rs
rs
rs
equ
equ
db

;Start of Scratch A
;Directory Buffer
;Al loc Vecto r
;Check Vector
;Alloc Vecto r
;Check Vector
; End of Sc r a tch A r e
;Size o f S c r a t ch Ar
;Marks End of Modul

2819
2859

2859
02C6
053A

2859 00

l oc st k r w 32 ;local stack for initialization
stkSase equ offset $

lastoff equ offset $
tpa seg equ (lastoff+0400h+15) / 16
t pa len equ 0800h - t p a s e g

db 0 ;fill last address for GENCMD

I

• * Dummy Data Section

• *** '0* * * * * * * * * * * * * 'k * * * * * * * * * * * * SR* * * * * * * * * * * * *
• 4' *

*
• * *
• A*** * * * * * % ** * At * * * A* *
I

I

0000

0000
0002

0004

0380
0382

bdos of f s e t
bdos segment

END

intO offset rw 1
intO segment rw 1

pad to system call vector
rw 2 *(bdos i n t - 1)

dseg 0 ;absolute low memory
org 0 ;(interrupt vectors)

rw
rw

144

Index

allocate absolute memory, 52
allocate memory, 52

base page, 1
B IOS, 1 2 1
b ootst r ap , 4
bootstrap ROM, 81

address, 39

G ENCMDg 2~ 3g 15 ~ 1 7
GENDEF, 2
get address of disk parameter

b lock , 4 1
get allocation vector

g et DMA base , 4 8
get I/O byte, 27
get maximum memory, 51
g et or s e t u s e r c o de , 4 1
get read/only vector, 40
GETIOB, 65
GETSEGB, 65
group< 2

C BIOS, 56 , 13 7
close file, 34
C MD, 1, 1 5
cold start loader, 1, 56, 81
compact memory model, 11, 21
compute file size, 45
CONIN, 61
CONOUT, 61
c onsole i n p ut , 2 5
c onsole output , 2 5
c onsole s t a t us , 3 0
CONST, 60
convert i ng 8080 programs

t o CP/M-86, 3 , 1 7 , 2 3
cross development tools, 2

h eader record , 2 0
HOME, 61

I NIT , 4 , 60
Intel utilities, 17
IOBYTE, 58

L-module format, 19
LDCOPY, 2
L IST, 6 1
list output, 26
L ISTST, 6 3
LMCMD, 19
logical to physical sector

translation, 64

67, 75

d ata b l ock , 7 2 , 7 4
delete file, 36
direct BIOS call, 47
direct console I/O, 27
directory entries, 71
disk definition tables, 4, 67
disk parameter block, 69
d isk parameter header , 6 2 ,

D MA buffer , 1 4 , 3 9 , 6 0 , 6 3 make file, 37
memory, 14
memory region table, 65
m emory regions , 1

0

o ffset , 2
open f i l e , 33

f ar ca l l , 1 1, 14
file control block, 30
file structure, 1
free all memory, 53

145

Index

print string, 28
p rogram load, 5 3
PUNCH, 61
punch ou t p u t , 26

translation vectors, 69

utility program operation, 2
R

r andom access, 95
READ, 63
r ead bu f f e r , 29
read random, 42
r ead sequent i a l , 36
READER, 61
r eader i n put , 2 6
release all memory, 53
r elease memory, 52
rename, 38
reserved software interrupt,

r eset d i s k , 33
r eset d r i ve , 46
r etur n c u r r e n t d i sk , 38
return login vector, 38
r eturn ve r s i o n number, 30

WBOOT, 60
WRITE, 63
write protect disk, 39
w ri t e r a n d om, 4 4
write random with zero

f i l l , 47

8080 memory model, 3, 10,
14, 21

1 , 23

search for first, 35
search f o r ne x t , 35
sector b l o c k i ng and

d eblocking , 8 7
SECTRAN, 64
s egment , 2
segment group memory

r equirements, 1 7
segment register change, 11
segment register

initialization, 8

selec t d i s k , 33
set DMA addre ss , 39
s et DMA base , 4 8
set file attributes, 41
set I /O l eyte, 28
s et random record , 4 6
SETDMA, 63
SETDMAB, 64
SETIOB, 65
SETSEC, 62
SETTRK, 62
small memory model, 10, 21
system r e s e t , 4 , 7 , 14 , 2 5

4 9, 60 , 74

SELDSK, 62

146

Reader Comment Card
We welcome your comments and suggestions. They help us provide you with better
product documentation.

Date

1. What sections of this manual are especially helpful?

Second Edition: June 1983

2. What suggestions do you have for improving this manual? What information
is missing or incomplete? Where are examples needed?

3. Did you find errors in this manual? (Specify section and page number.)

CP/M-86® Operating System System Guide

COMMENTS AND SUGGESTIONS BECOME THE PROPERTY OF DIGITAL RESEARCH.

0

CD

n
D

m

m Z

m

I g

2

ggCD ~ g
Z

- rn

PD

CII p
ITl

p r

~ E n
C =q z z
z m p
m D m
< ~~ CD CD
CD CI D +~ D

m
m +
I Z

m

